TALLINNA TEHNIKAÜLIKOOLI TOIMETUSED PUBLICATIONS FROM THE TECHNICAL UNIVERSITY OF ESTONIAN S.S.R. AT TALLINN

Series A № 14

(September 1940)

Röntgenographische Strukturbestimmung der intermediären Phase AuPb₂

VON

GEORG METS UND HARRY TORGREN †

TALLINN

TALLINNA TEHNIKAÜLIKOOLI TOIMETUSED PUBLICATIONS FROM THE TECHNICAL UNIVERSITY OF ESTONIAN S.S.R. AT TALLINN

Series A № 14

(September 1940)

Röntgenographische Strukturbestimmung der intermediären Phase AuPb₂

VON

GEORG METS UND HARRY TORGREN †

TALLINN

Publications from the Technical University of Estonian S.S.R. at Tallinn. Series A Nr. 14 September 1940.

Tesduslik Raamatukogu eaduste Akadeen

Natsionaliseeritud K. Mattieseni trükikoda o./ü., Tartu 1940.

Zusammenfassung.

Es ist in Übereinstimmung mit den Ergebnissen von R. Vogel¹) in dem System Au-Pb auch die Verbindung AuPb₂ gefunden worden. Die Verbindung AuPb₂ hat ein tetragonales raumzentriertes Gitter, das weitgehend analog mit dem CuAl₂-Gitter ist. Die Änderung der Gitterkonstante der Phase C (AuPb₂) mit der Zusammensetzung weist auf eine merkbare Löslichkeit der Komponenten in der Verbindung hin. Die von R. Vogel vermutete, über 211° C stabile Modifikation von AuPb₂ wurde nach 117-tägigem Tempern und Abschrecken der Präparate im Eiswasser nicht erhalten. Das Vorkommen von fremden Reflexen bei den Legierungen mit hohem Pb-Gehalt, weist eventuell auf eine Verbindung mit höherem Pb-Gehalt als AuPb₂, oder auf die Stabilität der polymorphen Phase von AuPb₂ bei niedrigen Temperaturen in Legierungen mit hohem Pb-Gehalt hin.

Allgemeines.

Das System Au-Pb ist schon von A. Mathiesen²) nach seiner elektrischen Leitfähigkeit untersucht worden, wobei er vermutet hat, dass es in diesem System chemische Verbindungen geben müsste. Später benutzte E. Maey³) die Dichteangaben von A. Mathiesen und vermutete in dem System die Verbindung Au₂Pb₃. R. Vogel hatte mittels thermischer Analyse das Zustandsdiagramm des Systems Au-Pb ausgearbeitet, und die Existenz der Verbindungen Au₂Pb und AuPb₂ festgestellt, wobei die letztgenannte Phase bei 211^o C einen polymorphen Umwandlungspunkt hat.

H. Perlitz⁴) hat im Jahre 1934 goldreiche Legierungen röntgenographisch untersucht. In Übereinstimmung mit R. Vogel hat

⁴) H. Perlitz, Acta et Commentationes Univ. Tartuensis A 27 S. 11 (1934).

¹) R. Vogel, Z. anorg. Chem. Bd. 45 S. 112 (1905).

²) A. Mathiesen, Ann. Phys. Chem. Bd. 110 S. 21 u. 190 (1860).

³) E. Maey, Z. phys. Chem. Bd. 38 S. 292 (1901).

er die Verbindung Au₂Pb gefunden und die Struktur der genannten Phase bestimmt.

Die in der vorliegenden Arbeit benutzten Legierungen, ihre Zusammensetzung, Dichte und thermische Behandlung sind aus der Tabelle Nr. 1 ersichtlich. Die Legierungen Nr. 1, 4, 9, und 10, wie auch die Dichteangaben für sie stammen von H. Perlitz.

Tabelle Nr. 1.

In	der	Arbeit	penutzte	Legierungen	una inre	tnermische	Benandlung.

Nummer d. Legierung	Zusamme Ator Au	nsetzung m % Pb	Dichte	Temperungs- dauer in Tagen	Tempera- turen in ⁰ C
1 4 9 10 11 12	36,2 33,1 15,6 50,5 33,33 15,6	63,8 66,9 84,4 49,5 66,67 84,4	$13,3_1 \\ 13,1_8 \\ 12,1_6 \\ 14,3_5 \\ 13,35_3 \\ -$	$\begin{cases} 41\\ 117\\ 65\\ 41\\ 117\\ 41\\ 116\\ 15\\ \end{cases}$	$\begin{array}{c} 175-185\\ 230-240\\ 230-240\\ 175-185\\ 230-240\\ 175-185\\ 230-240\\ 250-252\\ -\end{array}$

Vorbereitung und Mikroskopieren der Legierungen.

Die Legierungen Nr. 10, 1, und 9 wurden zuerst 41 Tage lang zwischen 175° —185° C getempert. Danach wurden sie mikroskopiert¹). Bei Vergrösserungen bis 850 × erschien die Legierung Nr. 1 als homogen, die Legierung Nr. 10 mit wenigen eutektischen Flecken, und die Legierung Nr. 9 als völlig inhomogen, mit grossen eutektischen Flecken. Die Bruchflächen zeigten bei Vergrösserungen ca. 50 × einen schwammartigen Bau. Auch bei grösseren Vergrösserungen konnte man keinen kristallinen Bau bemerken. Man konnte also nicht einige makroskopische Kristalle für Schichtlinienoder Laueaufnahmen zu erhalten hoffen. Es blieb deswegen nur übrig, das Pulververfahren anzuwenden. Für die Pulveraufnahmen wurden von jeder Legierung etwas Feilspäne mit einer reinen, feinen Feile gefeilt, dann etwa 10 min. lang im Vakuum bei 180° C

 ¹) Das Mikroskopieren wurde in dem metallographischen Lab. des Staatlichen Materialprüfamtes durchgeführt. Die Autoren danken Prof.
 O. Maddisson für Überlassung der notwendigen Apparaturen und Hilfsmitteln.

geglüht, um die beim feilen entstandenen Gitterdeformationen in den Pulverkörnern zu vermeiden.

