
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technology

Department of Software Science

Tallinn 2020

ITC70LT
Martin Leppik 153618IVCM

IMPROVING AWS S3 SECURITY AT A
MEDIUM-SIZED COMPANY: CHALLENGES

AND SOLUTIONS

 Master thesis

Supervisor: Hayretdin Bahsi, Ph.D

2

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Martin Leppik

[19.05.2020]

3

Annotatsioon

Paljud ettevõtted on hakanud tänapäeval eelistama enda loodud andmekeskuste asemel

avalikke pilveteenuseid. Üks populaarsemaid teenusepakkujaid selles sektoris on

Amazon Web Services (AWS), kus kasutatakse AWS S3 nimelist teenust andmete

hoiustamiseks. Sinna luuakse üksteisest isoleeritud loogilisi üksusi, mida nimetatakse

ämbriteks, milles sisalduvad faile kutsutakse objektideks. Üks levinumaid AWS S3

kasutusjuhte on sinna salvestada objekte, mida ettevõtte pakutava teenuse kasutajad on

üles laadinud. AWS S3 teenust on lihtne üles seada kasutades vaikesätteid, aga seetõttu

on samuti lihtne teha vigu pääsuõigustes, mille tagajärjel võivad kasutajate poolt

salvestatud objektid muutuda avalikult Internetist kättesaadavaks.

Käesolev lõputöö uurib, kuidas tõsta AWS S3 teenuse turvalisust keskmise suurusega

ettevõttes. Esmalt antakse ülevaade S3 ämbrite konfiguratsiooni valikutest,

pääsumehhanismidest, AWS-i sisse ehitatud turvateenustest ning kolmanda osapoole S3

auditeerimise tööriistadest. Analüüsi osa on jaotatud neljaks erinevaks faasiks, mis

puudutavad järgnevaid AWS S3 osasid: ämbrite konfiguratsioon, pääsumehhanismid,

monitooring ja tarkvaraarendusega seotud probleemid. Igas faasis kasutatakse toiming-

uurimus metodoloogiat, mille kaudu kirjeldatakse peatüki eesmärki, kasutatavaid

meetodeid, meetrikat, probleemide tuvastamist ja vajalikke muudatusi ning hinnatakse

faasi edukust vastavalt püstitatud eesmärkidele.

Selle lõputöö panuseks on laiaulatuslik AWS S3 teenuse turvalisuse audit kasutades

AWS-i ja kolmanda osapoolete tööriistu, mis on eskaleeritav keskkonnas, kus on sadu

ämbreid. Lisaks antakse soovitused, kuidas tõsta üldist S3 turvalisust vältides

enamlevinuid vigu pääsumehhanismides. Rakendatakse S3 konfiguratsiooni standard ja

juurutamise protsess ning lisatakse faililaiendi põhine valgefiltreerimine, mis takistab

pahatahtlike skriptide käivitamist otse veebilehitsejas pärast faili avamist. Selle lõputöö

tulemused põhinevad päris ettevõttel.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 69 leheküljel, 7 peatükki, 1

joonist ja 12 tabelit.

4

Abstract

Many companies have started to prefer public cloud services to private data centers.

Amazon Web Services (AWS) with its S3 service is one of the more popular services for

storing data. Logically isolated units created there are called buckets which in turn contain

objects. One popular use case for S3 is to store objects uploaded by users via company-

provided services so that these objects can later be accessed by the user online. It is easy

to configure S3 but on the other hand it is also easy to make mistakes in access control

mechanisms, rendering the user-uploaded objects publicly accessible from the Internet.

This thesis discusses the challenges of and solutions for improving the security of AWS

S3 at a medium-sized company. Firstly, an overview of bucket configuration options,

access control mechanisms, AWS native S3 security services, and 3rd party security tools

is given. The analysis part is divided into four separate phases which touch the following

AWS S3 parts: bucket configuration options, access control mechanisms, monitoring and

development related issues. Every phase uses the action-research methodology describing

the goal, methods, metrics, problem identification, action items and evaluating the results

based on the success criteria.

The contribution of this thesis is a comprehensive security audit of the Simple Storage

Service using AWS native and 3rd party tools which scale in an environment with

hundreds of buckets. Additionally, recommendations are given for increasing S3 security

posture by avoiding the most common mistakes in access control mechanisms,

implementing the bucket configuration standard and deployment procedure, and applying

MIME type-based whitelisting to prevent malicious scripts from executing after object

retrieval. The results of the thesis are based on a real company.

This thesis is written in English and is 69 pages long, including 7 chapters, 1 figure and

12 tables.

5

Table of abbreviations and terms

ACL Access Control List

ACP Access Control Policy

Amazon S3 Amazon Simple Storage Service

AWS Amazon Web Services

AWS IAM AWS Identity and Access Management

CLI Command Line Interface

CMS Content Management System

CSB Cloud Storage Broker

CSS Cloud Storage Service

EC2 Elastic Compute Cloud

GDPR General Data Protection Regulation

HTML Hypertext Markup Language

KMS Key Management System

MIME Multipurpose Internet Mail Extensions

POC Proof of Concept

RDS Relational Database Service

SMT Satisfiability Modulo Theories

URL Uniform Resource Locator

XSS Cross Site Scripting

6

Table of contents

1. Introduction .. 10
1.1. Problem statement and author’s contribution ... 12

1.2. Outline .. 14
2. Background information ... 16

2.1. AWS S3 .. 16
 Access management ... 16
 Bucket configuration options .. 18

2.2. AWS S3 security auditing tools and services ... 19

2.3. Open source third party S3 auditing tools .. 22
3. Literature Review ... 23
4. Methods .. 27
5. Results .. 30

5.1. Phase 1 – Audit of configuration options ... 30
 Goal .. 30

 Problem identification .. 31
 Action items and implementation ... 32
 Metrics .. 35
 Change evaluation .. 36

5.2. Phase 2 – Access control mechanism audit .. 37
 Goal .. 37
 Problem identification .. 37
 Metrics .. 39
 Action items and implementation ... 41

 Change evaluation .. 42
5.3. Phase 3 – AWS S3 monitoring implementation ... 45

 Goal .. 45

 Problem identification .. 45
 Metrics .. 46
 Action items and implementation ... 46

 Change evaluation .. 48
5.4. Phase 4 – AWS S3 development related issues .. 49

 Goal .. 49
 Metrics .. 50
 Problem identification .. 50
 Action items and implementation ... 52

7

 Change evaluation .. 52

6. Discussion ... 54
7. Summary ... 58
References .. 61
Appendix 1 – Wazuh’s Cloudtrail integration guide .. 66
Appendix 2 – Amazon ruleset and predefined AWS events in Wazuh 68

8

List of figures

Figure 1. Authorization process of all access control mechanisms [9] 18

9

List of tables

Table 1. AWS Cloudtrail S3 log event example about bucket deletion 20
Table 2. AWS Config S3 bucket related checks .. 21
Table 3. Phase 1 – Audit of configuration options ... 27
Table 4. Phase 2 - Access control mechanism audit ... 28
Table 5. Phase 3 - AWS S3 monitoring implementation ... 29
Table 6. Phase 4 - AWS S3 development related issues .. 29
Table 7. The status of configuration options in test and production environment 36
Table 8. Change evaluation in the configuration audit phase ... 36
Table 9. Access control mechanism issues ... 40
Table 10. Access control mechanism change evaluation ... 43
Table 11. AWS S3 logging metrics .. 46
Table 12. Example of bugs reported to the bug bounty program 50

10

1. Introduction

Amazon S3 is an AWS service that is used by many companies of all sizes for object

storage. The logically isolated units created in S3 are called buckets which contain objects

which are essentially files with metadata. While setting up object storage is relatively

simple compared to building and maintaining your own data center, it is very easy to

make configuration mistakes that lead to data leaks. There have been many cases where

big corporations have suffered a data breach due to such mistakes. These breaches are

likely to continue as long as it is possible to make S3 buckets public.

The Amazon S3 service launched in 2006 and from 2017 onward there have been many

S3-related data breaches in public and private sectors [1]. For example, in 2017

UpGuard’s Cyber Risk Team discovered one of the largest US voter data leaks which

exposed 198 million records containing personal information and profiling data [2]. In

2016 Uber suffered a data leak and exposed 57 million records which included customer’

personal information [3]. In 2019 UpGuard’s data breach research team discovered

another case where Attunity (Isreali IT firm) exposed its customer backups of Fortune

100 companies like Ford, Netflix and TD Bank via publicly exposed buckets [4].

AWS provides multiple mechanisms for controlling access to S3 resources: Identity and

Access Management (IAM) policies, S3 bucket policies, and S3 Access Control Lists

(ACLs). While IAM policies are attached to users, bucket policies and ACLs are

configured at bucket level. It is not easy to decide which mechanism should be used

because the appropriate mechanisms depend on the specific use case. There is even an

authorization process where multiple control mechanisms are used together. If these

aspects are not well understood, then mistakes are prone to happen.

Objects are most commonly made public with bucket or object ACLs. Amazon provides

its tenants predefined ACL user groups that can be used for granting access. The

authenticated user group is very often misunderstood. The wording leads AWS users to

believe that they are granting permissions to their AWS IAM users within the same

account but instead are allowing any authenticated AWS user in the world to access the

S3 bucket.

Tenants commonly use multiple AWS accounts to separate different environments such

as development, test, and production. These accounts may contain several hundred

11

buckets. How to audit access controls and configuration options if there are so many

buckets in separate accounts? AWS has tools that give valuable insights for the audit but

their coverage is not comprehensive.

AWS S3 is also capable of bucket and object level logging with a service called AWS

Cloudtrail. Not all companies have it configured. To take full advantage of Cloudtrail

audit logs, log analysis needs to be set up. For example, this can be accomplished through

open source tools like Elastic stack or 3rd party paid solutions. Unfortunately, many

companies do not have the time or manpower to make sure that audit logs are stored and

visualized.

12

1.1. Problem statement and author’s contribution

This thesis focuses on multiple aspects of improving the AWS S3 security based on the

example of a medium-sized company. This study is important because the organization

uses S3 extensively and has experienced security issues in relation to this in the past. The

insights of this thesis can also be used by others to strengthen their S3 security posture.

The thesis relies on action-research methodology. This means that the author assumes the

role of security consultant, finds issues related to the company’s use of S3, and

collaborates with developers and infrastructure teams who apply fixes based on the

author’s recommendations. The work is divided into multiple phases where action items

are identified and executed and metrics about the improvements are collected. The first

phase focuses on bucket configuration options. S3 access control mechanisms are audited

in the second phase. The third phase discusses bucket log analysis and monitoring. The

last phase inspects a sample of bug bounty program reports that are related to S3

development issues.

Auditing all bucket configuration options is not an easy task when there are hundreds of

buckets in multiple AWS S3 accounts. AWS provides some native security services that

are capable of checking only a few essential options. For example, AWS Config allows

to check the status of server access logging, bucket replication, versioning, server-side

encryption and also checks if there are policies that give public read or write access to the

buckets. One of the goals is to find a quicker way to get an overview of all bucket

configurations options in development, test and production AWS accounts. For example,

if versioning, server access and object level logging, default encryption and lifecycle are

configured. Areas for improvement are suggested after documenting the bucket

configurations of three AWS accounts. One of the problems is related to finding out which

buckets options should be configured. At first, the current bucket configuration and

deployment procedure is reviewed. Then a new AWS S3 bucket configuration standard

and deployment procedure is written and implemented. Later a video training about the

aforementioned documents is created and launched. Lastly, the configuration options will

be changed according to the set standard.

Incorrectly configured S3 access control mechanisms can lead to data breaches. Even the

company that this thesis refers to has received multiple reports about misconfigured

13

policies from its bug bounty program. This thesis focuses on auditing all of the S3 access

control mechanisms in three different AWS accounts (development, test and production).

Two tools are used for auditing: at first manual inspection of policies is done with AWS

CLI and later Netflix SecurityMonkey is deployed to review the automated findings in

relation to policy issues. Firstly, all access-related policies are documented using AWS

CLI and manually reviewed. Secondly, Netflix SecurityMonkey is configured to

automatically analyse access control mechanisms and produce findings on problematical

policies. The challenge here is to eliminate false positive findings by determining which

findings are actually problematic for the company. Finally, tickets are made for the

infrastructure team to remedy the access control mechanisms issues based on the author’s

recommendations.

AWS Cloudtrail log analysis can be used for multiple purposes. For example, for

checking compliance, conducting security analyses, troubleshooting, and getting more

visibility into user and resource actions under the corresponding AWS account.

Unfortunately, the analytics importance of these logs is often overlooked because it

requires time and effort to set up the monitoring solution. Two different solutions are

configured and tested in this thesis. Firstly, Rackspace Compass is tested and evaluated

and secondly Wazuh is configured to start ingesting Cloudtrail logs. The goal is to be able

to analyse the whole Cloudtrail log by capturing bucket and object level actions and then

build dashboards upon them to get visibility into AWS S3. Log analysis findings can

subsequently be used to adjust IAM service user policies that are too permissive.

Not all issues are related to bucket configuration or access control mechanisms. This

thesis includes some reports from the company’s bug bounty program which demonstrate

the importance of correctly configuring object metadata. For example, if developers

attach the wrong metadata to objects then script files that either execute XSS or allow

malicious actors to steal other users’ files can be run inline in the browser. The goal is to

fix the issues by evaluating MIME type-based whitelisting and blacklisting together with

attaching the correct metadata.

The constraint for tools and services used in this thesis is that they have to be either open

source, AWS native services, or already implemented by the company. This is done to

avoid onboarding new paid solutions as the company might already have something in

place that can be used for this thesis.

