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1 INTRODUCTION 

The signs of Global Warming are determining the way to obtain a comprehensive design 

of industrial applications. Finding the most efficient and sustainable solution has become 

an engineering challenge, explicitly focusing on reducing consumption and energy waste 

to ensure ecological sustainability. In process automation, developing high-performance 

and reliable industrial controllers is one way of increasing plant efficiency. A significant 

portion of current industrial controllers is constituted by proportional – integral -

derivative (PID) controllers due to their simple favorable implementation and their 

applicability to a wide range of industrial control tasks. Although PID controllers provide 

a simple controller solution, their simple structure vanishes for multivariable control 

tasks yielding a complex and inefficient controller structure[1]. Considering the 

increasing complexity in industrial applications with the envisioned design of Industry 

4.0, data-driven intelligent control systems offer more extensive and advanced control 

schemes to ensure optimal plant efficiency. 

 

Model Predictive Control is an advanced intelligent control method that provides optimal 

model-based input manipulation. Model Predictive Control, by its nature, is highly ideal 

to govern control tasks for multivariable systems[2]. MPC consists of techniques to 

utilize predictions for the optimal computation of variables in a process and even for 

future states. MPC algorithm predicts the future behavior of the process, by computing 

the adjustment of the sequence of future manipulated variables, in each sampling time 

of the control [3]. MPC concepts have found a vast field of application in industry and 

gained popularity due its high performance and reliability for long operating times [4]. 

 

This thesis comprises the studies for developing and validating model-based control 

approaches to facilitate multivariable MPC implementation to a district heating plant. 

The district heating plants operate boiler to generate heating energy. The heating plant 

and the process within the boiler constitute a multivariable process as gas flow, boiler 

water flow, plant water flow, inlet water temperature as input, boiler outlet 

temperature, and plant outlet temperature as output. It is denoted in Statistics Estonia 

that there exist 3050 boilers in Estonia in 2017, and most of them are employed by 

district heating plants[5][6]. Adjusting MPC solutions in heat production is a promising 

advancement in boosting the efficiency of conventional heating plants and ultimately 

reducing carbon emissions. 

 

The thesis is the follow-up study for the PhD thesis of Vitali VANSOVITŠ “Control 

Advanced Control of District Heating Processes” [7] constituting the Model Predictive 
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Control branch of the Intelligent Control System Studies of TalTech Alpha-Lab Control 

Laboratory. In the previous studies, a MPC Software was proposed to externally control 

the district heating plant with distributed control system (DCS) configuration. The MPC 

Software successfully controlled a multi-input single-output (MISO) system and 

provided promising results for implementing to an actual plant. Studies in this thesis 

focus on validating the MPC Software's control performance over an identified multi-

input multi-output (MIMO) Multi-tank laboratory system [8]. The validation method 

compares two MIMO MPC performance results; one designed and tuned in MATLAB 

Model Predictive Control application, and the other is intended to be the external MIMO 

MPC controller using the MPC Software. Results will show the applicability of the MPC 

Software to any industrial control task if the state-space model of the process is 

identified. The studies give a detailed insight into the design and implementation of a 

model predictive controller, which consists of multivariable model identification and 

validation of the identified model, tuning approaches for a goal-oriented model-based 

controller, data transfer protocols for real-time multivariable controllers. 

 

The contributions of this thesis include: 

1. Studies of data driven identification techniques. 

2. The implementations of identification experiments on SISO and MIMO systems, 

and validation studies on the obtained state-space models. 

3. Studies of tuning approaches of a Model Predictive Control. 

4. Configuration of communication interface between the MPC Software and the 

Multi-tank Laboratory system [8]. 

5. The Practical implementation of the MPC Software as an external controller, 

generation of case studies, analysis of the results, and formulations on designing 

the process control. 

 

Thesis includes 7 Chapters: 

 

Chapter 1 

The introduction of the work is provided. This Chapter includes the problem statements 

and objective of the thesis. 

 

Chapter 2 

Contains the discovery and development MPC with its previous implementations in 

various industry. Current shortcomings of the MPC are discussed and justification of this 

work is stated. 
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Chapter 3 

Gives a detailed introduction to the feature of MPC. The algorithm of state-space based 

MPC is detailed with mathematical equations. 

 

Chapter 4 

The chapter gives overview of model identification techniques and includes detailed 

description of the considered identification method to be used for obtaining the 

multivariable model of the Multi-tank system. 

 

Chapter 5 

Details the identification methodology used for SISO, MISO and MIMO systems. 

 

Chapter 6 

The chapter details the implementation and tuning of designed model predictive 

controllers. The case studies are introduced, and the results are monitored.  

 

Chapter 7 

In the final chapter, results of the thesis are reviewed, and overall conclusions are 

drawn. 
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2  LITERATURE REVIEW AND BACKGROUND 

2.1 History of Industrial MPC in Literature 

The applicability and effectualness of MPC have been denoted in a vast number of 

surveys related to various fields of industry. The increasing number of reported 

applications and remarkable improvements in the computing power of controllers have 

granted MPC a prospect of becoming a control method having favorable commercial 

values [3], [9]. In this chapter, the background of Model Predictive Control is reviewed 

regarding previous technical studies and journals in control theory literature.  

MPC systems have gained popularity lately in the industry, although initial 

implementations of MPC go down to the late 70s. First examples of model-based control 

were formed as Linear Quadratic Gaussian (LQG) control. LQG describes the dynamics 

of the controlled system as a set of linear differential equations. The problem of LQ 

concerns the cost function, which is the sum deviation of measurements from their 

desired values. The objective of the LQ problem is to minimize the cost function. Kalman 

proposed[10] that, representing the states of the linear system as a discrete-time state-

space model enables a function that can estimate the future states. Implementation of 

discrete state-space model into LQ problem generates weights matrices as the 

coefficient matrices for states and inputs. Optimization, so-called "tuning" of weights 

matrices, became the objective to obtain a minimum cost function. It is depicted in[11] 

LQG algorithm provides successful results in getting offset-free outputs in steady-state 

targets. Although the initial LQG algorithm showed successful outcomes in their 

particular applications, the initialized model was unsuitable for control applications in 

the industrial level. The significant problems of the initial LQG models were their 

feasibility for only linear systems; moreover, they lacked systematic tuning guidelines, 

and most importantly, physical constraints of the controlled process were not modeled 

[12][13].  

First examples of modern model-based control approaches in the industry have been 

proposed as IDCOM (Identification and Command) [14] and DMC (Dynamic matrix 

control) [15]. They use a model-based control methodology that comprises online 

optimization of manipulated variables (MV). According to the past MV values, the 

proposed models predict and optimize the future behavior of the plant over an interval 

known as prediction horizon. Additionally, two model-based control approaches utilize 

test data of the controlled system to generate the heuristic dynamical model by 

identification methods. Richalet's s IDCOM approach models the plant-based impulse 
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response and performs quadratic objectives over the prediction horizon. Optimal inputs 

and outputs are computed using a heuristic model algorithm, and output is acquired 

based on a reference trajectory. It was reported that IDCOM was implemented into 

industrial control of a fluid catalytic cracking unit and a steam generator. 

On the other hand, Cutler & Ramaker described linear identification method based on 

step response for their DMC. Optimal inputs are calculated with respect to a least-square 

problem. Future plant behavior is specified by manipulating the input variables to reach 

the set point as close as possible. DMC approach was designed to be implemented in 

petrochemical processes. DMC and IDCOM are the pioneer studies describing multi-level 

hierarchical control function, which is considered fundamental to advanced control 

applications. However, due to their heuristic algorithm, both control approaches were 

not comprehensive enough to deal with systems with constraints. Therefore, they are 

considered as the First Generation MPC in surveys in automation literature [3], [9], 

[13], [16].       

Constraint handling is crucial for controlling a system concerning its physical capabilities. 

Several developments were made to DMC algorithm to address the constraint handling. 

QDMC algorithm was described in [17] as a quadratic program (QP) combined with DMC, 

which explicitly reveals input/output constraints. Such a result is achieved by posing the 

MPC problem as a QP. Additionally, improved QDMC is published with detailed 

optimization and tuning algorithms [16]. The QDMC requires a linear step response 

model of the controlled plant; based on this model, future plant output behavior is 

predicted by optimizing the inputs according to the set point. Optimal inputs are 

calculated as the solution of a quadratic problem, while the objective is defined over a 

finite prediction horizon. In [16] the QDMC was introduced to industrial pyrolysis furnace 

application. The task was to control the stream temperature in three locations in the 

furnace by adjusting fuel gas pressure in three burners. The QDMC algorithm showed 

successful results in executing the control process according to the input/output 

constraints. With the deliberate introduction of constraint handling and detailed 

implementation methods, the QDMC is considered Second Generation MPC. 

After the innovation of MPC technology, surveys reported the economic advantages of 

MPC. It was mentioned in a model predictive technology survey that Richalet's IDCOM 

based model predictive heuristic control provided $150.000/yr profit in fractionator 

application [3]. The economic benefits of MPC granted popularity in the market, and 

MPC gained commercial value. As the popularity of MPC increased, the second-

generation MPC algorithms were implemented on more extensive and more complex 

systems. This revealed the incompleteness of second-generation MPC in many practical 
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aspects; thus third-generation MPC is developed to address the problems. Setpoint Inc. 

developed Single Multivariable Control Algorithm (SMCA), QDMC was bought and 

improved by Aspentech, Shell Oil developed Shell Multivariable Optimizing Controller 

(SMOC), Adersa introduced Hierarchical Constraint Control (HIECON), Profimatics 

developed Profit Controller (PCT) and Honeywell had their Robust Model Predictive 

Control (RMPC).  

The innovational features of third-generation MPC algorithms are addressed in three 

parts. The first innovation is their mechanism to prioritize the constraints.  The second-

generation MPC algorithm was found to be insufficient for violating input/output 

constraints to some extent. In real applications, hard constraints define the system's 

physical capabilities, and some hard constraints can have critical importance. Third-

generation MPC technologies explained priority concept to constraints, so that hard 

constraints cannot be excluded in the formulation. The constraint formulation idea 

allows some violation of soft constraints by depicting them as quadratic penalties, while 

hard constraints are not being violated.  

The second innovation of third-generation MPC is the fault tolerance by determining the 

controlled sub-process. The controller determines which input variable to be 

manipulated and which controlled variable (CV) to be controlled. For a given control 

action, MV must meet the constraint conditions and good measurement status for a CV 

must be ensured. Additionally, variables in lower control loops must be available for 

manipulation (no hardware issues, missing signal connection etc.). In practice, these 

issues are expected, and control specifications must change in real-time concerning 

changing dynamics caused by such disturbances. Third-generation MPC algorithms 

address these problems by dynamically dropping MV and related sub-process CV from 

the control objective and handling them as disturbance variables.  

The third innovation is the mechanism to remove the ill-conditioned processes. At any 

control execution, controlling the outputs may require excessive input movements. This 

problem can be exemplified if two outputs respond similarly to available inputs. It is 

important to realize this problem as a feature of the process. Control algorithms 

attempting to control such an ill-conditioned process will end up having a large number 

of variable manipulation. This control problem is usually specified during the 

identification stage; however, it is challenging to specify such a problem on larger 

systems with multiple sub-processes. Therefore, third-generation MPC is designed to 

have the capability to examine ill-conditioning sub-processes in the model at each 

control execution. In practice, MPC detects ill-conditioned sub-processes and screens 

out from the formulation before resulting in an undesired control action.  
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MPC gained a vast application area in the late 1990s; fourth-generation MPC technology 

was developed according to the market's needs, while the acquisition of MPC providers 

formed some new MPC solutions. Honeywell merged with Profimatics, Inc. and 

constituted Honeywell Hi‐Spec Solutions.  RMPC algorithm offered by Honeywell was 

merged with the Profimatics PCT controller to generate their current RMPCT product. 

