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Abstract

This thesis investigates applying Theory of Inventive Problem Solving (TRIZ) prin-
ciples to enhance software vulnerability detection, focusing on engineering structured
prompts for Large Language Models (LLMs) and conceptualizing systemic code life-
cycle security. Motivated by limitations in standard LLM prompting, core TRIZ con-
cepts like Function and Resource Analysis were adapted to guide LLM reasoning.

An empirical study involved iterative TRIZ-prompt development and ablation, initially
with DeepSeek. Key prompts were then validated across DeepSeek, Llama, and Mistral
LLMs on VulnPatchPairs and CVEFixes datasets against Chain-of-Thought (CoT) and
Data Flow Analysis (DFA) baselines. Results indicated that TRIZ-based prompts led to
improved F1-score and Recall over baselines when used with the DeepSeek LLM.
However, for Llama and Mistral, the performance of TRIZ prompts relative to CoT and
DFA baselines was more varied, with baselines often achieving comparable or superior
F1-scores and Recall. Significant LLM-specific variations in overall performance, error
rates (notably high for Llama and Mistral), and the persistent Recall/Precision trade-off
were observed across all models, underscoring the need for model-aware prompt
strategies. Ablation studies identified crucial TRIZ-derived prompt components for ef-
fective LLM guidance. Conceptually, TRIZ system thinking yielded novel defense ideas
for the code lifecycle.

This research concludes that TRIZ offers a valuable structured methodology for guiding
LLM-based vulnerability detection, demonstrating clear advantages with certain LLMs
like DeepSeek. Nevertheless, practical application and the extent of benefit over simpler
baselines are significantly conditioned by considerable LLM variability and reliability.
Findings inform prompt engineering and future research into more robust, context-
aware LLM security tools.

Keywords: TRIZ, Large Language Models (LLM), Vulnerability Detection, Prompt
Engineering, Code Security, Cybersecurity, Static Analysis, System Thinking, Ablation
Study, Software Security Lifecycle.

This thesis is written in English and is 69 pages long, including 6 chapters and 6 tables.



Annotatsioon
TRIZ-i rakendamine koodi haavatavuste leidmiseks, selle

edastamise, salvestamise ja taitmise meetodid

See 16putdd uurib leiutusliku probleemilahenduse teooria (TRIZ) pdhimdtete rakendam-
ist tarkvara haavatavuste tuvastamise tohustamiseks, keskendudes struktureeritud
viipade konstrueerimisele suurte keelemudelite (LLM) jaoks ja siisteemse koodi elut-
stikli turvalisuse kontseptualiseerimisele. Ajendatuna standardsete LLM-viipade piiran-
gutest, kohandati LLM-i arutluskdigu suunamiseks TRIZ-1 pdhikontseptsioone, nagu
funktsiooni- ja ressursianaliiiis.

Empiiriline uuring hdlmas iteratiivset TRIZ-viipade arendamist ja ablatsiooni, esialgu
DeepSeekiga. Votmeviibad valideeriti seejdrel DeepSeeki, Llama ja Mistrali LLM-ide
16ikes VulnPatchPairs ja CVEFixes andmekogumitel, vorreldes neid mdtteahela (CoT)
ja andmevoo analiiiisi (DFA) baasjoontega. Tulemused néitasid, et TRIZ-pohised viibad
viisid DeepSeeki LLM-i kasutamisel baasjoontega vorreldes parema F1-skoori ja meen-
utuseni (Recall). Llama ja Mistrali puhul oli aga TRIZ-viipade joudlus CoT ja DFA
baasjoonte suhtes mitmekesisem, kusjuures baasjooned saavutasid sageli vorreldavaid
v0i1 paremaid F1-skoore ja meenutust. Kdigi mudelite puhul tdheldati méarkimisvéarseid
LLM-spetsiifilisi erinevusi iildises joudluses, veaméérades (eriti korged Llama ja Mis-
trali puhul) ning piisivat meenutuse/tdpsuse kompromissi, mis rohutab mudeliteadlike
viipastrateegiate vajadust. Ablatsiooniuuringud tuvastasid tohusaks LLM-1 juhendam-
iseks iiliolulised TRIZ-ist tuletatud viibakomponendid. Kontseptuaalselt andis TRIZ-i
stisteemmotlemine uudseid kaitseideid koodi elutsiikli jaoks.

See uurimus jireldab, et TRIZ pakub viirtuslikku struktureeritud metoodikat LL.M-
poOhise haavatavuste tuvastamise juhendamiseks, ndidates selgeid eeliseid teatud LLM-
idega, nagu DeepSeek. Sellest hoolimata on praktiline rakendamine ja kasu ulatus liht-
samate baasjoonte ees markimisvairselt tingitud arvestatavast LLM-i varieeruvusest ja
usaldusvédrsusest. Tulemused annavad sisendit viipade konstrueerimiseks ja tulevaseks
uurimistooks robustsemate, kontekstiteadlikumate LLM-1 turvatdoriistade valdkonnas.

Votmesonad: TRIZ, suured keelemudelid (LLM), haavatavuse tuvastamine, kiire
projekteerimine, koodi turvalisus, kiiberturvalisus, staatiline analiiiis, siisteemi
mdtlemine, ablatsiooniuuring, tarkvara turvalisuse elutsiikkel.

Loput6o on kirjutatud inglise keeles ning sisaldab teksti 69 lehekiiljel, 6 peatiikki, 6 ta-
belit.
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1 Introduction

1.1 Problem Statement

The security of software systems remains a critical global concern, with vulnerabilities
in code representing significant financial, operational, and societal risks [46, 47]. Des-
pite advancements in software development practices and security tooling, reliably de-
tecting and mitigating these vulnerabilities before exploitation presents persistent chal-
lenges [48]. Existing methodologies face several key limitations.

Scalability and Complexity: Modern software systems are increasingly large, complex,
and interconnected [49]. Manual code review, while thorough, is infeasible at scale.
Traditional automated tools like Static Application Security Testing (SAST) and Dy-
namic Application Security Testing (DAST) often struggle to cope with this complex-
ity, leading to incomplete analysis or an overwhelming number of findings [50, 51].

Limitations of Automated Tools: SAST tools frequently suffer from high rates of false
positives and false negatives, require significant expertise to configure and interpret,
and often miss vulnerabilities related to complex logic, context-dependent flaws, or
novel attack patterns [52]. DAST tools require code execution, limiting their applicabil-
ity during early development stages and potentially missing vulnerabilities in unex-
ecuted code paths [50].

Inadequacy of Basic LLM Prompting: While Large Language Models (LLMs) demon-
strate potential for code analysis due to their understanding of code structure and se-
mantics, their effectiveness in vulnerability detection is highly dependent on prompting
strategies. Standard prompting techniques e.g., zero-shot, basic Chain-of-Thought
(CoT) often lack the necessary structure and depth for rigorous security analysis. As
demonstrated in this research (Chapter 4) and supported by literature [9, 22, 24], such
approaches can yield inconsistent results, suffer from very low Recall (missing most
vulnerabilities), struggle with context limitations inherent in analyzing isolated code
snippets, and fail to systematically explore different facets of potential weaknesses.

Narrow Focus on Static Code: Many vulnerability detection efforts concentrate primar-
ily on analyzing static code artifacts. However, vulnerabilities are often systemic, emer-
ging not only from code logic flaws but also from insecure interactions during the
code's lifecycle — including its transmission across networks, storage on potentially
compromised systems, modification during build/deployment processes, and interaction
with complex execution environments (hardware, OS, libraries) [47, 53]. Current meth-
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odologies often lack a systematic framework to analyze and address these broader life-
cycle risks.

Therefore, a significant problem exists: current approaches, including standard applica-
tions of LLMs, are often insufficient for providing reliable, efficient, and comprehens-
ive vulnerability detection across the full scope of modern software systems and their li-
fecycles. There is a clear need for more structured, systematic methodologies that can
enhance the effectiveness of automated analysis tools like LLMs and provide frame-
works for understanding and mitigating vulnerabilities from a broader, systemic per-
spective. This research posits that Theory of Inventive Problem Solving (TRIZ), with its
systematic problem-solving toolkit, offers a potential avenue to address these gaps (Sec-
tion 2.3).

1.2 Motivation

The imperative for robust software security continues to grow in response to the in-
creasing frequency and sophistication of cyber attacks targeting vulnerabilities in code
[46]. While LLMs like DeepSeek offer significant potential to augment traditional code
review and automated analysis, their effectiveness is critically dependent on the meth-
ods used to guide their analysis. Initial exploration and existing literature [9, 22] suggest
that standard prompting techniques often fall short, yielding inconsistent results or fail-
ing to uncover complex, hidden vulnerabilities due to a lack of structured reasoning
guidance. This limitation motivates the search for more systematic and effective prompt
engineering methodologies.

TRIZ, with its foundation in systematic analysis, contradiction identification, and struc-
tured problem-solving, presents a compelling, albeit unconventional, methodology to
address these prompting challenges [54]. The core motivation for exploring TRIZ in this
context is the hypothesis that its principles can provide the necessary structure and ana-
lytical depth lacking in standard prompts, thereby enhancing the LLM's ability to per-
form more rigorous and reliable vulnerability detection.

Therefore, this research is driven by a motivation to investigate whether the systematic
application of TRIZ principles can demonstrably improve the effectiveness of LLM
prompts for vulnerability detection compared to baseline methods.

1.3 Research Problems

Despite the high potential of LLMs for code analysis, their effective application to vul-
nerability detection faces significant hurdles, potentially leaving critical vulnerabilities
undetected [9, 22]. Developing effective prompts is complex, requiring careful consid-
eration of how to guide the LLM's reasoning process for this specific, analytical task
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[55]. Furthermore, focusing solely on static code analysis overlooks vulnerabilities in-
herent in the broader software lifecycle, including code transmission, storage, and exe-
cution environments [53]. There is a need for methodologies that can both enhance the
structured reasoning of LLMs for code analysis and provide a framework for under-
standing these systemic lifecycle risks, potentially giving hints on how to avoid vulner-
abilities.

While LLMs excel at pattern recognition and generation based on their training data
[40], ensuring reliable, systematic analysis for security requires more than statistical
prediction; it necessitates structured problem decomposition and logical inference, areas
where methodologies like TRIZ could potentially provide significant value [56]. This
thesis explores TRIZ as a promising approach to address these challenges, both in guid-
ing LLM analysis and in thinking systemically about vulnerability avoidance.

This research addresses the following key Research Questions (RQ): (RQ1) How can
core TRIZ principles be systematically adapted and structured within general-purpose
LLM prompts to guide the analysis process for code vulnerability detection? (Investig-
ating the application of Function Analysis, Resource Analysis, structured indicators,
mitigation checks, etc., as detailed in Methodology Chapter 3). (RQ2) What is the em-
pirical effectiveness (in terms of F1-score, Recall, FPR (False Positive Rate), Precision)
of these iteratively refined TRIZ-based prompts compared to a standard CoT and DFA
baselines for binary vulnerability classification on real-world code snippets? (Address-
ing the performance comparison based on experiments in Results Chapter 4). (RQ3)
What is the relative contribution of specific TRIZ-derived components (e.g., detailed
framing, explicit terminology, contradiction analysis, structured indicators, justification
requirement) within an optimized prompt to its overall classification performance, as
determined through a systematic ablation study? (Addressing the ablation study findings
in Results Chapter 4). (RQ4) What are the key challenges and limitations encountered
when using TRIZ-enhanced prompts with current general-purpose LLMs for single-
function static analysis, particularly regarding the Recall/Precision trade-off and context
dependency? (Reflecting the discussion in Chapter 5).

1.4 Scope and Goal

This research investigates the application of TRIZ across the scope of the empirical de-
velopment and evaluation of TRIZ-enhanced prompts for general-purpose LLM-based
static analysis of code snippets. LLMs that are fine-tuned specifically for vulnerabilities
detection are out of scope being less affordable and demanding additional preparation of
models, which is more time-consuming than usage of general-purpose models [58].

Empirical Prompt Evaluation: This phase focused on engineering and testing general-
purpose LLM prompts for binary vulnerability classification (vulnerable: YES/NO) of
individual functions.

12



Methodology: An iterative development process was employed, optimizing prompts
based on quantitative metrics (primarily F1-score, Recall, Precision, FPR). A systematic
ablation study was conducted on the best-performing balanced prompt labelled V9 to
evaluate the contribution of specific TRIZ-derived components.