14

The main contributions of the thesis are:

§ Comprehensive AWS S3 bucket configuration and access control mechanism

audit with multiple AWS, open source, and third-party solutions;

§ Bucket configuration standard and deployment procedure for the company;

§ Implementation of S3 monitoring solution.

The contribution of this thesis is a comprehensive security audit of Simple Storage

Service using AWS native and 3rd party tools which scale in an environment with several

hundred of buckets. Additionally, recommendations are given for improving the S3

security posture by avoiding the most common mistakes in access control mechanisms,

implementing the bucket configuration standard and deployment procedure, and applying

the MIME type-based whitelisting to prevent malicious scripts from executing after

object retrieval. The study is different from other guides as it looks at the security of AWS

S3 as a whole in a real environment. Also, the challenges, findings, and solutions are

based on experience gained from working at a real company.

1.2. Outline

Chapter 2 gives background information of AWS S3. Section 2.1 describes the main

concepts of S3. Section 2.2 lists AWS native security auditing tools and their capabilities

in terms of S3. Finally, section 2.3 gives an overview of open source S3 auditing tools

(ScoutSuite, Netflix SecurityMonkey) that can be used to audit access control

mechanisms and bucket configurations options.

Chapter 3 covers academic papers on S3 security.

Chapter 4 describes the action-research methodology used in chapters 5.1 to 5.4.

Chapter 5.1 concentrates on auditing the AWS S3 bucket configuration options using

multiple tools (AWS CLI, Config, Trusted Advisor and ScoutSuite). Subsequently,

improvement areas are described based on the audit results. Action items are implemented

and finally the changes are evaluated.

15

Chapter 5.2 focuses on auditing AWS S3 access control mechanisms using AWS CLI and

Netflix SecurityMonkey. Identified issues are documented and fixed. Finally, the

successfulness of this phase is evaluated.

Chapter 5.3 evaluates Rackspace Compass and Wazuh for Cloudtrail log analysis. The

capabilities of tools are described and the successfulness of this phase is evaluated.

Chapter 5.4 analyses a sample of bug bounty program reports that relate to AWS S3

development issues. Subsequently, findings are fixed and changes are evaluated.

Chapter 6 provides an overview of lessons learned in chapters 5.1 through 5.4.

16

2. Background information

2.1. AWS S3

AWS S3 is an object storage service provided by Amazon Web Services cloud computing

platform. It is marketed to be an industry leader at scalability, data availability, security,

and performance. S3 is used by companies of all sizes to store different types of data [5].

Object-based storage manages data as objects and differs from classical architectures like

file systems and block storages that manage data as file hierarchies and blocks [6].

Buckets created inside S3 are logically separated units which store objects containing data

and metadata which are distinguished by unique identifiers. Bucket name must also be

globally unique. The name of the object is called the object key. Key name prefixes are

used to simulate the concept of folders [7].

 Access management

There are multiple ways how to give access to S3 buckets:

§ Bucket Access Control Lists;

§ Object Access Control Lists;

§ Bucket Policies;

§ Identity and Access Management policies;

§ Signed URL-s.

ACLs can be either configured at bucket or object level. They specify which AWS

accounts, users, or groups have a specific type of access. The predefined set of groups

can be configured to give access to authenticated users or all users and to log delivery.

ACL permissions are READ, WRITE, READ_ACP, WRITE_ACP and

FULL_CONTROL which correspond to specific IAM or bucket policy permissions. For

example, when the bucket ACL has WRITE permission granted then s3:PutObject and

s3:DeleteObject are allowed, and READ_ACP allows s3:GetBucketAcl actions. The

bucket and object ACL permissions do not always correspond the same bucket or IAM

policy actions. For example, READ ACL at bucket level allows to execute the

s3:ListBucket action and the same permission at object level allows to run s3:GetObject

[8].

17

Bucket and IAM policies can be used to set more granular permissions when compared

to ACLs. They are in JSON format and specify which actions are allowed or denied at

bucket or object level. The main difference between them is that bucket policies are

directly attached to the buckets and include a principal (for example IAM user, role or

group) whereas IAM policy is directly attached to IAM users, roles or groups. When an

asterisk is used in the action part then 92 actions are allowed which include all bucket and

object level actions while the bucket and its objects are described in the resource section

[9].

Amazon considers ACLs as a legacy access control mechanism and does not recommend

using these as these predate IAM. Bucket and IAM polices should be preferred to ACLs

because these are more granular. Both policies are written in JSON format and have their

own use cases. For example, bucket policies are great when granting access to another

AWS account. IAM policies are suited to giving access to employees by directly attaching

these to the user or user group. Another popular use case is to attach policies to IAM users

allocated to the company’s applications that are responsible for object upload and

retrieval. Even though the same outcome can be achieved using either approach, it is

recommended to consistently use one method [9].

Companies often use signed URL-s as an alternative method to show the contents of

private buckets to their customers. For example, when customers want to see their objects,

IAM service user’s credentials and permissions are used to sign the getObject request

with the bucket and object key parameters. The end result is that a temporary URL is

generated that allows the customers to see their content [10].

All of these access control mechanisms are evaluated together in the authorisation process

(Figure 1). By default, all requests towards the resources are denied. In order to decide

whether to deviate from the default, all access control mechanisms are evaluated based

on the principle of least-privilege. If there is an explicit deny then the decision is to deny

the access. If there is not an explicit deny then the process continues and checks if there

is an allow, then the final decision is to allow the request. If there is not an allow in the

policies, then final decision is again to deny.

18

Figure 1. Authorization process of all access control mechanisms [9]

 Bucket configuration options

Each S3 bucket has its own configuration options. The properties tab configuration

options are:

§ Versioning - Versioning enables to keep multiple versions of an object in one
bucket [11];

§ Server access logging - Server access logging provides detailed records for the
requests that are made to the bucket. It is similar to the Cloudtrail’s object-level
logging, the differences are briefly discussed in the section 2.2 [12];

§ Static website hosting - Allows host a static website on Amazon S3 [13].
§ Object-level logging - Records object-level API activity by using CloudTrail data

events [14];
§ Default encryption - Mandates that all objects in a bucket must be stored in

encrypted form without having to construct a bucket policy that rejects objects
that are not encrypted [15];

§ Object lock – When enabled the objects cannot be deleted or overwritten [16];
§ Tags – Can be used for adding more details for billing with AWS cost allocation.

Also allows to attach information as a key-value pair that represents a label that
is assigned to a bucket [17];

§ Transfer acceleration - Amazon S3 Transfer Acceleration enables fast, easy, and
secure transfers of files over long distances between the client and an S3 bucket
[18];

§ Events - Enables certain Amazon S3 bucket events to send a notification message
to a destination whenever the events occur. For example, when objects are created,
removed, restored or replicated [19];

§ Requester pays – The requester (instead of the bucket owner) pays for requests
and data transfers when this option is enabled [20].

The permissions tab configuration options are:

§ Public access settings for this bucket – These settings allow to block access
control mechanisms that give public access to the bucket or its objects. This can
be also configured at the account level. These settings protect against situations
when public access is granted mistakenly. Can be also used to block public access
granted using object ACLs. However public access block settings cannot be

19

enabled when a bucket uses deliberately public access to host a website or relies
in some other ways on public access [21];

§ Bucket Level Access Control List (ACL) - Amazon S3 access control lists
(ACLs) enable to manage access to buckets and objects. Each bucket and object
have an ACL attached to it as a sub resource. It defines which AWS accounts or
groups are granted access and describes the type of access [8];

§ Object Level Access Control List (ACL) - Amazon S3 access control lists
(ACLs) enables to manage access to objects. Each object has an ACL attached to
it as a sub resource. It defines which AWS accounts or groups are granted access
and the type of access [8];

§ Bucket Policy - S3 bucket policies are attached only to S3 buckets. S3 bucket
policies specify what actions are allowed or denied for which principals on the
bucket that the bucket policy is attached to (e.g. allow user Alice to PUT but not
DELETE objects in the bucket) [9];

§ CORS configuration - CORS allows client web applications that are loaded in
one domain to interact with resources in another domain [22].

The management tab configuration options are:

§ Lifecycle - Allows to manage objects so that they are stored cost effectively
throughout their lifecycle and lets to define rules to delete the objects based on
defined schedule. A lifecycle configuration is a set of rules that define actions that
Amazon S3 applies to a group of objects [23];

§ Replication - Cross-region replication (CRR) enables automatic, asynchronous
copying of objects across buckets in different AWS Regions. Buckets configured
for cross-region replication can be owned by the same AWS account or by
different accounts [24];

§ Analytics – The usage Amazon S3 analytics storage class analysis permits to
analyse storage access patterns and help to decide when to transition the right data
to the right storage class. This new Amazon S3 analytics feature observes data
access patterns to helps to determine when to transition less frequently accessed
objects from STANDARD storage to the STANDARD_IA (IA, for infrequent
access) storage class [25];

§ Metrics - Amazon CloudWatch metrics for Amazon S3 can help to understand
and improve the performance of applications that use Amazon S3 [26];

§ Inventory - Amazon S3 inventory is one of the tools Amazon S3 provides to help
manage the storage. It can be used to audit and report on the replication and
encryption status of objects for business, compliance, and regulatory needs. Lets
also to simplify and speed up business workflows and big data jobs using Amazon
S3 inventory, which provides a scheduled alternative to the Amazon S3
synchronous List API operation [27].

2.2. AWS S3 security auditing tools and services

AWS CloudTrail
CloudTrail is a web service that records AWS API calls and delivers the log files to a S3

bucket. The information includes the identity and the source IP address of the API caller,

time of the API call, request parameters (specified separately in the documentation of

20

each AWS service), and the response returned by the AWS service [28]. For example,

when someone deletes an S3 bucket then the CloudTrail log event contains the

information shown in Table 1 (only relevant fields are included as showing all 57 fields

in the example request would be impractical).

Table 1. AWS Cloudtrail S3 log event example about bucket deletion

S3 log files can be sent to CloudWatch logs which is an AWS native service for collecting

and analysing logs. When Cloudtrail logs are sent to CloudWatch events service then a

rule can be created which searches the logs for an event and triggers an action, e.g.

sending a notification. These logs can be also analysed by Elastic stack, open source tools,

or paid 3rd party services.

AWS S3 Server Access Logging
Server access logging is similar to Cloudtrail data event logs but has to be configured for

each bucket separately. While Cloudtrail logs are in JSON format and therefore easily

parsable by monitoring tools, server access logs are loosely structured and need a self-

written special decoder to parse the logs. Additional issues with S3 server access logs are

that the delivery of logs is done on best effort basis (logs might be delivered within a few

hours or in some cases not delivered at all) and that some events like bucket creation and

deletion are not logged [29]. While S3 server access logs only contain information about

bucket events, Cloudtrail can also be used to monitor all AWS account level events as

well as bucket and object level events [30].

No. Field name Value

1 awsRegion The name of the destination region (data center)

2 aws_account_id The ID of target AWS account

3 eventName DeleteBucket

4 sourceIPAddress

Source IP address of the API caller

5 eventTime

The time of the API call

6 userIdentity.userName

For example, the name of the IAM user who made
the request

7 requestParameters.bucketName

The name of the bucket that got deleted

21

AWS Config
Config is a native AWS service that enables to assess, audit, and evaluate the

configurations of the AWS resources. AWS Config has many uses, but its main benefit

comes from the ability to audit resource configuration changes. Simple Notification

Service alerts can be triggered when a certain configuration change happens [31]. For

example, it is possible to check whether an IAM user has multi-factor authentication

configured or not. S3 bucket-related checks are shown in Table 2 [32].

Table 2. AWS Config S3 bucket related checks

AWS Trusted Advisor

Trusted Advisor is a native AWS service that offers a set of best practice checks and

recommendations across five categories: cost optimization, security, fault tolerance,

performance, and service limits [33]. Trusted Advisor has three AWS S3 checks [34]:

No. Field name Value

1 Cloudtrail-enabled Checks whether CloudTrail is enabled or not

2 S3-bucket-blacklisted-actions-
prohibited

Checks for blacklisted actions in bucket policies

3 S3-bucket-logging-enabled Checks the status of bucket logging

4 S3-bucket-policy-not-more-
permissive

Checks for policies that are more permissive than
the policy provided in this check

5 S3-bucket-public-read-prohibited

Check for buckets that allow public read access
through bucket policy or ACL

6 S3-bucket-public-write-prohibited

Check for buckets that allow public write access
through bucket policy or ACL

7 S3-bucket-replication-enabled

Checks for bucket replication status

8 S3-bucket-server-side-encryption-
enabled

Checks whether bucket policy denies unencrypted
put requests

9 S3-bucket-ssl-requests-only Checks whether policies require SSL for
communicating with bucket

10 S3-bucket-versioning-enabled Checks for the bucket versioning status

22

§ Amazon S3 Bucket Permissions (Free) – Checks for buckets that have open
access permissions;

§ Amazon S3 Bucket Logging (Needs higher support plan than basic) – Checks
for bucket logging;

§ Amazon S3 Bucket Versioning (Needs higher support plan than basic) –
Checks whether versioning is enabled on buckets.

AWS Macie

Macie is a security service that analyses and classifies data stored in AWS S3 buckets. It

detects personally identifiable information and sensitive data. Additionally, it monitors

data access activity with the help of Cloudtrail audit logs [35]. Macie can be also used

for detecting public buckets and objects.

2.3. Open source third party S3 auditing tools

Netflix Security Monkey

Security Monkey is an open source tool created by Netflix. It makes an inventory of AWS

resources, tracks changes, and has built in checks for auditing. The auditor module

identifies potential issues in ACLs, bucket and IAM policies. There is a friendly account

detection when multiple AWS accounts have been added to the tool. If friendly accounts

are not added, then there will be alarms about unknown cross accounts. Deployment and

configuration of Security Monkey takes some time and effort. Some of the functionalities

that worked on the development branch did not work on the master branch and vice versa.