Aspen Technology Inc purchased Setpoint Inc. and DMC Corporation. The SMCA and 

DMC technologies were merged to develop AspenTechs current product, DMC-plus 

technology. With technological advancements in computer technologies, fourth-

generation MPC can execute complex formulation, and non-linearities can be identified. 

Contemporary developments in MPC technology involve: 

- Integration of MPC into Discrete Control Systems (DCS). 

- Data-driven concept and introduction of modern identification methods for 

multivariable state-space models; subspace, predictive error methods. 

- Introduction of Nonlinear MPC to market by Dot Products NOVA-NLC. Practical 

implementation of MPC for highly nonlinear continuous stirred tank reactor had 

shown successful results [18].   

- Combinations and integrations of modern control approaches into MPC. The use 

of a neural network model with nonlinear MPC is proposed in [19]. A combination 

with the fuzzy logic controller is stated in [12]. Adaptive MPC is proposed in [20]. 

Implementation of Koopman theory in model-based control introduced in [21] 

Since MPC implementation can vary for each application, there is no agreement about 

deciding the best MPC algorithm. Yet, there is a conclusion on the existence of empty 

rooms to develop new MPC algorithms.  MPC showed promising results for the optimal 

control approach, and pushing the available MPC technology to new applications could 

yield novel results.   

Choosing and implementing an MPC method for a given application is an engineering 

challenge. One must decide the necessary variables used in control, the proper 

identification methods, and test models. The basic design should be based on the 

answers to the following questions: How to design the hierarchical control model for an 

entire plant? Is the identified model accurate enough to estimate the expected states of 

the system? What are the hard and soft constraints? How to tune the control parameters 

for optimal set-point tracking?  How to determine the ill conditions that may decrease 

the performance?    
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2.2 MPC applications in Relevant Boiler Systems 

Studies focusing on the implementation of MPC in Boiler systems are available in the 

literature. The implementation of MPC may vary with respect to the design approach of 

the proposed control algorithm. In this section, Boiler Control studies implementing 

various modern control approaches to MPC are briefly explained. 

In [22], control of a Boiler-Turbine unit with a closed-loop MPC algorithm is proposed to 

improve safety and economic performances. The control of the system, designed as a 

hierarchical model, supervisory level MPC as the reference governor optimizes the set-

points to low-level interconnected PI controllers. The manipulated variables of the boiler 

system are fuel valve, feedwater valve, and steam valve. The controlled variables are 

the liquid level in the boiler, the steam pressure, and the generated power. Three 

interconnected PI controllers individually control the manipulated variables. The task of 

the MPC reference governor is to provide optimal set-points to the PI controllers 

concerning system constraints, maximum valve position, and valve slew rate. The MPC 

approach is executed to predict future dynamics; therefore, the tracking reaction can 

be optimized.   The identification of the system is made by mathematical modelling as 

set of three differential equations. Kalman filter is used for state estimation and 

disturbance modelling. The implementation of MPC as reference governor (MPC-RG) 

showed a favorable result. The performance characteristics of the MPC-RG are also 

compared with the PI control algorithm in the case studies. The authors concluded that 

the proposed idea provided safe and economic results over conventional PI control. 

In [23], an economic model predictive control is proposed. The authors state that the 

tracking performance of MPC should not be the only concern of the control and 

optimization.  It is depicted those traditional processes that have accurate dynamic 

tracking may neglect the optimum economical way. The supervisory MPC in hierarchical 

control systems may reach the steady-state optimum instead of reaching the global 

economic optimum. The proposed economic model predictive control directly utilizes the 

economic index of the boiler-turbine system as the cost function and manipulates the 

tracking action with respect to the optimal economic result. The system uses the Sontag 

controller and Lyapunov-based cost function. The optimization problem is solved with 

online Laguerre functions. The results indicate that the proposed economical MPC can 

adopt a global optimum routine therefore, it can provide an economic benefit to thermal 

power plants using traditional MPC.  

A hierarchical control system structure with Takagi-Sugeno fuzzy model is proposed to 

achieve optimal control in a boiler-turbine system [24]. Similar to [22], this model also 

uses a reference governor, however, the reference governor is proposed as a steady-
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state target calculator in model predictive controller extended to a fuzzy disturbance 

model. With this implementation, the TS-fuzzy model can deal with the non-linearities 

in cost function caused by unknown disturbances and modelling mismatches. A stable 

model predictive controller is developed to the lower layer of the hierarchy to track the 

optimized set-points calculated by the upper layer. This algorithm was conducted on 

simulations and the authors stated that implementation of such complex control 

approach requires accurate analytical modelling and reliable alternative in case of 

computational failure. It is also depicted that Data-driven identification is an option for 

obtaining the model of such a complex system, and PI controllers must be available in 

the lower layer system for the sake of reliability. 

A nonlinear model predictive control is designed for boiler systems [18]. The predictive 

controller is built with a recurrent neural network acting as a one-step ahead predictor. 

An optimization problem is derived from the neural network predictor. Two methods of 

neural network identification methods are used: NNARX (Neural Network 

AutoRegressive with eXogonous Input), NNOE (Neural Network Output Error). The 

author stated that the NNOE model provides better prediction quality. The study case 

of the research is to verification of fault-tolerant control of MPC. Faulty scenarios are 

described as follows; leakage from boiler, outflow choking, change in internal pipe 

diameter, leakage from pipe, level transducer failure, positioner fault, valve head or 

servo fault, pump productivity reduction. The author obtained successful results and 

stated that the proposed predictive control possesses good fault-tolerant features. It is 

also stated that MPC can hide faults from being observed; therefore fault detection block 

is needed for observing any unusuality. 

Off-set Free Fuzzy MPC based on genetic algorithm is introduced for a boiler-turbine 

system in [25]. Takagi-Sugeno fuzzy is implemented to the system generate the 

approximate behavior of the boiler-turbine system. A genetic algorithm is used to solve 

the constrained MPC problem. This approach provides good results for nonlinear 

systems; however, it requires complex analytical modelling and significant amount of 

data.  This work proposes a novel approach to cost function calculations by using genetic 

algorithms. 

Authors stated in [26] that economic-optimal control should be a concern while 

designing a controller. They propose Hierarchical Model Predictive Control (HMPC) that 

regulates plant-wise economic optimization while computing optimal set-point at the 

same time. It is also stated that such kind of MPC application is computationally 

extensive and can yield nonlinear or non-convex cost function problems. To model the 

non-linearities, the system's changing dynamics are computed with a fuzzy model 
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representing the input-output relations. Thereby, the MPC system facilitates the 

quadratic function, including future state, calculated precisely. This control approach is 

implemented on a steam-boiler generator. The proposed idea is compared with 

commercial General Predictive Controller (GPC) and PID. The comparison test included 

step off-set response and dynamic set-point response with different values. According 

to the results, the proposed HMPC has shown better results (good tracking, fast and 

robust responses), and the design purpose of the controller is satisfied.  The authors 

conclude that accurate modelling of the controlled system is vital to obtain successful 

MPC results; however, it is challenging, and mistakes in modelling can cause undesired 

outcomes.  

State-Space-based MPC is proposed for controlling nonlinear MIMO boiler systems in 

[27]. An online successive model linearization method is designed to obtain efficient 

cost function and set-point optimization, and this algorithm is named MPC with 

successive linearization. Kalman Filter handles the estimation of the state matrix. The 

authors stated that nonlinear control approaches in real-time systems are practically 

challenging and computationally heavy. This is the main challenge of nonlinear MPC; 

thus, MPC systems still employ less accurate linear models. The advantage of using 

online system optimization is that linearization can be made on the current operating 

point. Therefore, MPC with successive linearization can obtain good control accuracy 

while not violating constraints. The authors compared their successive linearization 

algorithms with computationally heavier nonlinear MPC algorithms. It is stated that 

successive linearization received accurate results similar to the nonlinear approach. This 

study details the linearization method in MPC systems and reflects the practicality of the 

nonlinear MPC algorithm. 

Lastly, unlike to previous MPC on boiler-turbine control papers, this study reflects the 

importance of data-driven identification [28]. Authors propose Performance-Oriented 

Model Learning for Data-Driven MPC design. The idea is to provide the best prediction 

model to obtain the best closed-loop performance instead of using an adaptive or static 

robust controller. Data-driven identification is applied by realizing Bayesian 

optimization. The authors stated that unlike the traditional idea of identification of 

obtaining the highest input-output fit, the proposed method calculates an identification 

model yielding the best closed-loop performance for MPC. Additionally, this method is 

implemented on hierarchical type MPC. 
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2.3 Conclusion 

Literature Review is made according to provide essential ideas behind the cause of MPC 

development. Automation Surveys focusing on MPC are analyzed and recent studies 

related to MPC applications in boiler systems are studied. Previous studies reflect the 

variety of methods to design each essential aspect of MPC. Studies certify the superiority 

of MPC over PID in complex multivariable systems while depicting the availability of 

multiple MPC algorithms in the industry. Commercial MPC applications are generated 

from IDCOM and DMC algorithms; therefore, commercial MPCs suffer from limitations 

inherited from such algorithms. According to literature review in chapter 2.1, the 

significant limitations of modern MPC algorithms are: 

- Usage of Least-squares type identification. This type of identification model is 

optimal for linear systems. Studies are reflected in section 2.2; using fuzzy 

control or successive linearization to model non-linearities can be a solution. 

However, the implementation requires extensive and complex modelling analysis 

that might yield an additional cost to plant identification. Moreover, they still 

provide estimates of model uncertainties. 

- Lack of analytically accurate validation methods to verify the identified model is 

accurate enough to use in MPC. This is a critical factor to prevent signal 

deterioration and obtain a reliable control system. 

- There is a reported deficiency of systematic approaches for building closed-loop 

identification models. The main reason is the difference in the plant models. A 

survey about industrial identification by Gevers [29] proposes an identification 

technique called control-oriented iterative identification and the implementation 

examples in the industry. This identification method asserts a systematic 

identification approach to the closed-loop processes that could identify a nominal 

model from data and optimize from the online model updates. This way of 

identification can be viewed as an indirect adaptive controller but with an 

advantage of time-scale separation for analysis for performance-oriented MPC. 

- The industry lacks a definition of safety criteria for given Data-Driven 

identification methods. The Data-Driven models are favorable to enable online 

identification, generating favorable reliability for long-term utilization of MPC. 

However, the plant's safety must be ensured while collecting informative 

identification data meeting the demand of industrial practice [30]. The study by 

Rivera explains how to accomplish plant-friendly identification addressing the 

regarding metrics to be monitored.  
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2.4 The Objective of the Thesis 

One significant technological advancement of Industry 4.0 is the utilization of Big Data; 

control engineers now obtain sufficient information in an industrial process, and 

information can be used to generate Data-Driven MPC controllers. The data-driven 

method provides a systematic approach to the identification stage of MPC. The system 

model can be generated with a 'black-box' test followed by identification. Additionally, 

this method enables the implementation of modern identification methods such as 

Predictive Error Method (PEM) or Multivariable Output-Error State Space (MOESP) [31].   

The purpose of the thesis is to validate the applicability of the proposed MPC Software 

while introducing a way of designing an external MPC. The thesis provides studies on 

identifying a multivariable system by realizing Data-Driven methods and 

implementations of model-based controllers to utilize a MIMO control. Therefore, the 

studies are shaped to: 

- Obtain a systemic approach for multivariable system identification experiment, 

which can also be suitable for online identification to obtain an optimal model for 

changing configuration. 

- Realize Predictive error minimalization and Subspace Identification methods and 

comparing their fitting. 

