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Abstract

This thesis explores the development and application of a smartphone-based system for
detecting mental fatigue. Tailored for both iOS and Android platforms, the system includes
a suite of tests to evaluate fine motor skills, accompanied by a detailed questionnaire to
enrich the collected data. The primary aim is to use this data for training machine learning
models capable of determining mental fatigue in users.

A two-phase data collection approach was employed, where participants interacted with the
application before and after activities likely to induce cognitive fatigue. This methodology
was used for capturing changes in fine motor skills, which are indicative of mental fatigue.
In total, 166 unique devices were involved in completing the tests using the developed
mobile application, resulting in 347 sessions recorded.

The core of this research lies in the application of various machine learning algorithms,
rigorously evaluated through nested cross-validation techniques. The analysis led to an
essential finding: self-reported tiredness and mental work hours are reliable indicators for
labelling mental fatigue. The models developed in this study achieved high performance,
with the best-performing model reaching scores in the higher eighties range. This level
of accuracy highlights the potential efficacy of integrating subjective assessments with
objective performance metrics in fatigue detection.

The implications of this research are broad, offering potential applications in workplace
safety, educational settings, and healthcare. Moreover, the comprehensive dataset generated
provides a valuable resource for further exploration into cognitive and motor functions.

The thesis is written in English and is 65 pages long, including 8 chapters, 38 figures and 9
tables.
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Annotatsioon
Vaimse Väsimuse Hindamine Nutitelefoni Sensorite ja Peenmotoorsete

Oskuste Mõõtmise Abil Kasutades Masinõppe Lähenemist

Käesolevas lõputöös uuritakse nutitelefonil põhineva süsteemi arendamist ja rakendamist
vaimse väsimuse tuvastamiseks. Süsteem on kohandatud nii iOSi kui ka Androidi
platvormidele ja sisaldab peenmotoorika hindamise testide komplekti, millele on lisatud
üksikasjalik küsimustik kogutud andmete rikastamiseks. Peamine eesmärk on kasutada
neid andmeid masinõppe mudelite treenimiseks, mis võimaldavad määrata kasutajate
vaimset väsimust.

Kasutati kaheetapilist andmekogumist, kus osalejad läbisid rakenduses esitatud ülesandeid
enne ja pärast tegevusi, mis tõenäoliselt põhjustavad kognitiivset väsimust. Metoodikat ka-
sutati peenmotoorika muutuste registreerimiseks, mis viitavad vaimsele väsimusele. Kokku
osales testide läbiviimisel 166 unikaalset seadet, kasutades välja töötatud mobiilirakendust,
mille tulemusel registreeriti 347 seanssi.

Uurimistöö tuum seisneb erinevate masinõppe algoritmide rakendamises, mida hinnati
rangelt ristvalideerimise (cross-validation) meetodite abil. Analüüsi tulemusena saadi olu-
line järeldus: raporteeritud väsimus ja vaimse töö tegemise aeg tundides on usaldusväärsed
näitajad vaimse väsimuse märgistamiseks. Selles uuringus välja töötatud mudelid saavu-
tasid kõrgeid tulemusi, parima mudeli headuse parameetrid jäid kaheksakümnendate kõrge-
masse vahemikku. Selline täpsuse tase rõhutab subjektiivsete hinnangute ja objektiivsete
töövõime näitajate integreerimise võimalikku tõhusust väsimuse tuvastamisel.

Selle uuringu mõju on laialdane, avades uusi võimalusi tööohutuse, hariduse ja tervishoiu
valdkondades. Peale selle loob laiaulatuslik andmekogu olulise aluse kognitiivsete ja
motoorsete funktsioonide süvendatud uurimiseks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 65 leheküljel, 8 peatükki, 38
joonist, 9 tabelit.
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1. Introduction

The concept of fatigue, complex and often intangible, is defined in a variety of ways.

In research, fatigue is recognised as a complex and multidimensional concept, with varying
definitions across various domains and studies. An article by S. Skau, K. Sundberg, and
H. Kuhn [1] aimed to synthesise a set of unifying definitions that are useful in all areas of
fatigue research. Their method used four desiderata: broadness, precision, neutrality, and
phenomenon-focus which led to multiple definitions. One definition emphasises the role of
fatigue in causing a decrement in performance improvement during a task. Another posits
that fatigue results in a mismatch between the effort expended and the actual performance
achieved. Additionally, the sensation of fatigue is characterised as the feeling of needing
rest, underscoring the subjective experience of this state.

The nuanced effects of fatigue on human cognitive and physical performance have been
the subject of extensive research. A series of studies have shed light on this phenomenon,
revealing the diverse ways in which fatigue manifests and impacts efficiency.

A seminar study on the effects of prolonged visual attention tasks over 3 hours demonstrated
marked increases in reaction times and errors, highlighting fatigue’s detrimental impact
on tasks requiring sustained concentration [2]. This finding is complemented by another
investigation, where mental fatigue from cognitive tasks was shown to significantly impair
physical performance, as evidenced in a cycling task following a period of intense cognitive
engagement [3].

Further exploring the realm of attention, a substantial study with 228 participants revealed
that mental fatigue progressively diminishes the capacity to maintain focus [4]. This was
evidenced through an arrow direction reporting task, underscoring the pervasive influence
of fatigue on attentional control [4].

Delving deeper into cognitive task performance, another study examined the fatigue effects
of various cognitive tasks [5]. The first task was distinguishing odd and even numbers
paired with recognising letters from the screen. These were alternated in sequence. The
second task was watching a documentary for a total of 90 minutes. The third task was
pressing the space bar based on relevant visuals. The last task was the same as the first one,
but the presentation time of the numbers and letters was individualised. The first, third,
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and last tasks all induced mental fatigue, but the last one produced the highest levels of
mental fatigue, suggesting a link between task complexity and fatigue severity.

In a real-world context, a study conducted in the United Kingdom involving work-related
cognitive tasks found that post-work cognitive performance significantly declined [6]. This
was evidenced by slower response times and reduced accuracy in tasks performed after
a workday, reinforcing the idea that occupational fatigue substantially impairs cognitive
functioning [6].

The relationship between sustained mental effort and fatigue was further examined through
a mental arithmetic study with 20 participants [7]. Here, five EEG signals were measured
and statistical analysis was carried out on the results among different brain regions. The
signals showed mental fatigue after performing the task which proved that mental arithmetic
problems can successfully be used to induce mental fatigue.

Lastly, a study done with 18 participants in 2010 analysed the effect of fatigue on speech
over 24 hours [8]. Every 4 hours, speech samples were acquired from the subjects. The
subjects performed speech tasks, a sustained vowel, and also read a passage. Notable
changes in speech patterns, including slower speech and increased pitch variation, were
observed, offering a unique perspective on the physiological dimensions of fatigue.

1.1 Related Works

Recent studies have made significant strides in utilising machine learning (ML) and
smartphones to measure fatigue, offering innovative and accessible methods for fatigue
detection. This section presents the prominent studies and papers done on this topic.

A comprehensive analysis of 67 articles on fatigue detection using ML and mathematical
modelling highlighted the effectiveness of various approaches [9]. While EEG-based
methods and facial behaviour analysis showed promising results, the cost and complexity
of EEG were noted as limitations. In contrast, camera-based detection offers a less
expensive and real-time alternative. The study concluded that a combination of biological
and physical features yields the highest accuracy in fatigue detection.

Another study compares 48 papers on drowsiness detection techniques using ML to arrive
at a recommendation for a strategy based on the findings [10]. The papers were divided into
three main categories depending on the features analysed: vehicle features, behavioural
features, and physiological features. Vehicular features are commonly extracted from the
steering wheel. Physiological features are for example heart rate, pulse, and body tem-
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perature. Behavioural features usually depend on image processing to detect movements.
Using vehicular features the highest accuracy of 98.1% was achieved with the Supporting
Vector Machine (SVM) classifier. Using physiological features the highest accuracy of
98.6% was found using the k-nearest neighbour (K-NN) classifier with synchronisation
likelihood and minimum spanning tree together as a feature selection algorithm. Using
behavioural features the highest accuracy of 98.0% was achieved through using an SVM
classifier with mouth region features. A hybrid feature-based technique was also taken
into consideration and with this, the accuracy of 98.6% was achieved through calculating
PERCLOS and using voice as a feature with the SVM classifier. The author concludes that
physiological features give better results than the other two, but recommends using the
hybrid technique. Although they show high performance, the experimental setting is not
attainable in most practices. Monitoring the movement of a steering wheel and additionally
the physiological features is very expensive and resource heavy.

In the context of Parkinson’s disease (PD), a study on 37 PD patients and 38 healthy
individuals used handwriting tasks to diagnose PD [11]. ML techniques like SVM, Ad-
aBoost, and K-NN algorithms were employed to analyse kinematic and pressure features in
handwriting, with the SVM showing the best results. This study underscores the potential
of using digitised motorised skill tests in neurological disorder diagnostics.

In a study on Multiple Sclerosis (MS), the researchers developed a mobile app to assess
fatigue and mood symptoms to improve understanding of MS-related fatigue [12]. The
app enabled patients to frequently record their fatigue levels, depression, anxiety, and
pain using visual analogue scales, supplemented by one-time questionnaires. This method
facilitated real-time symptom monitoring, a novel approach in MS research. The study’s
notable contribution is its focus on the circadian patterns of fatigue and mood symptoms,
offering new insights into their daily fluctuations in MS patients. High patient compliance
indicated the app’s effectiveness as a user-friendly tool for fatigue assessment.

In a randomised controlled trial, the efficacy of the Untire mHealth app was evaluated for
improving fatigue and quality of life in cancer patients and survivors [13]. Participants
were divided into an intervention group with immediate app access and a control group
with delayed access. The app’s impact on fatigue severity, interference, and quality of life
was measured over 12 weeks. The results indicated significant improvements in fatigue and
overall quality of life for the intervention group, particularly among those with medium to
high app usage. The app’s effectiveness was consistent across various demographic and
health factors. The study concluded that the Untire app is an effective tool for managing
fatigue in cancer patients and survivors, offering a scalable and accessible treatment option.
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In the context of Barth syndrome (BTHS), a phone app was developed to measure fatigue
in real-time [14]. The study involved 36 participants, half with BTHS, who reported
fatigue levels using the app six times daily while wearing an activity tracker for two
weeks. The study aimed to determine if the app could distinguish between BTHS and
non-BTHS individuals based on fatigue levels and correlate these with actual energy
expenditure. It was found that the app successfully recorded fatigue. However, the main
factor differentiating between the BTHS and control participants was "crashes" (person
falling) that were recorded using an activity tracker.

The aforementioned studies focused on analysing qualitative data; in contrast, this thesis
will incorporate both qualitative insights and quantitative data sourced from smartphone
sensors.

A study utilising an Android application to assess fine motor abilities in 41 subjects
demonstrated the potential of ML in predicting fatigue [15]. By analysing self-assessed
tiredness levels and task data, the model achieved 78.8% accuracy and 96.0% sensitivity in
fatigue prediction, with a low specificity of 25.0%. However, the study noted the need for
larger data sets and more precise ground truth for enhanced performance of ML models.

Another study employed a spiral drawing test with 14 subjects to detect cognitive fatigue
[16]. The test involved drawing a spiral on a tablet three times during a workday. The
spiral was also split into sectors because the behaviour of the drawing process differs
within the spiral. All the parameters were computed for each segment. Two sets of models
were trained. First with only temporal features and the second with non-temporal features.
For both sets four ML classifiers were trained: logistic regression, K-NN, decision tree,
and the SVM. The resulting solution achieved up to 89.4% accuracy. This suggests that the
presence of fatigue is reflected in the precision and smoothness of movement and motor
skills and that tasks like spiral drawing are reliable methods for collecting data to detect
fatigue. The presentation of these findings is limited, as it addresses only the accuracy
aspect.