NCC Group ScoutSuite

ScoutSuite (previous name Scout2) is an auditing tool that scans through AWS

configuration options and highlights problematic areas. It can be easily installed locally

and only needs AWS credentials with read permissions to work. The S3 dashboard shows

buckets that are publicly accessible in multiple categories. Additionally, the tool detects

the buckets that do not have the following configuration options enabled: default

encryption, versioning, access logging, and versioning enabled without MFA delete. The

dashboard also shows access control-related findings. For example, if buckets or their

permissions are world-readable or world-writable and if various actions (delete, get, list,

manage, put) are allowed to all principals.

23

3. Literature Review

This chapter looks at existing work related to AWS S3 security. Firstly, the author

presents the reasoning behind the sudden increase of reported breaches over the past few

years. Then multiple papers are introduced which talk about the cloud challenges. The

studies about cloud penetration testing and shared responsibility model are discussed

next. Then the cloud storage broker (CSB) technology is introduced and how automated

security auditing can be applied to it. Afterwards the AWS automated reasoning

technology for finding policy misconfiguration at scale is introduced. Finally, aspects that

academic literature has not yet discussed are brought up.

There are multiple reasons why AWS S3 related security breaches have been more

frequent since 2017. Firstly, security researchers and hackers started developing tools that

scan for public buckets. Some examples of these tools are: AWSBucketDump, Bucket

Finder, Bucket Stream, BuQuikker, inSp3ctor, s3-fuzzer, S3Scanner and Teh S3

Bucketeers [36]. There are even paid services (https://buckets.grayhatwarfare.com/) that

search for public buckets and their contents. Secondly, reports of breaches might have

increased due to the GDPR requirement to report discovered data breaches within 72

hours, with the failure do so being grounds for a significant fine.

This conference paper [37] brings out that 2017 was the year of data breaches when

entities like NSA, Pentagon and Accenture suffered from a data breach due to

misconfigured S3 buckets. The work points out that the main cloud challenges revolve

around identity and access management, logging and visibility, and incident response.

The study indicates that gaining visibility is needed to stop threats and improve the

security posture. This can be done by analysing the logs with monitoring tools and

creating dashboards, reports and incident response workflows. The paper also shows how

the integration of SIEM tool such as Splunk can help to address the visibility problem.

This study [38] looks into cloud security threats, issues, challenges and their solutions.

The paper states that the main reason of data loss and leakage in case of cloud providers

is lack of authentication, authorization, and access control, weak encryption algorithms,

weak keys, risk of association, unreliable data center, and lack of disaster recovery. Also

proposes some prevention methods: Secure API, data integrity, secure storage, strong

encryption keys and algorithms, and data backup. The study concludes that the cloud

24

users should be aware of cloud vulnerabilities, threats and existing attacks which helps to

adopt the cloud technologies in a faster rate.

This paper [39] explores how to conduct penetration testing in AWS using non-

authenticated and authenticated approaches. The study suggests using a tool named

Sandcastle to conduct bucket enumeration by providing wordlist that might be connected

to targeted company. It is possible to tell if the bucket exists or is publicly accessible

based on the HTTP response codes shown in the tool. Example case of authenticated

penetration test, a tool called WeirdAAL (AWS attack library) was tested in the

aforementioned paper which can be used to interact with AWS S3 and other services. For

example, this tool helps to determine if there are any mistakes in the access controls by

trying out various bucket and object level API calls. This article [40] shows how the

access control issues can be also discovered by interacting with S3 API and demonstrates

how various configured ACLs impact the security of the buckets and its content.

The authors of this study [41] explain what are the responsibilities of AWS customers in

regards to cloud provided services as AWS Elastic Computer Cloud (EC2), Relational

Database Services (RDS), S3, Glacier S3 Storage, and DynamoDB. The paper concludes

that in the shared responsibility model Amazon clearly provides information about their

and its customers security responsibilities. They additionally state that EC2 and S3

require the most customer attention which means that if the shared responsibility model

is not understood then serious consequences are prone to happen.

This paper [42] discusses about another approach to storage security by introducing

CloudRAID which is a broker solution for cloud storage providers. They tackle security,

availability and vendor lock problems by encrypting the original data and distributing the

data across multiple cloud storage providers. This study [43] extends the previous paper

by introducing CSBAuditor which is an automated security auditing tool for cloud storage

brokers which was built due to the fact that existing cloud auditing systems do not solve

the challenges related to cloud storage misconfigurations.

There have even been articles [44] stating that S3 security is flawed by design. The

article’s author brought up that while all buckets are private by default, it is too easy to

misconfigure access control mechanisms. Additionally, Amazon should provide its

25

customers better native security features and not force AWS users to invest more money

into alternative solutions to resolve fundamental issues.

In fact, Amazon has started slowly but steadily implementing features to help its

customers avoid data breaches with an initiative called Provable Security which

researches how to apply automated reasoning technology to detect policy

misconfiguration. This paper [45] explains how AWS Zelkova is using math to turn

policies into satisfiability modulo theories (SMT) that at the end help detect policy

misconfigurations using SMT solvers. Zelkova has been implemented for example into

AWS S3, Macie, Config, Trusted Advisor, and GuardDuty. The first Zelkova powered

feature in S3 console automatically gave users information if buckets were public or

private based on the configured access control mechanisms. It also displayed a warning

if it identified objects as public. Unfortunately, this feature did not show which policies

and their parts were misconfigured. This paper [46] discusses how formal mathematical

methods are easier to use with AWS compared to classic self-hosted microservices. It is

easier to check misconfiguration because AWS has its own policy language where

Zelkova can be applied. AWS has made their customers’ lives easier by introducing one-

click formal methods. For example, S3 uses Zelkova to disallow policies that give public

access, if the user chooses to block public access in settings.

Zelkova is promising technology and AWS has been working together with other

companies to make it more useful. In December 2019, AWS released IAM access

analyzer [47] which can be enabled with a few clicks. It uses automated reasoning which

in simple terms asks numerous yes-no questions about policies without any user

interaction and automatically produces findings about policies that provide external

access. A user then has to review the findings and decide whether or not the policies were

intentionally configured like this.

A paper by I. Saeed, S. Baras and H. Hajjdiab [48] compares the security and privacy of

AWS S3 and Azure Blob storage service. It looks into which compliance standards both

cloud service providers support. Additionally, it compares how the features of both

storage solutions meet compliance requirements. For example, how identity and access

management works, how data is protected in transit and at rest. Although Azure Blob

complies with two additional standards (ISO 20000 and ISO 22301) compared to AWS

S3, the authors conclude that in the end choosing the right object storage service comes

26

down to business requirements and prior experience. Both of them comply with most

commonly accepted standards and also use encryption at data and network level.

The author of this thesis found that there are very few academic papers that discuss the

topic of AWS S3 security. Some topics that have not been addressed in academic

literature: how to audit bucket configuration options and access control mechanisms at

scale, how to deploy and configure buckets and policies to avoid data breaches, how to

monitor AWS S3 and how to design upload services securely. AWS has started taking

the right steps towards fixing the fundamental issues with Zelkova but there is still a lot

of room for improvement.

Action research methodology is generally applied in the social sciences but it can be also

used in other fields such as information security or computer technologies. For example,

this conference paper [49] used action research methods for improving security in agile

processes. Another conference paper [50] applied action research for improving

information security policies at medium-sized companies. In the following paper [51] the

action research principles were employed to understand the post-breach security changes.

27

4. Methods

This thesis uses action-research methodology [52] which is used by practitioners to solve

problems in a cyclical manner. The number of steps in cycles vary in different action-

research examples, the steps in general are plan, act, observe, reflect and repeat. One

important aspect of this methodology is that the practitioner involves individuals or

groups with a common purpose of improving the current situation. The term phase is used

in this thesis instead of cycle.

In this thesis the author assumes the role of security consultant, finds issues related to the

company’s use of S3, and collaborates with developers and infrastructure teams who

apply fixes based on the author’s recommendations. The work is divided into several

phases. The steps in each phase are:

§ Identifying the goals of the phase;

§ Deciding which methods will be used to achieve the goals;

§ Identification of problems;

§ Understanding the current situation by collecting metrics;

§ Defining success criteria for the phase;

§ Defining action items and implementing them;

§ Evaluating the changes.

The steps of the first phase are shown in Table 3.

Table 3. Phase 1 – Audit of configuration options

No. Step name Explanation

1 Goal Audit the configuration options of S3 buckets.

2 Tools and
methods used

AWS CLI is used to pull the configuration options in a semi-automated way.

The documented results are manually reviewed.

Semiformal interviews are conducted with infrastructure engineers.

3 Problem
identification

Lack of S3 configuration standard and deployment procedure.

Bucket default encryption not configured.
Bucket tags do not include meaningful information about the bucket.

Lack of ticket template for requesting a bucket.

Lack of AWS S3 training for engineers.
There are unused buckets that need to be removed.

4 Metrics The ratio of buckets with encryption enabled.

The ratio of buckets in AWS production account with tagging configured.

The ratio of engineers who have completed the AWS S3 video training.
The number of unused buckets deleted.

28

The steps of the second phase are show in Table 4.

Table 4. Phase 2 - Access control mechanism audit

5 Success
criteria

Every bucket should have encryption enabled.

Tagging must be configured for every bucket in AWS production account.
At least 50% of the engineers must complete the AWS S3 video training.

All identified unused buckets must be removed.
6 Action items Creation of configuration standard and deployment procedure.

Creation of bucket requesting template for the engineers.

Enabling of bucket default encryption and implementing bucket tagging.
Creation of AWS S3 video training.

Removal of empty or unused buckets.

7 Change
Evaluation

The phase was successful as it met the defined success criteria.
Based on the bucket configuration standard, the default encryption and tags were enabled for the 28 buckets
in test and 88 buckets in production environment.

125 engineers out of 199 completed the AWS S3 training created by the author of this thesis.
18 empty or unused buckets were removed based on the audit results.

No. Step name Explanation

1 Goal Audit S3 access control mechanisms.

2 Tools and
methods used

AWS CLI is used to pull the access control mechanisms in semi-automated way, and the results are
documented.
Netflix SecurityMonkey’s automated findings (issues about the access control mechanisms) are manually
reviewed.

3 Problem
identification

Multiple buckets contain object ACLs in test and production AWS accounts that give read access to any
authenticated AWS user in the world.
Multiple bucket ACLs in development AWS account allow either any authenticated AWS user or everyone
in the world to do everything, read bucket objects or bucket permissions.
All three AWS accounts have IAM policies attached to some service users that allow to do every action
against every bucket within the same account.
Test and production AWS accounts contain many IAM policies that allow the service users to do every
action against a specific bucket.
Test and production AWS accounts contain bucket policies that give access to data warehouse team’s old
AWS account which is no longer used.

4 Metrics Access control mechanisms’ audit results are shown in Table 9.

The ratio of fixed critical severity findings.
The ratio of fixed high severity findings.

The ration of fixed medium severity findings.

5 Success
criteria

All critical and high severity access control findings must be fixed.

At least 75% of the medium severity findings must be fixed.

6 Action items Remove the part of code that attaches any authenticated AWS ACL to objects. Also enable blocking public
ACLs at the bucket level.

Remove bucket ACLs that permit access for everyone in the development environment.
Remove IAM users which have policies attached that allow to make any action against all of the buckets
within the same AWS account and substitute them with IAM users with more restricted policies.

Limit the actions for policies that allow to do every action against a specific bucket.
Adjust bucket policies by removing access from data warehouse’s old AWS account.

7 Change
evaluation

5 critical severity bucket ACLs findings were fixed in the development AWS account and 9 findings were
addressed in the rest of the environments.
6 high severity IAM policies were fixed.

29

The steps of the third phase are shown in Table 5.

Table 5. Phase 3 - AWS S3 monitoring implementation

The steps of the fourth phase are shown in Table 6.

Table 6. Phase 4 - AWS S3 development related issues

8 medium severity IAM policies were adjusted in the test AWS account and 9 policies were adjusted in the
production AWS account.
3 medium severity bucket policies were adjusted.
33 low severity bucket policies with cross account access were fixed, more specifically 21 policies were
adjusted and 12 buckets got deleted.

No. Step name Explanation

1 Goal Find ways how to monitor AWS S3.

2 Tools and methods
used

Analysing AWS Cloudtrail audit logs with Rackspace Compass and Wazuh;

3 Problem identification CloudTrail logs were collected but not analyzed with a monitoring tool.

4 Metrics The number of AWS S3 events received by Wazuh.

5 Success criteria All AWS S3 events must be received for further analysis.

6 Action items Start using AWS CloudTrail and analyze the logs using Compass and Wazuh;

7 Change Evaluation This phase did not meet the success criteria as the Cloudtrail log monitoring was configured but out
of 92 events only 19 were logged into Wazuh.

No. Step name Explanation

1 Goal Fix the development-related issues reported in the bug bounty program.

2 Tools and methods
used

Communication with the developers and analysis of the cases.

3 Problem identification Malicious MIME types can be uploaded using company’s file upload service which will execute
inline in the browser after opening.

4 Metrics The ratio of AWS S3 related bug bounty program reports fixed.

5 Success criteria All of the AWS S3 reports must be fixed.

6 Action items Implement correct MIME types-based whitelisting.

7 Change Evaluation This phase met the success criteria as 18 total of AWS S3 related bugs have been fixed, including
the 5 issues demonstrated in this thesis.

