
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Tatsuki Ishikawa 214203IASM

ANALYSIS AND IMPLEMENTATION OF OPTIMAL FUSION

METHOD FOR AUTONOMOUS VEHICLES IN GPS DENIED

ENVIRONMENT

Master’s Thesis

Supervisor: Uljana Reinsalu
PhD

Co-supervisor: Mairo Leier
PhD

Tallinn 2024



TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Tatsuki Ishikawa 214203IASM

AUTONOOMSETE SÕIDUKITE OPTIMAALSE

FUSIOONIMEETODI ANALÜÜS JA RAKENDAMINE

GPS-SIGNAALITA KESKKONNAS

Magistritöö

Juhendaja: Uljana Reinsalu
PhD

Kaasjuhendaja: Mairo Leier
PhD

Tallinn 2024



Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Tatsuki Ishikawa

17.12.2024

1



Abstract

Accurate state estimation is essential for autonomous systems operating in complex envi-
ronments, where sensor fusion plays an important role in integrating data from multiple
sensors such as Inertial Measurement Units (IMU), Visual Odometry (VO), and Global
Positioning System (GPS). This study evaluates five widely used Kalman filter variants,
including Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), Particle Filter
(PF), Ensemble Kalman Filter (EnKF), and Cubature Kalman Filter (CKF), to identify their
strengths, limitations, and suitability for real-world applications. The filters were applied
to the publicly available autonomous benchmarks, known as KITTI dataset, under various
experimental setups, including different motion models: basic kinematics and velocity
motion model; sensor configurations: IMU and VO estimates with and without GPS; and
scenarios simulating sensor data loss. The results are evaluated by three main error metrics:
Absolute Trajectory Error (ATE), Relative Pose Error (RPE) for translation and RPE for
rotation to properly assess estimated trajectories and understand filters’ characteristics.

The results reveal key trade-offs among the filters. While EKF and CKF demonstrate
excellent accuracy in translation metrics such as Absolute Trajectory Error (ATE), the UKF
achieves near-optimal results across all metrics, balancing sensor data effectively in multi-
sensor environments. Conversely, PF and EnKF, though capable of handling non-Gaussian
uncertainties, face computational challenges due to their large number of particles or
ensembles. Additionally, the robustness of each filter was tested in scenarios with simulated
GPS and VO data loss, reflecting conditions such as non-line-of-sight (NLOS) for GPS
and terrain or lighting challenges for VO. The CKF, in particular, exhibited resilience to
short-term sensor failures, maintaining reliable estimates up to 4 seconds of data loss.

Furthermore, the filters were assessed for their usability in practical applications, con-
sidering inference speed and the complexity of parameter tuning. The EKF and CKF
demonstrated advantages in computational efficiency and ease of implementation, while
the UKF offered dynamic noise tuning capabilities, making it ideal for scenarios with
variable sensor reliability.

This paper provides a systematic evaluation of filters’ estimations, highlighting their
performance in realistic scenarios and their applicability to practical environments. The
results achieved by this study provides insights are valuable for the development of
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autonomous systems, especially grounded vehicle navigation/localization, requiring robust
and efficient multi-sensor fusion in challenging operational conditions.

The thesis is written in English and is 89 pages long, including 6 chapters, 23 figures and 1
table.
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Annotatsioon
Autonoomsete sõidukite optimaalse fusioonimeetodi analüüs ja

rakendamine GPS-signaalita keskkonnas

Täpne olekuhinnang on oluline autonoomsete süsteemide jaoks, mis tegutsevad keerukates
keskkondades, kus andurite ühendamisel on oluline roll mitmete andurite, näiteks in-
ertsiaalsensorite (IMU), visuaalse odomeetria (VO) ja GPSi andmete integreerimisel.
Käesolevas lõputöös hinnatakse viit laialdaselt kasutatavat Kalmani filtri varianti, laien-
datud Kalmani filtrit (EKF), mittekohandatud Kalmani filtrit (UKF), osakeste filtrit (PF),
ansambli Kalmani filtrit (EnKF) ja kuubatuurset Kalmani filtrit (CKF), et teha kindlaks
nende tugevused, piirangud ja sobivus reaalsete rakenduste jaoks. Filtreid rakendati ava-
likult kättesaadavate autonoomsete süsteemide võrdlusnäitajate nagu KITTI andmekogumi
põhjal erinevate eksperimentaalsete seadistustega, sealhulgas erinevate liikumismudelite
puhul: põhiline kinemaatika ja kiiruse liikumismudel; andurite konfiguratsioonid: IMU
ja VO hinnangud koos GPSiga ja ilma; ning stsenaariumid, mis simuleerivad andurite
andmete kadumist. Tulemusi hinnatakse kolme peamise veamõõdikuga: Absoluutne tra-
jektooriviga (ATE), suhteline asendiviga (RPE) translatsiooni puhul ja RPE rotatsiooni
puhul, et hinnata hinnangulisi trajektoore ja mõista filtrite omadusi.

Tulemustest selguvad peamised erinevused filtrite vahel. Kuigi EKF ja CKF näitavad
suurepärast täpsust absoluutse trajektoorivea (ATE) mõõdikus, saavutab UKF peaaegu opti-
maalseid tulemusi kõigis mõõdikutes, tasakaalustades tõhusalt andurite andmeid mitme an-
duriga keskkondades. Seevastu PF ja EnKF, mis on küll võimelised käsitlema mitte-Gaussi
ebakindluseid, seisavad suure hulga osakeste või ansamblite tõttu silmitsi arvutuslike
väljakutsetega. Lisaks sellele testiti iga filtri töökindlust stsenaariumides, kus simuleeriti
GPSi ja VO andmete kadumist, mis peegeldab selliseid tingimusi nagu GPSi puhul nn.
no-line-of-sight (NLOS) ja VO puhul maastiku või valgustuse probleemid. CKF näitas
vastupidavust lühiajalistele andurikatkestustele, säilitades usaldusväärsed hinnangud kuni
4 sekundilise andmekao korral.

Lisaks hinnati filtrite kasutatavust praktilistes rakendustes, võttes arvesse järelduste
tegemise kiirust ja parameetrite häälestamise keerukust. EKF ja CKF näitasid eeliseid
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arvutustõhususe ja rakendamise lihtsuse osas, samas kui UKF pakkus dünaamilise müra
häälestamise võimalusi, mis muudab selle ideaalseks muutuva anduri usaldusväärsusega
stsenaariumide jaoks. Käesolevas töös esitatakse filtrite hinnangute süstemaatiline hin-
damine, rõhutades nende jõudlust realistlikes stsenaariumides ja nende rakendatavust
praktilistes keskkondades. Selle uuringu tulemused annavad ülevaate, millised filtrid on
väärtuslikud autonoomsete süsteemide arendamisel, eriti maapealse sõiduki navigeerim-
ise/lokaliseerimise jaoks, mis nõuavad tugevat ja tõhusat mitme sensori fusiooni keerulistes
kasutustingimustes.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 89 leheküljel, 6 peatükki, 23
joonist, ja 1 tabelit.
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1. Introduction

Over the past decades, autonomous robots, such as autonomous grounded-vehicle (AGVs),
unmmanned aerial vehicles (UAVs), humanoid robot, etc., grabs increasing attention for
research and commercial use in various fields to improve production, and to reduce human
errors. For example, AGVs have a potential to provide huge impacts on public transporta-
tion and logistics filed by enhancing transportation safety and trackability. Moreover, the
applications are extended to assists military operation such as safe inspection of danger-
ous area and transportation of military supplies. In terms of UAVs applications, UAVs
are used in a variety of fields such as military field: navigation, secure communication,
and reconnaissance; industrial field: package delivery, surveillance system, environment
management system, precision agriculture; and commercial field: filming, and medical
service [1].

For robot automation, an accurate estimation of robot’s position and motion, often repre-
sented by a state of a system in a defined coordinate, is crucial. Accurate state estimation
enables reliable navigation, control, and decision-making by fusion information from
various on-board sensors such as Inertial Measurement Units (IMUs), image sensors for
Visual Odometry (VO), Global Positioning System (GPS), and LIDAR. In an environment
where sensor data is noisy, incomplete, or subject to temporary failure, state estimation by
fusion systems plays a crucial role in providing robust performance of the system. Among
these sensor fusion algorithms, Kalman filters and their extended variants have increasing
demand to solve system’s nonlinear dynamics.

This study will focus on five prominent variants of Kalman filters: linearization-based
filter, called Extended Kalman Filter (EKF), two deterministic sampling-based filters
including Unscented Kalman Filter (UKF) and Cubature Kalman Filter (CKF), a stochastic
sampling-based filter called Particle Filter (PF), and an ensemble-based filter, Ensemble
Kalman Filter (EnKF). These filters offer distinct characteristics, different configura-
tion for their parameters, and computational requirements, making their performance
application-dependent. Additionally, the combinations of two variants of the system’s
motion model—defined as the basic kinematics motion model and the velocity motion
model—along with various types of sensor data, such as IMUs, stereo camera sequences,
and GPS will be tested.

The evaluation of these filters will be conducted using KITTI dataset, which is a widely
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used benchmark for localization and mapping research. Experiments will be conducted
under various conditions, including the availability or absence of GPS simulating multi-
sensor environment, data loss in VO to estimate the state of a system by IMU-only
dead-reckoning. To assess the performance of filters, three error metrics will be considered:
Absolute Trajectory Error (ATE), Relative Pose Error (RPE) for translation, and RPE
for rotation. These metrics enable a comprehensive comparison of the filters’ accuracy,
robustness and computational efficiency.

1.1 Background

Kalman filter was invented in 1960 by Rudolf Email Kalman to obtain the specification
of a linear dynamic system that achieves the prediction, separation, or detection of a
random signal [2]. Due to its ability to provide filtering to extract useful information
and estimate of a linear system’s state achieved by using prior knowledge, it is used
in a variety of fields including object tracking, weather forecast, ocean current change
prediction, crop yield estimation, and localization of autonomous vehicle, as shown in
the paper [3]. A well-known example of Kalman filter application is the Mars rover in a
high slip environment estimating pose of the rover and the path following [4]. Kalman
Filter is implemented with integration of IMU and VO to estimate the rover’s motion and
capture the location calculated by the kinematics equation. The wheel slip is detected by
comparing the estimated motion of the vehicle with the kinematic estimate for recovery to
the defined path.

For localization and navigation, the Global Navigation Satellite System (GNSS) is the
widely used positioning system that offers location and time. GPS is a variant of the
positioning service that is provided by the United States, which has sub-meters accuracy in
open area when using accurate receiver. However, GNSS susceptible to data loss due to
environmental issues, such as signal blockage by obstacles located between transmitter and
receiver leading to none-line-of-sight (NLOS), reflection from objects causing multipath
error, jamming and spoofing by malicious attackers.

Kalman filter and its variants play an important role in which data from different sensors
are fused together to estimate and compensate when one sensor is unreliable or completely
unavailable.
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1.2 Literature Review

This section presents a literature review on the application of the Kalman Filter across
various fields, explores different Kalman Filter designs—primarily the loosely-coupled and
tightly-coupled approaches—and examines the integration of diverse filtering algorithms
as well as sensor fusion techniques augmented with machine learning algorithms.

1.2.1 Application fields of sensor fusions

The application fields of sensor fusion are diverse, including unmanned ground vehicles
(UGVs) for navigation and localization, unmanned aerial vehicles (UAVs) for tasks such as
autonomous flight and obstacle avoidance, agricultural applications for precision farming
and crop monitoring, and various other domains such as robotics, healthcare, and smart
cities where integrated sensor data enhances system performance and decision-making.

Sensor Fusion in Fields of Unmanned Grounded Vehicle
In [5], wheel odometory in x and y coordinates, two IMUs, two GPS are filtered by

EKF to estimate robot’s position. They concluded that adding additional sensor improves
the result of estimation and compensates the other sensor’s faultiness and low sampling
rate. The result shows that the EKF with wheel odometry, two IMUs, and two GPS
configuration achieves the loop closure accuracy less than one meter. In [6], indoor
grounded vehicle localization using IMU and UWB sensors based on the improved CKF
involving an adaptive factor for a noise estimation is provided. To deal with the non-line-
of-sight (NLOS) problem of the UWB sensor, the Levenberg-Marquardt algorithm is used
to minimize the error of UWB sensor. An experiment is conducted indoor environment
with three other filtering algorithms, including traditonal CKF, UKF, and EKF and the
estimates are evaluated by maximum error and average error in both x- and y-axis. The
resaerch concludes that the improved CKF algorithm shows a more obvious advantage both
in the LOS scenario and in the NLOS scenario of UWB, where the algorithm maintains
the localization error within 0.1m and 0.3m in LOS and NLOS scenarios respectively.
[7] focuses on autonomous vehicle control, sensor fusion techniques and state-estimation
techniques in self-driving cars. The problem is tackled by integrating Error State Extended
Kalman Filter (ES-EKF) since it can handle the non-linearities that arise from the sensor
measurements more effectively than EKF in general. The paper utilized CARLA simulator
to validate the proposed algorithm, which incorporates IMU, LiDAR and GPS provided by
CARLA simulator, and it accurately estimates the state of a self-driving car in a simulated
environment with a wide range of driving scenarios. The result shows that the proposed
algorithm estimates the position of the vehicle by keeping the error in range ±0.5m. The
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method proposed by [8] introduces PF to integrate passive sensors, including GNSS, INS
and camera data to improve the accuracy of localization estimation. It is known that GPS
suffers NLOS and multipath problems in unrban scenario, such as canyon, hence weights
of the particles in PF are calculated based on the position of the vehicle being suffered by
multipath problem given the provided 3D map. Moreover, lane detection algorithm is also
carried out by machine vision so that the state of the system, which represents the pose
of the vehicle, is updated by the coordinate information resulted from the lane detection.
The dynamics of particles are done using linear velocity and angular velocity provided by
INS. The result reveals that the integration with three data sources: GNSS, INS and Lane
detection, achieves less than one meter accuracy in the positioning error mean metric.