The presented works demonstrate collectively that the application of ML in fatigue de-
tection holds promise for various applications, including medical diagnostics and safety
monitoring. Moreover, the realisation of accurate ML models by the use of fine-motor skill
tests, coupled with kinematic parameters to detect PD shows promise that these tests can
be used to train accurate models. Also, the promising outlooks for fatigue measurement
using smartphones and ML provide an appealing avenue for cost reduction and availability
increase. However, improvements to existing solutions are needed to overcome mentioned
limitations.
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1.2 Problem Statement

The principal objective of this research is the identification of mental fatigue using a
smartphone-based application as a tool for data acquisition. Integral to the thesis’s progres-
sion, the fundamental research question that will be investigated is:

■ Is it possible to detect mental fatigue using smartphone application-based fine motor
skill tests?

The goal of this thesis is to widen the availability of smartphone applications meant for
completing tasks that measure fine motor skills and use ML models to detect mental fatigue.
Furthermore, to improve the ground truth by detecting the changes in fine motor skills
before and after completing a mental fatigue-inducing task and improving the questionnaire
presented to the user to widen the dataset, to see if these changes can be useful in training
an ML model to achieve higher detection results.

In the earlier works, an Android mobile application was created [15]. The first focus of
this thesis is to analyse the existing application and create an updated iOS application so
the number of subjects available to complete the tests would be larger. The iOS application
will be based on the Android application mentioned previously, but it will contain some
updates. The application will still have 6 main parts: initial questionnaire, reaction test,
spiral drawing test, reaction time test with colours, tremor test for the right hand, and
tremor test for the left hand. In the questionnaire section, questions about daily activity
type, level of education, how challenging or boring the previously performed task was
for the subject, how difficult the previously performed task was and the level of current
anxiety will be added. Additionally, feedback after completing the test will be added for
the subject. The application will use a native iOS language called Swift to ensure the
highest quality of data available for measuring from the application.

The second focus of this thesis would be to bring the previous Android application and the
applications related to their work to use Tallinn University of Technology’s servers and
accounts so the work done previously could be continued by other researchers.

The next step would be to analyse the data received from the tests and prepare it. This
includes feature elimination and feature selection. The final step is to find the best
combination of features and classifiers to create a high-performance ML model.

This thesis is organised into five main parts. It starts with an overview of the methodologies
used to attain the findings. Chapter 3 presents the development of a novel iOS application,
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together with a description of necessary modifications to the back-end application and the
Android application. Following this, Chapter 4 of the thesis introduces a new dataset and
delves into its analysis, including feature engineering and fatigue categorisation. The next
chapter focuses on data exploration and unsupervised ML techniques. Chapter 6 then shifts
to explore supervised ML, highlighting the most effective models discovered. The thesis
concludes with a discussion of the topic and a conclusion in Chapters 7 and 8 respectively.
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2. Methodology

In this chapter, a general overview of the methods used to achieve the results is given.

2.1 Server migration

To further continue the research initiatives of Valla, Nõmm, and Toomela in the Department
of Software Science at Tallinn University of Technology, a comprehensive analysis of their
preceding work was conducted. As documented in [15], their prior work encompassed the
development of an Android application, alongside both back-end and front-end applications.
To facilitate the continuity and furtherance of this research by other scholars, it was deemed
essential to transition the operational management of these applications from the original
developers’ accounts and servers to those managed by Tallinn University of Technology.
Such a transition was important for enabling ongoing maintenance, modifications, and
enhancements of the code base and back-end infrastructure, thereby contributing to the
sustained development and empirical evaluation of the solutions derived from this work.

Specifically, for the Android application, a Google Play application transfer request
was utilised to ensure its alignment under the official account of Tallinn University of
Technology. This process also necessitated the resetting and recreation of the application
signing key to enable the upload of new application releases.

Furthermore, the existing architecture, comprising a front-end Svelte application and a
Kotlin back-end application with an associated database, was initially distributed across
two distinct servers. These components have now been consolidated and are operational
within a single server infrastructure at Tallinn University of Technology, accessible via
fatiguetest.cs.taltech.ee. Within this server, the ’/api’ endpoints are configured to route to
the back-end application, thereby facilitating seamless interaction with both the mobile and
front-end applications. Additionally, the terms of service document has been integrated
and is accessible at the ’/tos’ endpoint, ensuring compliance with relevant legal and ethical
standards.

2.2 Mobile Application

In the field of ML, where the quantity of data significantly impacts model effectiveness,
the creation of an iOS application to complement the existing Android app was essential
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for gathering a comprehensive dataset. This initiative was key to obtaining a wide-ranging
and extensive set of data. The Android application was first examined, revealing features
such as instructional guides, an initial questionnaire, and four different tests. After these
tasks, users could access a website to review the data they contributed.

The iOS app was crafted using Swift, a language specifically designed by Apple for its
devices [17]. Apple’s XCode and App Store Connect were used for writing and distributing
the app, respectively, under the management of Tallinn University of Technology.

The first version of the iOS app aimed to closely match the Android app’s design and was
tested using Apple TestFlight by the thesis supervisor. Feedback from the supervisory
team, including Professor Aaro Toomela from Tallinn University, led to several suggestions
for enhancing the accuracy of the results.

These suggestions involved more rigorous task completion procedures, requiring users
to complete tests twice with about an hour’s interval, and providing feedback on their
performance. The questionnaire was expanded to include questions about the user’s
education, the nature of their daily activities, their anxiety levels, their interest in and the
mental demand of their recent task.

A major change involved making the instructional content more straightforward to un-
derstand. The longer, detailed tutorial guides were replaced with clearer illustrations and
animations. These animations, created using Adobe After Effects, Apple Emojis, and
Lottie Animations, demonstrated each task before users attempted them.

Following user tests, the questionnaire format was altered. Initially, only basic information
was collected, and in the second session, users responded to more detailed questions.
After starting to analyse the collected data, a question about the users’ own assessment of
tiredness was added back to the first session, as this aspect had shown to be particularly
effective in earlier research [15].

These changes in the iOS app were also applied to the Android and back-end applications.
A significant change enables the provision of feedback to the user based on the differences
between the first and second test results.

2.3 Data acquisition

The principal methodology for data acquisition in this study involved a collaborative ar-
rangement with university professors to facilitate data collection during academic lessons.
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The process commenced with a preliminary presentation to the students, outlining the
research objectives and introducing the functionalities of the application. Subsequently, stu-
dents were encouraged to download the application, fill out the questionnaire, and perform
the tasks. A follow-up session was scheduled post-lesson to prompt students to complete
the application tasks a second time, ensuring an inter-test interval of approximately 1.5
hours.

Additionally, as a secondary approach to data collection, comprehensive information docu-
ments brought out in Appendix 3, were disseminated to various educational institutions.
These documents explicitly detailed the test completion procedures and articulated the
specific types of data being collected, along with the underlying reasons for their collection.

A tertiary method involved circulating informational documents within personal networks,
encompassing family, friends, and peers. Participants in this group were instructed to ini-
tially undertake the application’s tasks, engage in a mentally strenuous activity comparable
to an academic lesson or a cognitively demanding professional meeting, and subsequently
revisit the application’s tasks for a second assessment.

The data collection phase was initiated on the 16th of November, 2023 and concluded
on the 16th of December. Throughout this period, a total of four instructional sessions
at Tallinn University of Technology were utilised for the purposes of data gathering.
The decision number 12 by the Tallinn University Board of Ethics, dated May 12, 2021,
established guidelines for the process of data collection.

2.3.1 Experimental setting

In the context of this research, the primary experimental protocol necessitated a two-phase
engagement with the application. Initially, participants were obliged to answer a series
of foundational questions and execute four tasks within the application, each designed
to assess fine motor skills. After this preliminary interaction, participants were involved
in activities designed to induce cognitive fatigue for a duration of no less than one hour,
optimally extending to ninety minutes. These activities varied, encompassing academic
lessons, cognitively demanding non-physical work, or professional meetings, to simulate
real-world scenarios that could increase mental fatigue.

Upon completion of these cognitively demanding activities, participants were asked to
return to the application for a second session of questionnaires and task performance. This
follow-up interaction was especially important for evaluating potential changes in fine
motor skills, which are hypothesised to be indicative of fatigue.
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The data collection process was meticulously structured to detect subtle changes in motor
skill performance related to cognitive fatigue. Each participant was subsequently provided
with personalised feedback, based on a comparative analysis of their performance metrics
across the two test sessions. This approach aligns with the study’s aim of deploying ML
models to identify fatigue by analysing shifts in fine motor skills as measured through
smartphone application usage.
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3. Fatigue Detection Application

The research outlined in [15] has been extended to include further development of two
key software components: the back-end application and the Android mobile application.
Concurrently, a dedicated mobile application tailored for iOS devices was initiated from
scratch.

Enhancements to the back-end application and its associated database were imperative
to accommodate additional fields introduced in the basic data block, as well as the new
data fields introduced into the questionnaire. The back-end system underwent a significant
update, integrating advanced logic within its controller. This logic is vital for discerning
whether a device is being utilised for initial or subsequent test attempts within the ap-
plication. A critical feature of this update is the enforcement of a time interval ranging
between 25 to 100 minutes between test attempts. Moreover, novel methodologies were
implemented to provide users with feedback regarding any improvements or regressions
between their first and second attempts. An additional endpoint was also established to
facilitate the retrieval of test data over specified date ranges.

Regarding the delivery of user feedback, the updated back-end now includes calculations
for various test types. For reaction tests, it quantifies changes in test completion time and
error frequency. The spiral test analysis encompasses an evaluation of error variation, along
with assessments of changes in duration, spiral length, drawing velocity, acceleration, and
stability. For hand tremor tests, the system calculates the variance in asymmetry between
the two hands.

The infrastructure hosting these applications underwent a transition, with both the front-end
and back-end components being migrated to the servers of Tallinn University of Technology.
This move has rendered the applications accessible via https://fatiguetest.cs.taltech.ee/ for
the front end and https://fatiguetest.cs.taltech.ee/api for the back end. A depiction of the
application workflow is provided in Figure 1. This high-level flow chart illustrates the
interactions among the different components of the system.
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Figure 1. Applications high-level flow chart

3.1 Mobile applications

On May 29th, 2023, the inaugural version (1.0) of the iOS application was deployed
to Apple’s TestFlight platform, initiating its testing phase. This preliminary iteration
underwent significant refinements, evidenced by the submission of 17 subsequent updates
aimed at enhancing its functionality and user experience. Marking a milestone in its
development, the application with the name "Fatigue Test TalTech" was officially released
on the App Store on November 7th, 2023, as documented in Figure 2. The version
history indicates a series of five updates post-launch, primarily focused on incremental
improvements. These enhancements included modifications to tutorial texts, informed
by student feedback, minor design changes, expansion of the application’s geographical
availability, and the reinstatement of a previously omitted question in the initial test
sequence. It is important to note that the application collects device IDs from its users,
a practice that is explicitly acknowledged in the app’s privacy policy under the category
’data not linked to you’.

The Terms of Service document of the mobile applications has undergone comprehensive
revision and can be seen in this thesis in Appendix 4. In conjunction with this, a specialised
website was developed utilising Google Sites to articulate the privacy policy, a mandate for
submission to the Google Play Store and the App Store. Concurrently, a support web page
was also established through Google Sites, fulfilling the prerequisites for the App Store’s
public distribution of the application. The website detailing the privacy policy is accessible
to the public at https://sites.google.com/view/fatigue-test-taltech/home, while the support
page is available at https://sites.google.com/view/fatigue-test-taltech-help/home.
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Figure 2. The application in the Apple App
Store

Figure 3. The application in the Google Play
Store

The Android variant of the application with the name "Fatigue Test TalTech" was suc-
cessfully deployed to the Google Play Store on November 6th, 2023. A screenshot of
the Android application on the Google Play Store is brought out in Figure 3. After this
initial release, there have been four additional version releases. Notably, these subsequent
releases have been consistent with the updates made to the iOS application. A parallel
development strategy was employed for both platforms.

