TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Aleksandr lvanov 1860931ADB

Product Delivery Accounting Solution for
Manufacturing Enterprise

Bachelor's thesis

Supervisor: Nadezda Furs

MBA

Tallinn 2021

TALLINNA TEHNIKAULIKOOL
Infotehnoloogia teaduskond

Aleksandr lvanov 1860931ADB

Toote kohaletoimetamise arvestuse lahendus
tootmisettevottele

Bakalaureusetdo

Juhendaja: Nadezda Furs

MBA

Tallinn 2021

Author’s declaration of originality

I hereby certify that | am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.
Author: Aleksandr Ivanov

27.04.2021

Abstract

The aim of this thesis is to solve the Novotrade Invest AS enterprise problem of
accounting of manufactured production by developing an application. The application is
designed to simplify the work of the logistics group employees in accounting and save

time and money.

The solution is divided into two parts: the server application and the client application. In
addition to the basic accounting functionality, the application should allow employees to
view the order history and generate and export a report. During development, the author
adhered to a modular structure, which will ensure the integrability of the application, as

well as facilitate further development.

The developed application has made life easier for employees, and reduced the time, early
use for monotonous work. Currently, the application has taken its place as a tool of the

logistics group of the Novotrade Invest AS enterprise.

This thesis is written in English and is 41 pages long, including 6 chapters, 21 figures and
8 tables.

Annotatsioon

Toote kohaletoimetamise arvestuse lahendus tootmisettevottele

Kédesoleva bakalaureusetod eesmdrk on lahendada Novotrade Invest AS ettevotte
probleem toodetud toodangu arvestuses rakenduse viljatootamise kaudu. Rakendus on
loodud selleks, et lihtsustada logistikagrupi tootajate t06d arvestuses ning sdista aega ja

raha.

Lahendus on jagatud kaheks osaks: serverirakendus ja kliendirakendus. Lisaks arvestuse
pohifunktsioonidele peaks rakendus voimaldama tootajatel vaadata tellimuste ajalugu
ning koostada ja eksportida aruannet. Arenduse kéigus pidas autor kinni modulaarsest

struktuurist, mis tagab rakenduse integreeritavuse ja holbustab edasist arendamist.

Viljatootatud rakendus on muutnud toGtajate elu lihtsamaks ja on vdhendanud aega,
varajast kasutamist monotoonseks to0ks. Praegu on rakendus oma koha votnud

Novotrade Invest AS ettevotte logistikagrupi tooriistana.

Loputod on kirjutatud inglise keeles ning sisaldab teksti 41 lehekiiljel, 6 peatiikki, 21

joonist, 8 tabelit.

API

App
Application
Backend
BLL
Browser
Cached
CRUD
DAL

Database context

Database migration

DTO
Endpoint
Entity

Framework

Frontend

FURPS+

GraphQL
HTML

JSON
JWT
Layout
Mapping

List of abbreviations and terms

Application Programming Interface

Same as “Application”

Same as “Software”

Part of application that handles logic
Business logic layer

Program to browse the Internet

Something that saved in computer memory
Create, Read, Update and Delete actions
Data access layer

Moment of database state, that application can use; bridge
between application and database

Process of syncing the database schema with application
structure

Date Transfer Object
The entry point to a service, a process, or a queue
Class that corresponds to specific database table

Abstraction in which software providing generic functionality
can be selectively changed by additional user-written code, thus
providing application-specific software

Part of application that handles user interface

Method of collecting and classification of software
requirements

Graph Query Language

The standard markup language for documents designed to be
displayed in a web browser.

JavaScript Object Notation
Json Web Token
Placement of components in page

Converting one object to another; linking two objects

MoSCoW Method of prioritization of software requirements

MVC Model-View-Controller

Online Connected to the Internet, or internet-based

OOP Object-Oriented Programming

0S Operating system

Out-of-the-box Features that came withing software

PC Personal Computer

PWA Progressive Web Application

REST Representational State Transfer

Route URL path

Serialization Process of converting objects to bytes

SOAP Simple Object Access Protocol

Soft delete Process of deleting, with saving data for future purpose

Soft update Process of updating, with saving the history of versions

Software Computer program, is a collection of instructions and data that
tell a computer how to work

SOLID Single Responsibility, Open—Closed, Liskov Substitution,
Interface Segregation and Dependency Inversion principles

SPA Single Page Application

SSR Server-Side Rendering

Syntax Program language rules

Ul User Interface

VBA Visual Basic for Applications

XML eXtensible Markup Language

Table of contents

I 10T L1 T £ [o S RTUUTURTRORRN 13
1.1 Description of the problem ... 13
1.2 Goal aNd MAIN TASKS......veuieriiieieiiesie sttt r e 14
1.3 Starting CONAITIONSc.eoiviiieiiece e 14
1.4 Scope and role Of QUTNOTccooiiiii e 15

2 Requirements and EXiStiNg SOIULIONS...........coviiiiiiiieicccseeeee s 16
2.1 REQUITEMENES ...ttt e et te e e e te e esbeenteennesneenrs 16
2.2 CUITENE SOIULION ... ettt bbb eneas 18
2.3 EXISEING SOIULIONS ...ttt 19

2.3. 1 LC: ENTEIPIISE ..ottt sttt bbb ene s 19
2.3.2 Analogues of 1C: ENterprise — ANANGScccvevveireeireeiieieesie e sreesre e 19
PG TR o] - 10 1 o TSP 20
2.3 4 UTECH ...ttt e neanaenes 20
2.3.5 LOW COUR ..ottt sttt nnee e 20
2.3.6 ONIINE DOAIGS.......cciiiiieieieece e e 21
2.4 CONCIUSION ...t bbbttt ettt sresresrenreas 21

3 Analysis of technological aSPECTS.........ccooiiiiiiiiiiee e 22
3.1 Type Of @PPIICALIONcviiiiiiciiciee e 22
3.2 Program language and frameworkK............ccoovieiiiiiiiiie e 23

KB RN Y7 N T | o SR RRPPRPP 24
3.2.2 CH# aNU ASP.NET COlE...ccueeiiieieeiiesieeie e seesie et ste e ste e snaesaeeneesneennas 25
3.2.3JAVA AN SPIING.c.eiviiiieiieieie ittt bbb bbb 26
3.2.4 Python and DJANG0ceoverierierierieiiisisieeie et 26
3.2.5 Framework and CONCIUSTON..........ccoiiiiiiiiiieie s 26

3.3 ATCRITECIUIE ettt e e bbb nne e e 28
3.4 SOAP, REST and GraphQLcccoreiiirieieesienieine e 29
3.5 Database CROICEcoviiiiiiiiieieie bbb 30
3.6 CONCIUSION ...t sb e et ene e e 30

4 IMPIEMENTALION ..t ettt 31

.0 DAtADASE. ...ttt ittt tntnn ettt nnnn ittt ittt nnnnnnnnnnnnnnnnnes 31

O = T Tod <1 o USSP 33
4.2.1 SEIVET APP SITUCTUIEeeviiieitiieeeiiee ettt sttt e e nnn e 33
4.2.2 DOMAIN BNEITIESveitiiviieieiieieieie e 34
4.2.3 Entity Framework database CONteXtccoveiiiiniiiiniiiceeecsc e 36
4.2.4 Database INtAlZAtIONocveiieiiceeee s 37
4.2.5 Data aCCESS LAYicvviiiieie et 37
4.2.6 BUSINESS 10QIC TAYENcveeiece ettt 39
4.2.7 Handling soft update entitiesccovvirieieienese s 39
4.2.8 Querying of an actual data............ccocovvriiiiiiiii e 40
4.2.9 AP CONIOIIEIS. ..o e 41
4.2.00 SECUIILY ..veeveieieite ettt sttt et st e et et este et e re e te e e e esaenbe e e e sneenns 41
A Y To [0 T OO P PP O P PRTPRPPR 42

G 0] 1 =1 oo ST 42
4.3.1 Client application initializationccccccveiieii i 43
4.3.2 CHENt QPP SIIUCTUIE.....eiiveeee ettt ettt 43
A.3.3 APLCAIIS ..o e 45
A.3.4 VUBX SEOTAGE ...ttt ettt sttt ettt n e 46
4.3.5 AUTTDULE TYPES ..ttt 46
4.3.6 ALTIDULESeoveeeie e ettt st ens 47
4.3.7 Order teMPIALEScoeiiiiiieeee s 48
R O (0 (=T £ TSP 48
4.3.9 FOrms vValidationcoooiiiiiiieice s 50
4.3.10 SEBCUILY .ouvieieit ettt ettt et sb e e e e st e e te e saeeabeesreeareeas 50

O I U1 Vo [OOSR 51

5 FUrther deVEIOPMENT........coiiiiiee bbb 52
B SUMIMIBIY ...ttt bbbttt b ekt bbbt e b beenbeenne s 53
RETEIBNCES ...ttt be b reesbeanee s 54

L1 TC]SSR 58
Appendix 2 — ER Diagram (ERD)........cooueiiiiiiieie e 59
Appendix 3 — Data iNItIAlZAtION.c.ccoveiiiiiie e 60
APPENTIX 4 — DAL MAPPET ...ttt sttt sre e nnee e 61
Appendix 5 — Units and Values add dialogscccovvverieieiieiieccie e 62

Appendix 6 — CustomValueField COMPONENTccooiiiiiiiireeee e 64

Appendix 7 — Orders filtration dialogccoooviiiiiiiiii 68
Appendix 8 — Date picKer COMPONENT.........cccueiieiiiie e 72
Appendix 9 — Attribute and its value select cOmMponentscccccvvveiieere v 77
Appendix 10 — ALriDULE tYPE VIBWS.....c.ooiiiiiiiiiiieeeie e 82
AppPendix 11 — ALHDULES VIBWSooiiiiiiieicieseeee e 84
AppendiX 12 — TEMPIAES VIEWSccveiieeiecieiiesie e 85
APPENTIX 13 — OFUEIS VIEBWSocvieriiceieiieeie ettt ste e re e ae e sraeneenee s 86
APPENCIX 14 — USEIS VIBWS ...ttt sttt ettt ne bbb sne s 90
Appendix 15 — Example of generated report...........oooveieienenininiecieeeeee e 91

10

List of figures

Figure 1. Most popular program languages by TIOBE index in March 2021 [24]......... 23
Figure 2. SOIULION arChItECLUIEccueeiiiie et 28
Figure 3. Order and attribute tables relationshipcccccevviiiiiei e 31
Figure 4. Complicated attribute type table relationshipccccccovveviiieiicieiieceene 32
Figure 5. Simplified attribute type table relationship..........ccccooiiiiiiiicie, 32
Figure 6. Template and attribute tables relationshipccccovriiiiiiie, 32
Figure 7. Server application StIUCLUIE............couviieiieiecic s 33
Figure 8. AttributeType entity eXamplecccooieiieiiic e 35
Figure 9. Example of handling of deleted entities............ccocooiiinininiiieiec e 36
Figure 10. Repository factory Method............cocooiiiiiiiiieieseee s 37
Figure 11. Repository creation using factory methodccccooeiiiiiii e 38
Figure 12. Entities update method with soft update handlingccccoevvevciiecienes 40
Figure 13. Example of actual data qQUETYccocuiiiiiiiiiiece s 41
Figure 14. Default authentication and authorization schemecccccooiiiiiiniiiee. 42
Figure 15. Example of restricting access to controllers............ccovevveiiiiieivcvc i 42
Figure 16. Nuxt project initializationcccccoeiieiiiic i 43
Figure 17. Client application SITUCTUIEcceiiiiiieieieese s 44
Figure 18. Axios GET method wrapper with error handlingccccoovieiiiiniinnnne. 45
Figure 19. Nuxt unit of WOrk plugin.........cccooviiii e 45
Figure 20. Attribute type format display filterccccooveiiiiiii 47
Figure 21. Custom validation function example ... 50

11

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.

List of tables

FURPS+ requirements classifiCation............ccoceveiiiininiiiieeece e 16
MoSCoW requirements Prioritizationccoceiereiineninieeese s 17
Program 1anguages COMPAIISON...........eiveerteieeieerreseesteesieseesreesesaesreeseesseeseas 24
Frameworks COMPAIISONccuciieiueiieieeite ettt 27
Frameworks and their PUPOSEcoiiiiiiiiiece e 27
DOMAIN ENEITIES....vve ittt sa e nne s 34
DOomMain abStraCt ENLITIESccvervirieiiiiiiieee e 35
APT CONIOIIBIS. ... e 41

12

1 Introduction

This thesis describes the process of analyzing and developing an application for product
delivery accounting as part of a practical task for the Novotrade Invest AS enterprise.

Novotrade Invest AS (abbreviated VNK) is an Estonian industrial organization engaged
in the refining of petroleum products. The enterprise production process covers the
unloading of raw materials, processing, as well as loading products into railway wagons
and trucks. The products then are used in various industrial sectors, from solvents and

fuels to metallurgy [1].

The enterprise recently set a goal to digitalize the work environment and started hiring

developers to fulfill the goal.

1.1 Description of the problem

The company keeps records of shipments of manufactured products daily. Each order
contains a certain, but not fixed, the number of fields (attributes), some of which are
displayed in the table representing the days. Completed orders are marked with a specific
color. Currently, Microsoft Excel software is used for this. Despite its versatility, at a

certain stage, the use of this solution began to bring discomfort to employees.

Among the discomforts are the following: the need to install software for work; the large
file size, which takes time and effort; the human factor, which cause consequences in the
form of irrelevant data and wasted time for searching and fixing, etc. Also, employees
needed additional functionality, for example, displaying data in a calendar view, which is
achievable using Excel tools, but not so intuitively and automatic, takes additional time

and requires advanced knowledge of use, which the staff does not have.

To solve these problems, the enterprise has decided to develop a highly focused
application that will intuitively perform the assigned tasks and possess the required

functionality.

13

1.2 Goal and main tasks

The main purpose of the thesis is to solve the problem of the enterprise by developing an
application for the accounting of product delivery, focusing on achieving the required
functionality. Since the development of a full-fledged application is a rather scrupulous
process that requires the involvement of several developers, the author's goal is to develop
the first version of the application — a prototype that will solve the enterprise problem and

have the conditions for further development and improvement.

The first task is to determine the functionality of the application, as well as other

requirements that the prototype must meet.

The second task to achieve this goal is to analyze and determine the optimal approach for
developing an application, considering the possibility of further development and

integration with other systems.

The next task is to develop an application prototype based on a requirements analysis and
technical approaches. An accompanying task is the design and creation of a database for

data storage and operation.

1.3 Starting conditions

The first condition is an enterprise server that runs on Windows Server 2012 R2;
therefore, the determination of the approach should consider the compatibility of the

application and server components.

The second condition is that the employees of the enterprise mainly use corporate PCs

(Personal Computer) for their work.

The third condition is that the enterprise does not want to change the data structure, which

means that the application must be able to operate the data in form that is currently in use.