LLM & Dataset: The DeepSeek (deepseek-v3 version) was used as the initial LLM.
This choice is motivated by its low price and high results in benchmarks provided by
LMArena project [45]. The VulnPatchPairs dataset [39], containing real-world vulner-
able C programming language function snippets (from QEMU and Ffmpeg projects)
and their patched versions as non-vulnerable samples (used for ground truth), served as
the primary testbed. Individual vulnerable func code snippets were analyzed without
the corresponding patched func snippets provided as direct input to the LLM during
classification. This dataset is considered hard for LLM to determine if an analyzed func-
tion is vulnerable or not [38]. For cross-dataset validation CVEFixes has been chosen as
the secondary dataset. It contains code snippets classification (vulnerable and non-vul-
nerable) and examples in several programming languages [43]. Afterwards one more
series of experiments has been performed with the set of the best TRIZ-prompts and
baseline prompts, but using two more LLMs: Llama (Illama3-70b-8192 version) and
Mistral (mistral-saba-24b version).

TRIZ Adaptation: The prompts incorporated adaptations of core TRIZ analytical tools
(notably Function Analysis and Resource Analysis) and structuring principles (like Seg-
mentation and Nested Doll implicitly through multi-step analysis and structured indicat-
ors). The utility of explicit Contradiction Analysis within the prompt was also evaluated
via ablation. The initial list of specific inventive principles (Segmentation, Universality,
etc.) served as inspiration rather than direct, individually tested components in the final
evaluated prompts. This list has been used in this thesis as demonstration of TRIZ.

Baseline Comparison: The performance of TRIZ-based prompts was compared against a
standard CoT and DFA (Data Flow Analysis) baseline prompts (Appendix 2 and Ap-
pendix 14 correspondingly) adapted from relevant literature [9], where they have
demonstrated the best results over other prompts and code static analysis tools.

The specific goals achieved in this work were: (1) To analyze existing LLM prompting
techniques for vulnerability detection and relevant prior applications of TRIZ in soft-
ware engineering. (2) To adapt core TRIZ analytical principles (Function Analysis, Re-
source Analysis, etc.) into a structured methodology suitable for guiding general-pur-
pose LLM prompts in vulnerability detection tasks. (3) To iteratively develop and em-
pirically optimize TRIZ-based prompts for binary classification of code function snip-
pets, aiming to maximize the F1-Score by balancing Recall and Precision. (4) To con-
duct experiments using the several general-purpose LLMs (DeepSeek, Llama, Mistral)
and datasets (VulnPatchPairs and CVEFixes) to evaluate the performance of the de-
veloped prompts. (5) To quantitatively compare the effectiveness (F1, Precision, Recall,
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FPR) of the optimized TRIZ prompts against a standard CoT and DFA baseline
prompts. (6) To perform an ablation study on a selected TRIZ prompt (V9) to determine
the empirical contribution of its key structural and TRIZ-derived components. (7) To
formulate practical recommendations for engineering structured LLM prompts for se-
curity analysis, based on the iterative refinement and ablation study findings.

Additionally this work demonstrates the way TRIZ tools can be used to propose solu-
tions for avoiding the appearance of vulnerabilities in code (Section 5.3.7).

1.5 Novelty

This research presents several novel contributions at the intersection of TRIZ, LLMs,
and cybersecurity.

Systematic Application and Empirical Evaluation of TRIZ for LLM Prompt Engineer-
ing in Security: While TRIZ has been explored in software engineering [3, 4, 5] and
LLMs are increasingly used for security tasks [9, 10, 21, 22], this study provides one of
the first systematic adaptations and, crucially, empirical evaluations of TRIZ principles
specifically for structuring LLM prompts aimed at code vulnerability detection. Unlike
prior conceptual work or applications in different domains [6, 7], this research involved
iterative, data-driven prompt refinement and performance measurement using metrics
like F1-score, Recall, and Precision.

Demonstrated Performance Improvement over Baseline: The study empirically demon-
strates that TRIZ-enhanced prompts, leveraging structured analysis based on Function
Analysis and Resource Analysis, significantly outperform standard CoT and DFA
baseline prompts adapted from existing literature [9] in terms of F1-score and Recall for
vulnerability detection on the VulnPatchPairs [39] and CVEFixes [43] datasets. This
provides concrete evidence for the value of the structured TRIZ approach over simpler
prompting methods for this task.

Ablation Study Insights for TRIZ Prompt Components: Through a systematic ablation
study, this research identifies the specific contributions of different TRIZ-derived com-
ponents within the LLM prompt. Key findings revealed the critical importance of de-
tailed Function/Resource analysis framing and the justification generation step, while
suggesting that explicit Contradiction analysis might be less essential within this partic-
ular structure. This provides novel, data-driven insights into which aspects of TRIZ are
most impactful when applied to LLM prompt engineering for security.

Conceptual Application of TRIZ System Thinking to Code Lifecycle Security: Addi-

tionally this work uniquely extends the application of TRIZ beyond static code analysis
to the entire code lifecycle, including transmission, storage, and execution. By applying
TRIZ system thinking tools (like System Operator, Sub/Super-system analysis, Contra-
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diction identification), it presents a novel conceptual framework for identifying sys-
temic vulnerabilities.

Generation of Novel TRIZ-Inspired Defense Concepts: The systemic analysis led to the
generation of novel conceptual defense mechanisms inspired by TRIZ principles [57],
such as the "Analog Filter" (using Principle 24: Intermediary, Principle 28: Mechanics
Substitution) and Layered Security Architectures (using Principle 1: Segmentation,
Principle 7: Nested Doll). Linking these concepts to existing high-security technologies
(e.g., Data Diodes) validates the underlying TRIZ principles while suggesting innovat-
ive future directions, such as intra-component filtering.

Interdisciplinary Methodology: The research successfully integrates methodologies and
concepts from Systematic Innovation Theory (TRIZ), Artificial Intelligence (LLM
Prompt Engineering), and cybersecurity (Vulnerability Analysis), offering a novel inter-
disciplinary perspective and practical insights that bridge these fields.

In summary, the novelty lies not just in proposing TRIZ for general-purpose LLM se-
curity prompting, but in the rigorous empirical validation, the identification of impactful
prompt components through ablation, and the extension of TRIZ system thinking to
generate new perspectives on vulnerabilities and defenses across the entire code life-
cycle.
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2 Literature Review

2.1 Existing Tools

The domain of code vulnerability detection has evolved significantly to address the in-
creasing complexity of software systems. Traditionally, Static Application Security
Testing (SAST) tools have been instrumental. These tools analyze source code, byte-
code, or binary code without executing it, typically matching patterns against known
databases of insecure coding practices or performing abstract interpretation. SAST tools
have been refined over decades, are often integrated into development pipelines for
early feedback, but are also known for potential limitations including high rates of false
positives/negatives and difficulties with understanding context or complex logic flows
[9]. Dynamic Application Security Testing (DAST) tools, which test running applica-
tions, offer a complementary approach but cannot be applied before execution and may
miss vulnerabilities in unexercised code paths.

More recently, LLMs have emerged as a promising alternative or augmentation for vul-
nerability detection. Leveraging their extensive training on code and natural language,
LLMs possess capabilities for understanding code semantics, generating code, and
identifying patterns that may go beyond traditional rule-based SAST [9, 10, 11]. Studies
suggest LLMs can identify certain types of vulnerabilities, sometimes achieving per-
formance comparable to or exceeding traditional tools in specific benchmarks [9]. How-
ever, their effectiveness is highly sensitive to how they are prompted and guided, and
standard prompting techniques often lack the structured analytical depth required for
consistent and reliable security review [21, 22, 26, 24].

The application of TRIZ in software development, while not mainstream, has been ex-
plored previously, primarily focusing on software architecture [3], adapting inventive
principles for software engineering nuances [4], and addressing specific problems like
concurrency [5, 6]. Some recent work explores using LLMs to automate aspects of
TRIZ for different domains [6, 7]. However, the specific application of TRIZ principles
to systematically engineer prompts for LLMs with the explicit goal of improving vul-
nerability detection accuracy and reliability appears underexplored, representing the
core focus of this thesis.

Given the demonstrated potential and the known prompting challenges of LLMs in se-
curity tasks, this literature review will focus primarily on LLM-based vulnerability de-
tection approaches and advanced prompting strategies (discussed in Section 2.2 on-
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wards). While acknowledging the foundational role of traditional SAST/DAST, the sub-
sequent sections delve into the state-of-the-art in leveraging LLMs, thereby setting the
context for the novel TRIZ-inspired prompt engineering methodology developed and
evaluated in this research.

2.2 LLM-Based Vulnerability Detection

The emergence of LLMs has opened new frontiers in automated code analysis, includ-
ing vulnerability detection. Their ability to process and understand code semantics of-
fers potential advantages over purely pattern-based traditional tools. However, harness-
ing this potential effectively requires careful consideration of prompting strategies, eval-
uation methodologies, and inherent challenges.

2.2.1 Prompt Design for Vulnerabilities Detection

The quality and structure of prompts are paramount to the effectiveness of LLMs in
identifying vulnerabilities. Research consistently demonstrates that structured reasoning
frameworks significantly enhance performance compared to simple zero-shot queries.

Chain-of-Thought: Prompts encouraging step-by-step reasoning, mimicking human ana-
lytical processes, have shown notable improvements. Liu et al. (2024) found that com-
bining CoT with contextual information like data flow diagrams enabled GPT-4 to de-
tect specific vulnerabilities like SQL injections and buffer overflows with better preci-
sion [21, 26].

Multi-Step Reasoning: Advanced prompting involving multiple analytical steps or re-
finement stages has also proven effective. Zhou et al. (2024) reported that such methods
could reduce false positive rates by 18-25% compared to basic zero-shot prompts [22].

Decomposition: Techniques that decompose the analysis task, perhaps by focusing on
specific code parts or vulnerability types sequentially, align with effective human reas-
oning and tend to yield better results [24, 25].

These findings underscore the principle that guiding the LLM through a structured, de-
composed analytical process improves accuracy and reliability. This motivates the ex-
ploration undertaken in this thesis: investigating whether TRIZ, as a formal methodo-
logy for systematic problem decomposition and analysis, can provide a novel and ef-
fective framework for structuring such prompts beyond standard CoT.

2.2.2 State-of-the-Art Prompting Frameworks

Several advanced frameworks aim to enhance LLM performance for security tasks, of-
ten by incorporating external information or specific reasoning patterns:
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Retrieval-Augmented Generation (RAG): RAG frameworks augment prompts by re-
trieving relevant information from external knowledge sources. For vulnerability detec-
tion, this often involves fetching known vulnerability patterns, descriptions, or code ex-
amples from databases such as CVE details, MITRE ATT&CK, or specialized code vul-
nerability databases [23, 26]. CyberSecEval, for instance, uses RAG to link code to
ATT&CK techniques [26], while Vul-RAG retrieves vulnerable code snippets [27, 28].
While effective, RAG's performance depends heavily on the quality and relevance of
the retrieved information and may struggle with novel or obfuscated vulnerabilities not
present in the knowledge base [27].

Contrastive Chain-of-Thought (C-Think): This approach integrates examples of both se-
cure and insecure code snippets into the prompt, often synthetically generated, to help
the LLM learn contrasting patterns and refine its reasoning. The FG-CVD model
demonstrated an 11% F1-score improvement on the SEVEN dataset using this tech-
nique [22]. This relies on the availability and quality of relevant contrasting examples.

Multi-Task Learning Prompts: These prompts combine related tasks, such as instructing
the LLM to both detect and repair vulnerabilities (e.g., "Detect and fix SQL
injections..."). Frameworks like LLMPATCH utilize adaptive prompting for patch gen-
eration, reportedly reducing vulnerability reintroduction rates [22, 29].

The TRIZ-based prompting approach explored in this thesis differs from these frame-
works by focusing on structuring the LLM's internal analytical process using first prin-
ciples (Function, Resource, Contradiction analysis) derived from TRIZ theory itself,
rather than primarily relying on external data retrieval (RAG), specific contrasting ex-
amples (C-Think), or combined tasking (Multi-Task).

2.2.3 Benchmarks, Metrics, and Evaluation

Robust evaluation is crucial for comparing the effectiveness of different vulnerability
detection methods. Recent efforts include the following.

Q&A Benchmarks: Datasets like CyberMetric provide multiple-choice questions to as-
sess an LLM's cybersecurity knowledge across various domains [23, 30].

Code-Based Benchmarks: Frameworks like SVEN focus on real-world vulnerabilities,
demonstrating performance gains for CoT over zero-shot prompts (e.g., 72% vs 48% ac-
curacy [24, 26, 31]). Datasets like VulnPatchPairs [39], used in this thesis, provide real-
world vulnerable/patched function pairs for evaluating classification accuracy.

