
Tallinn 2024

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Maksim Semjonov 201757IVSB

Securing Web Applications Built with

Express.js

Bachelor's thesis

Supervisor: Priidu Paomets

 MSc

Co-supervisor: Toomas Lepikult

PhD

Tallinn 2024

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Maksim Semjonov 201757IVSB

Express.js baasil loodud veebirakenduste

turvamine

bakalaurusetöö

Juhendaja: Priidu Paomets

 MSc

Juhendaja: Toomas Lepikult

PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Maksim Semjonov

04.11.2023

4

Abstract

This thesis presents a comprehensive study on securing web applications developed using

the Express.js framework within the Node.js environment. Main sources of the

information are OWASP Top 10 list, along with official Node.js and Express.js

documentation. The methodology combined a thorough literature review, practical

evaluations of Express.js applications, and a systematic design process. This multifaceted

approach ensured a deep understanding of Express.js and Node.js vulnerabilities and the

development of effective mitigation strategies. The research identified key vulnerabilities

in Express.js applications, categorized into three main areas, and presented practical

mitigation strategies. The creation of a PDF guide made these findings accessible,

providing a valuable tool for developers and IT professionals. This work significantly

contributes to web application security, offering actionable insights that enhance the

digital safety of businesses and individuals reliant on these technologies. The thesis thus

plays a crucial role in strengthening the security of web applications in an increasingly

digital-dependent world.

This thesis is written in English and is 26 pages long, including 6 chapters, 0 figures and

0 tables.

5

List of abbreviations and terms

API

BOLA

BOPA

DIY

DoS

DDoS

HTTP

HTTPS

IDOR

I/O

MFA

NPM

OWASP

TLS

USPS

URL

Application Programming Interface

Broken Object Level Authorization

Broken Object Property Level Authorization

Do It Yourself

Denial of Service

Distributed Denial of Service

Hypertext Transfer Protocol

Hypertext Transfer Protocol Secure

Insecure Direct Object Reference

Input-Output

Multi-Factor Authentication

Node Package Manager

Open Web Application Security Project

Transport Layer Security

United States Postal Service

Uniform Resource Locator

6

Table of contents

1 Introduction ... 8

1.1 Motivation .. 8

1.2 Problem Statement .. 8

1.3 Contribution .. 9

1.4 Target Audience ... 11

1.5 Objectives and scope .. 12

2 Literature Review .. 14

2.1 Literature review... 14

2.2 Express.js Framework .. 15

2.3 PDF Creation Using Figma .. 18

3 Methodology .. 19

4 Analysis of Common Vulnerabilities .. 20

4.1 Introduction to Analysis of Common Vulnerabilities .. 20

4.2 Broken Object Level Authorization and Session Management............................ 21

4.3 Broken Authentication .. 21

4.4 Broken Object Property Level Authorization ... 22

4.5 Unrestricted Resource Consumption .. 23

4.6 Express Security Configuration .. 24

4.6.1 Implementing TLS/HTTPS for Secure Communication 25

4.6.2 Securing Static File Serving .. 25

4.6.3 Setting Security Headers with Helmet... 25

4.6.4 Cookie Security ... 25

4.6.5 Error Handling to Prevent Information Leakage ... 26

4.7 Utilizing npm audit for Enhanced Security in Express.js Applications 26

4.8 Avoiding Default Credentials and Utilizing Environmental Variables 27

5 PDF Guide Creation Using Figma... 29

6 Summary .. 31

References .. 33

7

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 37

Appendix 2 – PDF Guide ... 38

8

1 Introduction

In the digital epoch, the fabric of our online existence is increasingly dependent on web

applications. These applications range from simple websites to complex cloud-based

services, and are the major part of modern communication, entertainment, and financial

solutions. Among the stack of technologies powering these applications, Express.js, a

framework for Node.js, has emerged as a base in this digital world. However, as the

reliance on these technologies grows, also grows the spectrum of cyber security threats

they face. This thesis, situated within the study program of Cyber Security Engineering,

seeks to address the value of enhanced security in web applications developed using

Express.js.

1.1 Motivation

Author has gathered remarkable experience in developing of web applications,

particularly with Express.js, has been a journey marked by both interest and caution. The

ease and efficiency of Express.js are combined with an array of security vulnerabilities

that threaten the integrity of web applications. This has not only raised authors

professional curiosity but has also ignited a sense of responsibility. As cyber threats

evolve in sophistication, the task of securing web applications becomes not just a

technical challenge but a critical urgency. This thesis is driven by authors experiences in

developing Express.js applications and the realization of the need for a comprehensive,

practical approach to their security.

1.2 Problem Statement

The spread of web applications has been a defining trend in the modern web world.

Express.js, known for its minimalism and flexibility within the Node.js ecosystem, has

emerged as an efficient tool for many web developers. However, its widespread adoption

has made it a huge target for cyber threats. This thesis aims to tackle the critical challenge

9

of identifying and mitigating security vulnerabilities in web applications developed using

Express.js, a task of priority importance in Cyber Security.

Real-world incidents vividly illustrate the severity of this issue. Consider the infamous

Equifax data breach in 2017, which led to the exposure of sensitive data of over 147

million individuals. This breach was traced back to an unpatched vulnerability in a web

application framework alike to Express.js. The incident not only showcased the

consequences of security omissions but also underscored the necessity for stringent

security protocols [1].

Another illustrative case is the 2018 Node.js event-stream incident, where a widely used

npm package was compromised to steal cryptocurrency. This package, integral to many

applications including those built with Express.js, was targeted due to lax security

measures in managing third-party packages, a prevalent issue in the Node.js environment

[2].

These examples highlight the complex nature of the challenge. Securing Express.js

applications is not just about fortifying the framework itself; it also involves safeguarding

the entire application stack, including external dependencies. The thesis will carefully

study these challenges, focusing on common vulnerabilities. Additionally, it will explore

critical yet often overlooked aspects like secure session management, data encryption,

and secure configuration practices.

The implications of this problem are deep. In an era where data breaches can lead to

substantial financial losses and irreparable reputational damage, securing web

applications goes beyond a technical responsibility and becomes a business imperative.

Through this thesis, author aim to improve the Cyber Security Engineering field with

practical, actionable solutions to these pressing security challenges.