30

5. Results

The next step was to conduct semi-structured interviews with the infrastructure team to

understand what kind of services they are using in AWS. Multiple team members said

that AWS S3 is the most used service inside the company. This meant that the scope of

research needed to be narrowed down to the one main service (AWS S3) and other

components (bucket configuration options, access control mechanisms, IAM and

Cloudtrail) connected to it. Ten AWS accounts owned by company were identified but

not all of these contained S3 buckets. Most of the buckets were under development, test,

and production accounts owned by the infrastructure team. The data warehouse team’s

AWS accounts were not included in this study, even though they use S3 to some extent.

The same audit methods can also be applied to that team in the future. The final scope of

work was to audit the three AWS accounts belonging to the infrastructure team using

action research methodology.

As a prerequisite to the audit, the author needed access to the AWS accounts with read-

only permissions and credentials for the CLI. Test and production AWS accounts were

chosen for data collection as these are completely managed by the infrastructure team

while developers have full permissions in the development account.

The analysis part of the thesis will be divided into four subchapters called phases. The

first phase is auditing AWS S3 configuration options. Access control mechanisms will be

reviewed in the second phase. The next phase will discuss S3 monitoring. The last phase

will be an analysis of issues related to AWS S3 development.

5.1. Phase 1 – Audit of configuration options

This chapter discusses the audit of AWS S3 configuration options. Bucket configuration

standard and deployment procedure documents are outlined, and action items are

implemented based on the aforementioned documents. Finally, the results are evaluated.

 Goal

The goal of this phase is to audit bucket configuration options. Firstly, AWS native

auditing tools Trusted Advisor and Config were used for the initial assessment.

Unfortunately, Trusted Advisor had only two configuration checks for S3 (logging and

31

versioning) which were disabled as the company did not have necessary support plan to

use them. AWS Config provided information only about 4 configuration options:

Cloudtrail, logging, replication, and versioning. As the native security auditing tools were

only able to check a few bucket configurations options, it was necessary to find another

approach to collecting information on how the S3 buckets have been configured.

Alternative approaches using ScoutSuite and AWS CLI are discussed in the next

paragraph.

ScoutSuite (former name Scout2) was also tested to find more insights into problematic

areas. The S3 module mostly addressed permission issues which will be discussed in the

next phase. The states of the following configuration options were provided by this tool:

default encryption, versioning, and bucket access logging. As ScoutSuite was also not

able to check all of the bucket configuration options, AWS CLI commands were used

instead to get the metrics for the initial configurations shown in Table 7.

 Problem identification

Additional interviews were conducted with the infrastructure team to understand the

information collected. The aim was to identify the reasoning behind enabling each of the

configuration options. It became apparent that bucket configuration was based on

developers’ requests, whereas this approach is not ideal as not all developers possess the

same level of knowledge about AWS. The process for S3 bucket requests by the

developers and deployment by the infrastructure team had some flaws. The configuration

inconsistencies between all of the environments were happening because developers

deployed buckets to the development AWS account (at times also done by infrastructure

engineers) and infrastructure engineers deployed to the test and production accounts.

Also, it was not agreed who has final say over the configuration. The author decided to

create a deployment procedure and configuration standard to harmonise the configuration

of current and future S3 buckets and avoid confusion. A ticket template for requesting an

S3 bucket was also created to streamline communication between infrastructure engineers

and developers.

Another identified issue was that buckets were not mapped to owners and services. This

became evident when attempting to obtain clarifications about certain buckets as it

required the author to match the company service to the bucket and then find the team

32

who owns the bucket. Surprisingly, some of the teams did not know that they owned a

specific AWS S3 bucket.

The configuration options audit revealed that none of the S3 buckets used the default

encryption. This is used for encrypting the objects at rest using Amazon S3-managed

keys. It is very easy to enable this feature and it does not need any additional configuration

or changes.

The total amount of S3 buckets was somewhat concerning. A closer look identified empty

and unused buckets that added additional management overhead and increased the attack

surface. Furthermore, some test environment buckets were under the production AWS

account, thus violating best practices. Tickets were created for the infrastructure team to

fix those issues.

 Action items and implementation

The following action items were implemented in this phase:

§ AWS S3 configuration standard;

§ AWS S3 deployment procedure;

§ Ticket template for requesting a bucket from the infrastructure team;

§ AWS S3 online training;

§ Removal of unused buckets;

§ Enabling disk encryption on every bucket;

§ Attaching tags to the buckets.

AWS S3 configuration standard
The aim of creating this standard was to see if there are any configuration options that

could be enabled on every bucket. To this end, an Excel table was created containing

every option together with its description.

Then the buckets were categorized into three types in order to give better

recommendations:

§ Service buckets – used by company services to serve files to the customers;

§ Utility buckets – used internally by the infrastructure team;

§ Website redirect buckets – used for redirecting various domains to the company’s

main website.

33

Each type of bucket received a separate recommendation for every configuration option.

The three mandatory options for every bucket were: object level logging, default

encryption, and tags. Object level logging was enabled to start logging object level actions

using AWS Cloudtrail which can later be used for monitoring. Default encryption was

configured to encrypt the object inside the bucket. Tags were added to give extra context

about the buckets. The rest of the items in the table were optional and had instructions

when to use them as buckets and services may have different requirements.

The configuration standard also included information on how to apply tags to the buckets:

§ Owner - team name;

§ Type - utility/company service/website redirect;

§ Visibility - internal/external;

§ Service - company service or internal service name;

§ Data type - customer personal data/No customer personal data.

Four different ways to give access to the buckets were explained:

§ Bucket policy: Use when access is given to another AWS account. Prefer bucket

policy instead of ACL rules when you need everyone to be able to read the object;

§ Bucket (and object) ACL rules: As a general rule, AWS recommends using S3

bucket policies or IAM policies for access control. S3 ACLs is a legacy access

control mechanism that predates IAM;

§ IAM policy: Use when access is given to a service user or an employee;

§ Signed URL: Use when a company service is giving access to the company’s

customers.

Generally, there is little difference whether bucket policy or IAM policy is used. The

important part is to start using one mechanism instead of using both interchangeably. This

helps make policy management and auditing easier. S3 bucket or object level ACL-s

should not be used because they do not allow adding granular permissions and developers

then have a possibility to change them if IAM or bucket policy permits this. Additionally,

object level ACLs are difficult to audit as there can be thousands of objects in the buckets

which might have different ACLs attached. One way is to manually open sample of

objects in the bucket and inspect the ACL configuration.

34

The configuration standard also contained a bucket naming convention

(COMPANYNAME-SERVICENAME-ENVIRONMENT-REGION). Lastly, useful

links were provided to avoid common mistakes relating to the AWS S3 service.

AWS S3 deployment procedure
The deployment procedure was again divided into categories based on the three types of

buckets. It was agreed that developers deploy the company’s service buckets to the AWS

development account and infrastructure engineers deploy to the test and production

environment. However, a new AWS development account was created and will be taken

into use in the near future which will be fully managed by the infrastructure team. This

will give control over all of the environments to the infrastructure team and ensure that

all deployed buckets are configured the same way. Utility and website redirect buckets

will be fully deployed by the infrastructure team using an automation tool called

Terraform.

Ticket template
The following template was drafted to help submit bucket deployment tickets to the

infrastructure team:

§ Bucket name;

§ Bucket environments;

§ Bucket locations;

§ New AWS IAM user permissions;

§ Existing IAM user permissions;

§ Bucket configuration options;

§ Public access settings;

§ Owner;

§ Service name(s);

§ Data type;

§ AWS Cloudfront, Lambda integration, Bucket events;

§ Block public access settings.

AWS S3 video training
The author created an online S3 training. It covered the following topics:

§ Short overview of AWS and S3;

§ Bug bounty program’s S3 bounty statistics;

35

§ Most common S3 mistakes;

§ Examples of good and bad IAM policies;

§ Dangerous ACLs;

§ Overview of S3 configuration standard;

§ Overview of S3 deployment procedure.

Removal of unused buckets
The audit revealed that there are some buckets that are empty. The infrastructure team

checked the buckets and deleted the ones that are no longer in use. Additionally, there

were some buckets where the object count or total size of the bucket had not increased

for a long time. These were also checked and deleted as appropriate.

Enabling disk encryption
Default disk encryption was enabled on every bucket because none of them had been

configured to use it.

Attaching tags to the buckets.
Firstly, tags were defined in the configuration standard. Then an Excel table was created

to collect the tag information for all buckets currently in the production AWS account

with the help of developers and infrastructure engineers. Then the results were shared

with the infrastructure team who were tasked with applying the tags to the buckets. All

future tagging information is provided by developers in the bucket request ticket and

applied by infrastructure engineers when creating the bucket.

 Metrics

The AWS GUI and CLI were used to get a broader overview of S3 configuration. The

states of fifteen configuration options for 28 buckets in test and 88 buckets in production

environment were documented into Excel sheets. Most of the information could be

retrieved using AWS CLI, however some of the settings were documented directly from

the AWS GUI as the CLI did not have commands for these. The results collected from

test and production AWS accounts are shown in Table 7. For example, in the first row,

13/28 means 13 of the 28 buckets have the configuration enabled in the test environment.

This phase is considered successful when default encryption is enabled for all buckets,

tags have been configured for all production buckets, and the rest of the action items

presented in the section 5.1.3 are implemented.

36

Table 7. The status of configuration options in test and production environment

* These metrics are evaluated in this phase.

 Change evaluation

The improvements made in the AWS S3 bucket configuration audit phase are shown in

Table 8. The phase was successful as default encryption was enabled for all buckets and

tagging was added to buckets in the AWS production account. Additionally, all action

items were implemented.

Table 8. Change evaluation in the configuration audit phase

No. Configuration Option
Status

Property
Type

Test Production

1 Versioning Native 13/28 32/88

2 Server Access Logging Native 0/28 4/88

3 Static Website Hosting Native 1/28 22/88

4 Object Level Logging Native 28/28 88/88

5 Default Encryption* Native 0/28 0/88

6 Tags* Native 23/28 22/88

7 Transfer Acceleration Native 0/28 0/88

8 Events Native 0/28 0/88

9 Requester Pays Native 0/28 0/88

10 Bucket Policy Native 10/28 20/88

11 CORS Configuration Native 3/28 4/88

12 Empty bucket* Custom 4/28 27/88

13 Automated deploy Custom 24/28 20/88

14 Cross-Platform
Replication

Native 2/28 4/88

15 Lifecycle Native 4/28 30/88

No. Change name Improvments

1 AWS S3 configuration
standard

Configuration standard was created.

2 AWS S3 deployment
procedure

Deployment procedure was created.

37

5.2. Phase 2 – Access control mechanism audit

In this chapter the access control mechanisms are audited and fixed. The success of the

action items is evaluated at the end.

 Goal

The goal of this phase was to audit AWS S3 access control mechanisms. Various methods

were used to identify shortcomings. Firstly, the current state of mechanisms was

documented using manual UI auditing and AWS CLI. Secondly, AWS native security

tools were used to check for issues. Thirdly, open source tools like Security Monkey and

ScoutSuite were implemented and the findings were reviewed. All of the three AWS

accounts were included in the scope. The following access control mechanisms were

audited: S3 bucket policies, bucket & object ACLs and IAM policies. The problematic

policies were documented and passed on to the infrastructure team for remediation.

 Problem identification

The first step in auditing access control mechanisms was to understand the current

situation. AWS Trusted Advisor was used to quickly find out if there are any publicly

accessible buckets. There were some access control related issues under the development

account where buckets were made public using bucket ACLs (lines 3-5 in Table 9). The

test and production accounts had only one result which was a false positive as this bucket

serves public websites (line 12 in Table 9).

AWS Config which allows to check if any of the bucket policies or bucket ACLs permit

public read or write was also briefly tested. This tool was not very useful at that time as

access to S3 is mainly given through IAM policies and there were only a few bucket

3 Ticket template for
requesting a bucket

Template was created.

4 AWS S3 online training AWS S3 online training was created. From 199
engineers 125 have completed the training.

5 Unused buckets At least 18 buckets got deleted

6 Default encryption Default encryption was enabled on 88 production and 28
test account buckets

7 Bucket tags Tags were assigned to all 88 production buckets

38

policies and bucket ACLs in all of the environments. There were a few findings but, other

than one false positive due to a bucket serving public content in all environments, the

shortcomings were limited to the development account. This tool also did not have

functionality to check object ACLs or IAM policies. The search for a tool with

functionality to scan IAM policies and preferably also bucket access control mechanism

continued.

The next step was to find a better way to scan all access control mechanisms for

permission issues. Most of the information was pulled using AWS CLI and missing pieces

were added using manual methods by checking from the web console. IAM policies,

bucket policies, and bucket ACLs were documented to understand for which purposes

particular access control mechanisms were used. The author determined that IAM policies

were used to give access either to employees or service users. Bucket policies were used

to give access to data warehouse AWS accounts. Bucket ACLs were used to give access

to AWS root account and in some cases to log delivery groups.

There was a need to find a better alternative to using AWS CLI as it was time-consuming,

and semi-automated. ScoutSuite was tested with read-only AWS permissions. All three

environments were scanned. It created HTML reports that gave a simple overview of S3.

Nothing critical was found on test and production accounts, meaning that there were no

access controls that exposed the bucket or their contents to the Internet. There were some

S3 buckets with public access in development account but these were used only for testing

and did not contain anything sensitive or were empty. ScoutSuite was a great tool to

quickly get AWS S3 overview reports concerning some bucket configuration options and

access control mechanisms but it did not produce many findings or actionable items.

