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Jiří Plešek, PhD, Deputy Director of the Institute of Thermomechanics AS CR,
Prague, Czech Republic

Defence of the thesis: 5 December 2011

Declaration:

Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree.

Tanel Peets

Copyright: Tanel Peets, 2011
ISSN 1406-4723
ISBN 978-9949-23-185-0 (publication)
ISBN 978-9949-23-186-7 (PDF)



LOODUS- JA TÄPPISTEADUSED  B117

Lainete dispersioon
mikrostruktuuriga materjalides

TANEL  PEETS





Contents

List of Publications 9

Approbation 9

Introduction 10

1. Overview of dispersive models of wave motion 13

1.1. Infinite 1D chain of particles . . . . . . . . . . . . . . . . . . . . . 14

1.2. 1D diatomic chain of particles . . . . . . . . . . . . . . . . . . . . 15

1.3. Continualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4. Microcontinuum theories . . . . . . . . . . . . . . . . . . . . . . . 19

1.5. Mindlin’s theory of microstructured materials . . . . . . . . . . . . 20

1.6. Dispersion of longitudinal waves in rods . . . . . . . . . . . . . . . 23

1.7. Dispersion in layered media . . . . . . . . . . . . . . . . . . . . . 25

1.8. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2. Mindlin–Engelbrecht–Pastrone model 28

2.1. Single scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2. Multiscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3. Hierarchical approximation . . . . . . . . . . . . . . . . . . . . . . 31

3. Dispersion analysis of the Mindlin–Engelbrecht–Pastrone model 34

3.1. The single scale model . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2. Applicability of the approximated model . . . . . . . . . . . . . . . 37

3.3. Multiscale model . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4. Boundary value problem 43

4.1. Displacement boundary condition . . . . . . . . . . . . . . . . . . 43

4.2. Results – displacement boundary condition . . . . . . . . . . . . . 45

4.3. Results – amplitude of the optical part . . . . . . . . . . . . . . . . 47

4.4. Impulse boundary condition . . . . . . . . . . . . . . . . . . . . . 47

5



4.5. Results – impulse boundary condition . . . . . . . . . . . . . . . . 48

4.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5. Initial value problem 51

5.1. Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6. Conclusions 55

Abstract 58

Kokkuvõte 58

References 59

Appendix A: Figures 63

Appendix B: Publications 79

Publication I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Publication II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Publication III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Appendix D: CV 107

Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Elulookirjeldus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

List of Figures

1 Infinite 1D chain of particles. Reproduced from [24]. . . . . . . . . 14

2 Dispersion curve for Eq. (2) (Born–Karman Model). . . . . . . . . 15

3 Dispersion curves for Eq. (4) (1D NaCl). . . . . . . . . . . . . . . . 16

4 Dispersion curves for Eqs. (9) (solid lines) and (8) (dashed line).
Reproduced from [23]. . . . . . . . . . . . . . . . . . . . . . . . . 18

6



5 Deformation of the microelement. Reproduced from [15] . . . . . . 19

6 Sketch of the dispersion curves derived form Mindlin’s model. Re-
produced from [25] . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Dispersion curves for Eq. (34) (Mindlin-Herrmann model). . . . . . 24

8 Dispersion curves for the Rayleigh–Love (37) (solid line) and
Bishop’s (39) (dashed line) models. . . . . . . . . . . . . . . . . . 25

9 Dispersion in layered media. Reproduced from [5]. . . . . . . . . . 26

10 Schematic representation of the hierarchical microstructure. . . . . . 30

11 Schematic representation of the concurrent microstructure. . . . . . 31

12 Dispersion curves in case of cR > c1 (cA = 0.8c0 and c1 = 0.2c0). . . 35

13 Dispersion curves in case of cR < c1 (cA = 0.8c0 and c1 = 0.8c0). . . 35

14 Group (solid line) and phase (dashed line) speed curves against the
frequency. cA = 0.3c0 and c1 = 0.2c0 . . . . . . . . . . . . . . . . . 36

15 Group (solid line) and phase speed (dashed line) curves against the
wave number. cA = 0.3c0 and c1 = 0.2c0 . . . . . . . . . . . . . . . 37

16 Dispersion curves of the full (solid line) and the approximated
(dashed line) model when cA/c0 = 0.2 and c1/c0 = 0.3. . . . . . . . 38

17 Behaviour of the group speed curves for Eqs. (49) (solid line) and
(71) (dashed line) against the wave number when cA/c0 = 0.2 and
c1/c0 = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

18 The ranges of parameters. See explanation in text. . . . . . . . . . . 39

19 Comparison of the dispersion curves of Eqs. (84), (86) and (87) for
cA1/c0 = cA2/c0 = cA12/c0 = 0.4, c1/c0 = 0.5 and c2/c0 = 0.3: solid
lines – hierarchical model (87); dashed lines – concurrent model (86);
dotted lines – concurrent model (87). . . . . . . . . . . . . . . . . . 40

20 (a) Phase (dotted lines) and group (solid lines) speed curves for the
full model in case of γA = 0.6 and γ1 = 0.5 and (b) the wave profile
at τ = 60 in case of harmonic displacement BC (η = 0.8). . . . . . 63

21 (a) Phase (dotted lines) and group (solid lines) speed curves for the
full model in case of γA = 0.9, γ1 = 0.3 and (b) the wave profile at
τ = 50 in case of harmonic displacement BC (η = 0.5). . . . . . . 64

22 (a) Phase (dotted lines) and group (solid lines) speed curves for the
full model in case of γA = 0.9, γ1 = 0.6 and (b) the wave profile at
τ = 65 in case of harmonic displacement BC ( η = 0.5). . . . . . . 65

7



23 (a) Phase (dotted lines) and group (solid lines) speed curves for (b)
the full model in case of γA = 0.9, γ1 = 0.9 and the wave profile at
τ = 50 in case of harmonic displacement BC ( η = 0.8). . . . . . . 66

24 Wave profiles (left column) and corresponding magnifications of the
optical parts (right column) for the full model at τ = 50 in case of
γA = 0.6, γ1 = 0.8 when η = 0.1 (top panels) and η = 0.5 (bottom
panels). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

25 (a) Group speed curves of the full (solid line) and hierarchical
(dashed line) models in case of γA = 0.9, γ1 = 0.3 and (b) the cor-
responding wave profiles at τ = 40 in case of impulse BC. . . . . . 68

26 (a) Group speed curves of the full (solid line) and hierarchical
(dashed line) models in case of γA = 0.7, γ1 = 0.3 and (b) the cor-
responding wave profiles at τ = 50 in case of impulse BC. . . . . . 69

27 (a) Group speed curves of the full (solid line) and hierarchical
(dashed line) models in case of γA = 0.1, γ1 = 0.7 and (b) the cor-
responding wave profiles at τ = 40 in case of impulse BC. . . . . . 70

28 Magnification of the wave front in Fig. 27. . . . . . . . . . . . . . . 71

29 (a) Group speed curves of the full (solid line) and hierarchical
(dashed line) models in case of γA = 0.7, γ1 = 0.8 and (b) the cor-
responding wave profiles at τ = 40 in case of impulse BC. . . . . . 72

30 (a) Group speed curves of the full (solid line) and hierarchical
(dashed line) models in case of γA = 0.6, γ1 = 0.8 and (b) the cor-
responding wave profiles at τ = 40 in case of impulse BC. . . . . . 73

31 Solutions for Eqs. (102) (dashed line) and (104) (solid line). The
pulse at X = 64π represents the initial condition. γ2A = 0.62, γ21 = 0.1. 74

32 Solution travelling to the right for Eqs. (102) (dashed line) and (104)
(solid line). γ2A = 0.62, γ21 = 0.1. . . . . . . . . . . . . . . . . . . . 75

33 Group speed curves of Eqs. (50) (solid line) and (71) (dashed line).
γ2A = 0.62, γ21 = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

34 Right travelling solution for Eqs. (102) (dashed line) and (104) (solid
line) at four different sets of parameters. . . . . . . . . . . . . . . . 76

35 Group speed curves of Eq. (50) at four different sets of parameters.
Here 1− γ2A = γ21 . See explanation in text. . . . . . . . . . . . . . . 77

8



List of Publications

Publication I: T. Peets, M. Randrüüt, and J. Engelbrecht. On modelling dispersion
in microstructured solids. Wave Motion, 45:471–480, 2008

Publication II: T. Peets and K. Tamm. Dispersion analysis of wave motion in mi-
crostructured solids. In T.-T. Wu and C.-C. Ma, editors, IUTAM Symposium
on Recent Advances of Acoustic Waves in Solids: Proceedings, Taipei, Taiwan,
May 25-28, 2009, volume 26 of IUTAM Bookseries, pages 349–354. Springer,
Dordrecht, 2010

Publication III: A. Berezovski, J. Engelbrecht, and T. Peets. Multiscale modeling
of microstructured solids. Mechanics Research Communications, 37(6):531–
534, 2010

Approbation:

Tanel Peets, ‘Dispersiooni modelleerimine mikrostruktuuriga materjalide jaoks’, XIII
Estonian Mechanics days, Tallinn, Sept 15–16, 2008.

Tanel Peets (speaker), Kert Tamm, ‘Dispersion Analysis on Wave Motion in Mi-
crostructured Solids’, Symposium on Recent Advances of Acoustic Waves in Solids,
Taiwan, May 25–28, 2009 (invited presentation).

Tanel Peets, ‘Internal scales and dispersive properties of microstructured materials’,
The Seventh IMACS International Conference on Nonlinear Evolution Equations and
Wave Phenomena: Computation and Theory, The University of Georgia, Athens,
USA, April 04–07, 2011.

9



Introduction

Modern science has always been interested in the internal structure of the matter. Be-
sides the quest for elementary particles, many technological applications are, how-
ever, based on the concept of continuity and the phenomena on the macroscale are
explained by making use of the averaged properties of the underlying microstructure.
In molecular physics, for example, the temperature of the material is recognised as
the average kinetic energy of molecules.

In case of contemporary materials science, the microstructure of the material is not
specifically characterised by atoms, but is set on a scale that is in the order of mi-
crometres. This microstructure is not only used for explaining various properties of
materials, but is also used for engineering of solids as it is done in case of func-
tionally graded materials or composites. In general, microstructured materials like
alloys, crystallites, ceramics, functionally graded materials, etc. have gained wide
application in modern technologies.

Classical theories of wave motion in solids aim to smooth out the inhomogeneities
created by the underlying microstructure. These theories have played an important
role in the development of the materials science and have been used in many appli-
cations. Contemporary technology is, however, characterised by high–frequency and
high–intense impacts. In this case the wavelengths are comparable to the internal
scale of the microstructure and that is why the internal structure of a material be-
comes important in engineering applications. Consequently, there is an urgent need
to understand how the wave processes are influenced by the underlying microstruc-
ture.

One of the most important effects created by the microstructure is dispersion, which
in a nutshell means that the speed of the wave is not constant but depends on the wave
number of the harmonics. This is due to the length scale that the internal structure
brings into the models. If the wavelength of the wave is much larger than the internal
scale, the waves do not ‘feel’ the internal structure and the classical theories give good
predictions. When the wavelengths approach the internal scale, the wave propagation
becomes strongly influenced by the underlying microstructure [15].

Moreover, in case of the microstructure, the dispersion is not only characterised by
the variation in the speed of the wave, but also in the emergence of high frequency,
so-called optical dispersion branches, which reflect the additional degrees of freedom
due to the microstructure. The presence of the optical branches brings more modes of
wave propagation into the model, hence making the wave propagation considerably
more complex. The classical theories of homogeneous continua fail to predict the
existence of the optical dispersion branches.

Over the previous decades many theories of microstructured solids have been pro-
posed. In the present thesis we follow the ideas of Mindlin who has interpreted the
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microstructure ‘as a molecule of a polymer, a crystallite of a polycrystal, or a grain of
a granular material’ [25]. The one-dimensional version of the Mindlin model, derived
by Engelbrecht et al. [12], and its hierarchical approximation will serve as a basis for
our analysis. Based on the separation of the macro- and microstructure of a mate-
rial, this model, called the Mindlin–Engelbrech–Pastrone model, is characterised by
a clear physical structure of the governing equation.

The aim of the present thesis is to analyse the dispersion properties in case of the
full and the hierarchical model. The latter is much simpler than the full model and
has a clear structure of two wave operators that could be compared with the classical
wave equation. There is a need to provide a deeper insight into the appearance of the
optical dispersion branches and to analyse whether they create any measurable effect
that needs to be accounted for in real experiments. As the hierarchical approximation
excludes the effects of the optical dispersion branch, then the possible influence of the
optical dispersion branch are of great importance when estimating the applicability of
the hierarchical approximation. Although the present work is theoretical, it is related
the possible practical applications of nondestructive testing of materials.

The results of the thesis are represented in three scientific papers. In Publication
I [26] the dispersion relations are derived and analysed. In Publication II [27] the
effect of the optical dispersion branch is described. Multiscale extensions of the
Mindlin–Engelbrecht–Pastrone model are derived and the corresponding dispersion
properties are analysed in Publication III [6]. In addition, two papers, one devoted
to the solutions of the boundary value problem and the other to the solutions of the
initial value problem, have been submitted for publication.

The thesis is organised as follows. Section 1 gives an overview of the dispersive
models of wave motion. In Section 2 the Mindlin–Engelbrecht–Pastrone model is
introduced along with multiscale extension and hierarchical approximation and Sec-
tion 3 is devoted to the dispersion analysis of the derived models. The boundary value
problem is analysed is Section 4 and the initial value problem is analysed in Section
5. Conclusions can be found in Section 6.
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1. Overview of dispersive models of wave motion

Realistic mathematical models describing the propagation of deformation waves in
solids should include also the description of dispersive and/or dissipation effects.
Here we focus on dispersive effects.

There are two main sources of dispersion – geometrical and physical. Waves in a
slender rod, for example, are dispersive due to the geometry of the rod. Waves in
microstructured solids, on the other hand, are dispersive because different harmonic
components of the wave ‘feel’ the microstructure differently. In order to model wave
motion in these environments, the geometrical or physical structure of the material
must be taken into account.

The mathematical models proposed for describing waves in microstructured solids
can be divided into two groups – one group of models is based on lattice theories
[3, 8, 22, 24] and the group on continuum theory [12, 14, 21, 25].

In the discrete approach the microstructure is treated as point masses with well-
defined distribution and interactions between the particles. The particles may move
from equilibrium positions and allow elastic wave propagation. Since discrete mod-
els bear certain resemblance to the atomic scale, the lattice models are very appealing
in modelling the dynamics of crystal lattices [8, 20].

If the wave motion is set on the scale that is much larger than the distance between the
particles of the lattice, the motion of the lattice can be described by a PDE, i.e., the
model can be continualised. In principle continualisation means the approximation
of the local (discrete) operator by a nonlocal one [2]. Many continualisation methods
have been proposed. These methods are most often based on Taylor series expansion,
but also other methods like Padé approximants and composite equations have been
introduced [2]. This approach is attractive from the physical point of view because
the ‘atomic’ scale is used in order to model wave propagation at the macroscale.

In the microcontinuum approach the classical continuum theory is enhanced in a
way that matter is envisioned as a collection of deformable cells. These deformable
cells bring new internal degrees of freedom to the equations of wave motion and
their influence is also reflected in the number of dispersion curves. Straightforward
modelling of microcontinuum means assigning physical properties to every volume
element dV in a solid, introducing the dependence on coordinates Xk. A much more
effective way, however, is to separate the macro- and microstructure and to formulate
the conservation laws are formulated for both structures separately [12, 14, 25]. In
principle there is no limit for the number of embedded microstructures and hence
the microcontinuum approach is useful in modelling the effects of different scales
[6, 12].
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1.1. Infinite 1D chain of particles

Although theories of wave propagation in crystal lattices can be traced back all the
way to Isaac Newton, who attempted to derive a formula for the speed of sound [8],
the model of the infinite one-dimensional chain of particles is associated with Max
Born and Theodore von Karman.

Figure 1: Infinite 1D chain of particles. Reproduced from [24].

The Born–Karman model is a chain of identical point masses m with some proposed
topology and interaction between the particles. This interaction is usually defined by
springs of stiffness K (Fig. 1) or by interaction energy between the masses. Math-
ematically these two views are equivalent, because the equations of motion will in-
clude either the spring constant explicitly or the second derivative of energy, which
has the same dimensions as the spring constant.

The coordinate of each particle is given by xn = nd+ψn, where d is the lattice spacing
and ψn is a quantity that is propagated as a wave if the physical problems admit a
solution of the type

ψn = Aei(kXn−ωt), (1)

where Xn = nd. This will lead to the well-known dispersion relation

ω2 =
4K
m

sin2
(

kd
2

)
, (2)

where only nearest-neighbour interactions have been accounted for. Since ω is not
a linear function of k, it is clear that waves in one-dimensional crystal lattices are
dispersive. The dispersion relation of (2) is depicted in Fig. 2. If more particles are
allowed to interact with each other, the dispersion curves will change in a short wave
limit [3].

It is clear from Eq. (2) and Fig. 2 that the frequency ω is a periodic function of kd
with a period of 2π in kd. This is a general and direct consequence of the periodic
and discontinuous structure. Therefore it is sufficient to study the dispersion relation
ω = f (kd) inside one period of kd. The obvious choice is

−π ≤ kd ≤ π (3)

This condition is also known as the first Brillouin zone. The limitation (3) also means
that λ ≥ 2d. The shortest wavelength is thus equal to twice the distance between
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Figure 2: Dispersion curve for Eq. (2) (Born–Karman Model).

particles and corresponds to a certain critical frequency or cutoff frequency ωm that
is characteristic of the structure. In many cases ωm is the maximum frequency and
the system works as a low-pass filter [8].

1.2. 1D diatomic chain of particles

There are a number of ways of enhancing the lattice theories. For example, one could
enhance the interaction potential by introducing nonlinearities [22]. Another way is
to add more degrees of freedom into the system either by adding more particles per
unit cell [3, 8] or by allowing the lattice or a particle to rotate [3, 22]. The additional
degrees of freedom will be reflected in the number of dispersion branches.