1.3 Contribution

This thesis aims to contribute to the field of Cyber Security, particularly in the context of

securing Express.js web applications. The contributions of this research are following:

1. Analysis of Security Vulnerabilities: One of the key contributions is an analysis

of the common security vulnerabilities associated with Express.js and the related

to it Node.js environment. This analysis will not only identify the vulnerabilities

but also explain why they occur and how they can be exploited.

10

2. Development of Mitigation Strategies: The research will go beyond merely

identifying vulnerabilities. It will develop and present detailed strategies for

mitigating these security risks. These strategies will be practical and actionable,

tailored to be implemented in real-world Express.js applications.

3. Creation of a Security Guide: A significant contribution result of this thesis is a

complete guide that provides step-by-step instructions on securing Node.js

applications with Express.js framework. This guide is a valuable resource for

developers, offering practical advice and best practices in a format that is easy to

understand and apply.

4. Bridging Theory and Practice: By combining theoretical knowledge with

practical application, this thesis will bridge the gap often found in cybersecurity

studies. It will provide a balanced view that respects the complexities of the

theoretical aspects of cybersecurity while also addressing the practical challenges

faced by developers.

5. Enhancing Cybersecurity Awareness: This research will increase awareness

about the importance of cybersecurity in web application development. This will

highlight the need for developers to be proactive in implementing security

measures as an integral part of the development process.

6. Contribution to Academic and Professional Communities: The findings and

recommendations of this thesis will be useful not only to students and scholars in

the field of cybersecurity engineering, but also to professional web developers and

cybersecurity specialists. It will serve as a starting point for further research and

discussion within the community.

The author's contribution to this thesis involved conducting the literature review,

engaging in practical evaluations of web applications, synthesizing information from the

OWASP Top 10 [3] and official documentation, designing the comprehensive PDF guide.

The author's efforts in compiling, analysing, and presenting this information have been

instrumental in creating a resource that not only addresses theoretical aspects of

cybersecurity but also provides practical, actionable guidance for enhancing the security

of Express.js applications.

In summary, this thesis will contribute to the field of Cyber Security Engineering by

providing a detailed examination of security vulnerabilities in Express.js applications,

proposing effective mitigation strategies, and offering a comprehensive guide for

11

developers. These contributions are aimed at enhancing the security of web applications

and raising awareness about the importance of cybersecurity in the digital age.

1.4 Target Audience

This thesis aims to reach a broad range of experts and individuals who work in the fields

of online application development and cybersecurity, either directly or indirectly. The

following groups are specifically targeted to benefit from the research:

1. Web developers: This thesis is primarily intended for the developers, particularly

those who create web apps with Express.js and Node.js. Advice and techniques

offered in the final sollution will be especially helpful to developers who want to

improve the security of their apps.

2. Cybersecurity Professionals: Professionals in the field of cybersecurity will find

this research beneficial in understanding the specific vulnerabilities associated

with Express.js and Node.js. The mitigation strategies outlined can be integrated

into broader cybersecurity practices and protocols.

3. Students and Academics in Cyber Security Engineering: This thesis is a

helpful resource for students studying Cyber Security Engineering and related

subjects to grasp the practical aspects of securing online applications. This

research can be used as a teaching tool by academics to demonstrate the

difficulties and solutions that arise in real-world application security.

4. Decision-makers and IT managers: Decision-makers and IT managers in

companies that use online apps on a regular basis will get a thorough grasp of how

crucial it is to put strong security measures in place.

5. Technology Enthusiasts and Hobbyists: The information in this thesis will be

of interest to those with a great interest in online technologies and cybersecurity,

as well as hobbyists and enthusiasts. It can be used as a reference to comprehend

the intricacies of web application security.

6. Policy Makers and Regulatory Bodies: Although they are not the thesis' major

target audience, policy makers and regulatory bodies that oversee establishing

web application security standards might benefit from the research conducted for

this thesis by better understanding the problems and possible solutions in this

field.

12

In essence, this thesis is designed to be a comprehensive resource for anyone interested

in or responsible for the security of web applications. It aims to disseminate knowledge

that is both practical and theoretically sound, contributing to the overall enhancement of

cybersecurity practices in the digital landscape.

1.5 Objectives and scope

The objectives and scope of this thesis are designed to provide a clear and focused

exploration of securing web applications built with Express.js within the broader context

of Cyber Security Engineering. The following outlines the primary of this research:

1. Identify Key Security Vulnerabilities: To systematically identify and catalog

the primary security vulnerabilities that affect Express.js web applications,

including but not limited to injection attacks, cross-site scripting, and session

hijacking.

2. Develop Mitigation Strategies: To develop comprehensive strategies and best

practices for mitigating identified vulnerabilities. This includes both preventive

measures and reactive strategies to address security breaches.

3. Create a Practical Security Guide: To compile the findings and strategies into

a user-friendly guide that serves as a practical resource for web developers. This

guide will provide actionable steps for securing Express.js applications.

4. Bridge Theoretical and Practical Aspects: To integrate theoretical

cybersecurity principles with practical application development scenarios,

providing a holistic view of web application security.

5. Raising Awareness: To increase awareness among web developers, students, and

other groups related to development and security fields about the importance of

cybersecurity in web application development and the challenges associated with

Express.js.

The scope of this thesis is limited to:

1. Focus on Express.js and Node.js: While the primary focus is on Express.js, the

research will also cover relevant aspects of the Node.js environment.

2. Practical Application-Oriented Approach: The research will punctuate

practical, application-oriented solutions and strategies, making it directly

applicable to real-world development scenarios.

13

3. Current and Relevant Technologies: The study will concentrate on current and

emerging technologies and practices in web application development and

cybersecurity, ensuring the relevance and timeliness of the research.

4. Inclusion of Case Studies and Examples: To enhance understanding and

applicability, the research will include relevant case studies and real-life examples

where appropriate.

5. Limitation to Web Application Security: The research will be limited to the

security aspects of web applications, specifically those built with Express.js, and

will not delve into unrelated areas of cybersecurity or software development.

Through these objectives and scope, this thesis aims to make a substantial contribution to

the field of Cyber Security Engineering, providing valuable insights and tools for securing

Express.js web applications against a backdrop of evolving cyber threats.

14

2 Literature Review

This section of the thesis provides an overview of the existing literature related to securing

web applications, particularly those built with Express.js and Node.js, and outlines the

methodology adopted for this research.

2.1 Literature review

The literature review encompasses a range of sources, including academic journals,

technical blogs, official documentation, and industry reports, to build a comprehensive

understanding of the current state of web application security in the context of Express.js

and Node.js. Key areas that the thesis will focus on are the following:

1. Security Vulnerabilities in Web Applications: This includes studies and reports

on common security threats faced by web applications. Sources like the OWASP

Top Ten provide a foundational understanding of these vulnerabilities [3].

