
Tallinn 2021

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Aleksandr Ivanov 186093IADB

Product Delivery Accounting Solution for

Manufacturing Enterprise

Bachelor's thesis

Supervisor: Nadežda Furs

 MBA

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Aleksandr Ivanov 186093IADB

Toote kohaletoimetamise arvestuse lahendus

tootmisettevõttele

Bakalaureusetöö

Juhendaja: Nadežda Furs

 MBA

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Aleksandr Ivanov

27.04.2021

4

Abstract

The aim of this thesis is to solve the Novotrade Invest AS enterprise problem of

accounting of manufactured production by developing an application. The application is

designed to simplify the work of the logistics group employees in accounting and save

time and money.

The solution is divided into two parts: the server application and the client application. In

addition to the basic accounting functionality, the application should allow employees to

view the order history and generate and export a report. During development, the author

adhered to a modular structure, which will ensure the integrability of the application, as

well as facilitate further development.

The developed application has made life easier for employees, and reduced the time, early

use for monotonous work. Currently, the application has taken its place as a tool of the

logistics group of the Novotrade Invest AS enterprise.

This thesis is written in English and is 41 pages long, including 6 chapters, 21 figures and

8 tables.

5

Annotatsioon

Toote kohaletoimetamise arvestuse lahendus tootmisettevõttele

Käesoleva bakalaureusetöö eesmärk on lahendada Novotrade Invest AS ettevõtte

probleem toodetud toodangu arvestuses rakenduse väljatöötamise kaudu. Rakendus on

loodud selleks, et lihtsustada logistikagrupi töötajate tööd arvestuses ning säästa aega ja

raha.

Lahendus on jagatud kaheks osaks: serverirakendus ja kliendirakendus. Lisaks arvestuse

põhifunktsioonidele peaks rakendus võimaldama töötajatel vaadata tellimuste ajalugu

ning koostada ja eksportida aruannet. Arenduse käigus pidas autor kinni modulaarsest

struktuurist, mis tagab rakenduse integreeritavuse ja hõlbustab edasist arendamist.

Väljatöötatud rakendus on muutnud töötajate elu lihtsamaks ja on vähendanud aega,

varajast kasutamist monotoonseks tööks. Praegu on rakendus oma koha võtnud

Novotrade Invest AS ettevõtte logistikagrupi tööriistana.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 41 leheküljel, 6 peatükki, 21

joonist, 8 tabelit.

6

List of abbreviations and terms

API Application Programming Interface

App Same as “Application”

Application Same as “Software”

Backend Part of application that handles logic

BLL Business logic layer

Browser Program to browse the Internet

Cached Something that saved in computer memory

CRUD Create, Read, Update and Delete actions

DAL Data access layer

Database context Moment of database state, that application can use; bridge

between application and database

Database migration Process of syncing the database schema with application

structure

DTO Date Transfer Object

Endpoint The entry point to a service, a process, or a queue

Entity Class that corresponds to specific database table

Framework Abstraction in which software providing generic functionality

can be selectively changed by additional user-written code, thus

providing application-specific software

Frontend Part of application that handles user interface

FURPS+ Method of collecting and classification of software

requirements

GraphQL Graph Query Language

HTML The standard markup language for documents designed to be

displayed in a web browser.

JSON JavaScript Object Notation

JWT Json Web Token

Layout Placement of components in page

Mapping Converting one object to another; linking two objects

7

MoSCoW Method of prioritization of software requirements

MVC Model-View-Controller

Online Connected to the Internet, or internet-based

OOP Object-Oriented Programming

OS Operating system

Out-of-the-box Features that came withing software

PC Personal Computer

PWA Progressive Web Application

REST Representational State Transfer

Route URL path

Serialization Process of converting objects to bytes

SOAP Simple Object Access Protocol

Soft delete Process of deleting, with saving data for future purpose

Soft update Process of updating, with saving the history of versions

Software Computer program, is a collection of instructions and data that

tell a computer how to work

SOLID Single Responsibility, Open–Closed, Liskov Substitution,

Interface Segregation and Dependency Inversion principles

SPA Single Page Application

SSR Server-Side Rendering

Syntax Program language rules

UI User Interface

VBA Visual Basic for Applications

XML eXtensible Markup Language

8

Table of contents

1 Introduction ... 13

1.1 Description of the problem ... 13

1.2 Goal and main tasks .. 14

1.3 Starting conditions .. 14

1.4 Scope and role of author ... 15

2 Requirements and Existing Solutions .. 16

2.1 Requirements .. 16

2.2 Current solution .. 18

2.3 Existing solutions ... 19

2.3.1 1C: Enterprise .. 19

2.3.2 Analogues of 1C: Enterprise – Ananas ... 19

2.3.3 Goramp .. 20

2.3.4 UTECH .. 20

2.3.5 Low Code .. 20

2.3.6 Online boards ... 21

2.4 Conclusion .. 21

3 Analysis of technological aspects .. 22

3.1 Type of application ... 22

3.2 Program language and framework .. 23

3.2.1 JavaScript .. 24

3.2.2 C# and ASP.NET Core .. 25

3.2.3 Java and Spring .. 26

3.2.4 Python and Django .. 26

3.2.5 Framework and conclusion .. 26

3.3 Architecture .. 28

3.4 SOAP, REST and GraphQL ... 29

3.5 Database choice .. 30

3.6 Conclusion .. 30

4 Implementation .. 31

9

4.1 Database .. 31

4.2 Backend .. 33

4.2.1 Server app structure ... 33

4.2.2 Domain entities .. 34

4.2.3 Entity Framework database context .. 36

4.2.4 Database initialization ... 37

4.2.5 Data access layer ... 37

4.2.6 Business logic layer ... 39

4.2.7 Handling soft update entities ... 39

4.2.8 Querying of an actual data ... 40

4.2.9 API controllers ... 41

4.2.10 Security .. 41

4.2.11 Swagger ... 42

4.3 Frontend .. 42

4.3.1 Client application initialization ... 43

4.3.2 Client app structure .. 43

4.3.3 API calls .. 45

4.3.4 Vuex storage .. 46

4.3.5 Attribute types ... 46

4.3.6 Attributes ... 47

4.3.7 Order templates ... 48

4.3.8 Orders .. 48

4.3.9 Forms validation .. 50

4.3.10 Security .. 50

4.4 Testing .. 51

5 Further development .. 52

6 Summary .. 53

References .. 54

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 58

Appendix 2 – ER Diagram (ERD) .. 59

Appendix 3 – Data initialization ... 60

Appendix 4 – DAL Mapper .. 61

Appendix 5 – Units and Values add dialogs .. 62

10

Appendix 6 – CustomValueField component .. 64

Appendix 7 – Orders filtration dialog .. 68

Appendix 8 – Date picker component .. 72

Appendix 9 – Attribute and its value select components ... 77

Appendix 10 – Attribute type views ... 82

Appendix 11 – Attributes views ... 84

Appendix 12 – Templates views .. 85

Appendix 13 – Orders views .. 86

Appendix 14 – Users views .. 90

Appendix 15 – Example of generated report .. 91

11

List of figures

Figure 1. Most popular program languages by TIOBE index in March 2021 [24] 23

Figure 2. Solution architecture ... 28

Figure 3. Order and attribute tables relationship .. 31

Figure 4. Complicated attribute type table relationship ... 32

Figure 5. Simplified attribute type table relationship ... 32

Figure 6. Template and attribute tables relationship .. 32

Figure 7. Server application structure... 33

Figure 8. AttributeType entity example ... 35

Figure 9. Example of handling of deleted entities .. 36

Figure 10. Repository factory method .. 37

Figure 11. Repository creation using factory method .. 38

Figure 12. Entities update method with soft update handling .. 40

Figure 13. Example of actual data query .. 41

Figure 14. Default authentication and authorization scheme ... 42

Figure 15. Example of restricting access to controllers.. 42

Figure 16. Nuxt project initialization ... 43

Figure 17. Client application structure ... 44

Figure 18. Axios GET method wrapper with error handling ... 45

Figure 19. Nuxt unit of work plugin ... 45

Figure 20. Attribute type format display filter ... 47

Figure 21. Custom validation function example .. 50

12

List of tables

Table 1. FURPS+ requirements classification .. 16

Table 2. MoSCoW requirements prioritization .. 17

Table 3. Program languages comparison .. 24

Table 4. Frameworks comparison .. 27

Table 5. Frameworks and their purpose ... 27

Table 6. Domain entities ... 34

Table 7. Domain abstract entities ... 35

Table 8. API controllers.. 41

13

1 Introduction

This thesis describes the process of analyzing and developing an application for product

delivery accounting as part of a practical task for the Novotrade Invest AS enterprise.

Novotrade Invest AS (abbreviated VNK) is an Estonian industrial organization engaged

in the refining of petroleum products. The enterprise production process covers the

unloading of raw materials, processing, as well as loading products into railway wagons

and trucks. The products then are used in various industrial sectors, from solvents and

fuels to metallurgy [1].

The enterprise recently set a goal to digitalize the work environment and started hiring

developers to fulfill the goal.

1.1 Description of the problem

The company keeps records of shipments of manufactured products daily. Each order

contains a certain, but not fixed, the number of fields (attributes), some of which are

displayed in the table representing the days. Completed orders are marked with a specific

color. Currently, Microsoft Excel software is used for this. Despite its versatility, at a

certain stage, the use of this solution began to bring discomfort to employees.

Among the discomforts are the following: the need to install software for work; the large

file size, which takes time and effort; the human factor, which cause consequences in the

form of irrelevant data and wasted time for searching and fixing, etc. Also, employees

needed additional functionality, for example, displaying data in a calendar view, which is

achievable using Excel tools, but not so intuitively and automatic, takes additional time

and requires advanced knowledge of use, which the staff does not have.

To solve these problems, the enterprise has decided to develop a highly focused

application that will intuitively perform the assigned tasks and possess the required

functionality.

14

1.2 Goal and main tasks

The main purpose of the thesis is to solve the problem of the enterprise by developing an

application for the accounting of product delivery, focusing on achieving the required

functionality. Since the development of a full-fledged application is a rather scrupulous

process that requires the involvement of several developers, the author's goal is to develop

the first version of the application – a prototype that will solve the enterprise problem and

have the conditions for further development and improvement.

The first task is to determine the functionality of the application, as well as other

requirements that the prototype must meet.

The second task to achieve this goal is to analyze and determine the optimal approach for

developing an application, considering the possibility of further development and

integration with other systems.

The next task is to develop an application prototype based on a requirements analysis and

technical approaches. An accompanying task is the design and creation of a database for

data storage and operation.

1.3 Starting conditions

The first condition is an enterprise server that runs on Windows Server 2012 R2;

therefore, the determination of the approach should consider the compatibility of the

application and server components.

The second condition is that the employees of the enterprise mainly use corporate PCs

(Personal Computer) for their work.

The third condition is that the enterprise does not want to change the data structure, which

means that the application must be able to operate the data in form that is currently in use.

The fourth condition is that the enterprise does not want additional costs, including the

cost of purchasing software and support.

15

1.4 Scope and role of author

The author takes the place of an intern at the Novotrade Invest AS Enterprise and, as a

practical assignment, develops an application for logistics group employees. The head of

logistics has provided certain requirements that the application must meet. A detailed

description and analysis of the requirements will be discussed in the analysis section (see

2.1 Requirements).

To achieve this goal, it is necessary to analyze the current solution and existing solutions

on the market to determine the strengths that can be implemented and weaknesses that

can be avoided in the developed application.

The author is going to analyze and prioritize application requirements to determine what

requirements will be implemented in the application prototype and analyze technical

approaches, including various software development practices and programming

languages to determine the optimal approach. Then the author will develop a prototype

of the application, test the basic functionality, and describe the further step of

improvements. For better understanding, the text contains figures, most of which are

made by the author himself.

The scope of the thesis does not include the development of the final version of the

application, the development of the general system for integration, detailed

documentation of the application, thorough testing, and deployment.

16

2 Requirements and Existing Solutions

In this chapter, the author classifies and prioritizes the requirements for the application

being developed and analyzes existing solutions that can possibly solve the enterprise

problem to determine the functionality that will be implemented in the prototype.