The easiest example is one-dimensional NaCl that has two atoms per unit cell – one
with mass m1 and the other with m2. The dispersion relation is then [8]

ω2 =U ′′
1

(
1

m1
+

1
m2

)
±
[(

1
m1

+
1

m2

)2

− 4sin2 kd
m1m2

]1/2

(4)

where U1 is the interaction energy which accounts for nearest-neighbour interaction
only. The dispersion curves for Eq. (4) are depicted in Fig. 3, where two dispersion
branches can be seen.

In order to fully understand the meaning of the second dispersion branch, we will
find the amplitude ratio for small kd. The amplitude ratio is exactly 1 for the lower
branch and −m2/m1 for the upper branch.

The waves corresponding to the lower branch have equal amplitudes and phase dif-
ference equal zero; thus all the particles are displaced by the same amount and in the
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Figure 3: Dispersion curves for Eq. (4) (1D NaCl).

same direction. The wavelength of each wave is infinite and the lattice is displaced
as a whole. There is no restoring force and the frequency is zero [8].

On the other hand, the waves for the upper branch are exactly out of phase, i.e., the
displacement of particles of mass m1 is opposite to that of the neighbouring particles
m2. Evidently the centre of mass of the two neighbouring particles is stationary, but
restoring forces enter so that the frequencies of the waves are no longer zero. The
lengths of the waves are still infinite since, each wave is regarded as propagating
through just one type of particle [8].

Traditionally the lower branch is called the acoustic branch and the upper branch the
optical branch. The names are due to the fact that in case of one-dimensional NaCl,
the opposite movement of the charges induces photons. It is important, however, to
understand that while acoustic branches are external modes where all particles move
in unison, the optical branches are internal modes that reflect the effect of internal
degrees of freedom.

1.3. Continualisation

In case of a discrete chain, the equation of motion of each particle is given by

m
∂ 2un(t)

∂ t2
= K(un−1(t)−2un(t)+un+1(t)). (5)

The main idea of continualisation is to replace discrete degrees of freedoms un(t) and
un±1(t) by continuous field variables u(x, t) and u(x± l, t). Standard continualisation
is achieved by using a Taylor series. If only the first terms in series expansion are
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accounted for, we are left with the classical wave equation which is also known as
the continuum limit

utt = d2ω2
0uxx. (6)

Dispersive continuum equations can be derived by preserving more terms in series
expansion. If two terms are preserved, we get the following equation:

utt = d2ω2
0

(
uxx +

d2

12
uxxxx

)
, (7)

where ω0 = (K/m)1/2 is the natural frequency.

It is well known that for waves with k = (12/d2)1/2 the frequencies are imaginary
and Eq. (7) becomes unstable [24]. One way of improving the model (7) would
be adding more terms from the series expansion. If a third term (d4/360 · uxxxxxx) is
added, the model indeed becomes unconditionally stable. The drawback, however, is
that the enhanced model allows infinitely fast propagation of energy [24].

The continualisation methods can be improved in several ways. One possibility
would be enhancing the methods used for going from the discrete degree of free-
dom to the continuous one [24]. Another possibility is to replace the unstable term in
Eq. (7) by a stable one [4, 28]. The improvement of the models is due to the fourth
order mixed derivative that will appear in derived equations. The following model
was derived in [23]:

utt = c2uxx +d2A21

(
utt − c2

A22

A21
uxx

)
xx

(8)

where c= dω0 has the dimension of speed and A21 and A22 are dimensionless positive
parameters. It is important to mention that all the aforementioned methods derive
similar equations with only differences in the choice of parameters.

Although model (8) is unconditionally stable, it is not causal as it allows infinite
speed of elastic energy transfer by evanescent waves [23]. Model (8) can be further
improved by adding a fourth time derivative into the model [23]:

utt = c2uxx +d2A21

(
utt − c2

A22

A21
uxx

)
xx
− d2

c2
A23utttt (9)

where A23 is a positive constant. A similar result is also derived by Pichugin et. al.,
by following a different method [28].

The existence of the fourth order time derivative in Eq. (9) is reflected in the number
of dispersion branches – in addition to the acoustic branch, also an optical branch is
present (Fig. 4). It is due to the optical dispersion branch that the evanescent waves
cannot propagate as waves with frequencies higher than cutoff frequency are now
propagated at a finite speed [23].
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The optical dispersion branch also brings additional degrees of freedom into the con-
tinuum model. This is expected as microstructure has degrees of freedom of its own.
It will be shown in the next subsection that these additional degrees of freedom arise
naturally in microcontinuum models.

Figure 4: Dispersion curves for Eqs. (9) (solid lines) and (8) (dashed line). Repro-
duced from [23].
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1.4. Microcontinuum theories

The main idea of microcontinuum field theories is that the matter is envisioned as a
large collection of deformable cells. Each cell (or microvolume) has a finite size and
an inner structure that represents its microstructure. Mathematically the inclusion of
the internal scale means that each material particle is enhanced with three deformable
directors that bring nine degrees of freedom over the classical theory [15]. These
extra degrees of freedom are reflected in additional modes of high frequency wave
propagation. These modes are seen in experiments but are not predicted by classical
continuum mechanics.

The foundations of microcontinuum theories were independently laid down by Erin-
gen and Suhubi [16] and Mindlin [25]. Although Eringen and Suhubi’s approach is
more general, because nonlinearities and thermoelasticity are included, the results
are similar when isothermal linear wave propagation is considered.

One should also mention that simplifications of microcontinuum theories exist. When
the material points are only allowed to have breathing-type microdeformations, we
have reduced the model to microstretch continuum and the internal degrees of free-
dom are reduced to four – three microrotations and one microstretch. In micropolar
continuum the material particle is only allowed to have rigid rotations. When the de-
formable directors are removed, the microcontinuum theory reduces to the classical
continuum theory [15].

Figure 5: Deformation of the microelement. Reproduced from [15]

The motion of microstructured material is depicted in Fig. 5. The relative position
of the microelement in the reference state B is defined by two vectors – the position
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of the centroid C (given by the vector XK , K = 1,2,3) and the relative position of the
microelement in respect to the centroid C (given by the vector ΞK). The deformation
carries P(XXX ,ΞΞΞ) to p(xxx,ξξξ ) so that

XK → xk = x̂k(XK , t), (10)

ΞK → ξk = ξ̂k(XK ,ΞK , t), (11)

x′k = xk +ξk, (12)

where K = 1,2,3 and k = 1,2,3. The mapping (10) is called macromotion and the
mapping (11) is called micromotion. Since material particles considered are very
small in comparison to the macroscopic scales of the body, the following linear ap-
proximation in ΞK is permissible for micromotion:

ξk = χkK(XK , t)ΞK . (13)

The inverse macro- and micromotions are given by

XK = X̂k(xk, t), (14)

ΞK = XKk(xk, t)ξk, (15)

The two-point tensors χkK and XKk are called the microdeformation and the inverse
microdeformation tensors, respectively.

Due to the inner structure the motion of microstructured material is characterised
not only by classical macrodeformation consisting of translation, macrorotation and
macrostretch, but also by microdeformation that involves translation of the particles,
microrotation and microstretch that can be accompanied by further microrotations
[15]. These different modes of deformation allow additional modes of wave propa-
gation.

1.5. Mindlin’s theory of microstructured materials

This subsection is based on [25].

In order to describe a microstructured medium, the following tensors have been in-
troduced: a strain tensor (macrodeformation tensor)

εi j =
1
2

(
∂u j

∂xi
+

∂ui

∂x j

)
, (16)

where u is the macrodisplacement, the tensor of relative deformation (the difference
between the macrodisplacement gradient and the microdeformation)

γi j =
∂u j

∂xi
−Ψi j, (17)
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where Ψi j is the microdeformation tensor and the microdeformation gradient (the
macrogradient of the microdeformation)

κi jk =
∂Ψ jk

∂xi
. (18)

All three tensors are independent of the microcoordinates. The internal energy is
introduced as

U =U(εi j,γi j,κi jk). (19)

The strain state of the macrovolume is given by Cauchy stresses

τi j =
∂U
∂εi j

= τ ji, (20)

the relative stresses

σi j =
∂U
∂γi j

(21)

and the coupled stresses

μi jk =
∂U

∂κi jk
. (22)

The components of μi jk can be interpreted as coupled forces per unit area. The kinetic
energy is given by

T =
1
2

ρ u̇ ju̇ j +
1
6

ρ ′d2
klΨ̇k jΨ̇l j, (23)

where ρ ′ is the microdensity, ρ is the sum of macro- and microdensities and dkl is
related to the size of the microvolume. If external forces are absent, the wave motion
is given by twelve stress-equations of motion

ρ ü j = ∂i(τi j +σi j), (24)
1
3

ρ ′d2
l jψ̈lk = ∂ μi jk +σ jk. (25)

The derivation of the displacement equations of motion can be found in [25]. We will
provide dispersion relations only. For equations describing one-dimensional wave
processes, the following dispersion relations are derived (see Fig. 6):

(1) shear optical waves (SO)(twice):

1
3

ρ ′d2ω2 = b2+b3+(a10+a13)k2, (26)

(2) rotational optical waves (RO):

1
3

ρ ′d2ω2 = b2−b3+(a10−a13)k2, (27)
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(3) longitudinal waves – acoustic (LA), optical (LO), dilatational (LDO):∥∥∥∥∥∥
k11k2−ρω2 k12k k13k

k21k k22k2+ k′22− 1
2ρ ′d2ω2 k23k2

k31k k32k2 k33k2+ k′33−ρ ′d2ω2

∥∥∥∥∥∥= 0, (28)

(4) and transverse waves – acoustic (TA), optical (TO), rotational optical (TRO)
(twice):∥∥∥∥∥∥

¯k11k2−ρω2 ¯k12k ¯k13k
¯k21k ¯k22k2+ ¯k′22− 1

2ρ ′d2ω2 ¯k23k2
¯k31k ¯k32k2 ¯k33k2+ ¯k′33−ρ ′d2ω2

∥∥∥∥∥∥= 0, (29)

where indexed k’s are parameters connected to material parameters.

Figure 6: Sketch of the dispersion curves derived formMindlin’s model. Reproduced
from [25]

While the acoustic modes are external modes where all cells move in unison, the
optical dispersion curves reflect internal degrees of freedom. Nonzero frequency
when k = 0 is due to the proper motion on the microscale.

It is also clear that while Eqs. (26), (27) are independent modes, the longitudinal
and transverse systems form coupled systems of acoustic and optical modes. In the
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numerical analysis part of this thesis it will be shown that when coupled modes are
present, then harmonic wave propagation on the macroscale induces high frequency
motion on the microscale.

In Fig. 6 dispersion curves for classical wave equation (Lc and Tc) and low frequency
approximations (L̃ and T̃ ) are also displayed. The low frequency approximations
derived byMindlin are not perfect because these are usable only at short wavelengths.
It will be shown later how to derive an approximation with the slaving principle that
is usable at all wavelengths.

1.6. Dispersion of longitudinal waves in rods

Dispersion of waves in rods is an example of geometrical dispersion. Although rods
are the simplest of all engineering structures, wave propagation in rods is a rather
complicated problem because of the presence of the boundaries. The exact solution
for wave motion in rods was derived by Pochhammer [29] in 1876. Pochhammer’s
theory is, however, usable in infinite rods only and is therefore not very practical
for a number of engineering problems. As a result approximate theories have been
constructed which, contain the essential features of the exact problem in a simplified
form [1].

The simplest approximation is Bernoulli’s model which provides a dispersionless
model that is only usable at low frequencies and large wavelengths:

utt − c2Ruxx = 0. (30)

Here c2R = E/ρ is the rod wave speed, where E is the Young modulus and ρ is the
density.

In order to account for dispersion of waves in circular rods, a radial degree of freedom
has to be introduced. This is the basis of the Mindlin–Herrmann axial rod theory. The
Mindlin–Herrmann theory is expressed mathematically by the following system [17]:

utt − c2l uxx−ℵ2
2
2λ
aρ

wx = 0, (31)

wtt −ℵ2
1c2τwxx +

8ℵ2
2(λ +μ)
a2ρ

w+
4ℵ2

2λ
aρ

ux = 0, (32)

with the following dispersion relation:

(−ω2+ c2l k2)
[
−ω +ℵ2

1c2τk2+
8ℵ2

2(λ +μ)
a2ρ

]
− 8λ 2ℵ4

2
a2ρ2 k2 = 0, (33)

where u is the longitudinal and w is the transverse displacement, λ is Lamé’s first
parameter, μ is the shear modulus, c2l = (λ +2μ)/ρ is the longitudinal and c2τ = μ/ρ
is the transverse wave speed, a is the radius of the rod, and ℵ1,2 are coefficients.
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By setting ℵ1 = ℵ2 = 1 and recognising that E = μ(3λ +2μ)/(λ +μ) Eq. (33) can
be written in the following form:

a2(ω2− c2l k2)(ω2− c2τk2)−8(c2l − c2τ)(ω
2− c2Rk2) = 0. (34)

It is seen immediately that short waves are propagated at either longitudinal (cl) or
transverse (cτ ) wave speeds. Long waves only admit one non-zero speed cR of rod
waves. Actually, short waves do not ‘feel’ the lateral boundary since it is far away
and they propagate as in an infinite elastic body. For long waves the classical limit
speed of rod waves is obtained [7].

The dispersion curve for Eq. (34) is sketched in Fig. 7. It consists of two branches
– acoustic and optical. The acoustic branch starts with a slope that represents the
rod wave speed cR. In the short wave limit the branch assumes the slope of shear
waves. The optical branch starts at a finite frequency ω0 = 2/a((λ +μ)/ρ)1/2 which
represents uniform nonpropagating oscillations of the cross section. In the short wave
limit the upper branch tends to longitudinal bulk waves.
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Figure 7: Dispersion curves for Eq. (34) (Mindlin-Herrmann model).

The Rayleigh–Love theory for longitudinal waves in rods provides a simpler approx-
imation than the Mindlin–Herrmann theory. The basic assumption of the theory is
that the cross-sectional strain ε̄ is related to the longitudinal strain as in statics [7]

ε̄ =−ν
∂u
∂x

, (35)

where ν is the Poisson coefficient. The Rayleigh–Love equation for longitudinal
waves is

utt − cRuxx−ν2R2uxxtt = 0, (36)
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with the following dispersion relation:

ω =
cR√

1+ν2R2k2
. (37)

Here R = (I0/A)1/2 is the polar radius of gyration and I0 is the polar inertial moment.

The Rayleigh–Love theory only accounts for lateral inertia. If we also add the effect
of the shift deformation, we derive Bishop’s model for longitudinal waves in rods

utt − c2Ruxx−ν2R2(utt − c2τuxx)xx = 0, (38)

with the following dispersion relation:

ω = k

√
c2R + c2τν2R2k2

1+ν2R2k2
. (39)

The dispersion relations (37) and (39) are depicted in Fig. 8. From Fig. 8 it is clear
that Bishop’s theory (39) is in good agreement with the lowest branch of the disper-
sion relation (33). The Rayleigh–Love theory (37) provides a good approximation in
the long wave limit only as it predicts zero group speed for short waves. In a similar
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Figure 8: Dispersion curves for the Rayleigh–Love (37) (solid line) and Bishop’s (39)
(dashed line) models.

way it is also possible to derive approximations for flexural, torsional, and transverse
waves in the rod.

1.7. Dispersion in layered media

Dispersion of waves in layered media is another example of geometrical dispersion.
Layered media occur in nature and are also manufactured by bonding layers of differ-
ent materials together to obtain composite materials with desired mechanical proper-
ties. A wave propagating through a layered elastic medium behaves quite differently
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from a wave in a homogeneous medium, due to the effects of the interfaces between
the layers [5].

The exact dispersion relation for waves in layered media in the direction of the lay-
ering is given by [5]

coskd = cos
(

ωda

cla

)
cos

(
ωdb

clb

)
− 1

2

(
za

zb
+

zb

za

)
sin

(
ωda

cla

)
sin

(
ωdb

clb

)
, (40)

where d = da + db denotes the length of the unit cell consisting of materials a and
b, za and zb denote the acoustic impedances and cla and clb denote the longitudinal
wave speeds of materials a and b, respectively.

Equation (40) yields real solutions for k only for values of frequencies within distinct
bands. Between these bands the solutions are complex and amplitudes of displace-
ment and stress decrease. For this reason these bands are called stop bands and the
bands where k is real are called pass bands. Figure 9 shows a case where the ratio
of acoustic impedances is zb/za = 5 and the ratio of transit times across the layers is
daclb/dbcla = 10 [5]. When za = zb, Eq. (40) yields a simple expression for the phase

Figure 9: Dispersion in layered media. Reproduced from [5].

speed c1 in terms of the compressional wave speeds of the two materials:

d
c1

=
da

cla
+

db

clb
. (41)

If in addition αa = αb = α , the two materials are identical and c1 = α . In the limit
ω → 0 the solution for the phase speed is

c1 =
d

Δd
, (42)

Δ2
d =

da

cla

2
+

(
za

zb
+

zb

za

)
dadb

claclb
+

db

clb

2
. (43)
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This is the approximate value of the phase speed if the wavelength is large in com-
parison with the width of the unit cell. In a special case where cla = clb = cl but
densities of the two materials are unequal, it yields that c1 < cl , i.e., the phase speed
of the wave is smaller than the longitudinal wave speed in the two materials [5].

1.8. Summary

The modelling of wave propagation in dispersive media introduces higher order
derivatives into the governing equations. Regardless of the dispersion type – geo-
metrical or physical, the dispersion curves look very similar, which is due to the
number and order of the partial derivatives. In spite of visual similarities, the role of
the dispersion curves must be explained in the context of the problem. For example
the optical dispersion branch in case of the waves in rods reflects the propagation of
longitudinal waves, whereas in case of the micropolar model, the optical dispersion
branch reflects the rotations of the microstructure.