2. Node.js and Express.js Specific Security Concerns: Sources that focus specifically

on security in the Node.js environment and Express.js framework. This includes

analysis of official documentation of Express.js and Node.js [4, 5].

3. Best Practices in Web Application Security: Articles that outline best practices in

securing web applications. These sources provide guidelines and strategies for

developing secure code, managing dependencies, and implementing effective

security measures.

4. Case Studies and Real-World Incidents: Analysis of real-world security breaches

and incidents involving Node.js and Express.js applications. These case studies

offer valuable insights into how security vulnerabilities are exploited and the

consequences of this.

5. Emerging Trends in Web Security: Literature on the latest trends and emerging

threats in web security. This helps in understanding the evolving landscape of web

application security and prepares the groundwork for future-proofing

applications.

15

2.2 Express.js Framework

Node.js is a powerful and commonly used platform for building different kinds of

applications. It is an open-source, cross-platform runtime environment that allows

developers to write server-side code using JavaScript[6]. This section provides an

overview of Node.js and provides the reasoning behind choosing Node.js as the

programming language for web application development.

This section of the thesis provides an in-depth exploration of Node.js, detailing its

architecture, functionality, and the role it plays in the development of web applications,

particularly in relation to security considerations:

1. Event-Driven, Non-Blocking I/O Model: Node.js operates on an event-driven,

non-blocking I/O model, making it perfect for data-intensive real-time

applications that run across distributed devices. This approach allows applications

to handle numerous simultaneous connections without blocking other connection,

which is a significant advantage in application development [7].

2. Single Programming Language: Node.js allows developers to use JavaScript on

both the client and server sides. This simplifies the end-product development, as

it reduces the need to switch between different languages for front-end and back-

end development [8].

3. NPM Ecosystem: Node.js comes with access to the Node Package Manager

(NPM), which contains a huge amount of libraries and modules. This extensive

ecosystem also allows developers to easily integrate various functionalities and

tools into their applications, reducing the time spent on the development process

[9].

4. Scalability: Node.js is designed to be scalable, which is essential for modern web

applications that need to handle growth in both requests traffic and data volume

efficiently [6].

The language for this thesis was selected based on a detailed analysis:

1. JavaScript's universalism: 2023 marks JavaScript’s eleventh year in a row as the

most commonly used programming language, widely used for both client-side and

16

server-side development. This means that a vast majority of programmers and

especially web developers are already familiar with it, reducing the learning curve

for Node.js [9].

2. Real-Time Capabilities: Node.js event-driven possibility, coupled with Node.js’s

non-blocking I/O model, makes it an excellent choice for developing real-time

web applications like chatting apps, entertainment platforms, and live streaming

services. [7]

3. Community and Support: JavaScript, being widely adopted, has a strong

community support and a wealth of resources. This community support is crucial

for troubleshooting, learning, and staying updated with the latest trends and best

practices. Based on authors personal experince, finding resolution to issues faced

while programming was easily done using the stackoverflow portal.

4. Cross-Platform Development: JavaScript’s compatibility with different platforms

like Web, Android, IOS and its integration into Node.js allows for cross-platform

application development, which is cost-effective and efficient. [10]

5. Security Considerations: While JavaScript and Node.js offer a great amount of

options and benefits, they also present unique security challenges. The single-

threaded nature of Node.js can lead to security vulnerabilities if not properly

managed. Additionally, the extensive use of third-party modules from NPM can

introduce security risks if these modules are not properly audited and configured.

[12]

In conclusion, the choice of Node.js and JavaScript for web application development is

driven by their efficiency, scalability, and the ease of using it for cross-platform

development. However, this choice also necessitates a careful consideration of the

associated security challenges, which this thesis aims to address in the context of

Express.js web applications.

In addition to the features and benefits mentioned above, the popularity of Express.js is a

significant factor in its selection as the framework of choice for web application

development, as this helps developers to find solutions to their problems and expand with

different modules:

17

1. Widespread Adoption: Express.js is one of the most widely adopted web

frameworks within the Node.js ecosystem. Its popularity is evident from its

extensive use in the industry, ranging from small-scale projects to large enterprise

applications. According to npm Express has over 30.000.000 downloads per

week. [13]

2. Community Support and Resources: The framework's popularity has led to a

robust and active community. This community support translates into a wealth of

shared knowledge, resources, and tools, making it easier for developers to find

solutions to common problems, stay updated with best practices, and leverage the

collective knowledge of experienced professionals. One of the examples is the

stackoverflow programming portal.

3. Preferred Choice for Many Companies: Many well-known companies and

startups choose Express.js for their web applications due to its efficiency and

flexibility. This widespread industry adoption further validates its reliability and

suitability for modern web development. [14]

4. Developed Ecosystem of Middleware and Plugins: The popularity of Express.js

has contributed to a huge ecosystem of middleware and plugins. Developers have

access to a rich array of modules that can be easily integrated into their Express.js

applications, enhancing application functionality and reducing development time.

[13]

5. Frequent Updates and Longevity: The framework's popularity ensures that it

receives frequent updates and maintenance from contributors. This ongoing

development is crucial for addressing emerging security vulnerabilities, adding

new features, and ensuring the framework stays relevant and effective in the

rapidly evolving field of web technology.

In summary, the popularity of Express.js is a key factor in its selection for web application

development. It not only reflects the framework's capabilities and industry acceptance but

also ensures a rich ecosystem of resources and community support, which are invaluable

for both novice and experienced developers alike. This widespread adoption and support

also underscore the importance of addressing its security aspects, a central theme of this

thesis.

18

2.3 PDF Creation Using Figma

For the creation of the practical PDF guide in this thesis, Figma, a web-based graphic

design tool, will be utilized. Figma's versatility in design and collaboration makes it an

ideal choice for designing a visually appealing and informative PDF guide.

Based on the personal experience, Figma is a great online-tool for design tasks:

1. User-Friendly Interface: Figma offers an intuitive interface which simplifies the

design process, making it easier to concentrate on the task more. Narrowing the

amount of time needed to understand the tool.

2. Flexibility in Design: Figma allows for a high degree of customization and

creativity in design. This flexibility is crucial for creating a guide that is not only

informative but also engaging and easy to navigate.