The testing framework for the iOS application was conceptualised and structured based on
the pre-existing Android application architecture. In total, the user is required to complete
four different tests within the application. This section presents the application’s workflow
in chronological order together with screenshots taken from the iOS application.

When opening the application, users are first prompted to agree to the terms of use, a
prerequisite for further interaction with the app. The user can read the terms of use by
tapping on "Click here to read our Terms of Use" which directs the user to the document.
The terms of use document is brought out in Appendix 4. After accepting these terms, users
are given general instructions for performing the tests. The first interface of the application,
together with the general instruction, is brought out in Figure 4. The screenshots used to
illustrate the workflow of the application in this section were taken on an iPhone.
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Figure 4. First views in the iOS application.

Initially, upon the first completion of the test, both the iOS and Android applications were
programmed to solicit merely basic user data. However, a comprehensive update was
made on December 6th, preceding the final session of lessons for data collection. This
update was necessary as it modified the applications to include queries about the user’s
self-assessed level of tiredness during their initial interaction.

The questionnaire designed to collect basic data from the users before the first completion
of the test is depicted on the left side of Figure 5. The collection of basic user data includes
the user’s gender, age, height, weight, education level, dominant hand, self-evaluation of
fatigue, and assessment of the nature of daily activities. During the second interaction with
the application, both the iOS and Android versions are structured to pose more detailed and
specific questions to the user. This is illustrated on the right side of Figure 5. This second
data collection includes the user’s level of interest in their most recent task, assessment
of the mental demands of their most recent task, anxiety level, and exhaustion level. The
application allows these figures to range from 0 to 10. Additionally, information regarding
the number of hours that the user spent on physical and mental activities during the day
and sleeping last night is collected. The application allows these figures to range from 0 to
12.
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Figure 5. Questionnaires used in the application with the first questionnaire shown on the
left.

3.1.1 The Simple Reaction Test

The Simple Reaction Test is the first test within the application and is designed to evaluate
the user’s response times, accuracy, and mistakes. In this test, the user is expected to
tap on black dots that appear at various locations on the screen in a randomised manner,
each differing in size. The total count of these black dots that the user must hit is fifteen.
Instruction for the user on how to execute the Simple Reaction Test is provided through
an animated tutorial, which demonstrates the appropriate method for undertaking the test.
The user’s workflow in this test is brought out in Figure 6.

The application records several parameters during the test: each screen tap, the coordinates
of these taps, the accuracy of tapping directly on the black dots, the elapsed time in
milliseconds between taps, and the dimensions of the screen of the user’s smartphone.
Moreover, the application also tracks the duration from the moment the user initiates the
test to the point where the fifteenth black dot is tapped. The test starts when the user taps
the green ’START’ button (shown in the second section of Figure 6).
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Figure 6. Simple Reaction Test views in the application.

3.1.2 The Spiral Drawing Test

The Spiral Drawing Test is the second test within the application and is designed to have
the user draw a spiral while maintaining the line within specified boundaries. Instructional
guidance for this test is provided to the user through an animated tutorial, which demon-
strates the correct technique for performing the spiral drawing task. The user’s workflow
in this test is brought out in Figure 7.

Several key metrics are recorded during this test. These include the height and width of
the drawable area on the screen (depending on screen size), the coordinates of each point
of the line drawn by the user, and an assessment of whether each point coincides with the
pre-defined background line. Additionally, the total duration taken by the user to complete
the spiral drawing is measured. Another feature of the test is the real-time calculation of
the percentage of the drawing that aligns with the background line, which is incorporated
into the resulting data object after the completion of the test. The test starts when the user
taps the green ’START’ button (shown in the second section of Figure 7).
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Figure 7. Spiral test views in the application.

3.1.3 The Advanced Reaction Test

The Advanced Reaction Test is the third test within the application and is designed to
challenge users to tap on dots that correspond with a colour indicated at the bottom right
of the screen. The dots appear at various locations on the screen in a randomised manner
each differing in size and colour. This test features featuring four pre-selected colours -
purple, blue, yellow, and black. The user’s task is to accurately tap on a dot when its colour
matches the indicated colour. An animated tutorial is provided to instruct users on the
proper execution of this test. The user’s workflow in this test is brought out in Figure 8.

This test records a variety of metrics: the height of the screen, the coordinates of each
tap, the accuracy of tapping on the correct dot, the elapsed time since the last tap, and the
time elapsed since the first appearance of a correctly coloured dot. Additionally, the total
duration taken by the user to complete the test is also captured. The test starts when the
user taps the green ’START’ button (shown in the second section of Figure 8) and finishes
when the last correct dot is tapped.
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Figure 8. Advanced reaction test views in the application.

3.1.4 The Tremor Test

The Tremor Test is the last test within the application and is designed to measure the hand
tremors of the user. The users are expected to extend one hand outward while initiating the
test by pressing the start button on the screen with their other hand. This test is repeated
with both hands. Instructional guidance for this test is conveyed through an image, which
demonstrates the correct method for conducting the tremor test. The user’s workflow in
this test is brought out in Figure 9.

During this test, the smartphone’s accelerometer sensors actively measure the hand’s
movements in all directions over 10 seconds. The test is to be conducted identically with
both hands to ensure consistent data collection starting with the left hand. The first half of
the test starts with left-hand measurements when the user taps the green ’START LEFT
HAND’ button (shown in the second section of Figure 9) and finishes when 10 seconds
have passed (timer shown in the third section of Figure 9). The second part of the test for
the right hand is identical to that of the left hand as seen from Figure 9.

Figure 9. Tremor test views in the application.
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3.1.5 Last Application View and Feedback

After the last test is completed for the first time, users are presented with a directive,
communicated via on-screen text, to close the application and engage in a mentally taxing
activity for approximately one hour. This instruction is visually represented in the left
section of Figure 10.

After the users complete the tests for the second time, the application’s back-end processes
the accumulated data from both attempts and presents the computed results to the user.
This display of results is depicted in Figure 10 on the right. The data is shown separately
for each test. For the Reaction Test, the feedback consists of the difference in the number
of mistakes, and the change in duration is shown to the user. Similarly, for the feedback
for the Advanced Reaction Test, the difference in the number of mistakes and the change
in duration is shown to the user. For the Spiral Test however, in addition to the changes
in the number of mistakes and test duration, other metrics are shown to the user with a
green upwards arrow (improvement) or a red downwards arrow (worsening). Lastly, for
the tremor test, similar to the Spiral Test, the change in asymmetry between the hands is
indicated to the user with green upwards or red downwards arrows.

Figure 10. App views after completing the tests (first completion on the left).
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4. Novel Smartphone Based Fatigue Dataset (SPFA-
TIGUE2)

In the period extending from the 16th of November to the 16th of December, the tests were
completed a total of 347 times. An analysis of device usage revealed a varied frequency
in test completions: a single device recorded six completions, ten devices completed the
tests four times each, and 26 devices achieved three completions. A significant portion
of the dataset, comprising 94 devices, completed the tests precisely twice, while 35
devices registered a single test completion. In total, 166 unique devices were involved
in completing the tests using mobile applications. It’s important to highlight that the
distribution of operating systems among the users was nearly even, with 51.2% using
Android and the remainder, a close 48.8%, opting for iOS.

The most frequently occurring responses, derived from the initial questionnaire adminis-
tered to users, are detailed in Table 1. For an in-depth view of the data collected, Appendix
2 contains a comprehensive compilation of the information gathered during the study. This
detailed appendix offers useful insights into the observed patterns in the test participants.

Table 1. The most frequently occurring responses in the first completion questionnaire.

Feature name Most common value Percentage from total values
Height 151-175 51.8%
Weight 61-75 31.3%
Age 18-25 41.6%
Gender Male 65%
Received education Higher 32.5%
Daily Work Type Mental/Physical combined 44%
Dominant Hand Right hand 91%
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4.1 Feature Engineering

In the domain of ML, the integrity and purity of data are essential for effective pattern
recognition. For this reason, it is essential to conduct rigorous data preparation and data
processing. The primary step entailed refining the dataset to include only those instances
where participants had completed the designated tasks within the application twice, with a
special emphasis on maintaining an appropriate duration between the two test completions.

Necessary to this process was the calculation of specific features, tailored to enhance the
performance of the ML algorithms. The methodologies and computations presented in [15]
were systematically analysed and thereafter employed in the derivation of features, drawing
on the data obtained from spiral drawing tests. This is illustrated in Figure 11. A selection
of these features and their descriptions are presented in Table 2. Motion mass parameters
are a set of measurements that quantify the dynamics of movement, such as velocity,
acceleration, jerk, and pressure. They are calculated by summing the absolute values
of these characteristics at each observation point [18]. These parameters are necessary
because they provide a detailed and quantifiable analysis of the amount and smoothness of
motion, which is vital for understanding complex movement patterns found through the
Spiral Test [18]. Similarly, in the Tremor test, the ’absolute acceleration’ measurements
can be used to calculate its motion mass value. For the Simple Reaction Test, the emphasis
was on calculating the mean values for metrics such as ’Was Hit On Target Sum’ and
’Time From Last Touch’. This procedure was replicated for the Advanced Reaction Test,
where the mean ’Time From First Correct Color Render’ was also computed.

Figure 11. Visual representation of the differential-type and angular-type features [15].

Within each uuid group, the mean values for the aforementioned metrics were calculated,
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Table 2. Subset of computed features for each test. Kinematic features computed from
spiral tests were developed in [18]

Test name Feature set Description

Spiral Test

distance di =
√

(xi − xi−1)2 + (yi − yi−1)2 (Euclidean distance)

velocity_mass Velocity mass of the point vector [p1, p2, . . . , pk, . . . , pN ]

acceleration
Rate of change in velocity with respect to time. The second
time derivative of the distance.

ϕ_angle_mass Mass of the angle ϕ (in radians)

x_jerk_mass Mass of the rate of change in x-directional acceleration

crackle_mass Mass of the fifth time derivative of the distance

x_acceleration_mass Mass of the x-directional rate of change in velocity

snap_mass Mass of the fifth time derivative of displacement.

Reaction Tests

wasHitOnTarget
Boolean values True if the area of the touch overlaps with at
least one pixel of the rendered circle.

timeFromLastTouch Time between touches

timeFromFirstCorrect-
ColorRender

The difference in time between two matching color renders

Tremor Test
x, y, z Acceleration along x−, y−, z−axis

absolute acceleration abs =
√

x2 + y2 + z2

ensuring that each group’s aggregated data provided a comprehensive representation of
the participant’s performance. This nuanced approach to data processing and feature
engineering was integral in preparing a robust dataset, thereby facilitating the accuracy
and efficacy of the ML models in detecting the study’s targeted patterns.

4.2 Data Cleaning

In refining the dataset for improved analytical accuracy, a careful approach was adopted
for the Tremor Test data. Analysis of user interactions during university lessons revealed
a common deviation from the instructed procedure. Notably, many participants tended
to reverse the recommended sequence of actions: instead of extending their hand before
initiating the Tremor Test via the screen button, they pressed the button before extending
their hand. This pattern is illustrated in Figure 12, showing the button press preceding
hand extension. For this reason, to ensure data integrity, the initial 15% portion of time in
each tremor test dataset was systematically excluded from the analysis.

Further scrutiny of the dataset revealed that 26 participants had recorded their sleep hours
as zero. Considering the potential impact of this inconsistency on the study’s results, the
sleep hours feature was excluded from the majority of cross-validation analyses.
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Figure 12. Example of the output of right-hand tremor measurements.

In addition to removing all instances with missing values (NaNs), entries showcasing
the smallest distance in the spiral drawing task were rigorously examined through visual
inspection using the front-end application. This step was necessary to verify the accuracy
of both the length and shape of the spiral drawings. Following the purification procedure,
the dataset was reduced to a total of 343 records.

After segmenting the dataset following the completion of tests within the prescribed
timeframe, the dataset diminished to a count of 218 records. These were evenly split into
two groups: 109 entries in the ’before’ group and 109 in the ’after’ group. This partitioning
was essential for subsequent ML analysis, ensuring a balanced and precise dataset that
accurately reflects the test sessions.