Next Netflix Security Monkey was set up to automatically analyse all access control

mechanisms. The difference between SecurityMonkey and ScoutSuite was that the

ScoutSuite’s scan produces every time a new static HTML report about bucket policies

and ACLs that give public read or write access, whereas Security Monkey, in addition to

the aforementioned ScoutSuite features, was able to continuously scan IAM policies and

added extra finding categories like internet-accessible, sensitive permissions, cross-

account access etc. It takes up to one hour or even less to set up and configure ScoutSuite

as it just needs a read-only IAM user with AWS credentials in all of the AWS accounts

and a local Python script to produce results. In the case of Netflix SecurityMonkey, it

39

took the author a day to manually deploy and configure it on the AWS development

account. After that it took multiple days for an infrastructure engineer to adjust the script

to be able to automatically deploy it to the test and production environments. It needed

one AWS instance, one RDS database, and IAM credentials with read-only permissions.

All three environments were scanned and various types of issues were found in bucket

policies, ACLs, and IAM policies. There were mainly three types of problems: publicly

accessible buckets, limited public access, and sensitive permissions. Buckets were made

publicly accessible using bucket policy or bucket ACLs. Limited public access was given

using object ACLs where specific objects were publicly readable either by everyone in

the world or only by authenticated AWS users when the object link was known. Sensitive

permissions were mostly about bucket or IAM policies that allowed every action on a

specific bucket, every action on all of the buckets, or contained other sensitive actions.

Cross-account bucket policy permissions were also detected, fortunately these buckets

were owned by the company’s data warehouse team.

Netflix Security Monkey is a great open source tool to continuously monitor S3 access

control mechanisms. The downside is that it lists multiple issue types per access control

mechanism but does not indicate the exact issue in the policy. Every result needs to be

manually reviewed to find legitimate issues. For example, one specific access control

mechanism like bucket or IAM policy can produce multiple lines of findings about

sensitive permissions, unknown and cross-account access etc. Then all the findings

should be identified from a single policy and determined if they need to be fixed.

Fortunately, the tool did not produce an overwhelming number of findings and it did not

take too much effort to analyse these. The analysed findings are shown in Table 9.

 Metrics

Table 9 lists all access control-related findings. There were 12 main types of permission

issues which were categorized per issue type and policy type. Issues labelled as ‘internet

accessible’ allowed everyone on the Internet access to the bucket. Limited internet access

allowed either everyone on the Internet or any AWS user to read a specific object if the

object’s name was known. Sensitive permissions did not directly expose the bucket or

objects to the Internet but permitted the company’s service users too many bucket or

object-level actions which can be potentially exploited.

40

The goal for this phase is to eliminate as many permission-related issues as possible.

Severity levels are used to categorise the access control issues. The critical level findings

concern mechanisms that expose buckets or their contents to the Internet. High level

issues are IAM policies that give a specific IAM service user the capability to perform

any action against all buckets within one AWS account. Medium level issues concern

IAM policies that allow all actions against a specific bucket. Low level issues give access

to another AWS account owned by the company. Severity level ‘none’ is assigned to

findings that were intentionally configured to give public access, e.g. for hosting the

corporate website or providing a service which needs the objects to be public if the object

name is known. This phase is considered successful when all critical-high and 75% of

medium level issues are fixed.

Table 9. Access control mechanism issues

No. Issue Issue type Policy
type

Severity Dev AWS
Account

Test AWS
Account

Live AWS
Account

1 Any AWS user can read
the objects

Internet
Accessible
(limited)

Object
ACL

Critical 0 5 4

2 Everyone can read a
specific object

Internet
Accessible
(limited)

Object
ACL

None 0 3 10

3 Any AWS user can do
everything

Internet
Accessible

Bucket
ACL

Critical 2 0 0

4 Everyone can read
bucket permissions

Internet
Accessible

Bucket
ACL

Critical 2 0 0

5 Everyone can read
bucket objects

Internet
Accessible

Bucket
ACL

Critical 1 0 0

6 Policy allows to perform
all actions on any bucket

Sensitive
permissions

IAM
policy

High 3 2 3

7 Policy allows to perform
all actions on a specific
bucket

Sensitive
permissions

IAM
policy

Medium 1 10 11

8 Policy allows to perform
all actions on a specific
bucket

Sensitive
permissions

Bucket
Policy

Medium 0 3 0

9 Cross-account read
access

Sensitive
permissions

Bucket
Policy

Low 0 3 19

10 Cross-account write
access

Sensitive
permissions

Bucket
Policy

Low 0 1 0

11 Cross-account read and
write access

Sensitive
permissions

Bucket
Policy

Low 10 0 0

12 Everyone can read the
objects

Internet
Accessible

Bucket
policy

None 1 1 1

41

 Action items and implementation

Bucket ACLs are very often misunderstood and configured incorrectly which may lead

to a data breach. For example, access is accidentally given to everyone or to any

authenticated AWS user in the world. Bucket level ACL, bucket and IAM policy issues

are detected with Netflix Security Monkey, ScoutSuite, manual web console inspection,

or AWS CLI. Object ACL issues are not easy to detect because scanners are not able to

check them. One way is to review the code that interacts with the bucket. In this thesis,

the manual approach was used by opening a sample of objects and inspecting the object

ACLs.

Bucket ACLs

Bucket ACL issues were only found in the AWS development environment and are shown

in Table 9 on lines 3 through 5. Two S3 buckets had an ACL set to give full control to all

authenticated AWS users in the world which can be abused by hackers if they make an

authenticated request towards the bucket using their own AWS account. Another two

buckets had an ACL which gave all users (everyone in the world) bucket read access and

the ability to read the bucket permissions. These issues were documented by the author

and addressed by the infrastructure team.

Object ACLs

AWS test and production environments were checked for object ACL issues and the

findings are shown in Table 9 on lines 1 and 2. There were mainly two types of issues:

any AWS user or everyone in the world can read the object when the direct link is known.

The “any AWS user” access is removed because there are no use cases where this would

be necessary for the company. “Everyone can read the specific object” access is often

used by services to make the file visible to customers and must be reviewed case by case

(alternatively bucket policy can be used instead of object ACL).

Object ACLs were attached to the object by the service using the S3 bucket. The best way

to fix the ACLs was to block these on the bucket level instead of removing these

programmatically as there might be large number of objects in the bucket and every

request towards the objects is billed. Any AWS user ACL issues were forwarded to the

infrastructure team for remediation. Access for everyone to read the specific objects was

not substituted with a bucket policy as such access was intentional.

42

Bucket Policies

Bucket policy findings are shown in Table 9 on lines 9 to 12. There were three bucket

policy findings in the test environment that allowed a specific company service user to

perform every action on a bucket. These policies were removed as these are already

present in the IAM policies. Test and live environments had cross-account read and write

access from three Data Warehouse AWS accounts and access was revoked for one

deprecated account. Every environment had a bucket policy which allowed everyone to

read the CMS bucket objects, this was considered an exception as it was done on purpose

to host the corporate website. When a static website is hosted in an AWS S3 bucket then

the objects should be publicly readable to show the content to website visitors.

IAM policies

IAM policy findings are shown in Table 9 on lines 6 and 7. There were mainly two types

of IAM policy issues. The biggest problems were found in a couple of policies that

allowed to perform every action on any bucket. Additionally, these IAM users were used

by multiple company services. These problematic IAM users needed to be removed by

creating a new user per company service and limiting the actions. Then there were many

policies that allowed a specific IAM user to perform every action. The fix for these

policies was to review them, understand which bucket or object level actions are actually

needed, and limit the actions as appropriate.

 Change evaluation

A comprehensive S3 access control mechanism audit was done in this phase. All findings

were documented and tickets were submitted to the infrastructure team with fix

recommendations. The most serious problems were found and fixed in the AWS

development account, which were fortunately created only for testing purposes and was

not connected with any of the company services. There were two types of object ACL

issues in the test and live environment as shown in Table 10. The first issue indicated on

line 1 potentially exposed the objects to any authenticated AWS users in the world but

only when the specific object name was known. In this case the part of code that added

this ACL was removed and ACLs were blocked in the bucket settings. The second ACL

issue on line 2 which gave read access to everyone was determined to be a false positive

as it was set up this way by design and did not need fixing.

43

The rest of the issues were categorised as sensitive permissions as these did not directly

expose the bucket or its objects to the Internet but could still potentially be exploited. For

example, when AWS credentials are leaked, developers accidently abuse the credentials,

or someone manages to get access to the buckets through a specific company service

which caters to the customers. There were mainly two types of sensitive permissions. The

first type allowed a specific IAM user to perform every bucket or object level action

against all buckets. These IAM users were removed and new ones were created with

adjusted policies. The second type gave permission to perform every bucket or object

level action against a specific bucket. The affected policies were adjusted to limit actions

to those that are actually necessary.

Table 10 shows the total amount of issues found and describes which actions were taken

to remedy them. Five critical and six high severity issues mentioned in the metrics section

were fixed in this phase which means that the success criteria were met. Additionally,

twenty medium level issues were fixed and an additional seven medium severity problems

are documented and will be addressed in the near future as each of the finding needs some

investigation to adjust the policy to the IAM service user needs. Also, 33 low severity

bucket policy issues were fixed.

Table 10. Access control mechanism change evaluation

No. Issue Issue type Policy
type

Severity Dev
AWS
Account

Test
AWS
Account

Live
AWS
Account

Change Evaluation

1 Any AWS user
can read a
specific object

Internet
Accessible
(limited)

Object
ACL

Critical 0 5 4 ACL adding part was removed from
the code.
AWS S3 ACL block was enabled for
affected buckets.

2 Everyone can
read a specific
object

Internet
Accessible
(limited)

Object
ACL

None 0 3 10 These findings were not fixed because
they were intentionally added this
way.

3 Any AWS user
can do
everything

Internet
Accessible

Bucket
ACL

Critical 2 0 0 One bucket deleted.

One ACL adjusted.

4 Everyone can
read bucket
permissions

Internet
Accessible

Bucket
ACL

Critical 2 0 0 One bucket deleted.

One ACL adjusted.

5 Everyone can
read bucket
objects

Internet
Accessible

Bucket
ACL

Critical 1 0 0 One bucket deleted.

6 Policy allows to
perform all
actions on any
bucket

Sensitive
permissions

IAM
policy

High 3 2 3 Dev – One IAM user deleted. Ticket
created to remedy two remaining
issues.
Test – One IAM user deleted. One
policy adjusted.

44

Live – One IAM user deleted. Two
IAM users deleted and new IAM
users created with adjusted policies.

7 Policy allows to
perform all
actions on a
specific bucket

Sensitive
permissions

IAM
policy

Medium 1 10 11 Dev – Ticket created to remedy the
issue.
Test – Eight policies adjusted. Ticket
created to remedy the remaining two
issues.

Live – Two policies deleted.
Seven policies adjusted.
Ticket created to remedy the
remaining two issues.

8 Policy allows to
perform all
actions on a
specific bucket

Sensitive
permissions

Bucket
Policy

Medium 0 3 0 Policies adjusted.

9 Cross-account
read access

Sensitive
permissions

Bucket
Policy

Low 0 3 19 Test – Three buckets delted

Live – Eight buckets deleted.

Eleven policies adjusted,

10 Cross-account
write access

Sensitive
permissions

Bucket
Policy

Low 0 1 0 Bucket deleted

11 Cross-account
read and write
access

Sensitive
permissions

Bucket
Policy

Low 10 0 0 Bucket policies adjusted

12 Everyone can
read the objects

Internet
Accessible

Bucket
policy

None 1 1 1 No action taken, as this bucket serves
public content.

45

5.3. Phase 3 – AWS S3 monitoring implementation

In this chapter two Cloudtrail monitoring solutions are configured and their capabilities

are evaluated.

 Goal

The goal of this phase was to review the current AWS S3 log monitoring situation in the

development, test and production AWS accounts, document the findings, find

improvement areas, and implement them. Firstly, AWS CLI was used to get the

configuration of server access logging and object-level logging for all buckets. Server

access logging is configured for each bucket separately while object-level logging is

managed centrally using Cloudtrail. The differences between these are presented in

chapter 2.2. The need to enable or disable these configuration options were reviewed.

Secondly, AWS Cloudtrail configuration was reviewed and adjusted for 3rd party

monitoring tools as it can be used to get logs about bucket and object levels actions.

Thirdly, Cloudtrail log monitoring tools like Rackspace Compass and Wazuh were tested.

 Problem identification

The initial need for monitoring API calls against S3 buckets arose after analysing the

access control mechanism policies. There were IAM policies that allowed every bucket

and object level action against a single bucket. One way to understand what actions IAM

service users actually used was to start analysing Cloudtrail logs which would later help

to limit the actions in the policies. The analysis of these logs can also be used to improve

visibility within the AWS account and help find compliance and security issues.

Although Amazon provides a feature called Event history to search from Cloudtrail trails,

it not ideal for analytics as it does not show complete logs, filtering is limited, and it is

not possible to create dashboards. Alternatively, Amazon provides guidelines for

combining multiple AWS tools to visualize the logs. One of these combines Lambda

function, AWS Glue, AWS Athena and AWS Quick Sight together. The second stack

combines Amazon Cognito, Kibana, Amazon Elasticsearch service, AWS Lambda,

Amazon Cloudwatch and other supporting services together which, in addition to

Cloudtrail, supports VPC flow network logs as a log source. As the implementation would

have taken time and effort from the infrastructure team and they did not want to onboard

46

another monitoring solution, the 3rd party tools Rackspace Compass and Wazuh were

tested instead.

 Metrics

The author discovered that AWS S3 logs were collected but no further action was taken.