The fourth condition is that the enterprise does not want additional costs, including the

cost of purchasing software and support.

14

1.4 Scope and role of author

The author takes the place of an intern at the Novotrade Invest AS Enterprise and, as a
practical assignment, develops an application for logistics group employees. The head of
logistics has provided certain requirements that the application must meet. A detailed
description and analysis of the requirements will be discussed in the analysis section (see

2.1 Requirements).

To achieve this goal, it is necessary to analyze the current solution and existing solutions
on the market to determine the strengths that can be implemented and weaknesses that

can be avoided in the developed application.

The author is going to analyze and prioritize application requirements to determine what
requirements will be implemented in the application prototype and analyze technical
approaches, including various software development practices and programming
languages to determine the optimal approach. Then the author will develop a prototype
of the application, test the basic functionality, and describe the further step of
improvements. For better understanding, the text contains figures, most of which are

made by the author himself.

The scope of the thesis does not include the development of the final version of the
application, the development of the general system for integration, detailed

documentation of the application, thorough testing, and deployment.

15

2 Requirements and Existing Solutions

In this chapter, the author classifies and prioritizes the requirements for the application

being developed and analyzes existing solutions that can possibly solve the enterprise

problem to determine the functionality that will be implemented in the prototype.

2.1 Requirements

The requirements were discussed with the head of logistics of Novotrade enterprise. Since

different requirements cover various aspects of applications to organize these

requirements, the author uses the FURPS+ classification method, because it provides both

the classification of those aspects and separation of the functional and non-functional

requirements (see Table 1) [2].

Table 1. FURPS+ requirements classification

Category

Requirements list

F — Functionality

F1. Completed orders can be marked.
F2. Orders should be displayed in a calendar view.
F3. The featured order attributes should appear on the calendar.

F4. The rest of the order attributes should be displayed in an additional
window.

F5. Some orders have a non-fixed date.

F6. Orders must have a markup field.

F7. 1t is possible to generate reports for the selected period.
F8. Some attribute values must be selected from the list.

U — Usability U1. Main interface colors should be calm and not distracting.
U2. The order information window should be next to the calendar.
U3. The calendar should display orders for the month, for the week.
R — Reliability R1. The system must have a user with the highest access level (root),

which cannot be changed or deleted.

R2. The system should be available from 8 am to 5 pm, Monday
through Friday.

P — Performance

P1. Applications must support at least 3 simultaneous users.

S — Supportability

S1. The interface must be in Russian.

16

S2. The interface must support English and Estonian.
S3. There should be a button in the interface to get help.
S4. Ability to change database connection settings.

b X1. Access is differentiated by role.
X2. Only authorized users can access the application.
X3. Users with the "User" access level can only view placed orders.

The table does not indicate some requirements, for example CRUD (creation, deletion,
etc.), since their presence is fundamental for solving the problem. The author has also
removed the requirements “the interface must be intuitive” and similar due to their

unmeasurable realizability and objectivity.

To determine the requirements that will be implemented in the prototype application, the
author uses the MoSCoW prioritization method (see Table 2) [3].

Table 2. MoSCoW requirements prioritization

Category Requirements list

MUST F1. Completed orders can be marked.
F2. Orders should be displayed in a calendar view.
F3. The featured order attributes should appear on the calendar.

F4. The rest of the order attributes should be displayed in an additional
window.

F8. Some attribute values must be selected from the list.

U1. Main interface colors should be calm and not distracting.

U2. The order information window should be next to the calendar.
U3.1. The calendar should display orders for the month.

R1. The system must have a user with the highest access level (root),
which cannot be changed or deleted.

R2. The system should be available from 8 am to 5 pm, Monday
through Friday.

S1. The interface must be in Russian.

S4. Ability to change database connection settings.

X1. Access is differentiated by role.

X2. Only authorized users can access the application.

X3. Users with the "User" access level can only view placed orders.

SHOULD F5. Some orders have a non-fixed date.
F6. Orders must have a markup field.

F7. 1t is possible to generate reports for the selected period.

17

P1. Applications must support at least 3 simultaneous users.
S3. There should be a button in the interface to get help.

CouLDb U3.2. The calendar should display orders for the week.

WONT S2. The interface must support English and Estonian.

The prioritization result was discussed with the head of the Novotrade logistics group,
and it was decided that only "MUST" and "SHOULD" categories will be implemented in
the prototype.

2.2 Current solution

Currently, the employees of logistics use Microsoft Excel software (hereinafter simply

Excel) for accounting. Despite its versatility, it has cons that cause discomfort.

All data is stored in one large file with several backup copies. Large cell count is with
orientation, due to storage of pasts orders. As a temporal measure, the data is hidden
thanks to the grid system.

Several people might work with the file at once so everyone must have access to the
current version of the file. Excel provides co-working options, but it has its limitations,
for example, users cannot create pages, merge cells, create charts, and others. To perform
these actions, the user must first turn off sharing, perform the action, and then turn it back
on [4]. Also, the enterprise has difficulties in transferring the current version of the file
between computers. Microsoft supplies along with other office programs
(Microsoft Word, Microsoft Excel, Microsoft PowerPoint, etc.) application for cloud file
storage and sharing — OneDrive, however, it is a paid one [5] and is not included in the

package currently used at the enterprise.

Additional functionality, like, calendar view (see 2.1 Requirements) is quite realizable
using Excel, however, it is comparable in the development of a separate application, and
to support it, it is need to observe the same formatting. Completed orders should also be
marked, currently, the corresponding cells are painted in a certain color, which is not very
convenient. The developer mode capabilities (interface elements: buttons, forms, etc.) as
well as scripts (macros) VBA (Visual Basic for Applications) for automation [6] can be
used to solve the problem, however, it requires both knowledges of the opportunities and

time for implementation.

18

The big advantage of this solution is its flexibility, since any data can be changed, the file
structure can be changed, as well as the ability to complete the task in a short time. The
author will base the prototype on flexibility options, so employees could manipulate the

data structure without changing the application.

2.3 Existing solutions

To solve the problem, it was decided to analyze the existing applications that could meet
the requirements of the enterprise. Since this problem is typical for many enterprises,

there are other solutions available on the market that could solve the problem.

2.3.1 1C: Enterprise

1C: Enterprise is the most popular solution for enterprises keeping records, especially in
Russian-speaking countries. This software comes in the form of a configurator program
and a presentation program. Since the program interface is initially empty, the enterprise
can purchase one of the many configurations or make its own. This platform is very
flexible, allowing users to create both entities with a different set of attributes, lists of
preset values, subsystems for ordering the interface, including the ability to generate
reports and export data, including in Excel format. The system is configured by the
administrator who creates structures, sets possible values, data format, etc [7].

Despite the extensive functionality, the platform has a bad reputation, mainly due to the
countless bugs, as well as frequent raw updates, which often disrupt the work of an
already configured system, and introduce new bugs [8]. This software is paid on a pay-

per-module basis [9].

2.3.2 Analogues of 1C: Enterprise — Ananas

There are also free analogs of 1C: Enterprise, as one of them, could be considered the
open-source software — Ananas. This program is a clone of 1C: Enterprise with slightly
reduced functionality and a modest interface. The capabilities of this program include
accounting, generating reports, entities with custom attributes and lists of preset values,
etc. [10].

The disadvantages of this software are support for only MySQL databases [11], as well

as the fact that the last version of the program was released in 2007 [12], which indicates

19

that software is no longer actual. Moreover, it is not clear if this platform supports co-
working with the application.

2.3.3 Goramp

GoRamp is an online real-time trucking order management platform. It provides both
planning and accounting of orders, as well as their display in a calendar view with the
display of certain data in each cell. The disadvantage of this platform is a fixed data

structure, which may not be suitable for this solution [13].

Unfortunately, this company does not provide any information or demo versions, and the
program'’s capabilities can be found out only from the main page of the site, which is not
a very reliable source of information. The program is paid, but the detailed price can be

found only upon request.

2.3.4 UTECH

UTECH provides an online service for accounting and planning logistics, with an
emphasis on the delivery of goods. Among the possibilities is a database of trucks,
locations, orders, accounts, etc. The scheduling capabilities include both scheduling
orders and departures of trucks, with a schedule for the coming week. The entire interface

Is built in the form of a table, which limits the ability to present data [14].

The disadvantages are the fixed structure, as well as unnecessary functionality, which is
not necessary in this case. As in the case of GoRamp, the company does not provide a
demo version, however, it is possible to download the program, but it cannot work without

a license.

2.3.5 Low Code

LCAP (Low Code Application Platforms) applications are a revision of the traditional
development system in response to constant changes in requirements and a variety of
development tools. These applications are well suited for testing ideas and developing
software in the shortest possible time due to the use of ready-made modules and a
graphical interface [15]. Flexibility is a plus since changes can be made at any time

without going through all the development stages.

20

However, such solutions have their problems, and they are mainly aimed at further
support and modernization of the system. So, if, when problems arise, the user cannot
always go into the source code or find documentation, because such applications are often
close sourced [16]. They also do not eliminate the need to think over the logic of the
application, and the use of a graphical interface can affect in a bad way, taking minutes
to implement a simple, but the unique thing, compared to the moments of a couple of

lines of code.

2.3.6 Online boards

Another option is online boards like Trello, Miro, Notion, etc. The advantage of such
applications is the relative freedom of action. For example, in Trello, users can create
both Kanban boards and something like TODOs, there are import capabilities,
distribution of roles, deadlines, etc. [17]. Miro allows users to create custom projects
using many modules, ranging from tables to interactive documents and pictures [18].
Notion is an excellent tool for keeping a personal diary, blog, or entire wiki [19].

However, these solutions are paid, or have a free version with reduced functionality.

2.4 Conclusion

To define the functionality of the application being developed, the author has classified
and prioritized the requirements. Further, the author made a comparative analysis of the

current and other solutions that could solve the problem.

During the analysis, it turned out that the main disadvantages of the solutions are
non-flexibility on the one hand and too much functionality that misleads users and
provides a drop-in software quality due to numerous bugs. Also, ready-made solutions
were either paid or were no longer supported, as in the case of Ananas. A big advantage
of such applications is the flexibility of the structure, which is good in a constantly

changing environment.

Following these conclusions, the developed application must be flexible so that users can
change the structure themselves, without the participation of a programmer, and have

only the functionality that users need.

21

3 Analysis of technological aspects

In this section, the author describes the selected technologies, such as program language,
database, and others for the optimal implementation of the application prototype.

3.1 Type of application

First, it is necessary to determine the type of application, since the capabilities of the

application and the development tools will depend on this choice.
At the present there are applications of the following types [20]:

= Web applications
= Desktop applications
= Mobile applications

= Cross-platform applications

Based on the initial conditions (see 1.3 Starting conditions), the author will not consider
the type "Mobile applications”, and also due to the complete lack of experience, the type
"Cross-platform applications".

Native applications are written for a specific platform and limit their functionality to the
capabilities of the platform. These applications are usually very efficient and can run
without the Internet [21]. However, if it is needed to change or add platform support,
these applications commonly require re-developing. Also, there should be a solution to

provide updates for the application.

Web applications, unlike native applications, work on any platform where a browser can
run them. These applications do not need to be installed or downloaded from the online
store and typically provide a unified view of the interface on any device, as well as the
ability to work from anywhere with Internet access. Unlike native apps, these applications
always have actual version. The downside is the dependence on the Internet connection
and the aspects of protection, which must be well thought out [20]. Despite the
dependence on the Internet, some web applications can also be used without the Internet

(for example, PWA (Progressive Web Application) [22]).

22

To summarize, both the native and web approaches to the implementation of the
application are suitable in this situation. However, web applications are easier to update
and platform independence makes it possible for one application to support several OS at
once (for example, Windows, MacQOS, android, and others). Considering the prospects of
the web implementation, as well as author experience in developing web applications, the

web application type will be used in developing.

3.2 Program language and framework

The choice of a programming language is important, not only because it determines what
the final solution will be written on, but also determines the tools and structure of the
application, for example, will it be a SPA (Single Page Application), a client with API
(Application Programming Interface) server or a traditional server that operates data and

renders pages.

At the present, there are many languages used to write web applications, among which,
based on a selection of the most popular (see Figure 1), the author will analyze the
following [23]: JavaScript, Python, Ruby, C#, Go, PHP

Mar 2021 Mar 2020 Change Programming Language Ratings Change
1 2 C 15.33% -1.00%
2 1 v Java 10.45% -7.33%
3 3 Python 10.31% +0.20%
4 4 C++ 6.52% -0.27%
5 5 C# 497% -0.35%
6 6 Visual Basic 4.85% -0.40%
7 7 JavaScript 211% +0.06%
8 8 PHP 2.07% +0.05%
9 12 Assembly language 1.97% +0.72%
10 9 v saL 1.87% +0.03%

Figure 1. Most popular program languages by TIOBE index in March 2021 [24]

It should be noted that each of the languages mentioned is suitable for running
web applications that can be executed on a Windows Server (see 1.3 Starting
conditions). To determine the language for development, the author relies on personal
experience of use and development using a specific language and the approximate time

required author to learn it (see Table 3).

23

Table 3. Program languages comparison

Language | Author’s personal experience Time required for mastering the
guag " P xpert language by the author (in weeks)?
. .)
JavaScript 3 clients using RE$T API, many 0
small personal projects
Python Assignments during the cour_se, a 1.9
couple of small personal projects
Java 2 COL_Jrses, 2_per_sonal projects, 2 -3 1
mobile applications
Ruby No experience 4+
2 courses, full REST API server,
C# . 0
several games on Unity
Go No experience 4+
PHP Basic knowledge 4+

Based on this comparison, given the lack of time to learn a new program language, further
analysis will be between JavaScript, C #, Java, and Python languages.

3.2.1 JavaScript

JavaScript is a scripting program language used mainly to give dynamics and logic to
pure HTML (HyperText Markup Language) web pages. By this day it is the most popular
language to make a representative part, and it also got powerful tools and frameworks

that turn him into a strong competitor to other program languages [25].

The most popular frameworks for writing web applications: React, Vue, Angular; Node.js
runtime framework, Express.js pure server framework, and more. Also, must be
considered the TypeScript add-on [26], which brings strong typing of variables, allowing
JavaScript to compete with languages such as Java and C#. Among frameworks, it makes
sense for the author to consider only Vue, Nuxt and React, due to lack of experience with

Angular, and it is also quite difficult to learn [27].

1 This time is relative, which the author suggested based on his own experience and the complexity of the
language

2 REST (Representational State Transfer) — see 3.4 SOAP, REST and GraphQL chapter

24

Vue was born in response to the relative complexity of React. The downside of React is
that state updates are relatively slow, which can delay information on pages and take time
to optimize [28]. Also, the "Store" state store — Redux, which is used in React, is much
more difficult to write and typify than the Vuex store for Vue, as the author knows from

writing both applications using React+Redux and Vue+Vuex.