4.3 Fatigue Categorisation

Supervised ML operates on the foundation of labelled data, which facilitates the algorithm’s
ability to discern patterns and subsequently develop models [19]. In the context of detecting
mental fatigue using ML algorithms, it is imperative to categorise the data into two distinct
labels: ’fatigued’ and ’non-fatigued’. These classifications are contingent upon a variety
of parameters that are indicative of mental fatigue. The criteria for these classifications are
systematically outlined in Table 3.

Initially, the differentiation between ’non-fatigued’ and ’fatigued’ states was determined
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through the completion of mental tasks in two sequential sessions, with the presumption
that the first session represents a ’non-fatigued’ state and the subsequent session signifies a
’fatigued’ state. Furthermore, the extent of mental exertion encountered over the course of
a day was considered as a criterion for labelling. This was followed by incorporating the
duration of sleep attained as a parameter for label assignment. Finally, self-assessment of
fatigue levels was also integrated into the labelling process, providing a subjective measure
to the classification scheme.

Table 3. Categories used for classification

Category Threshold Label

Performing a fatigue-inducing task
Before the lesson 109 (non-tired)
After the lesson 109 (tired)

Mental work performed in hours 1 > 1
103 (non-tired)

115 (tired)

Mental work performed in hours 2 > 2
140 (non-tired)

78 (tired)

Sleep hours 1 < 6
136 (non-tired)

30 (tired)

Sleep hours 2 < 7
104 (non-tired)

62 (tired)

Sleep hours 3 < 8
42 (non-tired)

124 (tired)

Self-assessed tiredness 1
≤ 3 69 (non-tired)
≥ 6 44 (tired)

Self-assessed tiredness 2
≤ 3 69 (non-tired)
≥ 7 24 (tired)

Self-assessed tiredness 3
≤ 2 51 (non-tired)
≥ 8 14 (tired)

Self-assessed tiredness 4
= 1 40 (non-tired)
≥ 6 44 (tired)
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5. Data Exploration

The examination of patterns inherent in the gathered dataset necessitated the application
of clustering techniques, a fundamental method in ML for categorising similar instances
within the data [20]. Clustering aids in identifying analogous entities, thereby offering
useful insights for feature selection in the development of ML models [20]. In this study,
clustering was specifically applied to the features extracted from the tests conducted using
the application.

To quantitatively assess the effectiveness of the clustering approach, the Cluster Purity was
calculated. This metric facilitates a comparison of the derived clusters against established
’absolute truth’ labels [21]. The divided dataset, each encompassing 109 rows, represented
the test sessions conducted before and after the lessons. This division served as the basis for
establishing ’absolute truth’ labels within the study. Furthermore, the duration of mental
work performed was utilised as an additional criterion for these truth labels: sessions,
where mental work exceeded one hour, were classified as ’tired’, whereas those with
less than one hour were labelled as ’non-tired’. This classification approach provided a
foundational framework for assessing the validity and accuracy of the clustering results.
An overview of the employed clustering techniques will be presented in the following
section.

K-means clustering is a popular technique in data analysis that groups a collection of items
into K-distinct clusters [22]. The objective of this method is to organise these items so that
the total of the squared distances from each item to the centroid of its cluster (the average
point of all the items in that cluster) is as small as possible [22]. This process ensures that
items are grouped with others that are most similar to them, based on their distance to
these central points [22]

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is an unsuper-
vised ML technique for identifying clusters of varying shapes in a data set [23]. Density-
based clustering in unsupervised ML identifies distinct data clusters based on high point
density regions, separated by sparse areas where points are considered noise or outliers
[24].

The Expectation-Maximisation (EM) algorithm is a method used for maximum likelihood
estimation in the presence of latent (hidden) variables within a dataset [25]. This algorithm
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alternates between two steps: the expectation step, which estimates the values of the latent
variables, and the maximisation step, which optimises the model parameters based on these
estimates [25]. This iterative process continues until convergence [25]. The EM algorithm
is commonly applied in density estimation and clustering algorithms like the Gaussian
Mixture Model (GMM) [25].

Given the considerable number of features (71) present in the dataset, dimensionality
reduction techniques were employed to focus on the most salient features, aligning with
the research’s specific interests. Initial preprocessing involved the exclusion of features
where over 50% of the values were zero. This step was critical in reducing noise and
enhancing the dataset’s relevance for further analysis. Subsequently, a correlation matrix
was constructed to explore potential relationships between the variables. Post-exclusion of
features predominantly composed of zero values, 49 features remained. The correlation
among these features was quantitatively assessed using Pearson’s correlation coefficient.
Analysis of the correlation matrix revealed instances of pronounced correlation, particularly
noticeable in the central regions of the matrix and the upper left section, as illustrated in
Figures 13, 14, and 15.

Figure 13. Correlation in the upper mid-
dle region.

Figure 14. Correlation in the lower mid-
dle region.
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Figure 15. Correlation in the top left region.

In line with established statistical guidelines, which classify correlations ranging from 0.8
to 1.0 as highly significant [26], features exhibiting a correlation greater than 0.8 were
identified for exclusion.

The elimination of features was methodically conducted by calculating the mean cor-
relation of each feature with all other variables. This process enabled the retention of
features exhibiting the lowest mean correlation, thereby ensuring the preservation of those
contributing unique and significant informational value. Following this systematic removal
of highly correlated features, the remaining dataset comprised 29 features.

Using the insights gained from the refined dataset, the study proceeded to the application
of clustering techniques. An important step in this process was determining the optimal
number of clusters (k-value) for the K-Means clustering algorithm. To achieve this, the
elbow method was employed, a widely recognised technique for identifying the point
at which the within-cluster sum of squares (WCSS) begins to diminish at a diminishing
rate [27]. This indicates the optimal cluster count [27]. The graphical representation of
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the elbow method, illustrating the relationship between the number of clusters and the
corresponding WCSS, is presented in Figure 16.

Figure 16. Clustering elbow graph for selecting k.

When employing a k-value of 2 for clustering within Group 1, a total of 110 data points
were assigned to the first cluster, while the second cluster contained 108 data points. To
facilitate data exploration and analysis, Principal Component Analysis (PCA) was em-
ployed. PCA is a fundamental technique aimed at simplifying high-dimensional datasets by
transforming the original variables into a new set of variables termed principal components.
These principal components are designed to be uncorrelated and adept at capturing the
predominant patterns and variances within the data. The ability to reduce data complexity
while preserving essential trends is crucial in the realm of statistical analysis [28]. The
outcomes of this PCA transformation are presented in Figure 17.

Figure 17. K-Means cluster visualisation using PCA.

The Silhouette score serves as a measure for assessing the effectiveness of clustering
outcomes in data clustering [29]. It determines this by evaluating the likeness of each data
point to its cluster and contrasting that with its dissimilarity to other clusters [29]. It ranges
from -1 to +1 and the closer to 1 the score is the more clearly grouped the data is [29].
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In this context, the achieved silhouette score for k=2 was 0.26, indicating a relatively weak
clustering performance. To further assess the quality of the clustering results, the cluster
purity score was employed, offering a means to gauge the alignment of the clusters with
ground truth labels.

The ground truth labels were established based on two criteria: whether the tests were
conducted before or after the lesson, and whether individuals engaged in mental work
for more than 2 hours earlier in the same day. When comparing the clustering results
with the ground truth set linked to the timing of the tests relative to the lesson, a purity
score of 0.5 was obtained. Meanwhile, the ground truth set associated with extended
mental work analysed through the same clustering approach resulted in a purity score of
0.64. A purity score of 0.64 suggests that approximately 64% of the total data points were
accurately assigned to clusters where the most frequent ground truth label aligns with
their respective cluster. This finding indicates a moderate level of agreement between the
clustering outcomes and the ground truth labels, specifically concerning the influence of
mental work.

To gain deeper insights into the formation of these clusters, an examination of the PCA
loadings was conducted. The magnitude of each loading conveys the significance or impact
of the corresponding feature on the principal component. Larger absolute values indicate a
more substantial influence of the feature on that particular principal component. The top 5
features contributing to each cluster can be found in Table 4.

Table 4. Top 5 Features Contributing to PC1 and PC2 with K-Means and their loadings.

Feature PC1 PC2
timeFromLastTouch_rts 0.289 -
y 0.252 -
velocity 0.249 -
phi_angle_mass 0.247 -
x 0.244 -
y_acceleration - 0.496
y_jerk - 0.487
x_jerk - 0.458
pop - 0.331
y_velocity - 0.216

In the context of DBSCAN clustering methodology, an essential step involves constructing
a k-distance plot. The k-distance plot is a useful tool for determining the optimal epsilon
(ϵ) value. This plot is brought out in Figure 18.
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The epsilon value, in DBSCAN, serves as a critical parameter, delineating the maximum
allowable distance between two data points for them to be categorised as neighbours within
the same cluster [23]. In this study, the epsilon value was meticulously adjusted, aiming
to mitigate the effects of noise within the data. Moreover, to qualify as a valid cluster,
a minimum requirement of five neighbouring data points within the epsilon radius was
imposed as a criterion.

Figure 18. K-Distance plot for DBSCAN.

Based on this plot, the initially selected epsilon value was 2. However, as illustrated in
Figure 19, it becomes evident that a significant amount of noise is present, and only one
cluster is formed.

Figure 19. PCA visualisation with epsilon = 2.

After the aforementioned findings, the epsilon parameter was adjusted to a value of 2.5,
as illustrated in Figure 20. This adjustment resulted in the formation of two discernible
clusters, but a presence of residual noise remains evident within the data.
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Figure 20. PCA visualisation with epsilon = 2.5.

The third epsilon value selected for the DBSCAN analysis was set to 3, and its impact is
visually represented in Figure 21. The outcome reveals that 82 data points are identified as
noise, while 98 points are attributed to cluster 1, and an additional 38 points are allocated
to cluster 2.

Figure 21. PCA visualisation with epsilon = 3.

The epsilon parameter was subsequently elevated to 3.5. An examination of Figure 22
indicates the absence of the second cluster, which was previously observed.
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Figure 22. PCA visualisation with epsilon = 3.5.

By configuring the minimum number of samples to 20 and maintaining an epsilon value of
3.5, a small noise reduction was achieved, resulting in the identification of 79 data points
classified as noise, alongside 104 data points assigned to cluster 1 and 35 data points to
cluster 2. This outcome is depicted in Figure 23.

Figure 23. PCA visualisation with epsilon = 3.5 and minimum samples = 20.

Utilising an epsilon value of 3 and setting the minimum number of samples to 5, the
clustering purity score was computed with reference to the previously mentioned ground
truth labels. After the removal of data points identified as noise, a total of 136 data points
remained for analysis.

The purity score, derived from the ground truth categorisation based on whether the tests
were conducted prior to or after the lesson, yielded a value of 0.54. Likewise, when assessed
against the ground truth labels pertaining to the duration of mental work undertaken, a
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purity score of 0.61 was obtained. To identify the features having the most substantial
influence on cluster formation, the mean values of each feature within individual clusters
were computed and meticulously examined. Features exhibiting the greatest variability
across clusters are indicative of their significance in shaping the clustering patterns. Among
these, the top 5 features with the most pronounced differences in mean values were
identified and are in Table 5.

Table 5. Difference in Feature Means Between DBSCAN Clusters

Feature Mean Difference between clusters
timeFromLastTouch_rts 4236.1
phi_angle_mass 2572.7
overallTime 2451.7
overallTime_rts 1518.4
timeFromFirstCorrectColorRender 198.5

In the final phase of unsupervised analysis, the EM algorithm was employed for the pur-
pose of clustering the dataset, utilising a GMM as its foundation. The 218 data points
were categorised, with 111 data points being assigned to Cluster 1 and the remaining 107
to Cluster 2. After the clustering process, PCA was applied to facilitate a more compre-
hensible visual representation of these clusters. As illustrated in Figure 24, the spatial
distribution of the clusters derived from the EM algorithm presents notable similarities
to those obtained through the K-Means clustering method. Careful examination reveals
subtle variances, with certain data points being allocated to different clusters than those
observed in the K-Means results. This observation underscores the nuanced differences in
clustering outcomes that are inherent to the distinct methodologies employed by the EM
and K-Means algorithms.