Synthetic Vulnerability Injection: Techniques like LAVA [28, 32] automatically inject
vulnerabilities into codebases to test detection scalability. Notably, prompts employing
hierarchical analysis (a technique related to TRIZ principles like Nested Doll) re-
portedly detected 92% of LAV A-injected bugs [32], suggesting the potential benefit of
structured analysis approaches.
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A persistent challenge is the lack of universal benchmarks covering a wide range of pro-
gramming languages and vulnerability types, often limiting comparisons across studies
[25]. This study utilizes VulnPatchPairs [39] and CVEFixes [43] for its focus on real-
world code examples with clear ground truth.

2.2.4 Challenges in Prompting LLMs

Despite their potential, several challenges limit LLM effectiveness for vulnerability de-
tection via prompting.

Context Length Limitations: LLMs have finite input token limits. Long code snippets
may be truncated, potentially removing crucial context or the vulnerability itself, espe-
cially for flaws spanning large code sections [24]. This necessitates analyzing smaller
code units (like functions), which inherently limits inter-procedural analysis capabilit-
ies, a limitation observed in this thesis's results (Chapters 4, 5).

Rare Vulnerabilities: LLMs trained on vast code corpora may still struggle to identify
rare or novel vulnerability types e.g. uncommon CWEs (Common Weakness Enumera-
tion) due to their infrequent appearance in the training data [22].

Adversarial Prompts/Input: Maliciously crafted prompts or inputs could potentially mis-
lead an LLM or cause it to generate insecure code suggestions [28].

Consistency and Reliability: LLM outputs can be stochastic, and ensuring consistent, re-
liable detection requires careful prompt design and potentially multiple runs or low tem-
perature settings, as employed in this study's methodology.

Addressing these challenges, particularly the context limitation and the need for reliable
reasoning, motivates the exploration of structured prompting methodologies like the
TRIZ-based approach investigated herein.

2.3 TRIZ in Software Development and Cybersecurity

While TRIZ (Russian: Teopust Pemienns M3o0perarensckux 3anay, literally “Theory of
Inventive Problem Solving”) originated in mechanical and physical engineering do-
mains, its principles and systematic approach have been explored for application in soft-
ware development over the years, demonstrating its potential value beyond the tradi-
tional hardware focus.

Software Architecture and Design: Researchers have investigated TRIZ as a tool for
systematic software architecture design. Its methods for handling conflicting quality re-
quirements (e.g., performance vs. maintainability — inherent Contradictions) can help ar-
chitects make structured design decisions and build more robust systems [3].

Adapting Inventive Principles: Recognizing that many of the original 40 inventive prin-
ciples relate to physical phenomena, studies have focused on creating analogies applic-
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able to the software domain. For example, Principle 29 (Hydraulic/Pneumatic Construc-
tion) has been mapped to concepts like dynamically allocated data structures, demon-
strating that the underlying inventive logic can often be translated [4]. A comprehensive
study also confirmed the general applicability of TRIZ to software development with
appropriate adaptations [5].

Solving Specific Software Problems: TRIZ tools have also been applied to solve spe-
cific, complex software engineering challenges, such as concurrency control problems
(e.g., the "Roller Coaster Problem"), showcasing its utility as a problem-solving frame-
work within the software domain [6].

However, the literature review conducted for this thesis revealed that while TRIZ has
found application in general software engineering and architecture, its specific use
within the cybersecurity domain, particularly for vulnerability analysis or detection, re-
mains significantly less explored. Furthermore, the application of TRIZ principles spe-
cifically to the emerging field of LLM prompt engineering for any task, let alone for the
complex goal of code security review, appears to be a novel area.

Therefore, while prior work establishes the feasibility of adapting TRIZ for software-re-
lated problem solving and system design, a clear gap exists in leveraging its systematic
methodology to address the specific challenges of vulnerability detection, especially
through the lens of guiding advanced tools like LLMs. This research aims to bridge that
gap by systematically adapting and evaluating TRIZ principles for LLM prompt engin-
eering focused on security (as detailed in Chapter 3) and by applying TRIZ system
thinking to the broader code security lifecycle.

2.4 Gaps

The literature review reveals significant potential for leveraging LLMs in vulnerability
detection, alongside established applications of TRIZ in software engineering. How-
ever, several critical gaps exist, which this thesis aims to address.

Lack of Systematic TRIZ Application for LLM Security Prompting: While prior re-
search demonstrates the successful application of TRIZ principles to software architec-
ture [3], general software engineering problem-solving [4, 5], and specific issues like
concurrency [6], there is a notable absence of studies systematically adapting and evalu-
ating TRIZ specifically for engineering LLM prompts aimed at code vulnerability de-
tection. Existing advanced prompting techniques like CoT [21, 26] and RAG [23, 26,
27] provide structure or external knowledge, but they typically lack the inherent system-
atic problem decomposition, contradiction analysis, and function/resource modelling
framework offered by TRIZ. This research directly addresses this gap by proposing and
empirically evaluating a TRIZ-based prompting methodology.
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Need for Structured Approaches Beyond Basic CoT/RAG: As highlighted in Section
2.2, while CoT and RAG improve upon zero-shot prompting, challenges remain regard-
ing consistency, handling complex logic, and context limitations [24, 25, 28]. The liter-
ature indicates a need for more robust, structured methodologies to guide LLM reason-
ing for security tasks. TRIZ, with its emphasis on breaking down problems and analyz-
ing system functions and interactions, offers a potential framework to provide this
deeper structure, moving beyond linear step-by-step reasoning or simple knowledge re-
trieval.

Limited Focus on Systemic Lifecycle Vulnerabilities: The majority of automated vul-
nerability detection research, including LLM-based approaches reviewed, concentrates
primarily on analyzing static code artifacts. While essential, this overlooks vulnerabilit-
ies that can arise during other phases of the code lifecycle, such as insecure transmis-
sion, storage, or execution environment interactions. A systematic methodology, like
that offered by TRIZ system thinking, for analyzing these broader lifecycle risks and
identifying potential mitigation strategies appears largely unexplored in the cybersecur-
ity literature reviewed.

Therefore, this thesis addresses these gaps by: (1) developing and empirically evaluat-
ing a novel, structured prompting methodology for LLMs based on adapted TRIZ prin-
ciples, comparing its performance against a standard CoT and DFA baselines; and (2)
conceptually applying TRIZ system thinking to analyze vulnerabilities across the entire
code lifecycle, proposing potential countermeasures beyond static code analysis.
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3 Methodology

This chapter details the research methodology employed to investigate and evaluate the
application of TRIZ principles for engineering LLM prompts aimed at detecting vulner-
abilities in source code. The core objective is to assess whether TRIZ-enhanced prompts
offer performance improvements over baseline prompting techniques. The methodology
integrates theoretical TRIZ principle adaptation, an iterative prompt engineering process
informed by empirical results, experimental validation using a real-world datasets, and
statistical evaluation to ensure the robustness of the findings regarding the system "soft-
ware code", its potential vulnerabilities, and methods for analysis.

3.1 Research Design

This study employs a mixed-methods approach, combining qualitative principle adapta-
tion with quantitative experimental validation. The research proceeds through the fol-
lowing distinct phases:

Literature Review: A comprehensive review was conducted covering: (1) Existing ap-
proaches for vulnerability detection (static analysis, dynamic analysis, AI/ML methods).
(2) LLM capabilities and limitations in code understanding and analysis. (3) Standard
LLM prompting strategies (zero-shot, few-shot, CoT, RAG, DFA). (4) Foundational
TRIZ principles and documented applications in non-traditional domains, including
software engineering and potentially cybersecurity [1, 2].

TRIZ Principle Adaptation & Initial Prompt Design: Relevant TRIZ principles were se-
lected and adapted from their traditional engineering context to the domain of LLM
prompt engineering for code analysis. An initial set of conceptual prompts and prompt
structures based on these adapted principles were designed (examples discussed in Sec-
tion 3.2).

Iterative Prompt Refinement: An empirical, iterative process was undertaken to develop
and optimize a TRIZ-based prompt for binary vulnerability classification (vulnerable:
YES / vulnerable: NO) of the function-based datasets. Starting with an initial complex
TRIZ prompt, multiple versions were created and tested against the initial dataset, with
adjustments made based on quantitative performance metrics (especially F1-score, Re-
call, Precision, FPR) to progressively improve the balance between detecting vulnerab-
ilities and minimizing false alarms. This process involved approximately 5 major itera-
tions (detailed in Section 3.2.3).
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Ablation Study: Once a reasonably well-performing prompt (V9) was identified through
iteration, an ablation study was designed and executed to systematically evaluate the
contribution of specific TRIZ-derived components within that prompt structure (detailed
in Section 3.2.4).

Experimental Validation & Comparison: The performance of the most promising TRIZ-
based prompts (identified through iteration and ablation) was compared against baseline
prompts (specifically, the best CoT and DFA prompts adapted from [9]) using the
chosen datasets and metrics.

Results Analysis: Quantitative metrics were statistically analyzed (e.g., comparing F1-
scores). Qualitative analysis of LLM outputs (justifications) helped understand the
strengths and weaknesses of the different prompting approaches.

Recommendations and TRIZ System Analysis: Based on the findings, recommendations
for engineering TRIZ-based prompts for vulnerability detection are formulated. Addi-
tionally, TRIZ system thinking concepts (like function analysis, contradictions) are ap-
plied conceptually to the broader system of "vulnerable code" including its transmis-
sion, storage, and execution, to propose avenues for preventing vulnerability exploita-
tion beyond just code-level detection.

3.2 TRIZ Principle Selection and Prompt Engineering

TRIZ offers a systematic methodology for problem-solving and system improvement,
originally developed by Genrich Altshuller based on patent analysis [1]. It posits that in-
ventive problems often involve resolving underlying contradictions and that universal
inventive principles can be applied across different domains [2]. Key concepts include
Function Analysis, Resource Analysis, Ideality, Contradictions, the 40 Inventive Prin-
ciples, and 76 Standard Solutions.

The structured nature of TRIZ, particularly its methods for decomposing problems, ana-
lyzing functions and resources, and resolving contradictions, suggested its potential
suitability for engineering complex LLM prompts designed for the nuanced task of code
vulnerability detection.

Due to its nature and variety of methods meant to decompose a task into smaller pieces
TRIZ may be suitable tool for composing prompts for LLMs to achieve better results.

Among all 40 principles only a small part could be used in non-physical cyber space,
because they are meant to be used for different materials or phenomena. Examples of
such non-applicable principles are Inert Atmosphere, Composite Materials, Thermal Ex-
pansion, Color Changes, Mechanical Vibration, Curvature, Mechanics Substitution. But
the following chosen principles are applicable and meant to help compose LLM
prompts as the most promising ones.
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Generally TRIZ usage can be described as an algorithm of actions that can be applied to
an unsolved problem. Such “algorithm of problem solving” in scope of this work may
look like this: (1) Problem fixation. (2) Articulating goals (including storyboarding us-
age and testing solutions for value). (3) Pursuit the Ideal Final Result of LLM’s output
to avoid work done by humans. (4) Options for solutions to get ahead of hackers ac-
tions.

3.2.1 TRIZ Principles Selection for Prompting

While TRIZ originates from the physical sciences, several of its core principles and ana-
lytical approaches were deemed adaptable to the abstract domain of software analysis
and LLM interaction. The selection focused on principles facilitating structured ana-
lysis, pattern identification, and iterative refinement. Principles strongly tied to physical
phenomena (e.g., Thermal Expansion, Inert Atmosphere, Composite Materials) were ex-
cluded. The following principles were initially identified as most promising for guiding
prompt design.

Segmentation (Principle 1): Breaking down the complex task of vulnerability analysis
into smaller, manageable sub-tasks or analytical steps within the prompt.

Universality (Principle 6): Designing prompts applicable across different languages/
contexts by focusing on universal vulnerability patterns rather than specific syntax
(though syntax awareness is still needed).

Asymmetry (Principle 4): Using varied phrasing or approaching the analysis from dif-
ferent angles within prompts to potentially uncover non-standard code patterns.

Preliminary Action (Principle 10): Structuring prompts to first identify necessary con-
text (e.g., inputs, data types) before analyzing for vulnerabilities, or priming the LLM
with examples.

Nested Doll (Principle 7): Designing prompts that guide analysis from high-level struc-
tures/concerns down to specific details (e.g., analyze function interaction, then specific
arithmetic operations).