Um die von R. Vogel vermutete, über 211° C stabile polymorphe Phase zu erhalten, wurden die Legierungen Nr. 1, 4, 9, und 10 zu Pulver gefeilt und dann im Vakuum zwischen 230°—240° C getempert. Danach wurden die Präparate im Eiswasser abgeschreckt. Man muss bemerken, dass die Legierung Nr. 9 bei den letztgenannten Temperaturen flüssig war, nach dem Abschrecken hatten wir deshalb diese Legierung in Barren da, man musste sie noch zu Pulver feilen und dann ausglühen. Bei dieser letzten Behandlung konnte die gesuchte polymorphe Phase sich umwandeln. Alle übrigen Präparate befanden sich in Pulverform und man konnte in ihnen die gesuchte Modifikation vorzufinden hoffen.

Pulveraufnahmen.

Alle Aufnahmen sind mit Cu-K Strahlung gemacht. Es hat sich herausgestellt, dass die Legierungen mit höherem Bleigehalt unter Einwirkung der Röntgenstrahlen in der Luft ziemlich stark oxydieren. Deswegen wurde das Metallpulver in Lindemannglasröhrchen eingeschlossen und exponiert. Der innere Durchmesser der Röhrchen betrug ca. 0,3—0,4 mm, die Wandstärke ca. 0,03 mm.

Die von solchen Präparaten erhaltenen Filme haben einen viel schwächeren Untergrund und schärfere Reflexe, als die Filme, bei deren Exposition das Metallpulver auf ein Glasstäbchen aufgeklebt war.

Die nach der zweiten Temperung erhaltenen Filme (wo man eine über 211^o C stabile polymorphe Phase erwartete) weisen gar keinen Unterschied in der Zahl, Lage und Intensitätsverlauf der Reflexe gegen die früher (nach der ersten Temperung) erhaltenen Filme auf. Das heisst, auf solche Weise konnte man keine polymorphe Phase erhalten. Der negative Ausfall des Versuches berechtigt uns jedoch nicht zur Behauptung, dass die Phase gar nicht existiert.

Die erhaltenen Filme brachten zwei unerwartete Tatsachen hervor: erstens, in der Legierung Nr. 1 ist ausser der Phase C (AuPb₂), auch die Phase D (Pb) vorhanden. Diese Tatsache ist deshalb unerwartet, weil in dieser Legierung für die Verbindung AuPb₂ ein Überschuss von Au vorhanden ist; zweitens findet man auf dem Film der Legierung Nr. 9 unbekannte Reflexe. Die

Gründe dieser beiden Erscheinungen waren genauer zu untersuchen. Man könnte zuerst glauben, dass 1) die Zusammensetzung der Legierung Nr. 1 nicht der angegebenen Formel entsprach und 2) dass in der Legierung Nr. 9 Verunreinigungen vorhanden waren. Da von den genannten Legierungen noch ganz wenig vorhanden war, wollte man sie nicht zu einer Analyse verbrauchen.

Es wurde ein Stück technischen Goldes im Laboratorium möglichst gut gereinigt. Reines Blei wurde aus Kahlbaum'schem Bleizucker pro Analyse durch Glühen erzeugt. Aus diesen Metallen wurden die Legierungen Nr. 11 (Au_{38,88}Pb_{66,67}) und Nr. 12 (Au_{15,6}Pb_{84,4}) hergestellt. Das Zusammenschmelzen geschah in evakuierten Retorten aus reinem durchsichtigem Quarz. Im elektrischen Ofen wurden die Legierungen eine halbe Stunde lang bei 1100° C gehalten und dann langsam abgekühlt. Auch von diesen Legierungen konnte man keine Einkristalle bekommen. Die Feilspäne von der Legierung Nr. 11 wurden 15 Tage lang bei 250° C getempert und dann langsam abgekühlt. Die Legierung Nr. 12 wurde nicht getempert. Von der Legierung Nr. 11 sind zwei Filme gemacht worden, die die Gitterkonstanten mit grösserer Genauigkeit zu bestimmen erlaubten. Der eine Film wurde in einer Kamera mit r = 62,5 mm, exponiert $35^{h}00^{m}$, Spalt 1 mm Ø und 110 mm Länge, der zweite in einer Kamera r = 32 mm, exponiert 78^h00^m, Spalt 0,5 mm Ø und 40 mm Länge, erhalten. In beiden Fällen war das Präparat 0,3 mm Ø. Die beiden Filme geben ganz übereinstimmende Resultate.

Alle Filme wurden in die Kameras so eingeführt, dass die Filmenden sich bei $\theta = 45^{\circ}$ trafen. Das ermöglicht bei jeder Messung die Filmlänge genau zu bestimmen. Die ersten Filme wurden folgendermassen gemessen: die Linienmitten wurden mit feinen Nadelstichen vermerkt und durch Anlegen eines Glasmassstabes, das eine 0,5 mm Teilung trug, gemessen. Die zehntel mm wurden geschätzt. Grössere Genauigkeit konnte man wegen der breiten und diffusen Reflexe nicht erhalten. Auf den zwei letzten Filmen, deren Messergebnisse in den Tabellen 2 und 3 gegeben sind, wurden die Lagen der Intensitätsmaxima auf einer Teilmaschine mittels eines Mikroskops, das eine Vergrösserung von ca. $4 \times$ hatte, auf 0,01 mm genau gemessen.