With regard to visual odometry and IMU sensor fusion on KITTI dataset, the research
[9] implements a loosely-coupled EKF that integrates IMU and vision-based motion
estimator referred to as Parallax Beam. The proposed algorithm predicts next state of the
system using IMU and the estimation is corrected using the vision-based motion estimator.
The system is tested on six sequences of KITTI dataset and evaluated by mean relative
translation and mean relative rotation error metrics. The performance of the proposed
approach is compared to the ablated vision-based motion estimator and the result reveals
that the proposed method shows results equal to or better than the Parallax Bean alone.

Sensor Fusion in Fields of Unmanned Aerial Vehicle (UAV)
In terms of UAV/Micro Aerial Vehicle (MAV) localization, The research introduced

in [10] uses Error-State EKF that accepts IMU data to propagate the system’s state to
track the UAV in indoor, GPS and magnetometer denied environment. Besides the IMU, it
uses LiDAR, UWB and VIO provided by Intel RealSense T265 and continuously update
estimated position of the UAV by extending ES-EKF model in a way to handle drift in
sensor position and orientation. The experiment is conducted in an indoor environment and
the result shows that the proposed filtering algorithm leverages each sensor advantage to
obtain an accurate estimate. The implementation presented by [11] provides a localization
of the UAV using IMU and two UWB tags for aiming safe landing on an unmanned vehicle,
on which four UWB anchors installed. The experiment involves RTK localization data
used as a ground truth and estimates are evaluated by Root Mean Squared Error metric
to numerically compare the accuracy provided by the proposed method with two UWB
tags and one UWB tag. The result shows that based on five experiments, the method with
two tags provides the accuracy with the maximum RMSE of 0.2303m and the minimum
RMSE of 0.092m, while the single-tag method offers the maximum RMSE is 0.6875m,
and the minimum is 0.1813m. Compared with the single-tag method, the RMSE of the
proposed localization system was reduced by an average of 61%.
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Sensor Fusion in Other Fields
In the context of agricultural applications, [12] employs an EKF to fuse data from a

low-cost 9-axis IMU and GNSS-RTK for pose estimation of a crawler-type vehicle in a
path-following task. The algorithm’s performance is evaluated using three trajectories, with
Root Mean Square Error (RMSE) used to quantitatively assess the system’s robustness. The
results show that the RMSE across the three trajectories is 10 cm, with a maximum error
of 30 cm. Similarly, [13] proposes a loosely-coupled EKF multi-sensor fusion algorithm
that fuses IMU, GPS-RTK, VO and vehicle odometry available at different frequencies
and aims to navigate agricultural grounded vehicle in a farming area. The experiments
utilizes publically available Rosario dataset, and the performance of the algorithm is
evaluated using Mean Squared Error (MSE). The results are compared against the IMU-
ODOM fusion algorithms, which relies on IMU and wheel odometry, and the MSCKF-VIO
algorithm provided by [14]. The result highlights that the proposed algorithm outperforms
the other two algorithms in terms of estimation accuracy.

For pedestrian localization, where an IMU is mounted on the foot, a Zero Velocity Update
(ZUPT)-aided Inertial Navigation System (INS) is commonly used for dead-reckoning
[15]. The problem of foot-mounted IMU is that there is discontinuity at the end of each
step. Hence, Kalman filter is introduced to smoothen the discontinuity of the pedestrian’s
motion. The results show that the smoothing algorithm significantly reduces deviations,
producing estimated trajectories that closely align with the actual trajectory.

1.2.2 Loosely-coupled and Tightly-coupled sensor fusion

There are mainly two approaches that are commonly introduced in the fields: the loosely-
coupled and the tightly-coupled integration. Generally, the tightly-coupled implementation
provides better performance in estimation since the former, the loosely-coupled approach,
fuses the ready information coming from a sensor directly to the system’s estimation,
while the latter, the tightly-coupled approach, handles raw information obtained from
the sensor and provides more flexibilities to apply some prior works, such as denoising,
temperature compensation, etc. Here, several examples for each implementation technique
are showcased.

Loosely-coupled approach
The loosely-coupled integration provides simplicity, flexibility and ease of implemen-

tation, this approach is preferably chosen for development. For example, the paper [16]
proposes a loosely-coupled integration of GNSS and IMU to compensate for errors of both
systems using the EKF for the Unmanned Surface Vehicle (USV). The performance of
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proposed integration is compared to the integration using UKF. The proposed EKF method
provides 0.41m in the accuracy of horizontal position and more smoothed linear velocity
estimation than UKF. Similarly, the research proposed by [17] integrates GPS/INS sensor
fusion scheme that comprise two stages cascaded EKF-LKF. The first stage that consists
of two EKFs, are designed for the INS and GPS to remove noise of the raw sensor data
and working as a pure state estimator, while the filter at the second stage, namely Linear
Kalman Filter fuses both filtered data to estimate the position of the grounded vehicle. The
performance of the proposed approach is evaluated by Mean Absolute Error (MAE) and
compared to three different algorithms: the EKF, the Augmented Integral Kalman Filter
(AIKF), and the FIKF proposed in [18]. The results demonstrate that the proposed filter
achieves a positioning accuracy of less than 0.5 meters in the ENU coordinate system,
outperforming the other filters, particularly in scenarios with small GPS outages.

Tightly-coupled approach
In the research [19], grounded-vehicle’s localization problem is addressed by a fusion

system that integrate low-cost IMU (MEMS) and GPS in tightly-coupled manner. In stead
of directly computing the vehicle’s position, velocity, and attitude, which is done in loosely-
coupled approach introduced in the same paper, the system involves temperature calibration
and Gyroscope recalibration for INS data and additional mathematical integrations, such
as nonholonomic constraint and static condition detection, are implemented to compute
vehicle’s pose. As a result, the tightly-coupled implementation outperforms the other
setups, including loosely-coupled commercial GPS module.

As another example, [20] integrates both loosely-coupled and tightly-coupled approach to
test different INS/GPS strategies for low-cost airborne navigation. It exhibits that there is
no significant difference between the loosely-coupled and the tightly-coupled integrations
when a situation that all the satellites are available. However, when the number of available
satellite decreases, the absolute position and velocity errors increases for loosely-coupled
approach while with the tightly-coupled approach provides sufficiently accurate solution
even in situations with 3 or 2 satellites available.

The research [21] stated that GPS is widely used but susceptible to jamming and spoofing
by malicious attackers. Hence, the paper proposed another possibility to compensate GPS
signals loss by the other ambient radio signals that are not intended for navigation purpose,
such as WiFi, AM/FM radio, cellular, digital television, and they are referred to as Signals
of Opportunity (SOPs). The tightly-coupled approach, radio SLAM, presented in this
paper utilized a cellular LTE radio signal to compensate GNSS outage for localization.
The results show that the grounded vehicle traversing a trajectory of about 5 km in 180
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s in the GPS-jammed environment, during which a GPS-IMU system drifted from the
vehicle’s ground truth trajectory, resulting in a position RMSE of 238 m. In contrast, the
radio SLAM approach with single cellular LTE SOP whose position was poorly known
achieved a position RMSE of 32 m.

1.2.3 Sensor fusion integrated with various filtering algorithms

In a fusion system, various filtering algorithms are available to address system nonlinearity,
with the choice of algorithm depending on specific system requirements, such as estimation
accuracy, inference time, ease of implementation, and algorithm robustness. Additionally,
branches of filtering algorithms are often developed to address the limitations of their parent
algorithms or to enhance their robustness. For instance, [22] introduces the application
of the Square Root Unscented Kalman Filter (SR-UKF) for underwater target tracking.
While the Unscented Kalman Filter (UKF) deterministically propagates samples based
on the mean and covariance matrix P , numerical round-off errors can sometimes lead
to a non-positive definite covariance matrix, causing estimation failures. The SR-UKF
addresses this issue by ensuring the positive definiteness of the covariance matrix, thereby
enhancing the accuracy and stability of the filtering process. In the study, UKF, SR-UKF,
and SR-UKFs, which derived from the SR-UKF with backward smoothing aiming better
accuracy, are implemented and compared. The result reveals that the proposed algorithms,
SR-UKFs and SR-UKF, outperforms the traditional UKF algorithm and the SR-UKFs
algorithm can reduce nearly 59% of the position error and nearly 54% of the velocity error
than the SR-UKF algorithm. As another example, [23] applies the Rao-Blackwellized
Particle Filter (RBPF) to handle system nonlinearity. It is well understood that in a Particle
Filter (PF), the variance of the particles and their weights represent the system’s uncertainty,
making the PF particularly suitable for systems with nonlinear dynamics or noise. However,
for high-dimensional systems, a large number of particles is required, which significantly
increases the computational complexity of the PF algorithm as the state dimension grows,
making real-time navigation challenging. The RBPF addresses this issue by partitioning
the system’s state into linear and nonlinear components, delegating the linear part to a
traditional KF to reduce the required size of the particles. In the study, the system’s state
consists of 13 variables, with only one requiring a nonlinear model for estimation, while
the remaining variables are managed by the KF. This approach improves computational
efficiency while delivering enhanced estimation accuracy. An experiment comparing the
performance of the standard PF and the proposed RBPF highlights these advantages. The
traditional PF, using 50,000 particles, demonstrated suboptimal performance, requiring 2
hours to process 100 seconds of experiment data. In contrast, the RBPF achieved optimal
estimation with just 500 particles, completing the same task in approximately one minute.

19



1.2.4 Sensor fusion integration with machine learning technologies

In the context of Machine Learning (ML)-based approaches, ML algorithms can be
integrated with the Kalman Filter (KF) in two primary ways: dynamically tuning KF
parameters or updating the state vector or measurements within the KF.

Tuning Parameters of the Kalman Filter
In this category, ML models are employed to dynamically adjust the parameters of

the Kalman Filter, such as the noise covariance matrix or scale factors, throughout the
estimation process, rather than relying on constant parameters. As an example of this
category, the method provided by [24] introduced a CNN-based machine learning algo-
rithm to estimate noise parameters encapsulated in the introduced Kalman Filter algorithm,
Invariant Extended Kalman Filter, and tries to solve the IMU-only dead-reckoning local-
ization problem for a vehicle. The 1D CNN takes IMU data as the input and predicts the
scale factor of measurement noise for the lateral and upward velocities of the vehicle. The
proposed method is applied to the KITTI dataset and evaluated using Relative Translation
Error (trel) and Relative Rotational Error (rrel). A batch of nine 1-minute sequences is
sampled from 11 sequences in the dataset to train the ML model, with the objective of
minimizing the relative translation error (trel). Experimental results demonstrate that the
proposed method achieves relatively optimal performance compared to other algorithms
integrated with all available sensors in the dataset.

Updating State Vector or Measurements in the Kalman Filter
Given the inherent challenges of sensor data, such as noise, errors, and occasional

unavailability, ML models can be used to denoise sensor data or generate pseudo-
measurements. Pseudo-measurements serve as auxiliary inputs not directly obtained
from sensors but are synthesized using ML models and incorporated into the KF for state
estimation.

For example, the method proposed by [25] estimates a state of the indoor drone racing
system accurately using Temporal Convolutional Network (TCN) and relying only on an
off-the-shelf IMU. The model takes buffered collective thrust and the angular velocity as
an input and predicts displacement of the UAV position in a given time. Additionally, EKF
is used to propagate the state according to the presented kinematic equation and the state
is corrected by the machine learning model output. The proposed model is trained and
validated on five trajectories selected from the publicly available Blackbird dataset [26].
Experimental results confirm the importance of integrating the EKF with the proposed
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machine learning model, referred to as IMU-Model Odometry (IMO), by comparing its
performance against the ablated EKF and ML model. However, the model has a limitation
that the estimation of the state works only in known, trained trajectory.

Another example is presented in [27], which introduces a UKF algorithm with two RNN
models, specifically LSTM algorithm, to estimate a vehicle sideslip angle. The first model,
referred to as the deep ensemble network, takes steering angle, velocity, and yawrate
and lateral acceleration as an input vector and predicts estimated sideslip angle and its
uncertainty. The second model, called as sensor filtering network, takes velocity, yawrate
and lateral acceleration as a input vector and outputs filtered sensor signals, which are
used to calculate the derivative of the sidelip angle used in the proposed kinematics-based
model. Hence two models are introduced in different purposes to produce values used in
the prediction step of the UKF and pseudo-measurements to correct estimation. For model
training, data is collected from a simulation environment using CarSim across various
velocity ranges and road surface conditions. The proposed algorithm is validated through
comparisons with other algorithms in both simulation and real-car experiments. Results
demonstrate that the proposed UKF algorithm, augmented with machine learning model
outputs, achieves superior performance in sideslip angle estimation in both experimental
setups.