Preliminary Anti-Action (Principle 9): Instructing the LLM to look not only for flaws
but also for signs of intentional obfuscation or missing preventative measures (like ex-
pected validation).

Dynamicity (Principle 15): (More applicable to multi-turn interaction) Adapting sub-
sequent prompts based on intermediate LLM findings.

Feedback (Principle 23): (More applicable to multi-turn interaction) Explicitly incorpor-
ating previous LLM outputs or findings into new prompts for refinement.

(Implicit Principles): Core TRIZ concepts like Function Analysis (Identify useful/harm-
ful/insufficient functions), Resource Analysis (Identify inputs, data, state, memory and

24



their control), Contradiction Analysis (Identify conflicting requirements like speed vs.

safety checks), and Ideality (Compare code to an ideal secure function) were funda-

mental to structuring the analytical steps within the prompts.

3.2.2 Principle Adaptation

The selected principles were adapted into prompt design strategies. Table 1 provides

conceptual examples of how these principles could be mapped, illustrating the initial

thinking before iterative refinement. The actual prompts evolved significantly from

these initial concepts based on experimental results.

The Table 1 depicts how each selected TRIZ principle can be mapped to LLM prompt

example and what prompt design strategy is used for each principle.

Table 1: Conceptual Mapping of TRIZ Principles to Prompt Strategies (Illustrative)

TRIZ principle | Prompt Design Strategy Example of Prompt Component

Segmentation Break down vulnerability detection into | First, analyze input validation. Second,
smaller subtasks like input handling, |check memory allocation. Third, verify ex-
then memory, then exceptions. ception handling practices.

Universality Create language-agnostic prompts that | Identify insecure input handling in [LAN-
adapt to syntax (e.g., sanitization in C|GUAGE]. For [LANGUAGE], common
vs in Python). risks include [EXAMPLE].

Asymmetry Use different wording to detect vulner-|Use both of these for the same piece of

abilities in code with non-standard or
absent patterns.

code:
1) Find insecure data handling.
2) Identify unsafe user input processing.

Preliminary Ac-
tion

Pre-train LLM on vulnerability patterns
before analysis.

Review the following 5 SQLi examples.
Now analyze the code for similar vulnerab-
ilities.

Nested Doll

Layer prompts to detect high-level risks
first, then specific vulnerabilities.

Identify insecure functions. For each,
check for buffer overflows or integer over-
flows.

Preliminary Anti-
Action

Ask LLM to detect obfuscated or
masked vulnerabilities.

Analyze for vulnerabilities AND code pat-
terns that might hide them (e.g. indirect
calls, obfuscated loops).

the following queries.

Dynamicity Dynamic prompt adjustment based on|Based on your prior analysis of input hand-
prior results received from LLM. ling, now check if output encoding is miss-

ing.
Feedback Use LLM’s previous outputs to improve | Earlier, you identified [X]. Re-analyze the

code with a focus on [X-related risks].
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3.2.3 Iterative Prompt Development and Refinement

Engineering an effective prompt for nuanced binary vulnerability classification proved
challenging, requiring an iterative approach guided by empirical results from testing on
the VulnPatchPairs dataset [39]. The core challenge revolved around resolving the in-
herent Contradiction between maximizing Recall (detecting true vulnerabilities) and
maximizing Precision (minimizing false positives). The process involved several major
iterations, adjusting key aspects of the prompt's logic and analytical focus based on per-
formance metrics (F1-score, Recall, Precision, FPR).

The key differences between the major prompt versions tested (as summarized in Res-
ults Chapter 4, Table 2) lay primarily in how strictly vulnerability indicators were
defined, how mitigation effectiveness was assessed, and the threshold logic used for the
final binary classification.

Initial Prompt Design (leading to TRIZ prompt and labelled as V8): Based on adapted
TRIZ principles (Function Analysis, Resource Analysis, Contradiction Analysis, spe-
cific vulnerability indicators), initial complex prompts were designed aiming for high
accuracy. These early versions (represented by the performance characteristics of V8)
employed strict criteria, requiring strong, clear evidence of a vulnerability and likely fo-
cusing on the absence of standard mitigations before classifying as “vulnerable: YES'.
This resulted in high Precision but very low Recall, proving too conservative. Later on
prompts labelled V9, V10, and V11 have been developed.

First Iteration Cycle (Prompt V8): The initial prompt V8 (refer to Appendix 3) was
tested, revealing very low Recall (0.0920), average Precision (0.5349), and F1-Score
(0.1570), indicating it was too conservative. The focus shifted to increasing Recall.

Shift Towards Balance (V9 - Ablation Baseline): To improve Recall, the logic was ad-
justed. Prompt V9 (refer to Appendix 4) maintained the detailed TRIZ framing (Func-
tion/Resource/Contradiction analysis) and structured indicators. However, the decision
logic was significantly altered: it classified as "vulnerable: YES' if a high-confidence in-
dicator was found unless Strong Internal Mitigation was also identified. The focus shif-
ted from needing strong proof of vulnerability to needing strong proof of mitigation to
classify as "NO'. This version achieved a more moderate balance (F1~0.45) and was se-
lected for the ablation study.

Attempted Refinement (V10): Seeking to improve V9's balance further, prompt V10
(refer to Appendix 5) experimented with stricter definitions for the High-Confidence In-
dicators (requiring clearer evidence for Indicators A-D) and potentially a more nuanced
assessment of mitigation effectiveness. The goal was to reduce False Positives from V9.
However, this combination proved counterproductive, significantly reducing Recall (to
~0.16) and F1-score (to =0.25), indicating the stricter indicator definitions were too lim-
iting.
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Recall Maximization Attempt (V11): Reacting to the low recall of conservative ap-
proaches, Prompt V11 (refer to Appendix 6) aggressively targeted Recall. It likely re-
laxed the definition of vulnerability indicators (from "High-Confidence" to "Plausible")
while simultaneously making the criteria for classifying as "vulnerable: NO™ much
stricter (requiring unambiguous and complete mitigation). This shifted the decision bias
heavily towards YES, resulting in the highest Recall (=0.82) and F1 (=0.63) but also an
extremely high, impractical FPR (=0.81).

This iterative process, primarily manipulating the sensitivity of vulnerability indicators
and the stringency of mitigation assessment within the TRIZ-structured analytical
framework, highlights the difficulty in optimizing LLM prompts for this task. The TRIZ
framework provided a consistent structure for analysis (Function, Resource, etc.), but
the final classification performance was highly sensitive to the specific decision logic
and thresholds applied based on that analysis, requiring empirical tuning and revealing
the persistent Recall/Precision trade-off. The ablation study (Section 3.2.4) further dis-
sected the impact of specific structural components within the chosen baseline (V9).

3.2.4 Ablation Study on Baseline Prompt V9

To better understand the contribution of specific TRIZ-derived components within the
best-balanced prompt identified (V9, F1=0.4539), an ablation study was conducted.

Methodology: Six variations of the V9 prompt were created, each removing or simplify-
ing one key component: (1) Explicit TRIZ Terminology (Variation 1 labelled Var 1,
refer to Appendix 7), (2) Contradiction Analysis step (Variation 2 labelled Var 2, refer
to Appendix 8), (3) Detailed TRIZ Framing (Variation 3 labelled Var 3, refer to Ap-
pendix 9), (4) Structured High-Confidence Indicators (Variation 4 labelled Var 4, refer
to Appendix 10), (5) Mitigation Confidence levels (simplified to boolean) (Variation 5
labelled Var 5, refer to Appendix 11), (6) Justification step (Variation 6 labelled Var 6,
refer to Appendix 12). Each variation was tested on the dataset.

Key Findings: Important Components: Detailed TRIZ framing (Function/Resource Ana-
lysis), requiring Justification, and using Explicit TRIZ Terminology were found to be
beneficial, as their removal significantly hurt performance (F1/Recall). The structured
High-Confidence Indicators, while potentially limiting Recall compared to a general ap-
proach (Variation 4), were crucial for maintaining acceptable Precision/FPR. Remov-
able/Modifiable Components: Explicit Contradiction Analysis (Step 2¢) appeared re-
dundant or slightly harmful; its removal (Variation 2) slightly improved F1 and signific-
antly improved Precision/FPR. Simplifying the Mitigation Assessment to a boolean
check (Variation 5) also improved F1 over the baseline, suggesting the original confid-
ence levels were suboptimal.

Conclusion: The ablation study indicated that while the core TRIZ analytical steps
(Function/Resource analysis) and structured guidance (Indicators, Justification) are
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valuable, specific elements like explicit Contradiction analysis could potentially be re-
moved. It also highlighted the high sensitivity of performance to the structure of the vul-
nerability indicators and the mitigation assessment logic. Variation 2 (Baseline without
Contradiction Analysis) emerged as a potentially improved prompt offering better Preci-
sion/FPR than the baseline with similar Recall and F1.

3.2.5 Mapping Ablation Variations to Prompt Components

To clarify the specific modifications made for each ablation experiment described in
Section 3.2.4, this section maps each variation to the corresponding parts of the
Baseline Prompt (V9) text.

Variation 1: Ablate Explicit TRIZ Terminology

Throughout the Baseline Prompt text (including ROLE, TASK, ANALYTICAL PRO-
CESS steps 2, 3, 6, and FINAL INSTRUCTION), TRIZ-specific terms ("TRIZ", "Func-
tion Analysis", "Resource Analysis", "Contradiction Analysis", specific Principle names
like "Principle 11", "Principle 9/10") were replaced with their generic security analysis
equivalents (e.g., "systematic analysis", "functional security review", "data/resource
handling analysis", "conflicting requirements check", "preparing for potential issues",
"performing necessary actions beforehand"). The core structure and analytical questions

remained the same. Refer to Appendix 7.
Variation 2: Ablate Contradiction Analysis

Subsection (c) Contradiction Analysis within Step 2 (TRIZ Problem Framing & Weak-
ness Identification) of the ANALYTICAL PROCESS was entirely removed. Sub-
sequent steps referencing the full Step 2 analysis implicitly excluded contradiction ana-
lysis. Refer to Appendix 8.

Variation 3: Simplify TRIZ Framing

The entire Step 2 (TRIZ Problem Framing & Weakness Identification), including sub-
sections (a), (b), and (c), was replaced with a single, higher-level instruction focused on
general weakness identification (as described in the ablation plan). Refer to Appendix 9.

Variation 4: Ablate Indicator Structure

The specific definitions and labels for Indicator A, B, C, and D within Step 3 (Identify
High-Confidence Vulnerability Indicators) were removed. The step was replaced with a
general instruction to identify high-confidence mechanisms based on Step 2.

Consequently, references to specific indicators A-D in Step 5 (Binary Classification De-
cision) and Step 6 (Justification) were also generalized. Refer to Appendix 10.

Variation 5: Simplify Mitigation Assessment
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In Step 4 (Contextual Evaluation), the instruction "Assess Mitigation Confidence:
Strong Internal Mitigation..., Weak/No Internal Mitigation..." was replaced with a sim-
pler boolean assessment, such as "Assess Mitigation Presence: Mitigation Present...,
Mitigation Absent...".

The decision logic in Step 5 (Binary Classification Decision) was adjusted to use the
"Mitigation Present" / "Mitigation Absent" outcome instead of "Strong" / "Weak/No".

The required explanation in Step 6 (Justification) was adjusted to refer to the presence
or absence of mitigation. Refer to Appendix 11.

Variation 6: Ablate Justification Step
The entire Step 6 (Justification) of the ANALYTICAL PROCESS was removed.

The OUTPUT FORMAT section was modified to request only the binary classification,
removing the requirement for justification text.

The FINAL INSTRUCTION was modified to remove the sentence requiring a detailed
justification.

This explicit mapping ensures clarity regarding how each conceptual ablation was im-
plemented by modifying specific sections of the baseline V9 prompt text during the ex-
perimental phase. Refer to Appendix 12.

3.3 Experimental Design

3.3.1 Comparison Targets

To show the novelty of this work and results’ effectiveness a comparison will be per-
formed between results received from usage of baseline vulnerability detection prompts
and TRIZ-prompts engineered during Prompt Development Process:

Baseline: this represents standard LLM prompting techniques without TRIZ integration.
For this study, CoT and DFA prompts, adapted from examples in the study “Harnessing
Large Language Models for Software Vulnerability Detection: A Comprehensive
Benchmarking Study” [9], were used as the primary baselines for comparison.