3. Compatibility and Export Options: Figma supports exporting designs in various

formats, including PDF. This feature ensures that the final product can be easily

shared and accessed in the desired format.

Using Figma for the creation of the PDF guide offers a blend of design flexibility, ease

of use, and collaborative features, resulting in a professional and effective educational

resource.

19

3 Methodology

The methodology for this research is structured to ensure a comprehensive and systematic

approach to understanding and addressing the security of web applications built with

Express.js. Research approach for the thesis is following:

1. Literature Compilation: Gathering a wide range of relevant literature, including

academic papers, technical reports, official documentation, and real-world case

studies.

2. Comparative Analysis: Comparing and contrasting different sources to identify

common themes, discrepancies, and gaps in the existing literature.

3. Practical Evaluation: Applying the theoretical knowledge gained from the

literature to practical scenarios. This involves experimenting with Express.js

applications to understand how vulnerabilities arise and can be mitigated.

4. Development of Best Practices Guide: Synthesizing the information gathered to

develop a comprehensive guide on best practices for securing Express.js

applications.

The "Data Collection and Analysis" phase of the thesis involved a blend of qualitative

analysis, focusing on extracting key topics and insights from the literature on web

application security, and quantitative analysis, employing statistical methods to evaluate

data from case studies and security reports for identifying prevalent vulnerabilities and

assessing their impact:

• Qualitative Analysis: Analyzing the content of the literature to extract key themes,

patterns, and insights related to web application security.

• Quantitative Analysis: Where applicable, using statistical methods to analyze data

from case studies or security reports to identify common vulnerabilities and their

impact.

This methodology provides a balanced approach, combining theoretical knowledge with

practical application, to comprehensively address the security of web applications built

with Express.js.

20

4 Analysis of Common Vulnerabilities

4.1 Introduction to Analysis of Common Vulnerabilities

The section of this thesis is dedicated to a meticulous examination of the most prevalent

and critical security vulnerabilities that affect web applications developed using Node.js

and the Express.js framework. The selection of these vulnerabilities is grounded in a two-

pronged approach: leveraging the insights from the "OWASP Top 10 API Security Risks

– 2023" [3] and fundamental vulnerabilities from official documentation from Express.js

and Node.js [4,5].

The Open Web Application Security Project (OWASP) Top 10 is a standard awareness

document for developers and web application security. It represents a broad consensus

about the most critical security risks to web applications. However, not all vulnerabilities

listed in the OWASP Top 10 are directly applicable to every web framework or

environment. Therefore, this thesis selectively examines five key vulnerabilities from the

OWASP Top 10 – 2023 list: Broken Object Level Authorization and Session

Management, Broken Authentication, Broken Object Property Level Authorization, and

Unrestricted Resource Consumption. These vulnerabilities were chosen based on their

relevance to the Express.js framework and the frequency of their occurrence in real-world

applications. The decision to focus on these particular vulnerabilities also stems from the

observation that other vulnerabilities in the OWASP list are either outside the scope of

this thesis or are similar to the selected ones but less common in the context of Express.js.

Approach to Analysis

The vulnerabilities selected for analysis in this thesis is not just enumeration of potential

security flaws. Every vulnerability is selected to understand its root cause, how it

manifests in a Node.js and Express.js environment, and its potential impact on an

application. This analysis is supplemented with real-world examples, demonstrating how

such vulnerabilities could be exploited. Furthermore, the thesis provides practical

mitigation strategies, offering readers actionable guidance on how to secure their Node.js

and Express.js applications against these identified risks.

By integrating the report of the OWASP Top 10 with the specific approach to the Node.js

and Express.js vulnerabilities, this section aims to provide a comprehensive and

structured view of the application security landscape. This approach ensures that the

analysis is not only theoretically sound but also practically relevant to developers, security

21

professionals, and anyone interested in the security aspects of modern web application

development.

4.2 Broken Object Level Authorization and Session Management

Definition and Context: Broken Object Level Authorization (BOLA) is also known as

Insecure Direct Object References (IDOR). This vulnerability can be exploited when an

application provides access to an endpoint or resource based on user-supplied direct input.

In the context of Node.js and Express.js applications, this often happens when API

endpoints do not properly verify the user's authorization to access specific resources. [15]

Real-World Impact: BOLA can lead to unauthorized access and manipulation of data.

For instance, if an API endpoint in an Express.js application retrieves user information

based on an ID passed in the URL, an attacker could manipulate this ID to access other

users' data. [16]

Mitigation Strategies:

1. Implement Strong Access Control: Ensure that access control checks are made for

every API endpoint that requires this. Access control should check and approve

that the user who made the request has the correct permissions to access or modify

the requested resource. [15]

2. Use Indirect Object References: Direct object references can be guessed or

bruteforced. This can lead to, for example, instead of using database IDs in URLs

or API endpoints, use other identifiers that are not easily guessable. [15]

4.3 Broken Authentication

Definition and Context: Broken Authentication is a critical security vulnerability that

occurs when the implementation of authentication mechanisms in a web application is

flawed or inadequate. This vulnerability is particularly concerning in Node.js and

Express.js applications, where custom authentication processes are often implemented.

[17]

Real-World Impact: When authentication is not properly secured, attackers can exploit

these weaknesses to impersonate legitimate users. This could lead to unauthorized access

to sensitive data, account takeover, and even full system compromise. For example, an

22

Express.js application with weak password policies or improper session handling could

allow attackers to guess or steal user credentials. [18]

Mitigation Strategies:

Strong Password Policies: Implement robust password policies that enforce the use of

strong, complex passwords. This reduces the risk of brute force or dictionary attacks. [19]

Multi-Factor Authentication (MFA): Introduce multi-factor authentication to add an

additional layer of security beyond just username and password. [19]

Secure Session Management: Ensure that session tokens are securely generated and

managed. Implement measures like token invalidation upon logout and automatic

expiration. [18]

Rate Limiting and Account Lockout: Implement rate limiting for login attempts and

lockout mechanisms after a certain number of failed attempts to prevent brute force

attacks. [19]

Encryption and Secure Transmission: Use HTTPS to encrypt data in transit and ensure

that credentials are not exposed. Store passwords securely using strong hashing

algorithms like bcrypt. [20]

Do not use default credentials: Using default credentials for the configuration or admin

users can result in a successful bruteforce attack. [19]

Best Practices in Node.js and Express.js:

Utilize Trusted Authentication Libraries: Leverage well-established libraries like

Passport.js for handling authentication in Express.js applications. These libraries are

regularly updated and follow security best practices. [21]

Avoid DIY Authentication: Unless necessary, avoid building authentication

mechanisms from scratch. It’s safer to use a ready and tested solution for this. [20]

Continuous Monitoring and Logging: Implement monitoring and logging mechanisms

to detect and alert on unusual activities. This can be multiple failed login attempts from

the same IP address. [22]

4.4 Broken Object Property Level Authorization

Definition and Context: Broken Object Property Level Authorization (BOPA) is a

nuanced subset of the broader Broken Object Level Authorization (BOLA) vulnerability.