Den kleineren Film von der Legierung Nr. 11 sieht man in Abb. 1. Messergebnisse dieses Films sind in der Tabelle Nr. 2 gegeben. 5 10 15 20 25 30 35 40 45 50 55 60 Abb. 1. 7

In den Spalten der Tabelle stehen der Reihenach: 1) die Folgenummer der Reflexe, 2) die Sinusquadrate der Reflexionswinkel multipliziert mit 10⁵, 3) die Phase zu der der Reflex gehört $(B = Au_2Pb, C = AuPb_2, D = Pb)$ 4) der Wert der entsprechenden quadratischen Form, 5) die Miller'schen Indices der Reflexe, 6) der Wert des Kontrollfaktors $\frac{\sin \theta_{hkl}}{Q^2_{hkl}}$, 7) die theoretisch berechnete relative Intensität für die vorhandenen Reflexe der Phase B: I'_t. 8) die theoretisch berechnete relative Intensität der Reflexe für die Phase C: I''_t 9) die geschätzte Intensität der Reflexe: bst besonders stark, sst — sehr stark, st — stark, m — mässig, sw schwach, ssw — sehr schwach, 9) die Röntgenlinie des Cu-K-Spektrums.

Weiter findet man in der Tabelle Nr. 3 die Messergebnisse des Films von der Legierung Nr. 12. Einen Ausschnitt von demselben Film sieht man in der Abbildung Nr. 2.

Ergebnisse und Folgerungen.

Das Indicieren der Filme wurde Anfangs mit Hilfe der Photoabzügen von Hull-Davey'schen Nomogrammen, die in General Electric Review 1922 Vol. XXV S. 571 ff. erschienen sind, durchgeführt. Später wurden die Reflexe mit höheren Indices rechnerisch indiciert. Die Reflexe von der Phase C lassen sich wiederspruchsfrei indicieren nur unter Annahme eines tetragonalen raumzentrierten Gitters.

Der Film von der Legierung Nr. 10 ergibt für die Phase B (Au₂Pb) in guter Übereinstimmung mit dem Ergebnis von H. Perlitz ein kubisch flächenzentriertes Gitter mit

 $a = (7,897 \pm 0,007)$ Å

Tabelle Nr. 2.

Gesamtlänge des Films 199,41 mm für $4\Theta = 360^{\circ}$.

Nr.	${{{\rm Sin}^2\Theta}\over{{ m x10^5}}}$	Phase	Q^2	HKL	$rac{\mathrm{Sin}^2\Theta}{\mathrm{Q}^2}\mathrm{x}10^5$	Í	$I_t^{''}$	I _e	Strah- lung	Bemer- kungen
_	_	С	2,00	110	apa <u>n</u> e el		23,0	_	inte dans	
_		C	2,68	101	1 × 0 - 1 × 0		0,0			and the second
-	-	С	4,00	200	-		1,5	-		S. A. S. S.
1	6126	С	6,68	211	-		-	SSW .	β	
2	7469	С	6,68	211	1115		449, }	bst	$\alpha_1 \pm \alpha_2$	
2	7469	С	6,73	002	1110		26,01			and the Vi
3	8942	С	8,00	220	1118		63,0	SSW	$\alpha_1 + \alpha_2$	
4	9755	С	8,73	112	1117		171,	st	$\alpha_1 + \alpha_2$	
5	10503	В	11,00	311	955	251	stateda	SW	$\alpha_1 + \alpha_2$	
6	11165	C	10,00	310	1116		254,	st	$\alpha_1 + \alpha_2$	
-	-	C	10,68	301			0,0		and the second	
1	11957	C	10,73	022	1114		183,	st	$\alpha_1 + \alpha_2$	
-		C	14,68	321			5,2	-	THERE	
	17000	C	14,73	222			15,0		-	
0	17000	C	18,65	411			- 1	SSW	β	
-		C	10,00	400	A STATE STATE		2,1		iging/max.	
0	18200	C	10,14	105	and the second		0,0		0	
J.	10290	C	16 73	215			0.8	SSW	P	
10	10548	D	8.00	220	2443		0,0	COW	a La	
	10010	C	18.00	330			15.0	22.00	$a_1 + a_2$	
11	20766	C	18.68	411	1112		95.0	m	$\alpha_1 \pm \alpha_2$	
12	22360	C	20.00	420	1118		61.0)		~1 / ~2	
12	22360	C	20.14	213	1110		125.	sst	$\alpha_1 + \alpha_2$	
10	05050	D		(115	0.95	100				
13	29298	В	27,00	1333	930	100	-1	m	$\alpha \perp \alpha$	
13	25258	C	22,73	402	1111		119,]	III	<i>u</i> ₁ + <i>u</i> ₂	
_		С	24,14	303	-		0,0		of a start	
14	26835	D	11,00	311	2439			sw	$\alpha_1 + \alpha_2$	
15	27430	С	24,73	332	1109		176,	st	$\alpha_1 + \alpha_2$	
-	-	С	26,00	510	-		8,5	_		
-	_	С	26,68	501	-		0,0			
-	-	С	26,68	431	<u> </u>		1,7			
-	-	С	26,73	422			6,7			
16	29180	D	12,00	222	2432		-	SSW	$\alpha_1 + \alpha_2$	
17	29711	С	26,91	004	1106		41,0	SSW	$\alpha_1 + \alpha_2$	
18	30399	В	32,00	440	950	100		SSW	$\alpha_1 + \alpha_2$	
		C	28,14	323			2,3			Seattle State
-	-	C	28,91	114			2,5	10-10	115 0.35 1	
19	34052	C	30,68	521	1110		97,0	st	$\alpha_1 + \alpha_2$	