TRIZ-prompt: this represents the prompts iteratively engineered during this research us-
ing adapted TRIZ principles (detailed in Section 3.2). The goal was to demonstrate im-
provement over CoT and DFA baselines.

3.3.2 Metrics

To perform the comparison and guide iterative refinement, a standard set of binary clas-
sification metrics were calculated based on ground-truth labels from the dataset.
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Quantitative. True Positives (TP): Vulnerable code correctly classified as YES. True
Negatives (TN): Non-vulnerable code correctly classified as NO. False Positives (FP):
Non-vulnerable code incorrectly classified as YES. False Negatives (FN): Vulnerable
code incorrectly classified as NO. Accuracy: the ratio of correctly predicted observa-
tions to the total observations. It answers the question how often is the classifier cor-
rect? Precision: the proportion of positive identifications that were actually correct. It
tells you of all the instances the model predicted as "vulnerable", how many were truly
vulnerable? F1-score: the harmonic mean of Precision and Recall. It balances the trade-
off between them and is particularly useful when the class distribution is imbalanced or
when both false positives and false negatives are important. FPR: a key metric used in
classification analysis, it quantifies the proportion of actual negative instances that are
incorrectly identified as positive. In simpler terms, it measures how often a model or
test raises a false alarm [59]. These metrics are calculated using the following formulas:

TP+TN
Accuracy =
TP+TN+FP+FN
Precision —_TP
Vulnerable TP + FP
Recall P

Vulnerable — m

2-Precision ... Recall

Vulnerable

F 1Vulnerable =

Precision Vulnerable +Recall Vulnerable

FP
FP+TN

FPR=

Qualitative. Interpretability: Review of the LLM's generated justifications (where ap-
plicable) for clarity, relevance, and correctness of reasoning, particularly how well it
linked findings to TRIZ concepts and mitigation assessment.

3.3.3 Datasets

There are several datasets used for vulnerabilities detection in the field.
OWASP Benchmark Project

Description: The OWASP Benchmark project is test set for static code analysis tools
performance evaluation. It contains both vulnerable and secure code.

Advantages: Well-documented and widely used industry-wise standard for security
tools evaluation.

Juliet Test Suite
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Description: Juliet Test Suite by NIST (National Institute of Standards and Technology)
contains thousands of code examples written in C/C++ and Java with different types of
vulnerabilities.

Advantages: This is one of the most complete test sets for security researchers suitable
for comparative analysis.

SATE V Ockham Sound Analysis Test Suite

Description: This dataset is also provided by NIST and includes code examples with
different vulnerabilities for evaluation of static analysis effectiveness.

Advantages: Contains detailed test cases suitable for analysis of specific kinds of vul-
nerabilities.

VulnDB (Vulnerable Code Snippets)

Description: VulnDB — this is a set of vulnerable code snippets taken from real soft-
ware projects. It contains vulnerable and fixed versions of the code.

Advantages: Based on real-world examples, which makes it especially useful for tools
evaluation in real-world scenarios.

CodeQL Database

Description: CodeQL — this is GitHub tools for code analysis. It can be used for vul-
nerabilities search in open-source projects available on GitHub.

Advantages: Gives an opportunity to create and analyze own code repositories, which
can be helpful for creation of custom datasets.

SVF (Source Vulnerability Frequency) Dataset

Description: This dataset includes open projects from GitHub which have been analyzed
for vulnerabilities using various tools.

Advantages: Suitable for analysis in a context of open-source projects.
LAVA Dataset

Description: LAVA (Large-scale Automated Vulnerability Addition) — automatically
generated dataset with vulnerabilities which can be used for testing and comparing se-
curity analysis tools.

Advantages: Suitable for big-scale experiments thanks to big amount of automatically
added vulnerabilities.

REEF Dataset

Description: REEF (REal-world vulnErabilities and Fixes) is an automated framework
for collecting code from open-source repositories [34].
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Advantages: It is large multi-language collection containing 30,987 patches, which are
validated and explained by humans [35].

VulnPatchPairs Dataset

Description: VulnPatchPairs is a dataset used to show that LLMs aren’t able to differen-

tiate vulnerable code from its patched version effectively enough [39]. Thus it is con-
sidered hard.

Advantages: Contains vulnerable code snippets and their corresponding patches derived
from actual open-source projects (QEMU, FFmpeg), avoiding synthetic examples, of-
fers a substantial number of samples, the presence of vulnerable/patched pairs provides
clear ground truth for vulnerability classification.

CVEFixes Dataset

Description: The CVEFixes dataset is a comprehensive collection of vulnerabilities
automatically gathered and curated from Common Vulnerabilities and Exposures (CVE)
records found in the public U.S. National Vulnerability Database (NVD). It links CVE
information to the specific code changes (commits) that fixed the vulnerability in open-
source projects. The dataset provides detailed information at various interconnected
levels, including repository, CVE, commit, file, and method/function, offering the
source code both before and after the fix [43].

Advantages: It is based directly on publicly reported CVEs and their actual fixes in
open-source software. Also, the dataset provides multi-level, interlinked information
(repository, CVE, commit, file, method) allowing for in-depth analysis. Contains both
the vulnerable and the patched versions of the code, essential for training and evaluating
security tools and models. Covers thousands of CVEs across numerous projects, pro-
gramming languages, and CWE types. Specifically designed to facilitate data-driven se-
curity research using source code analysis and metrics. Benefits from automated collec-
tion processes combined with curation efforts [44].

In this study VulnPatchPairs dataset was used for the primary iterative development and
ablation study due to its structure of paired vulnerable/patched functions providing clear
ground truth for binary classification at the function level. This dataset is considered
hard and used in another papers to show how state of the art solutions fail [38]. The
CVEFixes dataset was used for cross-dataset validation to assess the generalizability of
the findings on a different, widely used vulnerability dataset. For both datasets, indi-
vidual functions were randomly extracted and analyzed without providing patch inform-
ation during classification.

3.3.4 LLM Configuration

Models used: DeepSeek (deepseek-v3) Llama (llama3-70b-8192), Mistral (mistral-
saba-24b).
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Key Parameters: temperature: 0.1, max tokens: 512.

Prompt Formatting: Input was structured using JSON format containing keys like
code_snippet and optional context, along with the detailed role-playing instructions and
analytical steps defined in the prompt variations.

Execution: 250 runs a pair of code snippets per prompt were performed for each prompt
variation on the VulnPatchPairs dataset subset resulting in 500 runs per prompt to aver-
age results and account for potential LLM stochasticity, although a low temperature
aims to minimize this. For CVEFixes dataset there are 500 runs per prompt with 250
vulnerable and 250 patched code snippets with average of 20 fails due to issues with
LLM API.

3.4 Validation Plan

The validation plan ensured a systematic approach to prompt refinement and evaluation.
Iterative Refinement (Pilot/Development Phase)

This phase corresponds to the multiple prompt versions (V8-V11) tested. A subset of
the VulnPatchPairs dataset 250 pairs was used. Prompts were iteratively adjusted based
on Fl-score, Recall, Precision, and FPR metrics. Qualitative review of LLM outputs/
justifications helped diagnose issues (e.g., over-conservatism, poor mitigation assess-
ment). Randomization of snippet order and consistent LLM parameters were used to
mitigate bias.

Ablation Study

Performed on the best-balanced prompt V9 identified during iteration to understand
component contributions (as detailed in 3.2.4).

Full Experiment (Comparison)

The performance of the best identified TRIZ prompts (e.g., V9, potentially Variation 2
from ablation) was compared against baseline prompts (CoT and DFA from [9]) on a
designated test split of the VulnPatchPairs dataset.

Cross-Dataset Validation: To assess robustness, the same set of prompts (TRIZ baseline
V9, ablation variations, CoT and DFA baselines) were also evaluated on the CVEFixes
dataset subset, which contains randomly picked 500 code snippets.

Quantitative metrics were calculated and statistical significance t-tests planned for com-
paring F1-scores.

Qualitative analysis of outputs on a random sample of 100 pairs compared reasoning
quality.
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Cross-validation was considered and performed on the dataset to ensure robustness
across different data splits.

Threats to Validity

Internal Validity could be threatened by LLM Stochasticity. Despite chosen parameters
outputs may still be different for the same queries. Getting an average results from sig-
nificant amount of runs per each prompt will help to mitigate this.

External Validity threat is due to possible issues with universality, because received res-
ults may be irrelevant for niche or non-standard programming languages like Rust or
Perl or proprietary and closed-source codebases.

Construct Validity could be threatened by metrics limitations. F1-score has Precision/
Recall balance in priority, but it may miss nuanced false positives like wrong classifica-
tions of code patterns. Combination of these metrics and human evaluation will help to
mitigate this.

Context Limitation: Analyzing single functions without full project context inherently
limits the ability to definitively assess exploitability and external mitigations, potentially
affecting both FN and FP rates for any static analysis approach, including LLM-based
ones.

Dataset Bias: Both VulnPatchPairs and CVEFixes datasets, while large and real-world,
may have biases in the types of projects, or vulnerability patterns represented.

Dataset Differences: Performance variations observed between VulnPatchPairs and
CVEFixes highlight potential dataset biases or differences in vulnerability characterist-
ics, impacting the absolute generalizability of results.

LLM Reliability: A non-trivial rate of null/error outputs was observed (approx. 4-8%
depending on dataset/prompt), indicating potential reliability issues with the LLM API
or prompt processing that could affect overall practical deployment.

3.5 Example TRIZ Prompt Application

This section provides conceptual illustrations of how selected TRIZ principles could be
layered in prompts for specific vulnerability types. These are distinct from the experi-
mentally refined prompts used for classification but serve to demonstrate the underlying
TRIZ thinking.

TRIZ-prompts shown in this section demonstrate how TRIZ principles can be layered
for more deep and adaptive code security analysis. These examples target OWASP Top
10 vulnerabilities as the most popular flaws currently for demonstration purpose.

Example 1. Segmentation, Nested Doll, Feedback.
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Prompt: “List all dynamic memory allocations (e.g., functions reserving memory). For
each allocation, check if buffer size is validated against input. Then, verify loop bounds
against buffer capacity. If unsafe loops are found, re-analyze error-handling blocks for
missed validations.”

This example targets Buffer Overflow vulnerability. TRIZ Synergy consists of hierarch-
ical checks (Nested Doll) for segmented tasks (Segmentation) and iterative refinement
based of prior findings (Feedback).

Example 2. Preliminary Action, Asymmetry, Dynamicity.

Prompt: “Study examples of unsafe queries (e.g., string concatenation). Identify "raw
input embedded in queries" OR "lack of parameterization". If unsafe patterns are detec-
ted, focus on adjacent code for secondary risks (e.g., privilege escalation).”

This example targets SQL injections. The prompt first trains LLM (Preliminary Action),
then asks to use different wordings (Asymmetry), and then changes focus to find sec-
ondary risks (Dynamicity).

Example 3. Preliminary Anti-Action, Segmentation, Feedback.

Prompt: “- Step 1: Detect encoded/encrypted strings (e.g., base64, hex). - Step 2: Trace
how decoded values are used. Check for dynamic execution (e.g., functions that evalu-
ate strings as code). If suspicious execution is found, re-analyze call chains for hidden
payloads.”

Here Code Obfuscation is being looked for. The example looks for hidden threats (Pre-
liminary Anti-Action) through two-step analysis (Segmentation) and iteration (Feed-
back).

Example 4. Nested Doll, Asymmetry, Dynamicity.

Prompt: “- Layer 1: Find user input rendered in output (e.g., U, logs). - Layer 2: For
each input, check if context-specific encoding is applied. Look for "missing sanitiza-
tion" OR "unsafe encoding bypasses". If encoding is missing, search for DOM manipu-
lation (e.g., ‘innerHTML", "document.write").”

This prompt is meant to identify Cross-Site-Scripting (XSS) vulnerabilities. First it per-
forms layered analysis (Nested Doll) and uses different terminology (Asymmetry), then
adjusts the scope.

Example 5. Segmentation, Preliminary Action, Feedback.

Prompt: “- Task 1: Identify dynamic resource allocations (e.g., memory, files). - Task 2:
Check deallocation in all code paths (e.g., returns, exceptions). Review common leak
patterns (e.g., missing "free() in loops). If leaks are found, re-analyze error-handling lo-

2

gic.
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This example looks for Memory Leaks. To achieve that it divides the task (Segmenta-
tion), then primes the LLM (Preliminary Action), and finally asks to perform the task it-
eratively (Feedback).

Example 6. Nested Doll, Preliminary Anti-Action, Asymmetry.