2.1 Requirements

The requirements were discussed with the head of logistics of Novotrade enterprise. Since

different requirements cover various aspects of applications to organize these

requirements, the author uses the FURPS+ classification method, because it provides both

the classification of those aspects and separation of the functional and non-functional

requirements (see Table 1) [2].

Table 1. FURPS+ requirements classification

Category Requirements list

F – Functionality F1. Completed orders can be marked.

F2. Orders should be displayed in a calendar view.

F3. The featured order attributes should appear on the calendar.

F4. The rest of the order attributes should be displayed in an additional

window.

F5. Some orders have a non-fixed date.

F6. Orders must have a markup field.

F7. It is possible to generate reports for the selected period.

F8. Some attribute values must be selected from the list.

U – Usability U1. Main interface colors should be calm and not distracting.

U2. The order information window should be next to the calendar.

U3. The calendar should display orders for the month, for the week.

R – Reliability R1. The system must have a user with the highest access level (root),

which cannot be changed or deleted.

R2. The system should be available from 8 am to 5 pm, Monday

through Friday.

P – Performance P1. Applications must support at least 3 simultaneous users.

S – Supportability S1. The interface must be in Russian.

17

S2. The interface must support English and Estonian.

S3. There should be a button in the interface to get help.

S4. Ability to change database connection settings.

“+” X1. Access is differentiated by role.

X2. Only authorized users can access the application.

X3. Users with the "User" access level can only view placed orders.

The table does not indicate some requirements, for example CRUD (creation, deletion,

etc.), since their presence is fundamental for solving the problem. The author has also

removed the requirements “the interface must be intuitive” and similar due to their

unmeasurable realizability and objectivity.

To determine the requirements that will be implemented in the prototype application, the

author uses the MoSCoW prioritization method (see Table 2) [3].

Table 2. MoSCoW requirements prioritization

Category Requirements list

MUST F1. Completed orders can be marked.

F2. Orders should be displayed in a calendar view.

F3. The featured order attributes should appear on the calendar.

F4. The rest of the order attributes should be displayed in an additional

window.

F8. Some attribute values must be selected from the list.

U1. Main interface colors should be calm and not distracting.

U2. The order information window should be next to the calendar.

U3.1. The calendar should display orders for the month.

R1. The system must have a user with the highest access level (root),

which cannot be changed or deleted.

R2. The system should be available from 8 am to 5 pm, Monday

through Friday.

S1. The interface must be in Russian.

S4. Ability to change database connection settings.

X1. Access is differentiated by role.

X2. Only authorized users can access the application.

X3. Users with the "User" access level can only view placed orders.

SHOULD F5. Some orders have a non-fixed date.

F6. Orders must have a markup field.

F7. It is possible to generate reports for the selected period.

18

P1. Applications must support at least 3 simultaneous users.

S3. There should be a button in the interface to get help.

COULD U3.2. The calendar should display orders for the week.

WONT S2. The interface must support English and Estonian.

The prioritization result was discussed with the head of the Novotrade logistics group,

and it was decided that only "MUST" and "SHOULD" categories will be implemented in

the prototype.

2.2 Current solution

Currently, the employees of logistics use Microsoft Excel software (hereinafter simply

Excel) for accounting. Despite its versatility, it has cons that cause discomfort.

All data is stored in one large file with several backup copies. Large cell count is with

orientation, due to storage of pasts orders. As a temporal measure, the data is hidden

thanks to the grid system.

Several people might work with the file at once so everyone must have access to the

current version of the file. Excel provides co-working options, but it has its limitations,

for example, users cannot create pages, merge cells, create charts, and others. To perform

these actions, the user must first turn off sharing, perform the action, and then turn it back

on [4]. Also, the enterprise has difficulties in transferring the current version of the file

between computers. Microsoft supplies along with other office programs

(Microsoft Word, Microsoft Excel, Microsoft PowerPoint, etc.) application for cloud file

storage and sharing – OneDrive, however, it is a paid one [5] and is not included in the

package currently used at the enterprise.

Additional functionality, like, calendar view (see 2.1 Requirements) is quite realizable

using Excel, however, it is comparable in the development of a separate application, and

to support it, it is need to observe the same formatting. Completed orders should also be

marked, currently, the corresponding cells are painted in a certain color, which is not very

convenient. The developer mode capabilities (interface elements: buttons, forms, etc.) as

well as scripts (macros) VBA (Visual Basic for Applications) for automation [6] can be

used to solve the problem, however, it requires both knowledges of the opportunities and

time for implementation.

19

The big advantage of this solution is its flexibility, since any data can be changed, the file

structure can be changed, as well as the ability to complete the task in a short time. The

author will base the prototype on flexibility options, so employees could manipulate the

data structure without changing the application.

2.3 Existing solutions

To solve the problem, it was decided to analyze the existing applications that could meet

the requirements of the enterprise. Since this problem is typical for many enterprises,

there are other solutions available on the market that could solve the problem.

2.3.1 1C: Enterprise

1C: Enterprise is the most popular solution for enterprises keeping records, especially in

Russian-speaking countries. This software comes in the form of a configurator program

and a presentation program. Since the program interface is initially empty, the enterprise

can purchase one of the many configurations or make its own. This platform is very

flexible, allowing users to create both entities with a different set of attributes, lists of

preset values, subsystems for ordering the interface, including the ability to generate

reports and export data, including in Excel format. The system is configured by the

administrator who creates structures, sets possible values, data format, etc [7].

Despite the extensive functionality, the platform has a bad reputation, mainly due to the

countless bugs, as well as frequent raw updates, which often disrupt the work of an

already configured system, and introduce new bugs [8]. This software is paid on a pay-

per-module basis [9].

2.3.2 Analogues of 1C: Enterprise – Ananas

There are also free analogs of 1C: Enterprise, as one of them, could be considered the

open-source software – Ananas. This program is a clone of 1C: Enterprise with slightly

reduced functionality and a modest interface. The capabilities of this program include

accounting, generating reports, entities with custom attributes and lists of preset values,

etc. [10].

The disadvantages of this software are support for only MySQL databases [11], as well

as the fact that the last version of the program was released in 2007 [12], which indicates

20

that software is no longer actual. Moreover, it is not clear if this platform supports co-

working with the application.

2.3.3 Goramp

GoRamp is an online real-time trucking order management platform. It provides both

planning and accounting of orders, as well as their display in a calendar view with the

display of certain data in each cell. The disadvantage of this platform is a fixed data

structure, which may not be suitable for this solution [13].

Unfortunately, this company does not provide any information or demo versions, and the

program's capabilities can be found out only from the main page of the site, which is not

a very reliable source of information. The program is paid, but the detailed price can be

found only upon request.

2.3.4 UTECH

UTECH provides an online service for accounting and planning logistics, with an

emphasis on the delivery of goods. Among the possibilities is a database of trucks,

locations, orders, accounts, etc. The scheduling capabilities include both scheduling

orders and departures of trucks, with a schedule for the coming week. The entire interface

is built in the form of a table, which limits the ability to present data [14].

The disadvantages are the fixed structure, as well as unnecessary functionality, which is

not necessary in this case. As in the case of GoRamp, the company does not provide a

demo version, however, it is possible to download the program, but it cannot work without

a license.

2.3.5 Low Code

LCAP (Low Code Application Platforms) applications are a revision of the traditional

development system in response to constant changes in requirements and a variety of

development tools. These applications are well suited for testing ideas and developing

software in the shortest possible time due to the use of ready-made modules and a

graphical interface [15]. Flexibility is a plus since changes can be made at any time

without going through all the development stages.

21

However, such solutions have their problems, and they are mainly aimed at further

support and modernization of the system. So, if, when problems arise, the user cannot

always go into the source code or find documentation, because such applications are often

close sourced [16]. They also do not eliminate the need to think over the logic of the

application, and the use of a graphical interface can affect in a bad way, taking minutes

to implement a simple, but the unique thing, compared to the moments of a couple of

lines of code.

2.3.6 Online boards

Another option is online boards like Trello, Miro, Notion, etc. The advantage of such

applications is the relative freedom of action. For example, in Trello, users can create

both Kanban boards and something like TODOs, there are import capabilities,

distribution of roles, deadlines, etc. [17]. Miro allows users to create custom projects

using many modules, ranging from tables to interactive documents and pictures [18].

Notion is an excellent tool for keeping a personal diary, blog, or entire wiki [19].

However, these solutions are paid, or have a free version with reduced functionality.

2.4 Conclusion

To define the functionality of the application being developed, the author has classified

and prioritized the requirements. Further, the author made a comparative analysis of the

current and other solutions that could solve the problem.

During the analysis, it turned out that the main disadvantages of the solutions are

non-flexibility on the one hand and too much functionality that misleads users and

provides a drop-in software quality due to numerous bugs. Also, ready-made solutions

were either paid or were no longer supported, as in the case of Ananas. A big advantage

of such applications is the flexibility of the structure, which is good in a constantly

changing environment.

Following these conclusions, the developed application must be flexible so that users can

change the structure themselves, without the participation of a programmer, and have

only the functionality that users need.

22

3 Analysis of technological aspects

In this section, the author describes the selected technologies, such as program language,

database, and others for the optimal implementation of the application prototype.

3.1 Type of application

First, it is necessary to determine the type of application, since the capabilities of the

application and the development tools will depend on this choice.

At the present there are applications of the following types [20]:

▪ Web applications

▪ Desktop applications

▪ Mobile applications

▪ Cross-platform applications

Based on the initial conditions (see 1.3 Starting conditions), the author will not consider

the type "Mobile applications", and also due to the complete lack of experience, the type

"Cross-platform applications".

Native applications are written for a specific platform and limit their functionality to the

capabilities of the platform. These applications are usually very efficient and can run

without the Internet [21]. However, if it is needed to change or add platform support,

these applications commonly require re-developing. Also, there should be a solution to

provide updates for the application.

Web applications, unlike native applications, work on any platform where a browser can

run them. These applications do not need to be installed or downloaded from the online

store and typically provide a unified view of the interface on any device, as well as the

ability to work from anywhere with Internet access. Unlike native apps, these applications

always have actual version. The downside is the dependence on the Internet connection

and the aspects of protection, which must be well thought out [20]. Despite the

dependence on the Internet, some web applications can also be used without the Internet

(for example, PWA (Progressive Web Application) [22]).

23

To summarize, both the native and web approaches to the implementation of the

application are suitable in this situation. However, web applications are easier to update

and platform independence makes it possible for one application to support several OS at

once (for example, Windows, MacOS, android, and others). Considering the prospects of

the web implementation, as well as author experience in developing web applications, the

web application type will be used in developing.

3.2 Program language and framework

The choice of a programming language is important, not only because it determines what

the final solution will be written on, but also determines the tools and structure of the

application, for example, will it be a SPA (Single Page Application), a client with API

(Application Programming Interface) server or a traditional server that operates data and

renders pages.

At the present, there are many languages used to write web applications, among which,

based on a selection of the most popular (see Figure 1), the author will analyze the

following [23]: JavaScript, Python, Ruby, C#, Go, PHP

It should be noted that each of the languages mentioned is suitable for running

web applications that can be executed on a Windows Server (see 1.3 Starting

conditions). To determine the language for development, the author relies on personal

experience of use and development using a specific language and the approximate time

required author to learn it (see Table 3).

Figure 1. Most popular program languages by TIOBE index in March 2021 [24]

24

Table 3. Program languages comparison

Language Author’s personal experience
Time required for mastering the

language by the author (in weeks)1

JavaScript
3 clients using REST2 API, many

small personal projects
0

Python
Assignments during the course, a

couple of small personal projects
1 – 2

Java
2 courses, 2 personal projects, 2 – 3

mobile applications
1

Ruby No experience 4+

C#
2 courses, full REST API server,

several games on Unity
0

Go No experience 4+

PHP Basic knowledge 4+

Based on this comparison, given the lack of time to learn a new program language, further

analysis will be between JavaScript, C #, Java, and Python languages.

3.2.1 JavaScript

JavaScript is a scripting program language used mainly to give dynamics and logic to

pure HTML (HyperText Markup Language) web pages. By this day it is the most popular

language to make a representative part, and it also got powerful tools and frameworks

that turn him into a strong competitor to other program languages [25].