Figure 24. EM Clustering visualisation with PCA.
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The purity score of the clusters formed by the EM algorithm was computed, taking into
consideration the two distinct label sets previously mentioned. The calculated purity score
for the ’before-after lesson’ classification yielded a value of 0.51. In contrast, the purity
score for the ’mental hours performed’ classification was found to be 0.64. These scores
provide a quantitative measure of the degree to which each cluster comprises data points
from a single class, thus offering insight into the effectiveness of the EM algorithm in
segregating the data according to the specified classifications.

Furthermore, an in-depth examination of the feature set was conducted to ascertain the
primary factors influencing the formation of the clusters. By analysing the mean values
of the features across the clusters, the top five features with the most significant impact
were identified. These features are presented in Table 6. This table not only highlights
the features but also provides a comparative analysis of their mean values within each
cluster, thereby offering a comprehensive understanding of the characteristics defining
each cluster.

Table 6. Top 5 Features Influencing Cluster Formation in GMM

Feature Mean Difference Between Clusters
timeFromLastTouch_rts 4269.87
phi_angle_mass 2756.48
overallTime_rts 1633.92
overallTime 1309.17
timeFromFirstCorrectColorRender 163.75

The comparative analysis conducted on various clustering algorithms underscores the
efficacy of unsupervised methods in effectively grouping data points that align with the
variable of mental work hours. This assertion is substantiated by the observed cluster
purity scores, which span a range from 0.61 to 0.64, thereby indicating a high degree
of congruence within the clusters concerning the aforementioned variable. Within the
scope of this analysis, it has been determined that the dimensions ’timeFromLastTouch_-
rts’ and ’phi_angle_mass’ are instrumental in the formation of these clusters. Their
significant influence in determining cluster composition is thus highlighted, underscoring
their importance within the overall clustering framework. This insight not only aids in
comprehending the dynamics of the clustering process but also in identifying key variables
that are important in distinguishing between different groups in the context of mental work
hours.
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6. Machine Learning Based Fatigue Classification

Cross-validation methodology was employed to systematically assess the performance
metrics of various ML models. For each iteration within this process, the dataset was
standardised using the StandardScaler. Feature selection was systematically conducted,
choosing subsets of 1, 2, 3, 4, 5, and 10 features, utilising methods such as Recurrent
Feature Elimination (RFE) and SelectFromModel (SFM). Critical evaluation metrics
including accuracy, precision, sensitivity, specificity, and F1 score were meticulously
measured to gauge model efficacy. Given the inherent diversity in the algorithmic nature
of ML models, six distinct algorithms were selected for this study. A comprehensive
summary of each algorithm, highlighting their unique characteristics and functionalities, is
presented in the subsequent section.

Figure 25. ML pipeline. Nested cross-validation is described more in-depth in 6.1.

Logistic Regression

Logistic Regression (LogReg) is an ML model that is used to predict if a data point belongs
to a specific category. The input of the model is converted into a probability of occurrence.
The output is a binary value, whether a variable belongs in a category or not. The model
uses different criteria, variables, and history to calculate the probability of falling into a
category [30, 31].
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Random Forest Model

The Random Forest (RF) model is based on multiple decision trees that work together. All
of the trees give a class prediction and the most common prediction is what the model
outputs as the result. For this to work the predictions and errors from the individual trees
have to have low correlations with other trees [32].

K-nearest Neighbors

The dataset provided for K-NN has the data points categorised. The input data does not
have a category but starts determining it by looking at the nearest K amount of neighbours
in the dataset. The Euclidian distance is calculated between the input sample and the
categorised chosen training samples. The category with the maximum number of data
points having the least distance from the input sample is chosen. The value for K can be
different for each run of the classifier to see which K gives the best results [33].

Support Vector Machines

The Support Vector Machine (SVM) model creates an ideal separating line between two
classes, the ideal separating line is the one that maximises the distance from the nearest
element in both groups [34].

Decision Tree

A decision tree (DT) is a tree-based technique widely used in ML and data mining. It
follows a path from the root through a sequence of data separations, leading to a Boolean
outcome at the leaf node. This hierarchical representation of knowledge includes nodes
and connections, where each node signifies a decision point. Decision trees excel in
classification and grouping tasks, known for their simplicity and effectiveness across
diverse data types [35].

AdaBoost

The AdaBoost model is also comprised of smaller models called stumps which are built
one after the other, so the accuracy of one model’s predictions influences the training of
the next models. Because of this, the order is important and the first stump selected should
have the lowest impurity and should show the best results in predicting the outputs. After
all of the stumps have performed their classification, the categorised outputs are summed
up and the category with the highest sum is the output of the whole model [36, 37].
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6.1 Nested Cross-Validation

To train and evaluate an ML model, cross-validation was initially utilised to determine
the most effective models, feature selectors, and labelling strategies. This method was
essential for identifying the optimal setup.

The fatigue classification categories, critical to the model’s functionality, are thoroughly
outlined in Table 3. These categories are essential for the model’s ability to accurately
assess the occurrence of fatigue.

Moreover, the distribution of the features incorporated into the model is visually represented
in Figure 26. This representation is key in providing an in-depth understanding of the data
characteristics that the model works with, offering a clear overview of the feature set used
in the study.

(a) Mental Work Hours (b) Sleep Hours

(c) Self-assessed Tiredness

Figure 26. Distribution plots.

46



Fatigue inducing tasks

In the process of the first data categorisation, the labels were determined based on the
timing of the test relative to the lesson. Consequently, this resulted in the formation of two
distinct groups: Group 1, comprising 109 data entries for tests conducted before the lesson,
and Group 2, also consisting of 109 entries.

Out of the total 218 data entries, a notable distribution was observed in terms of the
operating systems used for recording the data: 54 recordings were completed using
iOS devices, while 55 were conducted on Android devices. It is important to note that
certain columns - specifically those pertaining to effort, interest, anxiety, and self-assessed
tiredness - were excluded from the analysis. This exclusion was necessitated by the fact
that these variables were not recorded during the initial completion of the tests.

Furthermore, to standardise the data, the values for physical work hours recorded during the
first test completion were inferred from the corresponding values of the second completion.
In addition, the mental work hours for the first test completion were adjusted to be one
hour less than those recorded in the second completion. This adjustment was made to
account for the time elapsed between the two test completions. The sleep hour data was
excluded from the dataset due to a prevalence of zero values, which indicated a lack of
variability and reliability in this particular measure.

The three most exemplary outcomes derived from cross-validation utilising the Recursive
Feature Elimination (RFE) feature selector are presented in Table 7. It is observed that the
accuracy of these models ranges approximately between 54% and 57.2%. This range, while
indicative of some predictive capability, falls short of being considered highly accurate,
suggesting room for further refinement and improvement in the model’s performance.

Table 7. Fatigue Inducing Tasks Cross-validation with RFE feature selector.

The four most notable results obtained using the SelectFromModel feature selector are
illustrated in Table 8. These results demonstrate an accuracy range from 57.3% to 60.8%.
While this performance is an improvement over the previously mentioned RFE feature
selector, it remains moderately effective, indicating potential areas for enhancement in the
model’s accuracy.
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Table 8. Fatigue Inducing Tasks cross-validation with SelectFromModel feature selector.

Hours of mental work performed

In the analysis focusing on the hours of mental work performed, several columns were
excluded from the dataset due to the prevalence of zero values or because they were not
recorded during the initial test completion. Specifically, the columns representing sleep
scale, effort, interest, anxiety, and self-assessed tiredness were omitted from consideration.
To maintain consistency across test completions, the values for physical work hours
recorded during the first test were inferred from their counterparts in the second test.
Additionally, the mental work hours for the first test were adjusted to be one hour less than
those for the second test, acknowledging the passage of time between the two sessions.

A further breakdown of the data reveals that when more than two hours of mental work
were performed, the participants were classified as ’tired’ in 78 instances and ’non-tired’
in 140 instances. Similarly, when the mental work exceeded one hour, there were 115
instances classified as ’tired’ and 103 as ’non-tired’.

The most effective results achieved using the RFE and SFM feature selectors, for both
the one-hour and two-hour mental work thresholds, are detailed in Table 9. This figure
presents a comparative analysis of the performance metrics associated with these feature
selection methods under the specified conditions.
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Table 9. Cross-validation results using RFE and SFM for both more than 1-hour and 2-hour
mental work results.

Upon closer examination of the results, as illustrated in the aforementioned table, it
becomes evident that labelling data with the threshold of more than two hours of mental
work yielded higher accuracy, ranging between 0.76 and 0.78. However, it is important
to note that within this group - where 78 instances were classified as ’tired’ and 140 as
’non-tired’ - the average precision was 0.7, with an average sensitivity of 0.63, specificity of
0.74, and an F1 score of 0.66. The comparatively larger number of ’non-tired’ instances in
this group could be influencing the sensitivity and precision metrics, reflecting the model’s
ability to correctly identify true positives and negatives within an imbalanced dataset.

In contrast, when the threshold was set at more than one hour of mental work, the accuracy
slightly decreased, with a range of 0.738 to 0.756. However, in this scenario - comprising
115 ’tired’ and 103 ’non-tired’ instances - the model exhibited a higher average precision
of 0.76, sensitivity of 0.759, specificity of 0.74, and an F1 score of 0.757. The more
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balanced distribution of ’tired’ and ’non-tired’ instances in this group may contribute
to the heightened sensitivity and precision, indicating a more consistent performance
by the model in a relatively balanced dataset. This correlation between group size and
performance metrics highlights the impact of data distribution on the efficacy of the model.

Utilised solely the data from the second completion of the tests, encompassing a total of
109 instances and including key features such as effort, anxiety, interest in the most recent
task, and self-assessed fatigue. The classification criterion was based on the duration of
mental work performed: instances, where users engaged in more than one hour of mental
work, were labelled as ’tired’ (comprising 67 users), while those involving 0 to 1 hour
were categorised as ’non-tired’ (accounting for 42 users).

For this specific subset of data, the most effective results, employing SFM as the feature
selector, are showcased in Table 10. Similarly, when adopting RFE as the feature selector,
while maintaining the same classification criteria, the top three outcomes are illustrated
in Table 11. These tables provide a comparative insight into the performance of different
feature selection methods under the specified conditions, particularly highlighting the
impact of including psychological and self-assessment parameters in the model.

Table 10. Cross-validation results for more than 1-hour mental work using SFM feature
selector including extra features.

Table 11. Cross-validation results for more than 1-hour mental work using RFE feature
selector including extra features.

The analysis of the preceding tables reveals that while the RFE feature selector demon-
strates a slightly enhanced performance over SFM, it is important to note that both feature
selectors exhibit commendable efficacy. Notably, the SFM feature selector, particularly
the model utilising Random Forest (RF) with 10 features, achieves an impressive accuracy
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of 0.85. This model also shows high precision at 0.87, along with a sensitivity of 0.89,
specificity of 0.84, and an F1 score of 0.88. These metrics collectively indicate a robust
performance, highlighting the effectiveness of the SFM feature selector in this specific
analytical context, alongside the marginally superior results of the RFE feature selector.

In the cross-validation process, the top three models employing the RFE feature selector,
coupled with the Random Forest (RF) model, demonstrate notable accuracy, with values
spanning from 0.84 to 0.85. Additionally, the precision of these models is noteworthy,
varying between 0.83 and 0.86.