Prompt: “- Layer 1: Locate file operations using user-controlled input. - Layer 2: Verify
path normalization/validation. Check for indirect traversal (e.g., *../" encoded as URL

" o

parameters). Search for "unsafe path concatenation" OR "missing canonicalization".

This prompt targets Path Traversal vulnerability. It performs hierarchical check (Nested
Doll), then tries to detect hidden bypasses (Preliminary Anti-Action), and uses varied
wording (Asymmetry).

Example 7. Dynamicity, Feedback, Segmentation.

Prompt: “- Step 1: Identify system command executions. - Step 2: Check if user input is
sanitized. If unsanitized input is found, analyze for chained attacks (e.g., *;’, "&&"). For
chained attacks, re-analyze input sources for validation gaps.”

This example looks for Command Injections. It uses phased analysis (Segmentation),
adaptive focus (Dynamicity), and iterative analysis (Feedback).

Example 8. Asymmetry, Nested Doll, Preliminary Anti-Action.

Prompt: “- Layer 1: Locate deserialization functions. - Layer 2: Check for validation
(e.g., allowed classes, data integrity). Identify "unvalidated deserialization" OR "type
confusion risks". Detect tampering (e.g., modified serialized objects).”

This prompt targets Insecure Deserialization flaws. It performs hierarchical checks
(Nested Doll), then different terminology (Asymmetry), and anti-tampering (Prelimin-
ary Anti-Action).

Example 9. Preliminary Action, Segmentation, Feedback.

Prompt: “Study examples of hardcoded credentials (e.g., ‘password = "admin";"). - Task
1: Search for variables storing secrets. - Task 2: Check if values are literals or fetched
securely. If hardcoded values exist, re-analyze logs/configs for exposure.”

This example looks for Hardcoded Secrets. Firstly, it trains LLM with an example (Pre-
liminary Action), then splits the task (Segmentation), finally, performs the task in itera-
tion (Feedback).

Example 10. Dynamicity, Nested Doll, Preliminary Anti-Action.

Prompt: “- Layer 1: Identify shared resource accesses (e.g., files, databases). - Layer 2:
Check for synchronization mechanisms (e.g., locks, transactions). If synchronization is
missing, analyze for time-of-check-to-time-of-use (TOCTOU) flaws. Detect lazy initial-
ization patterns that might hide races.”
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This example targets Race Conditions using hierarchical analysis (Nested Doll), adapt-
ive focus (Dynamicity), and anti-patterns detection (Preliminary Anti-Action).
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4 Results

This chapter presents the empirical findings from the development and evaluation of
TRIZ-based prompts designed for LLM-driven vulnerability detection in source code.
The results encompass the iterative refinement process undertaken to balance perform-
ance metrics and a systematic ablation study conducted on the most promising prompt
variant identified during iteration. The experiments utilized the VulnPatchPairs and
CVEFixes datasets and the LLMs DeepSeek, Llama, and Mistral as detailed in the
Methodology chapter (Section 3.3). Performance was primarily evaluated using F1-
score, Recall, Precision, and FPR and compared against a standard CoT and DFA
baselines adapted from Tamberg et al. [9]. Additionally, this chapter presents concep-
tual results derived from applying TRIZ system thinking to the broader lifecycle of soft-
ware code, exploring vulnerabilities beyond static analysis and proposing novel defense
concepts. These findings provide insights not only into prompt engineering for code
analysis but also inform the broader challenge of applying systematic problem-solving
like TRIZ to the vulnerability lifecycle, including code transmission, storage, and exe-
cution contexts.

4.1 Iterative Prompt Development Results

An iterative approach was necessary to tune the TRIZ-based prompt structure and logic,
aiming to optimize the F1-score while managing the inherent trade-off between Recall
(detecting true vulnerabilities) and Precision (avoiding false alarms). The initial goal
was to significantly outperform standard baselines, such as CoT, which demonstrated
very limited detection capabilities in initial tests (see Section 4.2.2). Several major ver-
sions (detailed implicitly through the baseline V9 and the extremes like V8/V11 derived
from earlier iterations described in Chapter 3) were tested, revealing key performance
trends.

Initial Conservative Prompts (e.g., V8): Early versions focusing heavily on detailed
TRIZ analysis and requiring high confidence for a "YES" classification exhibited very
high Precision but suffered from extremely low Recall (e.g., Recall = 0.06 - 0.16) and
consequently low Fl1-scores (e.g., F1 = 0.11 - 0.25). These prompts were too conservat-
ive, missing the vast majority of actual vulnerabilities.

Recall-Focused Prompts (e.g., V11): Adjustments were made to lower the threshold for
flagging potential vulnerabilities, prioritizing Recall. This approach (V11) achieved the
highest Recall observed (0.8240) and the highest F1-score (0.6252). However, this came
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at the cost of very poor Precision (0.5037) and an extremely high FPR (0.8120), render-
ing it impractical due to excessive noise.

Balanced Baseline Selection (V9): Through refinement cycles aiming for a better bal-
ance (e.g., V9, V10), Prompt V9 was identified as providing a moderate compromise. It
achieved an F1-Score of 0.4539 with Recall 0.4040, Precision 0.5179, and FPR 0.3760.
While not optimal, its relatively balanced profile made it suitable for a more detailed
component analysis via ablation.

Table 2 summarizes the key metrics for selected prompts during the iterative develop-
ment phase, illustrating the Recall/Precision trade-off and the performance gap com-
pared to the CoT baseline.

Table 2: Performance Metrics During Iterative Prompt Development

Prompt  F1-Score Recall Precision FPR Notes

CoT 0.05 0.03 0.36 0.04 Very Low Recall/F1, High Errors
Baseline

V8 0.16 0.09 0.53 0.08 High Precision, Very Low Recall

V9 0.45 0.4 0.52 0.38 Moderate Balance, Used for Ablation
V10 0.25 0.16 0.54 0.14 Attempt to Improve V9, Recall Decreased
V11 0.63 0.82 0.5 0.81 Highest F1/Recall, Very High FPR

The iterative process demonstrated the sensitivity of the LLM's performance to the spe-
cific instructions regarding TRIZ analysis application, indicator confidence thresholds,
and mitigation assessment logic. It highlighted the difficulty in achieving both high Re-
call and high Precision simultaneously with single-function analysis using this method-
ology. It also demonstrates significant improvement upon the CoT baseline but never-
theless still facing challenges in achieving high performance on both Recall and Preci-
sion simultaneously.

4.2 Ablation Study Results

To dissect the contribution of individual components within the V9 baseline prompt, an
ablation study was performed. Six variations were created, each removing or simplify-
ing one key aspect of the prompt. The performance of each variation was compared
against the baseline.

4.2.1 Baseline Performance (Prompt V9)

The baseline prompt (full TRIZ framing, structured indicators, mitigation confidence
assessment, justification required) yielded the following metrics: TP: 101, TN: 156, FP:
94, FN: 149, Accuracy: 0.5140, Precision: 0.5179, Recall: 0.4040, F1-Score: 0.4539,
FPR: 0.3760.
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4.2.2 Analysis of Ablated Components

Table 3 presents the results for the baseline and all six ablation study variations.

Table 3: Ablation Study Results Comparison

Prompt Pl Reca™r®” gpr AU 1p N pp gy ChANgEVs
Score sion acy V9 Fl

CoT Baseline 0.05 0.04 0.36 0.0439 0.51 5 196 9 187 -0.40
DFA Baseline 0.026 0.126 0.5167 0.1179 0.5041 31 217 29 215 -0.424

V9 045 04 052 038 0.51 101 156 94 149 ---

Var 1 04 031 054 026 052 78 184 66 172 -0.05
Var 2 047 039 058 029 055 98 178 72 152 0.07
Var 3 0.32 0.23 051 021 051 52 179 49 176 -0.13
Var 4 0.55 0.62 0.5 0.61 0.5 154 98 15296 0.10
Var 5 0.51 049 054 042 053 122 144 106 128 0.11
Var 6 033 025 047 028 049 62 181 69 188 -0.12

Analysis of each variation compared to the baselines: CoT and DFA Baselines Perform-
ance: The standard CoT and DFA baselines adapted from [9] performed very poorly on
this dataset and task, achieving an F1-Score of only 0.05 and 0.026 and Recall of 0.04
and 0.126 correspondingly. While their FPRs were excellent (0.0439 and 0.1179), they
failed to detect almost all vulnerabilities. Furthermore, they exhibited significant reliab-
ility issues, failing to produce valid classifications for over 20% of the inputs (103 and
111 nulls/errors out of 500 attempts).

All TRIZ Variations vs CoT and DFA: All tested TRIZ prompt variations (including the
baseline V9 and its ablations) demonstrated substantially higher F1-Scores and Recall
compared to the CoT and DFA baselines, indicating a clear benefit from the structured
TRIZ approach for this task, despite the challenges in balancing metrics. The TRIZ
prompts also appeared more reliable, yielding fewer processing errors.

Variation 1 (Ablate TRIZ Terms): Performance decreased (F1: 0.3959), particularly Re-
call. This suggests that using explicit TRIZ terminology (Function Analysis, Resource
Analysis, Contradiction, Principles) provided a beneficial structure or focus for the
LLM compared to generic equivalents.

Variation 2 (Ablate Contradiction Analysis): This variation showed a slight improve-
ment in F1-score (0.4667) and Accuracy (0.5520). Crucially, it significantly improved
Precision (0.5765) and reduced the FPR (0.2880) while maintaining Recall (0.3920)
close to the baseline. This indicates that the explicit instruction to identify contradic-
tions (Step 2c¢) in the baseline prompt was likely redundant or slightly counterproduct-
ive, possibly adding noise without improving detection.

Variation 3 (Simplify TRIZ Framing): Performance dropped significantly (F1: 0.3161).
Simplifying the detailed Function, Resource, and Contradiction analysis steps into a
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single high-level instruction was detrimental. This highlights the importance of the
structured, multi-faceted analysis guided by the TRIZ concepts in Step 2 of the baseline
prompt.

Variation 4 (Ablate Indicator Structure): This variation yielded the highest F1-score
(0.5540) and Recall (0.6160). However, removing the specific A-D indicator structure
led to a drastic increase in False Positives (FPR: 0.6080) and slightly lower Precision
(0.5033) than the baseline. This suggests the indicator structure is key to controlling
false positives but may be too restrictive for maximizing recall.

Variation 5 (Simplify Mitigation Assessment): Replacing the "Strong vs. Weak/No"
mitigation assessment with a simpler boolean check ("Present" vs. "Absent") resulted in
a better F1-score (0.5105) than the baseline. It improved both Recall (0.4880) and Preci-
sion (0.5351) moderately. This indicates the simpler boolean check might be a more ef-
fective way for the LLM to handle mitigation assessment in this context compared to
the more nuanced confidence levels in the baseline. However, the FPR (0.4240) was
still higher than the baseline.

Variation 6 (Ablate Justification): Performance decreased significantly (F1: 0.3255).
Removing the requirement for the LLM to generate a justification negatively impacted
its classification ability. This suggests the internal process of formulating a rationale is
beneficial for the LLM's accuracy, even if only the final classification is used.

4.3 Results Analysis

The ablation study provides clear evidence supporting the utility of a structured, TRIZ-
inspired approach for prompting LLMs in this task, while also highlighting areas for op-
timization.

Effectiveness of TRIZ Components vs. CoT and DFA: The necessity of detailed Func-
tion/Resource analysis (Var 3 failure) and the benefit of TRIZ terminology (Var 1 res-
ults) strongly suggest the TRIZ analytical framework guided the LLM much more ef-
fectively than the standard CoT and DFA approach, which yielded minimal vulnerabil-
ity detection (F1=0.05 and 0.026). The structured decomposition and analysis inherent
in the TRIZ prompts appear crucial for improving performance beyond simple step-by-
step reasoning on this task. The value added by explicit Contradiction analysis seems
less pronounced (Var 2 results).

Controlling the Recall/Precision Trade-off: The results vividly illustrate the Recall/Pre-
cision contradiction. The definition of vulnerability indicators (Step 3) and the logic for
assessing mitigation (Step 4/5) act as key control parameters. Loosening indicator defin-
itions (Var 4) maximizes Recall but floods results with FPs. Refining the mitigation
check (Var 5) offers a path to improve F1 over the baseline. The justification step (Var
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6) also unexpectedly influenced this balance, likely by enforcing more careful internal
analysis.