The most popular frameworks for writing web applications: React, Vue, Angular; Node.js

runtime framework, Express.js pure server framework, and more. Also, must be

considered the TypeScript add-on [26], which brings strong typing of variables, allowing

JavaScript to compete with languages such as Java and C#. Among frameworks, it makes

sense for the author to consider only Vue, Nuxt and React, due to lack of experience with

Angular, and it is also quite difficult to learn [27].

1 This time is relative, which the author suggested based on his own experience and the complexity of the

language

2 REST (Representational State Transfer) – see 3.4 SOAP, REST and GraphQL chapter

25

Vue was born in response to the relative complexity of React. The downside of React is

that state updates are relatively slow, which can delay information on pages and take time

to optimize [28]. Also, the "Store" state store – Redux, which is used in React, is much

more difficult to write and typify than the Vuex store for Vue, as the author knows from

writing both applications using React+Redux and Vue+Vuex.

Nuxt is a Vue-based framework that preserves the syntax and basic functionality and adds

auto route detection and SSR (Server-Side Rendering). Nuxt also benefits from the

modularity of its architecture, such as plugins, vuex store and layouts1 that Vue does not

have. [29]. The ability to use TypeScript significantly simplifies development, getting

rid of dynamic errors, but it takes time to type objects and plug-in settings that are not

sharpened for TypeScript.

3.2.2 C# and ASP.NET Core

C# is a strongly typed OOP (Object-Oriented Programming) language developed by

Microsoft that has a wide range of uses from native and web applications to video game

development. Programs developed in this language use the .NET platform, which for a

long time was only for Windows OS, but with the release of .NET Core, applications are

now cross-platform and can be installed on any system that supports .NET Core [30].

The framework for developing cross-platform web applications is ASP.NET Core, which

allows to develop both server applications using the MVC (Model-View-Controller)

pattern and the REST API servers to work with client applications written, for example,

in JavaScript [31]. This framework has very powerful functionality and development

tools, among which can be mentioned: Entity Framework, which is responsible for linking

database entities with classes in C# and working with the database [32]; NuGet package

manager system [33], that allows to easily add the necessary third-party functionality to

the application, for example – JSON mapping or serialization; ASP.NET Core Identity

API for a smooth and reliable user and role experience [34]; etc.

1 In Vue, there is only one template by default - App.vue, the entry point into the application [44]

26

3.2.3 Java and Spring

Java is a strongly typed OOP programming language used for writing web applications

(especially REST API servers), mobile applications, desktop applications, and others.

Programs written in Java run using the Java Virtual Machine (JVM), which makes the

applications cross-platform [35].

Spring is the most popular Java framework for writing web applications [36]. Spring

provides the functionality for building complete, extensible applications with a clean

architecture. Just like C#, Java has various extension repositories such as Maven, Ant,

and a Gradle tool to automatically build an application. There is also the possibility of

working with the database using entities [37]. Spring and ASP.NET Core are functionally

very similar, and regardless of the choice, the application based on these languages will

have a solid foundation and great opportunities for further development.

3.2.4 Python and Django

Python is a very popular programming language that has been at the top of the charts for

the most used languages for the last couple of years, used mainly for developing artificial

intelligence, but also for writing modern extensible server-only and server-client web

applications based on the Django framework [38]. Django has a lot of out-of-the-box

features like the admin panel that Spring and ASP.NET don't have by default. There are

also many modules for Django that extend or add new functionality.

Among the minuses, dynamic typing, rather weak template validation, which do not check

whether a model is suitable for a form or not, and no multiple requests processing at the

same time. [39].

3.2.5 Framework and conclusion

To choose the framework, the author also relies on personal development experience

using a specific technology, as well as the approximate time that the author needs to get

a sufficient amount of experience (see Table 4).

27

Table 4. Frameworks comparison

Framework Author’s personal

experience

Additional time required for mastering

the language by the author (in weeks)

Express No experience 2

Vue REST API client 0

Nuxt.js REST API client 1

React REST API client 2

Angular No experience 4+

Django No experience 3+

Spring Basic knowledge 2

ASP.NET Core REST API server, client 0

The purpose of the framework also plays an important role in the definition, since, for

example, ASP.NET Core can be for the frontend, but JavaScript can better handle it, due

to smooth rendering and direct use of the browser API (see Table 5).

Table 5. Frameworks and their purpose

Language Framework Main purpose

JavaScript Express Server

JavaScript Vue Client

JavaScript Nuxt.js Client

JavaScript React Client

JavaScript Angular Client

Python Django Both

Java Spring Server

C# ASP.NET Core Server

Java Spring is a good choice for implementing the server-side of the application, and it is

also more commonly used in Estonia than ASP.NET Core, however, with the last one,

the author has more experience with the development of a full-fledged REST API server,

so the author has chosen ASP.NET Core. The author decided not to choose Django due

to a complete lack of experience, the large number of lines used as arguments in Django,

for example in layouts.

28

As a client, the author has chosen Nuxt because it is built on top of Vue, and with Vue,

the author has a more pleasant experience than with React, which is however by far more

popular. Between Vue and Nuxt, the author chose the last one, because Nuxt provides

more out-of-the-box capabilities than pure Vue, although they have the same syntax,

which should not be reflected in the application.

3.3 Architecture

In development, the author will rely on the "ideals" of the architecture described in the

book "Clean Architecture" by Robert Martin [40], also using the SOLID principles, also

described in this book [40, pp. 72-74]. Following these recommendations, the final

application will not grow exponentially in costs, it will be simply to support and, if errors

occur, painlessly fixed.

The application should be logically divided into several parts – layers. The one of the

most popular is the three-layer architecture model (see Figure 2):

▪ View layer

▪ Business logic layer (BLL)

▪ Data access layer (DAL)

Each of the layers encapsulates part of the functionality without knowing and caring about

what is happening outside. The presentation (view) layer is the mediator between the user

and the application, the entry/exit point. The business logic layer is responsible for all

calculations. The data access layer encapsulates communication with the database [41].

On the server-side, the presentation layer is the API controllers since the client accesses

them directly. For the client, access to the server API is also a kind of data access layer.

Figure 2. Solution architecture

29

3.4 SOAP, REST and GraphQL

For the client and server to exchange information, it is the most common practice to use

API requests. Since there is no single approach to building the access point API, the

author compared the 3 most popular methods:

▪ SOAP (Simple Object Access Protocol)

▪ REST (Representational State Transfer)

▪ GraphQL (Graph Query Language)

SOAP is a relatively mature API protocol that uses a strongly typed XML (eXtensible

Markup Language) structure. The data approach allows to accurately control what data

and in what form is transmitted, but, increases the size of the request, and therefore the

processing time. SOAP is mainly used to call procedures (like Add Order, Register User,

etc) [42].

REST is a convention of building API requests compared to SOAP. Unlike SOAP, REST

supports a variety of data formats, JSON (JavaScript Object Notation) is the most popular.

A typical request to get a list of orders will be made through a GET request to /api/orders.

Each request has an address and a handler [43]. A significant drawback is the many

endpoints in each application.

GraphQL is a query language that allows clients to query only the data they are needed

as if they were working directly with the database. Unlike REST, GraphQL has only one

API access point. The ability to query only the data that is needed would facilitate the

development of the front-end part. However, GraphQL requires more server-side

development effort, as well as proper configuration, otherwise, the server may crash under

the large and voluminous queries with multiple levels of nesting [44].

SOAP is good for large, tightly architected applications; however, it requires additional

effort and expertise to implement compared to REST. GraphQL provides a convenient

way to develop a client application but also requires additional effort on server-side. Since

the author does not have enough experience to effectively implement GraphQL along

with a clean architecture, the author chose REST to implement the API.

30

3.5 Database choice

Since the enterprise system for the app to integrate with has not yet been developed, there

is no point in carefully selecting a database. According to the enterprise requirements not

to spend money the choice will be made from free options. Also, since the application

will use a specific data structure that will not change, only Relational databases will be

considered. The author has three options, among the most common: MySQL,

PostgreSQL, and SQLite.

MySQL is a free open-source database for non-commercial projects. Since the application

is being developed for employees only, there is no need for open source licensing for it.

This database, in addition to the relative flexibility of customization, can offer a

convenient program for managing [45].

PostgreSQL is an open-source web application database focused on scalability. This

database provides customization flexibility, as well as the ability to work with JSON [45].

SQLite is a compact local solution. Among the above, this database has the least

functionality. This database only supports INTEGER, REAL, TEXT, BLOB, and NULL

data types, other types stored using these types [46], which may affect query performance.

To summarize, MySQL and PostgreSQL have a lot in common and both are better suited

to the application than SQLite. Due to extensive experience of use and a convenient

management application for the author, the author has chosen the MySQL.

3.6 Conclusion

During the analysis, the author determined that the best approach is to develop a web

application based on ASP.NET Core as a server-side framework and Nuxt.js with

TypeScript as a client-side framework using three-layer architecture, SOLID principles,

MySQL and REST API.

Based on the analysis, the author can now start to implement the application prototype to

solve the defined enterprise problem.

31

4 Implementation

In this section, the author describes the steps for implementing the application. The

application is divided into three parts: database, server, and client. The development of a

prototype assumes that all three parts will be developed at a level that allows the

application to perform the assigned tasks but does not eliminate possible drawbacks.

4.1 Database

The main purpose of the application is to handle orders. Each order has a deadline

(however, in the case of unfixed orders, this field must be null), as well as a list of

attributes. For orders, the attributes rarely change; so, it was decided to move them into a

separate entity and reuse them. Since orders can have multiple attributes, and attributes

can have multiple orders, another entity was created to make this many-to-many

relationship possible (see Figure 3).

Attributes differ not only by name and value but also by other features, for example, the

values of some attributes may be predefined, for example for the "Product" attribute. Also,

some attributes can have units of measurement, for example, the attribute "Quantity of

production" can have units of measurement: "kg", "gram", "tons", "bags", etc. For that

purpose, the entities "Units" and "Values" were created. They could be simply attached

to an attribute, but there is a possibility that two attributes with the same units or defined

values would be needed. To implement this feature, the author has created an additional

entity – "Attribute Type". In this case, units and values are defined by the attribute type,

and the attribute is created with a specific type. It can be assumed that values and units

can also be reused by defining intermediate entities (see Figure 4).

Figure 3. Order and attribute tables relationship

32

However, the author considered this as an unnecessary complication of the database and

application structure, so the relationship was simplified (see Figure 5).

To make it convenient for users to create new orders, the entity "Template" was created,

which will save a list of certain attributes, and when creating an order, it will simply

substitute them into the creation form. Again, since the template has several attributes,

and the attributes have several templates, an intermediate entity is

needed – "Template Attributes" (see Figure 6).

Orders and templates are not physically connected in any way, so there is no need for an

intermediate entity. Also, it can be assumed that there is no point in storing templates in

the database, since requesting a template may take extra time, however, since attributes

can be changed or deleted, as well as the fact that several users can use the same template,

the author decided it was appropriate.

The ERD diagram can be found in Appendix 2.

Figure 4. Complicated attribute type table relationship

Figure 5. Simplified attribute type table relationship

Figure 6. Template and attribute tables relationship

33

4.2 Backend

The application server acts as a data handler and bridge between the client interface and

the database. In addition to working with data, the server is also involved in user

authorization to certain API endpoints.

4.2.1 Server app structure

The server is designed following a three-layer architecture (see 3.3 Architecture) and is

subdivided into several projects responsible both for a specific layer and for the task

performed within this layer (see Figure 7).

To name the projects, the author used combinations of the following words:

▪ DAL – everything that relates to Data Access Layer

▪ BLL – everything that relates to Business Logic Layer

▪ App – everything that is specific to the application

▪ Base – general principles from which App classes inherited

▪ Contracts – these projects contain interfaces

Figure 7. Server application structure

34

Also, the author used some names for certain things:

▪ EF – implementation of working with a database using the Entity Framework

▪ Entities – Entity Framework entities

▪ Extensions – classes containing extension functions

▪ UnitOfWork – everything related to the "Unit of Work" pattern implementation

▪ DTO – classes needed to transfer data between layers

▪ AppAPI – classes needed to implement the API

▪ Webapp – main and executable project

Further, the author describes the project implementation.

4.2.2 Domain entities

To work with the described database structure, the author created 8 problem-specific

classes as well as 2 additional classes for working with users and roles (see Table 6).