For example, object-level logging was enabled on all buckets due to having at least one

Cloudtrail trail configured. It captures bucket-level and object levels API calls against all

buckets and stores these in a separate bucket. Server Access logging was found to be

configured only for a few buckets at the request of developers and was not implemented

for all buckets because Cloudtrail already has a similar functionality built in. The success

criterion for this phase is to be able to analyse full Cloudtrail logs. Table 11 shows the

number of buckets having server access logging, object-level logging, and Cloudtrail

enabled in all AWS environments.

Table 11. AWS S3 logging metrics

AWS Account
Type
(environment)

Server
Access
Logging

Object-
Level
Logging

CloudTrail Comment

Development 2/73 73/73 1 Trail
Enabled

Cloudtrail logging was enabled, but
not monitored.

Test 0/49 49/49 1 Trail
Enabled

Cloudtrail logging was enabled, but
not monitored.

Production 5/70 70/70 1 Trail
Enabled

Cloudtrail logging was enabled, but
not monitored.

 Action items and implementation

Rackspace Compass

The integration between Compass and AWS accounts was configured by Rackspace

engineers because they provide it as their managed service. They configured an IAM

policy for Compass which gave access to AWS accounts. Additionally, a new Cloudtrail

trail was created for the tool. The next step was to understand what kind of functionalities

Compass provides for AWS S3.

Rackspace Compass has feature that allows to monitor Cloudtrail and provides alerts

based on a predefined list of events. The predefined list provided by Compass only had

47

one S3-related alert which was about IAM policies being changed. Fortunately, it offered

the possibility of adding custom alerts. For example, these alerts were tested based on

specific Cloudtrail events:

§ A new bucket was created;

§ Bucket configuration changed;

§ Bucket delete actions;

§ IAM policies changed.

The alerts feature provided the ability to send notifications to email, SNS topic,

PagerDuty, syslog, Slack, and Lambda function. The email integration was tested and

alarms were sent to a Slack channel.

There was a separate section for Cloudtrail log. It showed a summary of events by region,

service, event name, users, IP, resource, and AWS account. Among the six common

searches there was one which allowed to find all activity for a specific IAM user.

Unfortunately, this search was very slow and the UI did not help to understand what kind

of S3 actions were performed by a specific IAM service user even after filtering was

applied. The Cloudtrail events section allowed custom event searches. In this case, the UI

provided more options and filters however it still did not satisfy the need to find useful

information about buckets or IAM users. Additionally, the search feature was slow and

occasionally crashed.

The Rackspace Compass service was unfortunately discontinued in December of 2019.

In addition to S3 features, this service added more visibility into all company-owned

AWS accounts. It provided some value in terms of AWS Cloudtrail and configuration

monitoring however it did not meet the requirements set by the author as the Cloudtrail

log search was very limited and did not provide the functionality of creating custom

dashboards.

Wazuh

The guide for integrating Cloudtrail with Wazuh is shown in the Appendix 1. Wazuh has

a built in Amazon AWS dashboard for monitoring the following AWS services:

Cloudtrail, Config, VPC, GuardDuty, Macie, KMS, Inspector and Trusted Advisor. The

dashboard was not useful because the pre-built visualizations were designed to give a

general overview of all integrations but only CloudTrail was configured at this phase.

48

The next step was to build a custom dashboard consisting of multiple custom

visualizations to understand what kind of events can be seen from Wazuh. For example,

the following visualizations were created for counting events:

§ data.aws.eventName: Descending (Cloudtrail event names);

§ data.aws.eventSource: Descending (AWS services like IAM, S3, KMS etc);

§ data.aws.userIdentity.userName: Descending (IAM users);

§ rule.level: Descending (Wazuh rule levels).

It was determined that not all Cloudtrail events were logged. Wazuh Amazon rules [53]

logging is based on predefined list of events [54]. Wazuh rules and events are shown in

Appendix 2. These events were all for bucket level actions and object level actions were

not logged due to Wazuh rules which discarded these as these were not in the predefined

list of events. For example, in the period of 90 days there were nine types of bucket level

events related to the S3 service: DeleteBucket, PutBucketPolicy, PutBucketCors,

CreateBucket, PutBucketAcl, PutBucketTagging, PutBucketWebsite,

PutBucketLifecycle, PutBucketVersioning, and PutBucketCors. In this thesis only the

capabilities of Wazuh Cloudtrail integration were evaluated by creating a few

visualizations to see which events Wazuh receives. In the future, the full Cloudtrail log

will be sent to Wazuh enabling the author to create actionable dashboards which give a

better overview of what is happening in AWS S3.

 Change evaluation

In this phase, AWS S3 related monitoring features were tested in Rackspace Compass. It

provided a feature that summarised Cloudtrail events and allowed to make simple

searches with filtering. Unfortunately, this feature did not meet expectations as it was

slow, crashed at times, and did not enable the author to run good searches or create useful

dashboards. On the other hand, the event-based alert notification feature worked as

expected and allowed to send emails when previously defined AWS events were seen in

the Cloudtrail logs. Unfortunately, the Rackspace Compass service was closed down in

December 2019 and it also did not meet the success criteria.

Wazuh Cloudtrail integration was configured for development, test, and production AWS

accounts. It provided a functionality to automatically pull the Cloudtrail logs which were

then analysed based on a predefined list of rules and events. Wazuh’s Kibana interface

49

allowed to make log searches and dashboards consisting of custom visualisations. This

tool did not meet the success criterion as the Cloudtrail integration was configured but it

did not allow to ingest the full Cloudtrail log by default. Only 19 out of 92 AWS S3

related events were received by Wazuh. For example, it was not possible to see object

level actions like ‘getObject’ or ‘putObject’ which could be used, for example, to adjust

IAM or bucket policies. The ability to ingest the full Cloudtrail logs will be tested in the

future.

5.4. Phase 4 – AWS S3 development related issues

In this chapter, a sample of bug bounty cases related to development are presented and

fixed.

 Goal

The company’s bug bounty program was launched in 2015 and has been active since then.

The author joined the company in 2018 and started to test the reported bugs. There have

been 18 AWS S3 related bugs that have been reported from 2016 to 2019 and the total

sum paid out as bounties for these is 26 800 USD. S3 bugs usually get the highest bounties

as they often involve unauthorised access to other customers’ files.

The 18 reports contained:

§ 5 bugs that allowed read or write access to the buckets due to incorrect access

control mechanism implementation;

§ 9 bugs that allowed to run code inline in the browser due to incorrect

implementation of content-disposition and file type-based blacklisting;

§ 4 bugs that allowed access to other users’ files due to service design issues.

The goal of this phase was to review and fix the AWS S3-related issues that were reported

in the company’s bug bounty program during the writing of the thesis. The cases were

reviewed and a sample of these was chosen to demonstrate how exploits worked and how

bugs were fixed. The chosen bugs were either tested by the author, matched a certain

issue category like being able to run code in the browser, or were about service design

issues. In these cases, developers were engaged to fix the code. This phase will show that

not all of the issues are related to access control mechanisms or bucket configuration

options. Some actually are the result of code written by developers.

50

 Metrics

There have been 18 AWS S3-related bugs that have been reported to the company’s bug

bounty program. A sample of code-related issues is presented in the Table 12 and was

chosen to demonstrate development problems. The author was also involved in resolving

these cases. The success criterion for this phase is that all of the bugs are fixed.

Table 12. Example of bugs reported to the bug bounty program

Ticket
No.

Description Root cause Related causes

1 AppCache and Cookie bombing
attack allows to retrieve direct S3 file
links after the victims’ browser has
been poisoned and new files are
being opened

HTML script
files are
shown inline
in the
browser

Improper implementation of file type-
based whitelisting and blacklisting

2 Service worker allows to retrieve
direct S3 file links when the
malicious file is opened and the new
files are opened by the victim

HTML script
files are
showed
inline in the
browser

Improper implementation of file type-
based whitelisting and blacklisting

3 Bypass to ticket nr 2. Certain file
extensions still make it possible to
run scripts inline.

HTML script
files are
showed
inline in the
browser

Improper implementation of file type-
based whitelisting and blacklisting

4 XSS can be triggered by uploading
SVG files

Files with
SVG
extensions
are shown
inline in the
browser

Improper implementation of file type-
based whitelisting and blacklisting

5 First 1000 files owned by various
users can be listed and then
downloaded

No user
input
validation

IAM service user’s policy allows
ListObject action

 Problem identification

Ticket 1

This Proof of Concept (POC) allowed the hacker to upload HTML files to the company’s

AWS S3 bucket which were used to carry out AppCache and CookieBombing attacks

[55]. The POC of this and the next tickets worked only when the hacker had created a

51

trial account, logged in, and started to use the built-in feature of the service that allowed

users to upload files. Firstly, the hacker uploaded the fallback HTML file, then extracted

the file URL. Secondly, uploaded the cache manifest with the previously extracted URL.

Thirdly, uploaded the POC file and included the previous file’s URL. The final step was

to send the last file’s URL to the victim to poison the browser cache. The end result was

that the attacker was able to get the direct S3 file links when the victims opened a file.

This attack was possible because HTML script files were shown inline in the browser.

The company had not correctly implemented MIME type-based whitelisting or

blacklisting. Only safe MIME types should be allowed to run inline, unsafe MIME types

should be downloaded.

Ticket 2

The second ticket was similar to the first one as it enabled to get access to other users’

uploaded files using a service worker. Firstly, the attacker uploaded a service worker

script to the files’ S3 bucket. The script rewrites a response to an iframe pointing to

attacker’s Burpcollaborator instance, so when response is rewritten, the attacker receives

a callback with referrer containing the full path including the AWS signature. Service

workers run forever and only need one initialization. Secondly, the attacker uploaded a

XHTML POC file containing the link to the service worker. Thirdly, the attacker shared

the XHTML file link to the victim which poisoned the victim’s browser. Finally, the

attacker was able to receive AWS S3 file links when the victim opened any of the files.

This attack was possible because the XHTML script file was shown inline in the browser.

Ticket 3

The third ticket is a bypass to the second ticket. The hacker found that there are other file

extensions in addition to XHMTL that are shown inline and allow to execute the POC.

This meant that having a MIME type-based blacklist was not a viable solution as it is

difficult to maintain. Additionally, the hacker found a second files’ API endpoint which

allowed the execution of the POC of ticket 2.

Ticket 4

The fourth ticket enabled to upload an SVG file which triggered an XSS alert within the

browser. This demonstrates again that only whitelisted MIME types should be allowed to

run inline and everything else should be blacklisted.

52

Ticket 5

The fifth ticket demonstrated how the hacker was able to list the first 1000 objects (files)

belonging to other users from a single S3 bucket and then download them. This was

possible due to fact the there was no input validation in the POST request and the IAM

service user’s policy allowed ‘ListObjects’ action, so the hacker was able to create a

request to list all of the files instead of his own. The first 1000 objects limitation came

from the AWS API.

 Action items and implementation

The POCs of tickets 1 through 4 worked mainly because the MIME type whitelist and

blacklist were used together. When an unsafe MIME type was reported then it was added

to the blacklist. The solution was to start using only a whitelist for safe MIME types that

needed to be shown inline in the browser. For example, if the MIME type is image/JPG

then the application adds ContentType as image/JPG and ContentDisposition as inline to

the AWS S3 object metadata which tells the browser to show the object inline instead of

downloading the image. If the MIME type is not in the whitelist, then the ContentType

will be always application/octet-stream and the ContentDisposition will be attachment

which tells the browser to download the file instead of showing it inline. This way the

malicious file types will be always prompted to download, and the scripts will not run

inside the user’s browser when a file is opened.

In case of ticket 5 the fix consisted of two parts. The first part was to remove the IAM

user whose policy allowed any action against all of the company-owned buckets within

the production AWS account. A new user was created with a policy that allowed only

necessary AWS S3 bucket and object level actions against a single bucket. As the new

user’s IAM policy did not contain the ListObjects permission then it was no longer

possible to list the first 1000 objects. The second part of the fix was about adding input

validation to the API requests to eliminate the possibility to list the objects and then later

download them.

 Change evaluation

Tickets 1 through 4 from the bug bounty program helped the company notice the issues

related to allowing script files running inline in the browser. At first, the issues were fixed

53

by implementing a blacklist for unsafe MIME types but this was not a viable long-term

solution as bad file types continued to be discovered by the hackers. Later a whitelist for

safe MIME types was built which allowed to show certain files inline in the browser and

prompted a download of the MIME types that were not in the list.

Ticket 5 proved that an IAM service user with an excessively permissive policy found in

phase two can be abused. The fix was to create a separate user with a policy that allowed

access to only one bucket with limited actions. Additionally, the developers added input

validation to the files service which fixed the part that allowed to manipulate the API

requests to list the objects and later download them. No new AWS S3 related tickets have

been submitted after the last fixes were introduced in 15.07.2019. In October 2019

additional penetration testing was conducted by a 3rd party against the S3 service and no

issues were found. This phase was successful as all of the S3 bug bounty reports were

fixed.

54

6. Discussion

Reviewing all the configuration options is not an easy task if there are many AWS S3

buckets within multiple AWS accounts. Even though AWS does not have built-in

functionality to see all of the configuration options for all buckets from a single place

(each of the buckets needs to be opened one by one too see the configuration), there are

still some AWS native tools like Trusted Advisor and Config that will quickly give an

overview of a few essential options that have been enabled or disabled. Alternatively,

NCC Group’s ScoutSuite can be used to get a quick HTML-based security report. In

addition to the checks that AWS native tools have, ScoutSuite has further S3 security best

practice checks. The aforementioned tools do not show all of the bucket configuration

options (a list of the options can be found in section 2.1.2). One solution is to use AWS

CLI to get the desired bucket properties for all buckets. This is still considered a semi-

automated method as each of the properties must be pulled separately and documented

unless scripting is used. Running AWS CLI commands manually is a good solution if all

of the properties need to be pulled only once because the documented results will get

outdated as soon as changes are introduced to the buckets, meaning that the same time-

consuming semi-automated process needs to be done again to see what has been changed.