When modelling wave dispersion in microstructured materials, a choice between the
discrete and microcontinuum approach has to be made. In the discrete approach the
microstructure is envisioned as a structure of rigid particles that are connected with
elastic springs. The microcontinuum model is then deduced by making use of the
continualisation methods. The implementation of the discrete approach is relatively
simple and the effects of the microstructure emerge naturally when at least two parti-
cles per unit cell are considered and/or the particles are allowed to rotate. Important
strength of the discrete approach is that the distance between the particles emerges as
the inherent length scale of the material. The weakness, however, is that the particles
and springs do not present a real physical picture and assumptions have to be made
about the movement of the particles.

In the microcontinuum approach the continuous material is separated into the macro-
and microstructure. The motion on the macroscale is then coupled to the micro-
motion and the microstructural effects arise naturally in microcontinuum models.
This microstructure can either be envisioned as a collection of deformable cells or
as the presence of internal variables. Although the mathematics is more difficult,
such an approach provides a physically more sound picture and the optical dispersion
branches emerge naturally. The main weakness of the microcontinuum approach is
that it is very difficult to say something about the parameters associated with the
microstructure. However, the inverse problems, which allow us to find the material
parameters, are now intensively studied [19].
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2. Mindlin–Engelbrecht–Pastrone model

2.1. Single scale

As a result of the discussion in the previous section, we will focus here on the micro-
continuum approach.

The one-dimensional version of the Mindlin model, as formulated by Engelbrecht
and Pastrone [12, 13], will serve as a basis for this thesis.

The Mindlin–Engelbrecht–Pastrone model is described by two scalar functions – the
macrodisplacement u(x, t) and the microdeformation ϕ(x, t). The kinetic (23) and
potential energy (19) densities will then have the following forms:

K =
1
2

ρu2t +
1
2

Iϕ2
t , W =W (ux,ϕ,ϕt), (44)

where ux is the macrodeformation and ϕx is the gradient of the microdeformation,
ρ and I are the density and the microinertia, respectively. By making use of the
Euler–Lagrange equations for the Lagrangian L = K−W and recognising that

σ =
∂W
∂ux

, η =
∂W
∂ϕx

, τ =
∂W
∂ϕ

, (45)

we obtain the equation of motion

ρutt = σx, Iϕtt = ηx− τ, (46)

where σ is the macro- and η is the microstress and τ is the interacting force.

The simplest potential energy function describing the influence of the microstructure
is a quadratic function

W =
1
2

αu2x +Auxϕ +Bϕ2+Cϕ2
x , (47)

where α , A, B and C are material constants. The physical meanings of these param-
eters are related to bulk (α) and microstress moduli (C), coupling effects (A) and the
interactive force (B). The stresses (45) then take the forms

σ = αux +Aϕ, η =Cϕ, τ = Aux +Bϕ, (48)

and the equation of motion (46) becomes

ρutt = αuxx +Aϕx, Iϕtt =Cϕxx−Aux−Bϕ. (49)

it is clear that system (49) is a coupled system where macrodisplacement u(x, t) is
coupled to the microdeformation ϕ(x, t) and vice versa. It should also be pointed

28



out that the coupling is controlled by the parameter A. If the parameter A is set to
zero, system (49) reduces to two equations of wave motion – one for macroscale and
the other for microscale. The effect of coupling is best seen in the solutions of the
boundary value problem (see Section 4).

Often it is more comfortable to represent system (49) in the form of one fourth order
PDE for macrodisplacement. To this end the second equation of system (49) is differ-
entiated once with respect to x and then the first equation is plugged into the second
one. This yields

utt = (c20− c2A)uxx− p2(utt − c20uxx)tt + p2c21(utt − c20uxx)xx, (50)

where the parameters

c20 =
α
ρ
, c21 =

C
I
, c2A =

A2

ρB
, p2 =

I
B

(51)

have been introduced. The parameters c0, c1, and cA are velocities and the parameter
p2 is a time constant. The meaning of these parameters will become clear in the
following analysis of this thesis. Although Eq. (50) represents system (49) in terms
of macrodisplacement, the influence of the microstructure is fully retained.

One should also note that the Eq. (51) is similar to the ‘causal’ equation (9) derived
by Metrikine [23].

2.2. Multiscale

Instead of including just one microstructure, the model derived in the previous sub-
section can be generalised to the case with two separate microstructures. The second
microstructure can either be embedded in the first microstructure at a smaller scale
or there exist two concurrent microstructures.

The equation of motion is derived in a similar way to the single scale model. One
only needs to assume appropriate forms of the internal energies. Here we repeat the
models derived by Berezovski et al. [6].

The case of two hierarchical microstructures (‘the scale within the scale’) was derived
by Engelbrecht et al. [13]. The corresponding microstructure hierarchy is represented
schematically in Fig. 10. In this case the internal energy is a function of macrodis-
placement u(x, t) and microdeformations ϕ1(x, t) and ϕ2(x, t) as follows:

W =
1
2

αu2x +A1uxϕ1+
1
2

B1ϕ2
1 +

1
2

C1(ϕ1)
2
x

+A12(ϕ1)xϕ2+
1
2

B2ϕ2
2 +

1
2

C2(ϕ2)
2
x .

(52)
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Figure 10: Schematic representation of the hierarchical microstructure.

This leads to the stresses in the form

σ =
∂W
∂ux

= ρc2ux +A1ϕ1,

η1 =
∂W

∂ (ϕ1)x
=C1(ϕ1)x +A12ϕ2, η2 =

∂W
∂ (ϕ2)x

=C2(ϕ2)x,

(53)

and to the interactive forces

τ1 =
∂W
∂ϕ1

= A1ux +B1ϕ1, τ2 =
∂W
∂ϕ2

= A12(ϕ1)x +B2ϕ2. (54)

The equations of motion will now take the form

ρutt = αuxx +A1(ϕ1)x, (55)

I1(ϕ1)tt =C1(ϕ1)xx−A1ux−B1ϕ1+A12(ϕ2)x, (56)

I2(ϕ2)tt =C2(ϕ2)xx−A12(ϕ1)x−B2ϕ2, (57)

where I1 and I2 are appropriate inertia measures.

In system (55)–(57) the motion of the first microscale is coupled to the macromotion
and the motion of the second microscale is coupled to the motion of the first scale.
Another possible configuration is to couple both scales directly to the macroscale as
seen in Fig. 11. The internal energy will then have the form

W =
1
2

αu2x +A1uxϕ1+
1
2

B1ϕ2
1 +

1
2

C1(ϕ1)
2
x

+A2uxϕ2+
1
2

B2ϕ2
2 +

1
2

C2(ϕ2)
2
x .

(58)

The stresses and interactive forces are determined as in case of hierarchical mi-
crostructure ((53) and (54)) and the equations of motion is derived:

ρutt = αuxx +A1(ϕ1)x +A2(ϕ2)x, (59)

I1(ϕ1)tt =C1(ϕ1)xx−A1ux−B1ϕ1, (60)
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Figure 11: Schematic representation of the concurrent microstructure.

I2(ϕ2)tt =C2(ϕ2)xx−A2ux−B2ϕ2. (61)

In system (59)–(61) the macroscale is directly coupled to the microscales and the mi-
crostructures are completely independent. In order to account for coupling between
the microstructures, the coupling constant A12 is reintroduced into the internal energy

W =
1
2

αu2x +A1uxϕ1+
1
2

B1ϕ2
1 +

1
2

C1(ϕ1)
2
x

+A2uxϕ2+
1
2

B2ϕ2
2 +

1
2

C2(ϕ2)
2
x +A12(ϕ1)xϕ2,

(62)

and the corresponding equations of motion will be

ρutt = αuxx +A1(ϕ1)x +A2(ϕ2)x, (63)

I1(ϕ1)tt =C1(ϕ1)xx +A12(ϕ2)x−A1ux−B1ϕ1, (64)

I2(ϕ2)tt =C2(ϕ2)xx−A12(ϕ1)x−A2ux−B2ϕ2. (65)

2.3. Hierarchical approximation

System (49) can be approximated by making use of the slaving principle, which
means that the full system is approximated in such a way that the acoustic branch of
the dispersion relation is singled out and the optical dispersion branch is discarded.
Mathematically the slaving principle means that the microdeformation ϕ is deter-
mined in terms of ux, thus deducing a single PDE where macromotion prevails while
retaining the influence of the microstructure. The underlying assumption is that the
influence of the microstructure is small. A special feature of this approximation is
that it can be used over the whole range of wave numbers, since it does not represent
short or long wave approximation. The procedure of obtaining an approximation of
system (49) is explained in detail in papers by Engelbrecht and Pastrone [12, 13].

It is supposed that the inherent length-scale l is small compared to the wavelength L of
the excitation. The following dimensionless variables and parameters are introduced:

U = u/U0, X = x/L, T = c0t/L, δ = (l/L)2 , ε =U0/L, (66)
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where U0 is the amplitude of the excitation. In addition, it is assumed that I = ρl2I∗

and C = l2C∗, where I∗ is dimensionless and C∗ has the dimension of stress.

Next, system (49) is rewritten in its dimensionless form and the slaving principle [9]
is applied. It is supposed that

ϕ = ϕ0+δϕ1+δ 2ϕ2+ . . . . (67)

The dimensionless form of Eq. (49b) yields

ϕ =−ε
A
B

UX − δ
B
(aI∗ϕT T −C∗ϕXX) , (68)

from which the successive terms

ϕ0 =−ε
A
B

UX , ϕ1 = ε
A
B2 (aI∗UXT T −C∗UXXX) , . . . (69)

of the expansion (67) are obtained. Inserting them into Eq. (49a) in its dimensionless
form, we finally get

UT T =

(
1− c2A

c20

)
UXX +

c2A
c2B

(
UT T − c21

c20
UXX

)
XX

, (70)

where c2B = L2/p2 = BL2/I. Note that cB involves the scales L and l and cA includes
the interaction effects through the parameter A. Equation (70) is valid up to O(δ )
because higher order terms are neglected. In addition, in general ε >> δ 2.

Now it is possible to restore the dimensions in order to compare the result with Eq.
(50). Equation (70) yields

utt =
(
c20− c2A

)
uxx + p2c2A

(
utt − c21uxx

)
xx . (71)

This is an example of a Whitham-type [34] hierarchical equation. Note that in case
of no coupling between the macro- and microstructure (A = 0), the classical wave
equation follows.

The same reasoning can be used on system (55)–(57). To this end the slaving prin-
ciple is used on the system, taking into account two independent small parameters
δ1 = l21/L2 and δ2 = l22/L2. One also needs to assume the follwing parameters:

I1 = ρl21I∗1 , I2 = ρl22I∗2 , C1 = l21C∗1 , C2 = l22C∗2 , A12 = l2A∗12, (72)

where I∗1 and I∗2 are dimensionless and A∗12, C∗1 and C∗2 have the dimensions of stress.
The dimensionless hierarchical approximation will then be

UT T =

(
1− A2

1
αB1

)
UXX +δ1

A2
1I∗1
B2
1

(
UT T − C∗1

αI∗1
UXX

)
XX

+δ2
A2
1 (A

∗
12)

2 I∗2
B2
1B2

2

[
B2

αI∗2
UXXXX −δ2

(
UT T − C∗2

αI∗2
UXX

)
XXXX

]
.

(73)
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After restoring the dimensions we get

utt =
(
c20− c2A1

)
uxx + p21c2A1

[
utt −

(
c21− c2A12

)
uxx

]
xx

−p21c2A1p22c2A12
(
utt − c22uxx

)
xxxx ,

(74)

where the parameters

c21 =
C1

I1
, c2A1 =

A2
1

ρB1
, p21 =

I1
B1

, c22 =
C2

I2
, c2A12 =

A2
2

I1B2 , p22 =
I2
B2

(75)

have been introduced. The parameters ci and cAi are speeds, while pi denote time
constants.

Systems (59)–(61) and (63)–(65) can be approximated in a similar way.
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3. Dispersion analysis of the Mindlin–Engelbrecht–Pastrone model

3.1. The single scale model

The presence of higher order derivatives in Eqs. (50) and (71) indicates dispersion.
In order to derive the dispersion relations, we assume the solution in the form of a
wave

u(x, t) = ûexp[i(kx−ωt)], (76)

with the wave number k, the angular frequency ω and the amplitude û. Introducing
this into Eqs. (50) and (71), we obtain the following dispersion relations:

ω2 = (c20− c2A)k
2+ p2(ω2− c20k2)(ω2− c21k2) (77)

and
ω2 = (c20− c2A)k

2− p2c2A(ω
2− c21k2)k2. (78)

It can be seen immediately that in the long wave limit (pc0k << 1) both equations
provide the same limiting speed cR = (c20−c2A)

1/2, which is less than the usual speed
calculated from strain-stiffness (c20 = α/ρ). This is due to the compliance of the
unit cell [25]. In the short wave limit (pc0k >> 1) the full dispersion relation (77)
provides two modes of wave propagation – one with the speed c1, which is related
to the movement of the unit cells in unison and the other with the speed c0, which is
related to the deformation of the unit cells themselves. As the approximated model
(71) does not explicitly account for the internal degrees of freedom, in the short wave
region only the limiting speed c1 appears in (78).

In the three-dimensional theory developed byMindlin [25], the speed c1 also emerges
as the limiting speed for the shear and rotational optical branches. In the present one-
dimensional setting such a movement is not possible and therefore these curves are
not present. We also note that the speeds cR and c1 are related to the free energy (47)
in the same way as in Mindlin’s three-dimensional theory (Eqs. (8.15) and (8.20) in
[25]).

When Eq. (77) is solved for the frequency ω , four real roots can be found:

ω =±

√
2+2(c20+ c21)p2k2±2

√
1+2(c21− c20+2c2A)p2k2+(c20− c21)2p4k4

2p
. (79)

For any given value of the wave number k there will be two values of ω , which
correspond to the acoustic (ω → 0 when k → 0) and optical dispersion branches
(ω → 1/p when k → 0). The existence of the optical dispersion branch is expected
due to the additional degree of freedom that involves distortion of the unit cells. The
internal modes are in the domain of higher frequencies.
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When solving Eq. (78) for ω , the following two roots can be found:

ω =±
√

c20− c2A(1− c21p2k2)
1+ c2A p2k2

k. (80)

For any value of k there exists one value of ω , which corresponds to the acoustic
dispersion branch.

The characteristic dispersion curves are depicted in Figs. (12) and (13). The full
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Figure 12: Dispersion curves in case of cR > c1 (cA = 0.8c0 and c1 = 0.2c0).
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Figure 13: Dispersion curves in case of cR < c1 (cA = 0.8c0 and c1 = 0.8c0).

dispersion relation (77) is represented by solid lines and consists of two branches –
acoustic and optical. Dashed lines represent the asymptotic lines ω = k, ω = c1/c0 ·k
and ω = cR/c0 · k.

35



The optical dispersion branch starts with a zero slope and then asymptotically ap-
proaches the line ω = k. The acoustic dispersion branch starts with a slope ω =
cR/c0 · k and then asymptotically approaches the line ω = c1/c0 · k. The approxi-
mated dispersion relation (78) is represented by the dotted line.

In general, the dispersion type following the acoustic dispersion branch can be either
normal (cR > c1, see Fig. 12) or anomalous (cR < c1, see Fig. 13). A special case
is cR = c1, which represents the dispersionless case. As the phase speed related
to the optical dispersion branch is always higher than the group speed related to the
same dispersion branch, the dispersion type of the optical dispersion branch is always
normal. The dispersion type of the acoustic dispersion branch is explicitly related to
the material properties [26].

The acoustic and optical dispersion branches are for ω − k plane. The phase speed
(cph = ω/k) and the group speed (cgr = ∂ω/∂k) are calculated following these
branches. The phase (dashed lines) and group (solid lines) speed curves for the
full dispersion relation (77) are depicted in Figs. 14 (against the frequency) and
15 (against the wave number). Both figures have cA = 0.3c0 and c1 = 0.2c0. Also
note that Fig. 14 is plotted over a shorter range on the horizontal axis than Fig. 15.
This is because the change in speed is quicker with increasing frequency (Fig. 14)
than with the increasing wavelength (Fig. 15).
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Figure 14: Group (solid line) and phase (dashed line) speed curves against the fre-
quency. cA = 0.3c0 and c1 = 0.2c0

It can be seen from Figs. 14 and 15 that the phase speed and the group speed behave
slightly differently. While the asymptotic value of the acoustic phase speed curve ap-
proaches gradually the asymptotic value c1/c0, the group speed curve changes more
rapidly, initially assuming the value that is lower than c1/c0 and then approaching the
asymptotic value c1/c0. In case of very strong normal dispersion, the group speed
curve assumes a value that is very close to zero before approaching the asymptotic
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Figure 15: Group (solid line) and phase speed (dashed line) curves against the wave
number. cA = 0.3c0 and c1 = 0.2c0

value c1/c0. The effect becomes more subtle when cR ≈ c1. In case of the optical
dispersion branch, the phase speed curve starts at infinity and the group speed curve
at zero. In the short wave limit both curves approach the asymptotic value 1.

3.2. Applicability of the approximated model

The applicability of the approximated model from the dispersion analysis perspective
has been analysed [26].

Although the hierarchical approximation (71) provides a good approximation of the
full model (50), there are differences in the behaviour of the corresponding dispersion
relations (78) and (77) when k > 1/pc0. This is due to the parameters controlling the
short wave behaviour – in the full dispersion relation (77) the short wave behaviour is
controlled by the time parameter p, whereas in the approximated dispersion relation
(78) it is controlled by the the time parameter p and the auxiliary speed cA.

When cA/c0→ 1, the dispersion relation (78) provides a good approximation of the
acoustic dispersion branch of the dispersion relation (77) (Fig. 12). The approxi-
mation becomes worse when cA/c0 → 0, which can be seen in the behaviour of the
corresponding dispersion curves (Fig. 16). Since the free energy (47) must be pos-
itive definite and c2R = c20− c2A, the parameter cA is confined to have the following
values:

0<
cA

c0
< 1. (81)

In spite of the different behaviour of the dispersion relations (77) and (78) in a region
of k > 1/pc0, in the very short wave limit both dispersion curves are characterised
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Figure 16: Dispersion curves of the full (solid line) and the approximated (dashed
line) model when cA/c0 = 0.2 and c1/c0 = 0.3.

by the same limiting speed c1. This is best seen in the behaviour of the group speed
curves (Fig. 17).
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Figure 17: Behaviour of the group speed curves for Eqs. (49) (solid line) and (71)
(dashed line) against the wave number when cA/c0 = 0.2 and c1/c0 = 0.3.