Furthermore, the sensitivity of the models, a measure of correctly identifying true positives,
is commendably high, with values spanning from 0.89 to 0.95. The specificity, indicative
of the model’s ability to correctly identify true negatives, also shows robust performance,
ranging from 0.82 to 0.836. Lastly, the F1 scores of these models, a harmonic mean of
precision and sensitivity, range from 0.875 to 0.888, approaching the optimal score of
1. It is evident from the analysis that, irrespective of the feature selector employed, both
the effort scale and interest scale were identified as significant features in determining
fatigue levels in relation to the mental work undertaken earlier in the day. This observation
demonstrates the importance that these scales have in the accurate detection of fatigue
based on prior mental exertion.

Sleep hours

In the third phase of the analysis, sleep hours were looked at. The classification of the
’non-tired’ group was based on varying thresholds of sleep duration. For instance, defining
’non-tired’ as individuals who slept more than 5 hours resulted in a distribution of 136
individuals in the ’non-tired’ category and 30 in the ’tired’ category. Altering this threshold
to more than 6 hours of sleep reclassified the groups, resulting in 104 individuals in the
’non-tired’ category and 62 in the ’tired’ group.

Further adjustment of the threshold to over 7 hours of sleep revealed a notable shift in
group sizes, with 42 individuals categorised as ’non-tired’ and 124 as ’tired’. These varying
group sizes based on sleep duration thresholds are likely to influence the sensitivity and
specificity of the model. Sensitivity, or the true positive rate, could be affected by the
smaller size of the ’non-tired’ group in some thresholds, potentially leading to a higher
rate of false negatives. Similarly, specificity, or the true negative rate, might be impacted
by the larger ’tired’ group sizes, influencing the model’s ability to correctly identify true
negatives.
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The results derived from employing RFE and SFM feature selectors under these varying
sleep hour thresholds are detailed in Table 12. This table provides a comparative analysis
of how different sleep duration thresholds affect the performance metrics of the feature
selection methods, particularly in terms of sensitivity and specificity.

Table 12. Cross-validation results using RFE and SFM based on different sleep durations.

The analysis of the table in question reveals that the highest accuracy, ranging from 0.81
to 0.84, was obtained in scenarios where participants had slept over 5 hours. This was
consistent across both feature selectors and the RF and DT models. However, it is important
to note that in these instances, the sensitivity was notably low, with values ranging from
0.167 to 0.367. This lower sensitivity can be attributed to the disparity in group sizes, with
136 individuals in the ’non-tired’ group and only 30 in the ’tired’ group.

In contrast, the most optimal results were observed in the group categorised as having slept
for more than 7 hours. This superior performance was evident in models using SVM and
RF, across both feature selectors. The peak performance within this category was achieved
using SFM with 10 features, combined with the RF model. This configuration resulted in
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an accuracy of 0.778, a precision of 0.8, a high sensitivity of 0.936, a specificity of 0.625,
and an F1 score of 0.86.

Self-assessed tiredness

In the analysis where self-assessed tiredness was a focal point, a meticulous data sorting
process was required to ensure that only entries with this field completed by the user were
included. This criterion encompassed all second-attempt tests conducted up to the 6th of
December and both attempts post the 6th of December. After this data cleansing, a total of
155 relevant data rows remained for analysis.

Initially, RFE was employed as the feature selector, the results of which are depicted in
Table 13. Subsequently, the SFM feature selector was utilised, with its corresponding
outcomes presented in Table 14.

Further refinement of the dataset involved the exclusion of entries where self-assessed
tiredness was rated at levels 4 or 5. This reduction resulted in 113 rows. For classification,
any rating above 5 was labelled as ’tired’, resulting in 69 instances being classified as
’non-tired’ and 44 as ’tired’.

An additional layer of data filtering was conducted by excluding the value 6. Consequently,
ratings of 7-10 were categorised as ’tired’ and 1-3 as ’non-tired’, effectively removing a
significant portion of moderate fatigue levels. This adjustment led to a new distribution:
69 instances in the ’non-tired’ category and 24 in the ’tired’ category.

A further division of the groups, by excluding values 3-7, resulted in 51 instances classified
as ’non-tired’ and 14 as ’tired’. In an even more strict classification, using only a value of
1 as indicative of ’non-tired’ and all values over 5 as ’tired’, the group sizes were 40 in
’non-tired’ and 44 in ’tired’.
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Table 13. Cross-validation results for self-assessed tiredness using RFE.

The table presented above reveals noteworthy observations when stratifying the groups
unevenly, specifically through the exclusion of subsets of values (i.e., excluding 4-6 and
3-7). In these configurations, the accuracy remains relatively elevated, ranging from 0.7 to
0.8. However, it is essential to note that the precision, sensitivity, and specificity metrics
exhibit predominantly lower values within these contexts.

The precision metric ranges from 0.2 to 0.53, indicating a variable degree of correct
positive identifications within the group. Similarly, the sensitivity metric, denoting the
rate of true positive identifications, ranges from 0.04 to 0.26, reflecting a relatively modest
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ability to accurately detect positive cases. Lastly, the specificity metric, which signifies the
capacity to correctly identify true negatives, demonstrates values ranging from 0.499 to
0.65, implying a moderate level of precision in identifying negative cases.

These findings emphasise the trade-offs associated with uneven group stratification and
highlight the delicate balance between accuracy and other essential performance metrics in
the context of fatigue detection based on self-assessed tiredness levels.

The most favourable outcomes across all performance metrics are observed in the scenario
where group division is relatively even, characterised by the classification of a ’non-tired’
category using a value of 1, and categorising all values exceeding 5 as ’tired.’ In this
configuration, the group sizes are notably balanced, with 40 instances in the ’non-tired’
group and 44 in the ’tired’ group.

Although the accuracy in this scenario is slightly reduced, hovering around 0.7 for all three
models, the precision metric attains an average of 0.74, indicating a consistent ability to
correctly identify positive cases. Additionally, the sensitivity metric achieves an average of
0.673, denoting a reliable capacity to identify true positives, while the specificity metric
averages at 0.7, reflecting a commendable ability to identify true negatives.

These results underscore the importance of balanced group division in achieving an
equilibrium between accuracy and other critical performance metrics in the context of
fatigue detection based on self-assessed tiredness levels.
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Table 14. Cross-validation results for self-assessed tiredness using SFM.

The findings obtained with the SFM feature selector mirror those previously discussed
for the RFE feature selector. In instances where group division is uneven, the precision,
sensitivity, and specificity metrics register reductions in their values. Conversely, when
the group sizes are relatively balanced, with 40 and 44 instances, the accuracy metric
experiences a decline, while all other performance metrics exhibit an increase.

Exclusively utilising data from second-attempt test completions and incorporating features
such as effort, anxiety, interest, and self-assessed fatigue, a classification scheme was
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applied based on self-assessed tiredness. Specifically, individuals who self-assessed their
tiredness as 1 were classified as ’non-tired’ (29 users), while those who rated their tiredness
as 6-10 were categorised as ’tired’ (35 users). The optimal results obtained using the SFM
feature selector under this classification are presented in Table 15. Simultaneously, the
employment of the RFE feature selector within the same classification category yielded
the best results showcased in Table 16.

Table 15. Cross-validation best results for self-assessed fatigue using SFM feature selector
including extra features.

Table 16. Cross-validation best results for self-assessed fatigue using RFE feature selector
including extra features.

The analysis of the top three models for each feature selector, selected from cross-validation
conducted with the inclusion of additional features and a relatively balanced dataset, reveals
consistently elevated performance across multiple metrics. The pinnacle of performance
is observed in the results obtained with the SFM feature selector, particularly in the
configuration employing 10 features and the RF model. In this setup, the achieved accuracy
reaches 0.828, with precision at 0.86, sensitivity at 0.857, specificity at 0.82, and an F1
score of 0.84.

Furthermore, an examination of both tables highlights the significance of effort and anxiety
recordings, as both feature selectors incorporate these variables into their modelling process.
For instance, the RFE feature selector, when combined with the K-NN model and utilising
only the effortScale feature, attains an accuracy of 0.81. In this scenario, the precision,
sensitivity, specificity, and F1 score also maintain commendably high values.
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Self-assessed fatigue was further integrated into the analysis by generating a new dataframe
derived from the difference between values recorded during the first and second test
attempts. In this context, it is imperative to note that only test instances conducted after the
6th of December were considered for analysis. This selective approach was necessitated
by the requirement for users to assess their tiredness levels during both the initial and
subsequent test completions. Consequently, the dataset exclusively encompassed test
data collected after the 6th of December to ensure alignment with the assessment of self-
assessed fatigue levels. This new dataframe was structured to include the four self-assessed
fatigue categories as the primary labelling scheme, as shown in Table 17.

Table 17. Data classification distribution based on self-assessed fatigue categories.

Category Non-Tired Tired
≤ 3
≥ 6

50 35

≤ 3
≥ 7

50 19

≤ 2
≥ 8

36 12

= 1
≥ 6

35 29

As evident from Tables 18 and 19, the utilisation of both SFM and RFE feature selection
methods yielded the most favourable outcomes when an evenly balanced dataset was
employed. In this configuration, sensitivity, precision, and specificity metrics did not
exhibit substantial reductions.

For SFM, the optimal performing model was the K-NN model utilising four selected
features, achieving an accuracy of 0.73. In contrast, with the RFE feature selector, employ-
ing ten features and the RF model yielded an accuracy of 0.69, indicating commendable
performance under these conditions.
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Table 18. Best cross-validation results for dataset based on difference in values for each
category using SelectFromModel.

Table 19. Best cross-validation results for dataset based on the difference in values for
each category using RFE.

6.2 Best Performing Models for Fatigue Detection

The models were trained using the insights gained from cross-validation and applied to
the entire dataset, which was divided with a split of 1/3 and 2/3. Table 20 presents the top
four models that showed the best performance. Among these, three models utilised the
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RF classifier, while one used the K-NN classifier. The highest accuracy was observed in a
model using the RF classifier with 10 features, achieving an accuracy of 85%. This high
accuracy can be attributed to a combination of features from the spiral test, tremor tests,
and the simple reaction test, along with self-assessed features.

Further analysis of these features shows that a combination of the calculated ’slope_-
mass’ with self-assessed effort and anxiety, as well as hours of previous physical work,
also resulted in a high accuracy of 84%, even with a reduced set of only four features.
Notably, removing the feature related to physical work hours decreased the accuracy to
80%, highlighting its importance in the effective detection of self-assessed fatigue.
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Table 20. Best performing ML models for fatigue classification.
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7. Discussion

The results obtained from ML models have yielded valuable insights into fatigue detection.
In contrast to previous studies, the volume of data collected in this research was substan-
tially greater. The expanded dataset, coupled with the inclusion of additional questions
in the questionnaire, contributed to achieving superior results. In a previous study that
exclusively utilised an Android application, the peak accuracy recorded was 78.8% [15].
However, in this current research, a significantly higher accuracy of 85.0% was achieved,
employing self-assessed tiredness and hours of mental work as labels. This finding un-
derscores the effectiveness of using self-reported fatigue levels and mental workload as
reliable fatigue detection indicators. Analysis revealed that feature selectors prominently
identified the anxiety and effort scales, along with calculated features, as key contributors
to these robust detection results. Delving deeper, it was observed that the kinematic feature
’slope_mass’ emerged as a particularly vital component in training the models. It has been
documented that these angular type features are describing some forms of micro changes in
handwriting and can be linked to hand tremors [18]. Furthermore, the most effective model
integrated kinematic and tremor features with self-assessed categories and the reaction test,
enhancing its performance. These findings have significant implications for developing
fatigue detection systems, emphasising the importance of subjective self-assessment and
specific psychometric scales in enhancing system accuracy.

The promising results achieved by the ML algorithms suggest a potential avenue for
practical deployment. While the models in this research already demonstrate high accuracy,
sensitivity, and specificity, further enhancing their accuracy to approach near 100% could
significantly strengthen their potential for live deployment. Deploying such a model could
provide users with rapid and accurate fatigue level assessments based on various input
parameters.