- Generate a robust Data-Driven MPC that can be compared to the external MPC 

designed in the MPC Software. 
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3 . An Overview to Model Predictive Control 

This chapter provides an overview of critical concepts in model predictive control and 

briefly describes the algorithm for predictions with the discrete state-space model. The 

algorithm of MPC is detailed as described in [2], [32], [33].  

3.1 Principles of Model Predictive Control 

Model Predictive Control is an advanced control method that considers the future 

behavior of a system over a prediction horizon. Compared to PID, where the control 

action is made concerning current errors and expected closed-loop dynamics, the MPC 

algorithm explicitly computes the possible future inputs based on future implications of 

current and predicted states of the system. Therefore, the MPC algorithm provides 

observability for the system's future states, performing restrictions to proposed input 

trajectories for avoiding possible over-reactions that might yield low efficient control 

performance. This means that the predictive controller continually receives information 

within a control horizon and uses this information to update control actions over a 

control horizon. As the new information becomes available at each successive sample, 

the MPC algorithm automatically modifies control actions accordingly. This process 

merges under the name of Receding Horizon, constituting the essence of a predictive 

control algorithm. 

 

In order to predict the future behavior of a process, the control actions must be made 

according to the actual model of the system. The performance of model predictive 

control depends on the accuracy of the process model; therefore, identification has 

significant importance in designing MPC. MPC algorithm is computationally heavy, noting 

that a quadratic cost function is computed within each sampling interval. To reduce the 

computational burden, one can use linearization when identifying a model. There are 

examples of non-linear MPC implementations in[18], [26], [27], [34]–[38]; they will be 

discussed in discussion chapter.  

 

In practice, MPC algorithms use linear models to facilitate a linear prediction for future 

inputs (manipulated variable) choices. Additionally, it is also important to mention there 

are terms so-called 'fit for purpose' and 'identification for control' that are detailed 

in[29], [30]. These terms highlight the purpose of identification is to obtain a model, 

providing accurate enough predictions. The implementations of these identification 

approaches are discussed in chapter 3. 
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Online constraint handling is the prominent ability of MPC. An optimum control action 

can be made by realizing constraints on the control signals. These constraints can be 

defined according to the physical capabilities of the controlled system. The most 

common constraints are in the form of saturation, valves with finite ranges, PWM 

signals, flow rates limited by the diameter of a pipe, or even slew rates. MPC predicts 

future manipulated variables satisfying the defined constraints. Hence MPC provides a 

natural control even for the complex systems since the system constraints are explicitly 

stated as a part of the problem formulation. 

 

Tuning is a critical aspect in the designing phase of controllers. In MPC, the tuning serves 

as a tool to define the optimal control actions according to the financial or operational 

viewpoint specifications. This means that by tuning MPC, one can design an intelligent 

controller that considers the operating cost of each control action. Tuning is achieved 

by introducing a weight matrix in the cost function. The weight matrix emphasizes the 

relative weight of each parameter in the cost function; thus, the controller prioritizes 

the regulation of parameters. Using these means, tuning the MPC is a supervisory step 

to obtain a controller that drives the output to the desired points with convenient inputs, 

achieving defined performance metrics.     

  

MPC algorithms are formulated for finite impulse response (FIR), finite step response 

(FSP), and state-space models. In the industrial implementation of MPC, FIR models are 

more common due to more accessible interpretation of the system with process step 

response, and they have low sensitivity to measurement noise. However, as [33] states, 

FIR identification requires serious investigation effort to obtain the most significant data 

to build the system. On the other hand, MPC with State-Space models extends the 

flexibility of state-space representation of the model developed by modern black-box 

identification techniques such as subspace and predictive error minimalization. The 

central selling point of state-space models is their ease of formulation for multivariable 

systems. Moreover, state-space benefits from theoretical results to obtain observers to 

ensure stability and flexibility to be analyzed within control laws.  
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3.2 The Algorithm of Model Predictive Control 

3.2.1 Obtaining Augmented Model 

MPC algorithm with the augmented discrete state-space model is detailed. The discrete 

state space represents the one step ahead states of the system with current state 

variables described as: 

 

 
𝑥(𝑘 +  1) =  𝐴. 𝑥(𝑘) +  𝐵. 𝑢(𝑘), 

𝑦(𝑘) =  𝐶. 𝑥(𝑘) + 𝐷. 𝑢(𝑘) 
3.1 

 

Where u(k) denotes the vector of manipulated variables or input, y(k) is the process 

output, and x(t) is the state variable vector. Note that in equation 3.2 current state and 

input directly affect the output. However, due to the receding horizon principle of 

predictive control, where current information is used to obtain input trajectories, the D 

matrix is assumed to be 0. 

 

The difference between the next state and current state as per 3.1 is formulated as: 

 

 𝑥(𝑘 +  1) −  𝑥(𝑘) =  𝐴. (𝑥(𝑘) −  𝑥(𝑘 −  1)) +  𝐵. (𝑢(𝑘)  −  𝑢(𝑘 −  1)). 3.2 

 

The differences of the state variables are denoted by variables: 

 

𝛥𝑥(𝑘 +  1) =  𝑥(𝑘 +  1) −  𝑥(𝑘);  

𝛥𝑥(𝑘)  =  𝑥(𝑘)  −  𝑥(𝑘 −  1), 

 

And the difference of manipulated variables is denoted as: 

 

𝛥𝑢(𝑘)  =  𝑢(𝑘)  −  𝑢(𝑘 −  1). 

 

Δu(k) and Δx(k) are the increments of u(k) and x(k). By substituting the increments 

into 3.1 yields: 

 𝛥𝑥(𝑘 +  1) =  𝐴. 𝛥𝑥(𝑘) +  𝐵. 𝛥𝑢(𝑘). 3.3 

 

Increments of the output matrix is obtained as: 

 

 
𝑦(𝑘 +  1) −  𝑦(𝑘) =  𝐶. (𝑥(𝑘 +  1) −  𝑥(𝑘)) =  𝐶. 𝛥𝑥(𝑘 +  1) 

=  𝐶𝐴. 𝛥𝑥(𝑘) +  𝐶𝐵. 𝛥𝑢(𝑘). 
3.4 
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To generate the augmented state-space representation for equations 3.4 and 3.5 new 

state vector is defined as: 

 

 𝑥𝑎(𝑘) = [ 𝛥𝑥(𝑘)
𝑇   𝑦(𝑘)𝑇 ]𝑇 3.5 

 

Putting 3.4, 3.5, 3.6 together yields the augmented state-space model: 

 

 

[
𝛥𝑥(𝑘 +  1)

𝑦(𝑘 +  1)
]

⏞        
𝒙𝒂(𝒌+𝟏)

= [
𝐴 0
𝐶𝐴 1

]
⏞    

𝑨

. [
𝛥𝑥(𝑘)

𝑦(𝑘)
]

⏞    
𝒙𝒂(𝒌)

+ [
𝐵
𝐶𝐵
]

⏞
𝑩

. 𝛥𝑢(𝑘), 

  

𝑦(𝑘) = [0 1]⏞    
𝑪

. [
𝛥𝑥(𝑘)
𝑦(𝑘)

].    

3.6 

 

A, B, C matrices indicated with curly brackets denote state-space matrices of the 

augmented model in 3.6, and they are used in the following calculations. 

 

3.2.2 Prediction of States and Future Outputs 

The inherent structure of discrete state space is favorable to generate prediction control 

algorithms as future states can be computed with current state information. To examine 

this, the future control trajectory is defined by: 

  

𝛥𝑢(𝑘), 𝛥𝑢(𝑘 +  1), . . . , 𝛥𝑢(𝑘 +  𝑁𝑐 −  1), 

 

As Nc represents the parameter of the control horizon, the number that indicates future 

control actions. The future states are defined by:  

𝑥(𝑘 +  1), 𝑥(𝑘 +  2), . . . , 𝑥(𝑘 +  𝑁𝑝) 

Np is the prediction horizon; the parameter depicts the number of optimized future 

states. The calculation of successive future states is formulated as follows, 
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𝑥(𝑘 +  1)  =  𝐴𝑥(𝑘)  +  𝐵𝛥𝑢(𝑘)  

𝑥(𝑘 +  2)  =  𝐴𝑥(𝑘 +  1) +  𝐵𝛥𝑢(𝑘 +  1) 

                     =  𝐴2𝑥(𝑘)  +  𝐴𝐵𝛥𝑢(𝑘)  +  𝐵𝛥𝑢(𝑘 +  1) 

                             

.

.

.
  

 

𝑥(𝑘 +  𝑁𝑝 ) =  𝐴𝑁𝑝 𝑥(𝑘)  + 𝐴𝑁𝑝−1𝐵𝛥𝑢(𝑘)  +  𝐴𝑁𝑝−2𝐵𝛥𝑢(𝑘 +  1)+ . . . + 𝐴𝑁𝑝−𝑁𝑐𝐵𝛥𝑢(𝑘 

+  𝑁𝑐 −  1). 

3.7 

 

From predicted state variables in 3.7, future output values are obtained, 

 

𝑦(𝑘 +  1) =  𝐶𝐴𝑥(𝑘 ) +  𝐶𝐵𝛥𝑢(𝑘) 

𝑦(𝑘 +  2) =  𝐶𝐴2𝑥(𝑘) +  𝐶𝐴𝐵𝛥𝑢(𝑘) +  𝐶𝐵𝛥𝑢(𝑘 +  1) 

𝑦(𝑘 +  3)  =  𝐶𝐴3𝑥(𝑘)  +  𝐶𝐴2𝐵𝛥𝑢(𝑘)  +  𝐶𝐴𝐵𝛥𝑢(𝑘 +  1) +  𝐶𝐵𝛥𝑢(𝑘 +  2) 

                               

.

.

.
  

𝑦(𝑘 +  𝑁𝑝)  =  𝐶𝐴𝑁𝑝 𝑥(𝑘)  +  𝐶𝐴𝑁𝑝−1𝐵𝛥𝑢(𝑘)  +  𝐶𝐴𝑁𝑝−2𝐵𝛥𝑢(𝑘 +  1) 

                                                    + . . . + 𝐶𝐴𝑁𝑝−𝑁𝑐𝐵𝛥𝑢(𝑘 +  𝑁𝑐 −  1). 

 

3.8 

To relate equations 3.7 and 3.8 together, Y and ΔU vectors are defined. Y is the future 

outputs vector based on the state predictions bounded by the prediction horizon, and 

ΔU is the future input movement bounded by the control horizon. 

𝑌 = [ 𝑦(𝑘 +  1), 𝑦(𝑘 +  2), 𝑦(𝑘 +  3)…  𝑦(𝑘 +  𝑁𝑝)]𝑇  

𝛥𝑈 = [𝛥𝑢(𝑘), 𝛥𝑢(𝑘 +  1), 𝛥𝑢(𝑘 +  2). . . 𝛥𝑢(𝑘 +  𝑁𝑐 −  1)]𝑇  

 𝑌 =  𝐹 𝑥(𝑘)  +  𝛷𝛥𝑈  3.9 

   

 𝐹 =

[
 
 
 
 
𝐶𝐴
𝐶𝐴2

𝐶𝐴3

⋮
𝐶𝐴𝑁𝑝]

 
 
 
 

    𝛷 =  

[
 
 
 
 

𝐶𝐵 0 0 … 0
𝐶𝐴𝐵 𝐶𝐵 0 … 0
𝐶𝐴2𝐵 𝐶𝐴𝐵 𝐶𝐵 … 0
⋮ ⋮ ⋮ … ⋮

𝐶𝐴𝑁𝑝−1𝐵 𝐶𝐴𝑁𝑝−2𝐵 𝐶𝐴𝑁𝑝−3𝐵 … 𝐶𝐴𝑁𝑝−𝑁𝑐𝐵]
 
 
 
 

   3.10 

 

The objective of MPC is to obtain the best control parameter vector, ΔU, with an 

equation, is formulated as a squared error function between set-point references and 

predicted outputs in 3.9. This error function is the cost function that is minimized in 

every iteration of MPC. To extend the formula, Rs is denoted as the 𝑁𝑝 ×  1 set-point 

vector, �̅� is the tuned cost matrix of steady-state error, and θ depicts the 𝑁𝑐 ×  𝑁𝑐 
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diagonal weight matrix that is used to tune for desired closed-loop performance. 

