TALTECH UNIVERSITY

School of Information Technology Department of Software Science

Andres Suislepp 204042IAPM

MULTI-MODAL DATA FUSION FOR SHORT-TERM URBAN NOISE PREDICTION IN INTELLIGENT TRANSPORTATION SYSTEMS

Master's thesis

Supervisor Sadok Ben Yahia Professor Co-supervisor Chahinez Ounoughi PhD student

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Andres Suislepp 204042IAPM

MULTIMODAALSETE ANDMETE ÜHITAMINE LINNAMÜRA LÜHIAJALISEKS ENNUSTAMISEKS INTELLIGENTSETES TRANSPORDISÜSTEEMIDES

Magistritöö

Juhendaja Sadok Ben Yahia Professor

Kaasjuhendaja Chahinez Ounoughi PhD student

Author's declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references to the literature, and the work of others have been referred to. This thesis has not been presented for examination anywhere else.

Author: Andres Suislepp

Date: 02.01.2023

Annotatsioon

Intelligentsed transpordisüsteemid on kriitilise tähtsusega tänapäeva linnades. Tarkade rakenduste olemasolu linnades on oluline, et pakkuda inimestele kaasaegset, turvalist ja mugavat linnaruumi. Meie liikumise ja teguviiside analüüsimiseks kogutakse massiiv-seid andmehulkasid, mille protsessimiseks kulub rohkesti aega ja arvutijõudlust. Selle probleemi lahendamiseks on välja töötatud mitmeid andmeühitamise tehnoloogiaid, mille tulemusena andmete hulk ja modaalsus väheneb, kuid nendes sisalduv informatsioonihulk jääb samaks või suureneb.

Töö eesmärk on välja pakkuda andmeühitamise metoodika, mille kaasabil on võimalik pakkuda usaldusväärseid, kiireid, töökindlaid ja täpseid mürataseme ennustusi linnades.

Välja töötatud lahendus on hübriidne andmeühitamine, milles on kasutatud andmeühitusmetoodikat nii tunnuse- kui ka otsustuse tasemel. Tunnuse taseme ühitamiseks on kasutatatud *Smoothed Kalman Filter* lähenemist, mis töötab hästi mitte-täielike andmehulkade peal. Lisaks vähendab see andmete modaalsust, mille tulemusena ka mudeli keerukus väheneb. Lõplik väljatöötatud mudel koosneb lisaks eelnevale ka otsustustasemel ühitusest, kuhu on lisatud Tallinna avakaameratel põhineva mudeli tulemused. See saavutas veelgi väiksema ennustusvea tulemuse. Lõplik hübriidne andmeühitusmeetod põhineb tunnustasemel *Smoothed Kalman Filter* tehnoloogial ja otsustustasemel *Support Vector Regression* tehnoloogial.

Andmete ühitamise meetodi tulemuste valideerimiseks loodi ennustusmudel, mis koosneb konvolutsioonilisest ja rekurrentsest närvivõrgust. Eksperimendid viidi läbi Tallinna linnast ühe kuu vältel kogutud andmehulga pealt. Tulemuste efektiivsust hinnati neid mitmete üldtuntud andmete ühitamise meetoditega võrreldes. Lisaks sellele kõrvutati tulemusi statistiliste aegridade ennustamise meetoditega. Võrdluseks kasutati kahte karakteristikut: täpsus ja efektiivsus. Täpsus mõõdab ennustuse vea suurust ja efektiivsus mudeli treenimiseks kulunud energiat ja aega. Välja pakutud ühitamisstrateegia saavutas parima tulemuse kõigi võrreldavatega, olles kõige väiksema vea väärtusega. Tulemustest sai lisaks välja lugeda, et mudelile piltide ja otsustusühituse lisamine tõstis väga vähesel määral mudeli täpsust, kuid sellega kaasnes väga suur efektiivsuse langus.

Töö tulemusena valmis täpne ja efektiivne linnamüra ennustusmudel, mis põhineb hübriidsel andmete ühitamise meetodil. Ennustusmudeli tulemusena on võimalik ehitada tarku aplikatsioone, mis tõstaksid intelligentsete transpordisüsteemide kasutajakogemust ja usaldusväärsust. Pakutud andmeühituslahenduse adapteerimine teistesse valdkondadesse on üks võimalikest töö edasiarendustest.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 46 leheküljel, 8 peatükki, 14 joonist, 9 tabelit.

Abstract

The amount of data being collected each second is enormous. It takes loads of time and computational power to extract valuable information to process and analyze this data. Data fusion methodologies have been implemented to tackle these problems and reduce complexity while maintaining or improving the information content.

The primary goal of this thesis is to propose a data fusion strategy to provide reliable, accurate, and efficient predictions for urban noise levels in Intelligent Transportation Systems.

The proposed approach to data fusion is a hybrid data fusion, using the feature and decisionlevel fusions in parallel. For feature fusion, a statistical method, Smoothed Kalman Filter, was used to deal with the data unreliability and simultaneously reduce the complexity of the model. For the model that includes images from Tallinn open cameras, a decision fusion based on a Support Vector Regression was applied to further improve the final prediction's accuracy.

A deep learning network was built to evaluate the impact of the data fusion strategy. Experiments were carried out from the multi-modal data set acquired from Tallinn over the period of 1 month. The results were evaluated against multiple data fusion algorithms and statistical time series baselines based on accuracy and complexity. The proposed model was able to outperform all the other baselines on average. Adding the decision fusion with images to our model had a small improvement in accuracy. However, the increased complexity was immense. The model outperformed baselines by a high margin when predicting 5 or 15 minutes into the future. Regarding 30 or 60-minute predictions, two baselines, namely *Univariate, no fusion* and *Moving average* were able to produce better results due to the simplistic approach of filling the missing target variable values.

As a result of the proposed data fusion strategy, a performant and accurate prediction model was built. This enables building smart applications for Intelligent Transportation Systems on top of urban noise predictions. Generalization to different contexts could be researched for further improvement to the data fusion model.

The thesis is in English and contains 46 pages of text, 8 chapters, 14 figures, 9 tables.

List of abbreviations and terms

API	Application Programming Interface
ARIMA	Autoregressive Integrated Moving Average
AVG	Average
CNN	Convolutional Neural Network
CSV	Comma Separated Values
DF	Data Fusion
GPS	Global Positioning System
ISO	International standard for date and time presentation
ITS	Intelligent Transportation System
KF	Kalman Filter
KNN	K-Nearest Neighbors
LSTM	Long short-term memory
MAE	Mean Absolute Error
MAPE	Mean Absolute Percentage Error
MLR	Multinomial Logistic Regression
MSE	Mean Squared Error
P1	Road section 1
P2	Road section 2
px	Pixel, the smallest addressable element in a raster image
RMSE	Root Mean Squared Error
RNN	Recurrent neural network
SKF	Smoothed Kalman Filter
SVM	Support Vector Machine
SVR	Support Vector Regression
UKF	Uncented Kalman Filter
relu	Rectified linear unit

Table of Contents

Li	st of l	Figures	11
Li	st of [Fables	12
1	Intr	oduction	13
	1.1	Motivation	13
	1.2	Problem statement	14
	1.3	Structure	14
2	Bac	kground and related work	15
	2.1	Intelligent Transportation Systems	15
	2.2	Data fusion	15
		2.2.1 Data-level fusion	16
		2.2.2 Feature-level fusion	16
		2.2.3 Decision-level fusion	16
	2.3	Data fusion for time series prediction	17
	2.4	Multivariate time series prediction	18
	2.5	Long short-term memory	18
3	Data	a acquisition	20
	3.1	Data sources	20
	3.2	Data processing	20
		3.2.1 Combining data from multiple sources	23
	3.3	Exploratory analysis	23
		3.3.1 Handling of missing data	28
		3.3.2 Privacy preserving	28
4	Met	hodology	29
	4.1	Model building	30
		4.1.1 Fusion approach	31
		4.1.2 Prediction approach	32
5	Exp	erimental evaluation	33
	5.1	Experimental setup	33
	5.2	Evaluation	34
		5.2.1 Walk-forward validation	36

5.3 Targeted baselines							
	5.3.1 Data fusion methods						
		5.3.2	Statistical time series prediction techniques	37			
	5.4	Result	s and discussion	38			
		5.4.1	Comparison of data fusion methods	38			
		5.4.2	Comparison of time series methods	41			
		5.4.3	Sequence length impact on model performance	42			
6	Fut	ure wor	k and applications	44			
7	Sun	nmary		45			
8	Ack	nowled	gements	46			
Bi	bliog	raphy		47			
Appendix 1 - Non-exclusive licence for reproduction and publication of a grad-							
uation thesis 49							
Appendix 2 - Results50							
Appendix 3 - Dataset90							
Aj	ppend	lix 4 - C	Code	97			

List of Figures

1	LSTM architecture for a supervised model in time series prediction context.	
	Figure referenced from [13]	19
2	TomTom road sections	21
3	Tallinn Live Cameras: Concatenated	22
4	Noise series	24
5	Noise histogram	25
6	Correlation matrix	26
7	Rain histogram	27
8	High-level model architecture	29
9	Final model architecture	30
10	Final model architecture without images and decision fusion	30
11	Walk-forward validation	36
12	Example proposed model training	38
13	Proposed model predictions for different output steps	39
14	Comparison of time series input sequence length	43

List of Tables

1	Data sources	20
2	Noise characteristics	24
3	Rain characteristics	26
4	Categorical value counts	27
5	Prediction model architecture	34
6	Data fusion accuracy comparison	40
7	Data fusion performance comparison	41
8	Proposed approach comparison with statistical time series methods	42
9	Comparison of input sequence length on training the proposed model	43

1. Introduction

Developing Intelligent Transportation Systems (ITS) is crucial to improve people's mobility in densely populated cities. Evolution in the field has led to a high demand for smart applications that provide useful information as an input for reliable and smart transportation networks [1].

The amount of information we have today is enormous, and the challenge relies on extracting the useful and informative parts of the collected data and providing meaningful analysis on top of it. In the context of ITS, the biggest generators of data are the deployed sensors, including data from GPS, video cameras, LIDAR, RADAR, and loop detectors, to name a few. This data is often supported by other sources such as social media, weather data, public transportation data, etc. The biggest challenges in the field can be identified as *(i)* analyzing real-time heterogeneous big data and *(ii)* data reliability [1].

Data Fusion (DF) is considered an elegant and efficient way to tackle the problems related to multi-modal big data. Studies on DF have delivered significant enhancements in ITS and demonstrated a vital impact on its evolution [1].

The proportion of the world population living in urban areas is expected to grow rapidly in the following decades [2], which indicates the actuality of the problem. In addition, high urban noise levels are known to be a source of many illnesses, starting from constant stress and sleep issues to more severe problems like cardiovascular diseases [3].

This thesis proposes a novel data fusion method to improve and simplify deep-learning prediction model outcomes. The model is developed using data from the city of Tallinn.

1.1 Motivation

Traffic congestion in big cities is a huge cost for city stakeholders. Accurately predicting traffic characteristics, including urban noise, can reduce congestion and the overall CO_2 emissions, fuel consumption, and travel times. This will lead to safer, more modern urban environments and a healthier planet.

1.2 Problem statement

Urbanization increases the need for smart cities to manage people's mobility efficiently. Therefore, to overcome this issue, a myriad of researchers have conducted combined data fusion techniques with traffic prediction approaches by processing the vast amount of collected heterogeneous traffic data from different sources. Better prediction results allow ITS stakeholders, managers, and applications to reduce congestion, travel time, CO₂ emissions, allocate resources, and increase safety.

My thesis aims to propose a method for traffic data fusion that improves the performance and accuracy of predicting urban noise levels in Intelligent Transportation Systems. The hypothesis to be proven is that data fusion methods mixed with hybrid deep learning methods can yield highly accurate and performant results for short-term urban noise prediction. The problem is interpreted as a forecasting problem.

1.3 Structure

The rest of the work is structured as follows. Chapter 2 introduces the general methodology and summarizes the state-of-the-art data fusion methods, emphasizing feature and decision fusions. Additionally, a comprehensive introduction to the techniques used in work is given. Chapter 3 gives an overview and initial analysis of the available dataset and the pre-processing strategies used. The proposed architecture is provided in Chapter 4, where the underlying technology choices are justified. Chapter 5 thoroughly analyzes the experimental evaluation, where the results are discussed and compared to the relevant baselines. Possible applications for the final implementation are given in Chapter 6, together with ideas for further improvement of the models.

2. Background and related work

This chapter provides the necessary context needed to understand further work. Stateof-the-art data fusion methods are introduced, and a high-level overview of the used technologies is given.

2.1 Intelligent Transportation Systems

European Union directive 2010/40/EU states Intelligent Transportation Systems as a group of advanced applications that aim to provide helpful and innovative solutions to traffic management and different modes of transportation [4]. It integrates telecommunications, electronics, and information technologies with transport engineering to enable various stakeholders to be better informed for making safer and more coordinated decisions. A critical factor in deploying these systems is preserving individual consumers' privacy. The directive also suggests increasing the number of deployments of intelligent applications, which has accelerated the demand and interest in the field.

2.2 Data fusion

Data Fusion is an advanced technique to combine information coming from several sources to get more accurate results in an execution of an application in a way that would be performed by the use of individual sources separately [5]. The expectation is that fused data is more informative and synthetic than the original inputs. Another significant factor of DF is dimensionality reduction. The ability to simplify models both algorithmically and computationally is a precious aspect when dealing with significant amounts of multi-modal data. In a recent study, [1] has classified the current directions of DF as hybrid data fusion, explainable deep neural network data fusion, adaptive sensor selection, privacy-preserving, and real-time data acquisition and processing.