Table 6. Domain entities

Entity Database table Description

Attribute attribute used to store all attributes

AttributeType attributetype used to store all attribute’s types

AttributeTypeUnit typeunit а unit of measure that an attribute with a

suitable type can use

AttributeTypeValue typevalue а defined value that an attribute with a suitable

type can use

Order order used to store all orders

OrderAttribute orderattribute used to implement a many-to-many

relationship between orders and attributes

Template template used to store all templates for quick order

creation

TemplateAttribute templateattribute used to implement a many-to-many

relationship between templates and attributes

AppUser appuser Used to store application users

AppRole approle Used to store application user’s roles

Since entities are similar to each other, at least by identifiers, the author has created

abstract classes to give entities certain properties (see Table 7).

35

Table 7. Domain abstract entities

Abstract entity Description

DomainEntityId entities with unary identifier

DomainEntityIdMetadata entities with unary identifier and createdAt, createdBy,

changedAt and changesBy fields to track state of entities

DomainEntityIdSoftDelete DomainEntityIdMetadata + deletedAt and deletedBy fields,

to track the deletion of an entity

DomainEntityIdSoftUpdate DomainEntityIdSoftDelete + masterId field to keep track of

the original version of the entity

DomainEntityMetadata entities with createdAt, createdBy, changedAt and

changesBy fields to track state of entities

Abstract classes have an overload with generic type for identifier, if necessary, the type

can be changed to something else. The author has chosen the long data type as the default

identifier since long can be generated in the database and it provides enough values for

all possible cases. Data types UUID (GUID), the author considered impractical, since

they complicate the data query, and the application uses only one database, which means

that there will be no conflict with the same identifiers. For an example of the

implementation of the entity, the author gives the AttributeType class (see Figure 8).

public class AttributeType : DomainEntityIdSoftDelete

 {

 public string Name

 public string? DefaultCustomValue

 public bool SystemicType

 public bool UsesDefinedValues

 public bool UsesDefinedUnits

 public AttributeDataType DataType

 public long DefaultValueId

 public long DefaultUnitId

 public ICollection<Attribute>? Attributes

 public ICollection<AttributeTypeValue>? TypeValues

 public ICollection<AttributeTypeUnit>? TypeUnits

 }

Figure 8. AttributeType entity example

36

AttributeType inherits from the abstract class DomainEntityIdSoftDelete, which gives the

entity a unary identifier as well as fields to track changes. When deleted, the deletedAt

field will contain the date of deletion, which will not disrupt the operation of orders using

this attribute, because the entity will not be physically deleted. The other fields are used

to store data, like SystemicType – to determine if the type is should be protected,

DefaultCustomValue, which used to store the default value, etc.

4.2.3 Entity Framework database context

To work with the Entity Framework, the author has created a class that inherits from

DbContext and defined entities in it. Since this procedure is typical for all applications,

the author will not focus on implementation. However, since the application must support

soft delete and soft update actions, it is necessary to handle entities whose state changes.

For this, the author has created a method that will be called when SaveChanges is called

on the Entity Framework context. As an example, the author gives an implementation of

entity validation on deletion (see Figure 9).

...

ChangeTracker.DetectChanges();

var now = DateTime.UtcNow;

...

var deletedEntities = ChangeTracker.Entries().Where(x => x.State ==
EntityState.Deleted);

foreach(var entityEntry in deletedEntities) {

if (entityEntry.Entity is not IDomainEntitySoftDelete softDeleteEntity)
continue;

 softDeleteEntity.DeletedAt = now;

 softDeleteEntity.DeletedBy = _userProvider.CurrentName;

 entityEntry.State = EntityState.Modified;

}

...

When deleting an entity, it is checked whether the entity should be deleted "softly" with

the date of deletion, or if it should be physically deleted, in this case, its state does not

change to EntityState.Modified and it will be deleted.

Figure 9. Example of handling of deleted entities

37

4.2.4 Database initialization

For the application to be able to start working with a clean database, the author created a

class responsible for migrating the database schema and data, users, and roles seeding.

The need for individual actions is configured from the application settings file, where it

can be also specified how to translate user roles, as well as login information for the Super

Administrator account. As a security measure, the super user is seeded only once.

Since, often, attributes do not require a specific type, to immediately create attributes,

during initialization, 7 basic system types (string, boolean, integer, float, date, time, and

datetime) are seeded. The application does not support types that accept multiple values

at the same time; however, users can create multiple attributes with different values. The

example of implementation can be found in Appendix 3.

4.2.5 Data access layer

To work with DAL the author has created the AppUnitOfWork class, which is an

implementation of the “Unit of Work” pattern [47, pp. 184-189]. This class has a list of

repositories, as well as a factory method [40, p. 100] to get the instance of the repository

(see Figure 10).

protected TRepository GetRepository <TRepository> (Func<TRepository>
repoCreationMethod) {

 if (_repoInstances.TryGetValue(typeof (TRepository), out

 var obj1))

 return (TRepository) obj1!;

 object obj2 = repoCreationMethod()!;

 _repoInstances.Add(typeof (TRepository), obj2);

 return (TRepository) obj2;

}

When called, the method checks if the repository instance exists, and if not, it creates the

repository and returns it to the dictionary. On subsequent requests, the cached repository

will be returned. Next, the author gives an example of a method call (see Figure 11).

Figure 10. Repository factory method

38

public IAttributeRepo Attributes => GetRepository<IAttributeRepo>(

 () => new AttributeRepo(DbContext, Mapper));

AppUnitOfWork does not contain a list of specific classes, but of their interfaces, which

allows, if necessary, to create a test repository inherited from the interface and connect it

instead of the main one for test purposes.

The author has created a separate repository for working with each entity. To improve the

quality of the code, a similar set of methods were moved to the base class BaseRepo. To

ensure the modularity of the repositories, as well as the observance of the one of the

SOLID principles – "Dependency Inversion" [40, pp. 98-101], the author has created

interfaces from which the repositories are inherited, including the base repository. The

base repository is generic, accepting two types, an entity type and a DTO type that will

pass the data of that entity.

The author has created special classes for transferring information – DTO [40, p. 195] for

each entity, because using the entities directly may create a bad situation – if changing

happens, it will affect not only the operation of the repository, but also the layers above,

and, in addition to the strong dependence on the implementation, which violates

modularity, if an error occurs, it will need to be corrected for all layers.

For entities to be converted into DTOs at the layer boundary, it is necessary to map them.

This can be done manually by creating new classes and assigning values to all fields,

however, since DTOs are identical to entities, at this stage, the author has decided to use

the most popular automatic conversion library – AutoMapper, since it is easy to configure

and allows to quite accurately specify how objects should be converted. The author has

created a UniversalMapper wrapper class that provides a conversion for all entities. The

implementation can be found in Appendix 4.

This approach provides modularity, which, as in the case of repositories, allows to test

the unit of work module separately.

Figure 11. Repository creation using factory method

39

4.2.6 Business logic layer

To separate API controllers and client implementation from DAL, the author has used an

intermediate layer – BLL [48], the purpose of which is both data manipulation and

validation, so the controller will only access the BLL and handle errors that occurred

during model validation. Another advantage is the ability to reuse the logic of working

with individual entities. To implement BLL, the AppBLL class was created, which

implements the IAppBLL interface, as well as service classes that, like repositories, wrap

the logic for working with a specific entity. To be able to access the service through the

BLL, a factory method was implemented, the principle of which is identical to the factory

method of the repositories, so the author will not describe its implementation.

For the controllers to be able to handle erroneous requests, two exception classes

NotFoundException and ValidationException were created, which throws an exception

when a validation error occurs on the BLL side, so the controller does not know anything

about whether the content of a request is correct or not, but can answer to the client in

case of an error, for example by sending a "404" response code.

Since the BLL implementation is similar to the DAL, the author does not see the point in

describing almost the same thing again, so the accent will be made only on the transfer of

information between the BLL and the controllers. As in the case of DAL entities, it was

possible to use the AutoMapper package, but since the entity API and DAL DTO are very

different, the author has decided to convert them manually on the BLL side. The

advantage of this way is that the controllers do not know anything about the form in which

the data comes from the DAL, as well as what happens to it. There is a downside – it can

be said that controllers depend on the DTO APIs. However, the author considered this

insignificant, because, when the app logic changes and if the clients are already using the

API, it is better to create a new service and controller that will use different logic and

return new DTOs, so that the old versions will not be broken.

4.2.7 Handling soft update entities

To implement order history tracking, it is necessary to save the previous versions. Entities

with soft update capability must inherit from DomainEntityIdSoftUpdate (see 4.2.2

Domain entities). When the DomainEntityIdSoftUpdate entities are updated, a copy is

created to save the previous version, the date of the update is set in the deletedAt field and

40

the identifier of the original record is set in the masterId field. Thus, there is no need to

update all dependent entities, and the entire history of the entity can be queried if

necessary (see Figure 12).

public virtual async Task UpdateAsync(TDTO dto)
{
 TEntity trackedEntity = await DbSet.FindAsync(dto.Id);
 TEntity entityToTrack = MapToEntity(dto);

 foreach (var entity in DbSet.Local)
 {
 if (entity.Id.Equals(dto.Id))
 {
 DbContext.Entry(entity).State = EntityState.Detached;
 }
 }

 if (trackedEntity is IDomainEntitySoftUpdate softUpdate)
 {
 softUpdate.MasterId = trackedEntity.Id;
 trackedEntity.Id = 0;
 await DbSet.AddAsync(trackedEntity);
 }

 DbSet.Update(entityToTrack);
}

When updating, the current version must be obtained, then it is "detached" from the

context so that there are no problems if the entity is already tracked somewhere in the

application. Further, if the entity requires a soft update, a copy is created and added to the

context as a newly added entity. At this stage, the date is not added, because when

updating a set of entities, it may take a couple of seconds, which may affect the query for

history, if entities also have child entities with history, such as orders that have attributes.

The date is applied to DbContext to all changed entities (see 4.2.3 Entity Framework

database context).

4.2.8 Querying of an actual data

Since the application supports soft update and soft delete, this must be considered when

requesting data from the context, since in both cases, the data of deleted entities and old

versions are no longer actual. To get valid data, the author used the filtering capabilities

of the Entity Framework [49] (see Figure 13).

Figure 12. Entities update method with soft update handling

41

await _context.AttributeTypes.CountAsync(at => at.DeletedAt == null)

Entity Framework will automatically consider filtering when creating a database query,

without taking up resources and memory to load irrelevant data. The author has

implemented soft update in the way that both when soft deleting and when soft updating

an entity, the date of deletion is set. Thus, to filter out such entities, it is enough to check

for deletedAt.

4.2.9 API controllers

To implement API requests handling, the author has created 6 API controllers (see Table

8).

Table 8. API controllers

Name API base url Description

IdentityController /api/v1/identity Handles authorization and user

management

AttributesController /api/v1/attributes Handles attributes management

AttributeTypesController /api/v1/attributetypes Handles attribute types, type values and

type units management

HomeController /api/v1 For the client to check if server is online

OrdersController /api/v1/orders Handles orders and order attributes

management

TemplatesController /api/v1/templates Handles templates and template attributes

management

Not all controllers are responsible for only one entity, for example,

AttributeTypesController is responsible also for the type's defined values and units of

measurement.

4.2.10 Security

To authorize users into applications, the author used jwt (Json Web Token) as an enough

secure and simple authorization method [50]. In order not to indicate to each controller

that authorization goes through jwt, the default authorization and authentication schemes

were written in the configuration of the Startup.cs executable file (see Figure 14).

Figure 13. Example of actual data query

42

.AddAuthentication(options =>

{

 options.DefaultScheme = JwtBearerDefaults.AuthenticationScheme;

 options.DefaultAuthenticateScheme = JwtBearerDefaults...;

 options.DefaultChallengeScheme = JwtBearerDefaults...;

})

To differentiate access to individual API endpoints, a special attribute was added to each

of the API controllers (see Figure 15).

[Authorize(Roles = "User, Administrator, Root")]

This attribute tells the controller that this method (or the whole controller) can be accessed

by users with the “User”, “Administrator”, or “Root” (Super Administrator) roles.