Therefore, the cost function is defined as: 

 𝐽 =  (𝑅𝑠 −  𝑌 )𝑇 �̅�(𝑅𝑠 −  𝑌 )  +  𝛥𝑈 𝑇θ𝛥𝑈 3.11 

 

Substituting 3.9 into 3.11 yields: 

 𝐽 =  (𝑅𝑠 − 𝐹 𝑥(𝑘)) 𝑇(𝑅𝑠 − 𝐹 𝑥(𝑘)) − 2𝛥𝑈 𝑇 𝛷 𝑇(𝑅𝑠 − 𝐹 𝑥(𝑘)) + 𝛥𝑈 𝑇 (𝛷 𝑇 𝛷 + θ)𝛥𝑈 3.12 

 

To find the optimal control parameters following condition is derived, the derivative of 

the cost function with respect to  𝛥𝑈 is zero. 

 
𝛿𝐽

𝛿𝛥𝑈
= −2𝛷 𝑇 (𝑅𝑠 −  𝐹 𝑥(𝑘))  +  2(𝛷 𝑇 𝛷 + θ)𝛥𝑈 = 0 3.13 

 

The optimum control parameters are obtained with the following formula: 

 𝛥𝑈 =  (𝛷 𝑇 𝛷 +  𝑅¯)−1𝛷 𝑇 (𝑅𝑠 −  𝐹 𝑥(𝑘)) 3.14 

 

When the next sample period k+1 arrives, more recent measurements are pushed into 

3.14 to obtain the new sequence of the control signal. This procedure is repeated in 

real-time as per the receding horizon principle of MPC. 

3.2.3 Constraint Handling   

The importance of constraint handling is visualized in the following figure 2.1. The 

scenario is to set the output to the reference by MPC without constraints and MPC with 

constraints. The system without constraints (MPC1) reaches the set-point significantly 

faster than the system with constraints (MPC2). The input values of MPC1 are not 

limited, whereas MPC2 limits the input values by 1. For a scenario where "1" is the 

maximum physical capability of the input, MPC1 providing input values reaching "5" will 

become an ill-designed controller.   
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Figure 3.1 Results of MPC with Constraints (Orange) and Without Constraints 

(Blue) 

 
It is possible to set constraints on input increments ΔU, input value U and output Y: 

 

 

Δ𝑈𝑚𝑖𝑛  ≤  Δ𝑈(𝑘) ≤  Δ𝑈𝑚𝑎𝑥 
  

𝑈𝑚𝑖𝑛 ≤  𝑈(𝑘 − 1) + 𝐸𝐼Δ𝑈 (𝑘) ≤  𝑈𝑚𝑎𝑥 
   

𝑌𝑚𝑖𝑛 ≤ 𝐹 𝑥(𝑘)  +  𝛷𝛥𝑈 ≤ 𝑌𝑚𝑎𝑥  
 

3.15 

Please note that equation 2.15 is generated by substituting 𝑈(𝑘 − 1) + 𝐸𝐼Δ𝑈 (𝑘) Into U(k) 

and 𝐹 𝑥(𝑘)  +  𝛷𝛥𝑈 into Y. Combined inequality has the following form: 

𝐸𝐼 = 

[
 
 
 
 
1 0 0 … 0
1 1 0 … 0
1 1 1 … 0
⋮ ⋮ ⋮ ⋱ 0
1 1 1 1 1]

 
 
 
 

 

 

 

[
 
 
 
 
 
𝐼
−𝐼
𝐸𝐼
−𝐸𝐼
𝛷
−𝛷]

 
 
 
 
 

Δ𝑈 (𝑘) ≤

[
 
 
 
 
 

Δ𝑈𝑚𝑎𝑥
−Δ𝑈𝑚𝑖𝑛

𝑈𝑚𝑎𝑥 − 𝑈(𝑘 − 1)

−𝑈𝑚𝑖𝑛 + 𝑈(𝑘 − 1)

𝑌𝑚𝑎𝑥 − 𝐹 𝑥(𝑘)
−𝑌𝑚𝑖𝑛 + 𝐹 𝑥(𝑘) ]

 
 
 
 
 

 3.16 

 

The inequality problem in 2.16 is solved with the interior point method. The interior-

point method is an algorithm that solves convex optimization problems. The algorithm 

prevents the constraint violation by introducing a barrier function that defines the 

optimal unconstrained values in a feasible space to the objective function. A basic barrier 

function algorithm is shown below; the detailed implementation of the interior-point 

method is found in[2], [7]. 
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min
𝑥∈𝑅𝑛

𝑓(𝑥)   𝑓𝑜𝑟 𝑥 ≥ 0      ⇒             min
                𝑥∈𝑅𝑛

𝑓(𝑥) −  𝜇∑ln (𝑥𝑖)

𝑛

𝑖=1

 

 

To summarize the MPC algorithm, the performance of the controller is purely related to 

the mathematical model of the system. Unlike PID controllers, where the robust control 

is obtained by manipulating the signal amplifications, MPC controller provides the 

required signals directly to the system by parallelly computing them within each 

sampling interval. For that reason, the designing of a high-performance MPC is an 

identification challenge.      



30 

4 Identification 

4.1 Design of Identification 

System Identification is a subject, compromising techniques to learn the linear dynamics 

of a system based on measured data. System Identification includes statistical and 

analytical methods to generate a model and decisive experiments that capture how the 

process behaves. In fact, System Identification possesses an experimental value to 

obtain the best possible model for control.  Therefore, the offset-free Model Predictive 

Control construction strongly depends on the accurate identification of the process 

model. 

 

Obtaining the true system with identification yields the most accurate model-based 

controller theoretically; however, controlling the true system with high dimensional 

degrees of freedom is computationally heavy and impractical. In this way, one of the 

main exercises of identification for control is to obtain a simpler model that is accurate 

enough within an intended application. The idea is to design an identification experiment 

finding the dominant dynamics for a particular configuration. This approach is denoted 

as "goal-oriented identification", "fit for purpose identification" and "control-relevant 

identification" in [29], [30], [33] respectively, note that in thesis it will be generalized 

as localized identification. 

 

The localized identification aims to obtain a reduced model that the performance 

achieved by the model-based controller on the true system is as high as possible within 

desired set-point ranges. This means the identification can be systematically designed 

with respect to the application. In literature, [39] an identification design called 

"iterative identification" is known, explicitly formulates the generation of an accurate 

reduced-order model. The formulation of iterative identification is as follows: 

 

- Implement a localized identification that obtains a nominal model of the unknown 

system with open-loop identification. 

- Generate a model-based controller to achieve closed-loop stability of the 

generated nominal model and perform closed-loop identification for the required 

performance. 

- Based on closed-loop identification, design a new model-based controller that is 

optimal to the true system within control ranges. 
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The first step of iterative identification aims to minimalize the uncertainties of the true 

system bounded by a data filter. Data-filter defines the set-points that are dependent 

on to control objective. The obtained result of the first step is a nominal model that is 

accurate enough to generate a model-based controller. In the second step, the nominal 

model-based controller is implemented to perform the closed-loop control within the 

control objective. By identifying the nominal closed-loop system, a model with fewer 

uncertainties can be derived, which will be used to obtain the high-performance 

controller in the third step. The third step includes the validation of the previous actions 

and the tuning of the controller for desired performance metrics. 

 

Iterative Identification provides flexibility to the designer to experiment and shape the 

identification process. In fact, one can start identifying the system from a black-box 

model, gradually to obtain a gray-box model that could practically pair up with the 

white-box model. The feasibility of the first step on the black-box model extends the 

applicability of the iterative identification over the industrial process if the data log of 

the plant is available. Each step in the identification process provides valid results for 

the next step, so that plant safety can be almost guaranteed while experimenting with 

the process. The resulting model is the simplified model that yields a relatively simple 

model-based controller. Simplicity in a controller is an essential factor in process control, 

considering the popularity of PID controllers in industrial utilization. Due to these 

reasons, the iterative identification will be referred to as designing the identification 

experiments.  

  

4.2 Prediction Error Identification Method 

Prediction Error Minimization (PEM) is considered as the most successful and popular 

identification method. PEM is a parametric linear system identification method that can 

capture the essential dynamics favorable for predicting future states and controller 

design. The prediction error denotes the output difference between the actual system 

and predicted by the estimated model. The function of PEM minimalizes the prediction 

error by tuning the parametrized model set.  

Let the true system is modeled with input 𝑢(𝑡), 𝐺0(𝑞) as a transfer function, 𝐻0(𝑞) denotes 

the colored noise with respect to white noise 𝑒(𝑡): 

 y(𝑡) =  𝐺0(𝑞). 𝑢(𝑡) + 𝐻0(𝑞). 𝑒(𝑡) 4.1 
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Parametrized model is derived in equation 4.2, as θ is the parameter vector and 𝐷𝜃 is 

the subset of permissible values for θ. 

 𝑀 = {(𝐺(𝑞, θ), (𝐻(𝑞, θ)  θ ∈ 𝐷𝜃}  4.2 

 �̂�(𝑡) =  𝐺(𝑞, θ). 𝑢(𝑡) + 𝐻(𝑞, θ). 𝑒(𝑡)  4.3 

 

In the black-box model case, each sample data collected from the identification 

experiment is the response of the actual system for a given input. Hence, y(t) in 

equation 4.1 is the measured output of the system in time sample t. Subtracting 

equation 4.1 from 4.3 yields the prediction error for the given input at t. 

 𝑒(𝑡, 𝜃)  =  𝑦(𝑡)  − �̂�(𝑡, 𝜃),  4.4 

 

The measurement noise affecting the prediction error can be filtered by a data-filter 

D(q); thus, filtered PE is defined as 𝑒𝐹(𝑡, 𝜃) = 𝐷(𝑞). 𝑒(𝑡, 𝜃). The tuning of parameter vector 

θ is carried out by the least-squares method. Therefore, the least-squares function is 

defined as: 

 𝑉𝑁 = 
1

𝑁
∑[𝑒𝐹(𝑡, 𝜃)]2
𝑁

𝑡=1

 4.5 

�̂� = arg𝑚𝑖𝑛𝜃 𝑉𝑁(𝜃) 

Where N is the number of input-output samples and 𝑉𝑁 is the least-squares cost function. 

The estimated model is obtained as values in the parameter vector �̂� is substituted into 

{(𝐺(𝑞, θ) (𝐻(𝑞, θ)} model.  

 

Figure 4.1 Scheme of Prediction Error Minimalization 
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As the initialization step for PEM identification, parametrization is defined according to 

the structure of the desired model. To identify a state-space model with PEM, coefficients 

in state-space matrices are determined as in subspace identification. After generating 

the initial model with the subspace method, the PEM method is executed to identify the 

model.  