Data fusion can be categorized into three main categories based on when the fusion takes place: data-level fusion, feature-level fusion, and decision-level fusion.[6]

2.2.1 Data-level fusion

Data-level fusion, also recognized as low-level fusion, is most widely used when collecting data from the environment. Suppose multiple homogeneous sensors collect the exact measurement. In that case, these inputs from the sensors can be fused directly to improve sensor reliability, reduce noise and achieve more accurate and informative data than the sources. This also decreases the network bandwidth used, making it less expensive to handle big amounts of data [6].

2.2.2 Feature-level fusion

Feature-level fusion, also known as intermediate-level fusion, merges multiple data sources into a new high-dimensional dataset. Since high-dimensional datasets are computationally and algorithmically expensive, simple concatenation of feature sets is usually not good enough. Feature-level DF algorithms and feature engineering can be beneficial when dealing with high-modality datasets. However, in some cases, simple concatenation has shown to be a viable option with the popularization of deep learning [6].

Authors in [7] built a deep-learning model to predict the occupancy of electric vehicle charging stations. Their proposed fusion component integrates information from the dynamic encoder and static feature component. It uses concatenation to feed the encoded feature vectors to the fully-connected layer. The prediction model is evaluated concerning multiple metrics: precision, recall, and F1-score. The proposed model shows the best performance regarding the Recall and the F1-score compared to various statistical, machine learning, and deep learning baselines. The paper shows promising results with a simplistic fusion approach.

2.2.3 Decision-level fusion

Decision-level fusion, also recognized as high-level fusion, is used to fuse multiple independent, often weaker decisions to a final unique decision [6]. This is especially useful for capturing the different characteristics of the dataset by using specialized models and fusing the outputs instead of trying to build a generalized model for the whole dataset.

Paper [8] is introducing a decision-level data fusion framework based on homogeneous (machine-learning) and heterogeneous (Extended Kalman Filter) data for traffic congestion prediction. Decisions from three data mining algorithms (deep belief network, k nearest neighbors, random forest) are fused using Extended Kalman Filtering. The three models'

fused output shows a significant performance increase over any models independently. The dataset of the evaluation is based on daily motorway traffic in Montreal, obtained from Genetec blufaxcloud travel-time system engine. The model validation is done by measuring the predicted travel time and comparing it against the estimates obtained from Genetec blufaxcloud travel-time system engine. The model outperforms Genetec estimations 12 times out of 23. Authors in [9] use feature- and decision-level fusion to assess tea quality based on the tea's image and scent. Paper is extracting features from images and e-nose sensors and fusing the data to classify the quality of the tea batch. K-nearest neighbors (KNN), support vector machine (SVM), and multinomial logistic regression (MLR) were applied for classification modeling. Both studies (feature and decision) show better classification results than those based on independent inputs. For this paper, decision-level fusion is the most effective approach.

2.3 Data fusion for time series prediction

Traffic prediction has been a hot research topic for many years. Traffic's complex, nonlinear and stochastic characteristics are the main problems of making accurate predictions [10]. In recent years, traffic data fusion has been used to improve traffic characteristic predictions in cities [8]. Kalman Filter and its variations have shown high usage in forecasting and estimating short-term traffic characteristics. The authors in [11] use Kalman Filter to fuse spatial and location-based data to estimate traffic density. Subsequently, the estimated data are utilized for predicting density to future time intervals using a time series regression model. The experiment was carried over in Chennai, India, which adds a significant complexity due to the unique nature of traffic that poses both technological and algorithmic challenges. The density prediction model performed relatively well despite the challenges arising from India's heterogeneous traffic flow conditions. A more recent study [12] has proposed a hybrid model for regional traffic flow prediction based on the convolutional neural network (CNN) and long short-term memory (LSTM). The data being fused is both spatial and temporal. As CNN is generally more suitable for spatial data and LSTM models are appropriate for processing sequential types of data (temporal), a hybrid approach combining CNN and LSTM is introduced. The model shows the highest accuracy compared to the targeted baselines for multi-step forecasting. Another paper [13] with a similar approach proposes a multivariate CNN-LSTM model to predict stock market prices. The stock market is a noisy, stochastic environment identical to traffic in big cities. The proposed model used multiple stock market indices by considering the state of correlation between them in the forecasting process. The multivariate CNN-LSTM model outperformed standalone CNN and LSTM models by a relatively high margin.

Besides traffic predictions, other commonly used applications for DF in the context of

ITS include autonomous vehicles, travel time estimation, traffic prediction, congestion prediction, incident detection, vehicle communication, and different management systems [1].

2.4 Multivariate time series prediction

Multiple time-dependent variables in a multivariate time series prediction depend on their previous value and other variables' previous values. This allows the model to capture the trend of observed variables' relationships when forecasting the future value [13]. The input to a multivariate time series prediction is a uniformly distributed time-dependent sequence of prior values. Formula 2.1 represents the prediction as a function *fn* where *X* represents the variable set, *y* as the target variable, \hat{y} as the predicted value, *l* is the input sequence time length in time steps, and *o* represents the output time steps (how many steps in the future to predict).

$$\hat{y}_{t+o} = fn(\{X_{t+(-l+1)}, X_{t+(-l+2)}, ..., X_t\})$$
(2.1)

2.5 Long short-term memory

To evaluate the fusion methodologies, a multivariate prediction methodology is needed. Multi-modal non-linear urban noise data is known to be too complex and noisy for traditional time series prediction methods to handle. The advancements in machine learning research are providing viable options to overcome these limitations. Neural networks can learn the complex relationships between data features in big datasets without relying on previous information [13].

Due to its popularity in late time series prediction publications, the chosen prediction methodology was long short-term memory (LSTM). LSTM is a popular recurrent neural network (RNN). Recurrent neural network (RNN) is a deep network architecture where the connections between hidden units form a directed cycle [14]. The LSTM network can capture long-term dependencies by using internal memory that keeps the previous information from the last hidden states, as illustrated in Figure 1.

Figure 1. LSTM architecture for a supervised model in time series prediction context. Figure referenced from [13]

•

Traditional LSTM unit comprises forget, input, output gates, and a memory cell. The architecture assumes uniformly distributed elapsed time between the elements of a sequence [14]. LSTM has been widely used and proven to be very capable of forecasting time series data [13].

3. Data acquisition

This chapter aims to give a good understanding of the underlying dataset. This includes the data source, acquisition information, and a thorough analysis of the available features. A thorough exploration of the available dataset is needed to propose a suitable data fusion strategy for an accurate prediction.

3.1 Data sources

The intersection of interest for the model building is in Tallinn, between Sõpruse Puiestee and Tammsaare Tee. The main reason for this decision was the availability of the urban noise sensor data.

Different traffic characteristics data were acquired from multiple sources. Data sources, methods of acquisition, and processing strategies are described in Table 1. The interval for data acquisition was 5 minutes. Data were acquired from 10 February 2022 until 6 March 2022.

Features	Source	Acquisition method
Noise level	Thinnect	Export
Traffic characteristics	TomTom Developer Portal	API Scraping
Weather	ilm.ee	Website Scraping
Road condition, weather	Tallinn Weather Portal	Website Scraping
Camera images	Tallinn Live Cameras	Scraping
Datetime features	_	Computed

Table 1. Data sources

3.2 Data processing

Noise data

Noise data was exported in CSV format from Thinnect portal and required no preprocessing. The used sensor is situated at the intersection of Tammsaare - Sõpruse and sends the average noise level to the server every minute.

TomTom

Data from TomTom was acquired by accessing the TomTom Maps API [15]. TomTom provides data about different road sections. The two road sections used are denoted as *P1* and *P2* and depicted in Figure 2.

Figure 2. TomTom road sections

TomTom provides average car speed and travel-time information about each road section for two cases: the current and free flow states. Free flow state describes the situation for a case where there is no extensive amount of traffic. This allows us to calculate the differences between the free flow state and the current state, using the formula 3.1. In addition, TomTom provides data about road closures and road types in real time.

$$t_{diff} = t_{current} - t_{freeflow} \tag{3.1}$$

Ilm.ee

Scraping *ilm.ee* website provides data points about the current weather and air conditions. The available features are temperature, wind temperature, air pressure, air humidity, wind speed and direction, rainfall, sunset and sunrise times, cloudiness, and coldness class.

Tallinn Weather Portal

Scraping *Tallinn Weather portal* website provides data points about the current weather and road conditions. The available features are temperature, air humidity, and road temperature.

Tallinn Live Cameras

There are three live cameras for the intersection of interest. The images are scraped from the Tallinn Live Cameras website, resized into a standardized size of 100px x 100px, and concatenated into a single 300px x 100px picture collage depicted in Figure 3. Concatenation is needed to allow the deep learning model to learn about all the driving directions simultaneously. The small size for the images had to be chosen to optimize the further processing and training procedures since dealing with high volumes of image data is computationally expensive.

Figure 3. Tallinn Live Cameras: Concatenated

DateTime features

DateTime features are computed from the ISO timestamp. The following features are computed: date, hour, minute, minute of the day, day of the month, day of the week, and is-weekend.

```
def compute_datetime_features(df):
    df['Datetime'] = df.apply(lambda row: datetime
            . from isoformat (row ['Timestamp']), axis = 1)
    df['Date'] = df.apply(lambda row: row['Datetime']
            .strftime("%Y-%m-%d"), axis=1)
    df['Hour'] = df.apply(lambda row: row['Datetime']
            . hour, axis=1)
    df['Minute'] = df.apply(lambda row: row['Datetime']
            . minute, axis=1)
    df['Minute_Of_Day'] = df.apply(lambda row: (row['Hour'] *
            60) + row['Minute'], axis=1)
    df['Day_Of_Month'] = df.apply(lambda row: row['Datetime']
            . day, axis=1)
    df['Day_Of_Week'] = df.apply(lambda row: row['Datetime']
            .weekday(), axis=1)'
    df['Is_Weekend'] = df.apply(lambda row: row['Day_Of_Week']
            == 5 or row ['Day_Of_Week'] == 6, axis=1)
    return df
```

3.2.1 Combining data from multiple sources

For further processing of the dataset, data from multiple sources are combined using the Pandas DataFrame merge functionality. Merging is based on computed DateTime features.

```
df = pd.merge(df_noise, df_ilmee_weather,
    how='left',
    on=['Date', 'Hour', 'Minute'])
```

3.3 Exploratory analysis

The initial dataset contains 7, 252 data points. Exploration of the target variable, noise, shows the first immediate problem. As depicted in Figure 4, noise value is only present for 26.54% of the dataset. Another feature visible from Figure 4 is the temporal characteristic of the urban noise. Further exploration of noise characteristics are shown in Table 2 and a

histogram in Figure 5. The target variable is a numeric value between the range of 45-80 dB with a mean of 58.931 dB.

Figure 4. Noise series

Value
1925
58.931
5.954
45
54
59
63
80

Table 2. Noise characteristics

Figure 5. Noise histogram

Exploring the correlations between continuous features shows a very low correlation for rainfall. The correlation matrix in Figure 6 shows less than 0.1 correlation between any other feature and rain. Further exploration of the rain feature in Table 3 and Figure 7 shows that there was minimum rain detected during our interest of time. The outcome of the exploration is removing the rain feature from further model development. The biggest correlation with the target variable is the road, air temperature, and wind speed.

Figure 6. Correlation matrix

Characteristic	Value
Count	7177
Mean	0.008
Standard deviation	0.089
Minimum	0
25%	0
50%	0
75%	0
Maximum	1

Table 3. Rain characteristics

Figure 7. Rain histogram

Categorical features value count exploration shows us four variables with static values as described in Table 4. These values are not providing additional information to the model and, therefore, can be excluded from further model development. Because wind speed has a significant correlation, we can expect the wind direction to be very influential.

Value	Count	Value	Count] [Value	Count		Value	Count
FRC3	7252	FRC2	7252	1 [False	7252		False	7252
P1 roa	ad type	P2 roa	ad type		P1 is	closed		P2 is	closed
Valu	e Count			Value		Count]		

Value	Count
cloud_norain	3490
cloud	2089
cloud_lightsnow	653
cloud_lightrain	634
cloud_modrain	202
cloud_lightrainsnow	90
cloud_modsnow	78
cloud_modrainsnow	18

Value	Count
cold	4158
hot	3096

Coldness class

Wind direction

SW

S

W

SE

Ν

NW

NE

Е

2728

1509

1380

508

462

457

114

96

Cloudiness class

Table 4. Categorical value counts

The final dataset contains 11 continuous features, three categorical features, and one image feature combined with three images. The immediate problems regarding data preprocessing that arose from the exploratory analysis are the following:

- 1. Missing values for the target variable.
- 2. Privacy-preserving for images.
- 3. Capturing periodic temporal characteristics of the target variable.

3.3.1 Handling of missing data

The requirement for training accurate deep learning models is a sufficient amount of training data. To increase the size of the training dataset, noise values are imputed using a method of backward fill, where the last known valid value is carried backward in the dataset, with a limit of 6. This ensures that short-term missing values are not affecting the training process. Still, the limit is set not to fill vast gaps of missing data in training, which can cause the model to learn the backward fill implementation instead of the actual dependencies and variable movements. In addition, as described in Chapter 2.4, the input to a time series prediction is a sequence of datasets where elements are expected to be uniformly distributed. The sequences that violate that assumption are removed from the training set as described in Formula 3.2, where the sequence of variables *S* including *l* variable sets *X* with a parameter timestamp in minutes X(t). The sequence *S* is included in the training set when function *fn* evaluates to *true* with a time step *ts* between each item.

$$fn(S) = (X_t(t) - X_{t+(-l+1)}(t)) <= l * ts$$
(3.2)

3.3.2 Privacy preserving

Data privacy is an important matter to discuss when dealing with image processing. The collected images used in this work are processed only to predict future noise values. The persons and the personal cars visible in the images are not processed in a standalone approach.

