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Abstract 

Median filter is a well-known and widely used nonlinear image filter. Comparing with 

linear image filters, median filter is more effective for eliminating image salt-and-pepper 

noise and able to preserve more image details. However, median filter requires a huge 

amount of calculation. Most of embedded systems hard to accept it. Finding out an 

effective and practical solution for doing median filtering will let median filter become 

available in many resource-limited real-time systems. 

Using FPGA as hardware accelerator to help CPU to finish median filtering task will 

significant increase the speed and reduce resource requirement.  

In this thesis, I finished the design in Xilinx ZC702 evaluation board, which carries Xilinx 

XC7Z020 SOC. In the Processing System (PS) side, Linux OS is used, a C program is 

done for transmitting and receiving image data. A hardware digital image filter is done in 

Programmable Logic (PL) side. Direct memory access (DMA) channels are established 

for high speed data exchange between PS side and PL side.  

According to the experiment result, this design is able to do the 3x3 median filtering for 

input image in high speed. Besides, it provides convenient interface for users to interact 

with the device. Whole system runs very stable and total reach task requirements.  

Temporary, this design is only available for processing picture, but the “Digital Image 

Filter” IP core is divided by models, many improvements can be done conveniently. 

This thesis is written in English and is 72 pages long, including 7  chapters, 68 figures 

and 1 tables. Design source code can be downloaded in  

https://github.com/miaoyangpeng/AXI_digital_median_filter_IP 

 

https://github.com/miaoyangpeng/AXI_digital_median_filter_IP


6 

List of abbreviations and terms 

AXI Advanced eXtensible Interface 

CMA Contiguous Memory Allocator 

CPU Central processing unit 

DDR Double Data Rate 

DMA Direct memory access 

EXT extended file system 

FAT File Allocation Table 

FPGA field programmable gate array 

FSBL first stage boot loader 

GPU Graphics processing unit 

IP intellectual property 

JTAG Joint Test Action Group 

LAN Local area network 

OS Operating system 

PC Personal Computer 

PL Programmable Logic 

PS Processing System 

RAM Random-access memory 

ROM Read-only memory 

SOC System on a Chip 

UART universal asynchronous receiver-transmitter 

  

  

  

 



7 

Table of contents 

1 Introduction ............................................................................................................ 14 

1.1 Task definition ................................................................................................. 14 

1.2 Scope ................................................................................................................ 14 

1.3 Task Requirements .......................................................................................... 15 

1.4 Thesis Outline .................................................................................................. 16 

2 Background ............................................................................................................. 17 

2.1 Median filter .................................................................................................... 17 

2.2 median filter implementation methods comparison ......................................... 19 

2.3 BMP file format ............................................................................................... 20 

2.3.1 Basic information about BMP file format ................................................ 20 

2.3.2 Row size ................................................................................................... 21 

2.4 Sorting Network ............................................................................................... 21 

2.5 Useful resource ................................................................................................ 23 

2.5.1 Xilinx ZYNQ 7000 SOC .......................................................................... 23 

2.5.2 Linux Kernel and Linux file system ......................................................... 23 

2.5.3 Necessary IP cores provided by Xilinx .................................................... 24 

3 Hardware diagram design ....................................................................................... 25 

3.1 Overview .......................................................................................................... 25 

3.2 Required IP cores ............................................................................................. 26 

3.3 IP cores configuration ...................................................................................... 27 

3.4 Signal lines connection .................................................................................... 27 

3.5 Other steps for finishing the diagram .............................................................. 28 

4 Linux OS environments and boot up files .............................................................. 29 

4.1 Overview .......................................................................................................... 29 



8 

4.2 BOOT.BIN file ................................................................................................ 30 

4.2.1 u-boot ........................................................................................................ 30 

4.2.2 FSBL file generation ................................................................................ 30 

4.2.3 Combine FSBL, bitstream and u-boot into BOOT.BIN ........................... 31 

4.3 Device tree ....................................................................................................... 31 

4.4 Linux kernel ..................................................................................................... 32 

4.5 Linux-C code driver and execution result ........................................................ 33 

5 Image filter IP implementation ............................................................................... 35 

5.1 overview ........................................................................................................... 35 

5.2 AXI4 stream interface ...................................................................................... 37 

5.2.1 “AXI receiver” model ............................................................................... 38 

5.2.2 “AXI sender” model ................................................................................. 38 

5.2.3 AXI4 stream receiving process................................................................. 40 

5.2.4 “AXI receiver” Simulation result ............................................................. 42 

5.2.5 “AXI sender” Simulation result ................................................................ 43 

5.3 DATA input BUFFER implementation ........................................................... 44 

5.3.1 Implementation analyzing ........................................................................ 44 

5.3.2 Block RAM array ..................................................................................... 45 

5.3.3 Memory input controller ........................................................................... 48 

5.3.4 Memory output controller ......................................................................... 54 

5.3.5 DATA receive BUFFER controller .......................................................... 59 

5.4 Sorting network model implementation .......................................................... 60 

5.5 Data output FIFO ............................................................................................. 62 

6 Experiment result and analysing ............................................................................ 64 

6.1 Implementation result and resource usage ....................................................... 64 

6.2 Image transmission and receiving in PS side ................................................... 65 

6.3 Image median filter result ................................................................................ 66 



9 

6.4 Time consumption analysing ........................................................................... 67 

7 conclusion and Future work ................................................................................... 70 

Reference ........................................................................................................................ 71 

 

 



10 

List of figures 

Figure 1-1: overview diagram of final system................................................................ 15 

Figure 2-1: Example of scintillation noise from an intensified digital imager [4] ......... 18 

Figure 2-2: Application of the median filter [3] ............................................................. 18 

Figure 2-3: illustration about how median value replace the original pixel value. ........ 18 

Figure 2-4: two software methods for returning the median value from 9 inputs. [9] ... 19 

Figure 2-5: example of how a 24-bit color 6x6 BMP image file’s data look like [27] .. 21 

Figure 2-6: Classic sorting network for sorting 9 pixels [3]........................................... 22 

Figure 2-7: Optimized sorting network [3]..................................................................... 22 

Figure 2-8: Sorting network circuit with 19 basic nodes [3] .......................................... 23 

Figure 2-9: Scheme for each basic node [3] ................................................................... 23 

Figure 3-1: diagram of replacing the “Digital Image Filter” IP in Figure 1-1 ............... 25 

Figure 3-2: brief diagram of Figure 3-1 [14] .................................................................. 26 

Figure 3-3: hardware diagram in Vivado ....................................................................... 28 

Figure 4-1: format method for SD card .......................................................................... 29 

Figure 4-2:correct order and property of “Boot image partitions”[22] .......................... 31 

Figure 4-3: necessary device tree code for file “pl.dtsi” [24] ......................................... 32 

Figure 4-4: after installing DMA kernel driver “axidma.ko” ......................................... 33 

Figure 4-5:running result of “axidma_benchmark”........................................................ 34 

Figure 4-6: usage example of “axidma_transfer” ........................................................... 34 

Figure 5-1 basic structure about the image filter IP core ............................................... 36 

Figure 5-2: working principle of “DATA input BUFFER” ........................................... 36 

Figure 5-3: “DATA input BUFFER” next operation after Figure 5-2 ........................... 37 

Figure 5-4: “DATA input BUFFER” after filling the third line, the fourth line pixel data 

of input image will go to BUFFER first line .................................................................. 37 

Figure 5-5: “AXI receiver” interface .............................................................................. 38 

Figure 5-6: “AXI sender” interface ................................................................................ 39 

Figure 5-7: An example of a whole AXI4 stream receiving process ............................. 40 

Figure 5-8 initial stage of AXI4 stream when “tvalid” set as high earlier than signal 

“tready” ........................................................................................................................... 41 



11 

Figure 5-9: An example of a whole AXI4 stream transmission process ........................ 42 

Figure 5-10: Simulation result of “AXI receiver” in startup stage ................................. 42 

Figure 5-11: Simulation result of “AXI receiver” when “tvalid” fall during transmission

 ........................................................................................................................................ 43 

Figure 5-12: Simulation result of “AXI receiver” when receiving is going to finish .... 43 

Figure 5-13: Simulation result of “AXI sender” in startup stage ................................... 43 

Figure 5-14: Simulation result of “AXI sender” in the end of transmission .................. 44 

Figure 5-15: Simulation result of “AXI sender” when “tready” set to low in midway .. 44 

Figure 5-16: internal structure of “DATA input BUFFER” ........................................... 46 

Figure 5-17: Solution 1 of the Block RAM array ........................................................... 47 

Figure 5-18: problem of Figure 5-17 .............................................................................. 47 

Figure 5-19: final solution of the Block RAM array ...................................................... 48 

Figure 5-20: how Figure 5-19 solution solve requirement 6) in section 5.3.1 ............... 48 

Figure 5-21: relationship between the “Address” provided by “DATA receive BUFFER 

controller” and their real position in “Block RAM array” ............................................. 50 

Figure 5-22: interface signals of “Memory input controller” ......................................... 50 

Figure 5-23: first stage pipeline operation, work out the value of “buf_add_obs1”, and 

decide which RAM in B column should be used ........................................................... 51 

Figure 5-24: first stage pipeline operation, work out the values of “buf_add_obs2”, 