1.3 Objectives

The objectives of this thesis are:

■ To determine an optimal configuration of different Kalman filter algorithms, motion
models for Kalman filters, and sensor inputs for the KITTI dataset. This study
explores combinations of five widely used filters (EKF, UKF, PF, EnKF, and CKF),
two motion model state equations (basic kinematics and velocity motion model),
and sensor data inputs (IMU, VO from image sensors and GPS).

■ To validate the robustness of the optimal configuration in a realistic environment.
This work simulates realistic scenarios involving sensor data loss for GPS and VO
along selected trajectories in the KITTI dataset, accounting for challenges such as
non-line-of-sight (NLOS) and multipath effects for GPS, as well as limited terrain
features and changing lighting conditions for VO.

■ To assess the practicality of the filter algorithms for real-world applications. Filters
are evaluated based on additional metrics such as inference speed and the num-
ber of parameters required for configuration, providing insights into their ease of
implementation and usability in practical scenarios.
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By addressing these objectives, this thesis will provide a comprehensive evaluation of these
filters, demonstrates their applicability to practical environments, contributing valuable
insights into the field of state estimation and sensor fusion.

Finally, the Python scripts and the jupyter notebooks that solve aforementioned questions
are publicly available at the github repository1.

1.4 Thesis Outline

The rest of the thesis are constructed as follows: Section 2 describes the systems overviews,
which includes hardware settings and embedded sensor data, for each dataset. A detailed
explanation of an algorithm for each filter technique is shown in Section 3. In Section 4,
experimental setups and evaluation metrics for experiments that solves aforementioned
research questions are presented. After showcasing the experiments, an analysis of the
results is presented in Section 5. Finally, in Section 6 the conclusions of this work are
drawn.

1https://github.com/ishikawatatsuki/sensor_fusion
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2. System Overview

In the present study, we employ a publicly available dataset collected by Karlsruhe Insti-
tute of Technology and Toyota Technological Institute known as KITTI, to conduct our
experimental research. KITTI dataset, is one of the most popular dataset for autonomous
driving and robotics. It encompasses a diverse array of image data alongside a multitude of
sensor readings across various traffic conditions. In this chapter, we highlight the hardware
overview and sensors utilized in the datasets.

2.1 KITTI Vehicle

KITTI, Karlsruhe Institute of Technology and Toyota Technological Institute, is an open-
source grounded vehicle driving dataset recorded in the various environments in Karlsruhe,
Garmany in 2011 , including mid-size city, rural area, and highways. By driving the
vehicle, specifically a Volkswagen Passat B6, with variety of sensors equipped as shown in
Figure 1, a total of 3TB of data is collected from which a representative subset is selected
for each task to evaluate, such as stereo and optical estimation benchmark, 3D visual
odometry / SLAM, and 3D object detection and orientation estimation benchmark [28].

Figure 1. The KITTI vehicle [29].
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KITTI raw dataset consists of approximately 25% of entire recordings separated by five
majour categories: Road, City, Residential, Campus and Person [29]. Figure 2 displays the
road tracks recorded during the drive in a metropolitan area of the city and the example of
a GPS trajectory provided by KITTI raw dataset.

(a) Recording zone in Karlsruhe, Gar-
many in 2011 [29].

(b) An example GPS trajectory provided by
KITTI raw dataset.

Figure 2. A recording zone with GPS traces in the metropolitan area of Karlsruhe traces
and an example of GPS trajectory.

2.1.1 Sensor Setup

The detailed information for each sensor equipped with the vehicle is:

■ 2 × PointGray Flea2 grayscale cameras (FL2-14S3M-C), 1.4 Megapixels, 1/2” Sony
ICX267 CCD, global shutter

■ 2 × PointGray Flea2 color cameras (FL2-14S3C-C), 1.4 Megapixels, 1/2” Sony
ICX267 CCD, global shutter

■ 4 × Edmund Optics lenses, 4mm, opening angle 90◦, vertical opening angle of
region of interest (ROI) 35◦

■ 1 × Velodyne HDL 64E rotating 3D laser scanner, 10 Hz, 64 beams, 0.09 degree
angular resolution, 2 cm distance accuracy, collecting 1.3 million points/second,
field of view: 360◦ horizontal, 26.8◦ vertical, range: 120 m

■ 1 × OXTS RT3003 inertial and GPS navigation system, 6 axis, 100 Hz, L1/L2 RTK,
resolution: 0.02m / 0.1◦.

Stereo Cameras
As mentioned above, the vehicle is equipped with four image sensors, comprising
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a pair of color stereo cameras and a pair of grayscale stereo cameras. All cameras are
synchronized with the Velodyne laser scanner at approximately 10Hz. The images captured
by these cameras are provided as lossless compressed and rectified PNG sequences. An
example image taken by both grayscale and color stereo is shown in Figure 3.

(a) An image taken by grayscale stereo cam-
era (left).

(b) An image taken by grayscale stereo cam-
era (right).

(c) An image taken by color stereo camera
(left).

(d) An image taken by color stereo camera
(right).

Figure 3. An example image taken by both grayscale and color stereo camera.

As shown in the Figure 3, stereo camera provides two images with slightly different angle,
enabling depth estimation through stereo vision.

OXTS Inertial Navigation System (INS)
In the dataset, the setup uses the RT3000 series provided by OXTS, more precisely

RT3000 v3 depicted in Figure 4. The system comprises high-performance GNSS-aided
inertial navigation systems (GNSS/INS), which enables precise positioning, orientation,
and motion data collection with maximum data output rate of 250 Hz. Due to its precision,
it is widely used in automotive testing, including Advanced Driver Assistance Systems and
autonomous vehicle evaluations. In KITTI raw dataset, position of the vehicle is provided
by the GNSS and linear acceleration and angular velocity, with bias stability is 36deg/h
and 1mg respectively, are sampled at 100Hz.
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Figure 4. OXTS RT3000 v3 Inertial Navigation System (INS).

LiDAR (Velodyne)
LiDAR is one of the Laser sensor, which applies the same working principle as radar

and sonar such that it sends light and measures the time of flight (TOF) and/or compares
the phase-shift of the light resources. In automotive application, LiDAR is integrated with
GPS and IMU to improve the accuracy of the position of a vehicle. In KITTI dataset,
LiDAR measures point cloud data, which consists of x, y, and z coordinate and reflectance
information.

As an experimental dataset, we employed the KITTI raw data, which offers both synchro-
nized and unsynchronized sensor data at a sampling rate of 10Hz. The dataset includes all
aforementioned sensor data, along with calibration files and 3D object tracklet labels. The
data is captured under diverse traffic conditions, such as in urban and residential areas. In
addition, we mainly utilized synchronized sequences of image data captured by grayscale
stereo camera and IMU/GPS sensor data provided by OXTS INS in our experiments.

2.2 KITTI Dataset

The KITTI raw dataset, which is available at the link1, is downloaded by pykitti python
library created by University of Tronto for loading and parsing the KITTI raw and the
odometry datasets. The folder structure is shown in Figure 5.

1https://www.cvlibs.net/datasets/kitti/raw_data.php
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Figure 5. The folder structure of KITTI dataset used in the experiments.

As shown in Figure 5, the synchronized KITTI raw data is downloaded and unzipped in
the KITTI directory. The rectified images captured by the grayscale stereo camera are
stored in image_00 and image_01 for the left and right views, respectively, while the color
image sequences are stored in image_02 and image_03. IMU/GPS data are stored in text
file format and each folder comes with timestamp text file containing the timestamp of
each frame of the sequence in nanosecond precision. In addition to KITTI data, Visual
Odometry estimation for each sequence is given by [vo-zazrul] and its corresponding
files including vehicle calibration files and ground truth are stored in the vo_estimates,
vo_calibrations, and ground_truth folders, respectively.

IMU/GPS Data
In terms of GPS/IMU data, the values are stored in a single text file and each reading
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consists of 30 values collected in the NED frame, where x-, y-, and z-axis point to North,
East and Down respectively. A description of each value is shown in the Table 1.

Sensor value Description Unit

1 lat latitude of the oxts-unit deg
2 lon longitude of the oxts-unit deg
3 alt altitude of the oxts-unit deg
4 roll roll angle, 0 is level and positive when left side up rad
5 pitch pitch angle, 0 is level and positive when front down rad
6 yaw heading, 0 is east and positive when counter clockwise rad
7 vn velocity towards north m/s
8 ve velocity towards east m/s
9 vf forward velocity, i.e. parallel to earth-surface m/s

10 vl leftward velocity, i.e. parallel to earth-surface m/s
11 vu upward velocity, i.e. perpendicular to earth-surface m/s
12 ax acceleration in x m/s2

13 ay acceleration in y m/s2

14 az acceleration in z m/s2

15 af forward acceleration m/s2

16 al leftward acceleration m/s2

17 au upward acceleration m/s2

18 wx angular rate around x rad/s
19 wy angular rate around y rad/s
20 wz angular rate around z rad/s
21 wf angular rate around forward axis rad/s
22 wl angular rate around leftward axis rad/s
23 wu angular rate around upward axis rad/s
24 posacc velocity accuracy north/east m/s
25 velacc velocity accuracy north/east m/s
26 navstat navigation status
27 numsats number of satellites tracked by primary GPS receiver
28 posmode position mode of primary GPS receiver
29 velmode velocity mode of primary GPS receiver
30 orimode orientation mode of primary GPS receiver

Table 1. 30 sensor values collected by OXTS RT3000 v3 inertial and GPS navigation
system.

Among the values shown in the Table 1, we are interested in lat, lon, alt for the GPS data
and linear acceleration denoted by ax, ay, and az, and angular velocity described by wx,
wy, wz collected by IMU.
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Sensor Calibration
As shown in Figure 6, those sensors equipped on the vehicle are unaligned, which can

cause large deviation during filtering process. Hence, rotational and translational operations
are needed to be performed on measurement data such that the all the measurements are
aligned with the body-frame.

Figure 6. The top view of vehicle sensor setup.

KITTI dataset includes calibration files, which helps for transforming data in IMU frame to
Velodyne frame, Velodyne frame to Camera frame, and one camera frame to another. Each
calibration file contains nine values for rotation matrix and three values for translation to
create a single 4x4 homogeneous transformation matrix, defined as:

T =

(
R t

0 1

)
=


r11 r12 r13 t1

r12 r22 r23 t2

r13 r32 r33 t3

0 0 0 1

 (2.1)

where R is a 3x3 rotation matrix and and t is a 3x1 translation vector. In addition, the
transformation matrix, which translates data in IMU frame to Camera frame, is obtained by
combining two transformation matrices from IMU to Velodyne and Velodyne to Camera,
TIMU→V elodyne · TV elodyne→Camera.
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2.3 Visual Odometry

Visual Odometry (VO) is a type of localization technique that involves sequence of images
taken by a single or multiple cameras to estimate the position and motion of an agent, such
as grounded/aerial vehicle and robot. VO has some advantage over some other odometry
techniques such as Wheel Odometry, which transform wheel’s angular rotation to linear
translation to estimate vehicle’s position, and GPS due to tolerance for wheel slippage and
capability of pose estimation in GPS-denied environment such as indoor and under-water
conditions. However, VO has some constraints such as number of feature points derived
from terrain texture and sufficient light source required in the environment [30]. VO can
be classified by two categories: appearance-based approach, it extracts information from
pixel intensity; feature-based approach, it firstly detects feature points and then computes a
displacement of each matching feature points per frame.

Appearance-based approach, on the other hand, focuses on the information derived from
the pixel intensity of an image. The commonly used technique in the appearance-based
approach is template matching method that checks the existence and position of a template,
or sub-image, in the entire image, so called search area. Likewise, the feature-based
approach, degree of similarity between template and search area is computed using Sum
of Squared Distance (SSD) and Normalized Cross Correlation (NCC). Once degree of
similarity is measured, the pixel displacement between the template and the most similar
search area is computed and then the pixel displacement is converted into the physical
camera coordinate to compute camera motion between previous and current time. Gener-
ally, the Appearance-based approach outperforms feature-based approach in low-textured
environments, however, it is susceptible to image occlusions [31].

Feature-based approach involves several steps: feature detection, feature description,
feature mapping, and motion estimation. In feature detection step, SIFT (Scale Invariant
Feature Transform) [32], SURF (Speeded Up Robust Feature) [33], ORB (Oriented FAST
and Rotated BRIEF) [34] are the well known algorithms to be used due to its robustness
and less computational efficiency. Once features are detected, the region around the
feature points is converted into a descriptor that can be compared and matched with other
descriptors. The descriptor needs to be stable against changes in lighting conditions,
rotation, and scaling. In the feature matching step, a descriptor in the first image and
another descriptor from the second image are compared based on a similarity measure,
such as SSD and NCC [35]. Finally, the rotation and translation between the current image
and the previous image are computed in the motion estimation step.