4. Methodology

The proposed architecture is described in detail in this chapter. The distinct strategies are justified, and an overview of underlying logic is provided.

Considering the late success shown in recently published papers that proposed deep learning models which can recognize complicated and unknown patterns in large varying data sets, the proposed methodology chosen for the prediction model is deep learning. The idea is to use a combination of data fusion techniques before feeding it into the LSTM-based model that predicts short-term urban noise levels. Deep learning models greatly succeed when dealing with nonlinear multivariate time series data. However, the limitation is the need for a vast amount of data and computationally expensive training times [16]. A combination of DF strategies improves the prediction model's accuracy and performance. The proposed approach is a hybrid DF method combining feature and decision-level fusions. Figure 8 shows the high-level architecture to be built.

Figure 8. High-level model architecture

4.1 Model building

The proposed architecture depicted in Figure 9 aims to overcome the issues described earlier and provide an accurate forecast.

The proposed model is a combination of fusions. It uses the traditional DF method Smoothed Kalman Filter (SKF) for feature fusion to reduce the dimensionality and complexity of the model to allow for faster training times while maintaining or even improving the accuracy. This is combined with a CNN architecture to extract unknown features and patterns from the already fused data by introducing a multi-fusion strategy. The image input is processed using another independent CNN. The prediction outputs are fused using a Support Vector Regression decision fusion with a *rbf* kernel to improve the model's accuracy further. Both independent models use a deep learning prediction network based on CNN and LSTM. The final architecture of the model is described in Figure 4.1. The architecture of the same but more straightforward approach without images and decision fusion is shown in Figure 10.

The final architecture is a hybrid data fusion model, where multiple types of fusions are used to achieve an accurate prediction.

Figure 9. Final model architecture

Figure 10. Final model architecture without images and decision fusion

4.1.1 Fusion approach

Continuous features. A Kalman Filter with Smoothing, Smoothed Kalman Filter (SKF) is proposed to implement as a feature fusion method. It is an extended version of one of the oldest state estimation methods, the Kalman Filter(KF). It is simple and effective to use and helps to reduce the observation noises. The most beneficial outcome of the added smoothing usually becomes apparent when there is a more complex multivariate problem. The smoothed estimates of component values like the trend, cycles, and regressor effects can improve the forecasting target series [17].

Categorical features. Deep learning models require all inputs and outputs to be numeric. A learned embedding is an excellent way to overcome this and allow the network to learn the dependencies of categorical values. The implementation of embedding maps each categorical value to a vector, which allows the network to learn the categorical parameters when training.

Datetime features. Time is an important feature when building the prediction model. For the neural network to understand the properties of time, such as periodicity and invariance to time scaling, a Time2Vec implementation proposed in [18] is implemented. Time2Vec is mainly implemented to capture the periodicity characteristic of the target variable described in Chapter 3.3.

Images. To extract unknown features from image sequences, a CNN is used. CNN has been shown to learn accurate patterns and insights from images. Its built-in convolutional layer reduces the high dimensionality of images without losing its information [19]. It is one of the most popular choices when dealing with image data in a deep-learning context. The biggest disadvantage of using images and CNN is the computational expense. Image sequences take a long time to process and train the network.

Decision fusion, Support Vector Regression. Support Vector Machines (SVM) have been studied, generalized, and applied to several problems, including time series predictions. Support Vector Regression (SVR) shares the same advantages as SVMs [20]. They are efficient and work well in cases when there are not many outliers, making them ideal for decision fusions with an assumption that our models are generally accurate independently.

4.1.2 Prediction approach

The prediction approach is an ensemble of CNN and LSTM layers heavily influenced by a similar approach proposed in [13]. This combination is referred to as CNN-LSTM. It uses CNN to extract complex hidden patterns in the dataset and feeds its output to the LSTM layer input for time series prediction. This allows taking advantage of the powers from both independent layers to allow for accurate predictions. CNN extracts the hidden relationships between multi-modal data features, and LSTM is learning the time sequence relationships.

This must be noted that the prediction approach is not the main contribution of this work. The prediction approach must be in place to evaluate the fusion approaches.

5. Experimental evaluation

In this chapter, the results of the performed experiments are given. A description of the configurations and parameters used to run the experiments is provided. The evaluation metrics and baselines for comparisons are introduced, and the performance of the proposed approach is compared to the baselines in detail.

5.1 Experimental setup

The data preprocessing, fusion techniques, and prediction models were all implemented in Python (version 3.8.10) programming language. Many standard Python libraries were used for data processing, evaluation, and visualization, such as *matplotlib*, *numpy*, *matplotlib*, *scikit-learn* and *pandas*. Keras (version 2.7.0), the Python deep learning framework, was used with the Tensorflow backend to implement deep learning models for predictions.

To measure the performance of the proposed approach, a prediction for future urban noise levels for the next 5 minutes, 15 minutes, 30 minutes, and 60 minutes is computed. For all experiments, a *min-max* normalization technique between the range 0 to 1 is performed on all the continuous feature values, including the target feature, before applying the proposed fusion strategy. Embeddings are extracted for categorical variables. As described in Chapter 2.4, the values are aggregated into fixed-length sequences of 12-time steps that result in 60 minutes of look-back time. When choosing the sequence length, two aspects were considered carefully. The sequence must be long enough to learn the models' complex patterns. However, too-long sequences are computationally much more expensive and rely too much on perfect data quality.

The CNN for models where images were included were composed of three convolutional layers, with 100, 200, and 300 units, respectively, followed by a dense layer with 1024 units. All mentioned layers are using *relu* activation. The final layer of the CNN for extracting image features is a dense layer with one unit and a *linear* activation function. Pooling and dropout were added to reduce the complexity of the network and prevent overfitting.

The deep learning prediction model described in Chapter 4.1.2 was tuned to fit during the

implementation and kept static during all experiments to give a fair evaluation of the data fusion approaches. The CNN-LSTM architecture contains three convolutional layers with 64, 64, and 64 units, respectively, together with *relu* activation. Dropout with a rate of 0.2 is added between each convolutional layer to prevent overfitting. Pooling is added to reduce the complexity of the network. The output of the final convolution layer is fed into an LSTM layer with ten units and *relu* activation function. The final layer of the prediction network is a dense layer with linear activation and units equal to the prediction length. Table 5 gives an overview of all the parameters used.

All the experiments were run in the TalTech AI-Lab environment. 80% of the data is used for training purposes and 20% for validation of the results. The models were trained for 100 epochs with the *Adam* optimizer and a mean average error (MAE) loss function. The learning rate.

Туре	Value
Sequence length (look back)	12
CNN layers	3
CNN filters	64, 64, 64
LSTM layers	1
LSTM units	10
Epochs	100
Optimizer	Adam
Loss function	MAE
Learning rate	0.001

Table 5. Prediction model architecture

5.2 Evaluation

As described in Chapter 2, data fusion aims to solve two problems: improve the accuracy of the models and reduce the computational and algorithmic complexity by reducing the dimensionality. Based on this assumption, the evaluation of the proposed approach is also grouped into two segments: the model's accuracy and performance. Model accuracy evaluates the difference between the predicted noise level with the actual noise level. Model performance shows the computing resources and time used to train the model.

To evaluate the accuracy of the model, four different metrics are used, where y represents the actual value, \hat{y} the predicted value, and *n* the size of the dataset.

Mean Squared Error (MSE) - Popular metric to evaluate the errors for the models. [21] Calculated with formula 5.1.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
(5.1)

Root Mean Squared Error (RMSE) - Similar metric to MSE, but giving more weight to big outliers. [21]. Calculated with formula 5.2.

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$
(5.2)

Mean Absolute Error (MAE) - A scale-dependent metric over the whole dataset. Calculated with formula 5.3.

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$
(5.3)

Mean Absolute Percentage Error (MAPE) - Percentage error that is easy to interpret without knowing the context of the data. Calculated with formula 5.4. [22]

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} |\frac{y_i - \hat{y}_i}{y_i}|$$
(5.4)

RMSE and MSE have seen high usage in evaluating forecast models due to their theoretical relevance in statistical modeling. On the other hand, MAE and MAPE are less sensitive to outliers [21].

To evaluate the performance of the model, two different metrics are used:

Time to train (t) - Time elapsed to train the model. Less time spent on training the model means this model is computationally more performant as it spends fewer resources.

Model trainable parameter count (n_{param}) - Number of parameters model has to train. This is another way to evaluate the number of computational resources spent.

5.2.1 Walk-forward validation

Walk-forward validation is a testing approach designed to test models in a realistic scenario, imitating what would happen in a real-life setting. It provides a testing framework for evaluating the predictive power of a model on the data not used to train it [23]. A regular cross-validation strategy is not optimal for time series data because of temporal characteristics like seasonality, unexpected pulses, or trends. Using future observations to predict past values does not fairly indicate the actual model performance. This is why walk-forward validation is also an excellent method to avoid overfitting for time series models [24]. Figure 11 illustrates the walk-forward procedure used to evaluate the prediction outputs.

Figure 11. Walk-forward validation

5.3 Targeted baselines

5.3.1 Data fusion methods

No fusion, univariate. No fusion algorithm. Prediction is only based on the previous sequence of noise values.

No fusion. No feature fusion algorithm, all the parameters from feature engineering are fed into the deep learning prediction model. This baseline is a good comparison to evaluate if, using the same deep learning model, can the proposed feature fusion methodology improve the results.

No fusion + *images.* Similar to the previous, except for the outputs of the CNN are concatenated into the input of the final model. This is an excellent baseline to show that the decision fusion with an independent image prediction model should improve upon the
model where images are concatenated into a single model together with other features.

Kalman Filter. Kalman Filter is one the oldest state estimators for linear systems. It has been widely used to improve observation errors. It is simple to use and computationally very inexpensive. However, applying the KF to nonlinear systems can be difficult [25].

Uncented Kalman Filter. Unscented Kalman Filter (UKF) is an extension to the regular Kalman Filter. The internal method called unscented transformation allows UKF to calculate the statistics and state estimation of a random nonlinear state [25].

Average. An simple average over multiple decisions or predictions can be used. The main positive effect of using average is that it helps balance the outliers in the model outputs. In addition, it is straightforward to implement. This only applies to decision fusion since the variables must be of the same type and scale.

5.3.2 Statistical time series prediction techniques

Statistical time series baselines are added as a comparison to validate the problem-solving approach using deep learning. Statistical methods have been widely used to solve time series prediction problems, and they tend to be much more efficient and easier to build and understand than deep learning models. To justify the deep learning approach, statistical methods are added as baselines.

Naive. Naive is the most simplistic forecasting method, where the last observation is carried over as a prediction. This can yield surprisingly good results for many economic and financial time series [26]. It is an excellent first baseline to improve upon.

Moving average. Moving average is a classical time series forecast algorithm. Observations near each other in time are likely to be proximate in value. In case of outliers, the moving average smoothes the output and therefore gives a smooth trend-line prediction [26].

Linear regression. As shown in 6, there is a correlation between temperature and the time of day. The univariate linear regression model is built upon the assumption that there is a linear relationship between the target variable and a predictor [26].

ARIMA. Autoregressive integrated moving average (ARIMA) model is one of the most widely used time series forecasting models. It aims to find autocorrelations in the dataset. [26]

5.4 Results and discussion

All experiment results are shown in Appendix 2. The dataset used is provided in Appendix 3 and code together with instructions for running the experiments is given in Appendix 4.

Figure 12 shows the loss of the training and validation set during the training process. The figure shows that training and validation losses do not diverge significantly. This explains that our model generalizes well instead of overfitting by remembering the input data [19]. Figure 13 illustrates the model predictions against the validation data set.

Figure 12. Example proposed model training

5.4.1 Comparison of data fusion methods

The proposed model, both with and without images as inputs, is compared to the relevant baselines to evaluate the impact of the data fusion strategy. Table 6 combines the accuracy results for the experiments. Only the best-performing model of each type is given. Overall, on average the proposed model can outperform all the other baselines. As expected, the model works best when predicting just one-time steps into the future. The proposed model achieves the best average RMSE (3.113), MSE (11.000), MAE (2.456), and MAPE (0.042). When predicting 5 minutes or 15 minutes into the future, the proposed model achieves low error rates with RMSE values of 2.220 and 2.788 respectively. These values outperform other baselines by a huge margin. When predicting 30 minutes or 60 minutes into the future, the simplest *Univariate, no fusion* manages to outperform the proposed

Figure 13. Proposed model predictions for different output steps

model by a relatively low margin. The proposed model without images is also performing exceptionally well overall. On average, it outperforms all the other models, excluding the proposed model with images and the univariate model, while. This indicates that our feature fusion approach is the most impactful part of our model.

When comparing the proposed approach without decision fusion to the no-fusion approach, we see that our data fusion strategy has improved the accuracy by a high margin. On average, the proposed model RMSE is lower by 0.381 than the no-fusion approach. This indicates that our data fusion strategy is giving the expected results and significantly impacting the predictions.