“buf_add_obs3”, “buf_add_obs4” .................................................................................. 51 

Figure 5-25: a very special situation when deciding which RAM in A column should be 

used ................................................................................................................................. 52 

Figure 5-26: example of how to write bytes to “Block RAM array” (1), pipeline operation 

in stage 2 and stage 3 ...................................................................................................... 53 

Figure 5-27: example of how to write bytes to “Block RAM array” (2), pipeline operation 

in stage 2 and stage 3 ...................................................................................................... 53 

Figure 5-28: interface signals of “Memory output controller” ....................................... 55 

Figure 5-29: meaning of signal “filter_posisition”. Data inside yellow square are sending 

to sorting network in current clock cycle ....................................................................... 55 

Figure 5-30: determine value of “rd_add_a” and “rd_add_b” ....................................... 56 

Figure 5-31: relationship between data provided by “Block RAM array” and required new 

data ................................................................................................................................. 56 

Figure 5-32: example about how to extract required data from ROW1 in correct sequence 

(1) ................................................................................................................................... 57 



12 

Figure 5-33: example about how to extract required data from ROW1 in correct sequence 

(2) ................................................................................................................................... 57 

Figure 5-34: example of how to get output data to sorting network .............................. 58 

Figure 5-35: “DATA receive BUFFER controller” interface ........................................ 59 

Figure 5-36: relationship of important signals in “DATA receive BUFFER controller”60 

Figure 5-37: real implementation structure of Figure 2-8 in FPGA ............................... 61 

Figure 5-38: required resource for sorting networks (A) using Figure 2-8 diagram (B) 

using Figure 2-7 diagram ................................................................................................ 62 

Figure 5-39: basic structure and interface of DATA output FIFO ................................. 63 

Figure 5-40: diagram of “FIFO array” ........................................................................... 63 

Figure 6-1: Digital Image Filter IP resource usage in PL side ....................................... 64 

Figure 6-2: entire system resource usage in PL side ...................................................... 64 

Figure 6-3: Linux-C program in PS side ........................................................................ 65 

Figure 6-4: (a) original image with low density salt-and-pepper noise [29] (b) image 

filtering result ................................................................................................................. 66 

Figure 6-5: (a) original image with many types of noise [30] (b) image filtering result 66 

Figure 6-6: (a) original image with high density salt-and-pepper noise [31] (b) result after 

the first time median filtering (c) result after the second time median filtering (d) result 

after the third time median filtering ................................................................................ 67 

Figure 6-7: using system ILA IP to monitor input and output of “Digital image filter” 68 

Figure 6-8: triggering result during hardware debugging .............................................. 68 

Figure 6-9: Clock cycles consumption calculation diagram .......................................... 69 



13 

List of tables 

Table 6-1: calculation result for some different size of images ..................................... 69 



14 

 

1 Introduction 

1.1 Task definition  

The task is based on Xilinx ZYNQ SOC, to complete a hardware image filtering system. Using 

hardware median filter to eliminate image salt-and-pepper noise without CPU involvement. 

Besides, it needs to provide user interface and Linux commands for sending original image and 

receiving the result.  

1.2 Scope 

This design is done in Xilinx ZC702 evaluation board, which carries Xilinx XC7Z020 SOC.  

Figure 1-1 shows the basic structure of this system. It is divided into Processing System (PS) 

side and Programmable Logic (PL) side.  

PS side is responsible for the communication between the device with PC via LAN or UART, 

transmit and receive image data via DMA channel. There are two ARM Cortex-A9 CPUs in 

PS side, as well as Ethernet and USB interface, and 1GB DDR3 memory. Linux OS will be 

used in PS side.  

In PL side, AXI DMA IP is Xilinx official IP core, for receiving and transmitting data with 

DMA channel. The main task in PL side is to create a new IP core named “Digital Image Filter”, 

fulfil the function of hardware image median filter.  

Data transfer between PS and PL side is through AXI Interface. AXI GP is responsible for low 

speed data transfer. In this design, AXI GP transfers information between CPU and AXI DMA 

IP core, to set up some basic property of DMA channel. AXI HP performs high speed data 

transfer. AXI DMA IP core can get image data directly from DDR memory by AXI HP and 

provide them to Digital Image Filter. Similarly, AXI DMA IP core can send back image data 

directly to DDR memory via AXI HP from Digital Image Filter. 
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Design in PS side is easier, because many works have been done by others already. Xilinx also 

provide many useful reference designs. PL side is more difficult, as a total new IP core need to 

be created, and configuration and device tree writing of AXI DMA IP core have to consider 

the compatibility with PS side. 

 

Figure 1-1: overview diagram of final system 

1.3 Task Requirements 

Excepting for the basic image filtering function, this system is also required to run in high 

speed, easy-to-use, stable and reliable. So, the following requirements should be achieved: 

1) User interface convenience 

To let users can control the system. Users should be allowed to access the device via 

UART or LAN. Users should be able to copy original image from PC to device’s ROM 

conveniently. One commends line should be enough to send an original image to DMA 

channel and receive the result. 

2) Internal data communication compatibility 

DMA channels configuration must be compatible with PS side and PL side. “Digital 

image filter” IP input and output interface should be compatible with AXI4 interface 

protocol, must be able to communicate with “AXI DMA” IP correctly and effectively.  
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3) Image filtering requirement   

System should implement the same function as a standard median filter with 3x3 

window. 

4) System speed requirement 

DMA channel data transmission and receiving should be able to run in full speed. DMA 

channel should not stop during data transmission and receiving without any special 

situation, as channel stop too frequently will influent speed. 

5) System stability and reliability  

System should be stable and reliable enough. Such as, start-up procedure should not 

have any error, DMA channel driver should be installed correctly, image filtering 

program can be done for many times correctly without rebooting the system.  

1.4 Thesis Outline 

Chapter 2 introduces the background of median filter and sorting network, compares different 

implementation methods in different platform and introduce some resource, theories and tools 

that will be useful for the task. 

Chapter 3 analyses the hardware diagram structure in PL side and shows how to step-by-step 

finish such diagram in Vivado. 

Chapter 4 explains all necessary files for PS side and how to compile them. Those files help 

PS side to get hardware information and run Linux OS properly. It also introduces useful 

Linux-C drivers and examples for using DMA channels. 

Chapter 5 is the main part of this design. It analyses every part of “Digital Image Filter” IP, 

lists their functions and problems. And it explains some details about their implementation 

methods. 

If everything from Chapter 3 to 5 is done, the SOC device should be able to run properly. 

Chapter 6 shows PL side implementation result, provides a method of doing experiment, shows 

and analyse the experiment result. 

Chapter 7 summarize this task and provides possible work for the future. 
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2 Background 

2.1  Median filter 

Nowadays, image or video collecting device, such as Camera, has been used more and more 

widely. But due to the imperfections of image sensors, faulty memory locations in hardware, 

or errors in the data transmission, images are often corrupted by noise. The impulse noise is 

the most frequently referred type of noise[1]. For removing distracting and useless information 

from the image and make it more recognizable, image must pass through a stage of image 

preprocessing[3].  Comparing with linear filters, nonlinear filter has ability to preserve edges 

and suppress the noise without loss of details[1]. Median filter, which is a well-known and 

widely used nonlinear filter, is very effective for eliminating salt-and-pepper noise[2].  

However, most of embedded system’s calculation ability and hardware resource is very limited, 

while median filter requires a huge amount of calculation. This conflict makes median filter 

become a very difficult choice. Finding out an effective and practical solution for doing median 

filtering will let median filter become available in many resource-limited real-time systems. 

Figure 2-1 is an example of how a kind of impulse noise looks like from an intensified digital 

imager. Observing the brightness value table, two especial large values are no real. They are 

impulse noise and influencing the quality of the image. As the brightness value of the pixel 

with impulse noise always especial large or small. Using the median value will be able to avoid 

them. 

Figure 2-2 is the application principle of a 3x3 median filter (or window), which centre an 

image pixel. This model will be applied to each pixel of the image and replace the pixel value 

by the median value of its neighbours, like the procedure shown in Figure 2-3.  

Size of median filter window is not fixed. Both Figure 2-2 and Figure 2-3 show 3x3 size 

window. Bigger size windows, such as 5x5, 10x10, are also very popular. The most suitable 

window size depends on the density and size of noise. 
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Figure 2-1: Example of scintillation noise from an intensified digital imager [4] 

 

Figure 2-2: Application of the median filter [3] 

 

Figure 2-3: illustration about how median value replace the original pixel value. 
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2.2 median filter implementation methods comparison  

Figure 2-4 is two software implementation method for finding out the median value amount 9 

input values. Function CS (a, b) assigns the lower input value to din[a] and higher input value 

to din[b]. [9] 

Figure 2-4(a) is a kind of standard sorting network solution (Batcher’s odd-even merge sorting 

[9]) with 22 operations, while Figure 2-4(b) is an optimized method of Figure 2-4(a). They 

fulfill the same function as Figure 2-2. 

Figure 2-4 implies that using CPU platform and software method for median filtering is a very 

time-consuming task. The output of Figure 2-4 is only one pixel of an image. Even for a median 

size image, CS (a, b) operation may need to be repeated more than millions of times, especially 

for a color image. 