In research [36], a VO algorithm based on a feature-based approach is implemented. The
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method utilizes the SIFT algorithm as both a feature detector and descriptor, while a
K-Nearest Neighbors (KNN) algorithm, combined with a brute-force matcher, is employed
to identify the two closest matching feature points between the given images. Additionally,
the Random Sample Consensus (RANSAC) algorithm [37] is used to robustly estimate the
motion of the system, ensuring outlier rejection and improving the reliability of the motion
estimation.

The aforementioned VO algorithm was chosen for its robustness in feature-rich environ-
ments, such as those found in the KITTI dataset, as well as its accessibility (the author of
the paper is part of the same laboratory). This algorithm is applied to the stereo image
sequences from the KITTI raw dataset, and the resulting estimates are utilized in the
experiments presented.
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3. Localization

Localization is the process of determining a robot’s position and orientation in its envi-
ronment. Based on the information of the initial position, localization problems can be
classified into three main categories, position tracking, global positioning/localization, and
kidnapped robot problem [38].

In the position tracking problem, robot starts with a known position and orientation in
the environment, and the task is often to keep track of the robot’s pose. In the global
positioning problem, on the other hand, the robot’s position needs to be approximated by
utilizing sensor data with the condition that the robot position is initially unknown. The
task of the kidnapped robot problem is to re-localize robot position after an unexpected
movement of the robot.

In this research, we focused on tracking the robot’s position by utilizing motion model and
a combination of sensor data.

3.1 Kalman Filter

The Kalman Filter is a specific type of Bayesian filter that optimally utilizes prior informa-
tion to estimate the state of a system. The term “state,” denoted by x, where k represents a
discrete time step, typically refers to variables such as a robot’s pose and actuator configu-
ration in robotics or the position and velocity of a vehicle in autonomous navigation. The
Kalman Filter was designed to filter and estimate the state of linear systems, assuming that
the system dynamics are linear and the noise follows Gaussian distribution.

Kalman filter generally consists of two main steps:

■ Time update step (prediction)
■ Measurement update step (correction).

In the time update step, the system’s state x̂ ∈ ℜn and state error covariance matrix
P ∈ ℜn×n are projected from time step k − 1 to k by the following equations:
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x̂−k = Fkx̂k−1 +Bku⃗k + wk (3.1)

P−
k = FkPk−1F

T
k +Qk (3.2)

where Equation 3.1, commonly referred to as the state equation, updates the state x̂−k ,
representing the priori state estimate, using the control input vector u⃗k ∈ ℜl at time step
k. F is the n× n state transition matrix, B is the n× l control transition matrix, and wk

represents additive system or process noise. The noise wk is assumed to be independent
Gaussian white noise with zero mean, expressed as wk ∼ N(0, Qk), where Qk is the
process noise covariance matrix.

In the measurement update step, the posteriori state estimate x̂k ∈ ℜn a time k is computed
with a measurement vector zk ∈ ℜm and the priori state estimate x̂k in the time update
step. The equations are denoted by:

Kk = P−
k H

T
k (HkP

−
k H

T
k +Rk)

−1 (3.3)

x̂k = x̂−k +Kk(zk −Hkx̂
−
k ) (3.4)

Pk = (I −KkHk)P
−
k (3.5)

where the n × n matrix I denotes the identity matrix, Rk ∈ ℜm×m is the measurement
noise covariance matrix at time step k, and the m × n matrix H represents the output
transition matrix, which maps values from the state space to the measurement space. The
Kalman gain, Kk, determines the extent to which the estimates are adjusted based on the
new measurement, aiming to minimize the posteriori state error covariance matrix Pk.

3.2 State equation

The core of localizing a vehicle’s position is highly dependent on an embedded kinematic
state equation, whereby the vehicle position at time k is estimated by propagating the
previous vehicle’ position at time k-1 according to the motion model.

While the traditional Kalman Filter offers simplicity and computational efficiency, the
complexity of vehicle motion often makes it unsuitable for accurately modeling system
dynamics with linear functions. Therefore, in this section, we introduce two nonlinear
motion models utilized in the experiments: the kinematic motion model, which is based
on fundamental kinematic equations, and the velocity motion model, which describes a
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vehicle’s motion in terms of two velocities, a translational and a rotational velocity.

3.2.1 Kinematic State Equation

In this section, the state equation that conform to the basics of kinematic equation is
explained.

The Kalman Filter estimates the state of a system by propagating the state according to the
motion model in discrete-time interval ∆t.

Suppose we have a current state xk, which is expressed in the following vector notation:

x̂k = [pk, vk, qk]
T (3.6)

where, the properties stored in the state vector are described below:

■ pk ∈ ℜ3 - A vector that contains position of the vehicle in inertial frame at time k.
■ vk ∈ ℜ3 - A vector that consists of the velocity of the vehicle at time k.
■ qk ∈ ℜ4 - A vector that holds rotational information of the vehicle represented in

quaternion at time k. The rotational information is utilized to compute rotation
matrix R(qk) that rotates data measured in the body frame to the inertial frame.

In the time update step of the Kalman Filter, control input vector u⃗k is fed to the state
transition equation as shown in the Eq.3.1. Given that the control input vector u⃗k consists
of two properties, linear acceleration and angular velocity, which are obtained from an
IMU sensor, and the vector is denoted as u⃗k = [ak, wk]

T , where ak and wk represent linear
acceleration and angular velocity respectively.

According to the kinematics equations, displacement and velocity of the vehicle at time k
are obtained by:

p−k = pk−1 + vk−1∆t+
1

2
ak∆t

2 (3.7)

v−k = vk−1 + ak∆t (3.8)

According to [39], the following equation is derived for updating quaternion:

q−k = (cos(
∥wk∥∆t

2
)I4 +

1

∥wk∥
sin(

∥wk∥∆t
2

)Ωk)qk−1 (3.9)

where, the norm of angular velocities about each axis, x, y, z is obtained as ∥wk∥ =
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√
w2

x,k + w2
y,k + w2

z,k, and the quaternion update matrix Ωk at time k is obtained as:

Ωk =

[
0 −wT

k

wk −⌊w⌋k

]
=


0 −wx,k −wy,k −wz,k

wx,k 0 wz,k −wy,k

wy,k −wz,k 0 wx,k

wz,k wy,k −wx,k 0


The representation of

⌊w⌋k =

 0 −wz,k wy,k

wz,k 0 −wx,k

−wy,k wx,k 0


expresses skew-symmetric matrix, which expands a vector wk ∈ ℜ3 into a 3x3 matrix at
time k.

Finally, the inertial navigation equations are written by:

p−k = pk−1 + vk−1∆t+
1

2
∆t2(R(qk−1)ak − g) (3.10)

v−k = vk−1 +∆t(R(qk−1)ak − g) (3.11)

q−k = (cos(
∥wk∥∆t

2
)I4 +

1

∥wk∥
sin(

∥wk∥∆t
2

)Ωk)qk−1 (3.12)

where the linear acceleration ak measured in the body frame is rotated to the inertial frame
by the rotation matrix R(qk−1) derived from the quaternion qk−1 at time step k − 1 and the
gravitational acceleration denoted as g is compensated.

In the presented work, the effects of Earth rotation and the Coriolis acceleration are ignored.
Moreover, the Earth is considered locally flat and the gravitational force vector g ∈ ℜ3 is
set constant.

3.2.2 Velocity Model State Equation

According to [40], the velocity motion model describes the motion of a rigid body in terms
of two velocities: rotational velocity and translational velocity.

Given a state vector x at time step k:

xk =

xkyk
θk

 (3.13)
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where x and y are coordinate in 2D space of the Cartesian coordinate and θ represents the
angle along z-axis.

Now, the control input vector u⃗k of the system at time step k is composed of a translational
and a rotational velocity, denoted by vk and wk respectively. Hence the vector is expressed
as follows:

u⃗k =

[
vk

wk

]
(3.14)

where positive rotational velocity wk induces a counter clockwise rotation, left turn,
whereas positive translational velocity vk corresponds to the forward velocity of the
vehicle.

We assume that the vehicle has circular motion when both velocities are kept constant in
the time interval ∆t, yielding the state vector after ∆t of motion derived by:

x̂−k =

xc,k +
vk
wk
sin(θk−1 + wk∆t)

yc,k +
vk
wk
cos(θk−1 + wk∆t)

θk−1 + wk∆t

 (3.15)

where, xc,k and yc,k represent the center of circular motion at time step k calculated by:

xc,k = xk−1 −
vk
wk

sin(θk−1) (3.16)

yc,k = yk−1 +
vk
wk

cos(θk−1). (3.17)

By replacing xc and yc in the state vector equation 3.15, we obtain:

x̂−k =

xk−1 − vk
wk
∗ sin(θk−1) +

vk
wk
sin(θk−1 + wk∆t)

yk−1 +
vk
wk
∗ cos(θk−1) +

vk
wk
cos(θk−1 + wk∆t)

θk−1 + w∆t

 . (3.18)

KITTI dataset provides forward velocity vf available from the OXTS INS. However, the
value of forward velocity is likely derived from a filtered norm of position displacement at
each timestamp as shown in the Figure 7.
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Figure 7. Comparison of forward velocity.

During a GPS outage, forward velocity data becomes unavailable, requiring the inclusion
of velocities along all three axes in the state vector x. Additionally, to facilitate VO
recovery when VO loses its tracking capability, a homogeneous transformation matrix T ,
representing the current translation and rotation relative to the original pose in the inertial
frame, is required. Deriving this transformation matrix requires both the position vector
and the rotation vector. Consequently, the state vector x is expanded to store the position,
velocity, and quaternion components along all three axes, resulting in the following state
vector:

x̂k = [pk, vk, qk]
T (3.19)

which coincides with the state described in the previous section.

To update the state vector x, the velocity and the quaternion vector are updated by Equation
3.12 with the control input vector u⃗, which is constructed by the IMU sensor data. In
contrast, the position vector is updated by followings:
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p̂−k =


px,k−1 − vk

wz,k
∗ sin(ψk−1) +

vk
wz,k

sin(ψk−1 + wz,k∆t)

py,k−1 +
vk
wz,k

∗ cos(ψk−1) +
vk
wz,k

cos(ψk−1 + wz,k∆t)

pz,k−1 +
vk
wx,k

∗ sin(ϕk−1) +
vk
wx,k

sin(ϕk−1 + wx,k∆t)

 (3.20)

where, ψk and ϕk denote the Euler angles at time k along the z-axis and x-axis, respectively.
These Euler angles are derived directly from the quaternion vector for use in the velocity
model. The forward velocity, vk, represents the magnitude of velocity at time k and is
calculated as the norm of the velocity components along the three axes.

3.3 Types of Kalman Filter

This section provides a comprehensive overview of five key variants of the Kalman Filter,
including the Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), Particle
Filter (PF), Ensemble Kalman Filter (EnKF), and Cubature Kalman Filter (CKF). Each
filter is described in detail, highlighting its unique features, underlying principles, and
the specific types of problems it is best suited to address, particularly in handling system
nonlinearity, uncertainty, and high-dimensional state spaces.

3.3.1 Extended Kalman filter

Kalman filter is often used to estimate state vector, such as position of vehicle, in linear
system. However, Kalman filter can only be applied to the linear system where current state
vector has a linear depenency to the previous state vector. Extended Kalman filter, on the
other hand, can estimate state vector in non-linear system, where output after transforming
previous state vector is not gaussian, by approximating non-linear function with linear
function using first-order Taylor expansion.

Taylor expansion consists of infinite sum of polynomials as follows:

f(x) ≈ f(a) + (x− a) ∗ f ′(a)/1! + (x− a)2 ∗ f ′′(a)/2! + (x− a)n ∗ f (n)(a)/n!

(3.21)

≈
∞∑
n=0

(x− a)n ∗ f (n)(a)/n! (3.22)

where f (n)(a) is nth order derivative function of f(x) evaluated at point a.
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In Extended kalman filter, we are interested in the first derivative of the function f(x)
evaluated at µ. Hence, the approximated function is expressed by:

f(x) ≈ f(µ) + (x− µ) ∗ f ′(µ) (3.23)

where, f ′(µ) = ∂f(µ)/∂x.

By Taylor expansion, we can approximate our function and obtain linearized function f(x)
evaluated at point µ so that Gaussian distribution is obtained after linear transformation of
an input.

Now, we have linearlized state equation and measurement model as shown below:

f(x) ≈ f(µ) + (x− µ) ∗ f ′(µ) (3.24)

h(x) ≈ h(µ) + (x− µ) ∗ h′(µ) (3.25)

Since we have nonlinear model for time update and measurement update step, those model
cannot be directly applied to the covariance matrix. Thus, Jacobians are used instead of
the function f and h for propagating the covariance matrix.

The Jacobian matrices are obtained as follows:

Fj =


∂f1/∂x1∂f1/∂x2...∂f1/∂xn

∂f2/∂x1∂f2/∂x2...∂f2/∂xn

...