It occurs specifically when an application fails to adequately protect the properties of an

object that a user is authorized to access. In Node.js and Express.js applications, this often

23

arises when APIs or functions expose more data than necessary or allow unauthorized

modifications to certain properties of an object. [23]

Real-World Impact: The impact of BOPA can be significant. As an example, for Node.js

application: an authenticated user might try to access their user profile object but should

not be able to view or modify certain sensitive properties like other users' email addresses

or passwords. If these properties are not properly protected, it could lead to data breaches

and privacy violations. An example of this is a USPS attack, one of the largest data

breaches in history that affected 60 million users. The breach was caused by a Broken

Object Property Level Authorization attack, allowing anyone to access a USPS database.

[24][25]

Mitigation Strategies:

Fine-Grained Access Control: Implement granular access controls that not only check

if a user can access an object but also which specific properties they are allowed to view

or modify. [26]

Data Sanitization: Ensure that any data sent to the client is appropriately sanitized and

stripped of sensitive properties that the user should not access.

Use unpredictable values: Using random IDs minimizes the risk of bruteforce for the

path properties, ensuring that only users that have the correct ID can access the resource

[24]

Best Practices in Node.js and Express.js:

Use Middleware for Access Control: In Express.js, write custom middleware functions

that handle access control checks for object properties based on the user's role and

permissions. [27]

4.5 Unrestricted Resource Consumption

Definition and Context: Unrestricted Resource Consumption, is often referred to as a

Denial of Service (DoS) vulnerability. It occurs when an application doesn't control the

allocation and use of its resources correctly. In the context of Node.js and Express.js

applications, this can happen when an application allows users to consume large amounts

of server resources. This will lead to a higher server response time or complete

unavailability. [28]

Real-World Impact: Resource Consumption vulnerability can be exploited with various

methods. Few examples are sending numerous resource complicated requests to the

24

server, uploading large sized files, or executing resource-consuming operations. For

example, an attacker can send a suppressing number of requests to a Node.js server,

causing it to throttle or crash the whole application, causing denial of service to all

legitimate users. In April of 2022 distributed denial-of-service (DDoS) attack targeted a

cryptocurrency platform with more than 15.3 million requests per second, as reported by

the service provider Cloudflare. This attack was particularly powerful due to its use of

HTTPS requests, which are more compute-intensive than HTTP requests, as every

request must also be signed by the sender. The scale and method of this attack highlight

the evolving nature of DDoS threats, emphasizing the need for robust security measures

in digital platforms. [29, 30]

Mitigation Strategies:

Rate Limiting: Implement server-side rate limiting in the application to control the

number of requests that a user can send in each time frame. This helps in mitigating brute-

force attacks and reduces the risk of server overload. [31]

Input Validation: Ensure that the strict validation of user input is present, especially for

resource consuming operations. Limiting the size of file uploads and the complexity of

requests will also minimize risks. [32]

Efficient Code and Query Optimization: Write efficient code and make sure that

database queries are optimized to minimize the server load. [33]

Use of Caching and Load Balancers: Implement caching solutions to reduce the load

on the server and use load balancers to distribute traffic evenly across multiple servers if

multi-server solution is used. [34]

Monitoring and Alerts: Set up monitoring tools to keep track of resource usage and

performance metrics. Configure alerts for unusual spikes in resource consumption. [32]

4.6 Express Security Configuration

This chapter focuses on configuring Express.js to enhance the security of web

applications. Express.js, known for its flexibility and minimalism, requires careful

configuration to safeguard against common web vulnerabilities.

25

4.6.1 Implementing TLS/HTTPS for Secure Communication

Definition and Context: Transport Layer Security or TLS is a network protocol for

encrypting requests and verifying server identity. If TLS is not present, data transmitted

between client and server is susceptible to Man In The Middle Attack. [35]

Real-World Impact: Lack of TLS can lead to request or response breaches,

compromising user information, such as login credentials or personal data. [35]

Mitigation Strategies: Implement TLS using Node.js's https module. Acquire SSL/TLS

certificates from trusted authorities like Let's Encrypt. Redirect all HTTP traffic to

HTTPS to ensure secure communication. [36]

4.6.2 Securing Static File Serving

Definition and Context: Static file serving in Express.js, if not properly configured, can

expose sensitive files and directories to unauthorized users. [37]

Real-World Impact: This vulnerability can lead to unauthorized access to private files,

potentially leaking confidential information. [38]

Mitigation Strategies: Use “express.static” middleware. Define accessible directories

explicitly and implement path normalization to prevent directory traversal attacks. [39]

4.6.3 Setting Security Headers with Helmet

Definition and Context: HTTP security headers in Express.js are crucial for protecting

against various web-based attacks. Helmet is a middleware that helps in setting these

headers. [40]

Real-World Impact: Without proper security headers, applications are vulnerable to

attacks like XSS and clickjacking, leading to data theft and site defacement. [41]

Mitigation Strategies: Integrate Helmet to automatically set secure HTTP headers.

Customize headers like X-Frame-Options, and X-Content-Type-Options as per the

application's needs.