Figure 18 illustrates the ranges of the parameters where the values obtained from both
relations agree within a 5 per cent error (the area between the dashed lines) and within
a 10 per cent error (the area between the continuous lines) at the point k = 1.5/pc0.
The behaviour for higher values of k is similar, only the area of good agreement
becomes narrower. When k becomes very large, the area of good agreement becomes
larger [26].
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Figure 18: The ranges of parameters. See explanation in text.

3.3. Multiscale model

In order to study the dispersion of multiscale systems (55)–(57), (59)–(61) and (63)–
(65), we assume the solutions in the form of harmonic waves

u(x, t) = ûei(kx−ωt), ϕ1(x, t) = ϕ̂1ei(kx−ωt), ϕ2(x, t) = ϕ̂2ei(kx−ωt), (82)

where u is the macrodisplacement and ϕ1 and ϕ2 are microdeformations on two dif-
ferent scales.

Plugging (82) into Eqs. (55)–(57), we get∣∣∣∣∣∣
ρ0k2−ρ0ω2 −iA1k 0

iA1k C1k2− I1ω2+B1 −iA12k
0 iA12k C2k2− I2ω2+B2

∣∣∣∣∣∣
∣∣∣∣∣∣

û
ϕ̂1
ϕ̂2

∣∣∣∣∣∣= 0. (83)

In order to get nontrivial solutions, the determinant of this system must vanish. This
leads to the dispersion relation

(c2k2−ω2)(c21k2−ω2+ω2
1 )(c

2
2k2−ω2+ω2

2 )

−c2A12ω2
2k2(c2k2−ω2)− c2A1ω2

1k2(c22k2−ω2+ω2
2 ) = 0,

(84)

where the parameters

c2A1 =
A2
1

ρ0B1
, c2A12 =

A2
12

I1B2
, ω2

1 =
B1

I1
, ω2

2 =
B2

I2
(85)
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have been introduced. Here the parameter cA1 reflects the effect of the microscale 1 on
the macrostructure and is the same as cA in the single scale model, the parameter cA12
reflects the coupling between the scales; ω1 and ω2 are the characteristic frequencies,
which may also be regarded as reciprocal time parameters.

The dispersion relations for systems (59)–(61) and (53)–(65) are

(c2k2−ω2)(c21k2−ω2+ω2
1 )(c

2
2k2−ω2+ω2

2 )− c2A12ω2
2k2(−c20k2+ω2)

−c2A1ω2
1k2(c22k2−ω2+ω2

2 )− c2A2k2ω2
2 (c

2
1k2−ω2+ω2

1 ) = 0
(86)

and

(c2k2−ω2)(c21k2−ω2+ω2
1 )(c

2
2k2−ω2+ω2

2 )

−c2A2ω2
2k2(c21k2−ω2+ω2

1 )− c2A1ω2
1k2(c22k2−ω2+ω2

2 ) = 0.
(87)

respectively. In these equations the speed c2A2 = A2
2/(ρ0B2) has been introduced.
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Figure 19: Comparison of the dispersion curves of Eqs. (84), (86) and (87) for
cA1/c0 = cA2/c0 = cA12/c0 = 0.4, c1/c0 = 0.5 and c2/c0 = 0.3: solid lines – hierar-
chical model (87); dashed lines – concurrent model (86); dotted lines – concurrent
model (87).

The dispersion relations (84) (solid lines), (86) (dashed lines) and (87) (dotted lines)
are depicted in Fig. 19. It can be seen that due to addition of the second mi-
crostructure, three dispersion branches emerge – one acoustic branch and two optical
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branches per model. For simplicity we will limit ourselves to the case where ω1 = 1,
ω2 = 2 and c1/c0 > c2/c0.

It can be seen immediately that while the behaviour of the hierarchical model (84) and
concurrent model (86) is quite similar, the concurrent model (87) departs drastically
in the region of medium-range wavelengths. We can therefore conclude that the
coupling between the microstructures has a significant effect on the dispersion in that
region [6].

In the long wave limit the slope of the acoustic dispersion branch depends on the
coupling between the macro- and microstructures. The hierarchical model (84),
where the macrostructure only interacts with one microstructure, starts with a slope
ω = [(c20 − c2A1)/c20]

1/2k. The concurrent models (86) and (87) start with a slope
ω = [(c20− c2A1− c2A2)/c20]

1/2k, which is due to the interaction of the macrostructure
with both microstructures.

The medium wavelength behaviour of the acoustic dispersion branch depends on the
coupling between the microstructures. If there is no coupling between the microstruc-
tures as in Eq. (87), the acoustic dispersion branch approaches the asymptotic line
ω = c1k. In case of the coupling between the microstructures, the acoustic disper-
sion branch approaches the asymptotic line ω = [(c21− c2A12)/c20]

1/2k. In the short
wave limit the acoustic dispersion branches for all three models approach the same
asymptotic line ω = c2k.

The behaviour of the optical dispersion branches is highly dependent on the coupling
between the macro- and microstructures. In case of the hierarchical model (84),
where there is coupling between the microstructures and between the macrostructure
and one microstructure, the middle optical dispersion branch first approaches the
asymptotic line ω = k and then the asymptotic line ω = c1/c0 · k. The upper optical
dispersion branch approaches the same asymptotic lines, but in a different order –
first the asymptotic line ω = c1/c0 · k and then the asymptotic line ω = k.

If the microstructures are only coupled to the macrostructures as in the concurrent
model (87), the upper optical dispersion branch approaches the asymptotic line ω = k
and the middle optical dispersion branch approaches first the asymptotic line ω =
c2/c0 · k and then the asymptotic line ω = c1/c0 · k.

In case of the concurrent model (86), where there is coupling between the microstruc-
tures and the macrostructure is coupled to both microstructures, the upper optical dis-
persion branch behaves similarly to the concurrent model (87). The middle optical
dispersion branch behaves similarly to the concurrent model (87) in the long wave
limit and similarly to the hierarchical model (84) in the short wave limit.
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3.4. Summary

The dispersion analysis has shown that the inclusion of the microstructure in the con-
tinuum model brings additional degrees of freedom into the model, which manifest
themselves in the emergence of optical dispersion curves. The number of optical
curves depends on the number of degrees of freedom. In the 3D setting, for example,
up to nine degrees of freedom can emerge. In case of the Mindlin–Engelbrecht–
Pastrone model, only one optical curve appears as the model is set in the 1D setting
and the underlying microstructure can only deform. If the multiscale model is con-
sidered, more than one optical curves will appear. Due to the coupling between the
scales, the behaviour of the curves will become more complex.

Although the dispersion analysis has clearly shown that the optical dispersion curves
emerge due to the microstructure, it cannot provide insight into the question whether
the optical dispersion branches create measurable effects when wave propagation is
considered. This will be studied in the next sections in the context of the boundary
and initial value problems.
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4. Boundary value problem

Proceeding from the dispersion analysis in the previous section, we will now focus
on the simulations of wave propagation in microstructured materials. The boundary
value problem is studied in the present section and the initial value problem will be
studied in the next section.

It is clear from the dispersion analysis that there are different modes of wave prop-
agation in microstructured materials. Higher frequency optical branches will only
appear if the microstructure is considered. It is still unclear whether the higher fre-
quency optical modes have significance in numerical experiments. We are therefore
interested in two questions – whether the optical modes are measurable and whether
these need to be considered in actual experiments. These topics will be addressed
in the following sections. We will also revisit the problem of applicability of the
hierarchical approximation (71).

4.1. Displacement boundary condition

In order to study the effect of the optical dispersion branch, the governing equation
in a half-space is solved in the form of system (49). It is assumed that the macro-
and microstructure are initially at rest and that there is a macrodisplacement at the
boundary.

The dimensionless form of system (49) is

uττ = uχχ +d1ϕχ ,

ϕττ = γ21ϕχχ −d2uχ −ϕ,
(88)

where τ = t/p and χ = x/(c0p) are the dimensionless time and space, respectively,
and γ21 = c21/c20 and γ2A = d1d2 = c2A/c20 are the dimensionless speeds. The boundary
and initial conditions in the dimensionless form are

u(χ,τ = 0) = uτ(χ,τ = 0) = 0,

u(χ = 0,τ) = f (τ),
ϕ(χ = 0,τ) = 0,

lim
χ→∞

u(χ,τ) = lim
χ→∞

ϕ(χ,τ) = 0.

(89)

The problem defined by Eqs. (88) and (89) can be solved by applying the Laplace
transform over the dimensionless time τ . Defining the Laplace transform for macro-
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and microdisplacement as [23]

U(χ,s) =
∫ ∞

0
u(χ,τ)exp(−sτ)dτ,

Φ(χ,s) =
∫ ∞

0
ϕ(χ,τ)exp(−sτ)dτ,

(90)

we obtain the following problem in the Laplace domain:

s2U =U ′′+d1Φ′,

s2Φ = γ21Φ′′ −d2U ′ −Φ,
(91)

U(χ = 0,s) = L( f (τ)),
Φ(χ = 0,s) = 0,

lim
χ→∞

U(χ,s) = lim
χ→∞

Φ(χ,s) = 0 Re(s)> 0,
(92)

where L denotes the Laplace transform.

The general solution of Eqs. (91), which satisfies the boundary condition at infinity,
is

U(χ,s) =C1e−k1χ +C2e−k2χ ,

Φ(χ,s) =C1
k1(k21+2γ2A−2γ21 s2)

2d1(1+ s2)
e−k1χ +C2

k2(k22+2γ2A−2γ21 s2)
2d1(1+ s2)

e−k2χ ,
(93)

where

k1,2 =
1
2γ1

[2+2s2−2γqqA2+2γ21 s2

±2(1+2s2−2γ2A−2γ21 s2+ s4−2s2γ2A−2s4γ21 + γ4A−2γ2Aγ21 s2+ γ41 s4)1/2]1/2.
(94)

The unknown constantsC1 andC2 are found by substituting the general solutions (93)
into boundary conditions (92). These constants are

C1 = L( f (t)) · k2(2γ21 s2−2γ2A− k22)
2k1γ2A− k32+ k31−2k2γ2A−2k1γ21 s2+2k2γ21 s2

,

C2 = L( f (t)) · k1(2γ21 s2−2γ2A− k21)
2k2γ2A− k31+ k32−2k1γ2A−2k2γ21 s2+2k1γ21 s2

.

(95)

Equations (93)–(95) give the solution in the Laplace domain. In order to return to the
time domain, the following inverse transform is applied:

u(χ,τ) =
1
2πi

∫ c+i∞

c−i∞
esτU(χ,s)ds, (96)
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where c is real and positive and greater than the real part of all singularities ofU(χ,s).
The inverse transform is accomplished numerically by evaluating the following inte-
gral [10, 11, 18, 23]:

u(χ,τ) =
1
2π

ecτ ·ℜ
[∫ w0

−w0

U(χ,s = c+ iw)eiwτdw
]
. (97)

4.2. Results – displacement boundary condition

The main goal of the present subsection is to show that the optical dispersion branch
has a measurable effect in the wave processes in microstructured solids. To this end
the time-dependent sine function is used as a boundary condition for macrodisplace-
ment. The use of the harmonic sine function allows exact control over the frequency
at the boundary. The results are depicted in Figs. 20–23 which can be found in
Appendix A.

In addition to the solutions of the boundary value problem (parts b of Figs. 20–23),
the corresponding phase and group speed curves are provided (parts a of Figs. 20–
23). Here we have preferred the use of the phase and group speed curves over the
dispersion curves, as they provide a clearer understanding of what to expect in exper-
iments. As the phase and group speed curves are calculated following the dispersion
curves (79), the usage of phase and group speed curves in the analysis is equivalent
to the usage of dispersion curves. The acoustic phase and group speed curves corre-
spond to the acoustic dispersion branch and the optical phase and group speed curves
correspond to the optical dispersion branch.

Although the frequency of the disturbance can be any positive real number, we will
limit the dimensionless frequency η = pω to the values 0 < η < 1. This is the fre-
quency range where only the acoustic dispersion branch exists, which is represented
by the phase (dashed line) and group (solid line) speed curves that exist over the full
range of frequencies (see Fig. 20a). The phase and group speed curves that only exist
when η > 1 represent the optical dispersion branch. The case η = 1 can be consid-
ered as a high frequency limit, where the effects of the optical dispersion branch start
prevailing. Note that the high frequency limit is defined by the time constant p which
is related to the microinertia of the microstructure.

Figure 20b shows the result of the simulation when γA = 0.6, γ1 = 0.5 and η = 0.8
at dimensionless time τ = 60. The wave profile in Fig. 20b can roughly be divided
into two parts – acoustic, which is the wave profile up to the acoustic front (denoted
by ‘front acu.’ in Fig. 20b), and optical, which is a low amplitude part between the
acoustic and optical fronts (denoted by ‘opt.’ in Fig. 20b). ‘Front acu.’ and ‘opt.’
are related to the maximum asymptotic speeds of the acoustic and optical dispersion
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curves, respectively. For convenience we also divide the acoustic part into the main
part, which has the amplitude almost equal to unity, and the medium amplitude part.

The main acoustic part travels at the group speed γg = 0.53, which corresponds to the
frequency of the harmonic boundary condition (see Fig. 20a), and travels the dimen-
sionless distance χ = 31.62 (denoted by ‘main group’ in Fig. 20b). The approximate
dimensionless wavelength can be estimated from Fig. 20b by measuring the distance
between the two adjacent wave crests. In case of the main acoustic part the dimen-
sionless wavelength is Λ ≈ 5.4, which correlates well with the dimensionless wave
number ξ = pc0k ≈ 1.15 given by the dispersion analysis (see Eq. (79)).

The medium amplitude part of the acoustic part travels at the highest group speed
γg = 0.8 given by the acoustic dispersion branch, hence travelling the dimensionless
distance χ = 48 (denoted by ‘front acu.’ in Fig. 20b). It can be seen that the medium
amplitude part is slightly out of phase. The coordinate where the medium amplitude
part gets out of phase coincides reasonably well with the distance χ ≈ 41.6 travelled
at the phase speed (γp ≈ 0.69) of the given boundary condition.

The optical part of the wave profile is a low amplitude part that travels at the asymp-
totic speed of the optical dispersion branch, which is equal to the unity and therefore
travels the dimensionless distance χ = 60. This high frequency and low amplitude
optical part reflects the effect of the optical dispersion branch. The amplitude of
the optical part is not completely independent but depends on the frequency of the
boundary condition. This effect will be revisited in the next subsection.

Another example is given by Fig. 21. As the maximum group speed related to the
acoustic dispersion branch (γg ≈ 0.44) is much lower than the maximum group speed
related to the optical dispersion branch (γg = 1), the effect of the optical dispersion
branch is seen very clearly in the emergence of the low amplitude optical part (see
Fig. 21b). We also note that due to weak dispersion (0.3 ≤ γp ≤ 0.44), the medium
amplitude part is much closer to the main acoustic part and it becomes difficult to
divide the acoustic part in to two. The distances travelled by the acoustic front
(χ = 21.8) and the optical front (χ = 50) are denoted in Fig. 21b. In addition,
the distances travelled at the group speed (χ = 14.4) and the phase speed (χ ≈ 17.8)
of the boundary condition have been marked. The dimensionless wavelength of the
main acoustic part (Λ ≈ 4.5) corresponds well to the dimensionless wave ξ ≈ 1.4
number given by the dispersion analysis.

In case of anomalous dispersion (see Fig. 22) the medium amplitude part is merged
with the main acoustic part. The optical front travels at the speed γg = 1 and therefore
reaches the distance χ = 65. The acoustic front travels at the maximum speed given
by the acoustic dispersion branch (γg = 0.6) and travels the distance χ = 39. It can
also be seen that in case of anomalous dispersion a negative tail appears in front of
the acoustic part. This effect is better seen in case of the impulse boundary condition.

In case of strong anomalous dispersion (see Fig. 23a) the main acoustic part of the
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wave profile becomes distorted (see Fig. 23b). This is due to the interaction between
the fast moving short wavelengths and the low speed large wavelengths.

4.3. Results – amplitude of the optical part

The amplitude of the optical part is not completely independent but depends on the
frequency of the boundary condition. In order to illustrate this dependence, we will
turn to the dispersionless case, which means that there is no dispersion following the
acoustic dispersion branch. In this case any dispersive effects are only due to the
optical dispersion branch. The amplitude of the optical part is compared at different
frequencies of the boundary condition. As an example we will use the system with
parameters γA = 0.6 and γ1 = 0.8.

The wave profiles at two different frequencies of the boundary condition (η1 = 0.1
and η2 = 0.5) and the magnifications of the optical parts are depicted in Fig. 24
in Appendix A. It can be clearly seen that the lower frequencies of the boundary
condition induce lower amplitude optical parts than higher frequencies do. In case of
dimensionless frequency η1 = 0.1, the dimensionless amplitude of the optical part is
A ≈ 0.002, whereas in case of dimensionless frequency η2 = 0.5 the dimensionless
amplitude of the optical part is A≈ 0.02, thus ten times larger.

This result was expected as the low frequency corresponds to the large wavelength.
It is intuitively clear that large wavelengths do not ‘feel’ the microstructure as much
as short wavelengths do.

4.4. Impulse boundary condition

In oder to compare the full system (49) to the hierarchical approximation (71), the
impulse boundary condition derived by Metrikine et al. [24] is used.

In case of hierarchical approximation (71), the impulse boundary value problem in
dimensionless form is

uττ −uχχ − c2A
c̃2

uχχττ +
c21c2A
c̃4

uχχχχ = 0, (98)

u(χ,τ = 0) = uτ(χ,τ = 0) = 0,(
uχ +

c2A
c̃2

uχττ − c21c2A
c̃4

uχχχ

)
χ=0

= Pδτ,

lim
χ→∞

u(χ,τ) = 0,

(99)
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where δ (τ) is the Dirac delta function, P is related to the intensity of the pulse and
c̃2 = c20−c2A has been introduced for convenience. Note also that dimensionless space
is now defined as χ = x/(c̃p).