Matlab Identification Toolbox [40] provides state-space identification with subspace-

PEM method. The user interface of the toolbox provides selection for identification 

methods and solutions for the least-squares functions. Data from the identification 

experiments are pushed into the Identification Toolbox. The PEM method is used to 

identify the state-space model, and least-squares functions are solved with the Gauss-

Newton method.   
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5 Identification of Multi-tank System and Development 

of Model Predictive Controller 

5.1 An Overview to Multi-tank System 

The Multi-tank System (Figure 5.2) comprises three separate tanks fitted with 

controllable drain valves and manual drainage. The separate tank mounted in the base 

of the setup acts as a water reservoir for the system. First Tank has a constant cross-

section, the second tank has a conical, and the third tank has a spherical cross-section. 

A variable speed tank pumps the water in the reservoir to the first pump, and the water 

outflows from the first tank to the second and third tanks due to gravity. The controllable 

drain valves act as flow resistors, and controlling the valves are used to vary the outflow 

characteristics. Manual drainages are like controllable drain valves, yet they are 

operated manually. Manual drainages can increase the systems' overall drainage speed, 

affecting the system's time constant in control. Each tank is equipped with a level sensor 

based on hydraulic pressure measurement. The Multi-tank system is operated with an 

external PC-based controller that communicates with the level sensors, valves, and 

pump by a dedicated RT-DAC/PCI board. The I/O board is controlled by the real-time 

windows target driver, which operates in MATLAB/SIMULINK. The driver possesses four 

PWM inputs; The first input (Pump) controls the pump. The inputs Valve1, Valve2, and 

Valve3 control the valves of the upper, middle, and lower tanks. There are three analog 

outputs of the driver: Level1, Level2, Level3, and one digital output: Alert. Each analog 

output represents the liquid level in the tank displayed in metric units. Alert signal has 

a safety purpose, indicating whether tank levels in the system are within the safety 

boundaries or not. The frequency signals are converted into metric units inside the driver 

block.  

 

 

Figure 5.1 Multi-tank Simulink Driver Block           
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Pump value varies between 0 and 1; 0 means 0% and 1 means 100% Duty-cycle. Due 

to the height distance between the reservoir tank and the inlet of the first tank, water 

can be pumped with Pump values greater than 0.4. Valve 1, Valve 2, and Valve 3 are 

initialized as 0 in the driver shown in figure 5.1; however, the operation value range of 

the valves are bounded with 0.5 and 1, as 0.5 is the fully closed 1 is the fully-open 

state. Valve values can vary between the operating ranges, providing variable outflow. 

The level limit of each tank is 25 centimeters, and if the limit is exceeded, the Alert 

signal turns off the device. 

 

Table 5.1 Multi-tank Operating Ranges 

Input/OUTPUT Operating Minimum Operating Maximum 

PUMP (%) 0.4 1 

Valve1 0.5 1 

Valve2 0.5 1 

Valve3 0.5 1 

Level1 (cm) 0 25 

Level2 (cm) 0 25 

Level3 (cm) 0 25 

 

 

The goal of the Multi-tank system is to enable a real-time platform for iterative 

identification experiments. Based on systems' real-time data obtained from the 

experiments, the PEM identification method will be applied to obtain state-space models 

and ultimately design an offset-free model predictive control. The objective of the 

control is to reach and stabilize the water level in the tanks by an adjustment of the 

pump capacity rate and valve settings. The multi-parameter architecture of inputs and 

outputs allows the user to realize the system according to the number of parameters 

chosen in the desired system to be controlled. Thereby, the system can be realized as 

single-input single-output, multiple-input single-output, and multi-input multi-output. 
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Figure 5.2 The Scheme of Multi-tank System 

 

5.2 Identification Methodology of Multi-tank System 

As stated in Chapter 4, Iterative identification experiments consist of 3 steps: 

1. Implementation of Localized Identification to the black-box model within the 

desired working ranges and the development of nominal MPC based on the 

localized identification. 

2. Identification of the closed-loop system, controlled by the nominal MPC. 

3. Improving the high-performance MPC, based on the identification results in the 

second step. 

The implementation of each step of iterative identification is studied in SISO, MISO and 

MIMO models. The results of identification of these models are critical for generating 

SISO-MPC, MISO-MPC and MIMO-MPC, respectively. Note that, the third step of iterative 

identification will be analyzed in chapter 6. 

Water levels in each tank can reach 25 centimeters, thus the outflow rates with a 

constant outlet water resistance causing non-linearity. Considering the nonlinear 

characteristic of the Multi-tank system, linearization in each model is handled by 

choosing relatively small working ranges. Therefore, for every model, the working range 

is defined between 4 and 11 centimeters. This means, the localized identification 

generates the model of the system operating between 4 and 11 centimeters. 

Initial challenge of the experiments is to choose an input set, that yields high quality 

identification results. Providing random inputs with large samples to the black-box 
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models might give abundant range of data, however the quality of the experiments can 

be negatively affected. Moreover, safety of the model is a critical constraint, therefore 

initial input sets must provide sufficient information about system dynamics while 

ensuring model safety. According to safety criteria in identification experiments that are 

described in [30], one approach to ensure model safety is to keep input transitions low 

as possible (where u(k-1) ≠u (k)). This approach is uses friendliness index “f” shown in 

equation 5.1. Consequently, experiments are designed to satisfy the quality of 

identification and plant friendliness index.     

 

 𝑓 = 100 × (1 −
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑖𝑛𝑝𝑢𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
)  5.1 

 

5.2.1 Identification of Single-Input Single-Output System  

To simplify the implementations of identification methods, the initial experiments were 

conducted on a SISO system. The SISO system is modeled by defining Pump PWM gain 

as input and the first tank level (Level1) as output. Note that other parameters in the 

Multi-tank system were not taken into consideration. The model's simplicity enabled 

practical implementations of the iterative identification experiments, forming the 

adopted methodology in the identification stage. 

 

 

Figure 5.3 SISO Model 

 

Experiments were done with two data sets; one is for identification, and the second is 

for validation. The data set for identification is shown in figure 5.4. The graph indicates 

the input-output relation of the black-box model. As following the steps of iterative 

identification, a nominal model is obtained according to the data set. PEM method is 

applied to the data set by using MATLAB Identification Toolbox. The result of the 

calculation yields a discrete state-space model. To validate the resulting model, the data 

set for validation is fed to the discrete state-space model. The method of validation is 

to compare the known output of the actual model with the output of the identified model 

from the corresponding input. Note that it is a good practice to use different data sets 

for the validation step to prevent over-fitting.  
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Step 1: Identification of Nominal SISO Model 

 

 

Figure 5.4 Identification Data Set of SISO Model 

 
The nominal model was identified using the data set in figure 5.4. The data set consists 

of 6082 samples obtained from the system, with 0.5 seconds sampling time. The plant 

friendliness index was also taken into consideration. Equation 5.1 is used to calculate 

the “f” index, and it is equal to 98.87%, which is highly optimal. The resulting nominal 

model is: 

 

 

𝐴 = [
0.9807 −0.0263
0.0022 0.9941

]     𝐵 =  [
−1.2027
−1.3934

]  

 

𝐶 = [−0.3307 −0.3962]     𝐷 = 0 

 

5.2 

The fit rate to the validation data is 79.36% which is indicated in figure 5.5. The next 

important step is to check the observability and controllability of the obtained model. If 

the state-space model is not observable or controllable, MPC cannot be implemented in 

the system. The system is observable and controllable if the ranks of both observability 

and the controllability matrices are equal to the length of the n-by-n state coefficient 

matrix A. In this case, the length of the A matrix is 2, and as shown in equation 5.3, 

the ranks of observability and controllability matrices are 2; thus, the model is 

observable and controllable. 

 

 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = [𝐵  𝐴𝐵  𝐴2𝐵 …  𝐴1−𝑛𝐵] =  [
−1.2027 −1.1428
−1.3934 −1.3877

]  → 𝑅𝑎𝑛𝑘 2 

 

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  [𝐶  𝐶𝐴  𝐶𝐴2  …  𝐶𝐴1−𝑛]𝑇 = [
−0.3307 −0.3962
−0.3252 −0.3852

]  → 𝑅𝑎𝑛𝑘 2 

5.3 
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Figure 5.5 Fit Rate to Validation Data 

 
 

The last step to validate the model is to check the finite impulse response. The aim is 

to observe how a kicked input is affecting the output. Impulse response serves as a tool 

to justify the input and output relation. Since the model is a water tank, it is expected 

to observe an increase in output followed by an exponential decay slope. The impulse 

response is obtained by the “impulse” command in MATLAB, and the results are shown 

in figure 5.6. The impulse response reflects that the kick in the input directly affects the 

output, and due to the outflow, the output level decreases in time. However, at t = 50 

seconds, the output level drops below 0 centimeters which is a shortcoming of the 

nominal model dynamics. 

 

 

Figure 5.6 Impulse Response of the Nominal Model 
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Step 2: Closed-Loop Identification of Nominal SISO Model 

Nominal MPC is generated from the MATLAB/SIMULINK Model Predictive Controller 

function block. The controller function block requires the discrete state-space model 

obtained in step1. After the model-based controller is initialized as illustrated in figure 

5.7, controller is designed as follows: 

• Prediction Horizon = 12 

• Control Horizon = 3 

• Control Sampling = 0.5 seconds 

• Hard Constraints for Pump input value Max = 1, Min = 0.4 

• Constraints for Pump input rate Max =1, Min = -1 

• Soft Constraints for Output value Max = 15, Min = 0 

 

Figure 5.7 Initialization of Nominal SISO MPC 

 
After the design of nominal MPC, the closed-loop system in figure 5.8 is generated, as 

the nominal MPC manipulates the required pump value regarding the difference between 

the current level and reference level. Level Reference is the set of reference data for 

the controller. Closed-loop identification is designed to obtain the most relevant system 

dynamics within the desired control range. Therefore, Level Reference provides set-

point values between 4 and 11 centimeters.  
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Figure 5.8 Scheme of Closed-Loop System with Nominal SISO MPC 

 

 

Figure 5.9 Closed-loop Control with Nominal SISO MPC 

 
Figure 5.9 illustrates the result of the control with the nominal MPC. The controller's 

performance is sufficient to execute the closed-loop identification since input 

manipulation can track the reference values. The data set obtained from the closed-loop 

experiment is used to identify the system for the second time. The result of closed-loop 

identification is: 

 

 

𝐴 = [
0.9830 −0.2282
−0.0005 0.9931

]     𝐵 =  [
3.2232
0.0980

]  

 

𝐶 =  [0.3094 0.4185]    𝐷 = 0 

5.4 
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The validation fit of the closed-loop model is 93.67% which highly optimal for off-set 

free MPC design. The ranks controllability and observability matrices of the closed-loop 

model are calculated as 2, which makes the model controllable and observable. The 

impulse response of the closed-loop model is shown in figure 5.10. Compared to nominal 

model where the output level goes below zero, the closed-loop model achieves more 

accurate dynamic characteristics.   

 

Figure 5.10 Impulse Response of the Closed-Loop SISO Model 

     

The result of the iterative identification yields the SISO model in equation 5.4. The 

closed-loop model provides significant fitting within the identification ranges, and it is 

able reflect the true dynamics accurately. Therefore, the closed-loop model will be used 

to design the high-performance MPC. 

 

5.2.2 Identification of Multi-Input Single-Output System 

MISO system is created by adding Valve1 of the first tank as input into the SISO model. 

MISO model consists of Pump gain and Valve1 as inputs, Level1 as output. Additional 

to the SISO model, outflow rate of the tank can be controlled with Valve1 signal, this 

defines the function of level with two input parameters. MISO model provides an insight 

to identification of multivariable systems. Multivariable systems have more degrees of 

freedom, in this sense designing the identification experiment requires strategic analysis 

of the black-box model of a multivariable system. Since the objective of the identification 

is to build a model-based controller, experiments must reflect the desired control task.  
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Figure 5.11 MISO Model 

 

From the previous identification experiment the dynamics of the SISO model was 

known. Therefore, initial task of the MISO identification is to observe the effects of 

different Valve1 values to the system. The goal is to minimalize the possible non-

linearities by identifying the multivariable system in three stages. Each stage 

corresponds the different values of the Valve1 input. During first stage of identification, 

Valve1 value is 1 which means the outlet valve is fully opened. In the second stage 

Valve1 is 0.75, 50% opened. In the third stage Valve1 value is 0.5 meaning the outlet 

value is fully closed. Each stage was combined to form the identification data set 

illustrated in figure 5.12. 