Nuxt is a Vue-based framework that preserves the syntax and basic functionality and adds
auto route detection and SSR (Server-Side Rendering). Nuxt also benefits from the
modularity of its architecture, such as plugins, vuex store and layouts! that Vue does not
have. [29]. The ability to use TypeScript significantly simplifies development, getting
rid of dynamic errors, but it takes time to type objects and plug-in settings that are not
sharpened for TypeScript.

3.2.2 C# and ASP.NET Core

C# is a strongly typed OOP (Object-Oriented Programming) language developed by
Microsoft that has a wide range of uses from native and web applications to video game
development. Programs developed in this language use the .NET platform, which for a
long time was only for Windows OS, but with the release of .NET Core, applications are

now cross-platform and can be installed on any system that supports .NET Core [30].

The framework for developing cross-platform web applications is ASP.NET Core, which
allows to develop both server applications using the MVC (Model-View-Controller)
pattern and the REST API servers to work with client applications written, for example,
in JavaScript [31]. This framework has very powerful functionality and development
tools, among which can be mentioned: Entity Framework, which is responsible for linking
database entities with classes in C# and working with the database [32]; NuGet package
manager system [33], that allows to easily add the necessary third-party functionality to
the application, for example — JSON mapping or serialization; ASP.NET Core Identity

API for a smooth and reliable user and role experience [34]; etc.

Y In Vue, there is only one template by default - App.vue, the entry point into the application [44]

25

3.2.3 Java and Spring

Java is a strongly typed OOP programming language used for writing web applications
(especially REST API servers), mobile applications, desktop applications, and others.
Programs written in Java run using the Java Virtual Machine (JVM), which makes the

applications cross-platform [35].

Spring is the most popular Java framework for writing web applications [36]. Spring
provides the functionality for building complete, extensible applications with a clean
architecture. Just like C#, Java has various extension repositories such as Maven, Ant,
and a Gradle tool to automatically build an application. There is also the possibility of
working with the database using entities [37]. Spring and ASP.NET Core are functionally
very similar, and regardless of the choice, the application based on these languages will

have a solid foundation and great opportunities for further development.

3.2.4 Python and Django

Python is a very popular programming language that has been at the top of the charts for
the most used languages for the last couple of years, used mainly for developing artificial
intelligence, but also for writing modern extensible server-only and server-client web
applications based on the Django framework [38]. Django has a lot of out-of-the-box
features like the admin panel that Spring and ASP.NET don't have by default. There are

also many modules for Django that extend or add new functionality.

Among the minuses, dynamic typing, rather weak template validation, which do not check
whether a model is suitable for a form or not, and no multiple requests processing at the

same time. [39].

3.2.5 Framework and conclusion

To choose the framework, the author also relies on personal development experience
using a specific technology, as well as the approximate time that the author needs to get

a sufficient amount of experience (see Table 4).

26

Table 4. Frameworks comparison

Framework Author’s personal Additional time required for mastering
experience the language by the author (in weeks)

Express No experience 2

Vue REST API client 0

Nuxt.js REST API client 1

React REST API client 2

Angular No experience 4+

Django No experience 3+

Spring Basic knowledge 2

ASP.NET Core | REST API server, client 0

The purpose of the framework also plays an important role in the definition, since, for

example, ASP.NET Core can be for the frontend, but JavaScript can better handle it, due

to smooth rendering and direct use of the browser API (see Table 5).

Table 5. Frameworks and their purpose

Language Framework Main purpose
JavaScript Express Server
JavaScript Vue Client
JavaScript Nuxt.js Client
JavaScript React Client
JavaScript Angular Client

Python Django Both

Java Spring Server

C# ASP.NET Core Server

Java Spring is a good choice for implementing the server-side of the application, and it is

also more commonly used in Estonia than ASP.NET Core, however, with the last one,

the author has more experience with the development of a full-fledged REST API server,

so the author has chosen ASP.NET Core. The author decided not to choose Django due

to a complete lack of experience, the large number of lines used as arguments in Django,

for example in layouts.

27

As a client, the author has chosen Nuxt because it is built on top of Vue, and with Vue,
the author has a more pleasant experience than with React, which is however by far more
popular. Between Vue and Nuxt, the author chose the last one, because Nuxt provides
more out-of-the-box capabilities than pure Vue, although they have the same syntax,

which should not be reflected in the application.

3.3 Architecture

In development, the author will rely on the "ideals" of the architecture described in the
book "Clean Architecture™ by Robert Martin [40], also using the SOLID principles, also
described in this book [40, pp. 72-74]. Following these recommendations, the final
application will not grow exponentially in costs, it will be simply to support and, if errors

occur, painlessly fixed.

The application should be logically divided into several parts — layers. The one of the
most popular is the three-layer architecture model (see Figure 2):

= View layer
= Business logic layer (BLL)
= Data access layer (DAL)

1
Client ' | Server :

I Bussiness logic | !

'

1

Pag mp t: l T X

'

Data access layer 1

1 l(T [S S — !
. API controllers Data access | — — :
________ - Database '

T S E— 1 I

—> - '

1

1

'

Figure 2. Solution architecture

Each of the layers encapsulates part of the functionality without knowing and caring about
what is happening outside. The presentation (view) layer is the mediator between the user
and the application, the entry/exit point. The business logic layer is responsible for all
calculations. The data access layer encapsulates communication with the database [41].
On the server-side, the presentation layer is the API controllers since the client accesses

them directly. For the client, access to the server API is also a kind of data access layer.

28

3.4 SOAP, REST and GraphQL

For the client and server to exchange information, it is the most common practice to use
API requests. Since there is no single approach to building the access point API, the
author compared the 3 most popular methods:

= SOAP (Simple Object Access Protocol)
= REST (Representational State Transfer)
= GraphQL (Graph Query Language)

SOARP is a relatively mature API protocol that uses a strongly typed XML (eXtensible
Markup Language) structure. The data approach allows to accurately control what data
and in what form is transmitted, but, increases the size of the request, and therefore the
processing time. SOAP is mainly used to call procedures (like Add Order, Register User,
etc) [42].

REST is a convention of building API requests compared to SOAP. Unlike SOAP, REST
supports a variety of data formats, JSON (JavaScript Object Notation) is the most popular.
A typical request to get a list of orders will be made through a GET request to /api/orders.
Each request has an address and a handler [43]. A significant drawback is the many
endpoints in each application.

GraphQL is a query language that allows clients to query only the data they are needed
as if they were working directly with the database. Unlike REST, GraphQL has only one
API access point. The ability to query only the data that is needed would facilitate the
development of the front-end part. However, GraphQL requires more server-side
development effort, as well as proper configuration, otherwise, the server may crash under

the large and voluminous queries with multiple levels of nesting [44].

SOAP is good for large, tightly architected applications; however, it requires additional
effort and expertise to implement compared to REST. GraphQL provides a convenient
way to develop a client application but also requires additional effort on server-side. Since
the author does not have enough experience to effectively implement GraphQL along

with a clean architecture, the author chose REST to implement the API.

29

3.5 Database choice

Since the enterprise system for the app to integrate with has not yet been developed, there
is no point in carefully selecting a database. According to the enterprise requirements not
to spend money the choice will be made from free options. Also, since the application
will use a specific data structure that will not change, only Relational databases will be
considered. The author has three options, among the most common: MySQL,
PostgreSQL, and SQL.ite.

MySQL is a free open-source database for non-commercial projects. Since the application
is being developed for employees only, there is no need for open source licensing for it.
This database, in addition to the relative flexibility of customization, can offer a

convenient program for managing [45].

PostgreSQL is an open-source web application database focused on scalability. This
database provides customization flexibility, as well as the ability to work with JSON [45].

SQLite is a compact local solution. Among the above, this database has the least
functionality. This database only supports INTEGER, REAL, TEXT, BLOB, and NULL
data types, other types stored using these types [46], which may affect query performance.

To summarize, MySQL and PostgreSQL have a lot in common and both are better suited
to the application than SQLite. Due to extensive experience of use and a convenient

management application for the author, the author has chosen the MySQL.

3.6 Conclusion

During the analysis, the author determined that the best approach is to develop a web
application based on ASP.NET Core as a server-side framework and Nuxt.js with
TypeScript as a client-side framework using three-layer architecture, SOLID principles,
MySQL and REST API.

Based on the analysis, the author can now start to implement the application prototype to

solve the defined enterprise problem.

30

4 Implementation

In this section, the author describes the steps for implementing the application. The
application is divided into three parts: database, server, and client. The development of a
prototype assumes that all three parts will be developed at a level that allows the

application to perform the assigned tasks but does not eliminate possible drawbacks.

4.1 Database

The main purpose of the application is to handle orders. Each order has a deadline
(however, in the case of unfixed orders, this field must be null), as well as a list of
attributes. For orders, the attributes rarely change; so, it was decided to move them into a
separate entity and reuse them. Since orders can have multiple attributes, and attributes
can have multiple orders, another entity was created to make this many-to-many

relationship possible (see Figure 3).

[Order H OrderAttribute H Attribute }

Figure 3. Order and attribute tables relationship

Attributes differ not only by name and value but also by other features, for example, the
values of some attributes may be predefined, for example for the "Product” attribute. Also,
some attributes can have units of measurement, for example, the attribute "Quantity of

production” can have units of measurement: "kg", "gram", "tons", "bags", etc. For that
purpose, the entities "Units" and "Values" were created. They could be simply attached
to an attribute, but there is a possibility that two attributes with the same units or defined
values would be needed. To implement this feature, the author has created an additional
entity — "Attribute Type". In this case, units and values are defined by the attribute type,
and the attribute is created with a specific type. It can be assumed that values and units

can also be reused by defining intermediate entities (see Figure 4).

31

{ Attribute }>‘O—4—{ Attribute Type H AttributeTypeValues })O—*‘ Values
[Attribute FO—b{ AttributeType M AttributeTypeUnits }>0—*‘ Units ’

Figure 4. Complicated attribute type table relationship

However, the author considered this as an unnecessary complication of the database and

application structure, so the relationship was simplified (see Figure 5).

[Attribute H AttributeType

Figure 5. Simplified attribute type table relationship

Attribute TypeValues]

AttributeTypeUnits

To make it convenient for users to create new orders, the entity "Template™ was created,
which will save a list of certain attributes, and when creating an order, it will simply
substitute them into the creation form. Again, since the template has several attributes,
and the attributes have several templates, an intermediate entity s

needed — "Template Attributes™ (see Figure 6).

Template HT&mplateAttribule }BIO—F{ Attribute ’

Figure 6. Template and attribute tables relationship

Orders and templates are not physically connected in any way, so there is no need for an
intermediate entity. Also, it can be assumed that there is no point in storing templates in
the database, since requesting a template may take extra time, however, since attributes
can be changed or deleted, as well as the fact that several users can use the same template,

the author decided it was appropriate.

The ERD diagram can be found in Appendix 2.

32

4.2 Backend

The application server acts as a data handler and bridge between the client interface and
the database. In addition to working with data, the server is also involved in user
authorization to certain APl endpoints.

4.2.1 Server app structure

The server is designed following a three-layer architecture (see 3.3 Architecture) and is
subdivided into several projects responsible both for a specific layer and for the task

performed within this layer (see Figure 7).

1 1
BLL }—) }—) Services
1 1 1 1
AppApi }—» v1 ‘ » UnitOfWork }—» Repositories

Mapper

"

DTO

DAL }—) I >

Entities

h 4

Bl

EF

Extensions

i

1

Webapp }—» ApiControllers }—» v1

Figure 7. Server application structure

To name the projects, the author used combinations of the following words:

= DAL - everything that relates to Data Access Layer

= BLL - everything that relates to Business Logic Layer

= App — everything that is specific to the application

= Base — general principles from which App classes inherited

= Contracts — these projects contain interfaces

33

Also, the author used some names for certain things:

= EF - implementation of working with a database using the Entity Framework
= Entities — Entity Framework entities

= Extensions — classes containing extension functions

= UnitOfWork — everything related to the "Unit of Work™ pattern implementation
= DTO - classes needed to transfer data between layers

= AppAPI — classes needed to implement the API

= Webapp — main and executable project
Further, the author describes the project implementation.

4.2.2 Domain entities

To work with the described database structure, the author created 8 problem-specific

classes as well as 2 additional classes for working with users and roles (see Table 6).

Table 6. Domain entities

Entity Database table Description

Attribute attribute used to store all attributes

AttributeType attributetype used to store all attribute’s types

AttributeTypeUnit typeunit a unit of measure that an attribute with a
suitable type can use

AttributeTypeValue | typevalue a defined value that an attribute with a suitable
type can use

Order order used to store all orders

OrderAttribute orderattribute used to implement a many-to-many
relationship between orders and attributes

Template template used to store all templates for quick order
creation

TemplateAttribute templateattribute used to implement a many-to-many

relationship between templates and attributes

AppUser appuser Used to store application users

AppRole approle Used to store application user’s roles

Since entities are similar to each other, at least by identifiers, the author has created

abstract classes to give entities certain properties (see Table 7).

34

Table 7. Domain abstract entities

Abstract entity Description
DomainEntityld entities with unary identifier
DomainEntityldMetadata entities with unary identifier and createdAt, createdBy,

changedAt and changesBy fields to track state of entities

DomainEntityldSoftDelete DomainEntityldMetadata + deletedAt and deletedBy fields,
to track the deletion of an entity

DomainEntityldSoftUpdate DomainEntityldSoftDelete + masterld field to keep track of
the original version of the entity

DomainEntityMetadata entities with createdAt, createdBy, changedAt and
changesBy fields to track state of entities

Abstract classes have an overload with generic type for identifier, if necessary, the type
can be changed to something else. The author has chosen the long data type as the default
identifier since long can be generated in the database and it provides enough values for
all possible cases. Data types UUID (GUID), the author considered impractical, since
they complicate the data query, and the application uses only one database, which means
that there will be no conflict with the same identifiers. For an example of the

implementation of the entity, the author gives the AttributeType class (see Figure 8).

public class AttributeType : DomainEntityIdSoftDelete
{

public string Name

public string? DefaultCustomValue
public bool SystemicType

public bool UsesDefinedValues
public bool UsesDefinedUnits
public AttributeDataType DataType

public long DefaultValueld
public long DefaultUnitId

public ICollection<Attribute>? Attributes
public ICollection<AttributeTypeValue>? TypeValues
public ICollection<AttributeTypeUnit>? TypeUnits

Figure 8. AttributeType entity example

35

AttributeType inherits from the abstract class DomainEntityldSoftDelete, which gives the
entity a unary identifier as well as fields to track changes. When deleted, the deletedAt
field will contain the date of deletion, which will not disrupt the operation of orders using
this attribute, because the entity will not be physically deleted. The other fields are used
to store data, like SystemicType — to determine if the type is should be protected,
DefaultCustomValue, which used to store the default value, etc.