-	Maria .										
Nr.	Sin ² Θ x10 ⁵	Phase	Q^2	HKL	$\frac{\mathrm{Sin}^2\Theta}{\mathrm{Q}^2}\mathrm{x}$	105	Ít	I _t ″	I _e	Strah- lung	Bemer- kungen
_		C	30.91	204	10,41		1	0.3		ar ball	-
20	35616	C	32.00	440	1113			25.01		10.40	1201220 000
20	35616	C	32,14	413	1108		1	49,0	sw	$\alpha_1 + \alpha_2$	120129 40
21	36352	C	32,73	512	1111			48,0	ssw	$\alpha_1 + \alpha_2$	
22	37735	C	34,00	530	1110			33,0	SSW	$\alpha_1 + \alpha_2$	
23	38701	C	34,91	224	1109			24,0	SSW	$\alpha_1 + \alpha_2$	30 87285 De
24	39894	C	36,00	600	1108			56,0	SSW	$\alpha_1 + \alpha_2$	BRIDE OL
25	40854	C	36,91	314	1107			109,	st	$\alpha_1 + \alpha_2$	and the second
-	-	C	38,68	611			1100	5,6		10.80 1	105464 14
-	-	С	38,73	442				0,1		00,03	100707 1 24
-		С	40,00	620				0,3		00246 1 2	1 1
-	-	С	40,14	503			Post.	0,0	-	1020 1 1	
-	-	С	40,14	433				1,1		1.16,48	131615184
-	-	C	40,73	532	-		12.6	3,9		100.00 - 10	
20	46181	D	19,00	331	2431			-	SSW	$\alpha_1 + \alpha_2$	1.20262 .14
41	47262	C	42,68	041	1107			49,0	m	$\alpha_1 + \alpha_2$	10022134
41	47262	C	42,73	602	1100			11,0)			0000110
_	-	C	42,91	404	-			1,4			
28	19706	D	43,05	100	9420			0,0			
28	40790	D	20,00	522	1105			70.01	m	$\alpha_1 + \alpha_2$	
	13130	C	44,14	334	1105			11,0		La contrata	Protection of the
29	51990	C	44,91	631	1113			14)	1000	1.100	The search of the
29	51990	C	46 73	622	1113			70.01			1
29	51990	C	46 91	244	1108			52.01	sst	$\alpha_1 + \alpha_2$	
29	51990	C	47.05	215	1105			52.0		20.08	Davis Pile
30	53000	B	56.00	624	946		26		SSW	$\alpha_1 + \alpha_2 + \beta$	Sv. Nr. 37
31	55763	В	59.00	731	945)		110		11/16-1	~1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	11. 38
31	55763	В	59,00	553	945)	}	113	2011	SSW	$\alpha_1 + \alpha_2$	
-	_	С	50,00	550	-			0,2	<u> </u>	on et ha	1 793390
-	-	С	50,00	710	- 6 (***)			3,5		1 24,000	1
-	-	C	50,68	701				0,0		26.81	
-	-	С	51,05	305	0.00			0,0		67,23	
-	alle nn at (С	52,00	640	0,-		1	0,9		11.81	
-	-	С	52,14	613	a. : 0. ::		1. 8	4,8		06,07 1 (199548 84
-	-	C	52,91	514				9,5		36,07 1-2	107938 04
32	58321	D	24,00	422	2430			23-2	SSW	$\alpha_1 + \alpha_2$	01238 01
33	60497	C	54,68	721	1106			31,0	SSW	$\alpha_1 + \alpha_2$	89988 08
		C	55,05	325				1,4	66	19.95 1.7	
34	62096	C	56,14	543	1106			47,0	SSW	$\alpha_1 + \alpha_2$	
30	62755	C	56,73	712	1106		1.5	70,0	m	$\alpha_1 + \alpha_2$	51 84098
35	02755	C	56,73	552	1106			14,0)		1 1 2	87135
36	64101	C	58,00	730	1105			68,0	SW	$\alpha_1 + \alpha_2$	

10 GEORG METS u. HARRY TORGREN † T. T. A 14

				6.76.24.28		a the second				a fit was the
Nr.	${{{{\rm Sin}}^2\Theta}\over{{ m x10}^5}}$	Phase	Q^2	HKL	$\frac{\mathrm{Sin}^2\Theta}{\mathrm{Q}^2} \ge 10^5$	I't	$I_t^{''}$	I _e	Strah- lung	Bemer- kungen
37	64902	C	58,73	642	1105		111,0)		India C	
38	65185	C	58,91	444	1106		37,0	sst	$\alpha_1 + \alpha_2$	187000 02
38	65185	C	59,05	325	1104		37,0		1.128-12	20 35616
-	-	C	60,14	633	1 1 (r. -		0,1	<u></u> 16	27 22.23	
-	-	C	60,55	006	0, 20		3,1		10.34	CENTE 22
39	67265	C	60,91	534	1104		55,0	SW	$\alpha_1 + \alpha_2$	012861 82
40	69134	C	62,55	116	1105		29,0	SSW	$\alpha_1 + \alpha_2$	- HORNEL - AS
-	-	C	62,68	651	_	F	6,9	-		PODIA & Ch
41	69455	C	62,91	604	1104		100,0	st	$\alpha_1 + \alpha_2$	
42	70799	B	75,00	751	944	42		SSW	$\alpha_1 + \alpha_2$	
-	-	C	64.14	800		bac	2,1			
-	71960	C	64.55	103	1106		10,0	COW	<i>.</i>	
43	11509	C	64 73	200	1100		40,0	1100	41	
-	73507	C	66 68	811	1103 7		71.0)	dates.	CARDY S.C.	DA INI NO
44	73507	C	66.68	741	1103,7		25.01	st	· α ₁	27 . 47262
44	73950	C	66.68					sw	as	25. 47202
a		C	66.91	624	_		0.7		in di la	
		C	67,05	505			0,0	10-1-01	Conta 1 1	
_		C	67,05	435	1		2,5		00.0210	NOTRUS 82
45	75181	C	68,00	820	1105,6		16,0)	CW	<i>d</i> .	BRITER BS
45	75181	C	68,14	723	1103,4		38,0)	DW	41	
a	75617	C	68,14	723			1	SSW	α2	004120 812
-		C	68,55	226	160.00		5,3		1 48,73	0000000 95
_	-	C	70,55	316			0,3		0401	(pase 1 c) - rep
-		C	70,73	802			23,0			kaum
46	78450	C	71,05	525	1104,2		89,0	m	α1	merkbar
a	78822	C	71,05	525				SSW	α_2	EGRECT LA
47	79459	C	72,00	660	1103,6		59,0	SW	α ₁	The second second
a	79839	C	72,00	660			-	SSW	α_2	
-	-	C	74,00	750	-		4,6			
-	-	C	74,08	000			2,0	- Tongo		Iroum
-		C	76 14	652	—		23,0			monkhor
10	81103	C	76 55	406	1103.8		9,9	st	α,	merkbar
40	94970	C	76.55	406			-)	50	(α,2	
40	84870	D	35.00	531	2425		_}	SW	α_1	Support se
50	85798	B	91.00	931	943	133	al and	SSW	α1	19203
_		C	76,91	554			0,8	1		1 milita
_		C	76,91	714	10. <u>44</u>		11,0		mante	000350
51	86698	C	78,55	336	1103,7		162,	sst	α1	35 165736
a	87135	C	78,55	336	10.44		0	m	α2	100300 23
		C	78,73	662			15,0			101491 86