Method	Prediction length	RMSE	MSE	MAE	MAPE
Feature fusion $ imes$ Decision fusion	r reulcuon lengui	RNISE	NISE	WIAL	
	5min	3.038	9.23	2.322	0.039
Univariate, no fusion	15min	3.624	13.136	2.875	0.048
	30min	3.343	11.177	2.668	0.046
NONE \times NONE	60min	3.647	13.303	2.894	0.050
NOINE × NOINE	AVG	3.413	11.712	2.690	0.046
	5min	3.100	9.611	2.434	0.041
No fusion	15min	4.403	19.385	3.524	0.059
	30min	4.320	18.666	3.362	0.056
NONE \times NONE	60min	3.691	13.622	2.976	0.050
NOINE × NOINE	AVG	3.879	15.321	3.074	0.052
	5min	38.033	1446.497	9.431	0.157
Combined model with images	15min	50.747	2575.249	7.522	7.522
	30min	13.430	180.354	4.824	0.082
SKF imes NONE	60min	6.335	40.133	4.527	0.078
SKF × NONE	AVG	27.136	1060.558	6.576	1.960
	5min	6.147	37.783	4.946	0.083
	15min	7.411	54.927	6.115	0.102
Only images	30min	6.946	48.252	5.633	0.094
	60min	6.886	52.982	5.677	0.094
	AVG	6.848	48.486	5.593	0.093
	5min	2.220	4.928	1.677	0.029
Proposed model	15min	2.788	7.773	2.228	0.038
	30min	3.520	12.390	2.876	0.049
SKF imes SVR	60min	3.923	15.390	3.043	0.052
SKF × SVK	AVG	3.113	10.120	2.456	0.042
	5min	2.598	6.752	1.970	0.033
Proposed model, no decision fusion	15min	3.083	9.504	2.451	0.041
	30min	3.979	15.836	3.246	0.054
SKF imes NONE	60min	4.332	18.768	3.419	0.057
SKF × NONE	AVG	3.498	12.715	2.772	0.046
	5min	4.410	19.452	3.467	0.057
	15min	5.473	29.951	4.444	0.074
$\mathrm{UKF} imes \mathrm{UKF}$	30min	4.807	23.104	3.887	0.065
	60min	5.285	27.929	4.173	0.069
	AVG	4.994	25.109	3.993	0.066
	5min	2.875	8.268	2.203	0.037
	15min	3.136	9.836	2.506	0.042
KF imes SVR	30min	4.104	16.846	3.358	0.057
	60min	4.443	19.740	3.500	0.059
	AVG	3.640	13.673	2.892	0.049

Table 6. Data fusion accuracy comparison

When evaluating the performance and computational expensiveness of the models in Table 7, we immediately see that models with image inputs have many more trainable parameters

and, therefore, longer training times. However, when comparing the *No-fusion* approach with the proposed model with no decision fusion, it is clear that our fusion strategy is not only improving the accuracy of the predictions but also making the model computationally less expensive. The data fusion strategy reduced the time to train in our experiments from 169 seconds to 57 seconds and reduced the number of trainable parameters by 112. Yet, here we see that the most simple model that is based only on the target variable, *Univariate, no fusion*, is computationally the most performing.

Method	No. trainable params	Time to train (s)
Univariate, no fusion	11 459	28
No fusion	91 915	169
Only images	137 128 974	9498
Proposed model	137 220 249	9555
Proposed model, no decision fusion	91 275	57

Table 7. Data fusion performance comparison

5.4.2 Comparison of time series methods

When comparing the proposed approach to statistical time series methods in Table 8, it is shown that the proposed approach outperforms all the other methods. When comparing to *Moving average*, the margin of outperformance is slightly small (RMSE 3.113 vs. RMSE 3.260). When predicting 30 or 60 minutes ahead, the *Moving average* can beat our approach. The most significant factor of the high performance of these straightforward methods like *Naive* and *Moving average* is the handling of missing values described in Chapter 3.3.1. The simplistic backfill approach with a limit of 6 heavily favors these methods. *Linear regression* shows the poorest results, with an RMSE value of 12.30.

Method	Prediction length	RMSE	MSE	MAE	MAPE
	5min	3.007	9.045	1.955	0.033
	15min	3.516	12.362	2.582	0.044
Naive	30min	3.824	14.624	3.025	0.052
	60min	4.053	16.423	3.169	0.054
	AVG	3.6	13.114	2.683	0.046
	5min	2.783	7.744	2.202	0.038
	15min	3.045	9.270	2.429	0.042
Moving average	30min	3.379	11.420	2.719	0.047
	60min	3.832	14.683	3.059	0.053
	AVG	3.260	10.779	2.602	0.045
	5min	3.047	9.286	2.164	0.037
	15min	3.399	11.550	2.584	0.044
ARIMA	30min	3.765	14.177	2.962	0.051
	60min	4.031	16.247	3.168	0.055
	AVG	3.561	12.815	2.720	0.047
	5min	3.169	10.044	2.360	0.040
	15min	5.344	28.560	3.203	0.055
Linear regression	30min	16.779	281.548	5.027	0.090
	60min	23.906	571.497	9.072	0.164
	AVG	12.300	222.912	4.916	0.087
	5min	2.220	4.928	1.677	0.029
Proposed model	15min	2.788	7.773	2.228	0.038
	30min	3.520	12.390	2.876	0.049
$SKF \times SVR$	60min	3.923	15.390	3.043	0.052
SKF × SVK	AVG	3.113	10.120	2.456	0.042

Table 8. Proposed approach comparison with statistical time series methods

5.4.3 Sequence length impact on model performance

To measure the models' ability to generalize to the time series data, experiments with different input sequence lengths were carried out. Longer training sequences make models computationally more expensive and more reliant on data quality. Three input sequences were tested with the time horizon of 6, 12, and 24 steps that represent 30-minute, 60-minute, and 120-minute look-back times respectively. The accuracy metrics are presented in Table 9. On average the model trained on an input sequence of 12 shows the smallest RMSE value of 3.113 when compared to others. In Figure 14 the models' performance is compared with all the output time perspectives. When predicting 6 steps or 30 minutes into the future, the model with a time series input sequence of 6 manages to slightly improve upon the 12-input model, with an RMSE improvement of 0.012. Input sequence 12 shows the lowest error value for all other output horizons.

Input sequence length	Prediction length	RMSE	MSE	MAE	MAPE
	5min	2.362	5.579	1.700	0.029
	15min	3.166	10.024	2.458	0.042
6	30min	3.508	12.306	2.771	0.047
	60min	4.656	21.678	3.551	0.060
	AVG	3.423	12.397	2.620	0.045
	5min	2.220	4.928	1.677	0.029
	15min	2.788	7.773	2.228	0.038
12	30min	3.520	12.390	2.876	0.049
	60min	3.923	15.390	3.043	0.052
	AVG	3.113	10.120	2.456	0.042
	5min	2.730	7.454	2.077	0.035
	15min	3.472	12.055	2.929	0.049
24	30min	4.659	21.707	3.896	0.066
	60min	4.153	17.246	3.317	0.056
	AVG	3.754	14.616	3.055	0.052

Table 9. Comparison of input sequence length on training the proposed model

Figure 14. Comparison of time series input sequence length

Among all the input sequences and baseline methods, the proposed approach with an input sequence of 12 shows the best accuracy with a low average RMSE value of 3.113.

6. Future work and applications

The proposed data fusion strategy greatly improved the accuracy and performance of the final prediction model when compared to the one without fusion. However, there are many aspects that could be implemented to further improve. The deep learning prediction model could be further fine-tuned and tested to further improve the performance and have a greater advantage over the statistical time series prediction models, especially when predicting 30 or 60 minutes ahead. Experiments with smaller sequence lengths can improve the model used in the real-world setting, allowing us to build a more robust model.

The proposed data fusion strategies should be tested upon other datasets, in the context of ITS and outside it. The results of this could be a generalized data fusion technique that works across many problem domains.

One of the applications of this work is an input to a full-scale application for city stakeholders called Urban Mobility Hub. The proposed prediction model is integrated into the dashboard that supports city stakeholders to make further business decisions. Moreover, it is possible to build preventive applications that react to the predictions of urban noise increases.

7. Summary

The thesis aimed to analyze and propose an efficient traffic data fusion strategy with a prediction model to present accurate short-term urban noise predictions. An extensive data acquisition was carried out over a period of 1 month. The biggest challenge from the acquired data set was the missing values of the target variable, urban noise level.

The data fusion strategy was implemented using a hybrid approach containing a mixture of feature fusion and decision fusion algorithms. For feature fusion, a strategy implementing a Smoothed Kalman Filter was used to deal with the data unreliability and simultaneously reduce the model's complexity. For models that include images from cameras, a decision fusion based on a Support Vector Regression was applied to improve the accuracy of the final prediction further.

A CNN-LSTM deep learning network was used to evaluate the proposed fusion strategies. An extensive amount of data fusion and statistical time series methods were evaluated as baselines to confirm the proposed approach's validity. Evaluations were based on two criteria: the predictions' accuracy and the model's complexity.

The proposed model achieved the best accuracy among the baselines irrelevant to the sequence length of the experiment. The proposed approach without images showed the great aspect of DF, where experiment training times were reduced by three times and, on the other hand, significantly improved accuracy of the results for more than 10% when comparing against no fusion baseline. The proposed model with images and decision fusion outperformed the one without images by a relatively small margin; on average RMSE decreased by 0.385. However, adding images added a lot of complexity, and training time increased significantly. The proposed approach showed the best performance when predicting a one-time step 5 minutes ahead. On average, a simple statistical time series prediction method *Moving average* outperformed the proposed model when predicting 30 or 60 minutes ahead due to the simplistic approach of filling in missing values. This opens up opportunities for future improvements like CNN-LSTM network fine-tuning or reducing the sequence length to increase the reliability against missing values.

8. Acknowledgements

I would like to sincerely thank my supervisor and co-supervisor for extensive support, feedback, guidance, and motivation throughout the whole process. In addition, I would like to thank Jaanus Kaugerand and Thinnect for providing access to their sensor data deployed in the city of Tallinn.

I would like to acknowledge TalTech AI-Lab for the extensive use of computational resources for running experiments.

Bibliography

- [1] C. Ounoughi and S. B. Yahia. "Data fusion for ITS: A Systematic Literature Review". In: *Submitted to Information fusion journal* (2021).
- [2] United Nations. "68% of the world population projected to live in urban areas by 2050, says UN". In: (2018).
- [3] N. Mucci et al. "Urban Noise and Psychological Distress: A Systematic Review". In: *Int J Environ Res Public Health* (2020).
- [4] DIRECTIVE 2010/40/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 7 July 2010. https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX%3A02010L0040-20180109.2010.
- [5] M. M. Alyannezhadi, A. A. Pouyan, and V. Abolghasemi. "An efficient algorithm for multisensory data fusion under uncertainty condition". In: *Journal of Electrical Systems and Information Technology* (2016).
- [6] R. Gravina et al. "Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges". In: *Information Fusion* (2016).
- [7] A. Sao, N. Tempelmeier, and E. Demidova. "Deep Information Fusion for Electric Vehicle Charging Station Occupancy Forecasting". In: (2021).
- [8] T. Adetiloye and A. Awasthi. "Multimodal Big Data Fusion for Traffic Congestion Prediction". In: (2019).
- [9] M. Xu, J. Wang, and S. Gu. "Rapid identification of tea quality by E-nose and computer vision combining with a synergetic data fusion strategy". In: *Journal of Food Engineering* (2019).
- [10] L. Ghouti. "Mobility prediction in mobile ad hoc networks using neural learning machines". In: *Simulation Modelling Practice and Theory* (2016).
- [11] A. Anand, G. Ramadurai, and L. Vanajakshi. "Data Fusion-Based Traffic Density Estimation and Prediction". In: *Journal of Intelligent Transportation Systems* (2014).
- [12] S. Khan and S. Nazir. "Deep learning-based urban big data fusion in smart cities: Towards traffic monitoring and flow-preserving fusion". In: *Computers and Electrical Engineering* (2021).
- [13] H.Widiputra, A. Mailangkay, and E.Gautama. "Multivariate CNN-LSTM Model for Multiple Parallel Financial Time-Series Prediction". In: *Hindawi* (2021).

- [14] I. M. Baytas et al. "Patient Subtyping via Time-Aware LSTM Networks". In: *Proceedings of KDD '17* (2017).
- [15] *TomTom Developer API*. https://developer.tomtom.com/.
- [16] A. Mouakher et al. "EXPECT: EXplainable Prediction Model for Energy Consump-Tion". In: *Mathematics* (2022).
- [17] A. Harway. *Handbook of Economic Forecasting, Volume 1, (Pages 327-412).* 2006. (accessed: 02.11.2022).
- [18] S. M. Kazemi et al. "Time2Vec: Learning a Vector Representation of Time". In: *arXiv:1907.05321* (2019).
- [19] D. Osinga. *Deep Learning Cookbook, Volume 1*. O'Reilly Media, Inc., 2018. ISBN: 9781491995846.
- [20] P. Rivas-Perea et al. "Support Vector Machines for Regression: A Succinct Review of Large-Scale and Linear Programming Formulations". In: *International Journal* of Intelligence Science, 2013, 3, 5-14 (2012).
- [21] R. J. Hyndman and A. B. Koehler. "Another look at measures of forecast accuracy". In: *International Journal of Forecasting* (2006).
- [22] A. Myttenaere, B. Golden, and B. Le Grand. "Mean Absolute Percentage Error for regression models". In: *Neurocomputing* (2016).
- [23] R. M. Stein. "Benchmarking default prediction models: pitfalls and remedies in model validation". In: *Journal of Risk Model Validation* (2007).
- [24] L. Börjesson and M. Singull. "Forecasting Financial Time Series through Causal and Dilated Convolutional Neural Networks". In: *Entropy (Basel)* (2020).
- [25] S. J. Julier and J. K. Uhlmann. "A New Extension of the Kalman Filter to Nonlinear Systems". In: *Proceedings Volume 3068, Signal Processing, Sensor Fusion, and Target Recognition VI* (1997).
- [26] R.J. Hyndman and G. Athanasopoulos. *Forecasting: principles and practice, 2nd edition.* OTexts: Melbourne, Australia, 2018. (accessed: 25.10.2022).