4.2.3 Entity Framework database context

To work with the Entity Framework, the author has created a class that inherits from
DbContext and defined entities in it. Since this procedure is typical for all applications,
the author will not focus on implementation. However, since the application must support
soft delete and soft update actions, it is necessary to handle entities whose state changes.
For this, the author has created a method that will be called when SaveChanges is called
on the Entity Framework context. As an example, the author gives an implementation of
entity validation on deletion (see Figure 9).

ChangeTracker.DetectChanges();
var now = DateTime.UtcNow;

var deletedEntities = ChangeTracker.Entries().Where(x => x.State ==
EntityState.Deleted);

foreach(var entityEntry in deletedEntities) {

if (entityEntry.Entity is not IDomainEntitySoftDelete softDeleteEntity)
continue;

softDeleteEntity.DeletedAt = now;

softDeleteEntity.DeletedBy = _userProvider.CurrentName;
entityEntry.State = EntityState.Modified;

Figure 9. Example of handling of deleted entities
When deleting an entity, it is checked whether the entity should be deleted "softly" with

the date of deletion, or if it should be physically deleted, in this case, its state does not
change to EntityState.Modified and it will be deleted.

36

4.2.4 Database initialization

For the application to be able to start working with a clean database, the author created a
class responsible for migrating the database schema and data, users, and roles seeding.
The need for individual actions is configured from the application settings file, where it
can be also specified how to translate user roles, as well as login information for the Super

Administrator account. As a security measure, the super user is seeded only once.

Since, often, attributes do not require a specific type, to immediately create attributes,
during initialization, 7 basic system types (string, boolean, integer, float, date, time, and
datetime) are seeded. The application does not support types that accept multiple values
at the same time; however, users can create multiple attributes with different values. The

example of implementation can be found in Appendix 3.

4.2.5 Data access layer

To work with DAL the author has created the AppUnitOfWork class, which is an
implementation of the “Unit of Work™ pattern [47, pp. 184-189]. This class has a list of
repositories, as well as a factory method [40, p. 100] to get the instance of the repository
(see Figure 10).

protected TRepository GetRepository <TRepository> (Func<TRepository>
repoCreationMethod) {

if (_repoInstances.TryGetValue(typeof (TRepository), out
var objl))
return (TRepository) objl!;
object obj2 = repoCreationMethod()!;
_repoInstances.Add(typeof (TRepository), obj2);

return (TRepository) obj2;
Figure 10. Repository factory method

When called, the method checks if the repository instance exists, and if not, it creates the
repository and returns it to the dictionary. On subsequent requests, the cached repository

will be returned. Next, the author gives an example of a method call (see Figure 11).

37

public IAttributeRepo Attributes => GetRepository<IAttributeRepo>(
() => new AttributeRepo(DbContext, Mapper));

Figure 11. Repository creation using factory method

AppUnitOfWork does not contain a list of specific classes, but of their interfaces, which
allows, if necessary, to create a test repository inherited from the interface and connect it
instead of the main one for test purposes.

The author has created a separate repository for working with each entity. To improve the
quality of the code, a similar set of methods were moved to the base class BaseRepo. To
ensure the modularity of the repositories, as well as the observance of the one of the
SOLID principles — "Dependency Inversion™ [40, pp. 98-101], the author has created
interfaces from which the repositories are inherited, including the base repository. The
base repository is generic, accepting two types, an entity type and a DTO type that will

pass the data of that entity.

The author has created special classes for transferring information — DTO [40, p. 195] for
each entity, because using the entities directly may create a bad situation — if changing
happens, it will affect not only the operation of the repository, but also the layers above,
and, in addition to the strong dependence on the implementation, which violates
modularity, if an error occurs, it will need to be corrected for all layers.

For entities to be converted into DTOs at the layer boundary, it is necessary to map them.
This can be done manually by creating new classes and assigning values to all fields,
however, since DTOs are identical to entities, at this stage, the author has decided to use
the most popular automatic conversion library — AutoMapper, since it is easy to configure
and allows to quite accurately specify how objects should be converted. The author has
created a UniversalMapper wrapper class that provides a conversion for all entities. The

implementation can be found in Appendix 4.

This approach provides modularity, which, as in the case of repositories, allows to test

the unit of work module separately.

38

4.2.6 Business logic layer

To separate API controllers and client implementation from DAL, the author has used an
intermediate layer — BLL [48], the purpose of which is both data manipulation and
validation, so the controller will only access the BLL and handle errors that occurred
during model validation. Another advantage is the ability to reuse the logic of working
with individual entities. To implement BLL, the AppBLL class was created, which
implements the IAppBLL interface, as well as service classes that, like repositories, wrap
the logic for working with a specific entity. To be able to access the service through the
BLL, a factory method was implemented, the principle of which is identical to the factory
method of the repositories, so the author will not describe its implementation.

For the controllers to be able to handle erroneous requests, two exception classes
NotFoundException and ValidationException were created, which throws an exception
when a validation error occurs on the BLL side, so the controller does not know anything
about whether the content of a request is correct or not, but can answer to the client in

case of an error, for example by sending a "404" response code.

Since the BLL implementation is similar to the DAL, the author does not see the point in
describing almost the same thing again, so the accent will be made only on the transfer of
information between the BLL and the controllers. As in the case of DAL entities, it was
possible to use the AutoMapper package, but since the entity APl and DAL DTO are very
different, the author has decided to convert them manually on the BLL side. The
advantage of this way is that the controllers do not know anything about the form in which
the data comes from the DAL, as well as what happens to it. There is a downside — it can
be said that controllers depend on the DTO APIs. However, the author considered this
insignificant, because, when the app logic changes and if the clients are already using the
API, it is better to create a new service and controller that will use different logic and

return new DTOs, so that the old versions will not be broken.

4.2.7 Handling soft update entities

To implement order history tracking, it is necessary to save the previous versions. Entities
with soft update capability must inherit from DomainEntityldSoftUpdate (see 4.2.2
Domain entities). When the DomainEntityldSoftUpdate entities are updated, a copy is

created to save the previous version, the date of the update is set in the deletedAt field and

39

the identifier of the original record is set in the masterld field. Thus, there is no need to
update all dependent entities, and the entire history of the entity can be queried if

necessary (see Figure 12).

public virtual async Task UpdateAsync(TDTO dto)
{
TEntity trackedEntity
TEntity entityToTrack

await DbSet.FindAsync(dto.Id);
MapToEntity(dto);

foreach (var entity in DbSet.Local)

{
if (entity.Id.Equals(dto.Id))

{
}

DbContext.Entry(entity).State = EntityState.Detached;

}

if (trackedEntity is IDomainEntitySoftUpdate softUpdate)

{
softUpdate.MasterId = trackedEntity.Id;

trackedEntity.Id = 0;
await DbSet.AddAsync(trackedEntity);

}

DbSet.Update(entityToTrack);

Figure 12. Entities update method with soft update handling

When updating, the current version must be obtained, then it is "detached” from the
context so that there are no problems if the entity is already tracked somewhere in the
application. Further, if the entity requires a soft update, a copy is created and added to the
context as a newly added entity. At this stage, the date is not added, because when
updating a set of entities, it may take a couple of seconds, which may affect the query for
history, if entities also have child entities with history, such as orders that have attributes.
The date is applied to DbContext to all changed entities (see 4.2.3 Entity Framework

database context).

4.2.8 Querying of an actual data

Since the application supports soft update and soft delete, this must be considered when
requesting data from the context, since in both cases, the data of deleted entities and old
versions are no longer actual. To get valid data, the author used the filtering capabilities
of the Entity Framework [49] (see Figure 13).

40

await _context.AttributeTypes.CountAsync(at => at.DeletedAt == null)

Figure 13. Example of actual data query

Entity Framework will automatically consider filtering when creating a database query,
without taking up resources and memory to load irrelevant data. The author has
implemented soft update in the way that both when soft deleting and when soft updating
an entity, the date of deletion is set. Thus, to filter out such entities, it is enough to check
for deletedAt.

4.2.9 API controllers

To implement API requests handling, the author has created 6 API controllers (see Table
8).

Table 8. API controllers

Name API base url Description

IdentityController [api/vl/identity Handles authorization and user
management

AttributesController [api/vl/attributes Handles attributes management

AttributeTypesController | /api/v1/attributetypes | Handles attribute types, type values and
type units management

HomeController lapi/lvl For the client to check if server is online

OrdersController [api/vl/orders Handles orders and order attributes
management

TemplatesController lapi/vl/templates Handles templates and template attributes
management

Not all controllers are responsible for only one entity, for example,
AttributeTypesController is responsible also for the type's defined values and units of

measurement.

4.2.10 Security

To authorize users into applications, the author used jwt (Json Web Token) as an enough
secure and simple authorization method [50]. In order not to indicate to each controller
that authorization goes through jwt, the default authorization and authentication schemes

were written in the configuration of the Startup.cs executable file (see Figure 14).

41

.AddAuthentication(options =>

{
options.DefaultScheme = JwtBearerDefaults.AuthenticationScheme;
options.DefaultAuthenticateScheme = JwtBearerDefaults...;
options.DefaultChallengeScheme = JwtBearerDefaults...;

})

Figure 14. Default authentication and authorization scheme

To differentiate access to individual APl endpoints, a special attribute was added to each

of the API controllers (see Figure 15).

[Authorize(Roles = "User, Administrator, Root")]

Figure 15. Example of restricting access to controllers

This attribute tells the controller that this method (or the whole controller) can be accessed

by users with the “User”, “Administrator”, or “Root” (Super Administrator) roles.

The author has restricted the access to the application by roles the following way: only
authorized users can interact with the API, except for the login method; users with the
“User” role can view orders in the calendar, but cannot add orders or change the structure:
templates, attributes, types, etc; "Administrator" and "Root" users can change the all.
Users with the “Administrator” role differ from “Root” (Super Admin) only in that “Root”
is needed to add users and administration and cannot be changed from the application.

4.2.11 Swagger

For more convenient API development, as well as manual testing of the server logic, the
author installed the Swashbuckle.AspNetCore.SwaggerGen — Swagger package. Also, in
the future, the availability of this tool will make further development easier.

4.3 Frontend

The client application is an important part of the solution since it wraps the work with the
server in the form of an interface that an ordinary person can work with without delving

into the specifics of the API and the server logic.

42

4.3.1 Client application initialization

When creating a project through the console, it is possible to select an application

configuration. The author has chosen the following configuration (see Figure 16).

Programming language: TypeScript

Package manager: Npm

UI framework: Vuetify.js

Nuxt.js modules: Axios - Promise based HTITP client
Linting tcols: ESLint

Rendering mode: Single Page App

Deployment target: Server (Node.js hosting)
Continuous integration: None

Version control system: None

e I B e S v]

Figure 16. Nuxt project initialization

The TypeScript was chosen as the program language for the possibility of typing
components, which will make development easier. NPM was chosen as a package
manager, since the author has experience with it, unlike Yarn package manager.

For the interface of the app, the author decided to use frameworks to save time. The author
has chosen Vuetify as a framework, even though the author has more experience with
Bootstrap. This framework provides special Vue components, which is certainly more
convenient than writing style classes for each component, but it is possible to use style
classes too. An additional feature is the presence of a building fully customizable calendar

component, which will facilitate the creation of a calendar view for orders.

Among other things, Axios library, because it is a light and easy way to communicate
between client and APIs; ESlint is a useful plugin that ensures code cleanliness, especially

when the project is developed by more than one person; and SPA application mode.

4.3.2 Client app structure

By default, when creating a Nuxt project, several empty folders are created, which are
needed for the Nuxt engine to automatically recognize and include content in the

application. The following is the structure of the finished application (see Figure 17).

43

¥ S e e s e

dal store components models pages

| | !

layouts utils plugins

Figure 17. Client application structure

The entire project is contained in the root folder, where in addition to folders, the stored

configuration also, for example, nuxt.config.js, tsconfig.json, package.json, and others.

All application pages are stored in the pages folder. The structure of this folder is the
router configuration of the application [51]. So, for example, the index.vue file in this
folder will be available at https://<app_url>/index. To specify page parameters, for
example, an entity id, an underscore, and the name of the parameter is added to the title,
for example — _id. The index.vue file in the root folder is the main page of the
app — calendar view. The rest of the pages are arranged in subfolders of the corresponding

entity, for example: /templates, /orders, etc.

Reusable parts are moved into a components folder. Unlike pages, other folders have no
structure restrictions. The common features of each page are moved into separate layout

files, such as a navigation bar, etc. Layouts are stored in the layouts folder.

The models folder contains DTOs for working with server APIs. Files providing
requesting functionality the author named “repos” — repositories; and placed in the dal
folder. From there, they can be used in both pages and store components, which are in the

store folder.

Files that provide additional functionality are stored in utils and plugins folders. The utils
folder contains utility functions such as form validation, etc. Plugins, stored in the plugins
folder, can be used to add functionality to the nuxt context. A common example of a

plugin would be Vue plugin initialization that connects Vue plugin to Nuxt instance.

44

4.3.3 API calls

The author has chosen axios for sending and receiving requests as it is very simple and
useful enough. However, by default, when an error response is received from the server,
axios interprets it as an own error and does not pass the result on. To avoid this, errors
handling must be in every request. Since this is relevant for every request, the author has
created a base class from which other repositories inherit and which contains wrapper

methods for axios methods, including error handling.

protected async _get<TKey>(url: string, onError?: ErrorCallback, config?:
AxiosRequestConfig | undefined): Promise<TKey> {

const response = await this.axios.$get<TKey>(url, config)
.catch((err: AxiosError) => responseCatch(err, onError))
return response

}
Figure 18. Axios GET method wrapper with error handling

When an error response is received, it is passed on because the error contains a message
that can be displayed in forms when they are submitted. In addition, this method can take
a callback function as a parameter, which will be executed when an error response is
received. The responseCatch function checks if it was an error response, if it was, it

executes the callback function if provided and returns the content of the response.

Since in this case, axios is a nuxt plugin, axios can only be used from nuxt pages or
components. To solve the problem of direct usage of API, the author has created the unit
of work plugin, that will provide axios instance to all components that require it. To create
a unit of work must be considered two things, it must be accessible from the nuxt context,
and, it must use the axios instance supplied from the nuxt context. The implementation

was inspired by Alexander Lichter [52] (see Figure 19).

const AppUnitOfWork: Plugin = (ctx: Context, inject: Inject) => {
const repositories: IAppUnitofWork = {
attributes: new AttributesRepo(ctx.$axios),

orders: new OrdersRepo(ctx.$axios)

}

inject('uow', repositories)
}
Figure 19. Nuxt unit of work plugin

45

This plugin takes a nuxt context as a parameter, which is supplied through dependency
injection, takes an axios instance from it and creates repositories. Repositories are stored
in a repositories array. Next, the plugin inserts an array with repositories into the nuxt

context, which makes them available in pages and components.