∂fn/∂x1∂fn/∂x2...∂fn/∂xn

 (3.26)

Hj =


∂h1/∂x1∂h1/∂x2...∂h1/∂xn

∂h2/∂x1∂h2/∂x2...∂h2/∂xn

...

∂hm/∂x1∂hm/∂x2...∂hm/∂xn

 (3.27)

where Fj ∈ ℜn×n and Hj ∈ ℜm×n are Jacobian metrices for process model and measure-
ment model.

Finally, the equations of Extended Kalman filter are explained as follows:
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In the time update step:

x̂−k = f(x̂k−1, u⃗k) (3.28)

P−
k = Fj,kPk−1F

T
j,k +Qk (3.29)

where, in contrast to Equation 3.1, the function f represents nonlinear function to propagate
state vector x and the computed Jacobian matrix Fj,k is used to update the error state
covariance matrix P in the Extended Kalman Filter.

In the measurement update step:

Kk = P−
k H

T
j,k(Hj,kP

−
k H

T
j,k +Rk) (3.30)

x̂k = x̂−k +Kk(zk − h(x̂−k )) (3.31)

Pk = (I −KkHj,k)P
−
k (3.32)

where Jacobian matrix Hj,k is used to calculate the Kalman gain Kk and the posterior
state error covariance matrix Pk. Additionally the nonlinear measurement model h, which
performs a nonlinear mapping from the state space to the measurement space, is employed
to compute the posterior state estimate.

3.3.2 Unscented Kalman filter

Unscented Kalman filter approximate nonlinear motion model by using unscented trans-
form instead of analytical transform that EKF performs. The unscented transformation
is a method for calculating the mean and covariance of a random variable by passing it
through a nonlinear function.

Like other filtering technique, Unscented Kalman filter follows the time update and
measurement update steps.

In the time update step, given a state vector x ∈ ℜn, we compute a subset of points, known
as sigma point and denited as χ(i), where i = 1...2n+ 1. Then a sigma vector χk at time
step k is formed as follows:
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χ
(i)
k−1 = x̂k−1 (3.33)

χ
(i)
k−1 = x̂k−1 + (

√
(n+ λ) ∗ Px)i, i = 1, ..., n (3.34)

χ
(i)
k−1 = x̂k−1 − (

√
(n+ λ) ∗ Px)i, i = n+ 1, ..., 2n (3.35)

where, λ is a caling parameter λ = α2(n+ κ)− n. α determines the spread of the sigma
points around the sample mean x̂, which is normally small positive value such as 0.001.
Moreover, κ is secondary scaling parameter, which is usually set to 0 [41].

The number of sigma points required to approximate the nonlinearly transformed distri-
bution is 2n+ 1. So, sigma points are chosen one point for the mean, and pair of points
for the symmetrically distributed about the mean. Once sigma points are selected, the
propagation of the sigma points through the nonlinear function f

χ
(i)
k−1 = f(χ

(i)
k−1, u⃗k−1, wk−1) (3.36)

where u⃗k−1 and wk−1 are control input vector and process noise respectively.

After propagation of all sigma points, sample mean and sample covariance of the propa-
gated points are computed according to the equation below:

x̂−k =
2n∑
i=0

W
(m)
i χ

(i)
k−1 (3.37)

P−
k =

2n∑
i=0

W
(c)
i (χ

(i)
k−1 − x̂−k )(χ

(i)
k−1 − x̂−k )

T +Qk−1 (3.38)

where, Q is additive process noise and the weights for the sigma points and their covariance
are given by:

W
(m)
0 = λ/(n+ λ) (3.39)

W
(c)
0 = λ/(n+ λ) + (1− α2 + β) (3.40)

W
(m)
i = W

(c)
i = 1/{2(n+ λ)}; i = 1, ..., 2n. (3.41)

The W (m) and W (c) indicates weight for the sigma points and covariance respectively. As
explained, α and κ are set to scale the sigma points around the mean, in addition, β is
used to incorporate prior knowledge of the distribution of x. For instance, β = 2 when the
distribution is Gaussian.
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In the measurement update step, after computing sample mean and covariance of propa-
gated points, the measurements are predicted by applying the measurement function h to
the updated sigma points

Y(i)
k = h(χ

(i)
k−1). (3.42)

After sigma points are transformed to the measurement space, the weighted mean denoted
by ŷk ∈ ℜm and covariance matrix of predicted measurements Py,k ∈ ℜm×m, and cross-
covariance between propagated distribution and distribution of predicted measurement
designated by Pxy,k ∈ ℜn×m are obtained as follows:

ŷk =
2n∑
i=0

W
(m)
i Y(i)

k (3.43)

Py,k =
2n∑
i=0

W
(c)
i (Y(i)

k − ŷk)(Y(i)
k − ŷk)

T +Rk (3.44)

Pxy,k =
2n∑
i=0

W
(c)
i (χ

(i)
k−1 − x̂−k )(Y

(i)
k − ŷk)

T (3.45)

where Rk is an additive measurement noise at time step k.

Finally, the Kalman gain and correction of the system’s state and state covariance matrix
are performed by

Kk = Pxy,kP
−1
y,k (3.46)

x̂k = x̂−k +Kk(yk − ŷk) (3.47)

Pk = P−
k −KkPy,kK

T
k (3.48)

where yk is sensor data in the measurement update step.

3.3.3 Particle filter

Particle filter is widely used for dynamic system’s state estimation. While Extended Kalman
filter provides analytical approximation to estimate the state of a dynamic system by
linearizing non-linear motion models around the current estimate, Particle filter estimates
the state of an intractable system probabilistically, integrating the Monte Carlo sampling
and Baysian inference.
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In Bayesian filter, the state estimate at time k given all measurements and control inputs up
to time k is denoted by the following conditional probability density function (pdf) and is
denoted as p(xk|u1:k, z1:k), where u1:k = ui; i = 1, ..., k represents the sequence of control
input and z1:k = zi; i = 1, ..., k indicates the sequence of measurement input.

However, storing the history of all the parameters requires exponentially growing compu-
tational power over time. Hence, to make computation trackable, it is assumed that the
Bayes filter follows Markov assumption, meaning that the current state estimate only relies
on the previous state and it is denoted as

p(xk|x1:k−1, z1:k−1) = p(xk|xk−1) (3.49)

p(zk|x1:k) = p(zk|xk). (3.50)

In Bayesian theory, the posterior distribution is expressed by

p(A|B) =
p(B|A)p(A)

p(B)
. (3.51)

When Bayes theory is applied to the Particle filter, the posterior probability density function
of the state is obtained from

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(3.52)

where, the prior distribution is resulted from the combination of the posterior distribution
at the previous time step, p(xk−1|z1:k−1), and the process model that describes how the
state evolves over time in the prediction step. The prior distribution is denoted as

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (3.53)

Moreover, the likelihood p(zk|xk) represents conditional probability of a measurement
given the predicted state and the marginal likelihood is denoted as

p(zk|z1:k−1) =

∫
p(zk|xk)p(xk|z1:k−1)dxk. (3.54)

The integrals represent that the probability is continuous distribution. However, the
integrals can be solved under strong assumption such as the motion model is linear and the
pdf is Gaussian [42].

Instead of approximating the posterior distribution by assuming that the motion model is
linear, Particle filter approximates the pdf representing the posterior by a discrete pdf such
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that there are minimal restriction on the models involved.

The continuous pdf approximated by a sum of weighted samples are expressed as

p(x0:k|z1:k) ≈
N∑
i=1

wi
kδ(x0:k − xi0:k) (3.55)

where {wi
k, x

i
0:k}Ni=1 is a set containing the state sequence. δ is Dirac delta function, which

is used to extend pdf to discrete random variable such that, for a discrete random variable
χ with range Rχ = {x1, x2, ..., xn} and the probability mass function (pmf) pχ(xk), the
pdf is expressed as

fχ(x) =
∑

xk∈Rχ

Pχ(xk)δ(x− xk). (3.56)

According to the equation 3.55, the weights for each sample directly indicate the likelihood
of the pdf p(x0:k|z1:k).

The challenge derived from the sample-based approximation is that the posterior distri-
bution at time k is unknown, meaning that the samples need to be drawn from the other
distribution. The distribution is called importance density, denoted by q. The weights
compensate for the fact that the samples are drawn from the importance density q instead
of the posterior pdf. The weights are computed by

wi
k ∝

p(xik|z1:k)
q(xik|z1:k)

(3.57)

where, the weights are equal to the ratio between the posterior and the importance density
for an individual particle with index i.

In the recursive process, the state at time k, p(xk|z1:k), is of interest, rather than the full
state sequence p(x0:k|z1:k) up to time k. The weights are rewritten as

wi
k ∝ wi

k−1

p(zk|xik)p(xik|xik−1)

q(xik|xik−1, z1:k)
. (3.58)

Thus, the posterior pdf at time k resulted from the Particle filter is expressed as

p(xk|z1:k) ≈
N∑
i=1

wi
kδ(xk − xik). (3.59)
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Resampling

One of the important step involved in the Particle filter is resampling particles. The aim of
resampling is to propagate particles such that the particles from the state space at time k
with large weights are more likely to dominate in the state space at time k+1 than particles
with small weights. This results in the improvement in exploration of the state space after
sampling [43].

After several iterations of the particle propagation process, the Particle Filter (PF) may
encounter a problem known as Sample Degeneracy, where the weights become concen-
trated in a small number of particles, while the remaining particles carry negligible weights.
When resampling is performed under these conditions, it can lead to Sample Impoverish-
ment. In this scenario, only particles with large weights are retained and resampled, while
particles with smaller weights are discarded [44]. This process reduces the diversity of the
particles and results in a limited variance, making the particles less capable of accurately
representing the posterior distribution.

To mitigate this issue, the Effective Sample Size (ESS), denoted as N̂eff , is introduced.
According to [45], a logical computable approximation of Neff is provided by:

N̂eff =
1∑

i(w
i
k)

2
. (3.60)

The N̂eff has a range 1 ≤ N̂eff ≤ N , where N is the number of particles in the system.

The resampling condition in the PF can be determined by defining a threshold, for example,
N̂eff <

N
2

.

Resample algorithms

The main processes of general resampling algorithms are to generate random samples
χk+1 = {xik+1, w

i
k+1} from the original random samples χk = {xik, wi

k} in the state space
and to replace the new set of the samples with the previous samples.

The common resampling algorithms are listed below.

Multinomial resampling

Multinomial resampling is one of the most straightforward resampling algorithm that it
generates N independent random numbers, denoted as unk from the uniform distribution on
(0, 1] and use them to select particles from χk.
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In the nth selection, the particle xmk is chosen when the following condition is satisfied:

Qm−1
k < unk ≤ Qm

k , (3.61)

where

Qm
k =

m∑
i=1

wi
k. (3.62)

Thus, the probability of selecting xmk is the same as that of unk being in the interval bounded
by the cumulative sum of the normalized weights.

Residual resampling

Residual resampling algorithm has two stages. In the first stage, the particles whose
weight is bigger than 1/N, are replicated deterministically. In the second stage, multino-
mial sampling using the remaining of the weights, which are referred to as residuals, is
conducted.

In detail, number of replication of the highly weighted particles are deterimined by Nm
k =

Nwm
k , where N is total number of particles. Consequently, in the following stage, weights

for each residual are computed by

ŵm
k = wm

k − Nm
k

N
. (3.63)

Finally, the multinomial sampling is applied to the residuals using the computed weights.

Stratified resampling

Stratified resampling algorithm divides the entire population of particles into chunk of
subpopulation, called strata. It partitions the [0, 1] interval into N disjoint subintervals:
[0, 1/N) ∪ [1/N, 2/N) ∪ ... ∪ [1− 1/N, 1]. The N random numbers, {unk}Nn=1, are drawn
independently in each of these subintervals at time k as follows:

unk ∼ U

[
n− 1

N
,
n

N

)
, n = 1, 2, ..., N. (3.64)

Then the bouding method based on the cumulative sum of normalized weights is performed.
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Stratified resampling

Systematic resampling algorithm also performs the population division to obtain disjoint
subintervals, but generation of the independent random number unk is different from that
of Stratified resampling. Firstly, u1k is drawn from the uniform distribution within the
interval of (0, 1/N], and the rest of the random numbers, uik; i ∈ 2, ..., N , are obtained
deterministically by the following procedure:

u1k ∼ U

[
0,

1

N

)
, (3.65)

unk = u1k +
n− 1

N
, n = 2, 3, ..., N. (3.66)

The variance of the number of a resampled particle by the systematic method is smaller
than that of the stratified algorithm.

3.3.4 Ensemble Kalman filter

Ensemble Kalman filter (EnKF), introduced by Evensen in 1994[46], is a Monte Carlo
approximation of the Kalman filter (KF), in which system’s state is represented by samples,
a.k.a ensemble member.

In the case of a system that requires a large number of state variables such as numerical
weather prediction where the number of variables is n ≈ O(107), the classic KF can
become expensive to describe the system. The EnKF, on the other hand, estimate the state’s
uncertainty by the spread in the ensemble at a given time instead of using error covariance
matrices [47], which reduces computational power required to estimate the system.