Boto3 (AWS SDK for Python) would be a good choice for scripting which enables to pull

all of the configuration options for example to a Confluence or Excel table. The creation

of the script can take some time but getting a snapshot of the current situation later will

then be much easier and faster than using AWS CLI commands one by one. None of the

tested tools had the functionality to get a single page report of all configuration options

for all of the buckets. For example, ScoutSuite concentrates only on showing findings

based on predefined checks that help to determine the most critical issues but there is a

need for a tool that enables to audit all configuration options.

The next step after documenting the initial status of the bucket configuration options is to

understand their purpose and how they work. Some of the options are rarely used and

have very specific use cases. A good way to start evaluating if there are options that

should be configured is to find patterns from the initial setup and ask questions why

something is enabled or disabled. One approach is to create a configuration standard

which defines properties that should be configured for all buckets. For example, object

level logging, default encryption, and tags. It is likely that only a few options can be

55

applied to all buckets. In this case, if the buckets can be categorised based on their

purpose, data, or some other characteristic, then a standard can be created for each bucket

group. For example, in the company where the author works, the categories were buckets

serving the customers, buckets used only by the employees, and website buckets. There

might be still some buckets with properties that deviate from the standard but this is

acceptable as it is not always possible to standardise the edge cases.

Auditing and fixing access control mechanisms like ACLs, bucket and IAM policies is

another significant topic. All of these mechanisms can be used together and the access to

a specific bucket is evaluated in the authorisation process. When the number of buckets

exceeds a threshold, manual inspection is no longer feasible and a way to automate at

least some of the work must be found. AWS CLI can be used to quickly pull bucket

policies and ACLs but getting object ACL-s is more complicated as there can be millions

of objects inside a bucket. In this case, a sample of objects can be manually inspected in

each of the buckets. AWS CLI can be also used to get IAM policies attached to the IAM

users. In this case the policies do not always contain AWS S3-related access and they

need to be extracted manually. Analysing data pulled from the CLI requires a good

understanding of the access control mechanisms and an ability to see problematic areas

in the policies. Inevitably, it also takes a significant amount of time. The only tool that

was able to continuously analyse the policies and produce actionable findings was Netflix

SecurityMonkey which is unfortunately no longer supported. The codebase maintainers

recommend using NCC Group’s ScoutSuite instead. In general, there is a need for a better

tool for auditing access control mechanisms while Amazon continues its efforts to make

Zelkova-based automated reasoning technology more useful for their customers.

The major red flags are usually related to access controls that give public access to

everyone or to every authenticated AWS user in the world, unless that was the intention.

For example, ACLs use AllUsers or AuthenticatedUsers and policies use asterisk for the

principal value. A bit less critical but still troubling IAM policies are the ones that use an

asterisk in the resource value, giving access to all of the buckets inside a single AWS

account. Sensitive permissions are also related to bucket or IAM policies which have an

asterisk in the action field, meaning that all of the bucket or object level actions are

allowed depending on whether the resource field contains only the bucket or also the

56

objects. Another potential issue to check is if there are policies that give access to another

AWS account, if these are still needed, and if these were given intentionally.

Setting up Cloudtrail log monitoring can be also challenging as there are multiple ways

to do it. For example, one could use the AWS centralized logging stack which combines

Amazon Elasticsearch and Kibana with other AWS supporting services to provide the

monitoring solution. Another option is to deploy a self-managed Elastic stack if the AWS

managed stack is not suitable. There are many different commercial services (Sumo

Logic, Datadog, New Relic, AlienVault USM Anywhere, Solarwinds Loggly, Dynatrace

etc.) that already have built-in dashboards based on Cloudtrail event types. As it was

already deployed, the author tested Wazuh which is essentially Elastic stack with Wazuh

rulesets. The problem with the default configuration of Wazuh is that it logs only such

CloudTrail events that are in the predefined list and the prebuilt AWS dashboard is not

useful at all. So, the visualisations and dashboards need to be created by the user. Full log

analysis can be done when the Wazuh AWS ruleset is configured to log all Cloudtrail

events. This helps track compliance, conduct security analysis, and troubleshoot issues

with the IAM service users. It also gives better overall visibility into what is happening

not only with AWS S3 but also with other services within one AWS account. Overall,

when there is a need to analyse the full Cloudtrail log and customize dashboards then

Elastic stack is a good solution for it, otherwise any 3rd party tool or service is also capable

of showing the most important events that are happening within the AWS account.

Bug bounty programs like Bugcrowd and HackerOne can help to identify AWS S3-

related issues with the help of ethical hackers before real breaches happen. Usually these

reports get the highest bounties because buckets contain customer data but compared to

the reputation loss when a real breach happens it is still cheaper to pay these bounties.

When a report comes in about one misconfigured AWS S3 bucket then it recommended

to check if other buckets are also affected. Occasionally hackers find bypasses to

previously resolved issues when the initial fix had not taken into consideration the other

exploit methods. An example of this would be when new file extensions are reported that

allow to run scripts inline in the browser to steal other customer’s files. Most S3-related

reports are fixed by infrastructure engineers but sometimes developers also need to adjust

their code. For instance, they might need to add input validation for the service that is

57

responsible for file uploads and retrieval, adjust object metadata, or remove the part of

code that adds problematic ACLs to the objects.

One way to ensure that new buckets are configured correctly is to define an AWS S3

configuration standard and deployment procedure. Subsequently, training on the

documents should be provided to developers and the infrastructure team. The training

could also include information on the most common mistakes and how to avoid them.

Additionally, it is good to have a ticket template for bucket requesters with guiding

questions. Mistakes can be also limited when bucket deployment and access control

mechanism configuration is done by infrastructure engineers because it more difficult to

control permissions when the developers assign ACL rules to the bucket or objects. This

means that adjusting or troubleshooting the access control policies requires good

coordination between infrastructure engineers and developers. Not all of the mistakes are

fixed by the infrastructure team – at times developers need to adjust their code which

interacts with S3 buckets. For example, they might be required to disallow malicious

MIME types to be run inline in the browser by adjusting the object metadata. Auditing

and monitoring can also help to validate that buckets and permissions are set up correctly.

Advanced companies can also build automations using AWS native tools (for example

AWS Lambda and SNS) that continuously check bucket and policy configurations in

order to notify and remedy issues that do not meet the company’s defined requirements.

The main concepts of this thesis can be applied also for other object storage solutions.

Auditing configuration properties and access controls is necessary to secure the storage

service and to comply with standards. For instance, ScoutSuite enables to scan the

following cloud providers in addition to AWS: Azure, Google Cloud Platform, Aliyun

(Alibaba Cloud), Oracle Cloud Infrastructure, and OpenStack. The object storage

configuration standard and deployment procedure can also be applied to other providers.

The configuration properties and access controls might not be exactly the same but

settings for encrypting data at rest and in transit should be there. If other object storage

solutions are able to produce logs, then they can also be analysed, for example with Elastic

stack. In case of every object storage provider the company’s service responsible for the

files should be developed securely to avoid data leaks or other malicious uses.

58

7. Summary

When companies use AWS S3 as their object storage solution, they often fail to notice

the importance of security and privacy which, in turn, can lead to data breaches. Simple

mistakes in access control mechanisms can expose bucket contents to the public.

Moreover, not much attention is paid to bucket configuration settings which can be used

further to improve security and compliance. Even when companies have properly

configured their buckets and policies, the significance of S3 monitoring is usually

underestimated.

The goal of this thesis was to increase the security of AWS S3 in a real medium-sized

company. Action-research methods were used, meaning that the author assumed the role

of security consultant, audited S3, gave recommendations on how to fix the issues, and

ensured that the identified problems were addressed. The work was divided into four

phases concerning the following aspects of S3: bucket configuration options, access

control mechanisms, Cloudtrail monitoring, and development related mistakes.

In the first part of the thesis, bucket configuration options were audited in the test and

production AWS accounts. During this process AWS native security tools (Trusted

Advisor and Config) and a 3rd party tool called ScoutSuite were tested but none of them

provided an overview of all of the bucket configuration options. For this reason, AWS

CLI commands were used instead to get information from the S3 API. Based on the

documented results, a configuration standard was created with recommended options for

three bucket categories (service, utility, website redirect) while default encryption, object-

level logging, and tags were enabled for all buckets. Tagging was used to specify the

bucket owner, the name of the internal or external facing service, and whether the bucket

contained customer personal data. This information could be later used for more effective

incident response and for troubleshooting purposes. Additionally, a bucket deployment

procedure was formulated and template for requesting a bucket was created.

Subsequently, a video training concerning the aforementioned documents and most

common AWS S3 policy mistakes was created.

In the second part of the thesis, the audit of all AWS S3 access control mechanisms was

conducted in the development, test and production AWS accounts using manual

inspection and AWS CLI at first and then Netflix SecurityMonkey (now unfortunately

59

discontinued). All critical and high severity ACLs in test and production accounts which

gave access either to everyone in the development account or any authenticated AWS

user in the world were fixed. Also, medium level findings like polices that gave certain

IAM service users permissions to do any action against all of the buckets under one

account were removed. Additionally, most of the low-level findings which allowed a

specific IAM user to do any action against a specific bucket were fixed.

In the third part of the thesis, CloudTrail log monitoring was configured using two tools.

Rackspace Compass features were evaluated but unfortunately the service was closed

down during the final stages of writing this thesis. Additionally, a tool named Wazuh was

tested which by default did not allow to analyse the full Cloudtrail log and therefore the

goal was met only partially.

The fourth part of the thesis provided statistics on AWS S3-related bug bounty reports. A

sample of these which the author helped resolve was chosen for demonstration. The issues

were mostly development related where scripts were normally uploaded to the files

bucket and subsequently executed inline in the browser when opened, allowing the

malicious actor to steal other users’ files. These issues were fixed by implementing a

whitelist for safe MIME types that can be shown inline after opening and prompting all

other MIME types to be downloaded.

The main contribution of this thesis was a thorough security audit of Simple Storage

Service at a medium-sized company using AWS and 3rd party tools which help to reduce

manual efforts in an environment with hundreds of buckets. In addition,

recommendations were given on how to enhance S3 security by steering clear of the most

common mistakes in access controls, applying a bucket configuration standard and

deployment procedure, and implementing MIME type-based whitelisting. The study is

different from best practice guides as it examined the security of AWS S3 as a whole,

documented the findings based on metrics and showed the implementation results in a

real environment. The challenges, findings and solutions were based on the experience

received from working in a real company.

Future work in this area would involve testing if Wazuh is capable of receiving the full

Cloudtrail log and building dashboards for getting a better overview of AWS S3 events.

Also, the remaining sensitive IAM policies will be fixed. Lastly, the IAM access analyser

60

is configured and the findings regarding policies that give access to external entities are

reviewed.

61

References	

[1] E. Chickowski, "Leaky Buckets: 10 Worst Amazon S3 Breaches," 28 January

2018. [Online]. Available: https://businessinsights.bitdefender.com/worst-
amazon-breaches. [Accessed May 2020].

[2] D. O'Sullivan, "The RNC Files: Inside the Largest US Voter Data Leak," 19 June
2017. [Online]. Available: https://www.upguard.com/breaches/the-rnc-files.
[Accessed May 2020].

[3] D. Lee, "Uber concealed huge data breach," 22 November 2017. [Online].
Available: https://www.bbc.com/news/technology-42075306. [Accessed May
2020].

[4] UpGuard, "Data Warehouse: How a Vendor for Half the Fortune 100 Exposed a
Terabyte of Backups," 27 June 2019. [Online]. Available:
https://www.upguard.com/breaches/attunity-data-leak. [Accessed May 2020].

[5] Amazon Web Services, "Amazon S3," 2019. [Online]. Available:
https://aws.amazon.com/s3/. [Accessed April 2019].

[6] Y. León and T. Piscopo, "Object Storage versus Block Storage: Understanding
the Technology Differences," September 2019. [Online]. Available:
https://www.druva.com/blog/object-storage-versus-block-storage-understanding-
technology-differences/. [Accessed May 2020].

[7] Amazon Web Services, “Object Key and metadata,” 2019. [Online]. Available:
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html.
[Accessed April 2019].

[8] Amazon Web Services, "Access Control List (ACL) Overview," 2019. [Online].
Available: https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-
overview.html. [Accessed April 2019].

[9] K. Zhao, "IAM Policies and Bucket Policies and ACLs! Oh, My! (Controlling
Access to S3 Resources)," January 2019. [Online]. Available:
https://aws.amazon.com/blogs/security/iam-policies-and-bucket-policies-and-
acls-oh-my-controlling-access-to-s3-resources/. [Accessed April 2019].

[10] T. Sallai, “How S3 Signed URLs work,” 30 October 2018. [Online]. Available:
https://advancedweb.hu/2018/10/30/s3_signed_urls/. [Accessed April 2019].

[11] Amazon Web Services, "Using Versioning," 2019. [Online]. Available:
https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html. [Accessed
April 2019].

[12] Amazon Web Services, "Amazon S3 Server Access Logging," 2019. [Online].
Available: https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerLogs.html.
[Accessed April 2019].

[13] Amazon Wen Services, "Hosting a Static Website on Amazon S3," 2019.
[Online]. Available:
https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html.
[Accessed April 2019].

[14] Amazon Web Services, "How Do I Enable Object-Level Logging for an S3
Bucket with AWS CloudTrail Data Events?," 2019. [Online]. Available:
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-cloudtrail-
events.html. [Accessed April 2019].