Appendix 1 - Non-exclusive licence for reproduction and publication of a graduation thesis

I Andres Suislepp

- Grant Tallinn University of Technology free licence (non-exclusive licence) for my thesis "Multi-Modal Data Fusion for Short-Term Urban Noise Prediction in Intelligent Transportation Systems", supervised by Sadok Ben Yahia
 - 1.1 to be reproduced for the purposes of preservation and electronic publication of the graduation thesis, incl. to be entered in the digital collection of the library of Tallinn University of Technology until expiry of the term of copyright;
 - 1.2 to be published via the web of Tallinn University of Technology, incl. to be entered in the digital collection of the library of Tallinn University of Technology until expiry of the term of copyright.
- 2. I am aware that the author also retains the rights specified in clause 1 of the nonexclusive licence.
- 3. I confirm that granting the non-exclusive licence does not infringe other persons' intellectual property rights, the rights arising from the Personal Data Protection Act or rights arising from other legislation.

02.01.2023

Appendix 2 - Results

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Input seq.	Output step	RMSE MSE MAE MAPE	Time Trainable params
Combined model SKF × NONE	12	1	38.033 2575.249 9.431 0.157	3075 29,205,074
Images only -	12	1	6.147 37.783 4.946 0.083	7043 137,125,726
$SKF \times NONE$	12	1	2.598 6.752 1.970 0.033	57 91,275
Univariate NONE × NONE	12	1	3.038 9.230 2.322 0.039	28 0,459
$KF \times NONE$	12	1	2.970 8.819 2.275 0.038	34 91,275
Images only -	12	1	6.147 37.783 4.946 0.083	14086 137,125,726
$SKF \times NONE$	12	1	2.598 6.752 1.970 0.033	57 91,275

			1	
Univariate			3.038	28
NONE \times NONE	12	1	9.230	11,459
			2.322	,
			0.039	
			2.970	34
$KF \times NONE$	12	1	8.819	91,275
	12	1	2.275	71,275
			0.038	
			4.186	36
$UKF \times NONE$	12	1	17.525	
URI × NOME	12	1	3.332	91,275
			0.056	
No fusion			3.100	140
No fusion	10	1	9.611	169
NONE \times NONE	12	1	2.434	91,915
			0.041	
			3.007	0
Naive			9.045	0
-	12	1	1.955	-
			0.033	
			2.783	0
Moving average			7.744	0
-	12	1	2.202	-
			0.038	
			3.169	-
Linear regression			10.044	0
-	12	1	2.360	-
			0.040	
			3.047	
ARIMA			9.281	0
-	12	1	2.164	-
			0.037	
			4.143	
Univariate + DF			17.166	7877
NONE \times AVG	12	1	3.256	-
			0.054	
			6.019	
Univariate + DF			36.230	7877
$NONE \times KF$	12	1	20.200	-

			4.819	
			0.081	
			6.071	
Univariate + DF			36.854	7880
NONE \times SKF	12	1	4.874	-
			0.081	
			4.126	
Univariate + DF			17.023	7877
NONE \times UKF	12	12 1	3.236	-
			0.054	
			2.996	
Univariate + DF			8.974	7877
NONE \times SVR	12	1	2.388	-
			0.041	
			4.092	
No fusion + DF			4.092	8018
NONE \times AVG	12	1		-
			3.233	
			0.054	
No fusion + DF			6.019	8018
NONE \times KF	12	12 1	36.230	-
			4.819	
			0.081	
No fusion + DF			6.071	8021
NONE \times SKF	12	1	36.856	-
			4.874	
			0.081	
No fusion + DF			4.065	8019
NONE \times UKF	12	1	16.521	_
			3.206	
			0.053	
No fusion + DF			2.867	8019
NONE \times SVM	12	1	8.218	-
		1	2.229	
			0.038	
			3.919	7907
$SKF \times AVG$	12	1	15.357	
		L	3.104	-
			0.052	
			6.019	

1<u>2</u>

			36.230	
SKF imes KF			4.819	-
			0.081	
			6.070	7000
	10	1	36.847	7909
SKF imes SKF	12	1	4.874	-
			0.081	
			3.908	7007
	10	1	15.275	7907
SKF imes UKF	12	1	3.086	-
			0.051	
			2.220	7007
$SKF \times SVM$	12	1	4.928	7907
	12	1	1.677	-
			0.029	
			4.443	7885
$\rm UKF imes AVG$	12	1	19.736	
UKF × AVO	12	1	3.502	-
			0.058	
			6.019	7885
$\mathrm{UKF} imes \mathrm{KF}$	12	1	36.230	-
	12	1	4.819	-
			0.081	
			6.070	7887
$\mathbf{U}\mathbf{K}\mathbf{F} imes \mathbf{S}\mathbf{K}\mathbf{F}$	12	1	36.848	-
	12	1	4.874	_
			0.081	
			4.410	7885
$\mathbf{U}\mathbf{K}\mathbf{F} imes \mathbf{U}\mathbf{K}\mathbf{F}$	12	1	19.452	-
	12	1	3.467	
			0.057	
			3.600	7885
$\mathbf{U}\mathbf{K}\mathbf{F} imes \mathbf{S}\mathbf{V}\mathbf{M}$	12	1	12.957	-
		1	2.831	
			0.048	
			4.037	7883
KF imes AVG	12	1	16.299	-
		•	3.176	

			0.053	
			6.019	
			36.230	7883
$\mathrm{KF} imes \mathrm{KF}$	12	1	4.819	-
			0.081	
			6.071	
			36.859	7886
$\mathrm{KF} imes \mathrm{SKF}$	12	1	4.874	-
			0.081	
			4.015	
		1	16.123	7883
KF imes UKF	12		3.153	-
			0.052	
			2.875	
		1	8.268	7883
$\mathrm{KF} imes \mathrm{SVM}$	12		2.203	-
			0.037	
			50.747	
Combined model			2575.249	3083
$SKF \times NONE$	12	3	7.522	29,205,092
			0.127	
			7.411	
Images only			54.927	7848
-	12	3	6.115	137,125,744
			0.102	
			3.083	
			9.504	60
$SKF \times NONE$	12	3	2.451	91,297
			0.041	
			3.624	
Univariate			13.136	27
NONE \times NONE	12	3	2.875	11,481
			0.048	
			3.312	
			10.970	38
$KF \times NONE$	12	3	2.639	91,297
			0.044	
			4.841	
			23.433	39
$\mathbf{U}\mathbf{K}\mathbf{F}\times\mathbf{N}\mathbf{O}\mathbf{N}\mathbf{E}$	12	3		91,297

			3.948	
			0.066	
			4.403	
No fusion			19.385	186
NONE \times NONE	12	3	3.524	91,937
			0.059	
			3.516	
Naive			12.362	0
-	12	3	2.582	-
			0.044	
			3.045	
Moving average			9.270	0
-	12	3	2.429	-
			0.042	
			5.344	
Linear regression			28.560	0
-	12	3	3.203	-
			0.055	
			3.398	
ARIMA			5.598 11.545	0
-	12	12 3		-
			2.583 0.044	
Univariate + DF			4.897	7875
NONE \times AVG	12	3	23.976	-
			3.910	
			0.065	
Univariate + DF			7.278	7875
NONE \times KF	12	3	52.966	-
			5.974	
			0.100	
Univariate + DF			7.341	7878
NONE \times SKF	12	3	53.894	-
			6.050	
			0.101	
Univariate + DF			4.861	7875
NONE \times UKF	12	3	23.634	-
			3.888	
			0.065	
Univariate + DF			3.262	7875
		-		1015

			10.639	
NONE \times SVR			2.592	-
			0.044	
			5.355	0024
No fusion $+$ DF	10	2	28.681	8034
NONE \times AVG	12	3	4.335	-
			0.072	
No fusion + DE			7.278	9024
No fusion + DF	10	2	52.966	8034
NONE \times KF	12	3	5.974	-
			0.100	
No fusion + DF			7.342	9027
$\frac{1}{1000} + \frac{1}{1000} + 1$	12	3	53.905	8037
	12	5	6.050	-
			0.101	
No fusion + DF			5.324	8034
$\frac{1}{1000} \frac{1}{1000} + \frac{1}{1000} \frac{1}{1000} $	12	3	28.341	8034
	12	5	4.298	-
			0.071	
No fusion + DF			4.208	8034
NONE \times SVM	12	3	17.707	-
	12	5	3.346	
			0.056	
			4.632	7909
SKF imes AVG	12	3	21.457	-
	12	5	3.749	
			0.062	
			7.278	7909
$\mathrm{SKF} imes \mathrm{KF}$	12	3	52.966	-
		C	5.974	
			0.100	
			7.342	7911
SKF imes SKF	12	3	53.904	-
			6.050	
			0.101	
			4.601	7909
SKF imes UKF	12	3	21.167	-
		-	3.723	

			0.062	
			2.788	7000
	10		7.773	7909
$SKF \times SVM$	12	3	2.228	-
			0.038	
			5.504	7007
	10	2	30.297	7887
$\mathrm{UKF} imes \mathrm{AVG}$	12	3	4.471	-
			0.075	
			7.278	7007
	10	2	52.966	7887
$\mathrm{UKF} imes \mathrm{KF}$	12	3	5.974	-
			0.100	
			7.338	7890
UKF imes SKF	12	3	53.851	/890
UKF × SKF	12	3	6.048	-
			0.101	
			5.473	7007
UKF imes UKF	12	3	29.951	7887
UKF × UKF	12		4.444	-
			0.074	
			4.692	7887
$\rm UKF imes SVM$	12	3	22.013	/00/
UKF × SVM	12	5	3.751	-
			0.063	
			4.808	7886
KF imes AVG	12	3	23.115	
	12	5	3.890	-
			0.065	
			7.278	7886
$\mathrm{KF} imes \mathrm{KF}$	12	3	52.966	-
	12	5	5.974	-
			0.100	
			7.342	7889
m KF imes SKF	12	3	53.911	-
		5	6.050	_
			0.101	
			4.774	7886
KF $ imes$ UKF	12	3	22.791	-
$\mathbf{X}\mathbf{I}^* \wedge \mathbf{U}\mathbf{X}\mathbf{I}^*$	12	5		-

			3.866 0.064	
$KF \times SVM$	12	3	3.136 9.836 2.506 0.042	7886 -
Combined model $SKF \times NONE$	12	6	13.430 180.354 4.824 0.082	3096 29,205,119
Images only -	12	6	6.946 48.252 5.633 0.094	7849 137,125,771
$SKF \times NONE$	12	6	3.979 15.836 3.246 0.054	61 91,330
Univariate NONE \times NONE	12	6	3.343 11.177 2.668 0.046	26 11,514
$KF \times NONE$	12	6	4.275 18.274 3.473 0.059	37 91,330
$\mathbf{U}\mathbf{K}\mathbf{F} \times \mathbf{N}\mathbf{O}\mathbf{N}\mathbf{E}$	12	6	4.939 24.395 3.905 0.065	39 91,330
No fusion NONE \times NONE	12	6	4.320 18.666 3.362 0.056	160 91,970
Naive -	12	6	3.824 14.624 3.025 0.052	0 -
Moving average			3.379	0

1<u>2</u> 58

			11.420	
-			2.719	-
			0.047	
			16.779	
Linear regression			281.548	0
-	12	6	5.027	-
			0.090	
			3.769	
ARIMA			14.207	0
-	12	6	2.968	-
			0.051	
			4.200	
Univariate + DF			17.643	7875
NONE imes AVG	12	6	3.339	-
			0.056	
			6.652	
Univariate + DF			44.247	7875
NONE imes KF	12	6	5.445	-
			0.090	
			6.600	
Univariate + DF			43.564	7878
NONE \times SKF	12	6	5.413	-
			0.090	
			4.117	
Univariate + DF			16.949	7875
NONE imes UKF	12	6	3.295	-
			0.055	
			3.465	
Univariate + DF			12.008	7875
NONE \times SVR	12	6	2.754	-
			0.047	
			4.673	
No fusion + DF			21.837	8009
$NONE \times AVG$	12	6	3.744	-
			0.062	
			6.652	
No fusion + DF			44.247	8009
NONE imes KF	12	6	5.445	-
1			5.775	

			0.090	
No fordan e DE			6.601	2012
No fusion + DF	10	(43.574	8012
NONE \times SKF	12	6	5.414	-
			0.090	
			4.590	2222
No fusion + DF		,	21.066	8009
$NONE \times UKF$	12	6	3.668	-
			0.061	
			4.121	
No fusion + DF		16.981	8009	
NONE \times SVM	12	6	3.206	-
			0.054	
			4.614	
			21.291	7909
$SKF \times AVG$	12	6	3.760	-
			0.063	
			6.652	
	SKF \times KF 12 6	6	44.247	7909
$\mathrm{SKF} imes \mathrm{KF}$			5.445	-
			0.090	
			6.604	
		6	43.609	7912
$SKF \times SKF$	12		5.417	-
			0.090	
			4.532	
			20.535	7910
$\mathrm{SKF} imes \mathrm{UKF}$	12	6	3.694	-
			0.062	
			3.520	
			12.390	7910
SKF imes SVM	12	6	2.876	-
			0.049	
			4.889	
				7888
$\mathrm{UKF} imes \mathrm{AVG}$	12	6	23.898	-
			3.963	
			0.066	
			6.652	7888
$\mathrm{UKF} imes \mathrm{KF}$	12	6	44.247	-