 

 

Figure 5.12 Identification Data Set of MISO Model 

 
Stage 1 corresponds to the time instance between 0 and 1000 seconds, Stage 2 is 

between 1000 and 2000 seconds, Stage 3 is between 2000 and 3000 seconds. Note 

that the during each stages Pump input keeps the water level between 4 and 11 

centimeters. The identification data set consist of 6000 samples and the sampling time 

is 0.5 seconds. Plant friendliness metric of the experiment was calculated as 98.83%. 
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The identification is done with PEM method, the resulting MISO discrete-state-space 

model is: 

 

 

𝐴 = [
0.9830 −0.2282
−0.0005 0.9931

]     𝐵 =  [
3.2232
0.0980

]  

 

𝐶 =  [0.3094 0.4185]    𝐷 = 0  
 

𝑈 = [𝑃𝑢𝑚𝑝 𝑉𝑎𝑙𝑣𝑒1] 

5.5 

 

The resulting model is observable and controllable with validation fit rate of 77.93%. 

The impulse response of the model is shown in figure 5.13. The left plot shows the 

impulse response of the Pump input, and the right plot is the impulse response of the 

Valve1 input. The kick in Pump input pushes the system to positive values while the 

Valve1 kick pushes the system to negative values. This means, Pump input has a 

positive effect on filling the system and Valve1 input has positive effect on draining it.  

 

 

Figure 5.13 Impulse Response of the MISO Model 

 

The identified MISO model is validated to be accurate enough to be implemented in a 

nominal MPC. After the initialization of MATLAB MPC, the nominal MISO MPC is designed 

as follows: 

 

• Prediction Horizon = 12 

• Control Horizon = 3 

• Control Sampling = 0.5 seconds 
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• Hard Constraints for Pump input value Max = 1, Min = 0.4 

• Constraints for Pump input slew rate Max =1, Min = -1 

• Hard Constraints for Valve1 input value Max = 1, Min = 0.5 

• Constraint for Valve1 input slew rate Max = 0.5, Min = -0.5 

• Soft Constraints for Output value Max = 15, Min = 0 

 

 

 

Figure 5.14 Scheme of Closed-Loop System with Nominal MISO MPC 

 

The closed-loop performance of the nominal MISO MPC is illustrated in figure 5.15. The 

controller can track the reference trajectories by manipulating the Pump and Valve1 

inputs simultaneously. Based on the observation, the nominal MISO MPC provides 

satisfactory closed-loop performance, for this reason second step of iterative 

identification is skipped for this model. Further analysis of the MISO MPC and the tuning 

effects of the controller will be discussed in chapter 6. 
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Figure 5.15 Closed-loop Control with Nominal MISO MPC 

 

5.2.3 Identification of Multi-Input Multi-Output Model System 

MIMO model is a complex system, having 3 inputs and 2 outputs. Pump gain, Valve1, 

Valve2 (the outlet valve of tank 2) are the inputs and Level1, Level2 (water level in tank 

2) are the outputs. The control objective of the MIMO system is to control the water 

levels in tank 1 and tank 2 simultaneously, by manipulating the input values of Pump, 

Valve1 and Valve2. The conical shape of the second tank grants system additional non-

linearity. The motivation of designing the MIMO model is to prove the effectualness of 

MPC over controlling multivariable systems.  

 

 

 

Figure 5.16 MIMO Model 
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Step1: Identification of the nominal MIMO model 

The identification process of the MIMO starts from the black-box identification 

experiment. As in MISO experiment where the identification process is separated into 3 

different stages, MIMO experiment is conducted similarly. Besides, MIMO experiment is 

divided into 3 stages each having sub-stages. Each sub-stage is executed multiple times 

within the corresponding stage. Pump input value is adjusted to hold the Level1 within 

0 and 10 centimeters, while Valve2 input value tries to keep the Level2 between 0 and 

18 centimeters. 

Table 5.2 Stage and Sub-Stage Diagram 

Stage 1 

Valve1 = 1  

Interval = 0 – 900 sec 

Stage 2 

Valve1 = 0.75  

Interval = 900 – 1800 sec 

Stage 3 

Valve1 = 0.5 

Interval = 1800 – 2700 sec 

SUB-Stages  SUB-Stages SUB-Stages 

Valve2 

= 1 

Valve2 

= 0.75 

Valve2 

= 0.5 

Valve2 

= 1 

Valve2 

= 0.75 

Valve2 

= 0.6 

Valve2 = 1 Valve2 = 

0.75 

 

 

Figure 5.17 Identification Data Set of MIMO System 
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Identification data set in figure 5.17 consist of 5374 samples with 0.5 seconds of 

sampling time. After the identification with PEM method, resulting discrete state-space 

model is: 

 

𝐴 =  [
0 0 0.9577
1 0 −2.9149
0 1 2.9572

]     𝐵 =  103 × [
0.001 1.0054 −1.5217
0 −2.0672 3.1299
0 1.0624 −1.6095

]  

 

𝐶 = [
1.1289 1.1018 1.0753
0.4379 0.4415 0.4447

]     𝐷 = [
0 0 0
0 0 0

]  

 

𝑈 =  [𝑃𝑢𝑚𝑝 𝑉𝑎𝑙𝑣𝑒1 𝑉𝑎𝑙𝑣𝑒2]    𝑌 =  [
𝐿𝑒𝑣𝑒𝑙1
𝐿𝑒𝑣𝑒𝑙2

]  

5.6 

 

The fit rate of the nominal MIMO model to Level1 signal is 71% and Level2 81.42%. The 

plant friendliness is calculated as 92.61% which is satisfactory. The model is observable 

and controllable; therefore, the nominal MIMO is validated to design a nominal MPC for 

closed-loop identification. 

 

Step2: Closed-Loop Identification of the Nominal MIMO Model 

Discrete State-Space model in 5.6 is used to initialize the nominal MIMO MPC. The 

scheme of the closed-loop system is shown in figure 5.18. The nominal MPC is designed 

as follows: 

• Prediction Horizon = 10 

• Control Horizon = 2 

• Control Sampling = 0.5 seconds 

• Hard Constraints for Pump input value Max = 1, Min = 0.4 

• Constraints for Pump input slew rate Max =1, Min = -1 

• Hard Constraints for Valve1 input value Max = 1, Min = 0.5 

• Constraint for Valve1 input slew rate Max = 0.5, Min = -0.5 

• Hard Constraints for Valve2 input value Max = 1, Min = 0.5 

• Constraint for Valve2 input slew rate Max = 0.5, Min = -0.5 
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• Soft Constraints for Output 1 value Max = 15, Min = 0 

• Soft Constraints for Output 2 value Max = 20, Min = 0 

 

 

 

Figure 5.18 Scheme of Closed-Loop System with Nominal MIMO MPC 

 
The result of closed-loop control is plotted in figure 5.19. The controller can track the 

reference trajectories for Level1, on the other hand there is a consistent off-set error 

for Level2. This off-set error is caused by the uncertainties in the nominal MIMO model; 

therefore, the nominal MIMO MPC performs poorly. The data obtained from the model 

is used to perform the closed-loop identification. Input data obtained the control 

experiment are shown in figure 5.20. The closed-loop identification data set consist of 

1801 samples with 0.5 seconds of sampling interval. The identification of the closed-

loop system yields the following model:  

 

 

𝐴 =  [
0.9665 −0.0122 0.0699
0.0093 0.9888 0.0053
0.0039 −0.0028 0.9911

]     𝐵 =  [
−1.9556 0.8039 −0.6100
−0.9791 −0.2322 0.6292
0.0190 −0.0545 0.0404

]  

 

𝐶 = [
−0.4744 −0.1758 0.0536
0.1703 −0.4382 −0.5695

]     𝐷 = [
0 0 0
0 0 0

]  

 

𝑈 = [𝑃𝑢𝑚𝑝 𝑉𝑎𝑙𝑣𝑒1 𝑉𝑎𝑙𝑣𝑒2]    𝑌 =  [
𝐿𝑒𝑣𝑒𝑙1
𝐿𝑒𝑣𝑒𝑙2

]  

5.7 

 



50 

 

Figure 5.19 Closed-loop Control with Nominal MIMO MPC 

 

 

Figure 5.20 Input Data from the Closed-Control with Nominal MIMO MPC 

 

The fit rate of the identified closed-loop MIMO model to the validation date is 79.41% 

for Level1 and 76.09% for Level2. For validation, the impulse response of the closed-

loop MIMO model is analyzed. According to the impulse response, the kick in the Pump 

signal initially pushes both output signals towards the positive margin. This means, the 

pump input affects both tanks as it pushes water to the system. Impulse Valve1 signal 
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pushes Level1 output towards negative margin while pushing Level2 output to the 

positive margin. This explains as the outflow in the Valve1 increases, water level in the 

first tank decreases and since the water flows to the second tank, water level in the 

second tank increases. Lastly, the kick the in the Valve2 signal shows no effect to Level1 

output but pushes Level2 output to the negative margin. This result shows the 

significant effect of Valve2 in draining the second tank. Moreover, since the Valve2 is 

not connected to the first tank, the change in Valve2 signal will not considerably affect 

Level1.  

 

 

Figure 5.21 Impulse Response of the Closed-Loop MIMO Model 

 

The Closed-loop MIMO Model in 5.7 is chosen to be implemented in the high-

performance MIMO MPC. It is important to remark that complex MIMO model is obtained 

with the same iterative identification experiments applied to the simpler SISO and MISO 

models. Further analysis on the control performance of the MIMO model and its 

implementation to the proposed MPC Software are conducted in Chapter 6. 
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6 Case Studies for Control and the Results 

The motivation for the case studies is to validate the applicability of the MPC Software 

[7]. Hence, the tuning of the high-performance MPC is required. The MPC Software has 

an interface where the user can define MPC parameters such as control horizon, 

prediction horizon, state matrices, weight matrix, and controller sampling time. The MPC 

Software is an external controller that is connected to the target computer with UDP 

communication protocol. Data transfer between the external MPC and the Multi-tank 

drivers were made with UDP packet interface of MATLAB/Simulink. Please not that UDP 

is used only because of Simulink real-time engine support, it does not support Modbus 

therefore it is not optimal for industrial level usage. 

Case studies are designed to give an insight into the closed-loop control performances 

of model-based controllers obtained by the iterative identification experiments explained 

in Chapter 5. The case studies were performed initially on the internal MATLAB MPC 

function block, and the outcomes of tunings were studied. If the tuned MATLAB MPC 

provides off-set free control, the parameters of the particular controller are then pushed 

into the external MPC software. The flow chart of the design process of the external MPC 

Software is illustrated in figure 6.1. After the external controller is designed, the same 

case studies are applied, and the results are compared to MATLAB MPC to justify the 

performance of the proposed MPC Software. 

 

 

Figure 6.1 Design Process of the Controller with the MPC Software 
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Case studies are individually designed for each SISO, MISO, and MIMO model. Before 

continuing to the case studies, it is important to note that the implementation of the 

external MPC is made for SISO and MISO models. Case studies for the MISO model are 

designed to reflect the cost-efficient tuning approach of MPC. 