In the medical field, the implications are substantial. Healthcare professionals could benefit
from a reliable fatigue assessment tool that extends beyond self-reported measures. Patients
with chronic conditions, neurological disorders, or undergoing medical treatments could
use this tool for objective fatigue level monitoring.

The model’s applicability extends beyond the medical realm to industries where human
performance is critical, such as aviation, transportation, and manufacturing. Implementing
fatigue detection systems could enhance safety and productivity. Professionals in demand-

62



ing environments, like pilots, truck drivers, or shift workers, could benefit from real-time
fatigue assessments for informed work and rest decisions.

In education, this technology could assess and manage student fatigue during exams or
academic activities. Identifying fatigue patterns allows educators to adjust curriculum and
schedules, optimising learning outcomes.

The dataset collected offers potential for diverse applications beyond fatigue detection,
including reaction tests, spiral drawing tests, and hand tremor assessments. This opens up
novel research and practical application avenues in various domains.

The reaction test data, indicative of cognitive processing speed and motor function, could
be leveraged for applications in cognitive neuroscience and motor control studies. This
extensive dataset could offer insights into cognitive performance, reaction time variabil-
ity, and motor coordination, valuable for studying cognitive impairments or evaluating
cognitive-enhancing interventions.

Spiral drawing tests provide opportunities for exploring fine motor skills and coordination.
The dataset’s detailed information on drawing patterns and stability parameters could aid
research in motor skill development, therapy impact assessment, or digital art and design
applications.

Hand tremor tests offer unique insights into tremor patterns and potential links to health
conditions. The dataset could be invaluable for tremor assessment, aiding in early de-
tection of conditions like essential tremor or Parkinson’s disease, and analysing tremor
characteristics in relation to demographic and health factors.

Looking ahead, there are several promising directions for future research. Expanding the
dataset size would be beneficial, as larger datasets can provide more comprehensive training
for the models, potentially improving their accuracy and robustness. Additionally, the
application of explainable AI techniques would offer valuable insights by elucidating the
underlying decision-making processes of the models, thereby enhancing our understanding
of their predictive capabilities. The testing suite within the smartphone application has
potential for further advancement by incorporating microphone and camera-based tests.
This would leverage additional smartphone sensors, enriching the testing capabilities and
overall functionality.
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8. Conclusion

This thesis centres on the development of a smartphone application designed to collect data
to assess mental fatigue. The application, developed for both iOS and Android platforms,
is equipped with a variety of tests to measure fine motor skills and a comprehensive
questionnaire.

The methodology for data collection involved two phases of interaction with the applica-
tion. Users performed tasks on the app before and after engaging in activities that could
potentially induce mental fatigue. This approach was used for capturing data that reflects
changes in fine motor skills due to cognitive exertion.

A significant portion of this thesis is dedicated to the analysis of the collected data. ML
techniques were employed to evaluate the data and develop models capable of assessing
mental fatigue. The study experimented with various algorithms to determine the most
effective approach for fatigue detection.

One of the notable findings of this research is the role of self-reported tiredness and
mental workload in predicting fatigue. The ML models showcased a degree of accuracy in
identifying fatigue based on these user-reported factors, along with the changes in motor
skills.

The developed application and the ensuing ML models could be utilised in contexts where
monitoring mental fatigue is necessary, such as in safety-critical workplace environments
or educational settings. The approach could offer a tool for real-time assessment of fatigue,
providing users and researchers with valuable data on cognitive health.

Additionally, the dataset generated from this study has utility beyond fatigue detection. It
provides a rich source of information on cognitive and motor functions, which could be
valuable for further technical research in these areas.

In summary, the thesis presents a technical work focused on the development and utilisation
of a smartphone application for mental fatigue detection. The application serves as a tool
for data collection, which is then analysed using ML models to assess user fatigue. This
approach contributes to the field by offering an improved method with a novel dataset and
accurate models for monitoring and understanding mental fatigue.
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Appendix 2 - Data Collection

Table 21. Participant information

ID height weight age gender education dailyWork mainHand

1 <100 <50 <10 Male None Physical RIGHT

2 <100 <50 <10 Female None Physical RIGHT

3 <100 <50 <10 Male None Physical RIGHT

4 <100 <50 <10 Male None Physical RIGHT

5 <100 <50 <10 Male None Physical RIGHT

6 <100 <50 <10 Male None Physical RIGHT

7 <100 50-60 <10 Female Higher Mental RIGHT

8 101-150 <50 10-13 Male Primary 50/50 RIGHT

9 151-175 <50 10-13 Male Primary 50/50 RIGHT

10 151-175 50-60 10-13 Male Primary 50/50 RIGHT

11 151-175 50-60 10-13 Female Primary 50/50 RIGHT

12 151-175 50-60 10-13 Male Primary 50/50 RIGHT

13 151-175 50-60 10-13 Female Primary 50/50 RIGHT

14 151-175 <50 10-13 Male Primary 50/50 RIGHT

15 151-175 50-60 10-13 Female None 50/50 RIGHT

16 151-175 <50 10-13 Male Primary 50/50 LEFT

17 176-185 76-90 10-13 Female Primary 50/50 RIGHT

18 151-175 <50 10-13 Female Primary 50/50 RIGHT

19 151-175 <50 10-13 Male Primary 50/50 RIGHT

20 151-175 <50 10-13 Male Primary 50/50 LEFT

21 101-150 <50 10-13 Male Primary 50/50 RIGHT

22 151-175 <50 10-13 Female Primary 50/50 RIGHT

23 151-175 50-60 10-13 Female Primary 50/50 RIGHT

24 151-175 <50 10-13 Other Higher Physical RIGHT

25 151-175 50-60 10-13 Female Primary 50/50 RIGHT

26 101-150 <50 10-13 Female Primary 50/50 RIGHT

27 151-175 <50 10-13 Female Basic 50/50 LEFT

28 151-175 50-60 10-13 Female Primary 50/50 RIGHT

29 101-150 <50 10-13 Female Primary 50/50 RIGHT

30 151-175 <50 10-13 Female Primary Physical AMBIDEXTROUS

31 101-150 <50 10-13 Female Primary 50/50 RIGHT

32 176-185 61-75 14-17 Male Primary 50/50 RIGHT

33 151-175 61-75 14-17 Male None 50/50 RIGHT

34 176-185 61-75 14-17 Male Basic Mental RIGHT
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35 101-150 61-75 14-17 Female Secondary 50/50 RIGHT

36 151-175 61-75 14-17 Male Secondary 50/50 RIGHT

37 101-150 <50 14-17 Female Primary 50/50 RIGHT

38 151-175 50-60 14-17 Female Primary 50/50 RIGHT

39 151-175 50-60 14-17 Male Primary 50/50 RIGHT

40 151-175 <50 14-17 Female Higher Physical RIGHT

41 176-185 76-90 14-17 Other Primary 50/50 RIGHT

42 176-185 61-75 14-17 Male Basic 50/50 RIGHT

43 151-175 <50 14-17 Female None Physical RIGHT

44 151-175 <50 14-17 Male Primary 50/50 RIGHT

45 151-175 76-90 14-17 Male Primary 50/50 RIGHT

46 176-185 61-75 14-17 Male Basic 50/50 RIGHT

47 151-175 61-75 14-17 Female Primary 50/50 RIGHT

48 151-175 50-60 14-17 Female Basic 50/50 RIGHT

49 191-205 61-75 14-17 Male Basic Mental RIGHT

50 151-175 50-60 14-17 Female Primary Mental RIGHT

51 151-175 50-60 14-17 Male Secondary 50/50 RIGHT

52 151-175 50-60 14-17 Female Secondary Mental RIGHT

53 186-195 76-90 14-17 Male None Physical RIGHT

54 151-175 50-60 14-17 Female Secondary 50/50 RIGHT

55 151-175 <50 14-17 Female None Physical RIGHT

56 151-175 50-60 14-17 Male Secondary Mental RIGHT

57 186-190 76-90 14-17 Male Primary 50/50 RIGHT

58 151-175 <50 14-17 Male Basic Physical RIGHT

59 176-185 61-75 14-17 Male None 50/50 RIGHT

60 151-175 50-60 14-17 Male Basic 50/50 RIGHT

61 151-175 50-60 14-17 Male Basic 50/50 RIGHT

62 176-185 76-90 14-17 Male Basic 50/50 RIGHT

63 191-205 91-105 14-17 Male Basic Physical RIGHT

64 176-185 76-90 14-17 Male Basic Physical RIGHT

65 151-175 <50 14-17 Male Basic Physical RIGHT

66 151-175 50-60 14-17 Female Primary Physical RIGHT

67 176-185 61-75 18-25 Other Secondary Mental LEFT

68 176-185 61-75 18-25 Male Secondary 50/50 RIGHT

69 151-175 61-75 18-25 Male Secondary 50/50 RIGHT

70 151-175 61-75 18-25 Male Higher Mental AMBIDEXTROUS

71 176-185 91-105 18-25 Male Secondary Mental RIGHT

72 186-195 76-90 18-25 Male Basic Mental RIGHT

73 176-185 50-60 18-25 Male Basic Physical RIGHT

74 176-185 <50 18-25 Female Higher Mental RIGHT

75 >205 61-75 18-25 Male Secondary 50/50 RIGHT
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76 176-185 61-75 18-25 Male Secondary Mental RIGHT

77 196-205 76-90 18-25 Male Higher 50/50 RIGHT

78 151-175 61-75 18-25 Female Primary Mental AMBIDEXTROUS

79 176-185 50-60 18-25 Female Higher Mental RIGHT

80 151-175 61-75 18-25 Female Basic Physical RIGHT

81 176-185 61-75 18-25 Male Primary 50/50 RIGHT

82 176-185 76-90 18-25 Male Higher Mental LEFT

83 151-175 91-105 18-25 Female Secondary Mental RIGHT

84 176-185 76-90 18-25 Male Secondary Mental RIGHT

85 186-190 61-75 18-25 Male Higher Mental RIGHT

86 176-185 61-75 18-25 Male Higher Mental RIGHT

87 176-185 76-90 18-25 Male Secondary Physical RIGHT

88 176-185 61-75 18-25 Male Basic Physical RIGHT

89 151-175 61-75 18-25 Male Secondary 50/50 AMBIDEXTROUS

90 151-175 61-75 18-25 Male Basic Mental RIGHT

91 191-205 61-75 18-25 Male Basic 50/50 RIGHT

92 151-175 <50 18-25 Female Secondary 50/50 RIGHT

93 151-175 50-60 18-25 Male Secondary Mental RIGHT

94 151-175 <50 18-25 Female Secondary Mental RIGHT

95 176-185 61-75 18-25 Male Secondary Mental RIGHT

96 151-175 50-60 18-25 Female Higher Mental RIGHT

97 151-175 <50 18-25 Female Secondary 50/50 RIGHT

98 176-185 91-105 18-25 Male Secondary Mental RIGHT

99 151-175 <50 18-25 Male Basic Mental RIGHT

100 151-175 50-60 18-25 Male Higher 50/50 RIGHT

101 151-175 61-75 18-25 Female Higher 50/50 RIGHT

102 176-185 76-90 18-25 Male Secondary Mental RIGHT

103 151-175 50-60 18-25 Female Secondary 50/50 RIGHT

104 176-185 76-90 18-25 Male Secondary Mental RIGHT

105 176-185 76-90 18-25 Male Higher 50/50 RIGHT

106 191-205 91-105 18-25 Male Secondary Mental RIGHT

107 186-195 91-105 18-25 Male Secondary Mental RIGHT

108 186-190 76-90 18-25 Male Higher Mental RIGHT

109 176-185 61-75 18-25 Male Secondary 50/50 RIGHT

110 151-175 76-90 18-25 Female Higher Mental RIGHT

111 151-175 61-75 18-25 Female Higher Mental LEFT

112 151-175 50-60 18-25 Female Secondary Mental RIGHT

113 191-205 76-90 18-25 Male Basic Mental RIGHT

114 191-205 76-90 18-25 Male Secondary Physical RIGHT

115 191-205 76-90 18-25 Male Secondary 50/50 RIGHT

116 186-190 76-90 18-25 Male Higher Mental RIGHT
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117 151-175 61-75 18-25 Female Higher 50/50 RIGHT