The full system (49) will be solved in the form of one fourth order PDE for displace-
ment (50). For the present problem Eq. (50) is rewritten in the form

uττ −uχχ − c20+ c21
c̃2

uχχττ +
c20c21
c̃4

uχχχχ +uττττ = 0. (100)

The boundary condition for Eqs. (100) is similar to Eq. (99):

u(χ,τ = 0) = uτ(χ,τ = 0) = 0,(
uχ +

c20+ c21
c̃2

uχττ − c20c21
c̃4

uχχχ

)
χ=0

= Pδτ,

lim
χ→∞

u(χ,τ) = 0.

(101)

The boundary problems given by Eqs. (98)–(99) and (100)–(101) are solved by mak-
ing use of the Laplace transform. The solving process is exactly the same as in case
of the displacement boundary condition in Subsection 4.1.

4.5. Results – impulse boundary condition

The objective of the present subsection is to compare the behaviour of the hierarchi-
cal approximation (98) to the full system (100). To this end the impulse boundary
conditions (99) and (101) are used and the wave profiles given by both models are
compared at equal instances of dimensionless time. In addition, the group speed
curves of both models are compared. For convenience the phase speed curves have
been omitted. The results are depicted in Figs. 25–30 which can be found in Ap-
pendix A.

The first example is given in Fig. 25. Here the parameters are chosen so that the hie-
rarchical approximation (98) provides an excellent approximation of the full model
(100) – the group speed curve of Eq. (98) (dashed line) coincides with the group
speed curve of the acoustic dispersion branch of Eq. (100) (solid line) (see Fig.
25a). As the hierarchical approximation provides an approximation of the acoustic
dispersion curve only, the quality of the approximation is defined by the acoustic
dispersion branch of the full model.

The wave profiles at the dimensionless time τ = 40 are shown in Fig. 25b. It can
be seen that the hierarchical approximation (98) (dashed line) provides a very good
approximation of the impulse given by the full model (100) (solid line). However,
while the full model (100) has an oscillating part in front of the main pulse travelling
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at the speed γg = 1/(1−γ2A)1/2 ≈ 2.29, the hierarchical model (98) has no sharp front
and the elastic field decays exponentially in front of the impulse. The oscillating part
in front of the impulse in case of the full model is due to the optical dispersion branch
and is similar to the optical part discussed in Subsection 4.2.

Another example is given in Fig. 26. From the group speed curves (Fig. 26a) it can be
seen that although the hierarchical approximation (98) provides a good approxima-
tion over a wide range of frequencies, there exists a frequency region (0.4� η � 1.1)
where the approximate model departs from the full model (100). The influence of
that region can be seen in Fig. 26b: the main impulse is well approximated, but dif-
ferences occur in the tail part of the impulse. Nevertheless, it can be said that the
approximation is good. However, attention should be paid if a considerable part of
the energy is in the frequency range where the dispersion curve of the hierarchical
approximation departs from the acoustic dispersion branch given by the full model.
We also note that dispersion is stronger in the present example (compare Figs. 26a
and 25a) and therefore the tail in Fig. 26b is longer than in Fig. 25b. Here also the
full model has an oscillating part in front of the impulse, which is due to the optical
dispersion branch.

In the third example, given in Fig. 27, the agreement between the hierarchical ap-
proximation and the full model is not good over a wide range of frequencies (see
Fig. 27a). The hierarchical approximation provides good results only when η < 1
or η > 8, which makes the approximation virtually unusable. This is also evident in
Fig. 27b where the wave profiles at dimensionless time τ = 40 are depicted. It can
be seen that although the example in Fig. 27b represents a case of strong dispersion
(see Fig. 27a), the hierarchical approximation only accounts for dispersion at very
high frequencies.

As the maximum group speed given by the optical dispersion branch (γg ≈ 1.005) is
almost equal to the maximum group speed given by the acoustic dispersion branch
(γg = 1), the oscillating part in front of the impulse is hardly noticeable (see Fig.
28). Nevertheless, it can be seen that in case of full the model the wave profile
has a sharp front and travels the distance χ = 40.2, which corresponds exactly to
the asymptotic group speed given by the dispersion analysis (see Fig. 27a). The
hierarchical approximation on the other hand has a decaying front and the elastic
field is also disturbed in the region which is farther to the distance travelled at the
maximum speed given by the dispersion analysis. This is in accordance with the idea
that the optical dispersion branches are needed in order to make the model causal
[23].

The fourth example is a case of anomalous dispersion (see Fig. 29a). As expected,
there is now a negative tail in front of the impulse (see Fig. 29b). The impulse is well
approximated by the hierarchical approximation (98). In case of the full equation
(100), an oscillation occurs both in front of and behind the impulse.
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The last example is a dispersionless case (i.e., no dispersion related to the acoustic
dispersion branch) (see Fig. 30a). It can be seen immediately in Fig. 30b that in case
of hierarchical approximation, which provides the acoustic dispersion branch only,
the impulse does not disperse and travels at constant speed. In case of the full model,
the impulse disperses. Whereas in case of the full model, the main impulse travels a
shorter distance than in case of the approximation. This is due to the frequencies in
the range 1< η � 1.6 that travel at the speeds 0< γg < 1

4.6. Summary

The solutions to the boundary value problem clearly show that the optical disper-
sion branch has a measurable effect in numerical experiments – the high frequency
oscillations due to the optical dispersion branch appear both in case of harmonic dis-
placement and impulse boundary conditions. The speeds at which different parts of
the wave profile travel are in good accordance with the values given by the dispersion
analysis.

The boundary value problem also provides a different insight into the question of the
applicability of the hierarchical approximation. This approximation is usable over
a wide range of parameters and can simplify the analysis significantly. However,
the results match the full system better when most of the harmonics are in the range
0< η < 1. The higher harmonics can alter the wave profiles significantly.

Here we have used the boundary conditions that encompass a wide range of frequen-
cies and therefore one may ask whether the optical dispersion branch is important if
most of the wave energy is concentrated in a low frequency area. This problem will
be studied in the next section.
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5. Initial value problem

While the dispersion analysis has shown that in case of the internal scale the high
frequency optical dispersion branches emerge, the solutions to the boundary value
problem clearly show that the influence of these branches creates measurable effects
in the wave processes. As the hierarchical equation (71) does not account for the
optical dispersion branch, special attention has to be paid to the results when utilising
the hierarchical approximation.

When making use of the numerical methods, then will always be a possibility that
the high frequency oscillations are not physical but rather caused by numerical pro-
cedures. In the present section it will be shown that high frequency oscillations also
appear in case of the initial value problem [27]. It will also be shown that the effect
is considerably less pronounced at low frequencies.

5.1. Numerical method

The pseudospectral method is used to solve the initial value problem under localised
initial and periodic boundary conditions. In the present analysis the pseudospectral
method based on the discrete Fourier transform is applied (see [30, 32, 33] and refe-
rences therein).

The hierarchical approximation in dimensionless form (70) can be rewritten as

UT T −bUXX = δ (βUT T − γUXX)XX , (102)

where

γ2A = 1−b, γ21 =
γ
β
, δ =

l2

L2 . (103)

By making use of change of variables the full system (49) is rewritten in the form

UT T =
AL

αUo
ϕX +UXX ,

ϕT T =
Cρ
αI

ϕXX − BρL2

αI
ϕ− AρUoL

αI
UX .

(104)

The initial condition and the requirement of periodicity are as follows:

U(X ,0) =Uo sech2 BoX , U(X ,T ) =U(X +2kmπ,T ), m = 1,2, . . . , (105)

where k = 64, i.e., the total length of the spatial period is 128π . For the amplitude
and the width of the initial pulse we use the values Uo = 1 and Bo = π/2. Initial
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phase speed is taken to be zero, and can be interpreted as starting from the peak of
the interaction of two waves propagating in opposite directions.

For the full system (49) two more initial conditions are needed for the microdeforma-
tion. We assume that at T = 0 the microdeformation and the corresponding speeds
are zero, i.e., ϕ(X ,0) = 0 and ϕT (X ,0) = 0. The integration interval is from zero to
Tf = 180. We uses an initial condition which leads to the emergence of two solitary
waves that propagate in opposite directions. Nevertheless, the spatial period is long
enough and the time interval short enough to avoid interactions regardless of periodic
boundary conditions.

5.2. Results

The characteristic solution of Eqs. (102) and (104) is depicted in Fig. 31. It can be
seen that under used initial and boundary conditions (105) the initial pulse at X = 64π
splits in to two waves propagating in the opposite directions. Previous studies have
shown that in case of nonlinearity these waves evolve differently [30, 31, 32, 33].
In the present analysis the nonlinearities are excluded and therefore only the pulse
travelling to the right is depicted (see Fig. 32). The corresponding group speed
curves can be found in Fig. 33.

It can be seen immediately in Fig. 32 that the hierarchical approximation (102) pro-
vides a good approximation for the full system (104): there are differences in the
tails, but the main pulses given by both models are in excellent agreement. The
measured speed of the main pulse is γR = 0.6063, which correlates well with the the-
oretical value γR = (1− γ2A)1/2 = 0.6164 given by the dispersion analysis. Tamm et
al. [31, 32] have shown that the hierarchical approximation (102) provides a good ap-
proximation for the full system (104), the measured speeds agree with the theoretical
values and the effect of the nonlinearities on speeds is small.

The effect of the optical dispersion branch can be seen in the behaviour of the full
system (104) (solid line in Fig. 32) where oscillations emerge in front of the main
pulse and the tail of the full system is longer than in case of the hierarchical approx-
imation (102) (dashed line in Fig. 32). This result is in very good agreement with
the group speed curves depicted in Fig. 33. It can be seen that in case of the hier-
archical approximation, which provides an approximation of the acoustic dispersion
branch only, the dispersion is relatively weak and the speeds are bounded between
the values 0.6164 < γg < 0.3162. The full system is also influenced by the optical
dispersion branch and there are also harmonics that can have speeds between the val-
ues 0 < γg < 1, whose effect can be seen in the emergence of a faster front and a
slower tail.

The effect of the optical dispersion branch is best understood if the dispersion due to
the acoustic dispersion branch is excluded. This can be achieved in the dispersionless
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case, which means that there is no dispersion following the acoustic dispersion branch
and consequently in the hierarchical approximation. In this case any dispersion ef-
fects are only due to the optical dispersion branch. The wave solutions travelling to
the right and the corresponding group speed curves are depicted in Figs. 34 and 35
at four different sets of parameters. The wave profiles in Fig. 34 are arranged from
left to right in the decreasing order of the parameter γ2A. As in the case of zero disper-
sion the group speed curve of the hierarchical approximation (71) coincides with the
acoustic dispersion branch of the full system (49), only the group speed curves of the
full system are depicted in Fig. 35. The optical dispersion branch is the same in all
four cases and is represented by the solid line. The acoustic dispersion branches are
represented by dashed lines. The corresponding parameters 1− γ2A = γ21 are marked
in the vertical axis.

As seen in Fig. 34 the optical dispersion branch has a measurable effect in the wave
processes. This effect depends on the value of the parameter γA: large values of γA

induce large amplitude oscillations (see top left in Fig. 34), but the effect becomes
negligible at small values of γA (see bottom right in Fig. 34). Note that the parameter
γA also controls the speed of the main pulse.

The results can be explained by comparing the group speed curves in case of γ2A = 0.9
(See Fig. 35) with the corresponding wave profile (top left in Fig. 34). At high
values of γ2A (which correspond to the small values in the vertical axis in Fig. 35) the
speed of the main pulse is relatively small and a number of frequencies travel faster
than the main pulse; therefore a relatively high amplitude oscillations will appear in
front and behind of the main pulse. The maximum amplitude of these oscillations
correlate well with the amplitude decrease of the main pulse. In case of hierarchical
approximation, which experiences no dispersion, the amplitude does not change.

In the top right and bottom left parts of Fig. 34 it can be seen that as the speed of the
main pulse increases, the effect of the optical dispersion branch decreases. If there
still are frequencies that can travel faster than the main pulse, the oscillations due to
the optical dispersion branch will appear.

The last example is given in the bottom right part of Fig. 34 (which corresponds to
the topmost acoustic dispersion branch in Fig. 35). We can see that the effect of the
optical dispersion branch becomes negligible in case of γ2A = 0.1. The effect is still
there, but extreme magnifications are needed to see it. By inspecting the group speed
curves it can be seen that there are virtually no frequencies that can travel faster
and the high frequency oscillations do not spring from the main pulse. This result
was expected as the parameter γA is related to the coupling between the macro- and
microstructure.
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5.3. Summary

The analysis of the initial value problem has clearly shown that the high frequency
oscillations arise due to the optical dispersion branch. The effect is best seen if the
dispersionless case is considered – while the hierarchical approximation gives no
dispersion, the low amplitude high frequency oscillations appear in case of the full
system. Moreover, it has been shown that the effect is small if the parameter γA is
small, which corresponds to weak interaction between the macro- and microstructure.

The main difference between the solutions of the boundary condition problem and
the initial value problem is that the effect of the optical dispersion branch tends to
be larger in case of the boundary value problem with the impulse boundary condi-
tion. This is due to the choice of the boundary condition, where the energy is equally
distributed between all frequencies. In case of the initial condition, analysed in Sec-
tion 5, a significant part of energy is concentrated in low frequency components.
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6. Conclusions

This thesis focuses on the dispersion analysis of wave motion in microstructured
solids. The analysis is based on the one-dimensional Mindlin-type equation derived
by Engelbrecht et al. [12] and its hierarchical approximation.

In case of both models, the influence of the microstructure is revealed in the behaviour
of the acoustic dispersion curve: in classical homogeneous models the acoustic dis-
persion curve is linear, but in the presence of the microstructure the speeds corre-
sponding to the acoustic dispersion branch depend on the wave number. This is due
to the inherent length scale introduced by the underlying microstructure.

In addition, the influence of the microstructure is also displayed in the emergence of
the so-called optical dispersion branches, which are related to the steady state mo-
tion of the microstructure. Due to the mathematical procedures involved in deriving
the hierarchical approximation, the optical dispersion branches are excluded in the
approximated equation.

As shown in the thesis, the dispersion effects are significant for waves in microstruc-
tured solids. The physical background of a mathematical model must be understood
in details like it is done for the Mindlin–Engelbrecht–Pastrone model. Although sim-
plified models are attractive, the ranges of their applicability must be determined.

Main attention is paid to the physical microstructure, but the mathematical mod-
els of rods where geometrical dispersion is of importance are also briefly described.
The analysis of dispersive effects in microstructured solids shows that the models
of rods must be studied with the same accuracy, especially the applicability of the
Mindlin–Hermann and Bishop models which bear straight resemblance to models in
microstructured solids.

More specifically it is possible to highlight the following results:

Dispersion relations

• Two types of mathematical models, the full model (50) and and a simplified
hierarchical equation (71) are studied in detail.

• Full dispersion analysis is presented for the full model (50) and its hierarchical
approximation (71).

• It is shown how the dispersive effects are directly related to the microstructure.

• The applicability of the hierarchical approximation is analysed from the per-
spective of the dispersion analysis. It is found that the hierarchical equation
provides a good approximation to the full system.
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• Traditional single scale model is generalised to a multiscale model which per-
mits us to analyse hierarchical and concurrent microstructures.

• While the single scale model is characterised by two dispersion branches,
acoustic and optical, the multiscale model has three dispersion branches – one
acoustic branch and two optical branches. The behaviour of the second optical
dispersion branch depends on the type of the multiscale model (concurrent or
hierarchical).

Boundary value problem

• The influence of dispersion is demonstrated for the boundary value problem.

• It is shown how the differences in phase and group speeds of various models
lead to significant differences in wave profiles.

• The influence of the coupling of the macro- and microstructure in terms of
wave motion is characterised by the behaviour of the optical dispersion curve,
which stems from the stationary motion of the microstructure.

• It is shown that the amplitude predicted by the optical front depends on the fre-
quency of the boundary condition: lower frequencies induce lower amplitude
at optical fronts.

• The most interesting case is the existence of a medium range of the wave-
lengths where significant differences appear in wave profiles calculated from
two models.

• It is shown that additional high frequency oscillations appear in case of the full
model (88). These oscillations are related to the optical dispersion branch and
are especially seen in high frequency oscillations in front of the main pulse. In
the hierarchical model the pulse has a decaying front.

• The ranges of the good approximation of the full system by the hierarchical
one are established.

Initial value problem

• The influence of the optical dispersion branch is demonstrated for the initial
value problem.
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• It is shown that if there is no dispersion in the acoustic dispersion branch (i.e.
dispersion effects are only due to the optical dispersion branch), in case of the
full model (104) a low amplitude wave packet appears, reflecting the effect of
the optical dispersion branch.

• The amplitude of the low amplitude wave packet depends on the parameter
γA which reflects the coupling between the scales. At small values of γA the
dispersive effects due to the optical dispersion branch tend to be negligible.

Further studies will be focusing on the inclusion of nonlinearities in the boundary
value problem and in the analysis of the multiscale models.
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Abstract

The focus of the thesis is on the dispersion analysis of wave motion in microstructured
solids. The basis of the analysis is the 1DMindlin-type model derived by Engelbrecht
et al. [12] and its hierarchical approximation. This model has a clear physical back-
ground and reflects well the influence of the microstructure on the macrostructure.
Full dispersion analysis is presented for both models and the influence of the disper-
sion is demonstrated for boundary and initial value problems. The behaviour of the
hierarchical approximation is compared with the full Mindlin–Engelbrecht–Pastone
model and its applicability is analysed. Special attention is paid to the clarification
of effects caused by the optical dispersion branches, which are clearly seen in wave
profiles generated either by boundary or initial excitations. In addition, a single scale
model is generalised to a multiscale model and the corresponding dispersion analysis
is carried out.

The results of the thesis have been presented in two international conferences and
published in three scientific papers indexed by the ISI Web of Science.