			5.445	
			0.090	
			6.604	
			43.611	7891
$\mathbf{U}\mathbf{K}\mathbf{F} \times \mathbf{S}\mathbf{K}\mathbf{F}$	12	6	5.417	-
			0.090	
			4.807	
			23.104	7888
$\mathbf{U}\mathbf{K}\mathbf{F}\times\mathbf{U}\mathbf{K}\mathbf{F}$	12	6	3.887	-
			0.065	
			4.587	
			21.043	7888
$\mathbf{U}\mathbf{K}\mathbf{F}\times\mathbf{S}\mathbf{V}\mathbf{M}$	12	6	3.600	-
			0.060	
			4.816	
			23.195	7886
$KF \times AVG$	12	6	3.967	-
		0.066		
			6.652	
			44.247	7886
$KF \times KF$	12	6	5.445	-
			0.090	
			6.604	
			43.607	7889
$KF \times SKF$	12	6	5.417	-
			0.090	
			4.732	
			22.391	7887
$KF \times UKF$	12	6	3.909	-
			0.065	
			4.104	
			16.846	7887
$\mathrm{KF} imes \mathrm{SVM}$	12	6	3.358	-
			0.057	
			6.335	
Combined model			40.133	3060
$\mathbf{SKF} \times \mathbf{NONE}$	12	12	40.133	29,205,173
			0.078	
Images only			7.279	7845
	121	12		

			52.982	137,125,825
			5.677	- , -,
			0.094	
			4.332	61
$SKF \times NONE$	12	12	18.768	91,396
	12	12	3.419	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			0.057	
Univariate			3.647	27
NONE × NONE	12	12	13.303	11,580
	12	12	2.894	11,500
			0.050	
			4.521	38
$KF \times NONE$	12	12	20.436	91,396
KI' × NONE	12	12	3.578	91,590
			0.060	
			4.359	40
	10	10	19.004	
$\mathbf{U}\mathbf{K}\mathbf{F}\times\mathbf{N}\mathbf{O}\mathbf{N}\mathbf{E}$	12	12	3.447	91,396
			0.058	
Na fusion			3.691	195
No fusion	10	10	13.622	185
NONE × NONE	12	12	2.976	92,036
			0.050	
			4.053	0
Naive	10	10	16.423	0
-	12	12	3.169	-
			0.054	
			3.832	0
Moving average	10	10	14.683	0
-	12	12	3.059	-
			0.053	
			23.906	2
Linear regression			571.497	0
-	12	12	9.072	-
			0.164	
			4.035	
ARIMA			16.284	0
-	12	12	3.169	-

			0.055	
			4.766	
Univariate + DF			22.714	7872
NONE \times AVG	12	12	3.715	-
			0.062	
University DE			7.104	
Univariate + DF			50.463	7872
NONE \times KF	12	12	5.541	-
			0.091	
			7.210	7075
Univariate + DF	10	10	51.988	7875
NONE \times SKF	12	12	5.621	-
			0.093	
			4.733	7070
Univariate + DF	10	10	22.402	7872
$NONE \times UKF$	12	12	3.691	-
			0.061	
			3.586	
Univariate + DF	10	10	12.857	7872
NONE \times SVR	12	2 12	2.873	-
			0.049	
Na fasian (DE			4.898	0020
No fusion $+$ DF	10	10	23.991	8030
NONE \times AVG	12	12	3.937	-
			0.065	
Ne fasian + DE			7.104	9020
No fusion + DF NONE \times KF	10	10	50.463	8030
INUINE × Kľ	12	12	5.541	-
			0.091	
No fusion + DF			7.214	0022
	10	10	52.038	8033
NONE \times SKF	12	12	5.623	-
			0.093	
No fusion + DE			4.853	8030
No fusion + DF	10	10	23.553	6030
NONE \times UKF	12	12	3.904	-
			0.065	
No fusion + DF			3.686	8030
NONE \times SVM	12	12	13.587	0030
INDINE × 3 V IVI	12	12		-

			2.974	
			0.050	
			5.253	
			27.595	7906
$SKF \times AVG$	12	12	4.163	-
			0.069	
			7.104	
			50.463	7906
SKF imes KF	$SKF \times KF$ 12	12	5.541	-
			0.091	
			7.214	
			52.042	7908
$SKF \times SKF$	12	12	5.624	-
			0.093	
			5.212	
			27.165	7906
$SKF \times UKF$	12	12	4.138	-
		0.068		
			3.923	
		12	5.925 15.390	7906
$SKF \times SVM$	12			-
			3.043 0.052	
			5.322	7885
$\mathrm{UKF} imes \mathrm{AVG}$	12	12	28.329	-
			4.206	
			0.069	
			7.104	7885
$\mathrm{UKF} imes \mathrm{KF}$	12	12	50.463	-
			5.541	
			0.091	
			7.214	7887
$\mathrm{UKF} imes \mathrm{SKF}$	12	12	52.036	-
			5.623	
			0.093	
			5.285	7885
$\mathbf{U}\mathbf{K}\mathbf{F} imes \mathbf{U}\mathbf{K}\mathbf{F}$	12	12	27.929	-
	12	1 4	4.173	
			0.069	
			4.052	7885
	. !		,	1000

UKF $ imes$ SVM			16.422	_
			3.093 0.052	
			5.384 28.990	7883
KF imes AVG	12	12	28.990 4.279	-
			0.071	
			7.104	
			50.463	7883
m KF imes m KF	12	12	5.541	-
			0.091	
			7.213	
		12	52.032	7885
KF imes SKF	12		5.623	-
			0.093	
			5.344	
			28.557	7883
m KF imes UKF	12	12	4.248	-
			0.070	
			4.443	
			19.740	7883
$KF \times SVM$	12	12	3.500	-
			0.059	
			31.683	25.60
Combined model		1	1003.796	2569
$SKF \times NONE$	6	1	12.469	29,204,756
			0.209	
Interes only			306.261	7550
Images only	6	1	93795.544	7559
-	6	1	28.870	137,125,726
			0.471	
			2.373	59
SKF imes NONE	6	1	5.629	90,765
		I	1.730	20,705
			0.029	
Univariate			4.081	25
NONE × NONE	6	1	16.653	11,459
		L	3.357	11,107

			0.056	
			2.674	27
		1	7.150	37
$KF \times NONE$	6	1	2.017	90,765
			0.034	
			3.421	• •
			11.705	39
$\mathbf{UKF} \times \mathbf{NONE}$	6	1	2.688	90,765
			0.046	
			2.889	• • • •
No fusion			8.346	200
NONE \times NONE	6	1	2.232	91,405
			0.038	
			2.941	
Naive			8.648	0
-	6	1	1.911	-
			0.032	
			2.815	
Moving average			7.925	0
-	6	1	2.123	-
			0.036	
			3.315	<u>^</u>
Linear regression			10.989	0
-	6	1	2.351	-
			0.040	
			3.040	
ARIMA			9.243	0
-	6	1	2.116	-
			0.036	
···· ·			152.948	
Univariate + DF			23393.109	7584
$NONE \times AVG$	6	1	15.043	-
			0.246	
			218.690	
Univariate + DF			47825.252	7584
NONE \times KF	6	1	28.434	-
			0.464	
			129.615	
Univariate + DF			16800.019	7587
NONE \times SKF	6	1	1	-

			28.363	
			0.463	
			119.881	
Univariate + DF			14371.547	7584
$NONE \times UKF$	6	1	14.779	-
			0.241	
			2.897	
Univariate + DF			8.395	7584
NONE \times SVR	$ONE \times SVR \qquad \qquad 6 \qquad \qquad 1$	2.240	-	
			0.039	
			153.097	
	No fusion + DF		23438.658	7758
$NONE \times AVG$	6	1	14.996	-
			0.245	
			218.690	
No fusion + DF			47825.252	7759
NONE \times KF	6	1	28.434	-
			0.464	
			129.264	
No fusion + DF			16709.101	7762
$NONE \times SKF$	6	1	27.476	-
			0.447	
			120.066	
No fusion + DF			14415.884	7759
$NONE \times UKF$	6	1	14.797	-
			0.242	
			2.761	
No fusion $+$ DF			7.625	7759
NONE \times SVM	6	1	2.115	-
			0.036	
			153.119	7(10
		1	23445.566	7618
$SKF \times AVG$	6	1	14.882	-
			0.243	
			218.690	7(10
		1	47825.252	7618
SKF imes KF	6	1	28.434	-
			0.464	
			129.260	7621

			16708.248	
$SKF \times SKF$			27.471	-
			0.447	
			120.095	7(10
		1	14422.732	7618
SKF imes UKF	6	1	14.721	-
			0.241	
			2.362	7618
$SKF \times SVM$	6	1	5.579	
	0	1	1.700	-
			0.029	
			153.059	7597
$UKF \times AVG$	6	1	23427.083	1391
	0	1	15.150	-
			0.248	
			218.690	7597
$\rm UKF imes KF$	6	1	47825.252	1371
	0	1	28.434	-
			0.464	
			129.420	7601
$UKF \times SKF$	6	1	16749.448	7001
	0	1	27.826	-
			0.453	
		120.021	7598	
UKF imes UKF	6	1	14404.954	1590
	0	1	14.938	-
			0.244	
			3.312	7598
UKF imes SVM	6	1	10.971	-
		1	2.570	
			0.044	
			153.075	7596
$KF \times AVG$	6	1	23431.838	-
		· ·	14.990	
			0.245	
			218.690	7596
KF imes KF	6	1	47825.252	-
		*	28.434	

			0.464	
			129.263	
			16708.833	7599
$KF \times SKF$	6	1	27.470	-
			0.447	
			120.037	
			14408.938	7596
$\mathrm{KF} imes \mathrm{UKF}$	6	1	14.802	-
			0.242	
			2.668	
			7.120	7596
$KF \times SVM$	6	1	1.997	-
			0.034	
			8.158	
Combined model			66.549	2598
$SKF \times NONE$	6	3	6.451	29,204,774
			0.107	
			5.929	
Images only			35.155	7560 137,125,744
-	6	3	4.759	
			0.080	
			3.198	
		6 3 10.230 2.467	10.230	60
$SKF \times NONE$	6		90,787	
			0.042	
			3.341	
Univariate			11.161	26
NONE \times NONE	6	3	2.635	11,481
			0.044	
			3.413	
			11.652	38
$KF \times NONE$	6	3	2.696	90,787
			0.045	
			4.182	
			17.489	39
$\mathrm{UKF} imes \mathrm{NONE}$	6	3	3.302	90,787
			0.055	
			3.481	
No fusion		_	12.117	181
NONE \times NONE	6	3		91,427

			2.789	
			0.047	
			3.465	
Naive -		3	12.007	0
	6		2.576	-
			0.044	
			3.141	
Moving average			9.867	0
-	6	3	2.470	-
			0.042	
			12.176	
Linear regression			148.266	0
-	6	3		-
			4.211	
			0.073	
ARIMA			3.585	0
-	6	3	12.851	-
			2.698	
			0.046	
Univariate + DF			4.223	7586
NONE \times AVG	6	3	17.830	-
			3.408	
			0.057	
Univariate + DF			5.731	7586
NONE \times KF	6	3	32.845	-
			4.611	
			0.077	
Univariate + DF		3	5.800	7589
NONE × SKF	6		33.635	-
			4.657	
			0.078	
Univariate + DF		3	4.176	7586
NONE \times UKF	6		17.439	-
			3.358	
			0.056	
Univariate + DF			3.113	7586
NONE \times SVR	6	3	9.690	-
		5	2.468	-
			0.042	
No fusion + DF			4.206	7741
$100 1001011 \pm D1$		_		//71

60

			17.693	
NONE \times AVG			3.387	-
			0.057	
			5.731	7741
No fusion + DF		2	32.845	7741
NONE \times KF	6	3	4.611	-
			0.077	
No fusion + DF			5.800	7745
NO IUSIOI $+$ DI NONE \times SKF	6	3	33.644	7745
NONE × SKI	0	5	4.658	-
			0.078	
No fusion + DF			4.153	7742
NONE \times UKF	6	3	17.248	-
NONE × UKI	0	5	3.335	-
			0.056	
No fusion + DF			3.396	7742
NONE \times SVM	6	3	11.536	-
	0	5	2.740	
			0.046	
			4.140	7619
$SKF \times AVG$	6	3	17.139	-
		5	3.332	
			0.056	
			5.731	7620
$\mathrm{SKF} imes \mathrm{KF}$	6	3	32.845	-
			4.611	
			0.077	
			5.800	7623
$\mathbf{SKF} imes \mathbf{SKF}$	6	3	33.642	_
			4.657	
			0.078	
			4.089	7620
SKF imes UKF	6	3	16.723	-
			3.282	
			0.055	
			3.166	7620
SKF imes SVM	6	3	10.024	-
			2.458	