The author has restricted the access to the application by roles the following way: only

authorized users can interact with the API, except for the login method; users with the

“User” role can view orders in the calendar, but cannot add orders or change the structure:

templates, attributes, types, etc; "Administrator" and "Root" users can change the all.

Users with the “Administrator” role differ from “Root” (Super Admin) only in that “Root”

is needed to add users and administration and cannot be changed from the application.

4.2.11 Swagger

For more convenient API development, as well as manual testing of the server logic, the

author installed the Swashbuckle.AspNetCore.SwaggerGen – Swagger package. Also, in

the future, the availability of this tool will make further development easier.

4.3 Frontend

The client application is an important part of the solution since it wraps the work with the

server in the form of an interface that an ordinary person can work with without delving

into the specifics of the API and the server logic.

Figure 14. Default authentication and authorization scheme

Figure 15. Example of restricting access to controllers

43

4.3.1 Client application initialization

When creating a project through the console, it is possible to select an application

configuration. The author has chosen the following configuration (see Figure 16).

The TypeScript was chosen as the program language for the possibility of typing

components, which will make development easier. NPM was chosen as a package

manager, since the author has experience with it, unlike Yarn package manager.

For the interface of the app, the author decided to use frameworks to save time. The author

has chosen Vuetify as a framework, even though the author has more experience with

Bootstrap. This framework provides special Vue components, which is certainly more

convenient than writing style classes for each component, but it is possible to use style

classes too. An additional feature is the presence of a building fully customizable calendar

component, which will facilitate the creation of a calendar view for orders.

Among other things, Axios library, because it is a light and easy way to communicate

between client and APIs; ESlint is a useful plugin that ensures code cleanliness, especially

when the project is developed by more than one person; and SPA application mode.

4.3.2 Client app structure

By default, when creating a Nuxt project, several empty folders are created, which are

needed for the Nuxt engine to automatically recognize and include content in the

application. The following is the structure of the finished application (see Figure 17).

Figure 16. Nuxt project initialization

44

The entire project is contained in the root folder, where in addition to folders, the stored

configuration also, for example, nuxt.config.js, tsconfig.json, package.json, and others.

All application pages are stored in the pages folder. The structure of this folder is the

router configuration of the application [51]. So, for example, the index.vue file in this

folder will be available at https://<app_url>/index. To specify page parameters, for

example, an entity id, an underscore, and the name of the parameter is added to the title,

for example – _id. The index.vue file in the root folder is the main page of the

app – calendar view. The rest of the pages are arranged in subfolders of the corresponding

entity, for example: /templates, /orders, etc.

Reusable parts are moved into a components folder. Unlike pages, other folders have no

structure restrictions. The common features of each page are moved into separate layout

files, such as a navigation bar, etc. Layouts are stored in the layouts folder.

The models folder contains DTOs for working with server APIs. Files providing

requesting functionality the author named “repos” – repositories; and placed in the dal

folder. From there, they can be used in both pages and store components, which are in the

store folder.

Files that provide additional functionality are stored in utils and plugins folders. The utils

folder contains utility functions such as form validation, etc. Plugins, stored in the plugins

folder, can be used to add functionality to the nuxt context. A common example of a

plugin would be Vue plugin initialization that connects Vue plugin to Nuxt instance.

Figure 17. Client application structure

45

4.3.3 API calls

The author has chosen axios for sending and receiving requests as it is very simple and

useful enough. However, by default, when an error response is received from the server,

axios interprets it as an own error and does not pass the result on. To avoid this, errors

handling must be in every request. Since this is relevant for every request, the author has

created a base class from which other repositories inherit and which contains wrapper

methods for axios methods, including error handling.

protected async _get<TKey>(url: string, onError?: ErrorCallback, config?:
AxiosRequestConfig | undefined): Promise<TKey> {

 const response = await this.axios.$get<TKey>(url, config)

 .catch((err: AxiosError) => responseCatch(err, onError))

 return response

 }

When an error response is received, it is passed on because the error contains a message

that can be displayed in forms when they are submitted. In addition, this method can take

a callback function as a parameter, which will be executed when an error response is

received. The responseCatch function checks if it was an error response, if it was, it

executes the callback function if provided and returns the content of the response.

Since in this case, axios is a nuxt plugin, axios can only be used from nuxt pages or

components. To solve the problem of direct usage of API, the author has created the unit

of work plugin, that will provide axios instance to all components that require it. To create

a unit of work must be considered two things, it must be accessible from the nuxt context,

and, it must use the axios instance supplied from the nuxt context. The implementation

was inspired by Alexander Lichter [52] (see Figure 19).

const AppUnitOfWork: Plugin = (ctx: Context, inject: Inject) => {

 const repositories: IAppUnitofWork = {

 attributes: new AttributesRepo(ctx.$axios),

 ...

 orders: new OrdersRepo(ctx.$axios)

 }

 inject('uow', repositories)

}

Figure 18. Axios GET method wrapper with error handling

Figure 19. Nuxt unit of work plugin

46

This plugin takes a nuxt context as a parameter, which is supplied through dependency

injection, takes an axios instance from it and creates repositories. Repositories are stored

in a repositories array. Next, the plugin inserts an array with repositories into the nuxt

context, which makes them available in pages and components.

4.3.4 Vuex storage

To save and share data between pages, the author used the Vuex store. The additional

advantage of this approach is the ability to place the logic for working with the created

previously unit of work also in vuex store, which will ensure the independence of the

interface from the implementation of requests to the API.

The problem is that even though the store is autodetected by the nuxt engine and

accessible from the context, the store components themselves do not have access to the

context. To solve this, the author has created two files – vue-context.ts and

context-accessor.ts. The vue-context.ts file provides a function that saves the context to a

variable, which can then be imported. The context-accessor.ts file is a nuxt plugin, its job

is to get the context and save it by calling a function from vue-context.ts. Thus, by

importing the variable, the context can be used in any file.

By default, vuex was designed for JavaScript, which means there is no typing in it. This

can be fixed by using the vuex-module-decorators module, which provides decorator

methods as well as typing for vuex [53].

Further, the author describes the author implementation of the unique cases of individual

components.

4.3.5 Attribute types

For attribute types, the author has implemented the ability to view all types, with the

ability to search and sort by name, as well as display page by page, 12 pieces1 on each

page. The author also has included attribute type category in the list: “regular”, “system”,

“with defined values”, and “with defined units of measurement”. Categories can overlap.

1 12 – the number of elements that fit on the screen

47

The type details display the available values and units, which ones are assigned by default,

and the format of stored data. Since the data format is Enum with the numeric value, it

needs to be converted to a string. To do this, the author used the capabilities of Vue filters

[54].

Vue.filter('formatDataType', function (value: any) {

 if (typeof value !== "string" && isNaN(Number(value))) return value;

 return localize(value as DataType)

})

Here the localize function takes a number as input and returns a string with the name of

the data format.

When creating types, there must a default value, or predefined values, in which case at

least one value must be specified. To add values and units of measurement, the author

created two dialog components (see Appendix 5).

When creating, the data format is required, which affects only the data display, which

means that the form for entering values must also be displayed correctly. For this, the

author has created a component CustomValueField.vue that takes a type as a parameter

and substitutes the correct fields for entering values (see Appendix 6). The

implementation of the change page is a little more complicated, as some values and units

may already exist, but new ones may also be added, and this must be considered when

updating and displaying in form.

When deleting, a confirmation window is shown to prevent the type from being deleted

in the event of an accidental click.

The attribute types implementation result can be found in Appendix 10.

4.3.6 Attributes

The difference of the attributes index page is the presence of types and the ability to sort

not only by name but also by type.

When creating an attribute, the user can specify the name and select the attribute type in

the drop-down list. The list of attributes is dynamic, because if there are many types, it

may take time to fully load them, so this field assumes that the user must enter part of the

Figure 20. Attribute type format display filter

48

type name to select it. To get types, the same logic is used for displaying all types on a

page, only the first page is always requested, and the server returns only 12 types, which,

however, is enough if there are not many of them.

Attribute details show the name, type of attribute, format, default value, and amount of

use, which is important because the user cannot change the type of an attribute that is

already in use, as this will lead to data loss, since different types differ not only by format,

but also by defined values and units. For a user-friendly design, when clicking on an

attribute type, the user will be transferred to the type details page. Deletion is also

available only if the attribute is not used.

The attributes implementation result can be found in Appendix 11.

4.3.7 Order templates

In this case, the author considered creating a page for details inappropriate, since

templates have only a name and attributes that can be displayed on a page with all

templates. Since there can be a lot of attributes in a template, the author designed the

templates on the page in the form of an expansion panel, upon expanding which attributes

appear, which in turn can also be opened to see the type of attribute, the format, and also

whether the attribute uses defined values and units of measurement.

The order templates implementation result can be found in Appendix 12.

4.3.8 Orders

To display all orders, the author made two separate views – a view with all orders, and a

calendar view, since the first allows to get more detailed information on all orders. Since

orders can be without a date, the author has subdivided the page with all orders into two

pages using different server API endpoints. To conveniently filter orders, the author

implements a dialog component that allows to filter orders by completion, overdue,

specify a date range and a check date to see what the status of orders was in a certain

period (only for orders with a deadline date). To be able to select a date, the author also

implemented a date selection dialog. Filtering and date picker dialog components

implementation can be found in (filtering in Appendix 7, picker in Appendix 8).

To implement the calendar view, the author used the Vuetify <v-calendar> component,

which can be customized by overriding the implementation of individual parts [55]. To

49

display orders in the calendar, the author has overridden the implementation of the

calendar day, displaying the number of orders, as well as the selected attributes in the

order cell. The obvious problem is that only a small number of orders can fit into a cell,

however, programmatically limiting the number of orders is not the best solution, so the

author has also overridden the label of the calendar date. Initially, the date in the calendar

is displayed as a day of the month, to replace it, the author created the CalendarMenu.vue

component, which displays the date in the “DD-MM-YYYY” format using the moment.js

library, and also upon clicking on the date, displays a menu, with orders for a given date.

For convenience, if some orders do not fit into the cell of the day, a “v” symbol appears

next to the date, indicating that the user can view all orders when clicked.

The window next to the calendar displays information about the selected order: order

number, deadline, attributes, and a note. For convenience, there are three buttons

downward: a button for quickly marking an order as completed or vice-versa; a button for

going to the details page, and a button for changing an order.

When creating an order, the user need to not only select an attribute but also assign values

to it. To select attributes, the author created the AttributeSellect.vue component, which is

a dynamic list, and the AttributeValueSellect.vue component, which takes an attribute

type as a parameter and shows a form for entering a value (or selecting from the list of

available ones) and selecting units of measurement if they are used by the given attribute

type. The implementation of these components can be found in Appendix 9. Changes to

orders are also implemented using these components.

For report generation, the author has created a separate modal window component. The

jsPDF library was used as a pdf generator, since it allows to use HTML for generation,

which makes the task easier, and also, the text remains selectable in a pdf file, which is

certainly important because employees need to be able to work with the report further.

Upon creating a report, the user can select a date range (for orders with a date), and after

generating, the pdf file opens in a new browser window, which allows to immediately

start printing. An example report can be found in Appendix 15.

The order implementation result can be found in Appendix 13.

50

4.3.9 Forms validation

Since the author chose Vuetify as the UI framework, the form component and input field

components have built-in validation. For validation, an array of validation functions that

check the condition and return either true or a string with an error message must be passed

to form components. Initially, the author wanted to use third-party validation libraries -

Vee-validate and Vuelidate, however, the author found them too complicated to use, so it

was decided to create a file with pre-installed validation functions. One of these is the

required function for validating simple fields (see Figure 21).

export const required = () => (value: any) => {

 if (typeof(value) === "string" && value.length > 0) return true

 if (typeof(value) === "number" && !isNaN(value)) return true

 return !!value || `Данное поле обязательно`

}

This function checks the value for a string or number and applies the corresponding

checks for the existence of the value, otherwise, it casts the value to boolean and checks

it. Thus, for each component or page, the same functions can be imported and passed in

an array as a parameter. Then, when submitting the form, the form validates all fields,

and if they are valid, a request is made to the server through the vuex store and unit of

work.