Kokkuvõte

Käesolevas töös on uurimise all lainelevi dispersioon mikrostruktuuriga materjalides.
Analüüsi aluseks on Engelbrechti ja Pastrone poolt [12] tuletatud Mindlini tüüpi
võrrand ning selle hierarhiline aproksimatsioon, mis kirjeldavad ühemõõtmelist
lainelevi mikrostruktuuriga materjalides. Mõlema mudeli puhul on analüüsitud dis-
persiooniseoseid ning dispersiooni mõju on näidatud nii raja- kui ka algväärtus üles-
ande korral. Hierarhilise aproksimatsiooni käitumist on võrreldud täisvõrrandiga
ning aproksimatsiooni kasutatavust on analüüsitud. Erilist tähelepanu on pööratud
efektidele, mida põhjustavad optilised dispersioonikõverad, mis on selgelt nähtavad
raja- ja algväärtus ülesannete lahendites. Traditsiooniline makro-mikro süsteem on
seotud ühe mastaabi-teguriga; see on üldistatud mitme mastaabiga juhule ning vas-
tavaid dispersiooni omadusi on analüüsitud.

Käesoleva töö tulemused on esitatud kahel rahvusvahelisel konverentsil ja avaldatud
kolmes teadusartiklis tunnustatud erialaajakirjades ja konverentsikogumikus, mis on
indekseeritud andmebaasis ISI Web of Science.
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Appendix A: Figures
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Figure 20: (a) Phase (dotted lines) and group (solid lines) speed curves for the full
model in case of γA = 0.6 and γ1 = 0.5 and (b) the wave profile at τ = 60 in case of
harmonic displacement BC (η = 0.8).
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Figure 21: (a) Phase (dotted lines) and group (solid lines) speed curves for the full
model in case of γA = 0.9, γ1 = 0.3 and (b) the wave profile at τ = 50 in case of
harmonic displacement BC (η = 0.5).
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Figure 22: (a) Phase (dotted lines) and group (solid lines) speed curves for the full
model in case of γA = 0.9, γ1 = 0.6 and (b) the wave profile at τ = 65 in case of
harmonic displacement BC ( η = 0.5).
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Figure 23: (a) Phase (dotted lines) and group (solid lines) speed curves for (b) the
full model in case of γA = 0.9, γ1 = 0.9 and the wave profile at τ = 50 in case of
harmonic displacement BC ( η = 0.8).
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Figure 24: Wave profiles (left column) and corresponding magnifications of the op-
tical parts (right column) for the full model at τ = 50 in case of γA = 0.6, γ1 = 0.8
when η = 0.1 (top panels) and η = 0.5 (bottom panels).
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Figure 25: (a) Group speed curves of the full (solid line) and hierarchical (dashed
line) models in case of γA = 0.9, γ1 = 0.3 and (b) the corresponding wave profiles at
τ = 40 in case of impulse BC.
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Figure 26: (a) Group speed curves of the full (solid line) and hierarchical (dashed
line) models in case of γA = 0.7, γ1 = 0.3 and (b) the corresponding wave profiles at
τ = 50 in case of impulse BC.
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Figure 27: (a) Group speed curves of the full (solid line) and hierarchical (dashed
line) models in case of γA = 0.1, γ1 = 0.7 and (b) the corresponding wave profiles at
τ = 40 in case of impulse BC.
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Figure 28: Magnification of the wave front in Fig. 27.
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Figure 29: (a) Group speed curves of the full (solid line) and hierarchical (dashed
line) models in case of γA = 0.7, γ1 = 0.8 and (b) the corresponding wave profiles at
τ = 40 in case of impulse BC.
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Figure 30: (a) Group speed curves of the full (solid line) and hierarchical (dashed
line) models in case of γA = 0.6, γ1 = 0.8 and (b) the corresponding wave profiles at
τ = 40 in case of impulse BC.
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Figure 31: Solutions for Eqs. (102) (dashed line) and (104) (solid line). The pulse at
X = 64π represents the initial condition. γ2A = 0.62, γ21 = 0.1.
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Figure 32: Solution travelling to the right for Eqs. (102) (dashed line) and (104)
(solid line). γ2A = 0.62, γ21 = 0.1.
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Figure 33: Group speed curves of Eqs. (50) (solid line) and (71) (dashed line). γ2A =
0.62, γ21 = 0.1.
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Figure 34: Right travelling solution for Eqs. (102) (dashed line) and (104) (solid line)
at four different sets of parameters.
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Figure 35: Group speed curves of Eq. (50) at four different sets of parameters. Here
1− γ2A = γ21 . See explanation in text.
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Abstract

The Mindlin-type model is used for describing the longitudinal deformation waves in microstructured solids. A simpli-
fied hierarchical model is derived in one-dimensional setting which is a two-wave equation. In addition, the evolution
equations (one-wave equations) are derived for both the full and simplified models. It is shown that the simplified model
as well as evolution equations grasp main effects of dispersion in a wide range of physical parameters.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Dispersion; Microstructure; Hierarchy of waves

1. Introduction

In contemporary materials science and structural mechanics much attention is given to microstructured
materials possessing internal scales. Microstructured materials like alloys, crystallites, ceramics, functionally
graded materials, etc have gained wide application in modern technology because combining the mechanical
properties of different constituencies as in functionally graded materials or composites yields better (optimal)
properties of solids. Very often they are used in severe loading conditions including impact, which means gen-
eration of stress/deformation waves. The modelling of wave propagation in such materials should be able to
account for various scales of microstructure. The scale dependence involves dispersive effects and if in addition
the material behaves nonlinearly then dispersive and nonlinear effects may be balanced. As widely known, in
this case solitary waves may emerge as a result of such a balance.

Clearly the classical theory of continuous media is not able to describe the influence of microstructure
which is needed for explain dispersive and dissipative effects. There are many studies in this field, starting from
the papers of Mindlin [1] and Eringen [2] several decades ago. Now we have a solid theoretical background,
see for example [3,4], but another problem has arisen: the governing equations tend to be rather complicated
and the number of material parameters needed to describe the stress field, is rather high. Therefore there is an
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1 These authors contributed equally to this work.

Available online at www.sciencedirect.com

Wave Motion 45 (2008) 471–480

www.elsevier.com/locate/wavemoti



urgent need to find simplified governing equations but the physical effects should still be described with the
needed accuracy.

The problem is not only in the mathematical complexity of governing equations but also in the number of
waves. If in the linear theory, for example, longitudinal and shear waves can be easily separated then in the
nonlinear theory the coupling can affect both waves considerably. In a general case of a complicated system
of equations the main question is to understand to which wave which physical effects are related both quan-
titatively and qualitatively.

One of the possibilities to overcome such difficulties in contemporary mathematical physics is to introduce
the notion of evolution equations governing just one single wave. Physically it means the separation (if pos-
sible) of a multi-wave process into separate waves. The waves are then governed by the so-called evolution
equations every one of which describe the distortion of a single wave along a properly chosen characteristics
(ray).

In this paper the attention is focused to the analysis of dispersion described by Mindlin-type models [1].
Engelbrecht et al. [5,6] have derived the one-dimensional mathematical model for longitudinal waves in micro-
structured materials. Based on the separation of macro- and microstructure of a material, this model is char-
acterised by a clear physical structure of the governing equation. The analysis of the full-dispersion relation of
this model compared with others is briefly presented in [5] (see also references therein). Our question here is the
following: if we use asymptotic methods to simplify the model then can we describe still the physics with
acceptable accuracy? We shall use two asymptotic approaches: (i) the slaving principle [7] in order to get a
hierarchical asymptotic Whitham-type model from the basic one and (ii) the perturbative reduction method
[8,9] in order to get evolution equations. Although nonlinearity is an important factor, here we deal only with
dispersive effects and nonlinear waves will be analysed in our further publications.

The paper is organized as follows: the basic model following [5,6] is presented in Section 2. In Section 3, the
asymptotic models are derived following two approaches resulting in a hierarchical simplified equation and in
evolution equations. Section 4 is devoted to the dispersion analysis of the basic and the simplified models. In
Section 5, final remarks are presented. It has been shown that the simplified model as well as evolution equa-
tions grasp main effects of dispersion in a wide range of physical parameters.

2. Basic model

The basic model is that of Mindlin [1] and we follow the presentation of that in [5,6]. The main idea is to
distinguish between macro- and microdisplacements ui(xi,t) and u0jðx0i; tÞ, respectively. Assuming that microdis-
placement is defined in coordinates x0k moving with microvolume, we define

u0j ¼ x0kukjðxi; tÞ; ð1Þ
where ukj is an arbitrary function. It is clear that actually it is microdeformation while

ou0j=ox
0
i ¼ o0iu

0
j ¼ uij: ð2Þ

Further we consider the simplest 1D case and drop the indices i and j.
Now the fundamental balance laws can be formulated separately for macroscopic and microscopic scales.

Introducing the Lagrangian L = K � W, formed from the kinetic and potential energies

K ¼ 1
2
qu2t þ 1

2
Iu2

t

W ¼ W ðux;u;uxÞ;

�
ð3Þ

where q and I denote the macroscopic density and the microinertia, respectively, we can derive the correspond-
ing Euler–Lagrange equations:

oL
out

� �
t
þ oL

oux

� �
x
� oL

ou

� � ¼ 0

oL
out

� �
t
þ oL

oux

� �
x
� oL

ou

� �
¼ 0:

8><
>: ð4Þ

Here and further, the indices x and t denote differentiation.
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The partial derivatives

r ¼ oW =oux; g ¼ oW =oux; F ¼ oW =ou ð5Þ
are recognized as the macrostress, the microstress and the interactive force, respectively.

The equations of motion are now

qutt ¼ rx; Iutt ¼ gx � F : ð6Þ
The simplest potential energy function describing the influence of a microstructure is a quadratic function

W ¼ 1

2
au2x þ Auux þ 1

2
Bu2 þ 1

2
Cu2

x ; ð7Þ

where a, A, B, C denote material constants. Introducing Eq. (7) into Eq. (5) we get finally

qutt ¼ auxx þ Aux

Iutt ¼ Cuxx � Aux � Bu:

�
ð8Þ

This is the governing system of two second-order equations that can also be represented in the form of one
fourth-order equation

utt ¼ ðc20 � c2AÞuxx � p2ðutt � c20uxxÞtt þ p2c21ðutt � c20uxxÞxx; ð9Þ
where material parameters

c20 ¼ a=q; c21 ¼ C=I ; c2A ¼ A2=qB; p2 ¼ I=B ð10Þ
are introduced. The parameters c0, c1, cA are velocities while p is a time parameter. This is the basic linear
equation governing 1D longitudinal waves in microstructured solids.

3. Approximations

3.1. Slaving principle

This idea (see [7]) is used in [5,9] for deriving a hierarchical asymptotic model starting from Eq. (9). It is
supposed that the inherent length-scale l is small compared with the wavelength L of the excitation. The fol-
lowing dimensionless variables and parameters are introduced

U ¼ u=U 0; X ¼ x=L; T ¼ c0t=L; d ¼ ðl=LÞ2; e ¼ U 0=L; ð11Þ
where U0 is the amplitude of the excitation. In addition, it is assumed that I = ql2I* and C = l2C*, where I* is
dimensionless and C* has the dimension of stress.

Next, the system Eq. (8) is rewritten in its dimensionless form and the slaving principle [7] is applied. It is
supposed that

u ¼ u0 þ du1 þ d2u2 þ � � � : ð12Þ
The dimensionless form of Eq. (8b) yields

u ¼ �e
A
B
UX � d

B
ðaI�uTT � C�uXX Þ ð13Þ

from which the successive terms

u0 ¼ �e
A
B
UX ; u1 ¼ e

A

B2
aI�UXTT � C�UXXXð Þ; . . . ð14Þ

of the expansion Eq. (12) are obtained. Inserting them into Eq. (8a) in its dimensionless form, we finally get

UTT ¼ 1� c2A
c20

� �
UXX þ c2A

c2B
UTT � c21

c20
UXX

� �
XX

; ð15Þ
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where c2B ¼ L2=p2 ¼ BL2=I . Note that cB involves the scales L and l and cA includes the interaction effects
through the parameter A. Eq. (15) is valid up to O(d) because higher order terms are neglected. In addition,
in general e � d2.

Now it is possible to restore the dimensions in order to compare the result with Eq. (9). Eq. (15) yields

utt ¼ ðc20 � c2AÞuxx þ p2c2Aðutt � c21uxxÞxx: ð16Þ
This is an example of the Whitham-type [10] hierarchical equation.

The dimensionless form of the basic linear Eq. (9) is

UTT ¼ 1� c2A
c20

� �
UXX � c20

c2A
dbUTTTT þ c20

c2A
þ c21
c2A

� �
dbUXXTT � c21

c2A
dbUXXXX ; ð17Þ

where db ¼ c2A=c
2
B.

3.2. Evolution equations

Another idea to simplify the model is to use instead of the two-wave equation (16) an evolution equation
that describes just one wave [8,9].

Here we follow [9] and apply the asymptotic (reductive perturbation) method. We can represent Eq. (15) in
the matrix form

I
oV
oT

þ eA oV
oX

þ eB o3V
oToX 2

þ eC o3V
oX 3

¼ 0; ð18Þ

where

V ¼ oU=oT

oU=oX

� �
ð19Þ

and I ; eA; eB and eC are following matrices

I ¼ 1 0

0 1

� �
; eA ¼ 0 �ð1� n2Þ

�1 0

� �
;

eB ¼ �db 0

0 �1

� �
; eC ¼ 0 dbm2

1 0

� �
;

where

n2 ¼ c2A=c
2
0 6¼ 1; m2 ¼ c21=c

2
0: ð20Þ

It is possible to develop vector V into the power series in a small parameter

V ¼ V0 þ eV1 þ e2V2 þ � � � ¼
X
i¼0

eiVi: ð21Þ

The space-space transformation is used:

n ¼ cT � X

s ¼ eX ;

�
ð22Þ

i.e.

fX ; Tg ! fn; sg; ð23Þ
where c ¼ 1� A2

aB

� �1=2

¼ 1� c2A
c2
0

� �1=2

.

According to the asymptotic method [9] we get the sequence of equations of various powers in e. Assuming
that e and d are small parameters of the same order, we get finally the approximate linear evolution equation in
the form

474 T. Peets et al. / Wave Motion 45 (2008) 471–480



oa
os

þ dðc� bc2Þ
2ec2

o3a

on3
¼ 0; ð24Þ

where b ¼ A2I�
B2 ; c ¼ A2C�

aB2 and a ¼ oU
oT ¼ �c oU

oX is the unknown amplitude factor.
Similarly, applying the asymptotic method [9] for the basic linear Eq. (17) we first represent it in the matrix

form

I
oV
oT

þ eA oV
oX

þ eD o3V
oT 3

þ eE o3V
oToX 2

þ eF o3V
oX 3

¼ 0; ð25Þ

where I ; eA; eD; eE and eF are following matrices

I ¼ 1 0

0 1

� �
; eA ¼ 0 �ð1� n2Þ

�1 0

� �
;

eD ¼
1
n2 db 0

0 0

� �
; eE ¼ � 1

n2 dbþ n21db
� �

0

0 �1

� �
;

eF ¼ 0 n21db

1 0

� �
;

where

n21 ¼ c21=c
2
A; ð26Þ

and write the evolution equation in the form

oa
os

þ dðc� bc2Þ
2ec2

o3a

on3
¼ 0: ð27Þ

This means, that the approximate Eq. (15) and the basic Eq. (17) yield the evolution equations in the same
form, see Eqs. (24) and (27). Consequently, using the idea of evolution equations there is no difference whether
we begin the derivation from the basic Eq. (17) with the addition term UTTTT or from the approximate Eq.
(15) with terms UXXTT and UXXXX. However, note that the parameters of Eqs. (15) and (16) are different.

The character of dispersion in the case of microstructured materials is analysed in [5] on the basis of the
approximate Eq. (15). It has been shown that both of the effects – inertia of the microstructure (described
by term UTTXX) and elasticity of the microstructure (described by term UXXXX) have influence on dispersive
relations and corresponding dispersion curves. If only inertia of the microstructure (term UTTXX) is taken into
account then the dispersion curve is concave, if only elasticity of the microstructure (term UXXXX) is taken into
account then the dispersion curve is convex. With both terms (double dispersion) the curve tends from one
asymptote to another.

In the case of the evolution equation these two effects are described by a single term (term annn) but the sign
of this term (the sign of its coefficient) depends on the ratio of the double dispersion effects.

It is possible to conclude that in case of c > bc2 (elastic effects prevailing) the dispersion curve is convex and
in case of c < bc2 (inertial effects prevailing) the dispersion curve is concave. So the evolution equation keeps
the main characteristics of the process. In case of c � bc2 = 0 there is no microstructure and the dispersion
curve is linear, as expected.

4. Dispersion analysis

4.1. Dispersion relations

Internal scales of microstructured solids lead to dispersive effects. This is also quite clear from the governing
equations derived in previous sections. The presence of higher-order derivatives in the governing equations
indicates dispersion.

In order to derive dispersion relations, we assume the solution in the form of a wave
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uðx; tÞ ¼ û exp ½iðkx� xtÞ�; ð28Þ
with wave number k, frequency x and amplitude û.

Introducing Eq. (28) into Eq. (9) the dispersion relation

x2 ¼ ðc20 � c2AÞk2 þ p2ðx2 � c20k
2Þðx2 � c21k

2Þ ð29Þ
is obtained.The parameters involved are a time constant p and three characteristic velocities c0,c1,cA. Instead
of cA the velocity c2R ¼ c20 � c2A could be introduced as a parameter, since it has an obvious meaning for the
given wave process. Waves of very low frequencies (x � p�1) propagate at the velocity cR. The auxiliary veloc-
ity cA does not occur explicitly as a limit velocity. The phase speed of the wave is defined as cp = x/k and can
be obtained directly from the dispersion relation.

In order to reduce the number of independent variables we normalise the wave number, the frequency and
the relative propagation speeds defining

j ¼ pc0k; g ¼ px; n ¼ cA=c0; m ¼ c1=c0: ð30Þ
Using these new quantities the full-dispersion relation (29) assumes the form

g2 ¼ ð1� n2Þj2 þ ðg2 � j2Þðg2 � m2j2Þ: ð31Þ
The dimensionless phase speed is defined as cp = cp/c0 = g/j.