4.3.4 Vuex storage

To save and share data between pages, the author used the Vuex store. The additional
advantage of this approach is the ability to place the logic for working with the created
previously unit of work also in vuex store, which will ensure the independence of the

interface from the implementation of requests to the API.

The problem is that even though the store is autodetected by the nuxt engine and
accessible from the context, the store components themselves do not have access to the
context. To solve this, the author has created two files — vue-context.ts and
context-accessor.ts. The vue-context.ts file provides a function that saves the context to a
variable, which can then be imported. The context-accessor.ts file is a nuxt plugin, its job
is to get the context and save it by calling a function from vue-context.ts. Thus, by

importing the variable, the context can be used in any file.

By default, vuex was designed for JavaScript, which means there is no typing in it. This
can be fixed by using the vuex-module-decorators module, which provides decorator

methods as well as typing for vuex [53].

Further, the author describes the author implementation of the unique cases of individual

components.

4.3.5 Attribute types

For attribute types, the author has implemented the ability to view all types, with the
ability to search and sort by name, as well as display page by page, 12 pieces! on each
page. The author also has included attribute type category in the list: “regular”, “system”,

“with defined values”, and “with defined units of measurement”. Categories can overlap.

112 — the number of elements that fit on the screen

46

The type details display the available values and units, which ones are assigned by default,
and the format of stored data. Since the data format is Enum with the numeric value, it
needs to be converted to a string. To do this, the author used the capabilities of Vue filters
[54].

Vue.filter('formatDataType', function (value: any) {

if (typeof value !== "string" && isNaN(Number(value))) return value;
return localize(value as DataType)

)
Figure 20. Attribute type format display filter

Here the localize function takes a number as input and returns a string with the name of

the data format.

When creating types, there must a default value, or predefined values, in which case at
least one value must be specified. To add values and units of measurement, the author

created two dialog components (see Appendix 5).

When creating, the data format is required, which affects only the data display, which
means that the form for entering values must also be displayed correctly. For this, the
author has created a component CustomValueField.vue that takes a type as a parameter
and substitutes the correct fields for entering values (see Appendix 6). The
implementation of the change page is a little more complicated, as some values and units
may already exist, but new ones may also be added, and this must be considered when

updating and displaying in form.

When deleting, a confirmation window is shown to prevent the type from being deleted

in the event of an accidental click.
The attribute types implementation result can be found in Appendix 10.

4.3.6 Attributes
The difference of the attributes index page is the presence of types and the ability to sort

not only by name but also by type.

When creating an attribute, the user can specify the name and select the attribute type in
the drop-down list. The list of attributes is dynamic, because if there are many types, it

may take time to fully load them, so this field assumes that the user must enter part of the

47

type name to select it. To get types, the same logic is used for displaying all types on a
page, only the first page is always requested, and the server returns only 12 types, which,

however, is enough if there are not many of them.

Attribute details show the name, type of attribute, format, default value, and amount of
use, which is important because the user cannot change the type of an attribute that is
already in use, as this will lead to data loss, since different types differ not only by format,
but also by defined values and units. For a user-friendly design, when clicking on an
attribute type, the user will be transferred to the type details page. Deletion is also

available only if the attribute is not used.
The attributes implementation result can be found in Appendix 11.

4.3.7 Order templates

In this case, the author considered creating a page for details inappropriate, since
templates have only a name and attributes that can be displayed on a page with all
templates. Since there can be a lot of attributes in a template, the author designed the
templates on the page in the form of an expansion panel, upon expanding which attributes
appear, which in turn can also be opened to see the type of attribute, the format, and also

whether the attribute uses defined values and units of measurement.
The order templates implementation result can be found in Appendix 12.

4.3.8 Orders

To display all orders, the author made two separate views — a view with all orders, and a
calendar view, since the first allows to get more detailed information on all orders. Since
orders can be without a date, the author has subdivided the page with all orders into two
pages using different server API endpoints. To conveniently filter orders, the author
implements a dialog component that allows to filter orders by completion, overdue,
specify a date range and a check date to see what the status of orders was in a certain
period (only for orders with a deadline date). To be able to select a date, the author also
implemented a date selection dialog. Filtering and date picker dialog components

implementation can be found in (filtering in Appendix 7, picker in Appendix 8).

To implement the calendar view, the author used the Vuetify <v-calendar> component,

which can be customized by overriding the implementation of individual parts [55]. To

48

display orders in the calendar, the author has overridden the implementation of the
calendar day, displaying the number of orders, as well as the selected attributes in the
order cell. The obvious problem is that only a small number of orders can fit into a cell,
however, programmatically limiting the number of orders is not the best solution, so the
author has also overridden the label of the calendar date. Initially, the date in the calendar
is displayed as a day of the month, to replace it, the author created the CalendarMenu.vue
component, which displays the date in the “DD-MM-YYYY ” format using the moment.js
library, and also upon clicking on the date, displays a menu, with orders for a given date.
For convenience, if some orders do not fit into the cell of the day, a “v”” symbol appears
next to the date, indicating that the user can view all orders when clicked.

The window next to the calendar displays information about the selected order: order
number, deadline, attributes, and a note. For convenience, there are three buttons
downward: a button for quickly marking an order as completed or vice-versa; a button for
going to the details page, and a button for changing an order.

When creating an order, the user need to not only select an attribute but also assign values
to it. To select attributes, the author created the AttributeSellect.vue component, which is
a dynamic list, and the AttributeValueSellect.vue component, which takes an attribute
type as a parameter and shows a form for entering a value (or selecting from the list of
available ones) and selecting units of measurement if they are used by the given attribute
type. The implementation of these components can be found in Appendix 9. Changes to

orders are also implemented using these components.

For report generation, the author has created a separate modal window component. The
JSPDF library was used as a pdf generator, since it allows to use HTML for generation,
which makes the task easier, and also, the text remains selectable in a pdf file, which is

certainly important because employees need to be able to work with the report further.

Upon creating a report, the user can select a date range (for orders with a date), and after
generating, the pdf file opens in a new browser window, which allows to immediately

start printing. An example report can be found in Appendix 15.

The order implementation result can be found in Appendix 13.

49

4.3.9 Forms validation

Since the author chose Vuetify as the Ul framework, the form component and input field
components have built-in validation. For validation, an array of validation functions that
check the condition and return either true or a string with an error message must be passed
to form components. Initially, the author wanted to use third-party validation libraries -
Vee-validate and Vuelidate, however, the author found them too complicated to use, so it
was decided to create a file with pre-installed validation functions. One of these is the

required function for validating simple fields (see Figure 21).

export const required = () => (value: any) => {

if (typeof(value) === "string" && value.length > @) return true
if (typeof(value) === "number" && !isNaN(value)) return true
return !l!value || “HaHHoe none obA3aTenbHO’

}

Figure 21. Custom validation function example

This function checks the value for a string or number and applies the corresponding
checks for the existence of the value, otherwise, it casts the value to boolean and checks
it. Thus, for each component or page, the same functions can be imported and passed in
an array as a parameter. Then, when submitting the form, the form validates all fields,
and if they are valid, a request is made to the server through the vuex store and unit of

work.

4.3.10 Security

First, the author has implemented the user login capabilities by creating a login page with
a form. After the jwt token is received, it is saved in the vuex store, as well as in the local
storage of the browser, so that the token is shared not only between components but also
when the page is reloaded. However, in this case, it is necessary to check if the token is
correct. At this stage, the author decided that it is sufficient to check the token's expiration
date and delete it if it is out of date. To work with the token, the user’s vuex store sets it
to the axios instance obtained through context-acessor.ts (see 4.3.4 Vuex storage), so that

all requests made after could have an authorization token.

To manage users, the author has created a page where users can change personal data and
administrators can manage other users. The access logic in this component is the same as

on the server, administrators can change other users, but not administrators, super admin

50

can change everyone except himself, including setting the “User” and “Admin” roles. The

result of the user page implementation can be found in Appendix 14.

To restrict user access to certain parts of the application, the author used the capabilities
of the nuxt middlewares and created a middleware that checks whether the user is logged
in and what role he belongs to. If users are not in the system, it will be redirected to a
page with a login form, and if an ordinary user tries to open pages intended for
administrators only, he will be redirected to the main page — with a calendar view, that is

available for all authorized users.

4.4 Testing

To check the functionality of the application, the author tested each endpoint manually
with different input parameters. Among the checks, the author checked both application
validation, fault tolerance when entering a large amount of data, as well as stability when
changing and deleting entities on which other entities depend. Also, the author has tested

the client application for declared functionality.

During development, the application was not tested through unit tests, since writing them
requires additional time, and the author does not have enough experience to write high-
quality tests. However, during the development of the application, the prerequisites for

full testing were created due to the modular structure of the application.

51

5 Further development

The next steps after the development of the application are to install it in the workplace
and test it in real work conditions. It is necessary to explain to employees how to use the
application. The application must be user-friendly and free from critical errors in working
with data.

Further development of the application will be aimed at realizing the wishes of
employees, increasing additional functionality, identifying, and fixing potential errors,
improving the interface, as well as integrating with the general system when it will be
developed. The author plans to change the solution according to the changes of business

requirements.

When developing the next versions, the author plans to write unit tests, since now the
application can be tested manually, however, as the application grows, manual testing
will become impossible. Also, for the application to work correctly in real conditions, the
author plans to log the application's actions to detect a potential error as early as possible.
The further development will not be described in this document.

52

6 Summary

The enterprise delivers manufactured products; for this, a logistic group keeps records of
what product, in what quantity, when, where, and by whom it is delivered. The problem
for the enterprise was to use standard accounting tools, which, although they coped with
the task at hand, the staff needed to spend time on unnecessary work every time. To solve
this, the enterprise set the task of developing a more highly specialized application that
would allow employees to concentrate on completing their tasks. The purpose of the

thesis was to solve the problem of the enterprise by creating that application.

During the development, the author solved all the tasks. The required functionality of the
application was determined based on the collection of employees requirements and the
analysis of third parties applications that offer their own solution to the problem. Further,
having determined the optimal path, the author developed the application for
manufactured products accounting. The application allows to create orders, specify their
attributes, and customize the attributes, specifying both the valid values and units of
measurement and the data format. At the request of the enterprise was also implemented
the ability to view the history of changes in orders, display in a calendar form, and export

orders for a certain period.

The application has a modular architecture that provides the ability to test business logic,
replace certain parts and integrate with other systems. At the moment, the application has
taken its place as a tool of the logistics group of the Novotrade Invest AS enterprise. The
solution saves employees time approximately 6-12 hours per week, depending on the
number and complexity of orders. In case of continuing work, the author is ready to

continue working on further improving of application.

The created solution can also be used for solving similar problems in other manufacturing

enterprises and not only.

53

References

[1] "VNK - Home," [Online]. Available: http://www.vnk.ee. [Accessed 23.02.2021].

[2] P.E.IBM, "Capturing Architectural Requirements,” 15.11.2005. [Online].
Available: https://www.ibm.com/developerworks/rational/library/4706-pdf.pdf.
[Accessed 11.04.2021].

[3] S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels,” March
1997. [Online]. Available: https://www.ietf.org/rfc/rfc2119.txt. [Accessed
11.04.2021].

[4] "Share excel file at the same time," ExelTABLE, [Online]. Available:
https://exceltable.com/vozmojnosti-excel/sovmestnyi-dostup-k-failu-excel.
[Accessed 29.03.2021].

[5] Mircosoft, "Compare OneDrive cloud storage pricing and plans,” Microsoft,
[Online]. Available: https://www.microsoft.com/en-us/microsoft-
365/onedrive/compare-onedrive-plans?activetab=tab:primaryr2. [Accessed
29.03.2021].

[6] Microsoft, "Getting started with VBA in Office," Microsoft, 14.08.2019. [Online].
Available: https://docs.microsoft.com/en-us/office/vba/library-
reference/concepts/getting-started-with-vba-in-office. [Accessed 11.04.2021].

[7] 1C, "Overview of the "1C: Enterprise 8" system,” [Online]. Available:
https://v8.1c.ru/tekhnologii/overview/. [Accessed 30.03.2021].

[8] K. Ramil, "Why 1C is bad and why 1C programmers are so disliked,” 02.12.2014.
[Online]. Available: https://habr.com/ru/company/trinion/blog/244727/. [Accessed
11.04.2021].

[9] 1C, "1C: Enterprise 8 - Prices and delivery procedure,” [Online]. Available:
https://v8.1c.ru/price/. [Accessed 11.04.2021].

[10] A. Pascal, ""Operational accounting™ on the "Ananas" platform - User's Guide,"
2007. [Online]. Available: https://ananas.su/docs/ananas-inventory-user-
manual.pdf. [Accessed 11.04.2021].

[11] Ananas, "Installing Ananas for Windows," 27.07.2009. [Online]. Available:
https://ananas.su/wiki/YcranoBka Ananaca mis_ Windows. [Accessed
11.04.2021].

[12] "FREE ANANAS PROGRAM," Freeanalogs team, 04.02.2016. [Online].
Available: https://freeanalogs.ru/Ananas. [Accessed 11.04.2021].

[13] "GoRamp TMS," GoRamp, [Online]. Available: https://goramp.eu/. [Accessed
30.03.2021].

[14] Utech Corp, "UTECH TMS | Transportation Management Software - Demo,"
[Online]. Available: https://www.youtube.com/watch?v=JIsSLCulDEwQ.
[Accessed 30.03.2021].

54

[15] C. Richardson and J. R. Rymer, “New Development Platforms Emerge For
Customer-Facing Applications,” Forrester, June 9, 2014,

[16] C. Richardson and J. R. Rymer, "Low-Code Platforms Deliver Customer-Facing
Apps Fast, But Will They Scale Up?," Forrester, August 11, 2015 | Updated:
August 13, 2015.

[17] "Trello,” Atlassian, [Online]. Available: https://trello.com/. [Accessed
11.04.2021].

[18] "The online collaborative whiteboard platform to bring teams together, anytime,
anywhere.," Miro, [Online]. Available: https://miro.com/index/. [Accessed
11.04.2021].

[19] "One tool for your whole team. Write, plan, and get organized.,” Notion Labs,
Inc., [Online]. Available: https://www.notion.so/. [Accessed 05.04.2021].

[20] G. Perlman, "Web, Desktop, Mobile, or Cross-Platform: Options for App
Developers,” 12.01.2017. [Online]. Available:
https://learntocodewith.me/posts/cross-platform-apps/#web-applications.
[Accessed 04.04.2021].

[21] A. S. Gillis, "What is native app?," August 2020. [Online]. Available:
https://searchsoftwarequality.techtarget.com/definition/native-application-native-
app. [Accessed 04.04.2021].

[22] Sam Richard and Pete LePage, "What are Progressive Web Apps?,” Google,
24.02.2020. [Online]. Available: https://web.dev/what-are-pwas/. [Accessed
17.03.2021].