 

Figure 2-4: two software methods for returning the median value from 9 inputs. [9] 

Even nowadays, there are many new improvements of standard median filter have been put 

forward, like [10] and [11], their time consuming still very high, and no significant 

improvement in de-noising ability.  

Time consumption of GPU can be much lower than CPU, as GPU is able to create a lot of 

threads for calculation task. Like the experiment result in [12], for a 10242-size image, 

procedure time will be as lower as 0.2ms. But high efficiency requires high resource 

(calculation resource, memory, etc.) and power consumption. For imbedded system, FPGA-

based implementation will be more practical. More details about the different between the 

performance of FPGA and GPU in this topic can refer to [13]. 
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There are two approach for FPGA to implement a standard median filtering function[16].  The 

first method is provided by Smith[15],  which is a Xilinx’s reference implementation. It 

provides a median filter for nine input pixels. And it is possible to be extended to 25 or more 

input pixels. If the purpose of design is to minimize FPGA implementation area, [15] is a very 

suitable solution. But the delay of accepting input value not suitable for pipeline operation.  

Another approach is based on sorting networks. Sorting network is a new kind of method and 

very suitable for FPGA-based median filter, as it can be designed and optimized with the aim 

of reducing the number of comparators or delay[16]. Without any delay for input data is the 

main point of this design. Based on this principle, Comparators quantity and implementation 

area should be minimized as well. Figure 2-8 and Figure 2-9 shows the basic idea of finding 

out the median value by sorting network, Figure 5-37 is the real implementation method in 

FPGA. More details, please refer to section 2.4 and section 5.4. 

Using pipeline operation, one sorting network in FPGA can work out one median value in 

every clock cycle, very low time consumption. Besides, FPGA will occupy very few resources, 

and it is able to release CPU resource, let CPU is free do other work. 

2.3 BMP file format 

2.3.1 Basic information about BMP file format 

BMP format is a kind of image storage format without any compression. So. BMP format is 

very suitable for this design. This system only accepts BMP format image. 

Figure 2-5 is an example of a 24-bit color 6x6 BMP image file.  

A BMP format image starts with “BMP header”. The size of header is indicated by byte 0E to 

11. The value of those bytes in Figure 2-5 is 00000028h, which means the size of header is 40. 

BMP header describes all basic information about this image, such as width, height, etc.  

After BMP header are values for image pixels. Every 24-bits, or 3 bytes, define one pixel. As 

every pixel combined by Red, Green and Blue three color, each byte indicates the value of one 

of those color. 
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Figure 2-5: example of how a 24-bit color 6x6 BMP image file’s data look like [27] 

2.3.2 Row size 

As for Windows OS, the minimum scanning unit is 4 bytes. For increasing the speed of 

acquiring data, ROW size of BMP image should be able to be divided by 4 bytes. So, each row 

ends with 0 to 3 extra bytes, so that each row contains a multiple of four bytes.[28] The total 

number of bytes necessary to store one row of pixels can be calculated as: 

ROW size = 4 ∗ ⌈
𝐵𝑖𝑡𝑠𝑃𝑒𝑟𝑃𝑖𝑥𝑒𝑙 ∗ 𝐼𝑚𝑎𝑔𝑒𝑊𝑖𝑑𝑡ℎ

32
⌉ (𝑏𝑦𝑡𝑒𝑠)  

That’s why in Figure 2-5, there are two padding bytes in the end of every row. 

2.4 Sorting Network 

The task of “sorting network” in this design is to find out the median value amount 9 input data. 

Figure 2-6, Figure 2-7 and Figure 2-8 are implementation ideas for FPGA provided by [3]. 
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Three of them are suitable for pipeline operation without any delay from accepting input data. 

Figure 2-9 is the diagram of basic node in Figure 2-6, Figure 2-7 and Figure 2-8. The function 

of basic node is very simple, it is an 8-bit comparator. A, B is two input data, if A > B, then the 

output higher <= A, lower <= B. If B > A, then higher <= B, lower <= A.  

Figure 2-6 is a kind of classic method and require 41 basic nodes. Figure 2-7 is an optimized 

solution, 27 basic nodes are required. But if look closer to Figure 2-7, 4 basic nodes are actually 

not necessary, because this design just require the median value. So, Figure 2-7 is a very good 

design.  

Figure 2-8 is another area saving design, which just require 19 basic nodes. 

 

Figure 2-6: Classic sorting network for sorting 9 pixels [3] 

 

Figure 2-7: Optimized sorting network [3] 
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Figure 2-8: Sorting network circuit with 19 basic nodes [3] 

 

Figure 2-9: Scheme for each basic node [3] 

2.5 Useful resource  

2.5.1 Xilinx ZYNQ 7000 SOC 

The Zynq®-7000 family is based on the Xilinx® SoC architecture. These products integrate a 

feature-rich dual or single-core ARM® Cortex™-A9 MPCore™ based processing system (PS) 

and Xilinx programmable logic (PL) in a single device. [8]  

2.5.2 Linux Kernel and Linux file system  

Linux Kernel and its file system are free and open source. Xilinx provides modified Linux 

Kernel which suitable for ZYNQ device, as well as its corresponding Ubuntu and Debian file 

system.  
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2.5.3 Necessary IP cores provided by Xilinx 

Many useful IP cores are provided by Xilinx, such as AXI DMA IP, which provides DMA 

channels for the communication between PL side and DDR RAM. Those IP cores support at 

least 100Mhz clock frequency, it makes sure this system can run in high speed. 
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3 Hardware diagram design 

3.1 Overview 

For fulfilling the final task step by step, it is a good idea to replace the “Digital Image Filter” 

model in Figure 1-1 into “AXI-STREAM DATA FIFO” IP code, which is provided by Xilinx. 

The diagram will become Figure 3-1. In this case, PS side will transmit a stream data toward 

DMA channel. “AXI DMA” IP will receive those data correctly and provide them to “AXI-

STREAM DATA FIFO” IP. FIFO will transfer same data back to “AXI DMA” IP. In the end 

of procedure, same data will return to PS side. 

If PS side can receive data totally the same as the data it sent, it will mean DMA channel can 

run properly. Figure 3-2 is the brief diagram. 

 

Figure 3-1: diagram of replacing the “Digital Image Filter” IP in Figure 1-1 
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3.2 Required IP cores 

For fulfilling this system, first of all, need to create a diagram in Vivado. And add the first IP 

name “ZYNQ7 Processing System”. This IP core acts as a logic connection between PS side 

and PL side while assisting users to integrate custom and embedded IP cores with the 

processing system using the Vivado® Design Suite [17]. General speaking, “ZYNQ7 

Processing System” can be considered as PS side. The setting of this IP can also be considered 

as the setting for PS side. 

Click “Run Block Automation” to generate necessary port for “ZYNQ7 Processing System” 

automatically. 

 

Figure 3-2: brief diagram of Figure 3-1 [14] 

The second IP core is “AXI Direct Memory Access”, or “AXI DMA” IP. It provides high-

bandwidth direct memory access between memory and AXI4-Stream target peripherals [18].  

And the third IP is “AXI4-Stream Data FIFO”. It is a data FIFO with AXI4-stream interface 

[19]. 

The last one is “concat”, it is used for combining separated signal lines into one[20]. In this 

design, it combines two interrupts output lines (one line for transmission and another one for 

receiving) from “AXI DMA” IP. 
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3.3 IP cores configuration 

There are several settings need to be done for those IPs. For “ZYNQ7 Processing System”, 

settings are listed as following: 

1) In “PS-PL” Configuration, “S AXI HP0 interface” need to be selected. 

2) In “Clock Configuration”, “requested frequency” of FCLK_CLK0 is 100MHz, it is the 

minimum clock frequency for “AXI DMA” IP. 

3) Check “Fabric Interrupts” and “IRQ_F2P[15:0]” under “Interrupts”. 

In “AXI Direct Memory Access”, settings are as following: 

1) Make sure “Enable Scatter Gather Engine” is checked, it will reduce CPU intervention 

during data transmission. Useful for transmitting bigger size file. 

2) Uncheck the “Enable Control/Status Stream” 

3) Modify the value of “width of Buffer Length Register” into the maximum value, 26. 

To avoid mistake occur when transferring very big file. 

Default configuration of “AXI4-Stream Data FIFO” and “concat” is OK. 

3.4 Signal lines connection 

In “ZYNQ7 Processing System” PL clock output port “FCLK_CLK0” should connect with 

“M_AXI_GP0_ACLK” and “S_AXI_HP0_ACLK”. 

Then master port “M_AXIS_MM2S” in “AXI DMA” IP should connect with slave port of 

“AXI4_Stream Data FIFO” IP, named “S_AXIS”. While master port “M_AXIS” in 

“AXI4_Stream Data FIFO” connect to “S_AXIS_S2MM” in “AXI DMA” IP. 

For “concat” IP, its “In0” connect to “mm2s_introut” in “AXI DMA” IP, “In1” connect to 

“s2mm_introut” in “AXI DMA” IP. “dout” connect to “IRQ_F2P” in “ZYNQ7 Processing 

System”. 

Click “Run Connection Automation”, let vivado generate other necessary IP cores and do some 

necessary connection automatically. One more thing need to be careful is, “s_axis_aresetn” in 

“AXI4_Stream Data FIFO” IP will connect to the output pin “interconnect_aresetn” of 

“Processor System Reset” IP automatically, that’s not good. Right click “s_axis_aresetn”, 
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select “disconnect pin” and connect “s_axis_aresetn” to “peripheral_aresetn” in “Processor 

System Reset” manually. Figure 3-3 shows how final connection looks like. 