Limitations and Context: Achieving significantly higher F1 scores likely requires over-

coming the inherent limitation of function-level analysis. The LLM's inability to access

broader program context (caller functions, global state, configurations, runtime data) re-
stricts its ability to definitively verify exploitability or the effectiveness of external mit-
igations. This likely contributes to both FPs (flagging theoretically possible but practic-
ally unexploitable issues) and FNs (missing vulnerabilities that depend on inter-proced-
ural context).

4.3.1 Selection of Optimal Prompts based on Ablation Study

The ablation study, compared against both the TRIZ baseline (V9) and the standard
CoT and DFA baselines, revealed that no single prompt achieved perfect performance.
However, several TRIZ variations offered significant improvements over standard CoT
and DFA. The choice of the "best" TRIZ prompt depends on the desired balance.

Highest F1-Score (at cost of high FPR): Variation 4 (Ablate Indicator Structure)
achieved the highest F1 (0.5540), vastly outperforming CoT and DFA, but its very high
FPR (0.6080) limits practicality.

Best Precision / Lowest FPR Improvement: Variation 2 (Ablate Contradiction Analysis)
offered the best Precision (0.5765) and a significantly reduced FPR (0.2880) compared
to the TRIZ baseline, with a slightly improved F1 (0.4667). It represents a much more
precise and reliable prompt than the baseline and vastly better detection than CoT.

Improved F1 with Balanced Metrics: Variation 5 (Simplify Mitigation Assessment)
provided a good F1 (0.5105) by improving both Recall and Precision over the TRIZ
baseline, also significantly outperforming CoT.

Based on these results, Variation 2 (Baseline without Contradiction Analysis) stands out
as the recommended prompt configuration from this study if improving precision and
reducing false positives relative to the TRIZ baseline V9 is the primary goal, while still
vastly outperforming standard CoT and DFA. If maximizing F1 is the absolute priority
despite high noise, Variation 4 would be chosen.

4.3.2 Cross-Dataset Validation Results (CVEFixes)

To assess the robustness and generalizability of the findings, the baseline prompts (CoT
and TRIZ V9) and the key ablation study variations were subsequently evaluated on the
CVEFixes dataset. This dataset, while also containing real-world vulnerabilities, differs
in its composition and characteristics from VulnPatchPairs.

Table 4 presents the performance metrics on the CVEFixes dataset. It should be noted
that all prompts exhibited a failure rate of approximately 4% (=20 null/error outputs per
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500 inputs attempted) on this dataset, indicating some processing challenges. The met-
rics reported are based on the valid predictions obtained (=480 per prompt).

Table 4: Prompt Performance Comparison on CVEFixes Dataset

F1- Preci- Accur- Change vs
Prompt Recall . FPR TP TN FP FN Baseline
Score sion acy F1

CoT Baseline 0.3779 0.2838 0.5652 0.20  0.5532 65 200 50 164 -0.1309
DFA Baseline 0.3706 0.2903 0.5122 0.2469 0.5348 63 183 60 154 -0.1382

V9 0.5088 0.5 0.5180 0.428 0.5375 115 143 107 115 ---

Var 1 0.4331 0.3886 0.4890 0.3720 0.5136 89 157 93 140 -0.0757
Var 2 0.4575 0.4217 0.5 0.3880 0.5208 97 153 97 133 -0.0513
Var 3 0.3990 0.3304 0.5033 0.3 0.5229 76 17575 154 -0.1098
Var 4 0.5233 0.5609 0.4905 0.5360 0.5104 129 116 134 101 0.0145
Var 5 0.5 0.5043 0.4957 0.4739 0.5157 116 131 118 114 -0.0088
Var 6 0.4389 0.3826 0.5146 0.3333 0.5303 88 166 83 142 -0.0699

Analysis of CVEFixes results: TRIZ vs. CoT and DFA: The TRIZ-based prompts
(Baseline V9 and variations 2, 4, 5) consistently and significantly outperformed both
CoT and DFA baselines in F1-Score (0.46 - 0.52 vs. 0.37 — 0.38) and Recall (0.39 - 0.56
vs. 0.28 — 0.29). This confirms the benefit of the structured TRIZ approach on a second
dataset. However, CoT and DFA baselines achieved better Precision (0.57 and 0.51)
and a much lower FPR (0.20 and 0.25) than most TRIZ variations on this dataset.

Ablation Impact Consistency: The relative impact of most ablations remained broadly
similar to the VulnPatchPairs results: removing TRIZ terms (Var 1), simplifying fram-
ing (Var 3), and removing justification (Var 6) still resulted in lower F1 scores than the
TRIZ baseline V9. Ablating the indicator structure (Var 4) again produced the highest
F1 and Recall, but also the highest FPR. Simplifying mitigation (Var 5) again per-
formed well, close to the baseline F1.

Key Difference - Var 2: Notably, Variation 2 (Ablate Contradiction), which slightly
outperformed the baseline on VulnPatchPairs and significantly improved its Precision/
FPR, performed worse than the baseline on CVEFixes (F1: 0.4575 vs 0.5088). This sug-
gests the utility of the explicit Contradiction Analysis step might be dataset-dependent.

Best Performers on CVEFixes: Variation 4 (Ablate Indicators) achieved the highest F1
(0.5233) and Recall (0.5609), followed closely by the original TRIZ Baseline V9
(F1=0.5088) and Variation 5 (Simplify Mitigation, F1=0.5000). However, all these top
performers had high FPRs (0.43 - 0.54). The CoT and DFA baselines, while poor at de-
tection, were the least noisy (FPR was 0.20 and 0.25 correspondingly).

These cross-dataset results confirm the general advantage of the structured TRIZ
prompting approach over CoT and DFA for recall and F1-score, but also highlight per-
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formance variability between datasets and the persistent challenge of high false positive

rates with the higher-recall TRIZ prompts.

4.3.3 Cross-LLM Validation Results

Table 5: Prompt Performance Comparison on VulnPatchPairs Dataset for DeepSeek, Llama, Mistral

. Change
LLM prompt L1 Rew Preci-pop ACCUT 1 1N Ep BN vs VO Errors
Score call sion acy F1
CoT 0.05 0.03 036 0.04 051 5 1969 187-0.40 20.6%
DFA 020 0.13 052 0.12 050 31 21729 215-025 1.6%
DeepSeek V9 045 0.40 052 038 051 10115694 149 - 0%
Vard 055 0.62 0.50 0.61 050 15498 15296 0.10 0%
Var 5 0.51 0.49 0.54 042 053 122 144106 128 0.06 0%
CoT 025 0.17 047 024 043 9 32 10 44 -0.11 81%
DFA 0.65 0.96 049 096 0.50 23211 2379 029 2.2%
Llama V9 036 027 055 022 053 67 19454 182 —  0.6%
Vard  0.50 0.51 0.50 0.50 0.50 124123125119 0.14 1.8%
Var 5 042 037 0.50 038 049 91 14992 158 0.06 2%
CoT 041 035 049 037 048 63 11166 119025 28.2%
DFA 0.60 0.75 0.50 0.76 0.49 18859 19162 044 0%
Mistral V9 0.16 0.10 0.59 0.07 0.51 24 23317 226 — 0%
Vard 023 0.15 053 0.13 051 36 21732 2100.07 1%
Var 5 0.16 0.09 0.61 0.06 0.52 23 23515 226 0.00 0.2%

Table 6: Prompt Performance Comparison on CVEFixes Dataset for DeepSeek, Llama, Mistral

. Change
LLM  Prompt L1~ Rer Preci-ppp AC 1p oy Fp FN vs V9 Errors
Score call sion curacy F1
CoT 0.38 0.28 0.57 0.20 0.55 65 200 50 164 -0.13 4.2%
DFA 0.37 029 0.51 0.24 0.53 63 183 60 154 -0.14 8%
DeepSeck V9 0.51 0.5 0.52 043 0.54 115143 107 115 --- 4%
Var 4 0.52 0.56 0.49 0.54 0.51 129116 134101 0.01 4%
Var 5 0.5 0.50 0.50 0.47 0.52 116131 118114 -0.01 4.2%
CoT 047 0.52 0.43 057 047 77 76 10272 0.05 34.6%
DFA 0.57 0.81 0.44 0.86 0.45 12627 16029 0.15 31.6%
Llama V9 042 038 0.47 036 052 56 114 63 92 --- 35%
Var 4 048 0.48 0.49 0.40 0.54 70 107 72 77 0.06 34.8%
Var 5 043 039 047 037 052 58 113 66 89 0.01 34.8%
CoT 0.53 0.56 0.49 0.49 0.54 105114 10881 0.14 18.4%
DFA 0.56 0.73 0.46 0.77 0.47 14450 17053 0.17 16.6%
Mistral V9 0.39 0.35 0.45 0.39 048 73 141 91 138 --- 11.4%
Var 4 0.40 0.38 0.43 047 046 82 125 110132 0.01 10.2%
Var 5 0.38 0.32 0.47 0.33 0.50 69 154 77 144 -0.01 11.2%

In this section both Table 5 and Table 6 show the experiment results for VulnPatchPairs

dataset and CVEFixes dataset correspondingly using DeepSeek, Llama, and Mistral
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LLMs. Big amount of API errors for this cycle of experiment is shown in Errors
column. Metrics are calculated using received non-null results.

Detailed Performance Analysis of Prompts Across LLMs and Datasets

The cross-LLM validation reveals a complex interplay between the prompting methodo-
logy (TRIZ-based vs. baselines), the specific LLM utilized, and the characteristics of
the dataset. The initial hypothesis that TRIZ-based prompts would consistently outper-
form baselines across all scenarios requires significant nuance based on these results.

Performance with DeepSeek LLM.

VulnPatchPairs Dataset (Table 5): With DeepSeek, the TRIZ-based prompts (V9, Var 4,
Var 5) demonstrated notably better F1-Scores (0.45 to 0.55) and Recall (0.40 to 0.62)
compared to both CoT (F1=0.05, Recall=0.03) and DFA (F1=0.20, Recall=0.13)
baselines. Var 4 achieved the highest F1 and Recall but also the highest FPR (0.61).
DeepSeek exhibited 0% errors with TRIZ prompts on this dataset.

CVEFixes Dataset (Table 6): Similarly, on CVEFixes, DeepSeek with TRIZ prompts
(V9, Var 4, Var 5) yielded higher F1-Scores (0.50 to 0.52) and Recall (0.50 to 0.56)
than CoT (F1=0.38, Recall=0.28) and DFA (F1=0.37, Recall=0.29). Again, Var 4 had
the highest Recall and F1, coupled with the highest FPR. Error rates for DeepSeek were
around 4% on this dataset.

Conclusion for DeepSeek: For the DeepSeek LLM, the structured TRIZ approach gen-
erally led to more effective vulnerability detection in terms of F1-score and Recall com-
pared to the CoT and DFA baselines on both datasets.

Performance with Llama LLM.

VulnPatchPairs Dataset (Table 5): (1) The performance of TRIZ prompts with Llama
was mixed when compared to baselines. While TRIZ V9 (F1=0.36), Var 4 (F1=0.50),
and Var 5 (F1=0.42) outperformed the CoT baseline (F1=0.25), the DFA baseline
achieved the highest F1-Score (0.65) and Recall (0.96) among all Llama combinations.
(2) However, this superior DFA performance came with an extremely high FPR (0.96).
The CoT prompt with Llama had a very high error rate (81%).

CVEFixes Dataset (Table 6): (1) On this dataset, the baseline prompts generally outper-
formed the TRIZ prompts with Llama in terms of F1 and Recall. DFA (F1=0.57,
Recall=0.81) and CoT (F1=0.47, Recall=0.52) were higher than V9 (F1=0.42,
Recall=0.38), Var 4 (F1=0.48, Recall=0.48), and Var 5 (F1=0.43, Recall=0.39). (2) It is
critical to note that all prompts (TRIZ and baselines) with Llama on CVEFixes exhib-
ited very high error rates (around 31-35%), making the reliability of these specific met-
rics a concern.

Conclusion for Llama: The TRIZ prompts did not consistently outperform baselines.
DFA showed high F1/Recall on VulnPatchPairs (despite high FPR), and both CoT/DFA
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showed higher F1/Recall on CVEFixes, though all Llama results, especially on CVE-
Fixes, are impacted by high error rates.

Performance with Mistral LLM.

VulnPatchPairs Dataset (Table 5): With Mistral, the baseline CoT (F1=0.41,
Recall=0.35) and particularly DFA (F1=0.60, Recall=0.75) prompts significantly out-
performed all tested TRIZ variations (V9 F1=0.16, Var 4 F1=0.23, Var 5 F1=0.16).