62

[15] Amazon Web Services, " Amazon S3 Default Encryption for S3 Buckets," 2019.
[Online]. Available: https://docs.aws.amazon.com/AmazonS3/latest/dev/bucket-
encryption.html. [Accessed April 2019].

[16] Amazon Web Services, "Introduction to Amazon S3 Object Lock," 2019.
[Online]. Available: https://docs.aws.amazon.com/AmazonS3/latest/dev/object-
lock.html. [Accessed April 2019].

[17] Amazon Web Services, “Object Tagging,” 2019. [Online]. Available:
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-tagging.html.
[Accessed April 2019].

[18] Amazon Web Services, "Amazon S3 Transfer Acceleration," 2019. [Online].
Available: https://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-
acceleration.html. [Accessed April 2019].

[19] Amazon Web Services, "Configuring Amazon S3 Event Notifications," 2019.
[Online]. Available:
https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html.
[Accessed April 2019].

[20] Amazon Web Services, “Requester Pays Buckets,” 2019. [Online]. Available:
https://docs.aws.amazon.com/AmazonS3/latest/dev/RequesterPaysBuckets.html.
[Accessed April 2019].

[21] J. Barr, "Amazon S3 Block Public Access – Another Layer of Protection for
Your Accounts and Buckets," 15 November 2018. [Online]. Available:
https://aws.amazon.com/blogs/aws/amazon-s3-block-public-access-another-
layer-of-protection-for-your-accounts-and-buckets/. [Accessed April 2019].

[22] Amazon Web Services, "Cross-Origin Resource Sharing (CORS)," 2019.
[Online]. Available:
https://docs.aws.amazon.com/AmazonS3/latest/dev/cors.html. [Accessed April
2019].

[23] Amazon Web Services, "Object Lifecycle Management," 2019. [Online].
Available: https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-
mgmt.html. [Accessed April 2019].

[24] Amazon Web Services, "Cross-Region Replication," 2019. [Online]. Available:
https://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html. [Accessed April
2019].

[25] Amazon Web Services, "Amazon S3 Analytics – Storage Class Analysis," 2019.
[Online]. Available:
https://docs.aws.amazon.com/AmazonS3/latest/dev/analytics-storage-class.html.
[Accessed April 2019].

[26] Amazon Web Services, "Metrics Configurations for Buckets," 2019. [Online].
Available: https://docs.aws.amazon.com/AmazonS3/latest/dev/metrics-
configurations.html. [Accessed April 2019].

[27] Amazon Wen Services, " Amazon S3 Inventory," 2019. [Online]. Available:
https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-inventory.html.
[Accessed April 2019].

[28] Amazon Web Services, Inc, "DevOps and AWS," 2018. [Online]. Available:
https://aws.amazon.com/devops/. [Accessed January 2018].

63

[29] J. Hwong, "AWS S3 Logjam: Server Access Logging vs. Object-level logging,"
30 July 2019. [Online]. Available: https://www.netskope.com/blog/aws-s3-
logjam-server-access-logging-vs-object-level-logging. [Accessed May 2020].

[30] J. Naglieri, "AWS Security Logging Fundamentals — S3 Bucket Access
Logging," 8 January 2020. [Online]. Available: https://medium.com/panther-
labs/aws-security-logging-fundamentals-s3-bucket-access-logging-
93099ab80e38. [Accessed May 2020].

[31] Amazon Web Services, Inc, "AWS Config," 2018. [Online]. Available:
https://aws.amazon.com/config/. [Accessed 2018].

[32] Amazon Web Services, "List of AWS Config Managed Rules," 2019. [Online].
Available: https://docs.aws.amazon.com/config/latest/developerguide/managed-
rules-by-aws-config.html. [Accessed April 2019].

[33] Amazon Web Services, "AWS Trusted Advisor Best Practice Checks," 2019.
[Online]. Available:
https://aws.amazon.com/premiumsupport/technology/trusted-advisor/best-
practice-checklist/. [Accessed April 2019].

[34] Amazon Web Services, " AWS Trusted Advisor Best Practice Checks," 2019.
[Online]. Available:
https://aws.amazon.com/premiumsupport/technology/trusted-advisor/best-
practice-checklist/. [Accessed April 2019].

[35] T. Walker, "Launch – Hello Amazon Macie: Automatically Discover, Classify,
and Secure Content at Scale," 17 August 2017. [Online]. Available:
https://aws.amazon.com/blogs/aws/launch-amazon-macie-securing-your-s3-
buckets/. [Accessed April 2019].

[36] Linux Security Expert, "Amazon S3 bucket scanners," May 2020. [Online].
Available: https://linuxsecurity.expert/security-tools/amazon-s3-bucket-scanners.
[Accessed may 2020].

[37] E. Han, V. Urias, B. P. Van Leeuwen, W. M. Stout, G. K. Kao and H. W. Lin,
"It's Raining Clouds: Maintaining Visibility in the Haze," Nashville, 2018.

[38] A. Singh and K. Chatterjee, "Cloud security issues and challenges: A survey,"
Journal of Network and Computer Applications, vol. 79, pp. 88-115, 2016
November 2017.

[39] R. Szabo, "Penetration testing of aws-based environments," November 2018.
[Online]. Available: http://essay.utwente.nl/76955/1/Szabo_MSc_EEMCS.pdf.
[Accessed May 2020].

[40] F. Rosen, "A deep dive into AWS S3 access controls – taking full control over
your assets," 13 July 2017. [Online]. Available:
https://labs.detectify.com/2017/07/13/a-deep-dive-into-aws-s3-access-controls-
taking-full-control-over-your-assets/. [Accessed may 2020].

[41] K. Bennett and J. Robertson, "Security in the Cloud: understanding your
responsibility," in Cyber Sensing 2019, Baltimore, 2019.

[42] M. Schnjakin and C. Meinel, "Evaluation of Cloud-RAID: A Secure and Reliable
Storage above the Clouds," in 22nd International Conference on Computer
Communication and Networks (ICCCN), Nassau, 2013.

[43] M. I. H. S. T. S. H. G. F. C. a. C. M. K. A. Torkura, "CSBAuditor: Proactive
Security Risk Analysis for Cloud Storage Broker Systems," in IEEE 17th

64

International Symposium on Network Computing and Applications (NCA),
Cambridge, 2018.

[44] K. Sen, "S3 Security Is Flawed By Design," 23 November 2018. [Online].
Available: https://www.upguard.com/blog/s3-security-is-flawed-by-design.
[Accessed May 2020].

[45] J. Backes, P. Bolignano, B. Cook, C. Dodge, A. Gacek, K. Luckow, N. Rungta,
O. Tkachuk and C. Varming, "Semantic-based Automated Reasoning for AWS
Access Policies using SMT," in Formal Methods in Computer Aided Design
(FMCAD), Austin, 2019.

[46] J. Backes, P. Bolignano, B. Cook, A. Gacek, K. Luckow, N. Rungta, O. Tkachuk
and C. Varming, "One-Click Formal Methods," 22 October 2019. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/8880058. [Accessed
May 2020].

[47] B. West, "Identify Unintended Resource Access with AWS Identity and Access
Management (IAM) Access Analyzer," 2 December 2019. [Online]. Available:
https://aws.amazon.com/blogs/aws/identify-unintended-resource-access-with-
aws-identity-and-access-management-iam-access-analyzer/. [Accessed May
2020].

[48] I. Saeed, S. Baras and H. Hajjdiab, "Security and Privacy of AWS S3 and Azure
Blob Storage Services," in IEEE 4th International Conference on Computer and
Communication Systems (ICCCS), Singapore, 2019.

[49] T. Oyetoyan, B. Milosheska, M. Grini and D. Cruzes, "Myths and Facts About
Static Application Security Testing Tools: An Action Research at Telenor
Digital," in 19th International Conference XP 2018, Porto, 2018.

[50] H. Kinnunen and M. Siponen, "Developing Organization-Specific Information
Security Policiesby using Critical Thinking," in Pacific Asia Conference on
Information Systems, 2018.

[51] A. Demjaha, T. Caulfield, A. Sasse and D. Pym, "2 Fast 2 Secure:A Case Study
of Post-Breach Security Changes," in 2019 IEEE European Symposium on
Security and Privacy Workshops, Stockholm, 2019.

[52] V. Koshy, "Action Research for Improving Practice," 2005. [Online]. Available:
https://dl.uswr.ac.ir/bitstream/Hannan/132060/1/Valsa_Koshy_Action_Research_
for_Improving_Practice_A_Practical_Guide__2005.pdf. [Accessed May 2020].

[53] Wazuh, "0350-amazon_rules.xml," April 2020. [Online]. Available:
https://github.com/wazuh/wazuh-ruleset/blob/master/lists/amazon/aws-
eventnames. [Accessed April 2020].

[54] Wazuh, "AWS-eventnames," November 2019. [Online]. Available:
https://github.com/wazuh/wazuh-ruleset/blob/master/lists/amazon/aws-
eventnames. [Accessed April 2020].

[55] F. Rosén, "Bypassing and exploiting Bucket Upload Policies and Signed URLs,"
2 August 2018. [Online]. Available:
https://labs.detectify.com/2018/08/02/bypassing-exploiting-bucket-upload-
policies-signed-urls/. [Accessed April 2020].

[56] Amazon Web Services, Inc., "Native AWS Security-Logging Capabilities," 30
March 2017. [Online]. Available: https://d1.awsstatic.com/aws-
answers/AWS_Native_Security_Logging_Capabilities.pdf. [Accessed January
2018].

65

[57] Amazon Web Services, Inc, "Server Access Logging," [Online]. Available:
https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerLogs.html. [Accessed
2018].

66

Appendix 1 – Wazuh’s Cloudtrail integration guide

The configuration steps for Wazuh Cloudtrail integration in all of the AWS accounts:

1. Install necessary dependencies in Wazuh manager which are needed for

communication with AWS;

apt-get update && apt-get install python-pip
pip install boto3

2. Create a new Cloudtrail trail;

Apply trail to all regions: yes
Read/Write events: all
Select all S3 buckets in your account: read, write
Create a new bucket for this trail

3. Create a new IAM user;

4. Create and attach the following policy;

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::CLOUDTRAIL-BUCKET-ENV",
 "arn:aws:s3:::CLOUDTRAIL-BUCKET-ENV/*"
]
 }
]
}

5. Create AWS credentials for the IAM user;

6. Change ossec.conf in the Wazuh manager;

Test environment example:
<wodle name="aws-s3">
 <disabled>no</disabled>
 <interval>10m</interval>
 <run_on_start>yes</run_on_start>
 <skip_on_error>yes</skip_on_error>

67

 <bucket type="cloudtrail">
 <name>CLOUDTRAIL-BUCKET-ENV</name>
 <path>s3</path>
 <access_key>PLACEHOLDER</access_key>
 <secret_key>PLACEHOLDER</secret_key>
 </bucket>
 </wodle>

7. Go to Wazuh extension settings in Kibana and enable „Amazon AWS”;

8. If everything works correctly then the Cloudtrail logs will be pulled to Wazuh based

on predefined Wazuh Amazon ruleset.

68

Appendix 2 – Amazon ruleset and predefined AWS events in
Wazuh

These examples demonstrate how these rules work. Each rule is depending on previous

rule which is shown by increasing the indentation:

Parent rule (<rule id="80200" level="0">) - This rule enables
Wazuh to read Cloudtrail json logs, but does not log them to
Wazuh due to rule level being 0.
 Child rule (<rule id="80202" level="3">) - This rule
matches eventnames from the predefined list and logs them to
Wazuh.
 Child rule (<rule id="80203" level="4">) - Increases
the rule level and changes the description when there is an
error related to an AWS event.
 Child rule (<rule id="80250" level="5">) -
Increases the rule level when there are events where access
is denied to some resources.

Parent rule (<rule id="80200" level="0">) - This rule
enables Wazuh to read Cloudtrail json logs, but does not
log them to Wazuh due to rule level being 0.
 Child rule (<rule id="80202" level="3">) - This rule
matches eventnames from the predefined list and logs them
to Wazuh.
 Child rule (<rule id="80251" level="3">) - This
rule logs down events related to object deletions.
 Child rule (<rule id="80252" level="10"
frequency="22" timeframe="600">) level="3">) - This rule
increases the rule level when there has been 22 object
deletion events in 10 minutes.

 Parent rule (<rule id="80200" level="0">) - This rule
enables Wazuh to read Cloudtrail json logs, but does not
log them to Wazuh due to rule level being 0.
 Child rule (<rule id="80202" level="3">) - This rule
matches eventnames from the predefined list and logs them
to Wazuh.
 Child rule (<rule id="80253" level="3">) - This
rule logs AWS account successful login attepts.
 Child rule (<rule id="80254" level="5">) - This
rule logs AWS account unsuccessful login attepts.
 Child rule (<rule id="80255" level="10"
frequency="6" timeframe="360">) - This rule triggers when

69

there has been 6 failed login attepts to AWS account within
6 minutes.

Here are some examples of Wazuh predefined events that can be used to monitor AWS

S3:

§ CreateBucket:S3;

§ DeleteBucket:S3;

§ DeleteBucketLifecycle:S3;

§ DeleteBucketReplication:S3;

§ DeleteBucketTagging:S3;

§ PutBucketLifecycle:S3;

§ PutBucketLogging:S3;

§ PutBucketNotification:S3;

§ PutBucketReplication:S3;

§ PutBucketRequestPayment:S3;

§ PutBucketTagging:S3;

§ PutBucketVersioning:S3;

§ DeleteBucketCors:S3;

§ DeleteBucketPolicy:S3;

§ DeleteBucketWebsite:S3;

§ PutBucketAcl:S3;

§ PutBucketCors:S3;

§ PutBucketPolicy:S3;

§ PutBucketWebsite:S3.