 

Figure 3-3: hardware diagram in Vivado 

3.5 Other steps for finishing the diagram  

1) Right click the diagram, and “validate design”. 

2) “Generate output products” and “create HDL wrapper”. 

3) Generate Bitstream 

After all operation in this chapter, Vivado generated Bistream file, which contains the 

programming information for FPGA (PL side). 
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4 Linux OS environments and boot up files 

4.1 Overview 

The task of this chapter is to make necessary files for the Xilinx ZYNQ 7000 device, let the 

device be able to run Linux OS stable and use DMA channels to receive and transmit data.  

Almost all operations in this chapter are done in PC with Linux, because of some required tools 

are only available in Linux. I did it in Ubuntu 18.04.1 LTS, which is run in VirtualBox. 

First of all, one SD card with at least 4GB space is need. The SD card should be formatted 

similar with Figure 4-1.  

 

Figure 4-1: format method for SD card 

In Figure 4-1, the first volume is in FAT format, 2GB is much enough. The rest space can be 

distributed to the second volume, which is in EXT4 format. 
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FAT is used for storage three necessary files for system boot, they are: 

• BOOT.BIN (boot image, contains First Stage Boot Loader (FSBL), bitstream and u-

boot.elf) 

• devicetree.dtb (device tree) 

• uImage (Linux kernel) 

EXT4 volume is for Linux file system. 

The basic system boots up process is: first of all, bootROM (a ROM inside PS side)’s code will 

be run, and let the system get FSBL. With FSBL, system will initialize MIO, Clock, DDR, etc. 

And then, bitstream will be loaded and program for PL. u-boot will be loaded as well, it 

provides necessary codes to lead the system to get Linux Kernel and start initializing Linux 

operation system, device tree file will be executed as well.  

4.2 BOOT.BIN file 

This file contains FSBL, bitstream and u-boot. All of them are necessary for system start up. 

4.2.1 u-boot 

When the processor is powered on, the memory does not contain an operating system, so 

special software is needed to bring the OS into memory from the media on which it resides. 

This software is normally a small piece of code called the bootloader.[21] 

u-boot is an open source bootloader that is frequently used in the Linux community, and used 

by Xilinx for the MicroBlaze™ processor and the Zynq-7000 AP SoC processor for Linux.[21] 

Xilinx provides its u-boot source file for free in https://github.com/Xilinx/u-boot-xlnx 

Just download the source files and make them, “u-boot” file will be generated. 

4.2.2 FSBL file generation 

After all operations in Chapter 3, hardware’s bitstream already generated. Export Hardware in 

“file” -> “Export”, check “include bitstream”. And then, launch SDK, SDK will load and create 

necessary files automatically. 

https://github.com/Xilinx/u-boot-xlnx
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In SDK window, create an application project by “Zynq FSBL” template, FSBL file will be 

generated by SDK. 

4.2.3 Combine FSBL, bitstream and u-boot into BOOT.BIN 

“Create Boot Image” tool is provided by SDK under “Xilinx” tab. Setup correct output paths. 

Then, choose all necessary files under “Boot image partitions”. The order of files is: 1. 

FSBL.elf (Partition type: bootloader). 2. **.bit (bitstream, Partition type: datafile) 3. u-boot.elf 

(Partition type: datafile). [22] Finally, “Boot image partitions” will look like Figure 4-2. Click 

“Create Image”, BOOT.BIN will be generated. 

 

Figure 4-2:correct order and property of “Boot image partitions”[22] 

4.3 Device tree 

Device tree is a data structure describing the information about non-discoverable hardware 

components.[23] Those components may include Memory, peripherals, etc.  

In this design, the main point of device tree is the structure of DMA channels. 

The Linux device tree generator for the Xilinx SDK is provided by Xilinx and can be found in: 

https://github.com/Xilinx/device-tree-xlnx 

Using this generator will save much time. Download the device tree generator and use the 

following way to add it into the repositories in SDK: 

“Xilinx” -> “repositories” -> “New” in “Local Repositories” -> choose the position of device 

tree generator -> OK 

Next, use “board support package” in “File”-> “New”, and choose “device_tree”, and finish. 

A folder named “device_tree_bsp_0” will be generated. It contains all necessary files for 

generating device tree. But some modification needs to be made for them. 

https://github.com/Xilinx/device-tree-xlnx
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First of all, in “system-top.dts”, property of “bootargs” should be changed as: 

bootargs = "console=ttyPS0,115200 root=/dev/mmcblk0p2 rw earlyprintk rootfstype=ext4 

rootwait devtmpfs.mount=1 cma=25M earlycon"; [24] 

above code will lead the Linux kernel boot file system from SD card 

“CMA” stands for “Contiguous Memory Allocator”, memory space for DMA.[24][25] 

And in file “pl.dtsi”, following high-lighted code in Figure 4-3 should be added, to define name, 

number and driver for AXI DMA channel: 

 

Figure 4-3: necessary device tree code for file “pl.dtsi” [24] 

And in this file, ID “xlnx,device-id” in both master and slave channel are the same, “0x0”. 

Should change one of them into “0x1”. 

After all of those modification, “dtc” tool can be used in Linux command line to generate the 

device tree file. 

4.4 Linux kernel 

Linux kernel is the base of Linux OS. Its source files for Xilinx ZYNQ can be found in 

https://github.com/Xilinx/linux-xlnx or https://gitlab.pld.ttu.ee/Karl.Janson/xilinx_linux.git 

During the kernel configuration, “Contiguous Memory Allocator” and “DMA Contiguous 

Memory Allocator” should be turned on. More details can refer to [25]. 

https://github.com/Xilinx/linux-xlnx
https://gitlab.pld.ttu.ee/Karl.Janson/xilinx_linux.git
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Make the kernel, we will get “uImage” file. 

4.5 Linux-C code driver and execution result 

After above operations, three necessary files for the FAT volume are ready. For EXT4 volume, 

Linux file system can be found in here: https://rcn-ee.com/rootfs/eewiki/minfs/ 

If SD card prepared, and Linux system can run in the device properly, then “Samba” can be 

installed to the Linux system. “Samba” will be useful for exchanging file between the device 

and windows (PC).  

Besides, using SSH to build up the connection between the device and PC is also a good idea.  

[26] provides useful DMA channel drivers and examples. Download them, compile them, and 

copy the output files to the device. 

There are two very important output files. The first one is “axidma.ko”, which is the kernel 

driver of DMA channels. So, after running the command “insmod axidma.ko”, and use “dmsg”, 

will see the result like Figure 4-4. It means both DMA channels (one for transmission, another 

for receiving) are found by driver. 

 

Figure 4-4: after installing DMA kernel driver “axidma.ko” 

Another important file is “axidma_benchmark”, it can help you to check the communication 

and speed of DMA channels. More information can be found in Figure 4-5. 

https://rcn-ee.com/rootfs/eewiki/minfs/
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Figure 4-5:running result of “axidma_benchmark” 

In Figure 4-5, both transmit and receive packages size are 7.91 Mb, received data are total 

match the transmitted data. Transfer speed are both 380.11Mb/s. In this case, I can conclude 

that the DMA channels can work properly. 

One more file named “axidma_transfer” is also very useful. Its function is to transfer a file to 

DMA channel, and receive data from DMA channel as well. It will write the received into a 

file. Figure 4-6 is an example. More usage information can be found by execute command 

“./axidma_transfer -help”.  

 

Figure 4-6: usage example of “axidma_transfer” 

In current system, the write back file will be total the same as the transmitted file. 
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5 Image filter IP implementation 

5.1 overview  

After above operations, we can make sure that both Linux OS and DMA channels are working 

properly. Next step, the “AXI-STREAM DATA FIFO” in Figure 3-1 should be changed back 

the “Digital Image Filter” IP, like Figure 1-1. 

Figure 5-1 shows the basic structure about the Digital Image Filter IP. As this IP core receives 

data from “AXI DMA” IP and needs to send data back to DMA channel through “AXI DMA” 

IP as well, Digital Image Filter IP must be compatible with AXI4-stream protocol. “AXI 

receiver” and “AXI sender” models are responsible for the compatibility. 

When DMA channel’s data arrived, “AXI receiver” will setup relevant signals and start to 

receive DMA data. Necessary DMA data will be extracted by “AXI receiver” and deliver to 

DATA input BUFFER. “AXI sender” is for transmitting the result. More details about those 

two models can be found in section 5.2. 

The task of “DATA input BUFFER” is to storage at least three lines image pixel data. And 

distribute those data to Sorting Networks. There are four same “Sorting Network” are used and 

all working in pipe line. As the DMA data width is 32-bit, which means “DATA input BUFFER” 

will receive 4 bytes data in each clock cycle during data transmission. But each image pixel 

has only 3 bytes (red, green and blue). To make sure the system can run in highest speed, one 

extra Sorting Network is used. 