-			1000				and have			
Nr.	${{{{\rm Sin}}^2}\Theta \over {{ m x10}^5}}$	Phase	Q^2	HKL	$\frac{\mathrm{Sin}^2\Theta}{\mathrm{Q}^2}\ge 10^5$	I,	$I_t^{''}$	I _e	Strah- lung	Bemer- kungen
	isemui	a	70.01	CAA	1 001 2		2.0	100		Pala in
-	Sones!	C	78,91	615		100	5,5	-		0.1.20.
52	88426	C	19,05	840	1105.8		.0,1 97 0)		and the summer of the summer	
52	88426	C	80,00	743	1103,5		41.0	aat		100
52	88426	C	80.14	813	1103,4		115	221	α ₁	ALVE L
2	88834	C	80.14	813	1105,4	1	110, J	m	~	807 8
-		C	80.55	426	The Content	1	7.6	·	u2	AUT 1 1
53	89136	C	80.73	752	1101 2		83.0	m	<i>N</i> .	488
a	89582	C	80.73	752				SSW	an a	860 6
54	90482	C	82.00	910	1103.4	la s	89.0	m	<i>a</i> ₂	5 669
a	90918	C	82.00	910		,	>		(00	8161 1
a	90918	B	96.00	844	946	265	_ }	SSW	$\left\{ \begin{array}{c} \alpha_1 \\ \alpha_1 \end{array} \right\}$	9011 1 T
-	_	C	82.68	901	_		0.0			1001 9
.55	91656	C	83,05	545	1103.6		106.	m	α1	2863 9
a	92095	C	83,05	545			_	SSW	as a l	1011 01
-	-	C	83,42	107	23 23.		0,0	<u> </u>	1	11 1 1888
56	93689	C	84,91	734	1103,4		355,	bst	α1	2001 11
a	94148	C	84,91	734	When -		_	st	α2	0.890 1 81
57	95527	C	86,55	516	1103,7	int -	114,	st	α1	14 12 21 21
a	95789	C	86,55	516	19		1	sw	α_2	15 2226
58	95648	C	86,68	761	1103,5		9,6)	6.08.5	C C C	16 1 2300
.58	95648	C	86,68	291	1103,5		40,0	st	α1	17 2665
.58	95648	C	86,73	842	1102,8		43,0			18 1 27,00
a	96120	C	86,73	842	. m k2		- '	SSW	α_2	19 1 2900
-	-	C	87,05	635	1798 <u>—</u>		0,5			20 314.8
.59	96391	C	87,42	217	1102,6		189,	sst	α1	1888: 1-12
60	96906	C	87,42	217	19 en -		-)		$\int \alpha_2$	32 3540
60	96906	D	40,00	620	2423		- }	m	l_{α_1}	23 3554
a	97235	D	40,00	620				SSW	α_2	0688 8 48
-	-	C	88,14	833			7,0	-		0.008 65
61	97895	C	89,73	912	1103,3	14	105,	m	α1	1004 02
a	98472	C	88,73	912	-			SSW	α_2	THER I IS
62	99233	C	90,00	930	1102,6		73,0	sw	α1	anne es
a	99544	C	90,00	930	-]	SSW	α2	100 V 1 100