For convenience we also use the parameter c = cR/c0 = (1 � n2)1/2 (see Eq. (22)).
In the same way, the approximate differential equation (16) yields the dispersion relation

x2 ¼ ðc20 � c2AÞ � p2c2Aðx2 � c21k
2Þk2: ð32Þ

Introducing Eq. (30) into Eq. (32) we obtain

g2 ¼ ð1� n2Þj2 � n2ðg2 � m2j2Þj2: ð33Þ

4.2. The range of parameters

The numerical simulation is done with the dimensionless Eqs. (31) and (33) and with the dimensionless
parameters n and m. Since c2 = 1 � n2 then n < 1, which makes physically sense because the velocity c0 is inter-
preted as the maximum possible velocity. Therefore also m < 1.

We also assume that n 5 m 5 0. If n = 0 then also A = 0 and then the governing Eq. (8) will have the form
where there is no interaction between the macro- and the microstructure.

Therefore we will consider the parameters in the following ranges

0 < n < 1; 0 < m < 1: ð34Þ

4.3. The results

The characteristic dispersion curves are shown in Fig. 1 from which the following can be concluded. The
full-dispersion relation (31), which is represented by the continuous lines, represents two branches which in
general are distinct. The upper, or ‘optical’ branch starts at g = 1 with zero slope and in the short wave limit
the branch asymptotically approaches to the line g = j. Lower, or ‘acoustical’, branch starts at the origin with
a slope g = cj and in the short wave limit the branch approaches to the asymptotic line g = mj. Here the dot-
ted lines show asymptotic values.

The approximate dispersion relation (33), which is represented by the dashed line, provides an approxima-
tion of the acoustical branch only.

It is clear that the dispersion relations (31) and (33) differ and our intention is to analyse the ranges of
parameters where the results coincide. This is dictated by the values of parameters n and m. Fig. 2 illustrates
the ranges of the parameters where the values obtained from the both relations agree within 5% error (the area
between the dashed lines) and within 10% error (the area between the continuous lines) at the point j = 1.5.
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The ranges for other values of j behave similarly , only for j > 1.5 the area of good agreement is narrower and
for j < 1.5 the area is wider.

Fig. 3 shows an example where the approximate dispersion relation (33) agrees very well with the full-dis-
persion relation (31). In Fig. 3a, cR < c1 and in Fig. 3b, cR > c1. The continuous lines correspond to the full and
the dashed lines to the approximate dispersion relation.

Figs. 4 and 5 are examples of the combination of the parameters where the approximate Eq. (33) and the
full-dispersion relation (31) do not coincide well. Fig. 4 is an example of m < 1, but not in a good approxima-
tion range (see Fig. 2). The continuous line corresponds again to the full and the dashed line to the approx-
imate dispersion relation.

This result can be understood by examining the approximate dispersion relation (33). The strength of the
second term in the approximate dispersion relation depends on the parameter n and if parameter n is close to 0
then the influence of the second term is diminished.

Fig. 5 is an example of the situation when c1 becomes larger than c0 (m > 1). Now the behaviour of the dis-
persion curves is changed. The full-dispersion relation (31) (represented by the continuous lines) still represents

Fig. 2. The ranges of parameters. See explanation in the text.

Fig. 1. The characteristic dispersion curves (n = 0.9, m = 0.7). See explanation in the text.

T. Peets et al. / Wave Motion 45 (2008) 471–480 477



two branches but now the upper branch approaches to the asymptotic line g = mj. Lower branch starts with a
slope g = cj and in the short wave limit it approaches to the asymptotic line g = j.

The approximate relation (33) (represented by the dashed line) also starts with a slope g = cj, but in the
short wave limit it approaches the asymptotic line g = mj and does not approach the acoustical branch.

5. Final remarks

Mindlin [1] has derived the dispersion relations for long wave-length (and very long wave-length) approx-
imation and shown a similarity of dispersive effects with those in plates. While Mindlin [1] has used a concept
of unit cells embedded in a surrounding medium, then many materials, especially composites, have clearly a
defined layered structure. Sun et al. [12,13] have shown that an effective stiffness theory can be derived for
describing waves in layered media. Actually, their result is a continuum [13] that bears clear resemblance to
Mindlin’s material, especially in a 1D case. It has also been shown that gradient elasticity theories [14] need
both elastic and inertial effects to be taken into account. This shows again validity of the Mindlin idea. In addi-

Fig. 3. The behaviour of the acoustic branches (a) n = 0.9, m = 0.8, (b) n = 0.5, m = 0.6. See explanation in the text.

Fig. 4. The behaviour of the dispersion curves (n = 0.2, m = 0.3). See explanation in the text.
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tion, the functionally graded materials (FGMs) which are widely used in contemporary technology [15], can be
described by the Mindlin theory and the corresponding models presented above. The straight-forward numer-
ical calculation of wave fields in FGMs [16] has shown explicitly the influence of microstructure for velocities
as predicted by Mindlin-type models.

Here, we have derived hierarchical Mindlin-type models (Eqs. (9) and (16)) which describe well dispersive
effects. In the wide range of parameters (see Fig. 2), the hierarchical asymptotic model is sufficient for grasping
the real behaviour. The hierarchical model itself is certainly simpler and well-grounded physically. In addition,
its similarity to discrete models [11] permits to bridge both types (continuous and discrete) models although
some deeper analysis is needed in order to clarify the relations of model parameters. The full model (Eq. (9))
and its approximation (Eq. (16)) yield the same type of the evolution equation (cf. Eqs. (24) and (27)). This is
not surprising because the proper scaling should lead to a result where the leading properties are accounted
for. Even more, the evolution equation obtained in such a way shows clearly that for a homogeneous material
(no microstructure) the dispersive effects disappear (here c = bc2, i.e. c1 = c). In addition the convexity or con-
cavity of the dispersion curve derived for cases c 5 bc2 depends clearly upon the influence of the material
parameters. When in the microstructure elastic effects are stronger then c > bc2 and the dispersion curve is
convex. When however the inertial effects in the microstructure are prevailing then c < bc2 and the dispersion
curve is concave. The same effect follows from the analysis of full models.

This result is important even qualitatively for Nondestructive Testing (NDT). The concavity/convexity of
the dispersion curve shows explicitly the influence of the basic material properties.

The main results of this paper shows that the asymptotic models, both hierarchical two-wave equation (15)
(or (17)) and evolution equation (24) (or (27)) are able to grasp dispersive effects in microstructured solids
within the wide range of parameters. As said in Section 1, the further studies should introduce nonlinearities
like Pastrone [17].

Acknowledgements

Support of the Estonian Science Foundation under Contract Nos. 7037 (T.P.) and 7035 (M.R.) is gratefully
acknowledged. The authors acknowledge the referees’ valuable comments.

References

[1] R.D. Mindlin, Microstructure in linear elasticity, Arch. Rat. Mech. Anal. 16 (1964) 51–78.
[2] A.C. Eringen, Linear theory of micropolar elasticity, J. Math. Mech. 15 (1966) 909–923.

Fig. 5. The behaviour of the dispersion curves (n = 0.7, m = 1.3). See explanation in the text.

T. Peets et al. / Wave Motion 45 (2008) 471–480 479



[3] G.A. Maugin, Material Inhomogeneities in Elasticity, Chapman and Hall, London, 1993.
[4] A.C. Eringen, Microcontinuum Field Theories. I. Foundations and Solids, Springer, New York, 1999.
[5] J. Engelbrecht, A. Berezovski, F. Pastrone, M. Braun, Waves in microstructured materials and dispersion, Philos. Mag. 85 (33–35)

(2005) 4127–4141.
[6] J. Engelbrecht, F. Pastrone, M. Braun, A. Berezovski, Hierarchies of waves in nonclassical materials, in: P.-P. Delsanto (Ed.), The

Universality of Nonclassical Nonlinearity: Applications to Non-Destructive Evalutations and Ultrasonics, Springer, Berlin, 2006, pp.
29–48.

[7] P.L. Christiansen, V. Muto, S. Rionero, Solitary wave solution to a system of Boussinesq-like equations, Chaos Solitons Fractals 2
(1992) 45–50.

[8] T. Taniuti, K. Nishihara, Nonlinear Waves, Pitman, London, 1983, in Japanese, 1977.
[9] J. Engelbrecht, Nonlinear Wave Processes of Deformation in Solids, Pitman, Boston, London, Melbourne, 1983.
[10] G.B. Whitham, Linear and Nonlinear Waves, J. Wiley, New York, 1974.
[11] G.A. Maugin, Nonlinear Waves in Elastic Crystals, Oxford University Press, Oxford, 1999.
[12] C.-T. Sun, J.D. Achenbach, G. Herrmann, Time-harmonic waves in a stratified medium propagating in the direction of the layering,

J. Appl. Mech. Trans. ASME 35 (1968) 408–411, June.
[13] C.-T. Sun, J.D. Achenbach, G. Herrmann, Continuum theory for a laminated medium, J. Appl. Mech. Trans. ASME 35 (3) (1968)

467–475.
[14] H. Askes, E.C. Aifantis, Gradient elasticity theories in statics and dynamics – a unification of approaches, Int. J. Fract. 139 (2006)

297–304.
[15] S. Suresh, A. Mortensen, Fundamentals of Functionally Graded Materials, The Institute of materials, London, 1998.
[16] A. Berezovski, J. Engelbrecht, G.A. Maugin, Numerical simulation of two-dimensional wave propagation in functionally graded

materials, Eur. J. Mech. A-Solids 22 (2003) 257–265.
[17] F. Pastrone, Wave propagation in microstructured solids, Math. Mech. Solids 10 (2005) 349–357.

480 T. Peets et al. / Wave Motion 45 (2008) 471–480



Publication II

Tanel Peets and K. Tamm.
Dispersion analysis of wave motion in microstructured solids.
In T.-T. Wu and C.-C. Ma, editors, IUTAM Symposium on Recent Advances
of Acoustic Waves in Solids: Proceedings, Taipei, Taiwan, May 25–28, 2009,
volume 26 of IUTAMBookseries, pages 349–354. Springer, Dordrecht, 2010.

93





 

Dispersion Analysis of Wave Motion in 
Microstructured Solids 

Tanel Peets and Kert Tamm 

Centre for Nonlinear Studies, Institute of Cybernetics at Tallinn University of Technology, 
Akadeemia tee 21, 12618 Tallinn, Estonia 

tanelp@cens.ioc.ee 

Abstract. The Mindlin-type model is used for describing longitudinal waves in 

microstructured solids. This model involves explicitly the internal parameters and 

therefore tends to be rather complicated. An hierarchical approximation is derived, 

which is able to grasp the main effects of dispersion with wide variety of parame-

ters. Attention is paid to the internal degrees of freedom of the microstructure and 

their influence on the dispersion effects. It is shown how the internal degrees of 

freedom can change the effects of dispersion.  

1. Introduction 

It is well recognized by modern science, that matter is not continuous but has an internal 

structure. Clearly this microstructure plays a significant role when modelling wave 

propagation – waves that have a wavelength shorter than a certain threshold value, “feel” 

the microstructure.  

There are two approaches in modelling the microstructure - one group of models are 

based on lattice theory [1-3], another on continuum theory [4-6].  

In the discrete approach the volume elements of the matter are treated as point masses 

with a defined distribution and some interaction between the discrete masses. The gov-

erning equations are then deduced following the Newton’s law.  

In the microcontinuum theory, the macro- and microstructure of the continua are 

separated. Then the conservation laws for both structures should either be separately 

formulated [4,5], or the microstructural quantities (cells) are separately taken into ac-

count in one set of conservation laws. Engelbrecht et al. [6] have derived the one-

dimensional model for longitudinal waves in microstructured materials based on 

Mindlin model [5]. This model will be the basis of our analysis. These governing 

equations of wave motion tend to be rather complicated and therefore there is a need 

for simplification. A slaving principle is used in order to derive a hierarchical 

asymptotic Whitham-type model.  
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An important effect caused by microstructure is dispersion. A wave packet can be 

viewed as a collection of harmonic waves. If such a wave travels through a microstruc-

tured material, then different harmonics “feel” the microstructure according to their 

wavelength and travel with different speeds. The variation of phase velocity with 

wavenumber is the hallmark of dispersion [7,8]. 

Generally if there is N particles per unit cell in discrete model, then N dispersion 

curves appear (3N in case of 3D model). The lower curve is called an acoustic 

branch, the upper curves are called optical branches and they only appear when there 

are at least 2 particles per unit cell. Optical branches are said to reflect the internal 

degrees of freedom [1,9].  

Because of the inclusion of the microstructure, the dispersion curves derived from the 

1D microcontinuum model, also give two distinct curves [4,6,9]. As in discrete model 

these curves are acoustical and optical modes where an optical modes are interpreted as 

internal degrees of freedom or “internal modes”[5,9]. The dispersion curve derived from 

the Whitham-type approximate model has only an acoustical branch. It means that the 

approximate model does not account directly for internal degrees of freedom. The au-

thors have shown that this approximation is acceptable with wide variety of parameters. 

However the question that remains is when the internal modes can be ignored.  

2. The Basic Model 

The basic model is that of Mindlin [5] and we follow the presentation of its ideas in [6]. The 

main idea is to distinguish between macro- and microdisplacements ( ),i iu x t  and 

( ),j iu x t′ ′ , respectively. Assuming that microdisplacement is defined in coordinates kx ′ , 

moving with a microvolume (cell), we define ( ),j k kj iu x x tϕ′ ′= , where kjϕ is an arbitrary 

function. It is clear that actually it is the microdeformation while n n n n/ .j i i j iju u u∂ ∂ ∂ ϕ= =  

Further we consider the simplest 1D case and drop the indices i and j. 

Now the fundamental balance laws can be formulated separately for macroscopic and 

microscopic scales. Introducing the Lagrangian L = K −W, formed from the kinetic 

and potential energies 

2 21 1
, ( , , ),

2 2t t x xK u I W W uρ ϕ ϕ ϕ= + =  (2.1) 

where ρ and I denote the macroscopic density and the microinertia, respectively,  we can 

use the corresponding Euler-Lagrange equations: 

0, 0.
t x t xt x t x

L L L L L L

u u u

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ϕ ∂ϕ ∂ϕ

+ − = + − =  (2.2) 
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Here and further, the indices x and t denote differentiation. 

The partial derivatives   

/ , / , / ,x xW u W F Wσ ∂ ∂ η ∂ ∂ϕ ∂ ∂ϕ= = =  (2.3) 

are recognized as the macrostress, the microstress and the interactive force, respectively.  

The simplest potential energy function describing the influence of a microstructure is a 

quadratic function 

2 2 21 1 1
,

2 2 2x x xW au A u B Cϕ ϕ ϕ= + + +  (2.4) 

where a,A,B,C denote material constants. Introducing Eq. (2.4) into Eq. (2.3) we get finally  

, .tt xx x tt xx xu au A I C Au Bρ ϕ ϕ ϕ ϕ= + = − −  (2.5) 

This is the governing system of two second-order equations that can also be represented in the 

form of one fourth-order equation 

( ) ( ) ( )2 2 2 2 2 2 2
0 0 1 0 ,tt A xx tt xx tt xxtt xx

u c c u p u c u p c u c u= − − − + −  (2.6) 

where material parameters 2 2 2 2 2
0 1/ , / , / , / ,Ac a c C I c A B p I Bρ ρ= = = =  are in-

troduced. The parameters c0, c1,cA are velocities while p is a time parameter. This is the basic 

linear equation governing 1D longitudinal waves in microstructured solids. It has been shown 

by Sun et al. that Mindlin type model can also be used for modeling wave dispersion in lay-

ered media [10]. 

An approximation of Eq. (2.6) can be obtained by using the slaving principle. It is sup-

posed that the inherent length-scale l is small compared with the wavelength L of the excita-

tion. The following dimensionless variables and parameters are introduced U=u/U0, X=x/L, 

T=c0t/L, δ=(l/L)2, ε=U0/L, where U0 is the amplitude of the excitation. In addition it is as-

sumed that I=ρl2I* and C=l2C*, where I* is dimensionless and C* has the dimensions of stress.  

Next the system (2.5) is rewritten in its dimensionless form and the slaving principle [11] is 

applied. Then we get finally  

2 2 2
1

2 2 2
0 0

1 ,A A
TT XX TT XX

B XX

c c c
U U U U

c c c
= − + −  (2.7) 

where cB
2=L2/p2=BL2/I. Note that cB involves the scales L and l and cA includes the interaction 

effects through parameter A.  Restoring dimensions, Eq. (2.7) yields 

( ) ( )2 2 2 2 2
0 1 .tt A xx A tt xx xx

u c c u p c u c u= − + −  (2.8) 

This is an example of the Whitham-type hierarchical equation.  
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3. Dispersion Analysis  

The dispersion relations for Eqs. (2.6) and (2.8) are 

( ) ( )( )
( ) ( )

2 2 2 2 2 2 2 2 2 2 2
0 0 1

2 2 2 2 2 2 2 2 2 2
0 1

,

.

A

A A

c c k p c k c k

c c k p c c k k

ω ω ω

ω ω

= − + − −

= − − −
 (3.1) 

In order to reduce the number of independent variables, the wave number, the fre-

quency and the propagation speeds are normalized defining ξ=pc0k, η=pω, γA=cA/c0, 

γ1=c1/c0. Using these new quantities the dispersion relations (3.1) assume the forms  

( ) ( )( )
( ) ( )

2 2 2 2 2 2 2 2
1

2 2 2 2 2 2 2 2
1

1 ,

1 ,

A

A A

η γ ξ η ξ η γ ξ

η γ ξ γ η γ ξ ξ

= − + − −

= − − −
 (3.2) 

where the parameters γA and γ1  have the values 0< γA<1 and 0< γ1<1 respectively.  

The characteristic dispersion curves are shown in Fig. 3.1. The full dispersion rela-

tion (3.2a), which is represented by the continuous line, represents two distinct 

branches – acoustical and optical. The acoustical branch is analogous to the case of 

elastic vibrations where all the cells move in unison. These are external modes. The 

optical branch reflects the role of the internal modes, which involve the distortion of 

the cells [5,9]. 

The optical branch is always concave, the acoustical branch can be either concave 

or convex or linear, which represents anomalous, normal or no dispersion respectively. 