4.6.4 Cookie Security

Definition and Context: Cookies often store sensitive session data. Unsecured cookies

can lead to data interception and manipulation. [42]

Real-World Impact: By compromising an authenitcation cookie, an attacker can gain

access to user data and accounts. [43]

26

Mitigation Strategies: Implement HttpOnly, Secure, and SameSite flags for cookies. Use

signed cookies to verify their integrity. Default cookies settings should not be used. [4]

4.6.5 Error Handling to Prevent Information Leakage

Definition and Context: In Express.js, improperly handled errors can inadvertently

reveal sensitive information about the application's internals. [44]

Real-World Impact: Information leakage through error messages can provide attackers

with insights into potential vulnerabilities within the application. [45]

Mitigation Strategies: Develop comprehensive error handling mechanisms. Customize

error responses to avoid sending stack traces or internal error details to clients. [45]

4.7 Utilizing npm audit for Enhanced Security in Express.js

Applications

Definition and Context

• What is npm audit? npm audit is a command-line utility accessible by default via

the npm (Node Package Manager). This tool automatically reviews the project's

dependencies to identify any known vulnerabilities in the packages that are used

in the application. [46]

• Importance in Express.js: Given the extensive use of third-party packages in

Express.js and Node.js applications, npm audit becomes a valuable tool for

developers to keep their applications secure from known vulnerabilities in these

dependencies. [47]

Real-World Impact

• Vulnerability Exposure: Neglecting to regularly audit and update dependencies

can leave an application exposed to security breaches. Vulnerabilities in packages

can be exploited by attackers to gain unauthorized access, inject malicious code,

or disrupt service.

• Case Studies: Real-world incidents, such as the event-stream incident, highlight

the importance of regular dependency audits. In this case, a widely used package

was compromised, affecting numerous applications. In 2018 a widely used npm

package was compromised to steal cryptocurrency. This npm package is essential

for numerous applications including those developed with Express.js, was

27

compromised stealing account details and private keys from accounts having a

balance of more than 100 Bitcoin or 1000 Bitcoin Cash. [48]

Mitigation Strategies

• Regular Audits: Integrate npm audit into the development workflow. Run it

regularly, ideally as part of continuous integration processes, to ensure timely

detection of vulnerabilities. [46]

• Understanding Audit Reports: Learn to interpret the audit report generated by npm

audit. It categorizes vulnerabilities by severity (low, moderate, high, critical) and

provides information on the affected packages and available fixes. [46]

• Updating Dependencies: Follow the recommendations provided by npm audit to

update or replace vulnerable packages. Use commands like npm update and npm

audit fix to automate the resolution of these vulnerabilities. [46]

4.8 Avoiding Default Credentials and Utilizing Environmental

Variables

Avoiding Default Credentials: Using default credentials in development environments,

can pose significant security risks. These credentials are easily guessable and widely

known, making them a prime target for attackers. [49]

Using Environmental Variables: Storing sensitive credentials like API keys or database

passwords in environmental variables is a recommended practice. This approach

enhances security by keeping sensitive data out of the codebase. [50]

Mitigation Strategies

Implementing Strong, Unique Credentials: Always replace default credentials with

strong, unique passwords and keys. This should be a standard practice in both

development and production environments.

Secure Storage and Access: Utilize environmental variables for storing sensitive data.

Ensure that these variables are securely configured and accessible only by the necessary

parts of the application.

Best Practices in Node.js and Express.js

In addition to the above strategies, it's crucial to adhere to best practices specific to

Node.js and Express.js development:

Environmental Variable Management: Use tools like dotenv for managing environmental

variables in Node.js applications. This helps in keeping configuration separate from code

28

and makes it easier to manage different settings for development, testing, and production

environments. [51]

Avoid Hardcoding Sensitive Data: Never hardcode sensitive information like API keys

or database credentials directly in the source code.

29

5 PDF Guide Creation Using Figma

Initial Planning and Structure

The process began with a clear vision of the document's structure. The vulnerabilities

were categorized into three main sections: Secure Baseline Configuration of Express.js,

Best Security Practices in Node.js, and Secure API Logic Implementation. This

categorization provided a logical flow and made the document more user-friendly.

Content Development and Organization

For each vulnerability, a three-question format was adopted: 'What?' to describe the

vulnerability, 'Why?' to explain the associated risks, and 'How?' to outline mitigation

strategies. This approach ensured that each section was informative and practical. The

content was meticulously gathered and organized to ensure clarity and coherence.

Designing in Figma

Using Figma, the layout was designed to be intuitive and engaging. The design

emphasized readability and ease of navigation, with a focus on a clean and professional

aesthetic.

Incorporating Design Elements:

• Yellow Rounded Forms: These were used to highlight important notices and

clarifications, ensuring they stood out for quick reference.

• Good and Bad Examples: To aid in understanding, some vulnerabilities were

accompanied by side-by-side comparisons of good and bad practices. This visual

representation helped in illustrating the practical implications of each

vulnerability.

• Code Examples: Real-world code examples were integrated into the guide. These

examples provided practical insights into how the vulnerabilities could be

addressed in actual development scenarios.

Linking to Resources

30

The document included hyperlinks to official resources and guides. These links offered

readers the opportunity to delve deeper into topics and access additional information.

Finalizing and Exporting the Document

Once the content and design were finalized, the document was exported from Figma as a

PDF. Special attention was given to maintaining the integrity of the design elements and

ensuring that all links were functional. The final PDF was reviewed for quality assurance,

ensuring that it met the intended educational and practical purposes.

Outcome

The resulting PDF guide serves as an easy-to-follow resource for developers and IT

professionals. The structure and design if the document make it easy to read. Practical

examples and additional resources help to understand how issues can be solved to enhance

the security of web applications built with Express.js and Node.js.

31

6 Summary

This thesis embarked on a comprehensive journey to explore and address the critical

aspects of securing web applications developed using the Express.js framework, within

the context of Node.js environments. The primary focus was on identifying common

vulnerabilities, understanding their implications, and providing practical mitigation

strategies.

Key Highlights of this thesis are the following:

• Express.js and Node.js Overview: The thesis began with a detailed exploration of

Node.js and Express.js, highlighting their popularity, flexibility, and the security

challenges inherent in their use. The choice of these technologies was justified

based on their widespread adoption and relevance in modern web development.

• Vulnerability Analysis: A significant portion of the thesis was dedicated to

analyzing common vulnerabilities. This analysis was guided by the OWASP Top

10 API Security Risks – 2023, along with specific vulnerabilities pertinent to

Node.js and Express.js. The vulnerabilities were categorized into three main

areas: Secure Baseline Configuration of Express.js, Best Security Practices in

Node.js, and Secure API Logic Implementation.

• Practical Mitigation Strategies: For each identified vulnerability, the thesis

provided a detailed 'What?', 'Why?', and 'How?' approach. This structure helped

in understanding the nature of each vulnerability, its potential risks, and the most

effective strategies for mitigation. Real-world examples, code snippets, and

comparative analyses of good and bad practices enriched this section.

• Express.js Security Configurations: The thesis delved into specific configurations

and practices for securing Express.js applications. This included using TLS,

managing static file serving, implementing security headers, handling cookies

securely, and managing dependencies.