Figure 5-2 shows the basic working principle about “DATA input BUFFER”. If the extra 

Sorting network has been used, then the next operation will be like Figure 5-3. After the 

operation of the third line of input image, the fourth line data of image will go to the first line 

storage place in “DATA input BUFFER”, and so on. Figure 5-4 is an example. Please refer to 

section 5.3 for more details about “DATA input BUFFER”. And section 5.4 for more details 

about sorting network. 
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The output of Sorting Networks’ data will go to an output FIFO. This FIFO will receive and 

assemble those 8-bit data, deliver them to “AXI sender” in 32-bit format. More details, please 

refer to section 5.5. 

 

Figure 5-1 basic structure about the image filter IP core 

 

Figure 5-2: working principle of “DATA input BUFFER” 



37 

 

 

Figure 5-3: “DATA input BUFFER” next operation after Figure 5-2 

 

Figure 5-4: “DATA input BUFFER” after filling the third line, the fourth line pixel data of input image will go 

to BUFFER first line 

5.2 AXI4 stream interface  

For communicating with “AXD DMA” IP, “AXI receiver” and “AXI sender” models are 

required to make this IP compatible with AXI-stream protocol. 
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5.2.1  “AXI receiver” model  

 “AXI receiver” is acted as an AXI4-stream slave, receiving data from AXI4-stream master 

(AXI DMA IP master) and deliver useful data to DATA input BUFFER. Besides, it should 

control the “tready” signal line according to the status of “DATA output FIFO”. Figure 5-5 list 

the details of all input and output signal lines relevant with “AXI receiver” model. 

Left part of interface details in Figure 5-5 corresponding to the “M_AXIS_MM2S” signal in 

Figure 1-1. An example of a whole data receiving process is shown in Figure 5-7. More details 

can refer to section 5.2.3. 

Signal lines in the right part are explained as following:  

1) “data_out” is the payload transfer to “DATA input BUFFER” in Figure 5-1.  

2) “keep_out” is similar with “tkeep”, which will be explained in section 5.2.3, but it is 

associated with “data_out”.  

3) “trans_start” indicates that the data stream transmission is started. Once it is set to ‘1’, 

it will keep its value until “tlast” is high. 

4) “trans_en” indicates that “data_out” and “keep_out” signals in this clock cycle can be 

used. 

5) “buf_full” indicates the output FIFO in Figure 5-1 “DATA output FIFO” model is full 

or not. This signal will be used for deciding the output value of “tready”. 

 

Figure 5-5: “AXI receiver” interface 

5.2.2 “AXI sender” model  

“AXI sender” is acted as an AXI4-stream master. It is responsible for transmitting data to 

AXI4-stream slave (AXI DMA IP slave) according to the data provided by “DATA output 

DMA 
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FIFO”. During the data transmission, it is necessary to consider the status of “AXI DMA” IP 

master and slave. 

Right part of Figure 5-6 is the interface details between “AXI sender” and “AXI DMA IP” 

slave, corresponding to “M_AXIS_S2MM” in Figure 1-1.  

The communication protocol between this model with AXI DMA slave is explained in section 

5.2.3. 

Signal lines in the left part are explained as following:  

1) “data_in” is the payload that ready to transfer back to DMA channel. 

2) “data_keep” is similar with “tkeep” signal which is mentioned in section 5.2.3, but it 

associates with “data_in”. 

3) “buf_pre_empty” indicates the output FIFO has only one data left. 

4) “buf_empty” indicates the output FIFO is empty. 

5) “read_en” means read enable. If it set as high, indicating “AXI sender” is reading output 

FIFO’s data, output FIFO should go to the next data in every clock cycle. 

6) “get_done_out” is a useful signal line for “DATA Output FIFO” model. When it is set 

as high, means DMA data receiving has finished. But it doesn’t mean DMA data 

transmission finish. 

7) “fifo_rd_en” indicates whether the output FIFO can be read or not.  

 

 

Figure 5-6: “AXI sender” interface 

Signal “fifo_rd_en” is different with “buf_empty”. “fifo_rd_en” may be set to ‘0’ even when 

the output FIFO is not empty. The purpose is to let “tkeep” signal’s value is always “0xF”, let 
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every byte in “tdata” can be used, except for the last clock cycle before transmission finish. So, 

“fifo_rd_en” will be set as ‘1’ when output FIFO has 4 bytes or more than 4 bytes, or when 

transmission is in the last clock cycle. 

5.2.3 AXI4 stream receiving process 

 

Figure 5-7: An example of a whole AXI4 stream receiving process 

Figure 5-7 is an example of a whole AXI4 stream receiving process. Those signal lines are 

corresponding to the left part of Figure 5-5. This process can be divided into 5 parts. 

Part 1 in Figure 5-7 is initialization stage. In this stage, signal “tready” set as high first, indicates 

that the slave device (AXI receiver) is ready to receive data.  

When DMA channel start to transmit, signal “tvalid” will be asserted high, let the process step 

into Part 2. And signals “tdata” and “tkeep” will start to change immediately. Signal “tvalid” 

set as high indicates the transfer is valid, or both “tdata” and “tkeep” are valid. 

“tdata” is the RGB image pixels data (payload) from DMA channel.  

“tkeep” signal width is depend on the width of “tdata”. More specific,  

𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 “𝑡𝑘𝑒𝑒𝑝” =
𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 "𝑡𝑑𝑎𝑡𝑎"

8
 

Width of “tdata” must able to be divided by 8, and each bit of “tkeep” associate with 1 byte in 

“tdata”. If a bit in “tkeep” is high, means the “tdata” byte which associate with the bit is a valid 

data byte, should be kept. On the contrary, if the “tkeep” bit is low, its “tdata” byte should be 

abandoned. In most of time, bits in “tkeep” are all set as ‘1’, which means “tdata” should be 

totally kept. 

Part 1 Part 2 Part 3 Part 4 Part 5 
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There is another possible situation of Part 1 and Part 2 can be found in Figure 5-8, even this 

situation has very low possible to happen. In this case, “tvalid” is asserted high earlier than 

“tready”. “tdata” and “tkeep” change together with “tvalid” assertion. But because “tready” 

still low, transmission has not started yet, “tdata” and “tkeep” keep their value until both 

“tready” and “tvalid” are high. 

 

Figure 5-8 initial stage of AXI4 stream when “tvalid” set as high earlier than signal “tready” 

Part 3 in Figure 5-7 is the situation that “tvalid” become low during transmission. “tdata” and 

“tkeep” will not change since the falling edge of “tvalid”. They will recover the data 

transmission in the rising edge of “tvalid”, if “tready” value is still ‘1’.  

And the situation in Part 4 (signal “tready” set as low during transmission) is slightly different 

with Part 3. “tdata” and “tkeep” stop changing in the next clock cycle after “tready” set low. 

And recovering transmission time also has one clock cycle gap after “tready” return to high. 

The difference between Part 3 and Part 4 is very easy to understand. Because signal “tdata”, 

“tkeep” and “tvalid” are from master side, so they all be controlled together. Slave side will 

collect their value in the next clock cycle. But “tready” is from slave, master device needs one 

clock cycle time to make reaction. 

“tlast” is used for indicating the last data of a data packet. Part 5 in Figure 5-7 is an example. 

In the same clock cycle when “tlast” set high, “tdata” and “tkeep” provide the last DMA data. 

Value ‘1’ of “tlast” will last for only one clock cycle. After this cycle, “tvalid” will be asserted 

to low, DMA transmission finish. 

One more thing need to pay attention in the last transmission cycle is, the value of “tkeep” may 

change in this clock cycle with high possibility. As most of time during transmission, every bit 

of “tkeep” is ‘1’. But DMA channel may doesn’t have so many data need to be transferred in 

the last clock cycle, some bits in “tkeep” may be ‘0’. 
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Figure 5-9: An example of a whole AXI4 stream transmission process 

Figure 5-9 is an example of a whole AXI4 stream transmission process. It is almost similar 

with Figure 5-7, except for signal “tlast” in part 5 and part 1. In this process, “tlast” is start 

from high level. When then transmission begin, it changes to low level. At the last transmission 

clock cycle, “tlast” not just keep one clock cycle high level, but change to high, and keep the 

value until the next transmission start. 

5.2.4  “AXI receiver” Simulation result 

Figure 5-10 is the simulation result when DMA data just arrive. “trans_start” and “trans_en” 

change to ‘1’ immediately when “tvalid” become high. Figure 5-12 is the end of DMA data 

receiving. “trans_start” and “trans_en” change when “tlast” set to ‘1’. During transmission, 

“tvalid” from master may change to ‘0’ for a short time. In this case, DMA transmission pause, 

but not finish, so “trans_en” will be assert to ‘0’, but “trans_start” keeps its value. Figure 5-11 

illustrate this situation. 

 

Figure 5-10: Simulation result of “AXI receiver” in startup stage  

Part 1 Part 2 Part 3 Part 4 Part 5 
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Figure 5-11: Simulation result of “AXI receiver” when “tvalid” fall during transmission 

 

Figure 5-12: Simulation result of “AXI receiver” when receiving is going to finish 

5.2.5 “AXI sender” Simulation result 

Figure 5-13, Figure 5-14 and Figure 5-15 are the simulation waveform of “AXI sender” model. 

Figure 5-13 describes how “AXI sender” start to transfer data. First of all, “read_en” set to ‘1’. 

As the output FIFO need one clock cycle to react. So, in the next clock cycle, all signals relevant 

with AXI4 interface are act the same as Figure 5-9 part 2. 