	Die	Court				243		S. Marken
Nr.	Sin ² Θ x10 ⁵	Phase	Q^2	HKL	$\frac{\operatorname{Sin}^2\Theta}{Q^2} \ge 10^5$	I _e	Strah- lung	Bemer- kungen
1	5910	D	3,00	111		sw	β	
2	7052	?		-	- 1.99	SSW	$\alpha_1 + \alpha_2$	S REPRETER
3	7286	D	3,00	111	2429	last		S BURNEL R
3	7286	C	6,68	211	1090	1000	$a_1 \pm a_2$	
4	8843	?	- 2011	-	- 2,40	SSW	$\alpha_1 + \alpha_2$	10 (00 (0E) CA
5	9693	D	4,00	200	2423	}st	$\alpha_1 + \alpha_2$	D DECKE W
5	9693	C	8,73	112	1108	1	~1 ~2	1 Sha(19] 28
6	10131	?	-	-	A	SSW	$\alpha_1 + \alpha_2$	资 和1000年上
7	11000	C	10,00	310	1100	SSW	$\alpha_1 + \alpha_2$	8. 210.8.1
8	13647	?		-		SSW	$\alpha_1 + \alpha_2$	
9	15824	D	8,00	220	1 + 8,84	SSW	β	D ARALD DO
10	17013	?	- Internet	-	-	SSW	$\alpha_1 + \alpha_2$	10 06910 8
11	19382	D	8,00	220	2423	st	$\alpha_1 + \alpha_2$	the second second
12	19979	?	-144	-		SSW	$\alpha_1 + \alpha_2$	3 (05086) 80
13	20894	?	ta	_	H T A	SW	$\alpha_1 + \alpha_2$	19 81 + 19 4
14	21723	D	11,00	311	-	SW	β	19.11895919.44
15	22257	C	20,14	213	1105	SSW	$\alpha_1 + \alpha_2$	
16	23667	D	12,00	222	-	SSW	13	The fillence is the
17	26649	D	11,00	311	2423	SST	$\alpha_1 + \alpha_2$	C Stack as
18	27566	?	-		24.94	SSW	$\alpha_1 + \alpha_2$	P. C. BARRES
19	29091	D	12,00	322	2424	m	$\alpha_1 + \alpha_2$	
20	31838	?	-	1 40		SSW	$\alpha_1 + \alpha_2$	1910 - 19
21	33310	1		1-00	T 953	SSW	$\alpha_1 + \alpha_2$	
22	35464	?	-	1		SSW	$\alpha_1 + \alpha_2$	
23	35549	1	-		T	SSW	$\alpha_1 + \alpha_2$	Charles and
24	38803	D	19,00	120		SSW	p	No. 1997 18 18 18
20	39604	D	20,00	214	1008	W22	p	
20	40040	C	36,91	514	1090	SSW	$\alpha_1 + \alpha_2$	
41	42120	· ·	10.00	331	2425	st	$\alpha_1 + \alpha_2$	
20	40009	D	19,00	499	2120	SSW	$a_1 + a_2$	The second second
29	47024	D	24,00	420	2423	st	p	Contraction of the
21	51067	C	46.01	244	1106	SSW	$\alpha_1 + \alpha_2$	
20	59905	D	40,91	511	1100	SSW	$a_1 + a_2$	
32	55712	2	21,00	_		SSW	$a_1 + a_2$	
34	58150	D	24.00	422	2423	st	$\alpha_1 + \alpha_2$	
35	61773	2	11,00			SSW	$\alpha_1 + \alpha_2$	
36	63346	?			_	SSW	$\alpha_1 + \alpha_2$	
37	64285	·	58.73	642	1095	SSW	$\alpha_1 + \alpha_2$	
38	65451	D	27.00	511	2424	st	$\alpha_1 + \alpha_2$	
00	00101	D	21,00	011		50	-1 1 -2	

Tabelle Nr. 3.

Die Gesamtlänge des Films 396.20 mm für $\Theta = 360^{\circ}$.

Nr.	${{ m Sin}}^{2\Theta} \ { m x10}^{5}$	Phase	Q^2	HKL	$\frac{\mathrm{Sin}^2\Theta}{\mathrm{Q}^2}\ge 10^5$	I _e	Strah- lung	Bemer- kungen
39	68423	9	-	N. gr	1 1 2 2 2 2 2 2	COW		Mark Plane
40	69247	· D	35.00	531	lan, and the ru	W GG	$\alpha_1 + \alpha_2$	al many in the
40	69247	C	62.91	604	1101	sw	Ba ta	
41	71131	D	36.00	442		CCW	ρ	
42	77524	D	32.00	440	2423	m	p	
a	77902	D	32.00	440		SSW	<i>a</i> ₁	and and
43	79050	?		_	han n <u>e</u> dit a	SSW	<i>u</i> 2	ale . and the
44	81575	?		_	_	SSW	~~ ~~	
45	82046	?	SP <u>1</u> 11		L = m _ bres	SSW	<i>α</i> ₁	71 8
46	84783	D	35,00	531	2422.4	sst	<i>a</i> 1	
a	85232	D	35,00	531		sw	a	
47	87228	D	36,00	442	2423,0	st	(X1	and the Real of
a	87654	D	36,00	442		sw	d'a	of and the
48	88200	C	80,14	813	1105	SSW	α1	San Suran
49	89076	C	80,73	752	1102	SSW	α1	
50	90079	C	82,00	910	1099	SSW	α1	
51	91566	C	83,05	545	1102	SSW	α_1	The last
52	93337	C	84,91	734	1099	SSW	α1	hdusii sis S
53	94916	C	86,55	516	1097	SSW	α_1	
54	95887	C	87,42	217	1097	SSW	α_1	
55	96865	D	40,00	620	2421,8	sst	α1	
a	97338	D	40,00	620	I an - Distance	st	α_2	

T. T. T. A 14 Röntgenograph. Strukturbest. d. intermed, Phase AuPb₂,

Für die Phase C (AuPb₂) ein tetragonales raumzentriertes Gitter mit

$$a = (7,315 \pm 0,006)$$
 Å und $\frac{a}{2} = 1,297 \pm 0,002$, bei 20° C.

Der Film von der Legierung Nr. 1 ergibt für die Phase C ein tetragonales raumzentriertes Gitter mit:

$$a = (7,330 \pm 0,005)$$
 Å und $\frac{a}{a} = 1,298 \pm 0,002$, bei 20° C.

Der Film von der Legierung Nr. 4 ergibt für die Phase C ein tetragonales raumzentriertes Gitter mit

$$a = (7,328 \pm 0,004)$$
 Å und $\frac{a}{c} = 1,298 \pm 0,002$, bei 20° C.