4.3.10 Security

First, the author has implemented the user login capabilities by creating a login page with

a form. After the jwt token is received, it is saved in the vuex store, as well as in the local

storage of the browser, so that the token is shared not only between components but also

when the page is reloaded. However, in this case, it is necessary to check if the token is

correct. At this stage, the author decided that it is sufficient to check the token's expiration

date and delete it if it is out of date. To work with the token, the user’s vuex store sets it

to the axios instance obtained through context-acessor.ts (see 4.3.4 Vuex storage), so that

all requests made after could have an authorization token.

To manage users, the author has created a page where users can change personal data and

administrators can manage other users. The access logic in this component is the same as

on the server, administrators can change other users, but not administrators, super admin

Figure 21. Custom validation function example

51

can change everyone except himself, including setting the “User” and “Admin” roles. The

result of the user page implementation can be found in Appendix 14.

To restrict user access to certain parts of the application, the author used the capabilities

of the nuxt middlewares and created a middleware that checks whether the user is logged

in and what role he belongs to. If users are not in the system, it will be redirected to a

page with a login form, and if an ordinary user tries to open pages intended for

administrators only, he will be redirected to the main page – with a calendar view, that is

available for all authorized users.

4.4 Testing

To check the functionality of the application, the author tested each endpoint manually

with different input parameters. Among the checks, the author checked both application

validation, fault tolerance when entering a large amount of data, as well as stability when

changing and deleting entities on which other entities depend. Also, the author has tested

the client application for declared functionality.

During development, the application was not tested through unit tests, since writing them

requires additional time, and the author does not have enough experience to write high-

quality tests. However, during the development of the application, the prerequisites for

full testing were created due to the modular structure of the application.

52

5 Further development

The next steps after the development of the application are to install it in the workplace

and test it in real work conditions. It is necessary to explain to employees how to use the

application. The application must be user-friendly and free from critical errors in working

with data.

Further development of the application will be aimed at realizing the wishes of

employees, increasing additional functionality, identifying, and fixing potential errors,

improving the interface, as well as integrating with the general system when it will be

developed. The author plans to change the solution according to the changes of business

requirements.

When developing the next versions, the author plans to write unit tests, since now the

application can be tested manually, however, as the application grows, manual testing

will become impossible. Also, for the application to work correctly in real conditions, the

author plans to log the application's actions to detect a potential error as early as possible.

The further development will not be described in this document.

53

6 Summary

The enterprise delivers manufactured products; for this, a logistic group keeps records of

what product, in what quantity, when, where, and by whom it is delivered. The problem

for the enterprise was to use standard accounting tools, which, although they coped with

the task at hand, the staff needed to spend time on unnecessary work every time. To solve

this, the enterprise set the task of developing a more highly specialized application that

would allow employees to concentrate on completing their tasks. The purpose of the

thesis was to solve the problem of the enterprise by creating that application.

During the development, the author solved all the tasks. The required functionality of the

application was determined based on the collection of employees requirements and the

analysis of third parties applications that offer their own solution to the problem. Further,

having determined the optimal path, the author developed the application for

manufactured products accounting. The application allows to create orders, specify their

attributes, and customize the attributes, specifying both the valid values and units of

measurement and the data format. At the request of the enterprise was also implemented

the ability to view the history of changes in orders, display in a calendar form, and export

orders for a certain period.

The application has a modular architecture that provides the ability to test business logic,

replace certain parts and integrate with other systems. At the moment, the application has

taken its place as a tool of the logistics group of the Novotrade Invest AS enterprise. The

solution saves employees time approximately 6-12 hours per week, depending on the

number and complexity of orders. In case of continuing work, the author is ready to

continue working on further improving of application.

The created solution can also be used for solving similar problems in other manufacturing

enterprises and not only.

54

References

[1] "VNK - Home," [Online]. Available: http://www.vnk.ee. [Accessed 23.02.2021].

[2] P. E. IBM, "Capturing Architectural Requirements," 15.11.2005. [Online].

Available: https://www.ibm.com/developerworks/rational/library/4706-pdf.pdf.

[Accessed 11.04.2021].

[3] S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," March

1997. [Online]. Available: https://www.ietf.org/rfc/rfc2119.txt. [Accessed

11.04.2021].

[4] "Share excel file at the same time," ExelTABLE, [Online]. Available:

https://exceltable.com/vozmojnosti-excel/sovmestnyi-dostup-k-failu-excel.

[Accessed 29.03.2021].

[5] Mircosoft, "Compare OneDrive cloud storage pricing and plans," Microsoft,

[Online]. Available: https://www.microsoft.com/en-us/microsoft-

365/onedrive/compare-onedrive-plans?activetab=tab:primaryr2. [Accessed

29.03.2021].

[6] Microsoft, "Getting started with VBA in Office," Microsoft, 14.08.2019. [Online].

Available: https://docs.microsoft.com/en-us/office/vba/library-

reference/concepts/getting-started-with-vba-in-office. [Accessed 11.04.2021].

[7] 1C, "Overview of the "1C: Enterprise 8" system," [Online]. Available:

https://v8.1c.ru/tekhnologii/overview/. [Accessed 30.03.2021].

[8] K. Ramil, "Why 1C is bad and why 1C programmers are so disliked," 02.12.2014.

[Online]. Available: https://habr.com/ru/company/trinion/blog/244727/. [Accessed

11.04.2021].

[9] 1C, "1C: Enterprise 8 - Prices and delivery procedure," [Online]. Available:

https://v8.1c.ru/price/. [Accessed 11.04.2021].

[10] A. Pascal, ""Operational accounting" on the "Ananas" platform - User's Guide,"

2007. [Online]. Available: https://ananas.su/docs/ananas-inventory-user-

manual.pdf. [Accessed 11.04.2021].

[11] Ananas, "Installing Ananas for Windows," 27.07.2009. [Online]. Available:

https://ananas.su/wiki/Установка_Ананаса_для_Windows. [Accessed

11.04.2021].

[12] "FREE ANANAS PROGRAM," Freeanalogs team, 04.02.2016. [Online].

Available: https://freeanalogs.ru/Ananas. [Accessed 11.04.2021].

[13] "GoRamp TMS," GoRamp, [Online]. Available: https://goramp.eu/. [Accessed

30.03.2021].

[14] Utech Corp, "UTECH TMS | Transportation Management Software - Demo,"

[Online]. Available: https://www.youtube.com/watch?v=JIsLCuIDEwQ.

[Accessed 30.03.2021].

55

[15] C. Richardson and J. R. Rymer, “New Development Platforms Emerge For

Customer-Facing Applications,” Forrester, June 9, 2014.

[16] C. Richardson and J. R. Rymer, "Low-Code Platforms Deliver Customer-Facing

Apps Fast, But Will They Scale Up?," Forrester, August 11, 2015 | Updated:

August 13, 2015.

[17] "Trello," Atlassian, [Online]. Available: https://trello.com/. [Accessed

11.04.2021].

[18] "The online collaborative whiteboard platform to bring teams together, anytime,

anywhere.," Miro, [Online]. Available: https://miro.com/index/. [Accessed

11.04.2021].

[19] "One tool for your whole team. Write, plan, and get organized.," Notion Labs,

Inc., [Online]. Available: https://www.notion.so/. [Accessed 05.04.2021].

[20] G. Perlman, "Web, Desktop, Mobile, or Cross-Platform: Options for App

Developers," 12.01.2017. [Online]. Available:

https://learntocodewith.me/posts/cross-platform-apps/#web-applications.

[Accessed 04.04.2021].

[21] A. S. Gillis, "What is native app?," August 2020. [Online]. Available:

https://searchsoftwarequality.techtarget.com/definition/native-application-native-

app. [Accessed 04.04.2021].

[22] Sam Richard and Pete LePage, "What are Progressive Web Apps?," Google,

24.02.2020. [Online]. Available: https://web.dev/what-are-pwas/. [Accessed

17.03.2021].

[23] J. Paul, "Top 5 Programming languages for Web development in 2021,"

13.02.2021. [Online]. Available: https://medium.com/javarevisited/top-5-

programming-languages-for-web-development-in-2021-f6fd4f564eb6. [Accessed

22.03.2021].

[24] "TIOBE Index for March 2021," TIOBE, 03 2021. [Online]. Available:

https://www.tiobe.com/tiobe-index/. [Accessed 22.03.2021].

[25] J. Toledo, "Why Millions of Developers use JavaScript for Web Application

Development," 07.06.2018. [Online]. Available:

https://torquemag.io/2018/06/why-millions-of-developers-use-javascript-for-web-

application-development/. [Accessed 04.04.2021].

[26] Microsoft, "Typed JavaScript at Any Scale.," Microsoft, [Online]. Available:

https://www.typescriptlang.org/. [Accessed 04.04.2021].

[27] T. Merkle, "Why Angular Made Me Quit Web Dev," 05.11.2018. [Online].

Available: https://hackernoon.com/why-angular-made-me-quit-web-dev-

f63b83a157af. [Accessed 12.04.2021].

[28] D. Han, "My React App is Slow. What Should I do?," Nov 8, 2019, 08.11.2019.

[Online]. Available: https://medium.com/in-the-weeds/my-react-app-is-slow-

what-should-i-do-e1fd020e69ec. [Accessed 12.04.2021].

[29] O. Omole, "Nuxt.js: a Minimalist Framework for Creating Universal Vue.js

Apps," 18.03.2019. [Online]. Available: https://www.sitepoint.com/nuxt-js-

universal-vue-js/. [Accessed 12.04.2021].

[30] Microsoft, "What is .NET?," [Online]. Available:

https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet. [Accessed 04.04.2021].

56

[31] A. Lock, "Getting started with ASP.NET Core," 23.06.2020. [Online]. Available:

https://andrewlock.net/aspnetcore-in-action-2e-getting-started-with-asp-net-core/.

[Accessed 04.04.2021].

[32] Microsoft, "Getting Started with EF Core," 17.09.2019. [Online]. Available:

https://docs.microsoft.com/en-us/ef/core/get-started/overview/first-

app?tabs=netcore-cli. [Accessed 07.04.2021].

[33] Microsoft, "An introduction to NuGet," 24.05.2019. [Online]. Available:

https://docs.microsoft.com/en-us/nuget/what-is-nuget. [Accessed 12.04.2021].

[34] Microsoft, "Introduction to Identity on ASP.NET Core," 15.07.2020. [Online].

Available: https://docs.microsoft.com/en-

us/aspnet/core/security/authentication/identity?view=aspnetcore-5.0&tabs=visual-

studio. [Accessed 12.04.2021].

[35] METANIT.COM, "Introduction to Java," [Online]. Available:

https://metanit.com/java/tutorial/1.1.php. [Accessed 12.04.2021].

[36] P. Banerjee, "Top 10 Most Popular Java Frameworks for Web Development,"

03.10.2020. [Online]. Available: https://www.geeksforgeeks.org/top-10-most-

popular-java-frameworks-for-web-development/. [Accessed 04.04.2021].

[37] Oracle, "A quick tour of Java EE," [Online]. Available:

https://www.oracle.com/java/technologies/java-ee-glance.html. [Accessed

12.04.2021].

[38] MDN contributors, "Django introduction," [Online]. Available:

https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction.

[Accessed 12.04.2021].

[39] S. Bhatt, "Pros and Cons of Django Framework for App Development," Aug. 31,

20. [Online]. Available: https://dzone.com/articles/pros-and-cons-of-django-

framework-for-app-developm. [Accessed 12.04.2021].

[40] R. C. Martin, Clean Architecture, USA: Pearson Education, 2018.

[41] "Common web application architectures," 12.01.2020. [Online]. Available:

https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-

azure/common-web-application-architectures. [Accessed 20.03.2021].

[42] W3C, "SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)," 27

April 2007. [Online]. Available: https://www.w3.org/TR/soap12/. [Accessed

12.04.2021].

[43] R. T. Fielding, "Representational State Transfer (REST)," 2000. [Online].

Available: https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm. [Accessed

12.04.2021].

[44] GraphQL community, "Security," [Online]. Available:

https://www.howtographql.com/advanced/4-security/. [Accessed 12.04.2021].

[45] "Comparing Database Management Systems: MySQL, PostgreSQL, MSSQL

Server, MongoDB, Elasticsearch and others," altexsoft, 20.07.2019. [Online].