 

6.1 Case Studies for the SISO Model 

The state-space model in equation 5.4 is used to initialize the MATLAB SISO MPC. Design 

parameters are shown in Table 6.1. Based on the tune parametrization, three different 

SISO MPC models are created. Each SISO MPC has different weight coefficients that are 

indicated in table 6.2. 

Table 6.1 Design Parameters of MATLAB SISO MPC 

D
e
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n
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m

e
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r
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Sampling Time 0.5 sec 

Prediction Horizon 12 

Control Horizon 5 

Pump input Constraints Max = 1 

Min = 0.4 

Level Output Constraints Max = 15 

Min = 0 

Input Slew Rate Constraints Max = 1 

Min = -1 

 

Table 6.2 Individual Weight Tuning Parameters 

MPC 1 MPC 2 MPC 3 

Input Input 

Rate 

Output Input Input 

Rate 

Output Input Input 

Rate 

Output 

0 0.001 2 0 0.5 0.1 0 0.5 2 
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The verbalization of the tunings of each MATLAB SISO MPC is made as follows: 

1) For MPC 1: 

a)  High values of Input do not penalize the cost function in control. 

b) High Rates of input manipulation have a negligible effect on the cost function. 

c) Off-set error in the output has a significant penalization on the cost function. 

2) For MPC 2: 

a) High values of Input do not penalize the cost function in control. 

b) High Rates of input manipulation have a big penalization on the cost function. 

c) Off-set error in the output has smaller penalization on the cost function. 

3) For MPC 3:  

a) High values of Input do not penalize the cost function in control. 

b) High Rates of input manipulation have a penalization on the cost function. 

c) Off-set error in the output has bigger penalization on the cost function. 

Greater penalization on a parameter means corresponding squared error for a given 

parameter has bigger cost, thus controller effort will focus on such parameters to reduce 

the cost. 

 

6.1.1 Case Study 1 

Case Study 1 is a dynamic reference tracking test comprising increasing ramps, step 

jumps, step drops, decreasing ramps, and static references. The performance criteria 

are made with respect to the Root Mean Square Error (𝑅𝑀𝑆), Response Time (𝑇𝑟), mean 

value of the Inputs (𝐼𝑛𝑝𝑢𝑡𝑚𝑒𝑎𝑛), and standard deviation of the manipulated variables 

(𝑆𝑇𝐷𝑀𝑉). The case study takes 300 seconds, and 600 data samples were collected. The 

closed-loop graph of each MPC model output and control efforts are plotted, and 

performance metrics are shown in table 6.3.  
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Figure 6.2 Graph of Control Output 

 

 

Figure 6.3 Control Effort Comparison of MPC 1 (top), MPC 2 (middle), MPC3 

(bottom) 
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Table 6.3 Performance Results of the MATLAB MPC 

Performance 

Criteria 

MPC 1 MPC 2 MPC 3 

𝑹𝑴𝑺 𝑬𝒓𝒓𝒐𝒓  

(Ref Mean = 7.7102) 

0.1822 0.2362 0.1874 

𝑻𝒓 Responsive  Less Responsive Responsive 

𝑰𝒏𝒑𝒖𝒕𝒎𝒆𝒂𝒏 0.7765 0.7949 0.7870 

𝑺𝑻𝑫𝑴𝑽 0.0983 0.0856 0.0949 

 

According to graph 6.2 and the result table 6.3, every MATLAB MPC provided offset-free 

control. However, the performance metrics in the result table indicate the effects of 

tuning. MPC 1 had no cost on using a high rate of input manipulation. Therefore, the 

controller could find the most optimal input values with the lowest input value mean 

and lowest RMS error. Yet, the input had a significant ripple that might not be 

mechanically optimal for the pump. A similar case is observed with MPC 3; however, 

MPC 3 realizes the rate of input manipulation as a cost factor. Consequently, there is a 

minor deviation in input values; still, the trade-off is visible in a slightly bigger RMS 

error. Lastly, MPC 2 provides the most mechanically friendly control effort, but it suffers 

from responsiveness and higher RMS error. Each controller has upsides and downsides 

so that the answer to picking the optimal controller depends on the application. Since 

the thesis intends to identify an offset-free MPC, MPC 1 could be the best choice however 

maintaining the safety of the Pump is also important for the Multi-tank system 

sustainability. Therefore, MPC 2 is chosen as the optimal tuned MPC design. 

 

6.1.2 Case Study 2  

The second case study was executed only on MPC 2. The objective is to observe the 

robustness of MPC 2 for a case where the dynamics of the controlled system are 

changed. Note that the SISO model did not realize the outflow valve; therefore, the 

valve1 signal is used to create a disturbance to the system. In case study 2, a constant 

set-point is provided for 300 seconds, at time = 75 seconds, Valve1 value is reduced 

from 1 to 0.75 and stays at 0.75 for 100 seconds to reduce the outflow. At time = 175 
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seconds, Valve1 signal increases back to 1 to increase the outflow causing the second 

disturbance. Figure 6.4 indicates the test result of MPC2. According to the graph, when 

the disturbance is applied at time = 75 seconds, the controller rapidly reduces the Pump 

values as a reaction to the disturbance. There exists no significant undesirable rise when 

the disturbance occurs. Additionally, at time = 175 seconds, disturbance changes the 

dynamics again, and the controller reacts by increasing the Pump values to keep the 

output level close to the reference level.  

 

Figure 6.4 Results of Case Study 2 

 

6.1.3 The Design of the External MPC and the Control 

The design and tuning parameters of MATLAB MPC 1 is pushed into the MPC Software 

to generate the external MPC. Additional to the parameters, MPC Software also requires 

the tuning of the Kalman Observer, due to the impossibilities to obtain it from the 

MATLAB MPC. The tuning of the Kalman Observer is made by adjusting the Kalman Gain 

with input noise and output noise covariance matrices. The tuned Kalman Filter is:  

𝐾𝑎𝑙𝑚𝑎𝑛 𝐺𝑎𝑖𝑛 =  [
4.1177
−0.9459

]  

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =  [
0.4107 −0.2938
−0.2938 0.2149

]  
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The Case Study Results: 

Case study 1 and 2 is applied to the external MPC. The graphical results of each case 

study are plotted in figure 6.5 and 6.6. The comparison of performance results of case 

study 1 are reflected in table 6.4. 

 

Figure 6.5 Results of Case Study 1 with the External MPC 

 

Table 6.4 Case Study 1 Performance Comparison 

Performance 

Criteria 

MPC 2 External MPC 

𝑹𝑴𝑺 𝑬𝒓𝒓𝒐𝒓  

(Ref Mean = 7.7102) 

0.2362 0.2838 

𝑻𝒓 - Slower 

𝑰𝒏𝒑𝒖𝒕𝒎𝒆𝒂𝒏 0.7949 0.7596 

𝑺𝑻𝑫𝑴𝑽 0.0856 0.0969 
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Figure 6.6 Results of Case Study 1 with the External MPC 

 
Results indicate that, even though the weight matrix tuning of the MATLAB MPC2 and 

the external MPC are the same, there are some differences in the input manipulation. 

External MPC has more ripple as it manipulates the Pump input, and the responsiveness 

is slightly slower than MATLAB MPC 2. On the other hand, the RMS error in Case Study 

1 is similar, and in Case Study 2, the external MPC performed better against the 

disturbance. Through the results, the design process of the external MPC (figure 6.1) is 

applicable to obtain an offset-free MPC. 

 

6.2 Case Studies for the MISO Model 

In this section, the cost-efficient tuning of an MPC is analyzed with two identical MATLAB 

MISO MPC. MISO model has additional input that also affects the output dynamics. 

Therefore, the controller can be tuned to prioritize particular input to push the output 

level to the set-point. Input prioritization can be made by concerning the financial 

constraints. In this case, utilization of Pump input is considered more costly than using 

Valve1 input. The case study will be a dynamic reference tracking, and the cost of 

utilizing the pump inputs is measured. The difference between individual MATLAB MPCs 

is their different weight matrices. MISO MPC 1 is tuned to allow high Pump input values, 

while MISO MPC 2 is tuned to restrict the utilization of high Pump input values.   
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Table 6.5 Design Parameters of MATLAB MISO MPC 

D
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Sampling Time 0.5 sec 

Prediction Horizon 10 

Control Horizon 3 

Pump input Constraints Max = 1 

Min = 0.4 

Valve1 input Constraints Max = 1 

Min = 0.5 

Level Output Constraints Max = 15 

Min = 0 

Pump Slew Rate 

Constraints 

Max = 1 

Min = -1 

Pump Slew Rate 

Constraints 

Max = 0.5 

Min = -0.5 

 

 

Table 6.6 Individual Weight Tuning Parameters 

MPC 1 MPC 2 

Input Input Rate Output Input Input Rate Output 

[
𝟎
𝟎
] 0.001 1 [

𝟎. 𝟐
𝟎
] 0.001 1 
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6.2.1 MISO Case Study and the Result 

 

Case studies were held for 600 seconds, 1200 data samples were collected, RMS error, 

Pump input cost, and Pump input mean values were calculated.   

  

 

Figure 6.7 Closed-Loop Graph of MISO Case Study 

 

Table 6.7 Comparison of the Results 

Performance 

Criteria 

MPC 1 MPC 2 

𝑹𝑴𝑺 𝑬𝒓𝒓𝒐𝒓  

(Ref Mean = 7.7408) 

0.1390 0.1345 

Cost  

(Time x Pump) 
840.4206 802.6450 

𝑰𝒏𝒑𝒖𝒕𝒎𝒆𝒂𝒏 0.6998 0.6683 
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In Figure 6.7, it is seen that the MPC1 and MPC 2 had identical control performance for 

the Case Study. Input 1 graph reflects the difference in Pump input used by each 

controller for the control task. The significant Pump input difference is between the time 

90 – 130 and 370 – 410 seconds. The exact output level can be reached with smaller 

Pump values by using smaller outflow values reflected in the Input 2 graph. Input 2 

graph indicates the valve states of each controller. Valve states reflect the outflow rates, 

so that MPC 2 used lower outflow rates to control the level output. This difference in the 

input manipulation is caused by the higher weight in the Pump input of MPC 2, so smaller 

Pump input values are used to control the level output, and the Valve1 values are 

calculated by the controller accordingly.  

Case Study resulted as follows: For a given control task with MISO MPC, if the financial 

constraints are realized for a defined Input, the controller can be optimized to provide 

the most cost-efficient response.  

6.3 Case Studies for the MIMO Model 

Case studies for the MIMO model aim to provide a relatively complex control task to the 

designed MIMO MPC defined in equation 6.1. Initially, MATLAB MIMO MPC is used to 

handle the control task. If a successful control is obtained, the MATLAB MIMO MPC 

parameters are pushed into the MPC Software to generate the external MIMO MPC. The 

MATLAB MIMO MPC is tuned to provide responsive performance; therefore, the output 

errors were penalized, and the input weights were neglected. Note that the MIMO has 

more parameters; thus, the input optimization requires more computational force. To 

compensate for computational heaviness, the sampling time of the controller is 

increased to 1 second, and the control horizon is reduced to 2. Table 6.8 shows the 

design parameters used in MATLAB MIMO MPC.  