The blue part in Figure 5-14 corresponding to part 3 in Figure 5-9, and the red part is Part 5. 

“tkeep” value change only in the last clock cycle.  

Figure 5-9 part 4 is shown in Figure 5-15. 

 

Figure 5-13: Simulation result of “AXI sender” in startup stage 
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Figure 5-14: Simulation result of “AXI sender” in the end of transmission 

          

Figure 5-15: Simulation result of “AXI sender” when “tready” set to low in midway 

5.3 DATA input BUFFER implementation  

5.3.1 Implementation analyzing  

Figure 5-2, Figure 5-3 and Figure 5-4 show the function that this model needs to fulfill.  As 

memory resource in PL side is limited, “DATA input BUFFER” only storage three lines image 

pixels data. The requirements of this BUFFER are: 

1) It equips RAM that with enough space to storage at least three lines of image data. In 

this system, the maximum length of the image is 1920 pixels. Each pixel is combined 

by Red, Green and Blue, three color.  Each color occupies one-byte space. So, the 

minimum required space is: (1920 pixels) x (3 color) x (3 lines) = 17280 bytes. 

2) It has ability to receive 4-byte data every clock cycle. In this system, the DMA channel 

data width is 4 bytes. When the transmission stream begin, DMA channel will start to 

send data, 4 bytes in each clock cycle. For reaching the highest data proceeding speed, 

this model must be able to handle 4-bytes in each clock cycle, and last for long time. 

3) It has ability to provide correct R, G, B data to four sorting networks.  

4) Every clock cycle, model should be able to provide 36 bytes from RAM.  

5) RAM can read and write in the same clock. 

6) It has ability to handle “tkeep” signal, only keep useful data in RAM. 

For the requirement 1) above, as the size of RAM is not small, so using registers to assemble 

such size RAM is impossible, even this method can make a very flexible RAM.  
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It is lucky that PL side has enough “block RAM” resource, which helpful for establishing big 

size RAM system. But there is one serious problem is, none of those block RAM resources 

have multi output port. In this case, requirements 4) and 5) above will become a very difficult 

problem. What the system need is a RAM with 4-byte input and 36-byte output, or four 1-byte 

input and 9-byte output RAMs. But block RAMs are all with two R/W ports maximum. Even 

the width of port can up to 4096 bits, read port’s width cannot bigger than write port’s [6][7].  

“block RAM” resource is significant for this model. It has to be used. To solve problems 

described in above paragraph, this model should be separated into four parts. The internal 

structure of this “DATA input BUFFER” model will look like Figure 5-16. 

In Figure 5-16, block RAM array contains 6 block RAMs. And two memory controllers are 

used, one is for block RAM array’s input, another is for output. Those memory controllers are 

responsible for writing data in correct position of block RAM array and reading correct data 

from block RAM array. They will change those block RAMs into a 4-byte input and 36-byte 

output memory device. More details, please refer to section 5.3.2, section 5.3.3 and section 

5.3.4. 

5.3.2 Block RAM array 

Looking closer to Figure 5-2, Figure 5-3 and Figure 5-4, even though the BUFFER need to 

provide 36 bytes to Sorting Networks in every clock cycle, only maximum 12 bytes are new. 

The rest 24 bytes are the same as last clock cycle. This conclusion is very important, as in this 

case, block RAM array just need 12-bytes output.  

Figure 5-17 is the first solution about block RAM array. In Figure 5-17, RAM 1 is for storage 

the first-ROW data in Figure 5-2. Then, RAM 2 is the second ROW, and RAM 3 is the third 

ROW. Each clock cycle, this block RAM array can provide four new bytes from each ROW. 

Their address for writing and data for writing are connected together, writing enable bus 

(WR_EN) are separated. Because in each clock cycle, only four bytes need to write.  

Figure 5-17 solution is able to solve requirement 1), 4) and 5) in section 5.3.1. But it cannot 

handle the situation that when “tkeep” not equal to “1111” (or number of BYTEs for writing 

are not 4). It violates the requirement 6) in section 5.3.1. More specific, please refer to Figure 

5-18. 
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So, Figure 5-17 need to be improved to handle writing different quantity of BYTEs.  Figure 

5-19 is the final solution. It uses column A and column B RAMs to solve above problems. 

Figure 5-20 describes the solution. 

This Block RAM array model is done by six “block memory generator” IPs, which is provides 

by Xilinx.  

 

Figure 5-16: internal structure of “DATA input BUFFER” 
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Figure 5-17: Solution 1 of the Block RAM array 

 

Figure 5-18: problem of Figure 5-17  
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Figure 5-19: final solution of the Block RAM array 

 

Figure 5-20: how Figure 5-19 solution solve requirement 6) in section 5.3.1 

5.3.3 Memory input controller 

The position of “Memory input controller” model in Figure 5-16 shows this model is 

responsible for writing data to Block RAM array. “DATA receive BUFFER controller” 

provides BYTEs and address of each BYTE to “Memory input controller”, “Memory input 
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controller” need to figure out the position of “Block RAM array” that those BYTEs should be 

written in.  The different between the “address” value provided by “DATA receive BUFFER 

controller” and their real position in “Block RAM array” is shown in Figure 5-21. 

 Figure 5-22 list all input and output signal lines of “Memory input controller” model.  

Input signal “width” indicates how many pixels in each line of the image. After “Memory input 

controller” model get this value, it will work out three integer value: “one_width_out”, 

“two_width_out” and “three_width_out”. “one_width_out” equal to (width * 3), as each image 

pixel is combined by three bytes. “two_width_out” equal to (one_width_out * 2), used for 

working out the ending position of the second line in Figure 5-2. “three_width_out” equal to 

(one_width_out * 3), used for working out the ending position of the third line in Figure 5-2. 

Those three integer values are significant for both “Memory input controller” model and 

“DATA receive BUFFER controller” model. 

If in this clock cycle, there are some data need to be written to “Block RAM array”, “wr_en” 

will be set as ‘1’. “data_in” is the BYTEs for writing. “keep_in” indicates which BYTE should 

be written, possible values are “0000”, “0001”, “0011”, “0111”, “1111”. buf_add_1, 

buf_add_2, buf_add_3, buf_add_4 are the address value corresponding to each BYTE. 

After “Memory input controller” acquire enough data from “DATA receive BUFFER 

controller”, it will start to set its output signals to control “Block RAM array”. The following 

signals will be relevant with “Block RAM array” controlling: 

1) din_a and din_b are the data input signals of “Block RAM array”. Corresponding to 

WR_DATA_A and WR_DATA_B in Figure 5-19. Providing the BYTEs need to be 

written to RAM. 

2) wr_add_a and wr_add_b are the data writing addresses of “Block RAM array”. 

Corresponding to WR_Address_A and WR_Address_A in Figure 5-19. Indicating the 

writing position. 

3) wr_en_a_1, wr_en_a_2, wr_en_a_3, wr_en_b_1, etc. are writing enable signal to 

“Block RAM array”, Corresponding to WR_EN_a_1, WR_EN_a_2, etc. signals in 

Figure 5-19. Indicating which two RAMs are choice to write the data, as well as how 

many BYTEs should be written in the BYTE position. 
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Figure 5-21: relationship between the “Address” provided by “DATA receive BUFFER controller” and their 

real position in “Block RAM array” 

 

Figure 5-22: interface signals of “Memory input controller” 

All operations in this model have to be done in Pipeline, as after transmission begin, data are 

coming in every clock cycle.  

There are total 3 pipeline operations in this model.  
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The first operation solves which block RAM in column B should be used according to the value 

of “buf_add_1”. And get values of buf_add_obs1, buf_add_obs2, buf_add_obs3 and 

buf_add_obs4. More details can be found out in Figure 5-23 and Figure 5-24. 

 

Figure 5-23: first stage pipeline operation, work out the value of “buf_add_obs1”, and decide which RAM in B 

column should be used 

 

Figure 5-24: first stage pipeline operation, work out the values of “buf_add_obs2”, “buf_add_obs3”, 

“buf_add_obs4” 

The second pipeline operation works out which RAM in A column should be used. This task 

cannot be done in the first pipeline operation, because a very special situation, which is shown 

in Figure 5-25, may happen. In Figure 5-25, the new coming data should be storage in the last 

column B RAM and the first column A RAM, then the ROW of column A RAM is the next 

ROW of column B RAM. Except for this situation, ROW index of column A RAM is equal to 

column B RAM’s. 
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This situation is very rare. Because as mention in section 2.3.2, the bytes number of each line 

can be divided by 4. And most of time, DMA channel’s “tkeep” value is “1111”. But because 

the decision result is not hurrying to use, and in the second pipeline stage, there is another 

important operation need to be done. So, this operation is valuable to add. 

There is one more special situation is, if the last byte of each line is storage in column A RAM, 

and Figure 5-25 situation happened. This model cannot handle this situation, it is a BUG. But 

as mentioned above, this situation is very rare, and use software to limit (or change) the size of 

input image can avoid this situation perfectly. Solving this BUG can be the future work of this 

system. One idea is, forcing the last 4 bytes in each line has to storage in column B block RAM. 