32

• PDF Guide Creation: A unique aspect of this thesis was the creation of a

comprehensive PDF guide using Figma. This guide encapsulated all the findings

and recommendations of the thesis in a visually engaging and accessible format,

complete with interactive elements, visual aids, and practical examples.

• Contribution and Audience: The thesis contributed significantly to the field of

cybersecurity, particularly in the context of Express.js applications. It serves as a

valuable resource for developers, cybersecurity professionals, and students in the

field of Cyber Security Engineering.

Conclusion:

The thesis successfully achieved its objectives by providing a thorough understanding of

the security landscape surrounding Express.js and Node.js applications. The research and

methodologies employed were robust, ensuring that the findings were relevant, practical,

and could be readily applied in real-world scenarios. The creation of the PDF guide

further extended the usability of this research, making it a practical tool for ongoing

reference and application.

In conclusion, this thesis stands as a testament to the importance of cybersecurity in web

application development and provides a solid foundation for developers and professionals

seeking to enhance the security of their Express.js applications.

33

References

[1] Electronic Privacy Data Center, “Equifax Data Breach”, [Online]. Available:

https://archive.epic.org/privacy/data-breach/equifax. [Accessed 20 November 2023].

[2] NPM Blog, “Details about the event-stream incident”, 27 November 2018. [Online].

Available: https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-

incident. [Accessed 20 November 2023].

[3] OWASP, “OWASP Top 10 API Security Risks – 2023”, [Online]. Available:

https://owasp.org/API-Security/editions/2023/en/0x11-t10. [Acessed 15 October]

[4] Express, “Production Best Practices: Security”, [Online]. Available:

https://expressjs.com/en/advanced/best-practice-security.html. [Acessed 15 October]

[5] Node.js, “Node.js Security Best Practices”, [Online]. Available:

https://nodejs.org/en/guides/security. [Acessed 15 October]

[6] Node.js oficial website, “About Node.js”, [Online]. Available: https://nodejs.org/en/about.

[Accessed 20 November 2023]

[7] Node.js oficial website, “Learn Node.js”, [Online]. Available: https://nodejs.org/en/learn.

[Accessed 20 November 2023]

[8] EPAM Blog, “Top 5 NodeJS Pros and Cons: What They Mean for Your Business”, 11

November 2023. [Online]. Available: https://anywhere.epam.com/business/node-js-pros-

and-cons. [Accessed 20 November 2023]

[9] NPM, “About npm”, 11 November 2023. [Online]. Available:

https://www.npmjs.com/about. [Accessed 20 November 2023]

[10] Stackoverflow, “2023 Developer Survey”, [Online]. Available:

https://survey.stackoverflow.co/2023/#most-popular-technologies-language. [Accessed 20

November 2023]

[11] Convective, “Javascript cross-platform”, [Online]. Available:

https://www.convective.com/javascript-cross-platform. [Accessed 20 November 2023]

[12] Snyk, “Top 10 Node.js Security Best Practices”, [Online]. Available:

https://snyk.io/learn/nodejs-security-best-practice. [Accessed 20 November 2023]

[13] NPM, “express”, [Online]. Available: https://www.npmjs.com/package/express.

[Accessed 20 November 2023]

https://archive.epic.org/privacy/data-breach/equifax
https://owasp.org/API-Security/editions/2023/en/0x11-t10
https://nodejs.org/en/about
https://nodejs.org/en/learn
https://www.convective.com/javascript-cross-platform
https://www.npmjs.com/package/express

34

[14] Express.js website, “Companies using Express in production” , [Online]. Available:

https://expressjs.com/en/resources/companies-using-express.html. [Accessed 20 November

2023]

[15] OWASP, “API1:2023 Broken Object Level Authorization”, [Online]. Available:

https://owasp.org/API-Security/editions/2023/en/0xa1-broken-object-level-authorization.

[Acessed 10 November]

[16] Imperva, “Broken Object Level Authorization”, [Online]. Available:

https://www.imperva.com/learn/application-security/broken-object-level-authorization-bola.

[Accessed 8 November]

[17] OWASP, “API2:2023 Broken Authentication”, [Online]. Available:

https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication. [Acessed 10

November]

[18] Contrast Security, “Broken Authentication”, [Online]. Available:

https://www.contrastsecurity.com/glossary/broken-authentication. [Accessed 8 November]

[19] OWASP, “A2:2017-Broken Authentication”, [Online]. Available:

https://owasp.org/www-project-top-ten/2017/A2_2017-Broken_Authentication. [Acessed

10 November]

[20] Stack Hawk, “NodeJS Broken Authentication Guide: Examples and Prevention”,

[Online]. Available: https://www.stackhawk.com/blog/nodejs-broken-authentication-guide-

examples-and-prevention. [Accessed 8 November]

[21] Passport.js, “Overview”, [Online]. Available:

https://www.passportjs.org/concepts/authentication. [Accessed 8 November]

[22] Appsignal, “Best Practices for Logging in Node.js”, [Online]. Available:

https://blog.appsignal.com/2021/09/01/best-practices-for-logging-in-nodejs.html. [Accessed

8 November]

[23] OWASP, “API3:2023 Broken Object Property Level Authorization”, [Online].

Available: https://owasp.org/API-Security/editions/2023/en/0xa3-broken-object-property-

level-authorization. [Acessed 10 November]

[24] APISEC, “What is Broken Object Level Authorization (BOLA) and How to Fix It”,

[Online]. Available: https://www.apisec.ai/blog/broken-object-level-authorization. [Acessed

10 November]

[25] The Verge, “USPS took a year to fix a vulnerability that exposed all 60 million users’

data”, [Online]. Available: https://www.theverge.com/2018/11/22/18107945/usps-postal-

service-data-vulnerability-security-patch-60-million-users. [Acessed 15 November]

https://www.imperva.com/learn/application-security/broken-object-level-authorization-bola
https://www.contrastsecurity.com/glossary/broken-authentication
https://www.stackhawk.com/blog/nodejs-broken-authentication-guide-examples-and-prevention
https://www.stackhawk.com/blog/nodejs-broken-authentication-guide-examples-and-prevention
https://blog.appsignal.com/2021/09/01/best-practices-for-logging-in-nodejs.html

35

[26] Wallarm, “Broken Object Level Authorization (BOLA)”, [Online]. Available

https://www.wallarm.com/what/broken-object-level-authorization. [Acessed 10 November]

[27] Pieces, “Building a Role-Based Access System in Node.js”, [Online]. Available

https://code.pieces.app/blog/role-based-access-systems-in-nodejs. [Acessed 10 November]

[28] OWASP, “API4:2023 Unrestricted Resource Consumption”, [Online]. Available:

https://owasp.org/API-Security/editions/2023/en/0xa4-unrestricted-resource-consumption.