 

𝐴 = [
0.9665 −0.0122 0.0699
0.0093 0.9888 0.0053
0.0039 −0.0028 0.9911

]     𝐵 =  [
−1.9556 0.8039 −0.6100
−0.9791 −0.2322 0.6292
0.0190 −0.0545 0.0404

]  

 

𝐶 =  [
−0.4744 −0.1758 0.0536
0.1703 −0.4382 −0.5695

]     𝐷 = [
0 0 0
0 0 0

]  

 

𝑈 =  [𝑃𝑢𝑚𝑝 𝑉𝑎𝑙𝑣𝑒1 𝑉𝑎𝑙𝑣𝑒2]    𝑌 =  [
𝐿𝑒𝑣𝑒𝑙1
𝐿𝑒𝑣𝑒𝑙2

]  

6.1 
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Table 6.8 Design Parameters of MATLAB MIMO MPC 
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Sampling Time 1 sec 

Prediction Horizon 10 

Control Horizon 2 

Pump input Constraints Max = 1 

Min = 0.4 

Valve1 input Constraints Max = 1 

Min = 0.5 

Valve2 input Constraints Max = 1 

Min = 0.5 

Level1 Output Constraints Max = 15 

Min = 0 

Level2 Output Constraints Max = 20 

Min = 0 

Pump Slew Rate 

Constraints 

Max = 1 

Min = -1 

Valve1 Slew Rate 

Constraints 

Max = 0.5 

Min = -0.5 

Valve2 Slew Rate 

Constraints 

Max = 0.5 

Min = -0.5 
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6.3.1 MIMO Case Study and the Results 

The control task is to hold Level1 output for 60 seconds for a given set-point while 

controlling the Level2 output with respect to the two-consecutive set-points. The control 

task gives five different set-points for the Level1 output, so there are ten set-points for 

the Level2 output. The case study took 300 seconds, and data samples were collected 

with 0.5 seconds of sampling time. RMS error is the performance criteria, and successful 

control is defined with 90% accuracy.  

Result of MATLAB MIMO MPC: 

 

 

Figure 6.8 Control results of MATLAB MIMO MPC (red signal) 

 
Closed-loop control of the MIMO system resulted in 0.2273 RMS error with 5.9983 

average references in tank 1. The accuracy of the control is bigger than 90%; therefore, 

it is considered as successful. In tank 2 the RMS error is 0.3195 for the given 7.5025 

average references, making control accuracy bigger than 90%. The noise in the 

measurement signal is due to the waves occurring in each tank and relatively bigger 

control sampling time. 

 

The design parameters are found optimal to be pushed into the MPC Software as defined 

in figure 6.1. However, the External MPC is designed without optimal Kalman Filter 

parameters due to the lack of study made on tuning the Kalman Filter. This caused an 

under-tuned External MPC is used for the Case Study. 
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Result of the External MPC: 

 

 

Figure 6.9 Control results of the External MPC (red signal) 

 

Closed-loop control with the proposed MPC Software resulted in 0.2157 RMS error with 

5.9933 average references in tank 1. The accuracy of the control is bigger than 90%; 

therefore, it is considered as successful. In tank 2 the RMS error is 0.4104 for the given 

7.5025 average references, making control accuracy bigger than 90%.  Even without 

an optimal Kalman Filter, the external MPC is able to provide optimal input manipulation 

to track the set-points given for tank 1 and tank 2. 

 

 

Figure 6.10 Input Manipulations by the External MPC 
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6.4 Discussion 

The results of the case studies highlight that the proposed MPC software provided similar 

control performances with MATLAB MPC for SISO and MIMO cases. The case studies 

have validated the design steps of the external MPC illustrated in figure 6.1. As a result, 

initially, MATLAB MPC was used to optimize the tuning parameters for a given control 

task. According to the parameters used in MATLAB MPC, the MPC Software generated a 

high-performance external MPC to control the actual process. It is also important to 

note that water level readings in the Multi-tank system were excessively noisy due to 

the waves occurring as the water is pumped into the tanks. Therefore, the tuning of the 

Kalman Filter had a significant effect on obtaining the high-performance MPC since it 

was used as the state observer. The design approach used to generate external MPC 

could be customized to optimize the Kalman Filter. The utilization of MATLAB Kalman 

Filter application could yield more comprehensive MPC tuning; thus, better performing 

External MPC could be generated. 
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7 Conclusion 

The thesis focused on controlling the Multi-tank system in TalTech Alpha-lab Control 

Laboratory with an external MPC designed with the proposed MPC Software. The case 

studies were designed to validate the applicability of an external MPC intended for a 

given control task. The results indicated that the external MPC precisely manipulated 

the input variables of the Multi-tank system and obtained closed-loop control with over 

90% accuracy. This outcome may be considered a promising stage of implementing the 

MPC Software to industrial software such as Valmet DNA (DCS). Implementation of MPC 

Software to existing industrial software can utilize the process control of a district 

heating plant with the external MPC. Required works to do the implementations such as 

process identification, communication configuration between the external MPC and 

process control system, and MPC tuning were already covered in this study. 

Another important outcome is the accuracy of the models obtained from a multivariable 

black-box system by using the iterative identification method. Local discrete state-space 

models were the final product of the identification stage, as they were generated by 

learning the dominant dynamics in the closed-loop system. These dynamics were 

accurately modelled to design offset-free model-based controllers. Moreover, the 

straightforward structure of multivariable representation of state-space models is highly 

beneficial in developing a multivariable model-based controller.  In the process industry, 

numerous measurement data are obtained to increase efficiency and process quality. 

Continuously growing data archives of an industrial process could be used to model an 

optimal data-driven model-based controller. Considering the available data pool for a 

given plant, the experiment steps of the iterative identification method are highly 

favorable to analysis for an optimal controller.   

Additionally, the findings from case studies also indicate the beneficial practicality of 

strategic linearization for a given control range. Although linearization reduced the 

model’s accuracy over nonlinear curves, linear MPC was able to provide high-

performance control within desired control ranges. Regarding the heating plant process, 

the plant outlet temperatures vary between 74° and 86° degrees Celsius, making 12° 

degrees Celsius output range. Taking account of the narrow working output range of 

the heating plant, linear MPC can be optimal for governing such tasks. Success in linear 

control may be considered a further validation of the MPC Software. 
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7.1 Kokkuvõte 

Käesolev lõputöö keskendub TalTechi Alpha-lab kontroll-labori mitmemahutisüsteemi 

juhtimisele välise mudel-ennetava kontrolliga (MPC), mis on projekteeritud pakutud 

MPC tarkvaraga. Juhtumiuuringud kavandati mõttega kinnitada välise MPC 

rakendatavust etteantud kontrollülesandele. Tulemused näitasid, et väline MPC käsitses 

täpselt mitmemahutisüsteemi sisendmuutujaid ja saavutas suletud ahela kontrolli 90% 

täpsusega. Seda tulemust võib arvestada paljulubavaks etapiks MPC tarkvara 

rakendamisel olemasolevale tööstuslikule tarkvarale nagu Valmet DNA (DCS). MPC 

tarkvara rakendamine olemasolevale tööstuslikule tarkvarale võib kasutusele võtta 

kaugküttejaama tootmisjuhtimist koos välise MPC-ga. Antud uurimistöö hõlmas juba 

rakendamiseks vajalikud tööd nagu protsessi tuvastus, teabevahetuse seadistamine 

välise MPC ja protsessijuhtimissüsteemi vahel ning MPC häälestus. 

Oluliseks tulemuseks on ka iteratiivset identifitseerimismeetodit kasutades mitme 

muutujaga plokk-kasti süsteemidest saadud mudelite täpsus. Kohalikud diskreetsed 

olekuruumimudelid olid tuvastamise etapi lõpp-produktiks, sest olid loodud suletud 

ahelaga süsteemi valitseva dünaamika õppimisel. Dünaamika modelleriti täpselt, et 

kavandada nihkevabasid mudelipõhiseid kontrollereid. Lisaks on olekuruumi mudeli 

mitme muutujaga esituse otsekohene struktuur väga kasulik mitme muutujaga 

mudelipõhise kontrolleri arendusel. Protsessitööstuses kogutakse arvukaid 

mõõteandmeid, et suurendada tõhusust ja protsessikvaliteeti. Tööstusprotsessi pidevalt 

kasvavaid andmearhiive on võimalik kasutada optimaalse andme- ja mudelipõhise 

kontrolleri modelleerimiseks. Arvestades mistahes tehase saadaolevat andmekogu, on 

iteratiivse identifitseerimismeetodi eksperimendietapid optimaalse kontrolleri analüüsi 

jaoks soodsad. 

Lisaks osutavad juhtumiuuringute järeldused etteantud kontrollpiirkonna strateegilise 

lineariseerimise tegelikule praktilisusele. Kuigi lineariseerimine alandas mudeli täpsust 

mittelineaarsetel kurvidel, oli lineaarne MPC võimeline pakkuma kõrgjõudluslikku 

juhtimist soovitava kontrollpiirkonna raames. Küttejaama väljundtemperatuurid jäävad 

74° ja 86° Celsiuse kraadi vahele, andes väljundivahemikuks 12° Celsiuse kraadi. Võttes 

arvesse küttejaama kitsa väljundivahemiku, võib MPC osutuda optimaalseks taoliste 

ülesannete haldamiseks. Lineaarse juhtimisega seotud edukus valideerib veelgi MPC 

tarkvara. 
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7.2 Recommendations for future work 

This thesis validated the feasibility of the MPC Software, which was designed for 

governing industrial tasks, in a laboratory environment. Further implementations of the 

MPC software to a boiler system simulator or the actual district heating plant will finalize 

the validation progress. Despite the considerable work on identifying the multi-tank 

system, the model dynamics do not relate to the process in boiler systems. Therefore, 

future works must include a study of identification for a boiler system. 

There is an increasing number of works on developing nonlinear system identification 

and nonlinear model-based controllers. Linear MPC is already being used in the industry, 

providing reliable, high-quality results. However, due to the limitation caused by 

linearizing the process, extra tuning effort is needed to optimize the controller. For this 

reason, it would be more promising to put effort into researching the development of a 

nonlinear MPC.   
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Abstract 

Developing intelligent controllers is essential to achieve optimal and efficient control in 

process automation. In the context of district heating plants, this means a decrease in 

resource consumption and improvement in energy efficiency. With the emergence of 

Industry 4.0, controllers became a supervisory tool governing more complex tasks with 

multiple parameters where the conventional PID controllers cannot provide optimal 

results. On the other hand, model predictive control is a modern control method that 

can handle multivariable system control by its nature. The content of the thesis aims to 

successfully implement model predictive controllers to a multivariable water tank 

system to ensure that the proposed control method satisfies predefined control criteria. 

The thesis results have significant value in validating the feasibility of the proposed 

model predictive controller to district heating plants and raising the interest of local 

industrial entities towards these new developments. 

 

Resümee 

Tarkade juhtimisseadmete välja töötamine on tootmise efektiivse automatiseerimise 

juures esmatähtis. Keskküttejaamade kontekstis tähendab see ressursside tarbimise 

vähendamist ja energiaefektiivsuse tõstmist. Tööstus 4.0 tekkimisega muutusid 

kontrollerid järelvalvevahenditeks, mis juhivad keerulisemaid protsesse mitmete 

parameetritega, kus laialtlevinud PID kontrollerid ei anna optimaalseid tulemusi. Teisest 

küljest on ennetuslik kontroll moodne meetod, mis on loodud mitme muutujaga 

süsteemide jaoks. Käesoleva lõputöö eesmärk on edukalt rakendada ennetuslike 

kontrollerite mudeleid mitme muutujaga veemahutisüsteemidele, et kindlustada välja 

pakutud kontrollmeetodi sobivus kontrollkriteeriumitega. Lõputöö tulemustel on suur 

potentsiaal valideerida välja pakutud ennustava kontrolleri mudeli teostatavust 

keskküttejaamade kontekstis ja tõsta kohaliku tööstuse huvi uute arengute vastu. 
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Appendix 

Simulink Block Diagram of the Multi-tank Driver 

 

 

Simulink Diagram of SISO Configuration  
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Simulink Diagram of MISO Configuration  

 

Simulink Diagram of MIMO Configuration with External MPC  

 

  

 