The main difference between EnKF and the other sequential Monte Carlo algorithm such
as Particle filter is the use of linear updating rule. When new observation is available, each
ensemble member is updated by a linear shift based on the assumption of a linear Gaussian
motion model, while the Particle filter uses a reweighting or a resampling approach [48],
which may experience high-dimensionality problem, called as "curse of dimensionality".

There are many different types of EnKF and they can be classified by two main categories,
Stochastic algorithms, such as Perturbed Observation Kalman Filter, and Deterministic
algorithms, such as Ensemble Transform Kalman Filter.

Commonly, in the time update step, forecast ensemble member is obtained by applying the
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motion model to each sample and denoted as

x̂
(i),−
k = Fkx̂

(i)
k−1 + w

(i)
k , w

(i)
k ∼ N(0, Qk), i = 1, ..., N (3.67)

where the x̂(i),−k represents the forecast ensemble member i at time step k and N is the
ensemble size. The Fk is the state transition matrix that updates each ensemble member
based on a given state equation and w(i)

k represents a process noise for ensemble member
i, sampled from the zero mean multivariate Gaussian distribution with process noise
covariance matrix Qk.

After forecasting each ensemble member, an ensemble mean x̂−k and its covariance Pk at
time step k are computed by:

x̂−k =
1

N

N∑
i=1

x̂
(i),−
k (3.68)

Pk =
1

N − 1

N∑
i=1

(x̂−k − x̂
(i),f
k )(x̂−k − x̂

(i),f
k )T . (3.69)

In the Perturbed Observation Kalman Filter (POKF), which is implemented in this study,
observations are perturbed in order for the variance of the ensemble after the update step
to correctly represent the uncertainty in the analysis [49]. The update step of the POKF is
written as

K̂k = PkHk(HkPkH
T +R)−1 (3.70)

x̂
(i)
k = x̂

(i),f
k + K̂k(y

(i)
k −Hx̂

(i),f
k ) (3.71)

where the Kalman gain is replaced by an estimate K̂k based on the variance of ensemble
[48]. y(i)k = yk+v

(i)
k is a perturbed observations and the measurement noise v(i)k is Gaussian

with zero mean and covariance, Rk, such that v(i)k ∼ N(0, Rk).

In the Deterministic algorithm, on the other hand, ensemble members are obtained by
deterministically shifting the prior ensemble toward the posterior and scaling the ensemble
so that the resulting ensemble has a smaller variance than the prior [48].
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3.3.5 Cubature Kalman filter

Cubature Kalman filter (CKF) is introduced in 2009 by [50] that follows Spherical-radial
Cubature rule allowing to select a set of cubature points to efficiently compute Gaussian
weighted integrals represented in nonlinear function * Gausssian probability density

function.

In the context of filtering and estimation, we often compute integrals of the form:

I =

∫
f(x)N(x|µ,Σ)dx (3.72)

where f(x) is a nonlinear function of the state vector x,N(x|µ,Σ)dx represents a Gaussian
probability distribution with mean µ and covariance Σ.

Direct computation of such integral is usually not feasible since f(x) is nonlinear, hence,
CKF draws a finite number of evaluation points, a.k.a. cubature points, and weights to
approximate these integrals. This approach falls to the local approach including EKF and
UKF, where we approximate the nonlinear system dynamics by using linearization and
point evaluation; and global approach such as Particle filter, where instead of approxi-
mating the nonlinear system dynamics, draw samples in the state space, which decreases
computational efficiency but achieves higher-order accuracy.

Consider the integral, especially in the form of:

I(f) =

∫
Rn

f(x)exp(−xTx)dx (3.73)

the following steps are applied to numerically compute the integral:

■ to transform the integral function into the spherical-radial integration form,
■ to propose a third-degree spherical-radial rule.

Firstly, the integral Eq.3.73 represented in Cartesian space is transformed into a spherical-
radial coordinate system and the integral is represented by radial integral and spherical

integral: The radial integral

I =

∫ ∞

0

S(r)rn−1exp(−r2)dr (3.74)
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the spherical integral

S(r) =

∫
Un

f(ry)dσ(y) (3.75)

where the Cartesian vector x ∈ Rn is converted into a radius vector r and a direction vector
y and it follows x = ry, yTy = 1, xTx = r2, r ∈ [0,∞). Moreover, Un is the surface
of the sphere defined by Un = {y ∈ Rn|yTy = 1} and σ(·) is the area element on Un.
Then those two integrals, spherical and radial integrals, are numerically computed by the
spherical cubature rule and the Gaussian quadrature rule respectively [50].

Finally, the spherical and radial rules are combined to obtain accurate approximation of
the integrals and ensures the cubature points are symmetrically distributed in the area of
integration.

Filter derivation

In the time update step, firstly the state error covariance matrix is factorized by Cholesky
decomposition such that:

P−
k−1 = Lk−1L

T
k−1. (3.76)

Then the lower triangular matrix L is used to compute cubature points for i = 1, 2, .., nx,
where nx represents the dimensions of the state:

χ
(i)
k−1 = x̂k−1 +

√
nxLk−1 (3.77)

χ
(i+n)
k−1 = x̂k−1 −

√
nxLk−1. (3.78)

Subsequently, the cubature points χ are propagated through the nonlinear function and the
predicted state is estimated by computing the mean value of the cubature points as follows:

χ
(i),−
k = f(χ

(i)
k−1, u⃗k) (3.79)

x̂−k =
2nx∑
i=1

W (i)χ
(i),−
k (3.80)

where the weight of sigma point is: W (i) = 1
2nx

.
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Finally, the state error covariance matrix Pk at time step k is computed as follows:

P−
k =

2nx∑
i=1

W (i)(χ
(i),−
k − x̂−k )(χ

(i),−
k − x̂−k )

T +Qk (3.81)

where Qk is an additive noise.

In the measurement update step, as similar to the time update step, factorize the state error
covariance matrix and compute cubature points using the Eq.3.76 and Eq.3.88. Then the
cubature points are propagated to observation space and the predicted state is computed
by:

Z
(i)
k = h(χ

(i)−
k , u⃗k) (3.82)

ẑk =
2nx∑
i=1

W (i)Z
(i)
k . (3.83)

Subsequently, innovations covariance matrix and the cross-covariance matrix are computed
according to the following equations:

Pzz,k =
2nx∑
i=1

W (i)(Z
(i)
k − ẑk)(Z

(i)
k − ẑk)

T +Rk (3.84)

Pxz,k =
2nx∑
i=1

W (i)(χ
(i),−
k − x̂−k )(Z

(i)
k − ẑk)

T (3.85)

where, R is additive noise. Finally, Kalman gain K at time step k is estimated and the
corrections of the state of the system and state error covariance matrix are performed by:

Kk = Pxz,kP
−1
zz,k (3.86)

x̂k = x̂−k +Kk(zk − ẑk) (3.87)

Pk = P−
k −KkPzz,kK

T
k (3.88)

where zk represents measurement input passed to the filter at time k.
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4. Experiments

In this paper, KITTI dataset is used to estimate the trajectory of the vehicle in the spatial
Cartesian coordinate system and results are compared to determine the optimal filter
algorithms for the given dataset on the basis of three evaluation metrics, which is described
at the end of the chapter. Moreover, we demonstrated multi-sensor environment that
involves data drop during the trajectory simulating real-life scenario.

4.1 Experimental Setups

To address the research questions, following experimental setups are proposed.

■ Evaluation of Filters using KITTI Dataset: The robustness of the filters is evaluated
by testing them on selected sequences from the KITTI dataset, chosen based on their
trajectory length and the extent of translation and rotation. The sequences analyzed
include 03, 07, and 09. Furthermore, two distinct motion models, primarily utilizing
IMU and VO data, are implemented to compare the resulting state estimations on
the basis of the evaluation metrics. Moreover, we evaluate the inference speed of the
filter algorithms, the ease of implementation, and usability in practical scenarios.

■ Comparison of Estimated Trajectories Using Multi-Sensor Data: To evaluate the
applicability of the filters in a multi-sensor environment, GPS data is incorporated
alongside VO data during the measurement update step of each filter. This experiment
provides insights into the estimation behavior of the filters when multiple sensor
inputs are utilized.

■ Simulating VO Data Drop: To further assess filter robustness, a real-world scenario is
simulated using the KITTI dataset, wherein consecutive segments of VO estimations
are intentionally omitted. This scenario mimics challenges such as frame loss,
reduced feature detection caused by occlusions and lighting variations, and matching
algorithm failures.

■ Filter application in a real life scenario: A selected filter is now tested on a multi-
sensor real life scenario where, consecutive GPS and VO data loss is simulated during
the estimation and measure the applicability of the filter in real life environment.
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4.1.1 Evaluation of Filters Using KITTI Datasets

Motion models

Two motion models: basics of kinematics and velocity motion model as described in Sec.
3.2, are implemented in time update step of each filter to propagate previous state estimate
with given current control inputs, obtained from the IMU.

Sequence 03

Sequence 03, depicted in Figure 8a, comprises 801 data points (approximately an 80-
second journey) and features complex motion patterns, including substantial rotations,
sharp turns, and varying speeds.

Sequence 07

Sequence 07 includes 1101 data points (a 110-second journey) with several nearly-right
angle rotations and large translation in x- and y-axis making closed loop as shown in
Figure 8b. Moreover, the trajectory includes some stops and changes in speed, which
makes estimation challenging.

Sequence 09

Figure 8c shows sequence 09, which is composed of 1591 data points resulting in approxi-
mately a 160-second of trip with longer stretches of straight motion with occasional slight
curves and minimal rotational movements formulating closed loop.

Figure 8 shows the trajectories for selected sequences from the KITTI dataset. The
trajectories are derived from ground-truth GPS data, rotated to align with the inertial frame,
which coincides with the initial IMU frame, and visualized in 2D coordinates (x and y).
The state of each filter is initialized by the initial pose of the vehicle.

4.1.2 Comparison of Estimated Trajectories Using Multi-Sensor Data

To assess the applicability of filters in a multi-sensor scenario, GPS data is incorporated
into the measurement update step of the filters, and the resulting estimations are compared.
In this experiment, the sensor noise configurations are set such that the measurement noise
of the GPS is twice as low as that of the VO, reflecting the high accuracy of GPS data
in the KITTI dataset, which is also used as ground truth. In addition to evaluating the
performance of the filters, their behavior and responsiveness when handling data from
multiple sensors are analyzed.
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(a) The trajectory of seq. 03.

(b) The trajectory of seq. 07. (c) The trajectory of seq. 09.

Figure 8. Trajectories of selected sequence in KITTI dataset.

4.1.3 Simulating VO Data Drop

In typical VO estimation, the transformation at time t, which includes both the translation
and rotation matrices, is computed as the product of the transformation obtained at the
previous time step (t− 1)and the translational and rotational displacements derived from
image sequences at time t. Consequently, the ego-motion’s linear velocity at time t is
calculated as the ratio of the translational displacement to the time interval (∆t) between
the two image sequences.

In this study, the measurement update step of the Kalman filter incorporates both a position
vector and a velocity vector to correct the system’s state. To evaluate the robustness of
the filters, simulations are conducted where VO data dropouts are introduced during the
estimation process.

The performance of the filters is systematically analyzed by varying number of frame
drops from 10 to 160 frames (from 1 to 16 seconds in duration) in two trajectories where
rotational changes and translational changes are significant as shown in the Figure 9, and
the results of the trajectory estimations are compared. In this experiment, sequence 09 is
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utilized due to its length and characteristics of the trajectory.

Figure 9. The trajectory highlighting the location of VO data loss.

Figure 9 illustrates the trajectory of KITTI sequence 09, highlighting the locations where
VO data loss occurs. The red dots indicate the starting points of the data drop for the
curved trajectory (frame 600) and the straight trajectory (frame 1200). Additionally, the
number of dropped frames is progressively increased to 10, 20, 40, 80, and 160, allowing
for the analysis of the resulting estimation error growth and the differences in impact based
on the data drop locations.

4.1.4 Filter Application in a Real Life Scenario

Once aforementioned experiments are conducted, we selected EKF to estimate the vehicle’s
position in multi-sensor real life scenario. As an example trajectory, we selected sequence
09 in KITTI dataset due to its length and a variety of motion. In the trajectory, we
consecutively dropped GPS and camera frame for VO data loss or both in the middle of
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the journey, which simulates a tunnel, less feature environments, a bridge, or combination
of these environments to provide some difficulties during the estimation. The trajectory is
drawn in Figure 10.

Figure 10. A trajectory of a real life scenario.

In Figure 10, the gray line represents the trajectory, where both GPS and VO data are
available. The red and blue line indicate GPS data loss and VO data loss respectively.
Finally, the purple colored line provide neither GPS nor VO data hence the filter performs
IMU-only dead-reckoning to estimate the vehicle’s position.

Finally, all the filters shares the same process noise covariance matrix Q and measurement
noise covariance matrix R for corresponding sensors across all experiments.

4.2 Evaluation Metrics

The trajectory estimations are assessed using three quantitative evaluation metrics: Ab-
solute Trajectory Error (ATE), Relative Pose Error in meter, and Relative Pose Error in
degree, with reference trajectories derived from the KITTI dataset ground truth. The evalu-
ation process is completed using the tools provided by [51]. Additionally, the inference
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time for a single iteration of the Kalman filter, encompassing both the time update and
measurement update steps, is measured for each filter to highlight computational speed
constraints.