			0.042	
$\rm UKF imes AVG$			4.606	7500
		2	21.216	7599
	6	3	3.697	-
			0.062	
$\rm UKF imes \rm KF$	6	3	5.731	7500
			32.845	- 7599
			4.611	
			0.077	
UKF × SKF		3	5.801	7603
			33.654	
	6		4.658	-
			0.078	
		3	4.555	
$\mathrm{UKF} imes \mathrm{UKF}$			20.748	7600
	6		3.647	-
			0.061	
$\rm UKF imes SVM$			3.823	
		3	14.617	7599
	6		2.980	-
			0.050	
KF imes AVG		3	4.261	
			18.155	- 7598
	6		3.422	
			0.057	
		3	5.731	7598
	6		32.845	
m KF imes m KF	6		4.611	
			0.077	
$KF \times SKF$		3	5.801	7601
			33.647	
	6		4.658	-
			0.078	
		3	4.209	
m KF imes UKF	6		17.713	7598
			3.371	-
			0.056	
			3.210	
			10.302	7598
KF imes SVM	6	3	I	-
			2.537	
--	---	----------	----------	-------------
			0.043	
Combined model			42.475	2505
$SKF \times NONE$	6	6	1804.108	29,204,801
			9.881	
			0.166	
Images only			8.738	7556
-	6	6	76.350	137,125,771
			7.244	, ,
			0.120	
			3.545	60
$SKF \times NONE$	6	6	12.565	90,820
SIM A NORL		0	2.814	90,020
			0.047	
Univariate			3.539	26
NONE \times NONE	6	6	12.526	11,514
NOINE A NOINE	0	0	2.811	11,514
			0.047	
			4.050	37
$KF \times NONE$	6	6	16.400	90,820
KI' X INOINE	0	0	3.264	90,820
			0.055	
			4.113	39
	6	6	16.916	
$\mathbf{U}\mathbf{K}\mathbf{F}\times\mathbf{N}\mathbf{O}\mathbf{N}\mathbf{E}$	6	6	3.157	90,820
			0.054	
			3.766	202
No fusion			14.180	202
NONE \times NONE	6	6	2.968	91,460
			0.050	
N7 1			3.720	0
Naive		<i>.</i>	13.836	0
-	6	6	2.947	-
			0.051	
			3.304	<u>^</u>
Moving average	_	-	10.914	0
-	6	6	2.605	-
			0.045	
			34.023	
Linear regression			54.025	0

			1157.550	
-			8.256	-
			0.148	
			3.883	0
ARIMA		(15.076	0
-	6	6	2.985	-
			0.051	
Univariate + DF			5.635	7583
NONE \times AVG	6	6	31.758	1365
NONE × AVG	0	0	4.572	-
			0.076	
Univariate + DF			8.548	7583
NONE \times KF	6	6	73.065	7365
	0	6	7.069	-
			0.117	
Univariate + DF			8.645	7586
NONE × SKF	6	6	74.742	7380
	0	0	7.160	-
			0.119	
Univariate + DF			5.579	7583
NONE \times UKF	6	6	31.129	-
	0	0	4.520	-
			0.075	
Univariate + DF			3.370	7583
NONE \times SVR	6	6	11.360	-
		0	2.709	
			0.046	
No fusion + DF			5.634	7758
NONE \times AVG	6	6	31.743	-
		0	4.631	
			0.077	
No fusion + DF			8.548	7758
$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$	6	6	73.065	-
		Ĭ	7.069	
			0.117	
No fusion + DF			8.648	7762
NONE \times SKF	6	6	74.789	-
			7.162	

			0.119	
			5.578	7750
No fusion + DF			31.109	7759
$NONE \times UKF$	6	6	4.571	-
			0.076	
			3.637	77.50
No fusion $+$ DF		<i>.</i>	13.226	7759
$NONE \times SVM$	6	6	2.888	-
			0.049	
			5.653	
		<i>.</i>	31.954	7616
$SKF \times AVG$	6	6	4.668	-
			0.077	
			8.548	
		<i>.</i>	73.065	7617
$SKF \times KF$	6	6	7.069	-
			0.117	
			8.649	5/20
			74.801	7620
$SKF \times SKF$	6	6	7.163	-
			0.119	
			5.592	2(12
		_	31.276	7617
SKF imes UKF	6	6	4.613	-
			0.076	
			3.508	7(17
		(12.306	7617
$SKF \times SVM$	6	6	2.771	-
			0.047	
			5.794	7507
			33.572	7596
$\mathrm{UKF} imes \mathrm{AVG}$	6	6	4.807	-
			0.080	
			8.548	750/
		ſ	73.065	7596
$\mathrm{UKF} imes \mathrm{KF}$	6	6	7.069	-
			0.117	
			8.646	7500
		ſ	74.750	7599
$\mathrm{UKF} imes \mathrm{SKF}$	6	6	1	-

			4.783	61
			0.093	
-		14	5.570	157,125,025
Images only	6	12	46.182	137,125,825
Images only			6.796	7555
			0.095	
$SKF \times NONE$	6	12	5.712	29,204,855
Combined model	6	10	59.063	2572 20.204.855
Combined model			7.685	2572
			0.053	
$\mathrm{KF} imes \mathrm{SVM}$	6	6	3.152	-
	6	Ĺ	15.375	7594
			3.921	7504
			0.080	
$KF \times UKF$	6	6	4.834	-
			34.470	7594
			5.871	7504
			0.119	
$KF \times SKF$	6	6	7.162	-
			74.783	7597
			8.648	
			0.117	
$\mathrm{KF} imes \mathrm{KF}$	6	6	7.069	-
			73.065	7594
			8.548	770 /
			0.081	
$KF \times AVG$	6	6	4.891	-
		-	35.148	7594
			5.929	
			0.055	
$\mathrm{UKF} imes \mathrm{SVM}$	6	6	3.211	-
			17.842	7596
			4.224	
			0.079	
$\mathrm{UKF} imes \mathrm{UKF}$	6	6	4.753	-
			32.905	7596
			5.736	
			7.160 0.119	

96

$SKF \times NONE$			22.877 3.713 0.063	90,886
Univariate NONE × NONE	6	12	3.690 13.619 2.959 0.051	26 11,580
KF imes NONE	6	12	5.286 27.945 4.106 0.069	38 90,886
$UKF \times NONE$	6	12	4.521 20.444 3.560 0.060	39 90,886
No fusion NONE × NONE	6	12	4.102 16.825 3.234 0.054	200 91,526
Naive -	6	12	4.003 16.023 3.149 0.054	0 -
Moving average -	6	12	3.885 15.093 3.131 0.054	0 -
Linear regression -	6	12	50.296 2529.661 14.990 0.272	0 -
ARIMA -	6	12	4.271 18.245 3.246 0.056	0 -
Univariate + DF NONE × AVG	6	12	4.703 22.116 3.819	7582

			0.064	
Univariate + DF			6.658	7500
NONE \times KF	6	12	44.327	7582
INDINE X KF	6	12	5.462	-
			0.091	
Haimaista - DE			6.707	7505
Univariate + DF		10	44.986	7585
NONE \times SKF	6	12	5.495	-
			0.092	
University DE			4.678	7500
Univariate + DF		10	21.884	7582
NONE \times UKF	6	12	3.798	-
			0.064	
			3.708	7500
Univariate + DF		10	13.748	7582
NONE \times SVR	6	12	3.001	-
			0.052	
			4.978	7756
No fusion $+$ DF		10	24.776	
NONE \times AVG	6 12	12	3.997	
			0.066	
		10	6.658	7756
No fusion + DF			44.327	
NONE \times KF	6	12	5.462	
			0.091	
N. f., DD			6.707	7750
No fusion + DF		10	44.989	7759
NONE \times SKF	6	12	5.495	-
			0.092	
N. f., i DD			4.942	7756
No fusion + DF		10	24.421	7756
NONE \times UKF	6	12	3.970	-
			0.066	
			4.101	
No fusion + DF		10	16.818	7756
NONE \times SVM	$NE \times SVM$ 6	12	3.215	-
			0.054	
			5.134	- / 4 /
		10	26.361	7616
$SKF \times AVG$	6	12	· ·	-

			4.163	
			0.069	
			6.658	
			44.327	7616
SKF imes KF	6	12	5.462	-
			0.091	
			6.704	
			44.950	7619
$SKF \times SKF$	6	12	5.492	-
			0.092	
			5.099	
			25.999	7616
SKF imes UKF	6	6 12	4.145	-
			0.069	
			4.656	7616
$\mathrm{SKF} imes \mathrm{SVM}$	6	6 12	21.678	-
		3.551		
			0.060	
	6	12	5.044	7594
$\mathbf{U}\mathbf{K}\mathbf{F} \times \mathbf{A}\mathbf{V}\mathbf{G}$			25.438	-
			4.127	
			0.069	
		12	6.658	7594
$\mathrm{UKF} imes \mathrm{KF}$	6		44.327	-
	0	12	5.462	
			0.091	
			6.706	7598
$\mathbf{U}\mathbf{K}\mathbf{F} imes \mathbf{S}\mathbf{K}\mathbf{F}$	6	12	44.964	-
UKI' × SKI'	0	12	5.493	-
			0.092	
			5.005	7505
	6	10	25.050	7595
$\mathrm{UKF} imes \mathrm{UKF}$	6	12	4.094	-
			0.068	
			4.663	
			21.747	7595
$UKF\timesSVM$	UKF \times SVM 6 12	12	3.509	-
			0.060	
			5.347	
	1			7593

99

12

			28.588	
$KF \times AVG$			4.426	-
			0.074	
			6.658	7500
		10	44.327	7593
KF imes KF	6	12	5.462	-
			0.091	
			6.704	7507
	6	10	44.948	7597
$KF \times SKF$	6	12	5.492	-
			0.092	
			5.308	7502
KF imes UKF	6	10	28.172	7593
KF × UKF	6	12	4.402	-
			0.074	
			5.023	7594
KF imes SVM	6	12	25.233	7394
KF × SVM	0	12	3.821	-
			0.065	
Combined model			4.345	3187
$SKF \times NONE$	24	1	18.878	29,205,926
SKI × NONE	24	1	2.760	29,203,920
			0.046	
Images only			6.886	8048
	24	1	47.419	137,125,726
_		1	5.493	137,123,720
			0.091	
			2.859	54
$SKF \times NONE$	24	1	8.173	92,511
	21	1	2.231	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			0.037	
Univariate			3.164	25
NONE × NONE	24	1	10.013	11,459
		L	2.412	11,107
			0.040	
			3.147	31
$KF \times NONE$	24	1	9.902	92,511
		-	2.448	

			0.041			
			4.562	22		
	24		20.808	33		
$\mathbf{U}\mathbf{K}\mathbf{F}\times\mathbf{N}\mathbf{O}\mathbf{N}\mathbf{E}$	24	1	3.699	92,511		
			0.061			
			3.623	101		
No fusion			13.126	121		
NONE \times NONE	24	1	2.760	93,151		
			0.046			
N7 '			3.163	0		
Naive			10.008	0		
-	24	1	2.059	-		
			0.034			
			3.088	<u>^</u>		
Moving average			9.535	0		
-	24	1	2.489	-		
			0.042			
			3.095			
Linear regression			9.581	0		
-	24	1	2.386	-		
			0.040			
			3.036			
ARIMA						9.218
-	24	1	2.186	-		
			0.037			
			4.563			
Univariate + DF			20.822	8073		
NONE \times AVG	24	1	3.580	-		
			0.059			
			6.704			
Univariate + DF			44.946	8073		
$NONE \times KF$	24	1	5.389	-		
			0.089			
			6.643	0077		
Univariate + DF			44.133	8075		
NONE \times SKF	24	1	5.365	-		
			0.089			
			4.527	~~~~		
Univariate + DF			20.493	8073		
$NONE \times UKF$	24	1	1	-		

			3.562	
			0.059	
			2.904	
Univariate + DF			8.433	8073
NONE \times SVR	24	1	2.319	-
			0.039	
			4.687	
No fusion + DF			21.964	8169
$NONE \times AVG$	24	1	3.726	-
			0.061	
			6.704	
No fusion + DF			44.946	8169
NONE \times KF	24	1	5.389	-
			0.089	
No fusion + DF			6.660	8171
NONE \times SKF	24	1	44.355	-
			5.376	
			0.089	
No fusion + DF			4.643	8169
NONE imes UKF	24	1	21.556	-
			3.691	
			0.061	
No fusion + DF			3.580	8169
NONE \times SVM	24	1	12.817	-
			2.787	
			0.046	
			4.247	8102
$SKF \times AVG$	24	1	18.038	-
			3.302	
			0.055	
			6.704	8103
SKF imes KF	24	1	44.946	-
		1	5.389	
			0.089	
			6.651	8104
$SKF \times SKF$	SKF \times SKF 24 1	1	44.236	-
		1	5.371	_
			0.089	
			4.216	8103

			17.776	
SKF imes UKF			3.287	-
			0.054	
			2.730	0100
			7.453	8103
$SKF \times SVM$	24	1	2.077	-
			0.035	
			5.243	0001
	24	1	27.492	8081
$\mathrm{UKF} imes \mathrm{AVG}$	24	1	4.233	-
			0.070	
			6.704	0001
	24	1	44.946	8081
$\mathrm{UKF} imes \mathrm{KF}$	24		5.389	-
			0.089	
			6.664	0002
	24	1	44.413	8083
$UKF \times SKF$	24	1	5.379	-
			0.089	
			5.199	8081
$\rm UKF imes \rm UKF$	24	1	27.027	
	24	1	4.211	-
			0.069	
			4.025	8081
$\mathbf{U}\mathbf{K}\mathbf{F} imes \mathbf{S}\mathbf{V}\mathbf{M}$	24	1	16.199	0001
	24	1	3.171	-
			0.053	
			4.259	8080
KF imes AVG	24	1	18.135	-
	27	1	3.314	_
			0.055	
			6.704	8080
m KF imes m KF	24	1	44.946	-
		L	5.389	-
			0.089	
			6.656	8081
KF imes SKF	24	1	44.303	-
		L	5.374	