This concavity and convexity of the acoustic dispersion curve shows explicitly the in-

fluence of basic material properties [12]. 

The full model (2.6) and approximate model (2.7) can be compared using nu-

merical analysis. The initial value problem in dimensionless form under periodic 

boundary conditions is solved using the pseudospectral method [13]. The initial profile 

is chosen U(X,0)=sech2(κX/2), where κ is the width of the profile. 

Figures 3.2 and 3.3 show the results of the numerical analysis. Figure 3.2 represents 

the case when acoustical branch is concave (anomalous dispersion).  It is clear from 

the numerical experiment that although there are small differences between the full 

model (2.6) and approximation (2.7), the approximation is able to display the main ef-

fects of dispersion i.e. the type of the dispersion.  

Figure 3.3 shows a numerical experiment in case when there is no dispersion in ap-

proximate dispersion relation (3.2b) and in the acoustic branch of the full dispersion 

relation (3.2a). The approximate model indeed shows no dispersion effects – the initial 
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profile moves with constant speed and shape. The full model (2.6) however displays a 

small effect of dispersion, which is due to the optical bra nch or internal modes. The 

dispersion effects do not appear immediately, but may take some time to appear. 

 

Fig. 3.1 The characteristic dispersion curves. Solid lines represent full dispersion relation, 
dashed line represents approximate dispersion relation. 

 

Fig. 3.2 The solutions of full model (solid line) and approximation (dashed line), in case of 
γA=0.9 and γ1=0.7. 

 

Fig. 3.3 The solutions of full model (solid line) and approximation (dashed line), in case of 
γA=0.9 and γ1=0.7. 
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4. Final Remarks  

The numerical analysis demonstrates that the full and approximate models 

give in most cases similar results. There are however conditions when ap-

proximate dispersion curve (3.2b) coincides well with the acoustic branch of 

the full dispersion curve (3.2a), but the numerical experiment gives different 

types of dispersion for the full model (2.6) and for the approximation (2.7). 

This is likely to be present when acoustic curve displays normal dispersion.  

These effects need further investigations and will be presented in further 

publications. 
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considered in the framework of a Mindlin-type microstructure model. The corresponding dispersion
relations display essential differences for medium-range wavelengths.
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1. Introduction

Wave propagation in microstructured materials is strongly
affected by processes at internal space scales (Kunin, 1982, 1983;
Capriz, 1989; Erofeeyev, 2003). Usually, only one length scale is
introduced in models of microstructured solids (Mindlin, 1964;
Eringen and Suhubi, 1964; Santosa and Symes, 1991; Chen and
Fish, 2001; Metrikine and Askes, 2002; Engelbrecht et al., 2005;
Metrikine, 2006). However, the complexity of a microstructure
must sometimes be characterized by multiple scales (Engelbrecht
et al., 2006). In this paper, several possible mathematical mod-
els describing two-scale microstructures are described and their
dispersive properties are analyzed in 1D settings.

One of the possible models to describe the microstructure
has been proposed by Mindlin (1964) and later generalized in
Engelbrecht et al. (2005). The main idea of this model is to for-
mulate balance laws separately for macroscopic and microscopic
scales. In the one-dimensional case, the derivation of governing
equations can be briefly described as follows. In terms of displace-
ment u and microdeformation ϕ, the simplest free energy function
W is a quadratic function

W = �0c2

2
u2

x + Aϕux + 1
2

Bϕ2 + 1
2

Cϕ2
x , (1)

where �0 is the density and c is the wave velocity in the macrostruc-
ture; A,B, and C are additional material parameters. The physical
meaning of these parameters is related to coupling effects (A),
microstress modulus (C), and the interactive force (B), see below

∗ Corresponding authors.
E-mail address: Arkadi.Berezovski@cs.ioc.ee (A. Berezovski).

the corresponding expressions (cf. also Mindlin, 1964). Here and
further, the indices denote differentiation with respect to indicated
variables.

The balance laws can be derived from the Euler–Lagrange equa-
tions (Engelbrecht et al., 1999):

�0utt = �x, Iϕtt = −�x + �. (2)

Here I is an internal inertia measure for the microstructure, �
and � are macro- and microstress, respectively, � is the interactive
internal force.

The stresses (note that � is the Cauchy stress) are determined
(cf. Mindlin, 1964; Engelbrecht et al., 2005) by

� = ∂W

∂ux
= �0c2ux + Aϕ, � = −∂W

∂ϕx
= −Cϕx, (3)

while the interactive internal force � is

� = −∂W

∂ϕ
= −Aux − Bϕ. (4)

As a result, equations of motion (2) can be represented in the
form

�0utt = �0c2uxx + Aϕx, Iϕtt = Cϕxx − Aux − Bϕ, (5)

which must be solved with proper initial and boundary conditions.
It must be stressed that the same result can be achieved by using

the formalism of internal variables. Indeed, by introducing thermo-
dynamically consistent dual internal variables (Ván et al., 2008),
the same governing equations (5) can be derived (Berezovski et al.,
2009). The system of equations (5) actually describes the hierar-
chy of waves, because by using a slaving principle (Engelbrecht et
al., 2005) it is possible to rewrite this system as the higher order

0093-6413/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mechrescom.2010.07.020
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Fig. 1. Schematic representation of the microstructure hierarchy.

equation

utt =
(

c2 − c2
A

)
uxx + p2c2

A

(
utt − c2

1uxx

)
xx

, (6)

which clearly shows two wave operators ordered hierarchically.
Here c2

A = A2/�0B, c2
1 = C/I, and p2 = I/B. The model described above

takes into account a single microstructure. As it was noted by
Srolovitz and Chen (2005) “disparate microstructural features
often interact in significant and surprising ways”. It follows that
the multiscale modeling is necessary for the description of the
microstructure evolution. It may happen that (i) a microstructure
includes another microstructure at a smaller scale or (ii) there are
two concurrent microstructures. In this paper we briefly describe
case (i) which is known earlier (Engelbrecht et al., 2006) and elab-
orate models corresponding to case (ii). The microstructures are
described by internal variables providing the corresponding fields
of integral microstructural effects at each material point.

2. Hierarchical microstructures

The case of two hierarchical microstructures (“the scale within
the scale”) is analyzed by Engelbrecht et al. (2006). The correspond-
ing microstructure hierarchy is represented schematically in Fig. 1.

In this case, the free energy is dependent on two internal vari-
ables ϕ1 and ϕ2 as follows:

W = �0c2

2
u2

x + A1ϕ1ux + 1
2

B1ϕ2
1 +

1
2

C1(ϕ1)2
x ++A12(ϕ1)xϕ2

+ 1
2

B2ϕ2
2 +

1
2

C2(ϕ2)2
x . (7)

This leads to expressions of stresses in the form

� = ∂W

∂ux
= �0c2ux + A1ϕ1,

�1 = −
∂W

∂(ϕ1)x
= −C1(ϕ1)x − A12ϕ2, �2 = −

∂W

∂(ϕ2)x
= −C2(ϕ2)x,

(8)

and to interactive internal forces

�1 = −
∂W

∂ϕ1
= −A1ux − B1ϕ1, �2 = −

∂W

∂ϕ2
= −A12(ϕ1)x − B2ϕ2.

(9)

Accordingly, the equations of motion take the form

�0utt = �x = �0c2uxx + A1(ϕ1)x, (10)

I1(ϕ1)tt = �1 − (�1)x = C1(ϕ1)xx − A1ux − B1ϕ1, (11)

I2(ϕ2)tt = �2 − (�2)x = C2(ϕ2)xx − A12(ϕ1)x − B2ϕ2, (12)

where I1 and I2 are appropriate internal inertia measures.
In the hierarchical case, only the motion of the first microstruc-

ture is coupled with the macromotion, and the motion of the second
microstructure is coupled with that of the first one.

3. Concurrent microstructures

Another example of possible coupling of macromotion and
microstructures is illustrated in Fig. 2. In this case the macrodis-
placement is directly connected also to the second internal variable

Fig. 2. Schematic representation of concurrent microstructures.

and the free energy dependence (7) is therefore modified by adding
an additional term

W = �0c2

2
u2

x + A1ϕ1ux + 1
2

B1ϕ2
1 +

1
2

C1(ϕ1)2
x + A12(ϕ1)xϕ2

+ 1
2

B2ϕ2
2 +

1
2

C2(ϕ2)2
x + A2ϕ2ux. (13)

Here both internal variables describe the corresponding fields of
deformation induced by microstructures. In this case the equations
of motion look more symmetrical

�0utt = �0c2uxx + A1(ϕ1)x + A2(ϕ2)x, (14)

I1(ϕ1)tt = C1(ϕ1)xx + A12(ϕ2)x − A1ux − B1ϕ1, (15)

I2(ϕ2)tt = C2(ϕ2)xx − A12(ϕ1)x − A2ux − B2ϕ2. (16)

In the considered case, equations of motion for microstructures
are coupled with the balance of linear momentum for the macro-
motion and with each other.

Even a more symmetric case corresponds to completely inde-
pendent microstructures. The free energy function is constructed
here as the sum of two similar contributions

W = �0c2

2
u2

x + A1ϕ1ux + 1
2

B1ϕ2
1 +

1
2

C1(ϕ1)2
x + A2ϕ2ux + 1

2
B2ϕ2

2

+ 1
2

C2(ϕ2)2
x . (17)

The corresponding stresses are determined as previously

� = ∂W

∂ux
= �0c2ux + A1ϕ1 + A2ϕ2,

�1 = −
∂W

∂(ϕ1)x
= −C(ϕ1)x, �2 = −

∂W̄

∂(ϕ2)x
= −C(ϕ2)x,

(18)

as well as the interactive internal forces

�1 = −
∂W

∂ϕ1
= −A1ux − B1ϕ1, �2 = −

∂W

∂ϕ2
= −A2ux − B2ϕ2. (19)

The equations of motion here are similar to those in Eq. (5)

�0utt = �0c2uxx + A1(ϕ1)x + A2(ϕ2)x, (20)

I1(ϕ1)tt = C1(ϕ1)xx − A1ux − B1ϕ1,

I2(ϕ2)tt = C2(ϕ2)xx − A2ux − B2ϕ2. (21)

In the latter case, equations of motion for microstructures are
coupled with the balance of linear momentum for the macromo-
tion, but not coupled with each other.

4. Scale separation

To demonstrate the scale separation explicitly, the dimension-
less variables should be introduced as follows:

U = u

U0
, X = x

L
, T = ct

L
, (22)
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where U0 and L are certain constants (e.g., intensity and wavelength
of the initial excitation). To characterize microstructures we also
need to introduce scaled microdeformations

˚1 ≡
l1
L

ϕ1, ˚2 ≡
l2
L

ϕ2. (23)

In terms of dimensionless variables, the equation of motion at
the macroscale (20) reads

UTT = UXX +
A1

�0c2

l1
U0

(˚1)X +
A2

�0c2

l2
U0

(˚2)X, (24)

and the corresponding micromotions are governed by

I1
L2�0

l1
L

(˚1)TT =
C1

L2�0c2

l1
L

(˚1)XX −
A1

�0c2

U0

L
UX −

B1

�0c2

l1
L

˚1,

(25)

and

I2
L2�0

l2
L

(˚2)TT =
C2

L2�0c2

l2
L

(˚2)XX −
A2

�0c2

U0

L
UX −

B2

�0c2

l2
L

˚2,

(26)

respectively. As it can be seen, contributions of microstructures
and their motion can be separated clearly if the difference of their
characteristic scales, l1 and l2, is large enough.

5. Dispersion analysis

In order to study dispersive effects, we derive the dispersion
relations by assuming the solutions in the form of harmonic waves

u(x, t) = ûei(kx−ωt), ϕ1(x, t) = ϕ̂1ei(kx−ωt),

ϕ2(x, t) = ϕ̂2ei(kx−ωt), (27)

where k is the wavenumber, ω is the frequency, and i2 =−1. Sub-
stituting relations (27) into Eqs. (10)–(12) we get⎛
⎝�0c2k2−�0ω2 −iA1k 0

iA1k C1k2−I1ω2+B1 −iA12k
0 iA12k C2k2−I2ω2+B2

⎞
⎠

⎛
⎜⎝

û

ϕ̂1

ϕ̂2

⎞
⎟⎠=0.

(28)

In order to get nontrivial solutions the determinant of this sys-
tem must vanish. This leads to the dispersion relation

(c2k2 − ω2)(c2
1k2−ω2+ω2

1)(c2
2k2 −ω2 +ω2

2)− c2
A12ω2

2k2(c2k2 −ω2)

− c2
A1ω2

1k2(c2
2k2 −ω2 +ω2

2) = 0, (29)

where parameters

c2
1 =

C1

I1
, c2

2 =
C2

I2
, c2

A1 =
A2

1
�0B1

, c2
A12 =

A2
12

I1B2
, ω2

1 =
B1

I1
,

ω2
2 =

B2

I2
, (30)

have been introduced. The parameters ci and cAi represent char-
acteristic velocities in microstructures, and ωi are characteristic
frequencies.

Dispersion relations for concurrent microstructures are derived
in similar way. For Eqs. (14)–(16) and (20)–(21) we get

(c2k2−ω2)(c2
1k2−ω2+ω2

1)(c2
2k2−ω2+ω2

2)+ c2
A12ω2

2k2(−c2
0k2 +ω2)

− c2
A1ω2

1k2(c2
2k2−ω2+ω2

2)−c2
A2k2ω2

2(c2
1k2 −ω2 +ω2

1) = 0, (31)

and

(c2k2 −ω2)(c2
1k2 −ω2 −ω2

1)(c2
2k2 −ω2 +ω2

2)

− c2
A2ω2

2k2(c2
1k2 −ω2 +ω2

1)− c2
A1ω2

1k2(c2
2k2 −ω2 +ω2

2) = 0, (32)

Fig. 3. Dispersion curves of Eq. (34) for 	A1 = 	A12 = 0.4, 	1 = 0.5, 	2 = 0.3, and�2 = 2:
(1,2) optical branches, (3) acoustical branch; dashed lines, asymptotes to dispersion
curves.

respectively. In these equations the velocity c2
A2 = A2

2/(�0B2) has
been introduced. To reduce the number of coefficients, the dimen-
sionless quantities


 = ck

ω1
, � = ω

ω1
(33)

are used. Introducing the latter into Eqs. (29), (31) and (32) yields
the dispersion relations in dimensionless form

(
2 − �2)(	2
1 
2 − �2 + �2

1)(	2
2 
2 − �2 + �2

2)− 	2
A12�2

2
2(
2 − �2)

−	2
A1
2(	2

2 
2 − �2 + �2
2) = 0, (34)

(
2 − �2)(	2
1 
2 − �2 + �2

1)(	2
2 
2 − �2 + �2

2)− 	2
A12�2

2
2(
2 − �2)

−	2
A1
2(	2

2 
2 − �2 + �2
2)− 	2

A2�2
2
2(	2

1 
2 − �2 + �2
1) = 0, (35)

and

(
2−�2)(	2
1 
2−�2+�2

1)(	2
2 
2 − �2 + �2

2)− 	2
A2�2

2
2(	2
1 
2 − �2 + �2

1)

−	2
A1
2(	2

2 
2 − �2 + �2
2) = 0, (36)

respectively. New parameters denote velocity ratios and dimen-
sionless frequencies

	1 =
c1

c
, 	2 =

c2

c
, 	A1 =

cA1

c
, 	A2 =

cA2

c
, 	A12 =

cA12

c
,

�1 = 1, �2 =
ω2

ω1
. (37)

The characteristic set of dispersion curves is shown in Fig. 3. For
simplicity we look first at the dispersion curves given by hierar-
chical microstructure (34). The dispersion relation (34) represents
three branches which in general are distinct (see Fig. 3). While
lower curve is called acoustical, the two higher frequency curves
are called optical and they reflect internal modes of oscillation
(Mindlin, 1964). The acoustical curve starts at the origin with a
slope � = (1− 	2

A1)1/2
, then it approaches � = (	2
1 − 	2

A12)1/2
 and
� = 	2
 in the short wave limit. The middle optical curve starts at
� = �1 with a slope � = 
 and then approaches � = 	1
 in the short
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Fig. 4. Comparison of dispersion curves of Eqs. (34)–(36) for 	A1 = 	A2 = 	A12 = 0.4,
	1 = 0.5, 	2 = 0.3, and�2 = 2: solid lines, hierarchical model (34); dashed lines, con-
current model (35); dotted lines, concurrent model (36).

wave limit. The second optical curve starts at � = �2 and approaches
� = 
. The asymptotical values � = 
, � = 	1
 and � = 	2
 are repre-
sented by dashed lines in Fig. 3. Although the dispersion relations
(34)–(36) are at the first sight similar, there are certain differences
in the dispersion curves (see Fig. 4). The important similarities
between the models is that all three models are represented by
three dispersion curves and in the short wave limit the correspond-
ing curves in different models approach the same values - � = 
 for
the highest curve, � = 	1
 for the middle curve and � = 	2
 for the
lowest curve. While the differences between concurrent model (35)
(represented by dashed line in Fig. 4) and hierarchical model (rep-
resented by solid line in Fig. 4) are very subtle, the concurrent model
(36) (represented by dotted line in Fig. 4) has noticeable differences
in acoustical and middle optical curve. The acoustical curve starts
with a slope � = (1− 	2

A1 − 	2
A2)1/2
, then it approaches � = 	1
 and

� = 	2
 in the short wave limit. The middle optical curve starts with
a slope � = (1− 	2

A2)1/2
 and then approaches � = 	2
 and � = 	1

in the short wave limit (cf. asymptotes in Fig. 3).

6. Conclusions

The Mindlin’s idea on describing a microstructure is enlarged
to multiple scales by using the concept of internal variables. The

models and the corresponding dispersion relations are physically
well grounded and display essential differences for medium-range
wavelengths. This opens possibilities to distinguish the microstruc-
tured solids by measuring the wave-field characteristics. It is clear
that the complexity of microstructure can be increased by means
of the combination of simple microstructure models considered
above. Nonlinear terms may be introduced at any level of descrip-
tion as well as at the coupling. The analysis of corresponding wave
profiles is in progress.
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