4.2.1 Absolute Trajectory Error (ATE [m])

The Absolute Trajectory Error (ATE) is calculated by the difference between the estimated
trajectory and the ground-truth trajectory after transforming the estimated position so that
the estimation is aligned to the ground-truth, and the root mean square error is used

ATEpos =

√√√√ 1

N

N−1∑
i=0

||∆pi||2, (4.1)

where N is the number of estimated points and ∆pi represents the estimated position at ith
point.

ATE provides an intuitive error computation and it is easy to compare, however, the metric
is time sensitive. The earlier an error is created, the larger the ATE becomes since the early
error produces accumulated errors during the entire path of estimation.

4.2.2 Relative Pose Error (RPE [m/deg])

The Relative Pose Error (RPE) is computed by calculating the error of the end state of
each sub-trajectory. The sub-trajectories are selected by defined length d and the error is
computed for each sub-trajectory from the estimation and ground-truth after aligning the
first state of each sub-trajectory of the estimation with that of the ground-truth. The PRE
provides a collection of errors for all the sub-trajectories rather than a single value as the
ATE, hence the statistics such as the median, average and percentiles can be derived [52].
To compute the error, firstly K set of length of sub-trajectories, D = [d1, d2, .., dK ], are
selected and then a set of sub-trajectories from both estimation and ground-truth for each
length, dk = {x̂estimation, x̂ground−truth} where x̂ represents a sub-trajectory, is derived.
After that we compute the relative error for each sub-trajectories as follows:
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RPEpos =
1

D

K−1∑
i=0

δpk (4.2)

RPErot =
1

D

K−1∑
i=0

δRk
(4.3)

where δpk and δRk represent a difference of relative position and rotation for sub-trajectory
with the length k. The advantage of RPE over the ATE is that it is less sensitive to the
large deviation at the beginning of the trajectory unlike the ATE, since its focus is the local
consistency of relative motion.
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5. Results and Analysis

The proposed variants of Kalman filter are implemented with Python 3.10. All filters
employ the same state equation in the time update step of the filters and are initialized with
the same state error covariance matrix P, process noise covariance Q and measurement
noise covariance R for GPS and VO data in order to conduct aforementioned experiments
under the same condition.

The filters that require parameters, such as UKF, PF, and EnKF, are initialized as follows:

■ UKF: α = 1., β = 2., κ = 0.,
■ PF: Nparticle size = 2048, stratified resampling algorithm, Nth = N

2
,

■ EnKF: Nensemble size = 256,

where Nth represents the threshold for PF resampling and the particle size of PF is set to a
large number to avoid filter divergence.

The first two experiments utilize pre-computed VO estimations, saved as numpy files in
advance, to evaluate the inference speed of the filtering process for each filter.

5.1 Result of different trajectory experiment

In this section, a performance comparison of the experimental results computed by the all
filters with different motion models (with and without GPS as an input data) applying to
the selected KITTI driving sequences, specifically sequence 04, 07 and 09, is provided. A
quantitative and qualitative analysis of the estimated results in multi-sensor environment is
discussed.

Analysis of global trajectory alignment and relative pose estimation
Figures 11 presents the Absolute Trajectory Error (ATE) in meters, primarily reflecting

the global alignment between the estimated and ground-truth trajectories. Across all
sequences, there are generally no significant differences in ATEs between the two motion
models, as the provided VO data effectively corrects the filter’s state estimates during the
measurement update step.
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(a) Heatmap representing ATE in meters for sequence 03.

(b) Heatmap representing ATE in meters for sequence 07.

(c) Heatmap representing ATE in meters for sequence 09.

Figure 11. Performance comparison of various filters with different motion models (with
and without GPS data) for the selected KITTI sequences 03(11a), 07(11b), and 09(11c),
evaluated by Absolute Trajectory Error (ATE).

Furthermore, Gaussian-based filters, such as the EKF, UKF, and CKF, demonstrate higher
accuracy compared to probabilistic filters like the PF and EnKF. For the EnKF, the ini-
tialization of the ensembles significantly impacts the filter’s estimation, particularly with
respect to rotational components. In this experiment, the ensembles are propagated using
a multivariate distribution with a mean value corresponding to the initial state vector x
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and a covariance equal to the initial state error covariance matrix P . This initialization
introduces angular errors that propagate through the trajectory, affecting the ATE metric.
If the angular errors in the state are not adequately corrected during estimation, they can
impact the overall trajectory alignment.

In terms of the Relative Pose Error (RPE) for translation as shown in Figure 12, EnKF’s
rotational initialization error is not the problem if error is computed segment by segment
indicating that EnKF has acceptable performance in all kind of sequences. As it can
clearly be seen, EKF, UKF, EnKF, and CKF estimate the position of the vehicle accurately,
especially UKF and CKF, which utilize deterministic sampling technique capturing the
system’s nonlinearity better than the other, such as EKF, outperform the other filters.

As a characteristic of the PF, particles are propagated randomly around the initial state x, the
weighted average is taken as a state estimate the state estimate is estimated by calculating
weighted average of particles and the particles are resampled during the estimate.

PF provides suboptimal performance in terms of RPE due to its reliance on the weighted
averaging of particles to estimate the current state, combined with the resampling process.
The state computed by weighted average provides moderate accuracy in terms of global
trajectory consistency being expressed by ATE, however, this process causes tiny jumps
of the state vector in the space, which leads to the accuracy drops in RPE. Hence, the
characteristics of the PF make it less suited for capturing the fine-grained local dynamics
required for precise relative pose estimation.

61



(a) Heatmap representing RPE for translation in meters for sequence 03.

(b) Heatmap representing RPE for translation in meters for sequence 07.

(c) Heatmap representing RPE for translation in meters for sequence 09.

Figure 12. Performance comparison of various filters with different motion models (with
and without GPS data) for the selected KITTI sequences 03(12a), 07(12b), and 09(12c),
evaluated by Relative Pose Error (RPE) for translation.

For RPE in angle estimation as depicted in Figure 13, the UKF and CKF consistently
demonstrate superior performance across all sequences, while the EKF exhibits suboptimal
results in this metric. Empirical observations reveal that the state of the EKF is highly
influenced by the measurement update step, particularly where the rotational component,
represented by the quaternion in the state vector, is affected by corrections to other elements,
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such as the position vector. This side-effect leads to degradation in the rotation estimation,
as highlighted by the RPE metric. However, when a correction mask is applied to the
innovation vector during the measurement update step to exclude irrelevant values, the
rotational error of the EKF aligns closely with the performance of the UKF and CKF.

(a) Heatmap representing RPE for rotation in degree for sequence 03.

(b) Heatmap representing RPE for rotation in degree.

(c) Heatmap representing RPE for rotation in degree.

Figure 13. Performance comparison of various filters with different motion models (with
and without GPS data) for the selected KITTI sequences 03(12a), 07(12b), and 09(12c),
evaluated by Relative Pose Error (RPE) for rotation.
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Analysis of different motion models
The ATE results indicate that there are no significant performance differences between

the two motion models. However, in terms of relative errors represented by the RPE, the
velocity motion model demonstrates superior performance across most filters and various
sequences. This improvement is attributed to the fewer integrations required in the velocity
motion model’s state equations.

In the motion model based on basic kinematic equations, two integrations are involved to
estimate the vehicle’s position: first, from acceleration (provided by the IMU) to linear
velocities along the three axes, and second, from the linear velocities to the vehicle’s
position. These multiple integration steps introduce cumulative errors that degrade the
accuracy of the system’s estimations [31], [53]. In contrast, the velocity motion model
requires only a single integration. Specifically, angular velocities provided by the IMU are
integrated to calculate delta angles, which are then used to estimate the vehicle’s position.
Additionally, linear accelerations are integrated with respect to the time step ∆t, but the
computed velocities are not directly used for pose estimation. Instead, they are stored in
the state vector and corrected during the measurement update step using sensor data.

Furthermore, as illustrated in Figure 14, trajectories estimated by the EKF using IMU-only
dead-reckoning demonstrate that, despite scaling issues, the velocity motion model’s state
equations outperform the pose estimation achieved by the basic kinematic motion model.
Thus, it can be concluded that filters utilizing the velocity motion model generally provide
more accurate estimations compared to those based on basic kinematic equations.

(a) Estimated trajectory using Basics of Kine-
matics Motion Model.

(b) Estimated trajectory by Velocity Motion
Model.

Figure 14. Estimated trajectory by EKF IMU-only dead-reckoning using Basics of Kine-
matics Motion Model (14a) and Velocity Motion Model (14b).
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Analysis of estimation result w/wo GPS input data and behavior of each filter
In addition to the performance comparisons across all filters and various error metrics,

performance comparison of estimated trajectories obtained from applying filters with and
without GPS input data are also provided by Figure 11, 12, and 13.

The result highlights that the inclusion of GPS input data significantly improves the
estimation accuracy for all sequences. Beyond the accuracy of the estimation, the filters’
responses to the introduction of new sensor data provide valuable insights into their
applicability in practical scenarios.

The EKF, PF, and EnKF demonstrate substantial improvements in accuracy when GPS
data is integrated, resulting in excellent performance in terms of Absolute Trajectory Error
(ATE). Conversely, the UKF and CKF generally exhibit slightly lower accuracy compared
to the other three filters.

Figure 23 illustrates the trajectory comparisons produced by these filters, with and without
GPS data, for sequence 07 of the KITTI dataset. As shown in Figures 23b, 23f, and 23h,
the red-colored estimated trajectories from the EKF, PF, and EnKF closely align with the
GPS data. This behavior can be attributed to the dominant influence of the correction
step with GPS data, which has significantly lower measurement noise than the VO data.
Since the KITTI dataset uses GPS as ground truth, this results in highly accurate trajectory
estimations. However, this reliance introduces a potential drawback: the filter may over-
rely on a single sensor’s data (in this case, GPS), even when it is not ground truth but has a
smaller error compared to other sensors. This could lead to an imbalanced filter estimation.

In contrast, the estimations provided by the UKF and CKF, as shown in Figures 23d and
23j, display a different characteristic. The red-colored trajectories estimated by these filters
are positioned between the GPS and VO data, reflecting their ability to balance sensor
inputs based on the measurement noise, with the GPS data weighted twice as heavily as the
VO data. This demonstrates that the UKF and CKF consider both sources of information
proportionally, offering a more balanced fusion process. This behavior highlights their
adaptability and allows for fine-tuning of estimation by dynamically adjusting the noise
parameters of each sensor.

Therefore, while the UKF and CKF may show suboptimal accuracy in terms of ATE
compared to the EKF, PF, and EnKF, their balanced handling of sensor data and intuitive
behavior make them more suitable for practical multi-sensor environments, where dynamic
noise adjustment and flexibility are critical.
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Analysis of inference time
Figure 15 presents a comparison of the inference times for different filters applied to

various sequences of the KITTI dataset. The results demonstrate that Gaussian-based
filters, such as EKF, UKF, and CKF, offer computational efficiency, requiring less than 10
milliseconds to complete one processing cycle, including the time update and measurement
update steps. In contrast, the EnKF, while specifically designed for high-dimensional state
estimation problems (e.g., geoscientific applications), is less suitable for simpler state
estimation tasks like ground vehicle localization due to its relatively higher computational
overhead. Similarly, the PF involves computationally intensive operations, such as calcu-
lating likelihoods for each particle based on the probabilistic distribution of sensor data
and performing resampling based on particle weights. Additionally, the inference time
of the PF increases with the number of particles. Given these characteristics, the PF and
EnKF are generally not an optimal choice for systems requiring real-time solutions.

Conclusion of the section
In summary, considering factors such as overall accuracy in terms of ATE and RPE, the

inference time required to complete one filtering cycle, and the intuitively interpretable
behavior of the filter in a multi-sensor environment, the CKF emerges as a suitable choice
for solving problems like ground vehicle localization.
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Figure 15. Heatmap representing a comparison of inference times for various filters across
different sequences measured by 2021, M1 Macbook Pro.
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5.2 Result of VO data drop experiment

So far, we evaluated various filters using different sequences fo trajectory in KITTI dataset
with mono- or multi-senor scenario and revealed that EKF, UKF and CKF provides the
highest accuracy in terms of selected metrics.

In this section, we selected the most optimal algorithm, CKF, and additionally EKF is used
as a baseline of the experiment to work with. Here, the selected filters are applied to two
different driving scenario that contains various durations of VO data drop in two locations
of the trajectory, including curved and straight line. The estimated trajectories provided by
each filter for each scenario are systematically analyzed for the experiment.

The figures depicted in Fig. 16 presents the estimated trajectories with varying durations
of VO data loss in curved trajectory starting from the frame 600 in sequence 09 of KITTI
dataset. The figures on the left, including 16a, 16c, and 16e, show the performance of
EKF estimated trajectories, while the figures on the right, including 16b, 16d, and 16f, are
provided by CKF.