			0.089	
			4.219	0000
			17.802	8080
KF imes UKF	24	1	3.286	-
			0.054	
			3.059	
			9.359	8080
$KF \times SVM$	24	1	2.378	-
			0.040	
			55.081	
Combined model			3033.900	3215
$SKF \times NONE$	24	3	7.045	29,205,944
			0.117	
			5.311	
Images only			28.210	8048
-	24	3	4.170	137,125,744
			0.070	
			3.481	
		3	12.118	57 92,533
$SKF \times NONE$	24		2.886	
			0.049	
			3.938	
Univariate		3	15.505	24
NONE \times NONE	24		3.100	11,481
			0.051	
			3.501	
			12.255	34
$KF \times NONE$	24	3	2.856	92,533
			0.048	
			4.731	
			22.378	36
$\mathbf{U}\mathbf{K}\mathbf{F}\times\mathbf{N}\mathbf{O}\mathbf{N}\mathbf{E}$	24	3	3.783	92,533
			0.063	
			3.808	
No fusion			14.501	138 93,173
NONE \times NONE	24	3	3.066	
			0.051	
			3.703	
Naive			13.709	0
-	24	3		-

	1	1	i.	1
			2.719	
			0.045	
Moving overage			3.335	0
Moving average	24	2	11.119	0
-	24	3	2.690	-
			0.046	
			3.934	2
Linear regression			15.475	0
-	24	3	2.807	-
			0.048	
			3.383	
ARIMA			11.446	0
-	24	3	2.655	-
			0.045	
			4.125	
Univariate + DF			17.015	8073
NONE \times AVG	24	3	3.221	-
			0.053	
Univariate + DF			5.314	8073
NONE \times KF	24	3	28.243	-
			4.193	
			0.070	
Univariate + DF			5.285	8075
NONE \times SKF	24	3	27.934	-
			4.149	
			0.069	
Univariate + DF			4.148	8073
NONE \times UKF	24	3	17.208	_
			3.257	
			0.054	
Univariate + DF			3.151	8073
NONE \times SVR	24	3	9.928	0075
INGINE × 5 V K	24	5	2.551	-
			0.043	
No fueion + DE			4.098	0106
No fusion + DF	24	2	16.796	8186
NONE \times AVG	24	3	3.313	-
			0.055	
			5.314	0107
No fusion + DF			I	8186

3

			28.243				
NONE imes KF			4.193	-			
			0.070				
			5.288	0100			
No fusion + DF	24	2	27.964	8188			
NONE \times SKF	24	3	4.150	-			
			0.069				
Na faciar + DE			4.117	0107			
No fusion + DF	24	2	16.951	8186			
NONE \times UKF	24	3	3.333	-			
			0.056				
Na faciar + DE			3.806	0106			
No fusion + DF	24	3	14.485	8186			
NONE \times SVM	24	3	3.066	-			
			0.051				
			3.704	9106			
	24	3	13.719	8106			
$SKF \times AVG$	24	3	2.994	-			
			0.050				
			5.314	8106			
SKF imes KF	24	3	28.243	8100			
SKF × KF	24	5	4.193	-			
			0.070				
			5.288	8108			
SKF imes SKF	24	3	27.962	0100			
	24	24	<u></u>	24	5	4.150	-
			0.069				
			3.728	8106			
SKF imes UKF	24	3	13.900	-			
	27	5	3.023	_			
			0.051				
			3.472	8106			
$SKF \times SVM$	24	3	12.055	-			
		5	2.929	_			
			0.049				
			4.480	8085			
$\rm UKF imes AVG$	24	3	20.070	-			
		5	3.642	-			

			0.061				
			5.314	2025			
	24	3	28.243	8085			
$\mathrm{UKF} imes \mathrm{KF}$	24		4.193	-			
			0.070				
$\mathbf{U}\mathbf{K}\mathbf{F} imes \mathbf{S}\mathbf{K}\mathbf{F}$			5.288	0007			
	24	2	27.960	8086			
	24	3	4.150	-			
			0.069				
			4.495	0007			
		2	20.205	8085			
$\mathrm{UKF} imes \mathrm{UKF}$	24	3	3.663	-			
			0.061				
			4.264	0005			
			18.181	8085			
$\mathbf{U}\mathbf{K}\mathbf{F}\times\mathbf{S}\mathbf{V}\mathbf{M}$	24	3	3.312	-			
			0.056				
			3.749				
		3	14.059	8083			
$KF \times AVG$	24		3.066	-			
			0.051				
			5.314				
			28.243	8083			
$\mathrm{KF} imes \mathrm{KF}$	24	24	24	3	4.193	-	
			0.070				
			5.288				
			27.964	8085			
$\mathrm{KF} imes \mathrm{SKF}$	24	24	24	$KF \times SKF$ 24	3	4.150	-
			0.069				
			3.767				
			14.189	8083			
KF imes UKF	24	3	3.088	-			
			0.052				
			3.621				
			13.112	8083			
$\mathrm{KF} imes \mathrm{SVM}$	24	3	3.046	-			
			0.052				
			8.999				
Combined model			80.977	3183			
$\mathbf{SKF} \times \mathbf{NONE}$	24	6	00.777	29,205,971			

			4.741	
			0.078	
Images only			4.497	8047
-	24	6	20.220	137,125,771
			3.746	
			0.064	
			4.477	57
$SKF \times NONE$	24	6	20.044	92,566
		Ũ	3.721	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			0.063	
Univariate			3.503	25
NONE × NONE	24	6	12.269	
NOINE × NOINE	24	0	2.747	11,514
			0.046	
			4.024	27
			16.191	37
$KF \times NONE$	24	6	3.283	92,566
			0.056	
			4.196	
	24	6	17.605	38
$\mathbf{U}\mathbf{K}\mathbf{F}\times\mathbf{N}\mathbf{O}\mathbf{N}\mathbf{E}$			3.228	92,566
			0.055	
			4.698	
No fusion			22.068	122
NONE \times NONE	24	6	3.857	93,206
			0.064	
Naive			3.972	0
-	24	6	15.773	-
			3.120	
			0.053	
Moving average			3.656	0
-	24	6	13.363	_
			2.943	
			0.050	
Linear regression			6.439	0
-	24 6	6	6 41.455	-
	27	0	3.443	
			0.060	
			3.865	0
ARIMA	•			0

			14.935	
-			2.977	-
			0.051	
			3.461	
Univariate + DF			11.979	8072
$NONE \times AVG$	24	6	2.890	-
			0.049	
			4.372	
Univariate + DF			19.112	8072
NONE \times KF	24	6	3.649	-
			0.063	
			4.397	0074
Univariate + DF	24	(19.335	8074
NONE \times SKF	24	6	3.668	-
			0.063	
Univariate + DF			3.440	2072
NONE \times UKF	24	6	11.834	8072
NONE × UKF	24	0	2.861	-
			0.049	
Univariate + DF			3.577	8072
$\frac{1}{10000000000000000000000000000000000$	24	6	12.795	-
	24	0	3.024	-
			0.052	
No fusion + DF			3.826	8169
NONE \times AVG	24	6	14.637	-
		0	3.124	
			0.053	
No fusion + DF			4.372	8169
$\frac{1}{NONE \times KF}$	24	6	19.112	-
		Ŭ	3.649	
			0.063	
No fusion + DF			4.392	8170
$NONE \times SKF$	24	6	19.288	-
		Ũ	3.663	
			0.063	
No fusion + DF			3.778	8169
$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$	24	6	14.273	-
		Ŭ	3.084	

			0.052	
No fusion + DF			4.676	8169
	24	6	21.862	8109
NONE \times SVM	24	6	3.844	-
			0.064	
			3.902	0104
		6	15.222	8104
$SKF \times AVG$	24	6	3.127	-
			0.053	
			4.372	0104
		<i>.</i>	19.112	8104
$SKF \times KF$	24	6	3.649	-
			0.063	
			4.392	0105
ATTE: ATTE		<i>.</i>	19.292	8105
$SKF \times SKF$	24	6	3.663	-
			0.063	
			3.856	
			14.865	8104
$SKF \times UKF$	24	6	3.091	-
			0.053	
			4.659	
			21.707	8104
$SKF \times SVM$	24	6	3.896	-
			0.066	
			3.743	
			14.007	8085
$\mathrm{UKF} \times \mathrm{AVG}$	24	6	3.011	-
			0.051	
			4.372	
			19.112	8085
$\mathrm{UKF} imes \mathrm{KF}$	24	6	3.649	-
			0.063	
			4.392	
			19.291	8087
$\mathbf{U}\mathbf{K}\mathbf{F} imes \mathbf{S}\mathbf{K}\mathbf{F}$	24	6	3.663	-
			0.063	
			3.698	
			13.677	8085
$\mathbf{U}\mathbf{K}\mathbf{F} imes \mathbf{U}\mathbf{K}\mathbf{F}$	24	6	13.077	-

			2.977	
			0.051	
			4.137	0005
$\mathbf{U}\mathbf{K}\mathbf{F} imes \mathbf{S}\mathbf{V}\mathbf{M}$	24	6	17.115	8085
UKF × SVIVI	24	0	3.247	-
			0.055	
			3.680	9094
	24	6	13.544	8084
$KF \times AVG$	24	6	2.960	-
			0.050	
			4.372	0004
		<i>.</i>	19.112	8084
$KF \times KF$	24	6	3.649	-
			0.063	
			4.392	0000
			19.292	8086
$KF \times SKF$	24	6	3.663	-
			0.063	
			3.635	
		<i>.</i>	13.214	8084
$KF \times UKF$	24	6	2.926	-
			0.050	
			4.194	
			17.589	8084
$KF \times SVM$	24	6	3.405	-
			0.058	
			16.039	
Combined model			257.251	3152
$SKF \times NONE$	24	12	7.152	29,206,025
			0.116	
			7.283	
Images only			53.047	8051
-	24	12	5.826	137,125,825
			0.096	
			4.386	
			19.238	60
$SKF \times NONE$	24	12	3.473	92,632
			0.058	
			4.009	
Univariate	I			26
	2941	12		

NONE × NONE			16.074 3.136 0.052	11,580
KF × NONE	24	12	4.433 19.650 3.462 0.058	35 92,632
UKF \times NONE	24	12	4.570 20.884 3.686 0.062	36 92,632
No fusion NONE × NONE	24	12	4.161 17.315 3.304 0.056	120 93,272
Naive -	24	12	4.201 17.651 3.231 0.055	0 -
Moving average -	24	12	4.179 17.463 3.321 0.057	0 -
Linear regression -	24	12	7.308 53.410 4.509 0.079	0 -
ARIMA -	24	12	4.166 17.356 3.163 0.054	0 -
Univariate + DF NONE × AVG	24	12	5.254 27.600 4.250 0.070	8076
Univariate + DF NONE × KF	24	12	7.135 50.904 5.732	8076 -

			0.095	
			7.209	0070
Univariate + DF		10	51.974	8078
NONE \times SKF	24	12	5.766	-
			0.095	
			5.224	0076
Univariate + DF			27.295	8076
$NONE \times UKF$	24	12	4.222	-
			0.070	
Universite + DE			4.123	9076
Univariate + DF	24	10	16.997	8076
NONE \times SVR	24	12	3.328	-
			0.056	
No fusion + DE			4.893	0171
No fusion + DF		10	23.939	8171
NONE \times AVG	24	12	4.022	-
			0.067	
			7.135	0171
No fusion + DF	24	10	50.904	8171
$NONE \times KF$		12	5.732	
			0.095	
No fusion + DF		12	7.210	8173
	24		51.988	
NONE \times SKF	24	12	5.766	-
			0.095	
No fusion + DE			4.853	0171
No fusion + DF	24	10	23.548	8171
NONE \times UKF	24	12	3.986	-
			0.066	
No fuciency DD			4.267	0171
No fusion $+$ DF		10	18.207	8171
NONE \times SVM	24	12	3.401	-
			0.058	
			5.068	0110
		10	25.688	8110
$SKF \times AVG$	24	12	4.151	-
			0.069	
			7.135	0110
			50.904	8110

			5.732	
			0.095	
			7.216	
			52.073	8112
$SKF \times SKF$	24	12	5.771	-
			0.095	
			5.034	
			25.345	8110
$SKF \times UKF$	24	12	4.123	-
			0.068	
			4.153	
			17.246	8110
$SKF \times SVM$	24	12	3.317	-
			0.056	
			5.413	
		12	29.304	8087
$\mathbf{U}\mathbf{K}\mathbf{F}\times\mathbf{A}\mathbf{V}\mathbf{G}$	24		4.414	-
			0.073	
			7.135	
			50.904	8087
$\mathrm{UKF} imes \mathrm{KF}$	24	12	5.732	-
			0.095	
			7.216	
			52.072	8088
$\mathrm{UKF} imes \mathrm{SKF}$	24	12	5.771	-
			0.095	
			5.375	0007
		15	28.888	8087
$\mathrm{UKF} imes \mathrm{UKF}$	24	12	4.381	-
			0.072	
			4.091	0007
		10	16.737	8087
$\mathbf{U}\mathbf{K}\mathbf{F}\times\mathbf{S}\mathbf{V}\mathbf{M}$	24	12	3.196	-
			0.054	
			5.127	0007
		10	26.283	8086
$KF \times AVG$	24	12	4.205	-
			0.070	
			7.135	0007
	I I		I I	8086

2<u>4</u>4

12

KF × KF			50.904	
$\mathbf{K}\mathbf{\Gamma} \times \mathbf{K}\mathbf{\Gamma}$			5.732	-
			0.095	
			7.222	8088
$KF \times SKF$	24	12	52.152	0000
KF × SKF	24	12	5.775	-
			0.095	
			5.084	8086
m KF imes UKF	24	12	25.849	8080
	24	12	4.166	-
			0.069	
			4.062	8086
$KF \times SVM$	24	12	16.501	0000
	24	12	3.242	-
			0.055	

Appendix 3 - Dataset

Datasetd used for experiments is available in pickle format at:

```
https://bitbucket.org/andressuislepp/magistritoo/src/master/
app/10feb-06mar-cameras-sm.pkl
```

Appendix 4 - Code

Source code for the development of models is available as a Git Repository:

https://bitbucket.org/andressuislepp/magistritoo