 

Figure 5-25: a very special situation when deciding which RAM in A column should be used 

Another very important operation in the second pipeline operation stage is to decide 

WR_DATA_A and WR_DATA_B. and prepare enough information to decide the value of 

WR_EN_a_1, WR_EN_a_2, WR_EN_a_3, WR_EN_b_1, WR_EN_b_2, WR_EN_b_3 (those 

values will be finally decided in the third stage pipeline operation). Figure 5-26 and Figure 

5-27 are two examples about the pipeline operations in the second and third stages.  

As each block RAM address corresponding to 4 bytes data, while each “buf_add_obs” signal 

corresponding to 1 byte. So, the last two bits of “buf_add_obs1” can be used to decide the 

WR_EN signals and which byte start from.  

According to Figure 5-20 and Figure 5-21, BIT2 of “buf_add_obs1” indicates which column 

of RAM this byte belongs to. 
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Figure 5-26: example of how to write bytes to “Block RAM array” (1), pipeline operation in stage 2 and stage 3 

 

Figure 5-27: example of how to write bytes to “Block RAM array” (2), pipeline operation in stage 2 and stage 3 
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5.3.4 Memory output controller  

The task of “Memory output controller” model is to read data from “Block RAM array” and 

distribute those data to their corresponding sorting networks. 

All interface signals of this model are list in Figure 5-28. It gets control signals from “DATA 

receive BUFFER controller”, takes necessary data from “Block RAM array”, and provides data 

and “filter_en” signals to sorting networks. 

All signals from “DATA receive BUFFER controller” have 4 clock cycles delay before being 

operated. Because “Memory input controller” has three pipeline operation. The RAM also need 

1 clock cycle to storage data. This delay is for avoiding read the data before writing. 

Figure 5-29 can explains what’s the meaning of signal “filter_position”. Its value is range from 

0 to “width - 1”. It indicates what data need to be sent to sorting network. In Figure 5-29, data 

inside yellow square are sending to sorting network in current clock cycle. 

“rgb_first” in Figure 5-28 indicates which colour is the first colour for filtering. For example, 

in the situation of Figure 5-29, green is the first colour for filtering, so rgb_first = “01”. In 

Figure 5-2, red colour is the first colour for filtering, rgb_first = “00”. This signal is very 

important as the existence of extra sorting network. 

“rd_en” is read enable, tell “Memory output controller” if it can read data or not. 

r_filter_en, g_filter_en, b_filter_en and e_filter_en are telling that if the result from associated 

sorting network can be used or not. As this model has 6 pipeline operations, so all values of 

“r_filter_en, g_filter_en, b_filter_en and e_filter_en” will be delivered to r_filter_en_out, 

g_filter_en_out, b_filter_en_out and e_filter_en_out after six clock cycle. Those signals are 

required, because all sorting networks keep working, never stop until system power off. They 

won’t care the DMA transmission is started or not. 

“rd_add_a” and “rd_add_b” are reading addresses to “Block RAM array”, after one clock cycle, 

RAM will provide corresponding data, they are rd_a_1, rd_a_2, rd_a_3, rd_b_1, rd_b_2 and 

rd_b_3. 

data_r_out1…9, data_g_out1…9, data_b_out1…9 and data_e_out1…9 are data for sorting 

networks. 
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Figure 5-28: interface signals of “Memory output controller” 

 

Figure 5-29: meaning of signal “filter_posisition”. Data inside yellow square are sending to sorting network in 

current clock cycle 

There are six pipeline operations in this model to fulfill its function. 

The first pipeline operation is to work out values of “rd_add_a” and “rd_add_b”. 

“filter_position” is very similar with signal “buf_add_obs1” in Figure 5-26 and Figure 5-27. 

Similar idea of how to use “buf_add_obs1” to work out “WR_Address_A” and 

“WR_Address_B” can be applied to “filter_position”, “rd_add_a” and “rd_add_b”. More 

specific details can refer to Figure 5-30. “filter_position_4” is “filter_position” after four clock 

delay. Reason about four clock delay has been mentioned above. 

In the second pipeline stage, nothing needs to do. This stage is used to wait for “Block RAM 

array” provides memory data. 
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Figure 5-30: determine value of “rd_add_a” and “rd_add_b” 

From the third pipeline stage to the fifth pipeline stage, model need to extract necessary data 

from the output of “Block RAM array”. The “Block RAM array” provide 24 bytes, but only 

12 of them are required, it explained at section 5.3.2. Their relationship information can be 

found in Figure 5-31.  

Figure 5-32 and Figure 5-33 are two examples about how the 3rd to the 5th pipeline stage work. 

First step is using bit2 of filter_position to confirm which column RAM’s data should place in 

the front. Then, combine data from column A and column B RAM, and use filter_position bit1 

and bit0 to find out the required data is starting from which position. Step three, or stage 5, is 

to separate all required bytes, later operation will need them. 

Actually, those three steps are possible to be finished in one clock cycle. But as they work in 

pipeline, separate those steps won’t influent the speed, and easier to debug and improve.  

Figure 5-32 and Figure 5-33 are only shows the operation for ROW 1. Operations for ROW 2 

and ROW 3’s are totally the same. 

 

Figure 5-31: relationship between data provided by “Block RAM array” and required new data 
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Figure 5-32: example about how to extract required data from ROW1 in correct sequence (1) 

 

Figure 5-33: example about how to extract required data from ROW1 in correct sequence (2) 

The 6th stage of pipeline operation is very significant. Output values will be decided in this 

stage. Figure 5-34 explain this operation clearly.  
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Figure 5-34: example of how to get output data to sorting network 

Each period in Figure 5-34 lasts for one clock cycle. It just shows the operation for red color 

data. operations for Blue and green color data are the same. 

Even all sorting networks will get their input data in every clock cycle, doesn’t mean all of 

those input data’s result are useable. It depends on signals “r_filter_en, g_filter_en, b_filter_en 

and e_filter_en”. 
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5.3.5 DATA receive BUFFER controller 

“DATA receive BUFFER controller” is the main controller of “DATA input BUFFER” in 

Figure 5-1. The responsibilities of this model are to give orders to memory input/output 

controllers according to the signals from “AXI receiver” and current status; to tell memory 

controllers what they need to write and what they need read. Figure 5-35 is information about 

“DATA receive BUFFER controller” interface. 

 

Figure 5-35: “DATA receive BUFFER controller” interface 

The most significant task is to confirm the value of buf_add_1,2,3,4 and filter_position. As 

they control the writing and reading position of RAMs. Figure 5-36 show those signals 

relationship. The range of “filter_position” is from 0 to (width – 1). Its value asserts according 

to the value of “buf_add_1”.  It always smaller or equal to “buf_add_1”, (“buf_add_1” – width) 

and (“buf_add_1” – 2*width), to avoid “Memory output controller” read some meaningless 

data. r_filter_en, g_filter_en, b_filter_en and e_filter_en value also will be asserted according 

to next “buf_add_1” value. Or according to how many columns can be read. If there are at least 

4 useable columns, e_filter_en will be set as ‘1’, extra Sorting network will be used. 
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Figure 5-36: relationship of important signals in “DATA receive BUFFER controller” 

Once “buf_add_1” value has been confirmed, in the same clock, buf_add_2,3,4,5 will be 

worked out in the same clock cycle. This is for everything can be done in one clock cycle. This 

model has no pipeline operation, everything is done in one clock cycle.  

When model get data, “buf_add_1” value will get the data according to how many ‘1’ in 

“tkeep”. For example, if “tkeep” = “0111”, three ‘1’, then “buf_add_1” <= “buf_add_4”. In the 

same clock period, buf_add_2,3,4,5 will work out their new value according to current value 

of “buf_add_4”. 

Signal “Next_filter_position” is the most difficult to decide. For saving time, “filter_position” 

will get the value of “Next_filter_position” in every clock cycle. In the same clock cycle, 

“Next_filter_position” should work out its new value according to the relationship between the 

value of next “buf_add_1” and current “filter_position”. For example: 

1) If (next “buf_add_1” > “filter_position” + 3), then “Next_filter_position” <= 

“Next_filter_position” + 4, extra filter will be used. 

2) If (next “buf_add_1” = “filter_position” + 3), then “Next_filter_position” <= 

“Next_filter_position” + 3, extra filter will not be used.  

3) If (next “buf_add_1” < “filter_position” + 3), then “Next_filter_position” <= 

“Next_filter_position” (don’t change), no filter will be used.  

5.4 Sorting network model implementation  

In Section 2.4, three kinds of sorting network and their basic node’s diagram have been 

mentioned. All of them can be applied to this model. But the most suitable one should be choice. 
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Figure 2-6 requires too many comparators, can be abandoned. Figure 2-8 seems much better 

than Figure 2-7, as only 19 comparators are required. But Figure 2-8 just a very simple 

schematic, without clock synchronize. In real implementation in FPGA, 16 “8-bit register” 

should be added. Figure 5-37 is real implementation structure of Figure 2-8 in FPGA, every 

part is synchronizing with clock. Registers can make sure correct data will be send to correct 

comparators. Besides, as all sorting network will keep working since system power on, “en” 

signal is necessary to indicate the output data is usable or not. Figure 2-7 also has similar 

requirement, but only 4 “8-bit register” will be enough. For comparing those two methods, I 

implemented both methods and got resources usage information in Figure 5-38. 

According to the result of Figure 5-38, Figure 2-8 requires less look up table (LUT) resource, 

but requires LUTRAM and more FF. So, performance of Figure 2-7 and Figure 2-8 are similar. 