[23] J. Paul, "Top 5 Programming languages for Web development in 2021,"
13.02.2021. [Online]. Available: https://medium.com/javarevisited/top-5-
programming-languages-for-web-development-in-2021-f6fd4f564eb6. [Accessed
22.03.2021].

[24] "TIOBE Index for March 2021," TIOBE, 03 2021. [Online]. Available:
https://www.tiobe.com/tiobe-index/. [Accessed 22.03.2021].

[25] J. Toledo, "Why Millions of Developers use JavaScript for Web Application
Development,” 07.06.2018. [Online]. Available:
https://torquemag.io/2018/06/why-millions-of-developers-use-javascript-for-web-
application-development/. [Accessed 04.04.2021].

[26] Microsoft, "Typed JavaScript at Any Scale.," Microsoft, [Online]. Available:
https://www.typescriptlang.org/. [Accessed 04.04.2021].

[27] T. Merkle, "Why Angular Made Me Quit Web Dev," 05.11.2018. [Online].
Available: https://hackernoon.com/why-angular-made-me-quit-web-dev-
f63b83al57af. [Accessed 12.04.2021].

[28] D. Han, "My React App is Slow. What Should I do?,” Nov 8, 2019, 08.11.2019.
[Online]. Available: https://medium.com/in-the-weeds/my-react-app-is-slow-
what-should-i-do-e1fd020e69ec. [Accessed 12.04.2021].

[29] O. Omole, "Nuxt.js: a Minimalist Framework for Creating Universal Vue.js
Apps,” 18.03.2019. [Online]. Available: https://www.sitepoint.com/nuxt-js-
universal-vue-js/. [Accessed 12.04.2021].

[30] Microsoft, "What is .NET?," [Online]. Available:
https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet. [Accessed 04.04.2021].

55

[31] A. Lock, "Getting started with ASP.NET Core," 23.06.2020. [Online]. Available:
https://andrewlock.net/aspnetcore-in-action-2e-getting-started-with-asp-net-core/.
[Accessed 04.04.2021].

[32] Microsoft, "Getting Started with EF Core,” 17.09.2019. [Online]. Available:
https://docs.microsoft.com/en-us/ef/core/get-started/overview/first-
app?tabs=netcore-cli. [Accessed 07.04.2021].

[33] Microsoft, "An introduction to NuGet," 24.05.2019. [Online]. Available:
https://docs.microsoft.com/en-us/nuget/what-is-nuget. [Accessed 12.04.2021].

[34] Microsoft, "Introduction to Identity on ASP.NET Core,” 15.07.2020. [Online].
Available: https://docs.microsoft.com/en-
us/aspnet/core/security/authentication/identity?view=aspnetcore-5.0&tabs=visual-
studio. [Accessed 12.04.2021].

[35] METANIT.COM, "Introduction to Java," [Online]. Available:
https://metanit.com/java/tutorial/1.1.php. [Accessed 12.04.2021].

[36] P. Banerjee, "Top 10 Most Popular Java Frameworks for Web Development,”
03.10.2020. [Online]. Available: https://www.geeksforgeeks.org/top-10-most-
popular-java-frameworks-for-web-development/. [Accessed 04.04.2021].

[37] Oracle, "A quick tour of Java EE," [Online]. Available:
https://www.oracle.com/java/technologies/java-ee-glance.html. [Accessed
12.04.2021].

[38] MDN contributors, "Django introduction,” [Online]. Available:
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction.
[Accessed 12.04.2021].

[39] S. Bhatt, "Pros and Cons of Django Framework for App Development," Aug. 31,
20. [Online]. Available: https://dzone.com/articles/pros-and-cons-of-django-
framework-for-app-developm. [Accessed 12.04.2021].

[40] R. C. Martin, Clean Architecture, USA: Pearson Education, 2018.

[41] "Common web application architectures,” 12.01.2020. [Online]. Available:
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-
azure/common-web-application-architectures. [Accessed 20.03.2021].

[42] W3C, "SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)," 27
April 2007. [Online]. Available: https://www.w3.org/TR/soap12/. [Accessed
12.04.2021].

[43] R. T. Fielding, "Representational State Transfer (REST)," 2000. [Online].
Available: https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm. [Accessed
12.04.2021].

[44] GraphQL community, "Security,"” [Online]. Available:
https://www.howtographgl.com/advanced/4-security/. [Accessed 12.04.2021].

[45] "Comparing Database Management Systems: MySQL, PostgreSQL, MSSQL
Server, MongoDB, Elasticsearch and others," altexsoft, 20.07.2019. [Online].
Available: https://www.altexsoft.com/blog/business/comparing-database-
management-systems-mysql-postgresql-mssgl-server-mongodb-elasticsearch-and-
others/. [Accessed 26.04.2021].

[46] "Datatypes In SQL.ite Version 3," [Online]. Available:
https://www.sqlite.org/datatype3.html. [Accessed 07.04.2021].

[47] M. Fowler, Patterns of Enterprise Application Architecture, Indiana: Addison-
Wesley, 2002.

56

[48] L. Esposito, "The Mythical Business Layer," CODE Magazine, 2014 -
November/December.

[49] Mircosoft, "Entity Framework Core Docs,” Mircosoft, 20.09.2020. [Online].
Available: https://docs.microsoft.com/en-us/ef/core. [Accessed 17.04.2021].

[50] AuthO, "JSON Web Token," Auth0, [Online]. Available: https://jwt.io/. [Accessed
17.04.2021].

[51] NuxtJS, "Nuxt Docs,” NuxtJS, [Online]. Available: https://nuxtjs.org/docs/2.x/get-
started/. [Accessed 17.04.2021].

[52] A. Lichter, "Organize and decouple your API calls in Nuxt.js," 18.04.2020.
[Online]. Available: https://blog.lichter.io/posts/nuxt-api-call-organization-and-
decoupling/. [Accessed 17.04.2021].

[53] A. Gupta, "vuex-module-decorators,” [Online]. Available:
https://github.com/championswimmer/vuex-module-decorators. [Accessed
29.04.2021].

[54] "Vue docs,"” [Online]. Available: https://ru.vuejs.org/v2/guide/. [Accessed
17.04.2021].

[55] Vuetify, "Vuetify docs,” [Online]. Available:
https://vuetifyjs.com/en/components/calendars/. [Accessed 17.04.2021].

[56] S. Ivanenko, "Vue: how to use multiple templates in spa,” 31.12.2018. [Online].
Available: https://si-dev.com/ru/blog/vue-multiple-layouts. [Accessed
12.04.2021].

[57] "The best development tool for agile teams,” Atlassian, [Online]. Available:
https://www.atlassian.com/ru/software/jira. [Accessed 11.04.2021].

57

Appendix 1 — Non-exclusive licence for reproduction and

publication of a graduation thesis’

| Aleksandr lvanov

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis “Product Delivery Accounting Solution for Manufacturing Enterprise”,
supervised by Nadezda Furs
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of
Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be
entered in the digital collection of the library of Tallinn University of Technology
until expiry of the term of copyright.

2. | am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. | confirm that granting the non-exclusive licence does not infringe other persons'
intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

27.04.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation
thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis
is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her
graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

58

Appendix 2 — ER Diagram (ERD)

| j omders
Id BIGINT 20}
 Complebed TINYINT1)
+ DeleedBy LONGTEXT
* Delmed iz DATETIME S)
TreatedBy LONGTEXT
Trestedic DATETIMES)
(hanged By LONGTEXT
+ (hangedix DATETIMES)
+ BreoutionDzteTime DATETIMES)
Natation LONGTEXT
MName LONGTEXT
Masterld EIGINT] 20}

- —

1

I

":I ordersttributes ¥ |
14 BIGINT|20)

& Orderld BIGINT] 20}

& ferrituteld BIGINT]20)

 DeletedBy LOMGTEXT
Deleted e DATETIME(S)
(remtedBy LONGTEXT

» Greatedft DATETIMES)

> (hangedBy LONGTEXT

» (hangedfc DATETIME(S)
Custom iahue LONGTEXT
Featured TINYINT(1)

> Unitld BIGINT20)

> Vakueld BIGINTI20)

» Masterld BIGINT] 20}

>

[':I attributes

1d BIGINT|20)
% drituteTypeld BIGINT20) P N
. DemedBy LONGTEXT "] templateattributes ¥
 Dstmed/x DATETIMELS) 12 BIGINTL20
@ emtectBy LONGTEXT & Templateld EIGINT20)
GemamomEMEg T ¥ terituteld BIGINTL20)
(hangad, LONGTEXT L i \ re=tdB, LONGTEXT
) hanged A DATETIMEE) » Cresv=d’ DATETIMEE)
» Name LONGTEXT hangedBy LONGTEXT
Masterld BIGINT|20) # (hanged/ DATETIMES)
~ » Fesmured TINVINT(L)
5 v 7 >
T %* '
I | 7] typevalues v 1
| I BIGINT{20) 3 =
| # BwituteTypeld BIGINT 20 p——
 restedB, LONGTEXT
: 5 amminmm&a CemeaByLONGTET
) Gresv=d’ DATETIMEE)
p— — — — = — 4 © Gangedn, LONGTEXT ChrangadBy LONGTEXT
| : (hangedix DATETIMEE) » Changed /s CATETIMEL)
[| > Viahue: LONGTEXT Nome LONGTECT
|) Deberedie DATETIME) .
| : » DebemedBy LONGTEXT J
| | >
| !
| | T
: | l ' .:| attributetypes 2
_ | | Id BIGINT{20)
| l Delsted By LOMGTEXT
| l > Debmed fz DATETIME(S)
b= | — — — — M| GearedB, LONGTEXT
. | » Crestedis DATETIMELE)
"~ typeunits v | ChangedBy LONGTEXT
Id BIGINT 20} | » Changedéx DATETIME(S)
> ighse L ONGTEXT L — —] DataType INTILL)
 dwitusTypsld BIGINTL2D) Mame LONGTEXT
' CrestedBy LONGTEXT » DstauitLinitld EIGINT]20)
) Gestedf DATETIMES) Bb— — — — — Datuitvsusld BIGNTI2D)
ChangedBy LONGTEXT L | o usebeinesvans T
> Changed/x DATETIMELS) DatauhtCustom ishue LONGTEXT
 Delmed e DATETIMELE) » SystemicTyps TINVINT(L)
 DelaedBy LONGTEXT UsesDefinadUrits TIMYINT, 1]

59

>

Appendix 3 — Data initialization

public static void SeedData(AppDbContext context, ILogger? logger)

{

logger.LogInformation("SeedData");

var types = new List<AttributeType>

{
new()
{
Name = "Ctpoka",
DataType = AttributeDataType.String,
SystemicType = true,
DefaultCustomvalue = ""
1
new()
{
Name = "ToxgecTtBo",
DataType = AttributeDataType.Boolean,
SystemicType = true,
DefaultCustomValue = "false"
1
new()
{
Name = "llenoe uucno",
DataType = AttributeDataType.Integer,
SystemicType = true,
DefaultCustomvValue = "0"
1
new()
{
Name = "Yucno c nnaBawweinn TouKoW",
DataType = AttributeDataType.Float,
SystemicType = true,
DefaultCustomValue = "0.00"
1
new()
{
Name = "[laTta",
DataType = AttributeDataType.Date,
SystemicType = true,
DefaultCustomvalue = ""
1
new()
{
Name = "Bpemsa",
DataType = AttributeDataType.Time,
SystemicType = true,
DefaultCustomValue = "12:00"
s
new()
{
Name = "[lata co BpemeHem",
DataType = AttributeDataType.DateTime,
SystemicType = true,
DefaultCustomValue = "false"
}
s
foreach (var type in types)
{
context.AttributeTypes.Add(type);
}

context.SaveChanges();

60

Appendix 4 — DAL Mapper

public class UniversalMapper : IUniversalMapper

{

private readonly IMapper _mapper;

private readonly MapperConfiguration _configuration;

public UniversalMapper()

{

_configuration = new MapperConfiguration(config =>

{
CreateTwolWayMap<Entities.
CreateTwoWayMap<Entities.
CreateTwoWayMap<Entities.
CreateTwoWayMap<Entities.
CreateTwoWayMap<Entities.
CreateTwoWayMap<Entities.
CreateTwoWayMap<Entities.
CreateTwoWayMap<Entities.
CreateTwoWayMap<Entities.
DTO.Enums.AttributeDataType>(config);

Attribute, DTO.Attribute>(config);
AttributeType, DTO.AttributeType>(config);
AttributeTypeUnit, DTO.AttributeTypeUnit>(config);

AttributeTypeValue, DTO.AttributeTypeValue>(config);

Order, DTO.Order>(config);

OrderAttribute, DTO.OrderAttribute>(config);
Template, DTO.Template>(config);
TemplateAttribute, DTO.TemplateAttribute>(config);
Enums.AttributeDataType,

config.AllowNullDestinationValues = true;

1)

_mapper = _configuration.CreateMapper();

}

public MapperConfiguration Configuration => _configuration;

public virtual TOutObject Map<TInObject, TOutObject>(TInObject inObject) =>
_mapper.Map<TInObject, TOutObject>(inObject);

private static void CreateTwoWayMap<TFirstObject, TSecondObject>(IProfileExpression

{

config.CreateMap<TFirstObject, TSecondObject>();
config.CreateMap<TSecondObject, TFirstObject>();

61

config)

Appendix 5 — Units and Values add dialogs

<template>
<v-dialog v-model="active" max-width="600px">
<v-form class="mt-6" @submit.prevent="onSubmit()" ref="form">
<v-card>
<v-card-title>
[lo6aBuTb 3HayeHue
</v-card-title>
<v-card-text>
<v-container>
<v-text-field
v-model="newValue"
label="3Ha4eHne nona"
:rules="rules.value"
/>
</v-container>
</v-card-text>
<v-card-actions>
<v-spacer></v-spacer>
<v-btn color="blue darken-1" text @click.stop="onClose()"
>0TmMeHa</v-btn
>
<v-btn color="blue darken-1" text type="submit">CoxpaHuTtb</v-btn>
</v-card-actions>
</v-card>
</v-form>
</v-dialog>
</template>

<script lang="ts">
import { Component, Vue, Prop } from "nuxt-property-decorator";
import { required } from "~/utils/form-validation";

@Component ({
components: {},

})

export default class UnitAddDialog extends Vue {
@prop()

value!: boolean;

@prop()
model!: string;

rules = {
value: [required()],

}s

get newvValue() {
return this.model;

set newValue(value) {
this.$emit("change", value);

62

get active() {
return this.value;

}

set active(value) {
this.$emit("input", value);

}

onClose() {
(this.$refs.form as any).resetValidation()
this.active = false;

}

onSubmit() {
if ((this.$refs.form as any).validate()) {
this.$emit("submit");
this.onClose();
}
}
}

</script>

Result:

[06aBUTb 3Ha4YeHue

3Havenve nong

OTMEHA COXPAHWTb

63

Appendix 6 — CustomValueField component

<template>
<v-input v-if="isBoolean">
<v-spacer></v-spacer>
<v-switch :label="switchLabel" v-model="fieldValue"></v-switch>
<v-spacer></v-spacer>
</v-input>
<v-text-field
v-else-if="isString"
:label="1label"
v-model="fieldValue"
:rules="rules.string"
></v-text-field>
<v-text-field
v-else-if="isInteger"
:label="1abel"
v-model="fieldValue"
type="number"
:rules="rules.integer"
></v-text-field>
<v-text-field
v-else-if="isFloat"
:label="1label"
v-model="fieldValue"
type="number"
step=".01"
:rules="rules.float"
></v-text-field>
<div v-else-if="isDate">
<DateTimePicker
v-model="fieldValue"
:label="1abel"
:hasTime="false"
:rules="rules.date"

/>

</div>

<div v-else-if="isTime">
<DateTimePicker

v-model="fieldValue"
:label="1label"
:hasDate="false"
:rules="rules.time"

/>

</div>

<div v-else-if="isDateTime">
<DateTimePicker

v-model="fieldValue"
:label="1label"
:rules="rules.dateTime"
/>
</div>
</template>

64

<script lang="ts">

import { Component, Prop, Vue, Watch } from "nuxt-property-decorator";
import { DataType } from "~/models/Enums/DataType";

import DateTimePicker from "~/components/common/DateTimePicker.vue";
import { required, integer, float } from "~/utils/form-validation";

@Component ({
components: {
DateTimePicker,
¥
})

export default class CustomValueField extends Vue {

@rop()
dataType!: DataType;

@rop()
value!: string;

dateTimeTab = null;

rules = {
string: [required()],
date: [required()],
time: [required()],
dateTime: [required()],
integer: [required(), integer()],
float: [required(), float()],
}s

@rrop()
label!: string;

get fieldvalue() {
switch (this.dataType) {
case DataType.Boolean:
return this.value === "true" ? true : false;
default:
return this.value;

set fieldvalue(value: any) {
if (value == null) {
this.$emit("input", "");
} else {
this.$emit("input", String(value));

}

}

get switchLabel() {
let value = this.fieldvValue ? "fa" : "Het";
return ~${this.label}: ${value} ;

get isBoolean() {
return this.dataType === DataType.Boolean;

65

get isString() {
return this.dataType === DataType.String;

get isInteger() {
return this.dataType === DataType.Integer;

get isFloat() {
return this.dataType === DataType.Float;

get isDate() {
return this.dataType === DataType.Date;

get isTime() {
return this.dataType === DataType.Time;

get isDateTime() {
return this.dataType === DataType.DateTime;

}

@Watch("dataType")
onDataTypeChanged(newType: DataType) {
let newValue = "";

if (newType === DataType.Integer) {
newValue = "0";
} else if (newType === DataType.Float) {
newValue = "0.00";
} else if (newType === DataType.Boolean) {
newValue = "false";
}
this.$emit("input"”, newValue);
}
}
</script>

66

Result:

String datatype field:

Twn gaHHbIX
CTpOKOBbIA

3HAYEHKE MO YMOMYaHHID
CTpoka

Time datatype field:

Twn GaHHBIX
Bpema

[3) 3uauenue no ymonuaHuio

CospgaTb TWM aTpueyTa

Haasauue

TN BarHbIX
Bpema

3HaueHHe 10 YMONYAHIID

(3 22:24

3HaueHWs onpeseneHsbl

EAMHULBI OMPEAeneHs)

)24

BPEMA
00
55 05
50 10
45 ill5
40 20
35 25’
30
O4YUCTUTb OTMEHA

Boolean datatype field:

TWN gaHHBIX
TowOECTBEHHbIN

@ 3+aueHue o ymonuaruio: Jla

67

Appendix 7 — Orders filtration dialog

<template>
<v-dialog v-model="active" max-width="600px">
<v-form class="mt-6" @submit.prevent="onSubmit()" ref="form">
<v-card>
<v-card-title>HacTpoutb ¢PunbTpaumw</v-card-title>
<v-card-text>
<v-container>
dunbTpoBaTb MO BbLINOJHEHUI
<v-slider v-if="hasDeadline"
:tick-labels="["'Bce', 'Byaywwue', 'Mpowepune’]"
tmax="2"
step="1"
tick-size="4"
v-model.number="overdued"
></v-slider>
<v-slider
:tick-labels="["'Bce', 'He BbINO/HEHHble', 'BbiNosHEHHbE"]
tmax="2"

"

step="1"
tick-size="4"
v-model.number="completed"
></v-slider>
<template v-if="hasDeadline">

0unbTpoBaTb No AaTte
<DateTimePicker

:label=""Ha4anbHaa pgaTta'"
v-model="model.startDatetime"
:forceCentered="true"
/>
<DateTimePicker
:label=""'KoHe4yHaa paTa'"
v-model="model.endDatetime"
:forceCentered="true"
/>

YkasaTb AaTy npoBepku
<DateTimePicker
:label=""J[laTa npoBepkun'"
v-model="model.checkDatetime"
:forceCentered="true"
/>
</template>
</v-container>
</v-card-text>
<v-card-actions>
<v-spacer></v-spacer>
<v-btn color="blue darken-1" text @click.stop="onClear()"
>04nCcTUTBLL/V-btn
>
<v-btn color="blue darken-1" text @click.stop="onClose()"
>0TmeHa</v-btn

68

>
<v-btn color="blue darken-1" text type="submit"
>MpumeHnTs PuUnbTp</Vv-btn
>
<v-spacer></v-spacer>
</v-card-actions>
</v-card>
</v-form>
</v-dialog>
</template>

<script lang="ts">
import { Component, Vue, Prop } from "nuxt-property-decorator";
import DateTimePicker from "~/components/common/DateTimePicker.vue";

@Component ({
components: {
DateTimePicker,
¥
)

export default class FilterDialog extends Vue {

@rrop()

value!: boolean;

@Prop({ default: true })
hasDeadline!: boolean;

@Prop()

filter!: {
startDatetime?: Date;
endDatetime?: Date;
checkDatetime?: Date;
completed?: boolean;
overdued?: boolean;

s

model: {
startDatetime?: Date;
endDatetime?: Date;
checkDatetime?: Date;
completed?: boolean;
overdued?: boolean;

=A%

get active() {
return this.value;

set active(value) {
this.$emit("input"”, value);

}

get completed() {
return this.model.completed == undefined ? © : this.model.completed ? 2 : 1;

69

set completed(value: number) {
switch (value) {

case 1:
this.model.completed = false;
break;

case 2:
this.model.completed = true;
break;

default:
this.model.completed = undefined;

get overdued() {

return this.model.overdued == undefined ? © : this.model.overdued °

set overdued(value: number) {
switch (value) {

case 1:
this.model.overdued = false;
break;

case 2:
this.model.overdued
break;

default:
this.model.overdued = undefined;

true;

onClose() {
this.active = false;

}

onClear() {
this.model = {
startDatetime: undefined,
endDatetime: undefined,
completed: undefined,
checkDatetime: undefined,

}s

onSubmit() {
this.$emit("update:filter", { ...this.model });
this.onClose();

}

mounted() {
this.model = { ...this.filter };
}
}

</script>

70

Result:

HacTpouTb dunbTpaymto

$UNBTPOBATDL MO BbINOMHEHHID

®
Bce byayuwue Mpowefwne

@
Bce He BbINONHEHHbIE BbinonHeHHble

dun bETpOBaTE NO gate

E HauanbHas nata

[%) KoHeunan pata

YKkazaTb AaTy NPOBEPKK

E [ata npoeepku

OYUCTHUTE OTMEHA NPUMEHWTE @UNETP

71

Appendix 8 — Date picker component

<template>
<div>
<v-menu

ref="picker"
:close-on-content-click="false"
:return-value.sync="fieldValue"
rounded="1g"
min-width="290px"
absolute
:content-class="forceCentered ? 'modal-center’
z-index="999"

[T

<template v-slot:activator="{ on, attrs }">
<v-text-field
:label="1abel"
prepend-icon="mdi-calendar"
readonly
v-bind="attrs"
v-on="on"
v-model="formatedFieldValue"
:rules="rules"
></v-text-field>
</template>
<v-sheet>
<v-form @submit.prevent="onSubmit()" ref="form">
<v-tabs fixed-tabs v-model="dateTimeTab" class="mb-2">

<v-tab v-if="hasDate || !hasTime">llaTa</v-tab>

<v-tab :disabled="!timeTabEnabled" v-if="hasTime">Bpema</v-tab>
</v-tabs>
<v-tabs-items v-model="dateTimeTab">

<v-tab-item v-if="hasDate || !'hasTime">

<v-card flat>
<v-date-picker
locale="ru"
:first-day-of-week="1"
v-model="dateValue"
landscape
:allowed-dates="allowedDates"
></v-date-picker>
</v-card>
</v-tab-item>
<v-tab-item v-if="hasTime">
<v-card flat>
<v-time-picker
format="24hr"
landscape
locale="ru"
:first-day-of-week="1"
v-model="timeValue"
></v-time-picker>
</v-card>
</v-tab-item>

72

</v-tabs-items>
<v-input :messages="error" :error="!lerror" class="mx-2"></v-input>
<v-sheet class="d-flex justify-center">
<v-btn text large color="primary" @click="onClear()">
O04nCcTUTHL
</v-btn>
<v-btn text large color="primary" @click="onClose()">
OTmeHa
</v-btn>
<v-btn text large color="primary" type="submit">OK</v-btn>
</v-sheet>
</v-form>
</v-sheet>
</v-menu>
</div>
</template>

<script lang="ts">
import { Component, Prop, Vue } from "nuxt-property-decorator";

@Component({})
export default class DateTimePicker extends Vue {

@prop({})

rules: any;

@Prop({ default: () => [0, 1, 2, 3, 4, 5, 6] })
allowedDays!: number[];

@Prop({ default: true })
hasDate!: boolean;

@Prop({ default: true })
hasTime!: boolean;

error = "";

@Prop()
label!l: string;

@prop()
value!: string;

@Prop({default: false})
forceCentered!: boolean;

timeValue: null | string = null;
datevalue: null | string = null;

dateTimeTab = null;

get timeTabEnabled() {
return (this.dateIsCorrect && this.hasTime) || !this.hasDate;

}

get formatedFieldvalue() {
if (this.hasDate && this.hasTime) {

73

return (this.$options.filters as any).formatDateTime(this.fieldValue);
} else if (this.hasTime) {
return this.fieldValue;

}
return (this.$options.filters as any).formatDate(this.fieldValue);

}

get fieldvalue() {
return this.value;

set fieldvalue(value) {
this.$emit("input", value);

}

get dateIsCorrect() {
return this.dateValue != null && /\d{4}-\d{2}-\d{2}/.test(this.dateValue);
}

get timeIsCorrect() {
return this.timeValue != null && /\d{2}:\d{2}/.test(this.timeValue);
}

allowedDates(val: any) {
return _.includes(this.allowedDays, this.$moment(val).day());

onSubmit() {
let timevalid = !(this.hasTime && !this.timeIsCorrect);
let datevalid I'(this.hasDate && !this.dateIsCorrect);

if (!timevalid && !datevalid) {

this.error = "[aTa ¥ BpemMsa JOMXHbI ObITb yKa3aHbl";
return;

} else if (timeValid && !dateValid) {
this.error = "[aTta pgonxHa 6bITb yka3aHa";
return;

} else if (!timevalid && dateValid) {
this.error = "Bpema [ONXHO 6bITb yKka3aHo";
return;

} else {

if (this.hasDate && this.hasTime) {
(this.$refs.picker as any).save(this.datevalue + "T" + this.timeValue);
} else if (!this.hasDate && this.hasTime) {
(this.$refs.picker as any).save(this.timeValue);
} else {
(this.$refs.picker as any).save(this.dateValue);
}
}

onClose() {
(this.$refs.picker as any).isActive = false;

}

onClear() {

74

this.datevValue = null;
this.timeValue = null;
this.dateTimeTab = null;
this.error = "";

(this.$refs.picker as any).save(null);

mounted() {
this.timeValue = "12:00";

}
}

</script>

Results:

Field without value:

YkazaTb AaTy NPOBEpKU

(%) Oartanpoeepky

Menu appears:

OATA

< anpens 2021 . >

IH1

19 20 21 22 23 24 25

26 27 28 [29) 30 -

O4YUCTHUTE OTMEHA 0K

75

Date selected:

OATA BPEMA

< anpene 2021r.

12 13 14 15 16 17

19 20 21 22 24
260 27 28 29 30

3&

i

a O4YUCTUTE OTMEHA OK

11

18

25

Field with value:

YiKazaTe 0aTy NPOBEpPKK
NaTa NpoBepKM

%) anpenb 23-ro 2021, 17:26

76

Appendix 9 — Attribute and its value select components

<template>
<v-autocomplete
name="attribute"
v-model="attribute"
:items="availableTypes"
:loading="isLoading"
:search-input.sync="searchKey"
hide-no-data
item-text="name"
item-value="id"
label="ATpubyTt"
placeholder="HayHuTe BBOA ANA noumcka"
prepend-icon="mdi-database-search"
:rules="rules.attribute”
return-object
>
</v-autocomplete>
</template>

<script lang="ts">

import { Component, Prop, Vue, Watch } from "nuxt-property-decorator";
import { SortOption } from "~/models/Enums/SortOption";

import { attributesStore } from "~/store";

@Component ({})
export default class AttributeSellect extends Vue {
@rop()
value!: { id: number; name: string };
searchKey = "";
isLoading = false;
rules = {

attribute: [
(value?: { id: number; name: string }) =>
(value != null && value.id > 0) || “JaHHoe none ob6azaTesbHO ,
1,
}s

get attribute() {
return this.value;

set attribute(value) {
if (value != null) {
this.$emit("input", value);
}
}

get availableTypes() {
return attributesStore.attributes;

77

@Watch("searchKey")
onFetchRequired() {
this.islLoading = true;
attributesStore
.getAttributes({
pagelndex: 0,
byName: SortOption.False,
byType: SortOption.False,
searchKey: this.searchKey,
9]
.then(() => {
this.isloading = false;

1)
}

</script>

<template>
<v-row v-if="fetched">
<v-col>
<CustomValueField
:dataType="attributeType.dataType"
v-model="customValue"
:label="1abel"
v-if="lattributeType.usesDefinedValues"
class="ma-0"
/>
<v-select
v-else
v-model="valueId"
:items="attributeType.values"
item-text="value"
item-value="id"
:label="1label"
class="ma-0"
></v-select>
</v-col>
<v-col v-if="attributeType.usesDefinedUnits">
<v-select
v-model="unitId"
:items="attributeType.units"
item-text="value"
item-value="id"
label="Ep. u3mepeHus"
class="ma-0"
></v-select>
</v-col>
</v-row>
</template>