A noticeable deviation on estimations by both EKF and CKF can be observed as duration
of data loss increased in curved trajectory. Moreover, CKF faces sever scaling issue when
VO data loss is more than 8 seconds, which requires some semantic constraints for a
specific application such as setting constant velocity during the curved trajectory in the
application like grounded-vehicle localization.

Fig. 17 shows the estimated trajectories using EKF and CKF with data drops along a
straight trajectory starting from the frame 1200 in sequence 09 of KITTI dataset. The
figures on the left, comprising 17a, 17c, and 17e, illustrate the EKF’s estimated trajectories.
The figures on the right, including 17b, 17d, and 17f, depict the estimated trajectories
obtained by CKF.

Similar to the data loss observed in the curved trajectory, the translation error accumulates
as the duration of the VO data drop increases. Specifically, during data loss at the straight
trajectory, the EKF underestimates the translation, resulting in a trajectory that is shorter
than the actual one. This occurs due to incorrect velocity estimation from the IMU
acceleration in the absence of correction. Conversely, the CKF exhibits a large positive
error during the data loss period, where the estimated velocity surpasses the actual velocity,
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(a) No VO data drop at curved line for EKF. (b) No VO data drop at curved line for CKF.

(c) 40 frames (4 seconds) of VO data drop at
curved line for EKF.

(d) 40 frames (4 seconds) of VO data drop at
straight line for CKF.

(e) 160 frames (16 seconds) of VO data drop at
curved line for EKF.

(f) 160 frames (16 seconds) of VO data drop at
curved line for CKF.

Figure 16. Estiamted trajectories of KITTI sequence 09 by EKF and CKF with VO data
drop at different durations during curved trajectory.

leading to a deviation of endpoint.

To quantitatively evaluate the estimations using the defined error metrics, aforementioned

69



(a) No VO data drop at straight line for EKF. (b) No VO data drop at straight line for CKF.

(c) 40 frames (4 seconds) of VO data drop at
straight line for EKF.

(d) 40 frames (4 seconds) of VO data drop at
straight line for CKF.

(e) 160 frames (16 seconds) of VO data drop at
straight line for EKF.

(f) 160 frames (16 seconds) of VO data drop at
straight line for CKF.

Figure 17. Estiamted trajectories of KITTI sequence 09 by EKF and CKF with VO data
drop at different durations during straight trajectory.

evaluation tool is applied to exported pose data.

Figure 18 explains that the ATE increases as the VO data drop increases for both straight
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and curved line. The growth of the ATE is significantly different between locations of data
drop, where , for both filters, drop at curved trajectory increases ATE drastically after 80
frames while ATE of the data drop at straight line slowly increases during the experiment.
Moreover, as discussed, CKF is suffered by scaling issue severely, especially the data drop
at the curved trajectory, the heatmap highlights the error of CKF clearly.

(a) Heatmap representation of ATE in meters.

(b) Line graph representation of ATE in meters.

Figure 18. The Absolute Trajectory Error [m] for the EKF and CKF estimation results
during the VO data drop experiment.

In terms of the Relative Pose Error (RPE), which focuses on the local consistency of the
two given trajectories, most of the error slightly increases as the duration of data drop
increases in both curved and straight trajectory. However, even with 160 frames of VO
data loss in a straight trajectory, for example, the RPE for translation increased by less than
20cm, which can be considered negligible, as shown in Figure 19. Furthermore, Figure 20
indicates that the RPE for the estimated angle (in degrees) remains intact, suggesting that
only translational errors occur, regardless of where the VO data drop occurs. As discussed
in [52], data drop in the curved trajectory, which is located relatively earlier in the sequence
than the straight trajectory, leads to misalignment between the estimated trajectory and the
ground truth, resulting in a significant increase in ATE.
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(a) Heatmap representation of RPE in meters.

(b) Line graph representation of RPE in meters.

Figure 19. The Relative Pose Error [m] for the EKF and CKF estimation results during the
VO data drop experiment.

(a) Heatmap representation of RPE in degree.

(b) Line graph representation of RPE in degree.

Figure 20. Heatmap representing the Relative Pose Error [m] for the EKF and CKF
estimation results during the VO data drop experiment.
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In conclusion of this section, in terms of local consistency, both EKF and CKF with
velocity motion model is capable of estimating relative motion of the vehicle even if it
encounters measurement data drop for 160 frames (16 seconds). However, in terms of
global trajectory alignment, which is typically evaluated by ATE, an estimation of vehicle
position is challenging especially a trajectory involves significant amount of data loss in
a trajectory. Moreover, since CKF suffers velocity estimation issue, which leads to large
translation error, semantic limitations such as configuring upper bound for velocity could
be introduced in the application of grounded-vehicle localization.
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5.3 Result of application of filter in real-life scenario

This section presents an analysis of the results obtained by applying EKF and CKF in
a real-life scenario where GPS and VO data are intentionally dropped at various points
along the trajectory. As shown in Figure 21, the GPS and VO inputs are intermittently
unavailable, while IMU data remains available throughout the 1591 frames of the entire
trajectory.

Figure 21. Visualization of data loss frames for each sensor in the trajectory.

Figure 22 shows the estimated trajectory provided by EKF and CKF in real-life scenario.

In Figure 22, both GPS and VO data are provided to the filters, with the sensor data exhibit-
ing lower measurement noise—specifically GPS—playing a dominant role in influencing
the filter. As a result, the estimated trajectory in this segment aligns more closely with the
GPS measurements. Between frames 200 and 300, where x ∈ [120, 220] and y ∈ [95, 150],
GPS data becomes unavailable, prompting the filter to rely on VO estimations. Once
GPS data is restored, the filter’s estimation is corrected to align with the GPS measure-
ments. During the VO data loss occurring between frames 350 and 400, within the region
x ∈ [230, 255] and y ∈ [−10, 35], the filter continues to refine its estimations using GPS
measurements.

At frame 650, VO loses tracking, and from frame 700 onward, GPS signals are also
lost. Consequently, the filter operates in IMU-only dead-reckoning mode for 5 seconds,
estimating the vehicle position within the coordinate range x ∈ [520, 550] and y ∈
[−105,−55]. Five seconds later, a sufficient number of feature points become available,
allowing the VO process to restart. The filter provides the current pose estimation to
VO, which resumes trajectory estimation using stereo sequences, even as GPS remains
unavailable. However, due to translational errors accumulated during the IMU-only phase,
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(a) Trajectory estimation by EKF.

(b) Trajectory estimation by CKF.

Figure 22. Estimated trajectory by (a) EKF and (b) CKF in real-life scenario.

VO inherits the erroneous pose, resulting in an estimated trajectory offset from the ground
truth. Once GPS signals are restored at frame 900, the filter corrects its estimations based
on the GPS measurements.

From frame 1200, at the coordinate x = 300 and y = −260, both GPS and VO lose
measurement data simultaneously for 10 seconds, likely due to an environment such as a
tunnel. During this period, the filter relies exclusively on IMU data for position estimation.
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At frame 1300, the VO process resumes with some translational errors, and the filter’s
estimation is subsequently corrected once GPS measurements become available at frame
1400. The process concludes with the system returning to its original position.

When comparing the estimations provided by EKF and CKF, the EKF tends to rely heavily
on GPS data when it is available, resulting in better performance in terms of the metrics
discussed in previous experiments. In contrast, the CKF balances the influence of GPS
and VO data when both are available by considering their respective measurement noise
levels. This balance allows the CKF to provide more robust estimations and introduces
capabilities such as dynamic noise management, which surpass those of the EKF. Hence,
in practical application, CKF is an optimal filter algorithm to solve localization problem of
grounded-vehicle.
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6. Conclusions and Future work

In this paper, we presented and analyzed five variants of the Kalman filter applied to the
KITTI dataset across different experimental setups. Each filter was evaluated using three
error metrics to thoroughly understand its characteristics.

The Particle Filter (PF) demonstrated suboptimal performance across all experiments,
particularly due to its limitations in inference time. It requires a large number of parti-
cles to prevent filter divergence and accurately capture the system’s motion, making it
computationally expensive.

The Ensemble Kalman Filter (EnKF) also requires a moderate ensemble size to effectively
represent the variance of the estimation, which results in a computational disadvantage
compared to the EKF, UKF, and CKF. While the EnKF generally performs better than the
PF, its accuracy is still inferior to these three filters. Specifically, the ATE for the EnKF
highlights the significant impact of ensemble initialization, where misaligned rotations at
the initial state propagate throughout the trajectory, leading to large ATE values. Proper
initialization of the ensembles is therefore critical, balancing the variance needed to
represent the system’s dynamics and alignment with the actual system state.

The Unscented Kalman Filter (UKF) provides near-optimal estimation results across all
three error metrics, achieving accuracy levels comparable to the CKF. The UKF, like the
CKF, demonstrates the ability to balance sensor inputs based on the ratio of measurement
noise, enabling robust trajectory estimation and dynamic noise tuning. However, when
measurement data is unavailable, the UKF’s state estimation deteriorates, leading to
reduced accuracy.

The Extended Kalman Filter (EKF) performs well in terms of translation accuracy, as
shown by the ATE and RPE for relative translation across all sequences in the KITTI
dataset. Additionally, the EKF offers superior velocity estimation compared to the CKF
during IMU-only dead-reckoning, keeping translation errors minimal. A key limitation
of the EKF, however, is its tendency to allow a sensor with smaller measurement noise to
dominate the state estimation, making it challenging to properly balance noise contributions
from multiple sensors.

Finally, the Cubature Kalman Filter (CKF) achieves optimal accuracy across all metrics
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and is capable of maintaining trajectory estimates during short durations of sensor data
loss (approximately up to 4 seconds or 40 frames in the experiment). Beyond this point,
translation errors grow exponentially, making accurate localization increasingly difficult.
Despite this limitation, the CKF excels in practical multi-sensor environments by effectively
balancing sensor noise to estimate the system’s state. The estimated trajectory reflects
the noise ratios of the provided sensors, offering the ability to dynamically adjust noise
parameters according to real-world conditions, such as GPS jamming or environments
with limited visual features for VO. Consequently, the CKF provides high accuracy in
most experimental scenarios, an intuitive understanding of estimation behavior, the ability
to tune estimations dynamically, and ease of implementation, as it requires no additional
parameters to set up.

In conclusion, both EKF and CKF demonstrate excellent localization performance for
grounded vehicles in the KITTI dataset experiments. The EKF excels in maintaining low
errors during IMU-only dead reckoning and outperforms other fusion algorithms based on
the provided error metrics in this kind of scenario. On the other hand, the CKF delivers
robust estimation, particularly in multi-sensor environments, and its ability to fine-tune
sensor noise parameters enhances its adaptability to various real-world scenarios.

6.1 Future work

For future work, the following implementations and applications are proposed:

Motion Models: Alternative state equations to describe the system’s dynamics, such as the
Runge–Kutta method, which provides a fourth-order approximation of nonlinear systems
(commonly referred to as RK4), can be implemented. This would allow a comparison of
estimation results between the proposed motion models and higher-order approximation
methods.

Parameter Tuning for Filters: The proposed filters, including the UKF, PF, and EnKF,
require parameter configurations, such as the α, β, andκ values for the UKF, the sample
size (Nsample size) and resampling algorithm for the PF, and the ensemble size (Nensemble size)
for the EnKF. Proper tuning of these parameters could enhance the filters’ ability to
capture the system’s uncertainty and non-linearity, potentially leading to more accurate
state estimations.

Noise Parameter Tuning: In the current experiments, noise parameters were configured
uniformly across all filters. Dynamic noise parameter tuning during the filtering process
could improve estimation accuracy and enable better adaptation to challenging application
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environments. Such tuning would enhance the sensor fusion capabilities of the filters,
especially under varying noise conditions.

Additional Filters: Extended versions of the proposed filter algorithms, such as the Rao-
Blackwellized Particle Filter, Multi-State Constraint Kalman Filter, and Square-Root
Cubature Kalman Filter, could be explored. These advanced filters may offer improved
state estimation and potentially outperform the filters presented in this study.

Application to New Environments: The strengths and limitations of each filter identified
in the current experiments suggest their applicability to a range of new environments
and datasets. Testing the proposed filters on diverse datasets could help evaluate their
robustness and suitability for practical applications. Examples of such datasets include
ground vehicle datasets like the Rosario agricultural dataset [54], UAV datasets such as the
EuRoC dataset [55] and the Blackbird UAV dataset [26], and indoor datasets like the TUM
LSI Dataset [56].

These proposed directions for future work have the potential to enhance filter performance
and expand their applicability to more challenging and diverse scenarios.
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Appendix 2 – Performance comparisons of application of
filters in mono- and multi-sensor environment.
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(a) EKF without GPS input data. (b) EKF with GPS input data.

(c) UKF without GPS input data. (d) UKF with GPS input data.

(e) PF without GPS input data. (f) PF with GPS input data.
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(g) EnKF without GPS input data. (h) EnKF with GPS input data.

(i) CKF without GPS input data. (j) CKF with GPS input data.

Figure 23. Comparisons of estimated trajectories for five filters (EKF, UKF, PF, EnKF,
CKF) using velocity motion model, with and without GPS data for sequence 07 of the
KITTI dataset. The first column shows the estimations without GPS, while the second
columns illustrates the estimations with GPS.
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