Wie schon genannt, sind auf den zwei letzten Filmen auch die Reflexe von der Phase D (Pb) vorhanden. Die Gitterkonstante für die Phase D ist wegen der geringen Messgenauigkeit der schwachen und nur bei kleinen Beugungswinkeln vorkommenden Reflexe nicht errechnet worden.

Der Film von der Legierung Nr. 11 ergibt für die Phase B ein kubisch flächenzentriertes Gitter mit

$$a = (7,910 \pm 0,008)$$
 Å.

Für die Phase C ein tetragonales raumzentriertes Gitter mit

 $a = (7,319 \pm 0,001)$ Å und $\frac{a}{c} = 1,297 \pm 0,001$, bei 22° C.

Für die Phase D ein kubisch flächententriertes Gitter mit $a = (4,9393 \pm 0,0011)$ Å bei 22 C⁰.

Abb. 3. Zur Bestimmung der $\frac{a}{c}$ für die Phase C von dem Präparat Nr. 11.

Abb. 4. Extrapolationskurve der Gitterkonstante a für die Phase C von dem Präparat Nr. 11.

Abb. 6. Extrapolationskurve der Gitterkonstante für die Phase B von dem Präparat Nr. 11.

Der Film von der Legierung Nr. 12 ergibt für die Phase C ein tetragonales raumzentriertes Gitter mit:

 $a = (7,336 \pm 0,003)$ Å und $\frac{a}{a} = 1,297 \pm 0,001$, bei 22° C.

Für die Phase D ein kubisch flächenzentriertes Gitter mit

 $a = (4,9404 \pm 0,0004)$ Å, bei 22° C.

Bei Ausrechnung der Gitterkonstanten von den ersten Filmen wurde das Ausgleichungsverfahren von Cohen¹) angewandt, dagegen bei den zwei letzten Filmen die graphische Extrapolation auf $\Theta = 90^{\circ}$.

¹) M. U. Cohen, Rev. Sc. Instr. Vol. 6 S. 68 (1935) u. Vol. 7 S. 155 (1936).

Abb. 7. Extrapolationskurve der Gitterkonstante für die Phase C von dem Präparat Nr. 12.

Abb. 8. Extrapolationskurve der Gitterkonstante für die Phase D von dem Präparat Nr. 12.

In der Legierung Nr. 11 sind also ausser der Phase C noch die Phasen B und D vorhanden. Die Temperung war demnach nicht ausreichend für die Einstellung des Gleichgewichtes.

Die auf dem Film von der Legierung Nr. 12 vorhandenen schwachen fremden Reflexe können zweierlei Ursprungs sein: 1) von einer bleireicheren Verbindung als $AuPb_2$ oder 2) von der polymorphen Phase der $AuPb_2$, die eventuell in Legierungen mit höherem Bleigehalt bei niedrigen Temperaturen existieren kann-Zur Lösung dieser Frage werden die Untersuchungen weitergeführt.

Diskussion der Phase C (AuPb₂).

Die Legierung Nr. 11 kommt ihrer Zusammensetzung nach der Verbindung AuPb₂ am nächsten. Deswegen stützen wir uns bei der Diskussion der genannten Phase auf die Spektrogramme, die von der Legierung Nr. 11 erhalten wurde. Wie oben angezeigt ist haben wir von diesem Film für die Gitterkonstanten der Phase C folgende Werte bekommen:

$$a = 7,319$$
 Å und $\frac{a}{a} = 1,297$.

Mit diesen Werten bekommt man für die Zahl der Moleküle in der Elementarzelle:

$$\mathbf{Z} = \frac{\mathbf{V}_{\varrho}}{\mathbf{M}} = \frac{\mathbf{a}^3 \cdot \frac{\mathbf{C}}{\mathbf{a}} \cdot \varrho}{\mathbf{M}_{\mathrm{H}} \cdot (\mathbf{K}_{\mathrm{Au}} + 2\mathbf{K}_{\mathrm{Pb}})} = \frac{(7,319)^3 \cdot 0,7710 \cdot 13,353 \cdot 10^{-24}}{1,65 \cdot 10^{-24} \cdot (197,2 + 414,4)} = 3,99_{99}$$

wo:

 $V = a^3 \cdot \frac{c}{a}$ Volumen der Elementarzelle in cm³,

 $\varrho = 13,35_3$ makroskopisch erhaltene Dichte der Verbindung (Legierung Nr. 11),

M = Masse des Moleküls von AuPb₂ in Gramm.

Man erhält wirklich in den Genauigkeitsgrenzen der vorhandenen Daten für Z eine ganze Zahl, also Z = 4. Man muss also in die tetragonale Zelle 4 Gold und 8 Blei Atome einordnen. Aus der Statistik der vorhandenen Reflexe kann man folgende tetragonale Raumgruppen mit Sicherheit ausschliessen:

 $V_d^{5, 6, 7, 8}$ da Reflexe vorkommen wo H + K = 2p + 1 zB. 413 V_d^9 da Reflexe vorkommen wo H + L = 2p + 1 zB. 332 V_d^{10} da Reflexe vorkommen wo H + L und H + K ungerade zB. 332, 521 $D_{4h}^{19, 20}$ da Reflexe vorkommen wo H und K beide ungerade Da aber keine Reflexe vorkommen mit den Indices deren Summe H + K + L eine ungerade Zahl ist, so kann man mit Sicherheit annehmen, dass das vorhandene Gitter ein raumzentriertes Gitter ist. Die noch in Betracht kommenden Raumgruppen sind: $D_{4h}^{17, 18}$, $C_{4v}^{9, 10, 11, 12}$, $C_{4h}^{5, 6}$, $D_4^{9, 10}$, $C_4^{5, 6}$, $V_d^{11, 12}$ und S_4^2 .