Available: https://www.altexsoft.com/blog/business/comparing-database-

management-systems-mysql-postgresql-mssql-server-mongodb-elasticsearch-and-

others/. [Accessed 26.04.2021].

[46] "Datatypes In SQLite Version 3," [Online]. Available:

https://www.sqlite.org/datatype3.html. [Accessed 07.04.2021].

[47] M. Fowler, Patterns of Enterprise Application Architecture, Indiana: Addison-

Wesley, 2002.

57

[48] L. Esposito, "The Mythical Business Layer," CODE Magazine, 2014 -

November/December.

[49] Mircosoft, "Entity Framework Core Docs," Mircosoft, 20.09.2020. [Online].

Available: https://docs.microsoft.com/en-us/ef/core. [Accessed 17.04.2021].

[50] Auth0, "JSON Web Token," Auth0, [Online]. Available: https://jwt.io/. [Accessed

17.04.2021].

[51] NuxtJS, "Nuxt Docs," NuxtJS, [Online]. Available: https://nuxtjs.org/docs/2.x/get-

started/. [Accessed 17.04.2021].

[52] A. Lichter, "Organize and decouple your API calls in Nuxt.js," 18.04.2020.

[Online]. Available: https://blog.lichter.io/posts/nuxt-api-call-organization-and-

decoupling/. [Accessed 17.04.2021].

[53] A. Gupta, "vuex-module-decorators," [Online]. Available:

https://github.com/championswimmer/vuex-module-decorators. [Accessed

29.04.2021].

[54] "Vue docs," [Online]. Available: https://ru.vuejs.org/v2/guide/. [Accessed

17.04.2021].

[55] Vuetify, "Vuetify docs," [Online]. Available:

https://vuetifyjs.com/en/components/calendars/. [Accessed 17.04.2021].

[56] S. Ivanenko, "Vue: how to use multiple templates in spa," 31.12.2018. [Online].

Available: https://si-dev.com/ru/blog/vue-multiple-layouts. [Accessed

12.04.2021].

[57] "The best development tool for agile teams," Atlassian, [Online]. Available:

https://www.atlassian.com/ru/software/jira. [Accessed 11.04.2021].

58

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Aleksandr Ivanov

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Product Delivery Accounting Solution for Manufacturing Enterprise”,

supervised by Nadežda Furs

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

27.04.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

59

Appendix 2 – ER Diagram (ERD)

60

Appendix 3 – Data initialization

public static void SeedData(AppDbContext context, ILogger? logger)
{
 logger.LogInformation("SeedData");

 var types = new List<AttributeType>()
 {
 new()
 {
 Name = "Строка",
 DataType = AttributeDataType.String,
 SystemicType = true,
 DefaultCustomValue = ""
 },
 new()
 {
 Name = "Тождество",
 DataType = AttributeDataType.Boolean,
 SystemicType = true,
 DefaultCustomValue = "false"
 },
 new()
 {
 Name = "Целое число",
 DataType = AttributeDataType.Integer,
 SystemicType = true,
 DefaultCustomValue = "0"
 },
 new()
 {
 Name = "Число с плавающей точкой",
 DataType = AttributeDataType.Float,
 SystemicType = true,
 DefaultCustomValue = "0.00"
 },
 new()
 {
 Name = "Дата",
 DataType = AttributeDataType.Date,
 SystemicType = true,
 DefaultCustomValue = ""
 },
 new()
 {
 Name = "Время",
 DataType = AttributeDataType.Time,
 SystemicType = true,
 DefaultCustomValue = "12:00"
 },
 new()
 {
 Name = "Дата со временем",
 DataType = AttributeDataType.DateTime,
 SystemicType = true,
 DefaultCustomValue = "false"
 },
 };

 foreach (var type in types)
 {
 context.AttributeTypes.Add(type);
 }

 context.SaveChanges();
}

61

Appendix 4 – DAL Mapper

public class UniversalMapper : IUniversalMapper
{
 private readonly IMapper _mapper;
 private readonly MapperConfiguration _configuration;

 public UniversalMapper()
 {
 _configuration = new MapperConfiguration(config =>
 {
 CreateTwoWayMap<Entities.Attribute, DTO.Attribute>(config);
 CreateTwoWayMap<Entities.AttributeType, DTO.AttributeType>(config);
 CreateTwoWayMap<Entities.AttributeTypeUnit, DTO.AttributeTypeUnit>(config);
 CreateTwoWayMap<Entities.AttributeTypeValue, DTO.AttributeTypeValue>(config);
 CreateTwoWayMap<Entities.Order, DTO.Order>(config);
 CreateTwoWayMap<Entities.OrderAttribute, DTO.OrderAttribute>(config);
 CreateTwoWayMap<Entities.Template, DTO.Template>(config);
 CreateTwoWayMap<Entities.TemplateAttribute, DTO.TemplateAttribute>(config);
 CreateTwoWayMap<Entities.Enums.AttributeDataType,
DTO.Enums.AttributeDataType>(config);
 config.AllowNullDestinationValues = true;
 });

 _mapper = _configuration.CreateMapper();
 }

 public MapperConfiguration Configuration => _configuration;

 public virtual TOutObject Map<TInObject, TOutObject>(TInObject inObject) =>
 _mapper.Map<TInObject, TOutObject>(inObject);

 private static void CreateTwoWayMap<TFirstObject, TSecondObject>(IProfileExpression config)
 {
 config.CreateMap<TFirstObject, TSecondObject>();
 config.CreateMap<TSecondObject, TFirstObject>();
 }
}

62

Appendix 5 – Units and Values add dialogs

<template>

 <v-dialog v-model="active" max-width="600px">

 <v-form class="mt-6" @submit.prevent="onSubmit()" ref="form">

 <v-card>

 <v-card-title>

 Добавить значение

 </v-card-title>

 <v-card-text>

 <v-container>

 <v-text-field

 v-model="newValue"

 label="Значение поля"

 :rules="rules.value"

 />

 </v-container>

 </v-card-text>

 <v-card-actions>

 <v-spacer></v-spacer>

 <v-btn color="blue darken-1" text @click.stop="onClose()"

 >Отмена</v-btn

 >

 <v-btn color="blue darken-1" text type="submit">Сохранить</v-btn>

 </v-card-actions>

 </v-card>

 </v-form>

 </v-dialog>

</template>

<script lang="ts">

import { Component, Vue, Prop } from "nuxt-property-decorator";

import { required } from "~/utils/form-validation";

@Component({

 components: {},

})

export default class UnitAddDialog extends Vue {

 @Prop()

 value!: boolean;

 @Prop()

 model!: string;

 rules = {

 value: [required()],

 };

 get newValue() {

 return this.model;

 }

 set newValue(value) {

 this.$emit("change", value);

63

 }

 get active() {

 return this.value;

 }

 set active(value) {

 this.$emit("input", value);

 }

 onClose() {

 (this.$refs.form as any).resetValidation()

 this.active = false;

 }

 onSubmit() {

 if ((this.$refs.form as any).validate()) {

 this.$emit("submit");

 this.onClose();

 }

 }

}

</script>

Result:

64

Appendix 6 – CustomValueField component

<template>

 <v-input v-if="isBoolean">

 <v-spacer></v-spacer>

 <v-switch :label="switchLabel" v-model="fieldValue"></v-switch>

 <v-spacer></v-spacer>

 </v-input>

 <v-text-field

 v-else-if="isString"

 :label="label"

 v-model="fieldValue"

 :rules="rules.string"

 ></v-text-field>

 <v-text-field

 v-else-if="isInteger"

 :label="label"

 v-model="fieldValue"

 type="number"

 :rules="rules.integer"

 ></v-text-field>

 <v-text-field

 v-else-if="isFloat"

 :label="label"

 v-model="fieldValue"

 type="number"

 step=".01"

 :rules="rules.float"

 ></v-text-field>

 <div v-else-if="isDate">

 <DateTimePicker

 v-model="fieldValue"

 :label="label"

 :hasTime="false"

 :rules="rules.date"

 />

 </div>

 <div v-else-if="isTime">

 <DateTimePicker

 v-model="fieldValue"

 :label="label"

 :hasDate="false"

 :rules="rules.time"

 />

 </div>

 <div v-else-if="isDateTime">

 <DateTimePicker

 v-model="fieldValue"

 :label="label"

 :rules="rules.dateTime"

 />

 </div>

</template>

65

<script lang="ts">

import { Component, Prop, Vue, Watch } from "nuxt-property-decorator";

import { DataType } from "~/models/Enums/DataType";

import DateTimePicker from "~/components/common/DateTimePicker.vue";

import { required, integer, float } from "~/utils/form-validation";

@Component({

 components: {

 DateTimePicker,

 },

})

export default class CustomValueField extends Vue {

 @Prop()

 dataType!: DataType;

 @Prop()

 value!: string;

 dateTimeTab = null;

 rules = {

 string: [required()],

 date: [required()],

 time: [required()],

 dateTime: [required()],

 integer: [required(), integer()],

 float: [required(), float()],

 };

 @Prop()

 label!: string;

 get fieldValue() {

 switch (this.dataType) {

 case DataType.Boolean:

 return this.value === "true" ? true : false;

 default:

 return this.value;

 }

 }

 set fieldValue(value: any) {

 if (value == null) {

 this.$emit("input", "");

 } else {

 this.$emit("input", String(value));

 }

 }

 get switchLabel() {

 let value = this.fieldValue ? "Да" : "Нет";

 return `${this.label}: ${value}`;

 }

 get isBoolean() {

 return this.dataType === DataType.Boolean;

66

 }

 get isString() {

 return this.dataType === DataType.String;

 }

 get isInteger() {

 return this.dataType === DataType.Integer;

 }

 get isFloat() {

 return this.dataType === DataType.Float;

 }

 get isDate() {

 return this.dataType === DataType.Date;

 }

 get isTime() {

 return this.dataType === DataType.Time;

 }

 get isDateTime() {

 return this.dataType === DataType.DateTime;

 }

 @Watch("dataType")

 onDataTypeChanged(newType: DataType) {

 let newValue = "";

 if (newType === DataType.Integer) {

 newValue = "0";

 } else if (newType === DataType.Float) {

 newValue = "0.00";

 } else if (newType === DataType.Boolean) {

 newValue = "false";

 }

 this.$emit("input", newValue);

 }

}

</script>

67

Result:

String datatype field:

Time datatype field:

Boolean datatype field:

68

Appendix 7 – Orders filtration dialog

<template>

 <v-dialog v-model="active" max-width="600px">

 <v-form class="mt-6" @submit.prevent="onSubmit()" ref="form">

 <v-card>

 <v-card-title>Настроить фильтрацию</v-card-title>

 <v-card-text>

 <v-container>

 Фильтровать по выполнению

 <v-slider v-if="hasDeadline"

 :tick-labels="['Все', 'Будущие', 'Прошедшие']"

 :max="2"

 step="1"

 tick-size="4"

 v-model.number="overdued"

 ></v-slider>

 <v-slider

 :tick-labels="['Все', 'Не выполненные', 'Выполненные']"

 :max="2"

 step="1"

 tick-size="4"

 v-model.number="completed"

 ></v-slider>

 <template v-if="hasDeadline">

 Фильтровать по дате

 <DateTimePicker

 :label="'Начальная дата'"

 v-model="model.startDatetime"

 :forceCentered="true"

 />

 <DateTimePicker

 :label="'Конечная дата'"

 v-model="model.endDatetime"

 :forceCentered="true"

 />

 Указать дату проверки

 <DateTimePicker

 :label="'Дата проверки'"

 v-model="model.checkDatetime"

 :forceCentered="true"

 />

 </template>

 </v-container>

 </v-card-text>

 <v-card-actions>

 <v-spacer></v-spacer>

 <v-btn color="blue darken-1" text @click.stop="onClear()"

 >Очистить</v-btn

 >

 <v-btn color="blue darken-1" text @click.stop="onClose()"

 >Отмена</v-btn

69

 >

 <v-btn color="blue darken-1" text type="submit"

 >Применить фильтр</v-btn

 >

 <v-spacer></v-spacer>

 </v-card-actions>

 </v-card>

 </v-form>

 </v-dialog>

</template>

<script lang="ts">

import { Component, Vue, Prop } from "nuxt-property-decorator";

import DateTimePicker from "~/components/common/DateTimePicker.vue";