[Acessed 10 November]

[29] Paloato, “What is a denial of service attack (DoS) ?”, [Online]. Available:

https://www.paloaltonetworks.com/cyberpedia/what-is-a-denial-of-service-attack-dos.

[Acessed 10 November]

[30] Arstechnica, “One of the most powerful DDoSes ever targets cryptocurrency platform”,

[Online]. Available: https://arstechnica.com/information-technology/2022/04/one-of-the-

most-powerful-ddoses-ever-targets-cryptocurrency-platform. [Acessed 10 November]

[31] Reflectoring, “How to Implement API Rate Limiting in a Node.js Express Application”,

[Online]. Available: https://reflectoring.io/tutorial-nodejs-rate-limiter. [Accessed 3

November]

[32] Thesmartscanner, “How to Secure your NodeJs Express Javascript Application - part

2”, [Online]. Available: https://www.thesmartscanner.com/blog/how-to-secure-your-nodejs-

express-javascript-application-part-2. [Accessed 11 November]

[33] Medium, “Node.js on Nitro: Unleashing Blazing Performance and Invincible Security”,

[Online]. Available: https://smit90.medium.com/node-js-on-nitro-unleashing-blazing-

performance-and-invincible-security-%EF%B8%8F-55b7d0b519bd. [Accessed 11

November]

[34] Medium, “Node.js on Nitro: Unleashing Blazing Performance and Invincible Security”,

[Online]. Available: https://medium.com/@vishwasacharya/scaling-node-js-applications-

for-high-traffic-best-practices-da96b030d745. [Accessed 11 November]

[35] Cloudflare, “What is TLS (Transport Layer Security)?”, [Online]. Available:

https://www.cloudflare.com/learning/ssl/transport-layer-security-tls. [Accessed 11

November]

[36] Adamtheautomator, “How to Create an HTTPS NodeJS Web Service with Express”,

[Online]. Available: https://adamtheautomator.com/https-nodejs. [Accessed 11 November]

[37] Snyk, “Directory Traversal”, [Online]. Available:

https://security.snyk.io/vuln/npm:server-static:20180226. [Accessed 11 November]

[38] OWASP, “Path Traversal”, [Online]. Available: https://owasp.org/www-

community/attacks/Path_Traversal. [Acessed 10 November]

https://www.wallarm.com/what/broken-object-level-authorization
https://reflectoring.io/tutorial-nodejs-rate-limiter

36

[39] Express.js, “Serving static files in Express”, [Online]. Available:

https://expressjs.com/en/starter/static-files.html. [Acessed 10 November]

[40] Helmet.js, “Get started”, [Online]. Available: https://helmetjs.github.io. [Acessed 10

November]

[41] LogRocket, “Using Helmet in Node.js to secure your application”, [Online]. Available:

https://blog.logrocket.com/using-helmet-node-js-secure-application. [Acessed 10

November]

[42] MDN Web Docs, “Using HTTP cookies”, [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies. [Acessed 10 November]

[43] Malcare, “Cookie Stealing in WordPress: Understanding the Risks and Consequences”,

[Online]. Available: https://www.malcare.com/blog/cookie-stealing/. [Acessed 10

November]

[44] OWASP, “Improper Error Handling”, [Online]. Available: https://owasp.org/www-

community/Improper_Error_Handling. [Acessed 10 November]

[45] Sematext, “Node.js Error Handling Made Easy: Best Practices On Just About

Everything You Need to Know”, [Online]. Available: https://sematext.com/blog/node-js-

error-handling. [Acessed 10 November]

[46] NPM Docs, “npm-audit”, [Online]. Available:

https://docs.npmjs.com/cli/v9/commands/npm-audit. [Acessed 10 November]

[47] NPM Docs, “Auditing package dependencies for security vulnerabilities”, [Online].

Available: https://docs.npmjs.com/auditing-package-dependencies-for-security-

vulnerabilities. [Acessed 10 November]

[48] NPM Blog, “Details about the event-stream incident”, [Online]. Available:

https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident.

[Acessed 10 November]

[49] CWE, “CWE-1392: Use of Default Credentials”, [Online]. Available:

https://cwe.mitre.org/data/definitions/1392.html. [Acessed 18 November]

[50] Progress Telerik, “Beginner’s Guide to Environment Variables”, [Online]. Available:

https://www.telerik.com/blogs/beginners-guide-environment-variables. [Acessed 18

November]

[51] Node Package Manager, “dotenv”, [Online]. Available:

https://www.npmjs.com/package/dotenv. [Acessed 18 November]

37

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Maksim Semjonov

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Securing Web Applications Built with Express.js”, supervised by Priidu

Paomets

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

04.12.2023

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

38

Appendix 2 – PDF Guide

The PDF guide that was created as an end product of this thesis is available at

https://drive.google.com/file/d/1FykAOOIgt3Dgfxoc8uKVf8FdjsuonHrB/view?usp=sh

aring

	Author’s declaration of originality
	Abstract
	List of abbreviations and terms
	Table of contents
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Contribution
	1.4 Target Audience
	1.5 Objectives and scope

	2 Literature Review
	2.1 Literature review
	2.2 Express.js Framework
	2.3 PDF Creation Using Figma

	3 Methodology
	4 Analysis of Common Vulnerabilities
	4.1 Introduction to Analysis of Common Vulnerabilities
	4.2 Broken Object Level Authorization and Session Management
	4.3 Broken Authentication
	4.4 Broken Object Property Level Authorization
	4.5 Unrestricted Resource Consumption
	4.6 Express Security Configuration
	4.6.1 Implementing TLS/HTTPS for Secure Communication
	4.6.2 Securing Static File Serving
	4.6.3 Setting Security Headers with Helmet
	4.6.4 Cookie Security
	4.6.5 Error Handling to Prevent Information Leakage

	4.7 Utilizing npm audit for Enhanced Security in Express.js Applications
	4.8 Avoiding Default Credentials and Utilizing Environmental Variables

	5 PDF Guide Creation Using Figma
	6 Summary
	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix 2 – PDF Guide