118 186-190 91-105 18-25 Male Secondary 50/50 RIGHT

119 151-175 76-90 18-25 Male Secondary Physical RIGHT

120 176-185 76-90 18-25 Male Basic 50/50 RIGHT

121 176-185 61-75 18-25 Male Secondary 50/50 RIGHT

122 176-185 50-60 18-25 Female None Physical RIGHT

123 191-205 76-90 18-25 Male Secondary Mental RIGHT

124 151-175 50-60 18-25 Male Higher Mental RIGHT

125 176-185 50-60 18-25 Female Secondary Mental RIGHT

126 151-175 61-75 18-25 Female Secondary 50/50 RIGHT

127 176-185 91-105 18-25 Male Primary Mental RIGHT

128 186-190 76-90 18-25 Male Higher 50/50 RIGHT

129 151-175 61-75 18-25 Female Higher 50/50 LEFT

130 151-175 61-75 18-25 Male Basic 50/50 RIGHT

131 151-175 61-75 18-25 Male Higher 50/50 RIGHT

132 151-175 61-75 18-25 Male Secondary Physical RIGHT

133 151-175 61-75 18-25 Male Higher Physical RIGHT

134 151-175 >120 18-25 Female Secondary Mental LEFT

135 151-175 61-75 18-25 Male Higher Mental RIGHT

136 186-195 76-90 26-30 Male Higher Mental RIGHT

137 151-175 61-75 26-30 Male Higher Mental RIGHT

138 151-175 61-75 26-30 Male Higher Mental RIGHT

139 176-185 91-105 26-30 Male Higher 50/50 RIGHT

140 151-175 76-90 26-30 Male Higher Mental LEFT

141 176-185 76-90 26-30 Male Higher 50/50 RIGHT

142 151-175 50-60 26-30 Female Higher Mental RIGHT

143 <100 106-120 26-30 Female Higher Physical RIGHT

144 151-175 <50 26-30 Female Secondary Mental RIGHT

145 151-175 61-75 26-30 Female Higher Mental LEFT

146 176-185 61-75 31-35 Male Higher 50/50 RIGHT

147 191-205 91-105 31-35 Male Higher Mental LEFT

148 151-175 61-75 31-35 Female Higher Mental RIGHT

149 151-175 91-105 31-35 Male Higher Mental RIGHT

150 151-175 61-75 31-35 Male Higher Mental RIGHT

151 176-185 61-75 31-35 Male Higher 50/50 RIGHT

152 176-185 76-90 36-45 Male Higher 50/50 RIGHT

153 186-195 76-90 36-45 Male None Mental RIGHT

154 186-195 >120 36-45 Male Higher Mental RIGHT

155 151-175 61-75 36-45 Male Higher Mental RIGHT

156 151-175 61-75 36-45 Male Higher Mental RIGHT

157 176-185 91-105 36-45 Male Higher Mental RIGHT
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158 176-185 76-90 36-45 Male Higher Mental RIGHT

159 151-175 61-75 36-45 Male Higher Mental RIGHT

160 151-175 61-75 36-45 Male Higher Mental RIGHT

161 176-185 76-90 36-45 Male Higher Mental RIGHT

162 151-175 61-75 36-45 Male Higher 50/50 RIGHT

163 151-175 76-90 46-55 Male Higher Mental RIGHT

164 186-195 91-105 46-55 Male Higher Mental RIGHT

165 151-175 61-75 46-55 Female Higher Mental RIGHT

166 151-175 61-75 56-65 Female Higher Mental RIGHT
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Appendix 3 - Information Sheet

Lugupeetud õpetaja! 
Kutsume Teie kooli osalema Tallinna Ülikooli ja Tallinna Tehnikaülikooli uurimisprojektis 
Kultuuri-, bioloogiliste ja arenguliste tegurite roll kognitiivse reservi mehhanismides ja kognitiivse 
taandarengu ennetamises (uuringu vastutav täitja, Tallinna Ülikooli professor Aaro Toomela).  

Inimkond vananeb ja vananemisega kaasneb vaimse võimekuse vähenemine kuni selle kadumiseni veel 
inimese eluajal. Käesoleva uuringu kõige olulisemaks eesmärgiks on vananemise ja ajukahjustusega 
seotud vaimse taandarengu mehhanismide mõistmine ning selle alusel taandarengu aeglustamist toetavate 
tegevuste parem planeerimine. Üks meie laiaulatusliku uuringu alateemadest on inimese peenmotoorsete 
oskuste ja vaimse väsimuse vahelise seose mõistmine. Teie koolis soovime õpilastel hinnata 
peenmotoorseid oskusi. Testid esitatakse digitaalselt iga õpilase personaalse nutitelefoni rakenduses. 
Testide täitmiseks kulub aega orienteeruvalt 5 minutit.  

Rakenduse nimi: Fatigue Test TalTech 

App Store: https://apps.apple.com/us/app/fatigue-test-taltech/id6449683047  

Google Play Store: https://play.google.com/store/apps/details?id=ee.ainsus.fatiguetest.android  

Rakenduse Privacy Policy: https://sites.google.com/view/fatigue-test-taltech/home  

 

 Rakenduse ikoon: 

 
 

 

Rakendus on mõeldud Tallinna Tehnikaülikooli ja Tallinna Ülikooli koostöös tehtava uuringu jaoks. 

• Rakenduse küsitakse isikustamata andmeid nagu sugu, pikkus, kaal jms.   
• Seejärel tuleb sooritada neli ülesannet (soorituse aeg: max 5 min, erinevad peenmotoorsed testid, 

nt reaktsioonitest, joonistustest). 
• Peale esmast täitmist tuleks teha vähemalt 45 min kuni 1.5 h aega mentaalset pingutust nõudvaid 

ülesandeid (näiteks koolitund, koduülesannete lahendamine, koosolek). 
• Rakenduse teist korda avamisel küsitakse esmalt isikult paar täpsustavat küsimust tema seisundi 

kohta ning seejärel tuleb samad neli ülesannet sooritada uuesti (soorituse aeg: max 5 min). 
• Lõpus kuvatakse kasutajale tagasiside, kus on üldinfo ülesannete soorituste kohta kahel korral.  

 

Eetilised küsimused 

Uuringu läbiviijad garanteerivad isikuandmete puutumatuse. Kõik kogutavad andmed on anonüümsed. 
Uuringu läbiviimiseks on luba Tallinna Ülikooli eetikakomiteelt (12. mai 2021 otsus nr 12). 
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Kontakt:  
Elli Valla, doktorant-nooremteadur 
+37258058878 
elli.valla@taltech.ee 
Tarkvarateaduse instituut, Tallinna Tehnikaülikool 

 

 

 

RUS 

 

Уважаемый учитель! 
Приглашаем вашу школу принять участие в исследовательском проекте Таллиннского 
университета и Таллиннского Технического университета под названием "Роль культурных, 
биологических и развивающихся факторов в механизмах когнитивного резерва и 
профилактике когнитивной деградации" (руководитель исследования - профессор 
Таллиннского университета Ааро Тоомела). 

Человечество стареет, и старение сопровождается снижением когнитивных способностей до их 
полного исчезновения в течение жизни человека. Основной целью данного исследования является 
понимание механизмов психической деградации, связанных со старением и повреждением мозга, 
и на основе этого планирование действий, способствующих замедлению процесса деградации. 
Одним из подзаголовков нашего обширного исследования является понимание связи между 
мелкими моторными навыками человека и умственной усталостью. 

Мы хотели бы оценить уровень мелких моторных навыков у учащихся вашей школы. Тесты будут 
представлены в цифровом виде через персональное мобильное приложение каждого ученика. Для 
прохождения тестов потребуется примерно 5 минут времени. 

 

Название приложения: Fatigue Test TalTech 

App Store: https://apps.apple.com/us/app/fatigue-test-taltech/id6449683047  

Google Play Store: https://play.google.com/store/apps/details?id=ee.ainsus.fatiguetest.android  

Privacy Policy: https://sites.google.com/view/fatigue-test-taltech/home  

 

Значок 
приложения: 
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Appendix 4 - Terms of Service

RESEARCH PARTICIPATION INFORMATION SHEET

Welcome to the Fatigue Test Application Terms of Use agreement. For purposes of this

agreement, “App” refers to our mobile application in which users are asked to complete the

questionnaire and three fine-motor skill related tests. The terms “we,” “us,” and “our” refer

to the Fatigue Test App. “You” refers to you, as a participant in this research.

The following Terms of Use apply when you use the App on your mobile device.

Please review the following terms carefully and signify your agreement to these Terms of

Use at the bottom by clicking Agree. If you do not agree to be bound by these Terms of Use

in their entirety, you may not access or use the App.

I - INTRODUCTION

This research is conducted by researchers at the Tallinn University of Technology

Department of Software Science. The main scope of the study is to develop a framework for

human motor function and cognitive impairment analysis. Movement and neurological

disorders pose a significant burden on the healthcare system.

Our goal is to provide decision support tools to help clinicians with data collection,

diagnostics, and treatment processes. The more data we collect, the more accurate and

reliable applications we can develop. We are thankful for any contribution. Participation is

entirely voluntary, and you can withdraw your data anytime.

II - INFORMATION WE COLLECT

We collect “Non-Personal Information”. Non-Personal Information includes information that

cannot be used to personally identify you, such as anonymous usage data, and general

demographic information we may collect. The collected data is specified below.

1. Data that we collect through the questionnaire:

a. gender

b. age (interval)

c. height (interval)

d. weight (interval)

e. education level

1
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f. type of main daily activities (mental, physical, 50/50)

g. dominant hand

h. interest level in the last task with which the user was engaged with (scale 1-10)

i. mental demand level in the last task with which the user was engaged with (scale

1-10)

j. the current perceived state of anxiety (scale 1-10)

k. the current perceived state of fatigue (scale 1-10)

l. the number of hours slept the previous night (scale 0-12)

m. the number of hours spent on a physical activity (scale 0-12)

n. the number of hours spent on a mental activity (scale 0-12)

2. Data that we collect through tests:

a. reaction time

b. test duration

c. error rate

d. kinematic and dynamic parameters:

i. screen coordinates

ii. time

e. axial derivations recorded by the accelerometer

III. HOW WE USE AND SHARE INFORMATION

The collected data will be used as research data by the TalTech University the Department of

Software Science to further the knowledge around cognitive impairment and human

motor function analysis.

IV. HOW WE STORE AND PROTECT INFORMATION

We further protect your information from potential security breaches by implementing

encrypted data transfer over a secure socket layer connection and storing it in a secured

database. The data will become accessible over an off-site application programming

interface by authorized users. However, these measures do not guarantee that your

information will not be accessed, disclosed, altered, or destroyed by a breach of such

firewalls and secure server software. By using our App, you acknowledge that you

understand and agree to assume these risks.

We keep information for as long as we need it for our research. We decide how long we

need information on a case-by-case basis.

2

78



V. YOUR RIGHTS REGARDING THE USE OF YOUR DATA

You have the right to erasure. You can request for your data to be deleted from our

databases at any time.

VI. CONTACT US

If you have any technical questions and concerns regarding the practices of this App, please

contact us by sending an email to elli.valla@taltech.ee.

Last Updated: This Information Sheet was last updated on 30.10.2023.

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS RESEARCH PARTICIPATION INFORMATION

SHEET , UNDERSTAND THE TERMS OF USE, AND WILL BE BOUND BY THESE TERMS AND

CONDITIONS. YOU FURTHER ACKNOWLEDGE THAT THESE TERMS OF USE REPRESENT THE

COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN US AND THAT IT

SUPERSEDES ANY PROPOSAL OR PRIOR AGREEMENT ORAL OR WRITTEN, AND ANY OTHER

COMMUNICATIONS BETWEEN US RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT.
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