@Component({

 components: {

 DateTimePicker,

 },

})

export default class FilterDialog extends Vue {

 @Prop()

 value!: boolean;

 @Prop({ default: true })

 hasDeadline!: boolean;

 @Prop()

 filter!: {

 startDatetime?: Date;

 endDatetime?: Date;

 checkDatetime?: Date;

 completed?: boolean;

 overdued?: boolean;

 };

 model: {

 startDatetime?: Date;

 endDatetime?: Date;

 checkDatetime?: Date;

 completed?: boolean;

 overdued?: boolean;

 } = {};

 get active() {

 return this.value;

 }

 set active(value) {

 this.$emit("input", value);

 }

 get completed() {

 return this.model.completed == undefined ? 0 : this.model.completed ? 2 : 1;

 }

70

 set completed(value: number) {

 switch (value) {

 case 1:

 this.model.completed = false;

 break;

 case 2:

 this.model.completed = true;

 break;

 default:

 this.model.completed = undefined;

 }

 }

 get overdued() {

 return this.model.overdued == undefined ? 0 : this.model.overdued ? 2 : 1;

 }

 set overdued(value: number) {

 switch (value) {

 case 1:

 this.model.overdued = false;

 break;

 case 2:

 this.model.overdued = true;

 break;

 default:

 this.model.overdued = undefined;

 }

 }

 onClose() {

 this.active = false;

 }

 onClear() {

 this.model = {

 startDatetime: undefined,

 endDatetime: undefined,

 completed: undefined,

 checkDatetime: undefined,

 };

 }

 onSubmit() {

 this.$emit("update:filter", { ...this.model });

 this.onClose();

 }

 mounted() {

 this.model = { ...this.filter };

 }

}

</script>

71

Result:

72

Appendix 8 – Date picker component

<template>

 <div>

 <v-menu

 ref="picker"

 :close-on-content-click="false"

 :return-value.sync="fieldValue"

 rounded="lg"

 min-width="290px"

 absolute

 :content-class="forceCentered ? 'modal-center' : ''"

 z-index="999"

 >

 <template v-slot:activator="{ on, attrs }">

 <v-text-field

 :label="label"

 prepend-icon="mdi-calendar"

 readonly

 v-bind="attrs"

 v-on="on"

 v-model="formatedFieldValue"

 :rules="rules"

 ></v-text-field>

 </template>

 <v-sheet>

 <v-form @submit.prevent="onSubmit()" ref="form">

 <v-tabs fixed-tabs v-model="dateTimeTab" class="mb-2">

 <v-tab v-if="hasDate || !hasTime">Дата</v-tab>

 <v-tab :disabled="!timeTabEnabled" v-if="hasTime">Время</v-tab>

 </v-tabs>

 <v-tabs-items v-model="dateTimeTab">

 <v-tab-item v-if="hasDate || !hasTime">

 <v-card flat>

 <v-date-picker

 locale="ru"

 :first-day-of-week="1"

 v-model="dateValue"

 landscape

 :allowed-dates="allowedDates"

 ></v-date-picker>

 </v-card>

 </v-tab-item>

 <v-tab-item v-if="hasTime">

 <v-card flat>

 <v-time-picker

 format="24hr"

 landscape

 locale="ru"

 :first-day-of-week="1"

 v-model="timeValue"

 ></v-time-picker>

 </v-card>

 </v-tab-item>

73

 </v-tabs-items>

 <v-input :messages="error" :error="!!error" class="mx-2"></v-input>

 <v-sheet class="d-flex justify-center">

 <v-btn text large color="primary" @click="onClear()">

 Очистить

 </v-btn>

 <v-btn text large color="primary" @click="onClose()">

 Отмена

 </v-btn>

 <v-btn text large color="primary" type="submit">ОК</v-btn>

 </v-sheet>

 </v-form>

 </v-sheet>

 </v-menu>

 </div>

</template>

<script lang="ts">

import { Component, Prop, Vue } from "nuxt-property-decorator";

@Component({})

export default class DateTimePicker extends Vue {

 @Prop({})

 rules: any;

 @Prop({ default: () => [0, 1, 2, 3, 4, 5, 6] })

 allowedDays!: number[];

 @Prop({ default: true })

 hasDate!: boolean;

 @Prop({ default: true })

 hasTime!: boolean;

 error = "";

 @Prop()

 label!: string;

 @Prop()

 value!: string;

 @Prop({default: false})

 forceCentered!: boolean;

 timeValue: null | string = null;

 dateValue: null | string = null;

 dateTimeTab = null;

 get timeTabEnabled() {

 return (this.dateIsCorrect && this.hasTime) || !this.hasDate;

 }

 get formatedFieldValue() {

 if (this.hasDate && this.hasTime) {

74

 return (this.$options.filters as any).formatDateTime(this.fieldValue);

 } else if (this.hasTime) {

 return this.fieldValue;

 }

 return (this.$options.filters as any).formatDate(this.fieldValue);

 }

 get fieldValue() {

 return this.value;

 }

 set fieldValue(value) {

 this.$emit("input", value);

 }

 get dateIsCorrect() {

 return this.dateValue != null && /\d{4}-\d{2}-\d{2}/.test(this.dateValue);

 }

 get timeIsCorrect() {

 return this.timeValue != null && /\d{2}:\d{2}/.test(this.timeValue);

 }

 allowedDates(val: any) {

 return _.includes(this.allowedDays, this.$moment(val).day());

 }

 onSubmit() {

 let timeValid = !(this.hasTime && !this.timeIsCorrect);

 let dateValid = !(this.hasDate && !this.dateIsCorrect);

 if (!timeValid && !dateValid) {

 this.error = "Дата и время должны быть указаны";

 return;

 } else if (timeValid && !dateValid) {

 this.error = "Дата должна быть указана";

 return;

 } else if (!timeValid && dateValid) {

 this.error = "Время должно быть указано";

 return;

 } else {

 if (this.hasDate && this.hasTime) {

 (this.$refs.picker as any).save(this.dateValue + "T" + this.timeValue);

 } else if (!this.hasDate && this.hasTime) {

 (this.$refs.picker as any).save(this.timeValue);

 } else {

 (this.$refs.picker as any).save(this.dateValue);

 }

 }

 }

 onClose() {

 (this.$refs.picker as any).isActive = false;

 }

 onClear() {

75

 this.dateValue = null;

 this.timeValue = null;

 this.dateTimeTab = null;

 this.error = "";

 (this.$refs.picker as any).save(null);

 }

 mounted() {

 this.timeValue = "12:00";

 }

}

</script>

Results:

Field without value:

Menu appears:

76

Date selected:

Field with value:

77

Appendix 9 – Attribute and its value select components

<template>

 <v-autocomplete

 name="attribute"

 v-model="attribute"

 :items="availableTypes"

 :loading="isLoading"

 :search-input.sync="searchKey"

 hide-no-data

 item-text="name"

 item-value="id"

 label="Атрибут"

 placeholder="Начните ввод для поиска"

 prepend-icon="mdi-database-search"

 :rules="rules.attribute"

 return-object

 >

 </v-autocomplete>

</template>

<script lang="ts">

import { Component, Prop, Vue, Watch } from "nuxt-property-decorator";

import { SortOption } from "~/models/Enums/SortOption";

import { attributesStore } from "~/store";

@Component({})

export default class AttributeSellect extends Vue {

 @Prop()

 value!: { id: number; name: string };

 searchKey = "";

 isLoading = false;

 rules = {

 attribute: [

 (value?: { id: number; name: string }) =>

 (value != null && value.id > 0) || `Данное поле обязательно`,

],

 };

 get attribute() {

 return this.value;

 }

 set attribute(value) {

 if (value != null) {

 this.$emit("input", value);

 }

 }

 get availableTypes() {

 return attributesStore.attributes;

 }

78

 @Watch("searchKey")

 onFetchRequired() {

 this.isLoading = true;

 attributesStore

 .getAttributes({

 pageIndex: 0,

 byName: SortOption.False,

 byType: SortOption.False,

 searchKey: this.searchKey,

 })

 .then((_) => {

 this.isLoading = false;

 });

 }

}

</script>

<template>

 <v-row v-if="fetched">

 <v-col>

 <CustomValueField

 :dataType="attributeType.dataType"

 v-model="customValue"

 :label="label"

 v-if="!attributeType.usesDefinedValues"

 class="ma-0"

 />

 <v-select

 v-else

 v-model="valueId"

 :items="attributeType.values"

 item-text="value"

 item-value="id"

 :label="label"

 class="ma-0"

 ></v-select>

 </v-col>

 <v-col v-if="attributeType.usesDefinedUnits">

 <v-select

 v-model="unitId"

 :items="attributeType.units"

 item-text="value"

 item-value="id"

 label="Ед. измерения"

 class="ma-0"

 ></v-select>

 </v-col>

 </v-row>

</template>

<script lang="ts">

import { Component, Prop, Vue, Watch } from "nuxt-property-decorator";

import { attributeTypesStore } from "~/store";

import CustomValueField from "~/components/common/CustomValueField.vue";

79

import { AttributeTypeDetailsGetDTO } from "~/models/AttributeTypeDTO";

@Component({

 components: {

 CustomValueField,

 },

})

export default class AttributeValueSellect extends Vue {

 @Prop()

 value!: {

 customValue: string;

 valueId: null | number;

 unitId: null | number;

 };

 @Prop({ default: null })

 typeId!: number | null;

 @Prop({ default: "Значение" })

 label!: string;

 fetched = false;

 attributeType!: AttributeTypeDetailsGetDTO;

 get customValue() {

 return this.value.customValue;

 }

 set customValue(value) {

 this.$emit("input", { ...this.value, customValue: value });

 }

 get valueId() {

 return this.value.valueId;

 }

 set valueId(value) {

 this.$emit("input", { ...this.value, valueId: value });

 }

 get unitId() {

 return this.value.unitId;

 }

 set unitId(value) {

 this.$emit("input", { ...this.value, unitId: value });

 }

 mounted() {

 this.fetchAttributeType();

 }

 validateValue(id: number | null) {

 return (

 id != null &&

80

 _.includes(

 _.map(this.attributeType.values, (value) => value.id),

 id

)

);

 }

 validateUnit(id: number | null) {

 return (

 id != null &&

 _.includes(

 _.map(this.attributeType.units, (unit) => unit.id),

 id

)

);

 }

 @Watch("typeId")

 fetchAttributeType(): void {

 this.fetched = false;

 if (this.typeId) {

 attributeTypesStore.getAttributeType(this.typeId).then((succeded) => {

 if (succeded) {

 this.attributeType = attributeTypesStore.selectedAttributeType!;

 let valueId = this.value.valueId;

 let unitId = this.value.unitId;

 let customValue = this.value.customValue;

 if (this.attributeType != null) {

 if (

 this.attributeType.usesDefinedValues &&

 !this.validateValue(valueId)

) {

 valueId = this.attributeType.defaultValueId;

 } else if (customValue.length == 0) {

 customValue = this.attributeType.defaultCustomValue;

 }

 if (

 this.attributeType.usesDefinedUnits &&

 !this.validateUnit(unitId)

) {

 unitId = this.attributeType.defaultUnitId;

 }

 }

 this.$emit("input", { valueId, unitId, customValue });

 this.fetched = true;

 }

 });

 }

 }

}

</script>

81

Result:

Attribute select:

Attribute selected, now value is select:

Value selected:

82

Appendix 10 – Attribute type views

Index page with all types on second page:

Attribute type details page:

83

Attribute type edit page:

Attribute type delete confirmation:

84

Appendix 11 – Attributes views

Attributes index page:

Attribute details page:

Attribute edit page with type being selected:

85

Appendix 12 – Templates views

Template index page, with one template being inspected:

Template edit page, with validation error occurs:

86

Appendix 13 – Orders views

Orders with date index page:

Orders without date index page:

87

Order create page, with template already applied:

Calendar view, with one order being inspected:

88

Calendar view, with searching applied and one order being inspected:

Order with date index page filtrated by “future completed” orders only:

89

Order with date index page filtrated by “future” orders only:

90

Appendix 14 – Users views

Current user details page:

Another user being inspected:

Another user role is being changes because current user is “Root”

91

Appendix 15 – Example of generated report