<script lang="ts">

import { Component, Prop, Vue, Watch } from "nuxt-property-decorator";
import { attributeTypesStore } from "~/store";

import CustomValueField from "~/components/common/CustomValueField.vue";

78

import { AttributeTypeDetailsGetDTO } from "~/models/AttributeTypeDT0";

@Component ({
components: {
CustomValueField,
s
)

export default class AttributeValueSellect extends Vue {

@rop()
value!: {

customValue: string;
valueId: null | number;
unitId: null | number;

3

@Prop({ default: null })
typeld!: number | null;

@Prop({ default: "3HauyeHue" })
label!: string;

fetched = false;
attributeType!: AttributeTypeDetailsGetDTO;

get customValue() {
return this.value.customValue;

set customvValue(value) {
this.$emit("input"”, { ...this.value, customValue: value });

}

get valueId() {
return this.value.valueld;

set valueId(value) {
this.$emit("input"”, { ...this.value, valueld: value });

}

get unitId() {
return this.value.unitId;

set unitId(value) {
this.$emit("input"”, { ...this.value, unitId: value });
}

mounted() {
this.fetchAttributeType();

}

validateValue(id: number | null) {
return (
id != null &&

79

_.includes(
_.map(this.attributeType.values, (value) => value.id),

id
)
)
}
validateUnit(id: number | null) {
return (
id != null &&
_.includes(
_.map(this.attributeType.units, (unit) => unit.id),
id
)
)

@Watch("typeId")
fetchAttributeType(): void {
this.fetched = false;
if (this.typeId) {
attributeTypesStore.getAttributeType(this.typeld).then((succeded) => {
if (succeded) {
this.attributeType = attributeTypesStore.selectedAttributeType!;

let valueld = this.value.valueld;
let unitlId = this.value.unitId;
let customValue = this.value.customValue;

if (this.attributeType != null) {
if (
this.attributeType.usesDefinedValues &&
Ithis.validateValue(valueld)
) A
valueld = this.attributeType.defaultValueld;
} else if (customValue.length == 0) {
customValue = this.attributeType.defaultCustomValue;
}
if (
this.attributeType.usesDefinedUnits &&
Ithis.validateUnit(unitId)
) A
unitId = this.attributeType.defaultUnitId;
}
}

this.$emit("input"”, { valueId, unitId, customValue });

this.fetched = true;

}
s
}
}
}

</script>

80

Result:

Attribute select:

Cos,

Hom

ATp

Bpems norpyaku

HazeaHue dupmbl

MecTo pocTaBkm

MponykT

Ynakoeka

KonwyectBo

BABUTb

OK

Attribute selected, now value is select:

MponyxT

HCG-105
HCR-105
HCR-205

HCR-305

Value selected:

MpoaykT

HCR-105

%
",
-

81

-
]

Appendix 10 — Attribute type views

Index page with all types on second page:

LOBABUTH Q MOMCK MO HA3BAHUK

HasBanue

TECT U3MEHEHUA C E[UHALIAMHW U3MEPEHKUA
TowOecTeo

OUPMa-KNUEHT

Lienoe yacno

YMCIIO C NNaBatoLLeil TOHKOM

Attribute type details page:

HaseaHue:
GopmMaT faHHbIX:

KonuyecTBo UCNONb30BaAHWA:

M3MEHWTE YOANWUTE

JonycTuMble 3Ha4eHKuA
AZAZCompany LTD
BlablaCompany LTD

Plague Inc

82

C onpefeneHHbIMK 3Ha4eHUAMKU

CHMCTEMHDBIA

C onpefeneHHbIMKA 3Ha4YeHUAMU

CHMCTEMHDBIA

CMCTEMHbIi

DUPME-KNTUEHT

CTpoKoBbIA

1

no YMOonuaHWio

Attribute type edit page:

N3MeHUTb TUN aTpubyTa

Ha3panue
DUpMa-KNUEHT

Twn SaHHbIX
CTpoKoBbIA -
NOBABWUTH [JonycTuMble 3Ha4yeHKWA
AZAZCompany LTD paar N |
BlablaCompany LTD) |
Plague Inc paar N |

OTMEHA COXPAHWUTDb

Attribute type delete confirmation:

Bbl yBepeHbl, 4TO XOTUTE YAanuTb 3TOT TUN?

@ [LanHoe peicBre He MOXeET GbITb OTMEHeHO!

OTMEHA YOANWUTH

83

Appendix 11 — Attributes views

Attributes index page:

JIOBABUTH

Hassane A

Bpewn norpyakn

Konniectso

MecTo focTaBiu

Hassaume GupMsl

Mepesosik

MpoaykT

Ynakoska

Uepes sec!

Tun aTpueyTa

Bpema

KonuecTeo npoaykTa

MecTo gocTasku

OUpMa-KIMEHT

Mepesosmk

MpoaykT

PasIMED yakoskw

TowzecTso

Attribute details page:

HazBaHue aTpubyTa:

Tun atpubyTa:

dopmart:

3HaYEHKE N0 YMONYEHWHD:

EAMHMLE M3MEPEHWA MO YMONUEHHHD!

Konu4ecTBo UCNoNb30BaHWiA:

M3MEHWUTL

Attribute edit page with type being selected:

N3MeHWTb aTpueyT

Hassanmne

Konuyecteo

Oco6eHHOCT THN2

© SAMHNLAMA M3MEpEHHA
C OMPEAENEHHBIMM SHRYEHMAMM
C OlpesienenHLIMM 3HaueHIMAMA
€ OMpefienEHHbIMM 3HAUEHUAMMA
© OMPEAENEHHLIMM SHRUEHHAMN

© eAMHALAMA M3MEpEHHA

Konuuyecteo
Konn4ecTso npogykTa
Lienouncnesssin

24

tonn

34

YOANUTL

Tun aTputyTa

<

Bpemsa

Data

Nata co sBpeMeHeM
KonwuecTBo nponykTa
MecTo gocTaBkK

MepeBo34mnK

84

@opuar

Bpema

LienoyncneHHolit

CrpoKoBbi

CrpoKoBbi

CrpoKoBbi

Crpokomsii

LienoynenenHoiin

TOKAECTBEHHbI

Appendix 12 — Templates views

Template index page, with one template being inspected:

[IOBABUTL Q m
Hassarme 1
LLla6noH "3akas c Asyms Llla6noH "3akas c ofHUM
nepeBo3vYnKamn” - nepeBo3YnKoM" V
Bpems norpysku * /' U3MEHUTb # YOANUTL
HassaHne Gnpmbl big
MecTo focTaBku big
Mponykt *
Ynakoska bid
Konuuectao e
Yepes Becbl big
Mepeso3unk Ag
MepeBo3umnk Pxd

W3MEHUTb § YAANUTH

Template edit page, with validation error occurs:

CospaTtb WabnoH

TecToBbIV WABNOH

NOBABUTH ATpuU6YTHI
Bpemsa norpysku > =
p py: * L’ .
Bpema Bpemsa

HassaHue pupmbl A 1
Ll |

OUPMa-KNUEHT CTpOKOBbIN
Yepes Bechl =
P * 0

ToxaecTso TOXAECTBERHbIN

OTMEHA CO34ATH

85

Appendix 13 — Orders views

Orders with date index page:

3AKA3bI C JATOR 3AKA3bI BE3 [IATHI

OOGABUTHL OTYET Y Q w MoKuck No HOMepy 3akasa .
HoMmep 3aKasa Hara CTaryc
23231212312 anpent 1-ro 2021, 12:00
23231212312 anpenb 120 2021,12:00
23231212312 anpens 1270 2021, 12:00 rpocpoueH
23231212312 anpenb 13-r0 2021, 12:00
23231212312 anpens 13-7o 2021, 12:00 Mpocpouen
23231212312 anpenb 13-r0 2021,12:00 Mpocpouen
23231212312 anpens 13-r0 2021, 12:00
23231212312 anpens 13-ro0 2021, 12:00
23231212312 anpenb 14-0 2021, 12:00
23231212312 anpens 14-70 2021, 12:00
23231212312 anpenb 14-ro0 2021,12:00

3 ' [EAERE

Orders without date index page:

NOBABUTH OTHET Y Q (TMouck no Homep
Homep 3aKasa Cratyc
4575343473434

86

Order create page, with template already applied:

MpUMeHMTD WabnoH

3aKas c ofHUM nepeeoavymKom

NPAMEHWUTb

CospaTtb 3akas

Homep 3akaza

(2 NaraucnonHenus

ATpuMBYTbI 3aKasa

BpeM#A norpysku

3 12:00

OOBABUTH

Hassaxwe dupmbl

BlablaCompany LTD

MecTo gocTaBku
Marselle, France

Calendar view, with one order being inspected:

[OBABHTE 3AKAS OTHET Q
29.03.2021 30.03.2021 31.03.2021
05.04.2021 06.04.2021 07.04.2021
12042021 13.04.2021 14.04.2021 -

e yoee

Bpe Ny OG-0, PARYKT: her-105

15.04.2021 20.04.2021

e e o e 0

21.04.2021

e oYK 0600, FpopET- REx 105,

TT—TE——y T €

‘pews neepyasn: 08:00, npojysT- her- 105

26.04.2021 27.04.2021 28.04.2021

T ——r pesan noepyme: 0800, npaye- her- 105 e rorpyswe 1200, rpoper- Rex 105,
‘pewn porpyave 1200, npogguer- her-105.

01.04.2021

T ——r

08.04.2021

15.04.2021

BDSUR NOMDY2KIE 0800, NORAT: D3 105 e oMy 18100, ADORYXT. NCr-105

22042021 ~

Bpews norpyaxu 08 00, npogyxT: hor-105

29.04.2021

[T ——T

pews norpras G400, npopr her 105

87

Homep 3axasa;
anpens 2021 < > »

Mara sakasa:

02.04.2021 CocTonmme:
Bpews norpysku
HaseaHue MM
MecTa gocTaku

09.04.2021
MpoaykT
Ynakoska
KonwuecTtao
Yepea secei:

16.04.2021 Nepepoaunic

OTMETMTH
23.04.2021
30.04.2021

‘pesan norpyser 08:08, npeyye: her-108

23231212312
anpens 22-ro 2021, 12.00

08:00
SomeCempany LTD
Tallinn, Estonia
HCR-105

1 tonn bags

32 tonn

Her
BESTLOGISTICS LTD

NOAPOEHEE MIMEHUTE

Calendar view, with searching applied and one order being inspected:

Hi : 121231
LOGABHTE JAKAZ OTHET a (22 %) anpens 2021 ¢ > ouep sanass s
Jama saasa: anpens 22:r0 2021, 12:00
sz soca20m sues20m or0420m w2oazn Cocrontne:

Bpema Norpysku:
Haamauue dpupMsl:
Mecto gocTaskn:
05.04.2021 06.04.2021 07.04.2021 08.04.2021 09.042021
Mponykt:
YnakoBka:
Konuuecteo:
Yepes Becet

12042021 13.04.2021 - 14042021 15.04.2021 16.04.2021 Mepesoaumic

Bpeaan POy D00, NDAAYXT Ir-105 L 3 ‘B8R Norpyior 0600, IPORYST: her-105 B N30 0800, NPARYKT: hcr-105

19.04.2021 20.04.2021 21042021

T —r—ry s norpy«c 08101, npogac: her- 105 ‘e norpyssor 0800, npogyr: her. 105

26.04.2021 27.04.2021 28.04.2021 29.04.2021 30.04.2021

e pe—— wpeen oy 08, e 105 J Pt porpre 0.0, e 105

23.04.2021

penan norpy3e 0800, rpamyT- her-105

pesa oy sxa 0800, gy hes- 105

||| |
/

Order with date index page filtrated by “future completed” orders only:

HacTpouTb hunbTpauuio

GUNbLTPOBATEL NO BbINONHEHUIO

Bce Bynywwme Mpoweawwe

<
Bce He BbiNonHeHHbIe BbinonHeHHble

$dunbTPOBaTHL MO AaTe

{3 HauanbHas gata

m KoHeuHan pata

YKasaTb ATy NPOBEpKK

(3 Aara nposepku

OYUCTUTb OTMEHA NPUMEHUTb ®UNBTP

88

08:00

SomeCompany LTD

Tallinn, Estonia

HCR-105
1 tonn bags
3210nn
Her

BESTLOGISTICS LTD

MIMEHHTE

Order with date index page filtrated by “future” orders only:

HacTpouTb dunbTpaumio

mMﬂprOEaTb Nno BbINOJIHEHUKD

Bce byayume Mpowepwwue

[
Bce He BbinonHeHHbIe BbinonHeHHble

mMﬂprOEaTb no pate

{3 HauanbHas mata

{3 KoHeunan nata

YkasaTb faTy NpoBepKu

(3 Oatanposepku

OYUCTUTbL OTMEHA TNPUMEHWUTb ®UNBLTP

89

Appendix 14 — Users views

Current user details page:

Mow paHHbie Wms: Cynep

. damunua: AOMUHKCTPaTOR
- Monb3oBaTenu

3n.appec: root@root.com

Ponb: Cynep agMUHKUCTpaTop

[aHHbIA NoNb30BaTe b HE MOMET GbiTb M3MEHEH

Another user being inspected:

MOM AaHHbIE I HA3ALD

- MonbzoBaTeny
Wms: AnekcaHap
damunua: MeaHoB
3n.appec: admin@admin.com
Ponb: AOMUHUCTpaTOP

M3MEHWUTbL OAHHBIE W3MEHUWUTL PONB
W3MEHWUTbL MAPONb YOANUTDb

Another user role is being changes because current user is “Root”

CmeHuTh ponb nonb3oeatento "Anekcangp Meaqos”

Monbacsatens

AnMaHnCTpaTOD

OTMEHA COXPAHHTE

90

Appendix 15 — Example of generated report

Hata: anpenb 12-ro 2021

anpans1:

e
EESTLOGETICELTD

manmaag
‘anpans12.r0 2021, 12001

anpan1:

HomMep 3akaza: 23231212312

aTa 3aKasa: anpenb 12-ro 2021, 12:00
CocroaHue: BuinonHeH
Bpems norpysku: 08:00
HazeaHWe purpmMbl: SomeCompany LTD
MecTo pocTaBkm: Tallinn,Estonia
MpoaykT: HCR-105
YnakoBkKa: 1 tonn bags
KonuyecTgo: 32 tonn
Yepes Becbl: Her
[NepeBo34MK: BESTLOGISTICSLTD
Homep 3akaza: 23231212312

aTa 3aKasa: anpens 12-ro 2021, 12:00
CocTosaHue: MNpocpoyeH
Bpemsa norpysku: 08:00
HasBaHuWe prpMbl: SomeCompany LTD
MecTo focTaBKu: Tallinn,Estonia
MNpopyKT: HCR-105
YnakoBka: 1 tonn bags
Konuuectgo: 32 tonn
Yepes Becbl: HeTr
MNepeBo34mK: BESTLOGISTICSLTD

91