Considering Figure 2-8 require near 40 LUTs less than Figure 2-7, other resource requirements 

are very close, solution of Figure 2-8 has been chosen. 

 

Figure 5-37: real implementation structure of Figure 2-8 in FPGA 
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Figure 5-38: required resource for sorting networks (A) using Figure 2-8 diagram (B) using Figure 2-7 diagram 

5.5  Data output FIFO 

Data output FIFO is also an important part of this IP. Because DMA receiving channel 

communication is not always reliable. Nothing can make sure that DMA channels is able to 

always keep receiving data without any interrupt during data transmission. The main purpose 

of this FIFO is to save some output data, in case DMA channel slave is stopped.  

Figure 5-39 is basic structure of Data output FIFO and its interface. This model is divided by 

two parts, FIFO arrays and FIFO controller. FIFO array contains four FIFO models, and FIFO 

controller get data from sorting network models, provide correct data and orders to FIFO array, 

receive data from FIFO array and interact with other models. 

In Figure 5-39, when Data output FIFO is full, FIFO controller’s output signal “full” will be 

set to ‘1’ and tell “AXI receiver” to stop receiving data from DMA channels. Otherwise, FIFO 

controller will keep receiving data from four sorting networks. “(R, G, B, E) keep” signals tell 

FIFO controller that, in current clock cycle, the corresponding sorting network output data is 

usable or not. Usable data will be saved to FIFO array. 

As the quantity of usable data from sorting network is not fixed, especially data from the extra 

sorting network (many procedures may no need to use this network). But in every clock cycle, 

usable data have to be saved in one clock cycle. So, the idea is to make 4 data FIFO. Input data 

width of each FIFO is 8 bits. In this case, model will be able to read and write 0 to 4 bytes of 

data in one clock. Figure 5-40 is the diagram of “FIFO array”. It is created by Xilinx fifo 

generator IP core. Their all input and output ports are independently.  

All signals between FIFO controller and AXI sender are all explained in section 5.2.2. 

(A) (B) 
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Figure 5-39: basic structure and interface of DATA output FIFO 

 

Figure 5-40: diagram of “FIFO array” 
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6 Experiment result and analysing 

6.1 Implementation result and resource usage  

Figure 6-1 shows Digital Image Filter IP resource usage in PL side. Every type of resource 

usage is less than 10%, and overall less than 5%. Very light weight.  

And the resource usage situation of whole system is shown in Figure 6-2. About 10% of PL 

side resource is used. 

 

Figure 6-1: Digital Image Filter IP resource usage in PL side 

 

Figure 6-2: entire system resource usage in PL side 
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6.2 Image transmission and receiving in PS side 

After finishing the PL side design, PS side needs a Linux-c program to transfer necessary data 

to DMA channel, receive data from DMA channel and form those received data into a new 

image. 

 

Figure 6-3: Linux-C program in PS side 

According to the information in 2.3.1, BMP header should not be transmitted to PL side. Digital 

image filter only requires the information about image width, and Pixels data. In PS side, some 

Linux-C programming should be done. The function of the program is shown in Figure 6-3. 

As mentioned in section 4.5, there are some useful DMA communication examples already 

done by others. So Figure 6-3 function can be fulfilled by modifying those example codes.   

Example file “axidma_transfer.c” is a good choose. Some introduction about this c file can be 

found at the end of section 4.5, the introduction about “axidma_transfer”. 
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6.3 Image median filter result  

Figure 6-4 (a) is the original image with salt-and-pepper noise. After the operation of this 

system, get Figure 6-4(b), the result is very good and almost all noise is filtered.  

 

Figure 6-4: (a) original image with low density salt-and-pepper noise [29] (b) image filtering result 

 Figure 6-5(a) is an image with many different kinds of noise, not only “salt and pepper noise”. 

In this case, median filter cannot handle them. So, from the result in Figure 6-5(b), median 

filter fail to filter all types of noise. 

 

Figure 6-5: (a) original image with many types of noise [30] (b) image filtering result   

(a) (b) 

(a) (b) 



67 

 

 

Figure 6-6: (a) original image with high density salt-and-pepper noise [31] (b) result after the first time median 

filtering (c) result after the second time median filtering (d) result after the third time median filtering 

If the density of salt-and-pepper noise is too high, 3x3 median filter may be not able to filter 

all noise in one time, but such process can be done for more than once, until the noise decreases 

to acceptable low level. Figure 6-6 is an example of this procedure. 

6.4 Time consumption analysing 

For estimate the time consumption of filtering image in this system, first of all, Integrated Logic 

Analyzer (ILA) IP should be added in the diagram. ILA IP core is a logic analyser that can be 

used to monitor the internal signals of a design [32].  

As it is impossible and not practically to use a time counter to measure the exact time 

consumption of filtering an image. So, the idea is using ILA to monitor the input and output 

signal of “AXI DMA IP” core. If “tvalid”, “tready” and every bit of “tkeep” are keeping in 

value ‘1’ during the whole procedure of image filtering and data transferring, we will be able 

(a) (b) 

(c) (d) 
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to conclude that DMA channels run in full speed during this whole procedure.  Then, theoretical 

calculation result will be reliable. 

 

Figure 6-7: using system ILA IP to monitor input and output of “Digital image filter” 

 

Figure 6-8: triggering result during hardware debugging 

In the lower-left part of Figure 6-8, I setup six triggering situation. If one of them happen, all 

signal lines of AXI master and slave will be captured. In the “value” column, “F” means 

signal’s value from ‘1’ fall to ‘0’. According to the result in the upper side of Figure 6-8, ILA 

is triggered at the end of image “AXI DMA” IP Master transmission. After that, the slave 

signals still running in full speed. As the result, we can conclude that, DMA channels is running 

in full speed in the whole procedure. This experiment has been done for many different sizes 

input images, all of those experiment got same result. 

Figure 6-9 shows how to calculate the clock cycles consumption for one image filtering 

operation. Signals “M_AXIS_MM2S” and “M_AXIS_S2MM” can be found in Figure 1-1. At 

the beginning of the operation, DMA channel will transmit image pixels data to “digital image 



69 

 

filter”. When “digital image filter” acquire enough pixel’s data (two-lines- plus three- or four-

pixels data), it will start to do its pipeline operation. The pipeline operation will take 26 clock 

cycles to get the first output data. After that, every lock will work out a data (4 bytes). After 

“M_AXIS_MM2S” transmission finish, there are 26 clock cycles leave for “M_AXIS_S2MM”, 

because “Digital Image Filter” requires this time to work out the last pipeline data. 

 

Figure 6-9: Clock cycles consumption calculation diagram  

Look closer to Figure 6-9, clock cycles consumption only depends on input image size. The 

time consumption can be calculated by the frequency of clock and Clock cycles consumption. 

As every clock will handle 4 bytes data, the algorithm is: 

time =  
 
width ∗  height ∗  3 

4 + 26 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠

clock frequency
 

Clock frequency is 100Mhz. Some calculation result can be found in Table 6-1. 

Table 6-1: calculation result for some different size of images 

width height 
Clock cycle 
consumption 

Time consumption 
(ms) 

300 200 45026 0.45026 

640 480 230426 2.30426 

800 600 360026 3.60026 

1024 768 589850 5.8985 

1280 1024 983066 9.83066 

1920 1080 1555226 15.55226 
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7 conclusion and Future work 

In this work, I established a 3x3 median filtering system for image filtering. Linux OS runs 

properly in PS side. Because Xilinx ZC702 evaluation board equips all necessary hardware 

Peripheral (e.g. Ethernet interface, USB JTAG, UART, etc.), many necessary debugging 

procedures have been done. Using SSH and Samba, PC (windows) can communicate and 

interact with the device conveniently. 

According to the results in Chapter 6, the system can do 3x3 median image filtering work 

correctly. DMA channels’ communication runs smoothly and the interface of “Digital Image 

Filter” is totally compatible with AXI4-stream protocol. System’s time consumption and 

resource usage are low enough. So, I can conclude that the task is done. And the source code 

of this design can be downloaded in [34]. 

In my opinions, this system has great potential to upgrade. There are a lot of advance and useful 

improvements can be done. The following future work are possible to do: 

1) For some bigger size images with higher density salt-and-pepper noise, using bigger 

filtering window can filter more noise in one time. But big filtering window may don’t 

have good effective for the image corrupted by lower density noise. Adaptive Median 

Filter, which is mentioned in [16] is a good choose to replace the 3x3 median filter. 

Because system works in pipeline, size of filtering window won’t influent speed. 

2) There are two useful methods for increasing the speed or decreasing time consumption 

of each filtering operation. First is to increase the PL side clock frequency. But the 

maximum PL side clock frequency of this SOC device is 250Mhz. And higher clock 

frequency may influent stability. More effective and practical method is to increase 

DMA channel data width. The data width in this design is 32bit. The maximum data 

width of DMA channel is 1024 bits[18]. Using wider data width will requires more PL 

side resource, but still affordable. 

3) Applying this image filtering system for video, or even livestream is possible. Xilinx 

provides “AXI VDMA” IP core. Comparing with “AXI DMA”, “AXI VDMA” IP 

provide useful functions for video data transfer[33]. Using FPGA to do filtering task 

for video can highly decrease CPU’s burden.
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