Da es in allen diesen Raumgruppen sehr viel verschiedene Atomlagen gibt, und dadurch Diskussion der Intensitäten mit allen möglichen Lagen schwierig wird, muss man sich in der Wahl der Atomlagen irgendwie orientieren.

Nach James B. Friauf¹) haben die Atomlagen $D_{4h}^{18}: 4a + 8h$ (nach Ralph W. G. Wyckoff²) für die Verbindung CuAl₂ die beste Übereinstimmung der berechneten Intensitäten mit den experimentellen ergeben. Strukturen CuAl₂ und AuPb₂ gehören beide in die tetragonale Translationsgruppe und haben in der Elementarzelle 12 Atome. Deswegen liegt es nahe, es zuerst mit den Atomlagen D_{4b}^{18} 4a + 8h zu versuchen.

Die Atomlagen sind folgende: 4a: (0; 0; $^{1}/_{4}$) (0; 0; $^{3}/_{4}$) ($^{1}_{2}$; $^{1}_{2}$; $^{1}/_{4}$) ($^{1}_{2}$; $^{1}_{2}$; $^{3}/_{4}$); 8h: (x; $^{1}_{2}$ +x; 0) (\overline{x} ; $^{1}_{2}$ --x; 0) ($^{1}_{2}$ +x; \overline{x} ; 0) ($^{1}_{2}$ --x; x; 0) ($^{1}_{2}$ +x; x; $^{1}_{2}$) ($^{1}_{2}$ --x; \overline{x} ; $^{1}_{2}$) (x; $^{1}_{2}$ --x; $^{1}_{2}$) (\overline{x} ; $^{1}_{2}$ +x; $^{1}_{2}$)

Mit den angegebenen Atomlagen wurden die relativen Intensitäten der Reflexe: 141, 123, 042, 332, 154, 271, 453 und 370 mittels der Formel:

		wo: S	5 —	Strukturamplitude
I ==	$=\frac{/S/2 \cdot (1 + \cos^2 2\theta) \cdot H}{2\sin^2 \theta \cdot \cos^2 \theta}$	(9 —	Bragg'sche Reflexionswinkel
	25111-0 • 0050	a statistical second	H	Flächenhäufigkeitsfaktor

für die x Werte $0 \ll x \ll 1/4$ ausgerechnet und die Intensitätsverlaufskurven aufgezeichnet. Es wurde angenommen, dass die Au Atome die Lagen 4a und die Pb Atome die Lagen 8h besetzen. Diese Annahme ist jedoch nicht wesentlich, da das Streuungsvermögen der Au und der Pb Atome fast gleich ist. Der x Wertebereich ist deshalb nur von 0 bis 1/4 genommen da $\Sigma_0 \operatorname{Cosn} \varphi/$ symmetrisch zum $\varphi = \frac{1}{2}\pi$ verläuft, was x = 1/4 entspricht.

Die Ausrechnung der Intensitäten ist graphisch durchgeführt, dabei wurden nicht die Intensitäten, sondern die Quadratwurzel aus der Intensität erhalten. Für Parameterbestimmung ist es unwesentlich, denn es bleibt immer: $/\sqrt{I_1}/>/\sqrt{I_2}/$ wenn $I_1 > I_2$. Es sind paarweise naheliegende Reflexe ausgewählt, da man so die Intensitäten leichter und genauer vergleichen kann. In Abb. 9 sieht man die Intensitätsverlaufskurven der genannten Reflexe.

¹) James B. Friauf, J. Amer. Chem. Soc. 49 S. 3701 (1927).

²) Ralph W. G. Wyckoff, The Analytical Expression of the Results of the Theory of the Space Groups. Washington 1930 II Aufl.

Abb. 9. Zur Bestimmung des Parameters x.

Mittels der Schnittpunkte der Intensitätsverlaufskurven der Reflexe, die experimentell verschiedene Intensität haben, wurde die obere und die untere Schranke für x bestimmt: der wahre Wert von x liegt nach derjenigen Seite von dem Schnittpunkt zweier Intensitätsverlaufskurven, nach welcher diejenige Kurve des Reflexes höher liegt, die experimentell grössere Intensität hat. Aus vorhandenen Daten konnte man für den Parameter folgenden Wert angeben:

$x = 0,159 \pm 0,005$

Mit diesem Parameterwert wurden für alle möglichen a_1 — Reflexe von Cu-K-Strahlung zwischen $\Theta = 0^{\circ}$ und $\Theta = 85^{\circ}$ die relativen Intensitäten ausgerechnet und mit den experimentellen verglichen. Wie man aus der Tabelle Nr. 2 sieht, ist die Übereinstimmung der berechneten und experimentellen Intensitäten sehr gut. Man kann also mit grosser Sicherheit behaupten, dass AuPb₂ ein tetrogonales raumzentriertes Gitter mit:

 $a = (7,319 \pm 0,001)$ Å und $\frac{a}{c} = 1,297 \pm 0,001$, bei 22° C und die Atomlagen in D_{4h}^{18} : 4a+8h mit dem Parameter x = 0,159+ $\pm 0,005$ hat.

Die nächsten Abstände der Atome in dem Gitter ergeben sich für Au-Au 2,821 Å (im Au-Gitter 2,878), für Pb-Pb 3,286 Å (im Pb-Gitter 3,494) und für Au-Pb 3,094 Å. Die vorliegende Arbeit wurde im Jahre 1935, 1936 und 1939 im Laboratorium für Technische und Theoretische Physik der Universität Tartu ausgeführt.

Dem Leiter des Laboratoriums, Prof. H. Perlitz, danken wir herzlichst für die vielen Ratschläge, Diskussionen und Überlassung der notwendigen Apparaturen und Hilfsmitteln.

> Physikalisches Laboratorium der Technischen Hochschule Tallinn.