CVEFixes Dataset (Table 6): (1) A similar trend was observed on CVEFixes, where
CoT (F1=0.53, Recall=0.56) and DFA (F1=0.56, Recall=0.73) again outperformed the
TRIZ prompts V9 (F1=0.39), Var 4 (F1=0.40), and Var 5 (F1=0.38) in both F1-score
and Recall. (2) Error rates for Mistral were notable, especially CoT on VulnPatchPairs
(28.2%) and across all prompts on CVEFixes (10-18%).

Conclusion for Mistral: For the Mistral LLM, the standard CoT and DFA baseline
prompts were generally more effective in terms of F1-score and Recall than the specific
TRIZ prompts evaluated on both datasets.

General Observations on Baseline Prompt Performance

The CoT and DFA baselines showed very low F1-scores and Recall with the DeepSeek
LLM on the VulnPatchPairs dataset. On the CVEFixes dataset, CoT and DFA baselines,
while often having lower Recall than TRIZ prompts with DeepSeek, sometimes
achieved better Precision and lower FPR (e.g., DeepSeek CoT FPR=0.20, DFA
FPR=0.24; Mistral CoT FPR=0.49, DFA FPR=0.77, though DFA with Mistral on CVE-
Fixes had very high FPR). Their performance was notably stronger with Mistral on
CVEFixes in terms of F1 and Recall compared to TRIZ prompts with the same LLM.

Prompt Variation Consistency (TRIZ Prompts V9, Var 4, Var 5)

Var 4: Across different LLMs, Var 4 often (though not universally) produced higher F1-
scores and Recall compared to its V9 baseline (e.g., for DeepSeek and Llama on Vul-
nPatchPairs, and for Llama on CVEFixes). However, this was almost invariably accom-
panied by the highest FPR among the TRIZ variants for that LLM, indicating it consist-
ently acts as a high-recall/low-precision prompt. Its F1 performance with Mistral was
still below Mistral's baselines.

Var 5: This prompt often provided a performance profile close to V9, sometimes
slightly better in F1 (e.g., DeepSeek and Llama on VulnPatchPairs). It appeared as a rel-
atively stable TRIZ variation but did not fundamentally change the performance hier-
archy against baselines for Llama or Mistral.

VO9: While serving as the reference for TRIZ prompts, its performance relative to its
own variations and to baselines was highly dependent on the LLM and dataset.

Impact of Error Rates

46



The "Errors" column in Tables 5 and 6 is critical for interpreting practical usability.
Llama exhibited particularly high error rates, especially with CoT on VulnPatchPairs
(81%) and across all prompts on CVEFixes (around 35%). Mistral also showed signific-
ant error rates, notably with CoT on VulnPatchPairs (28.2%) and ranging from 10-18%
for most prompts on CVEFixes. DeepSeek was the most reliable, with 0% errors for its
TRIZ prompts on VulnPatchPairs and approximately 4% for most prompts on CVE-
Fixes. High error rates diminish the practical utility of an LLM/prompt combination, as
metrics are calculated only on successful responses. This is a major concern for real-
world deployment.

Synthesis of Cross-LLM Findings

The cross-LLM validation underscores that there is no one-size-fits-all solution for
prompting LLMs for vulnerability detection. The structured TRIZ approach showed
clear benefits in F1-score and Recall with the DeepSeek LLM compared to CoT and
DFA baselines. However, for Llama and Mistral, the CoT and DFA baselines often
demonstrated competitive or even superior F1 and Recall performance compared to the
tested TRIZ prompts, although these baseline performances also came with their own
caveats (e.g., extremely high FPR for Llama+DFA on VulnPatchPairs, or significant er-
ror rates). The reliability of the LLM itself (i.e., low error rates in generating responses)
is a crucial factor, where DeepSeek performed best in this study. These findings suggest
that while TRIZ offers a valuable framework for structuring complex analytical
prompts, its relative effectiveness against simpler baselines can be highly dependent on
the internal architecture and training of the specific LLM being used.
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5 Discussion

This chapter synthesizes and interprets the findings presented in Chapter 4, contextual-
izing them within the existing literature and addressing the research questions posed in
Chapter 1. It discusses the effectiveness and challenges of applying TRIZ principles
both to LLM prompt engineering for vulnerability detection and to the conceptual ana-
lysis of the broader code vulnerability lifecycle. The chapter evaluates the strengths and
limitations of the conducted research and outlines implications for practitioners and fu-
ture research directions.

5.1 Summary of Key Findings

The research yielded two primary sets of results: empirical findings from LLM prompt
experiments and conceptual findings from systemic TRIZ analysis.

An iterative prompt development process for LLM-based vulnerability detection using
single-function analysis demonstrated a significant trade-off — a Contradiction in TRIZ
terms — between maximizing Recall (detecting true vulnerabilities) and maximizing Pre-
cision (minimizing FPR). Prompts tuned for high Recall (like V11, which achieved an
F1-score of approximately 0.63 with DeepSeek) tended to suffer from impractically
high FPRs (around 0.81 for V11 with DeepSeek on VulnPatchPairs), while highly pre-
cise prompts (like V8 or V10, with F1-scores between approximately 0.16-0.25 with
DeepSeek) exhibited very low Recall.

A key finding was the varying effectiveness of the developed TRIZ-based prompts (V9
and its variations, notably Var 4 and Var 5) when compared to standard CoT and DFA
baselines across different LLMs and datasets. With the DeepSeek LLM, TRIZ-based
prompts consistently demonstrated superior F1-Score and Recall performance on both
the VulnPatchPairs and CVEFixes datasets. However, this pattern of TRIZ superiority
was not uniformly replicated with Llama and Mistral.

With Llama on VulnPatchPairs, the DFA baseline achieved a higher F1-score and Re-

call than the TRIZ prompts, albeit with a very high FPR; on CVEFixes, both CoT and

DFA baselines generally outperformed TRIZ prompts in F1 and Recall, with all Llama
results impacted by high error rates.

With Mistral on both datasets, the CoT and DFA baselines generally yielded higher F1-
Scores and Recall than the tested TRIZ prompts. These results indicate that while the
structured TRIZ methodology can significantly enhance performance with some LLMs
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like DeepSeek, its advantage over baselines is LLM-dependent, and influenced by
factors including the LLM's architecture and training, as well as dataset characteristics
(Tables 5 and 6).

The cross-LLM validation (Tables 5 and 6) highlighted significant performance and re-
liability differences among the LLMs: DeepSeek emerged as the most consistent and re-
liable LLM in this study, particularly when using TRIZ prompts, exhibiting low error
rates (0% for TRIZ prompts on VulnPatchPairs, around 4% on CVEFixes).

Llama displayed potential for high Recall with certain prompts (e.g., DFA on Vul-
nPatchPairs: F1=0.65, Recall=0.96, but FPR=0.96). However, it frequently suffered
from extremely high error rates (e.g., 81% with CoT on VulnPatchPairs; ~35% across
all prompts on CVEFixes), which significantly impacts its practical usability.

Mistral showed competitive F1-scores with baseline CoT and DFA prompts, particu-
larly on the CVEFixes dataset (F1=0.53 and F1=0.56, respectively), often outperform-
ing its TRIZ counterparts for these metrics. Its performance with TRIZ prompts was
more varied, and it also exhibited notable error rates with some configurations (e.g.,
28.2% with CoT on VulnPatchPairs; 10-18% across prompts on CVEFixes). These vari-
ations emphasize that LLM choice is critical, with operational reliability (i.e., low error
rates) being a major consideration alongside traditional accuracy metrics.

The systematic ablation study conducted on the V9 prompt (which achieved a moderate
F1-score of approximately 0.45 with DeepSeek on VulnPatchPairs) provided insights
into prompt component contributions. Detailed TRIZ-based Function/Resource analysis
framing, the use of explicit TRIZ terminology, and requiring justification generation
were identified as crucial prompt components for optimal performance with DeepSeek.
Explicit Contradiction analysis, as defined in prompt V9, appeared less critical with
DeepSecek, and its impact varied by dataset; its removal (Var 2) slightly improved F1
and notably improved Precision and FPR with DeepSeek on VulnPatchPairs, but Var 2
performed less well than V9 with DeepSeek on the CVEFixes dataset.

When key ablation variations were tested across LLMs: (1) Removing the structured
vulnerability indicator definitions (Var 4) consistently resulted in higher Recall and of-
ten the highest F1-scores for DeepSeek and Llama (e.g., DeepSeek on VulnPatchPairs
F1=0.55, Llama on VulnPatchPairs F1=0.50, DeepSeek on CVEFixes F1=0.52). How-
ever, this was almost invariably accompanied by a substantial increase in FPR, high-
lighting this component's role in managing the Recall/Precision trade-off across these
models. With Mistral, Var 4's F1 did not surpass baselines. (2) Simplifying the mitiga-
tion check to a boolean assessment (Var 5) often provided a good balance of metrics
and generally performed competitively with, or slightly better than, the V9 baseline
across different LLMs and datasets, suggesting it's a relatively robust variation.

The relative performance of LLMs and prompt configurations also showed sensitivity to
dataset characteristics, with different combinations excelling on VulnPatchPairs versus
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CVEFixes. Overall, while the TRIZ-based structured prompting approach demonstrated
potential for advancing vulnerability detection capabilities, particularly with DeepSeek,
the study underscores that the path to consistently outperforming simpler baselines
across all LLMs is not straightforward. The inherent limitations of static, single-func-
tion analysis mean the Recall/Precision trade-off remains a persistent challenge, and the
high error rates and performance variability observed with some LLMs pose practical
implementation hurdles.

5.2 Discussion of Empirical Prompting Results

5.2.1 Effectiveness and Comparison to Literature

The empirical study demonstrated that the structured, TRIZ-based prompting methodo-
logy can enhance vulnerability detection with general-purpose LLMs, though its superi-
ority over standard CoT and DFA baselines is highly dependent on the specific LLM
and dataset. With the DeepSeek LLM, a clear trend of improved performance for TRIZ-
based prompts was observed across both the VulnPatchPairs and CVEFixes datasets.
On both datasets with DeepSeek, the TRIZ prompt variations typically achieved F1-
scores substantially higher than CoT and DFA, primarily driven by vastly improved Re-
call. For example, with DeepSeek on VulnPatchPairs, TRIZ prompts like V9 and its
variants achieved F1-scores in the ~0.45-0.55 range, whereas CoT was ~0.05 and DFA
~0.20. This pattern of improved F1 and Recall for TRIZ prompts with DeepSeek was
also evident on the CVEFixes dataset.

However, the cross-LLM validation with Llama and Mistral introduced important nu-
ances to this finding. With Llama, while TRIZ prompts often outperformed its CoT
baseline, the DFA baseline demonstrated a higher F1-score (0.65) and Recall (0.96) on
VulnPatchPairs, albeit with an extremely high FPR (0.96). On the CVEFixes dataset,
both CoT and DFA baselines generally achieved higher F1 and Recall than the TRIZ
prompts when using Llama, though these results are subject to Llama's high error rates
(around 35%) on that dataset. With Mistral, the CoT and DFA baselines were generally
more effective, demonstrating stronger F1-scores and Recall on both datasets compared
to the tested TRIZ variations. For instance, on CVEFixes, Mistral with CoT (F1=0.53)
and DFA (F1=0.56) prompts outperformed its TRIZ counterparts. Similarly, on Vul-
nPatchPairs, Mistral with DFA (F1=0.60) and CoT (F1=0.41) surpassed the TRIZ vari-
ants.

Consistent with findings from the initial DeepSeek experiments, the CoT and DFA
baselines, when successfully executed, often yielded better Precision and lower FPR
than many of the higher-Recall TRIZ variations, particularly on the CVEFixes dataset
(e.g., with DeepSeek and Mistral). However, their utility for comprehensive vulnerabil-
ity detection can be limited by their extremely low Recall with certain LLMs/datasets
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(e.g., with DeepSeek on VulnPatchPairs, CoT Recall=0.03, DFA Recall=0.13), as they
would miss the vast majority of issues in such cases.

Despite these LLM-specific variations, the overall results suggest that applying system-
atic analysis guided by TRIZ principles (such as Function and Resource Analysis) can
be a valuable strategy for structuring LLM prompts, particularly for enhancing Recall
with certain LLMs like DeepSeek. Nevertheless, the performance of general-purpose
LLMs, even with enhanced TRIZ-based prompting, still generally falls short of what
might be expected from specialized, fine-tuned models for vulnerability detection or the
ideal capabilities of human experts, likely due to the single-function context limitation
discussed further below and the inherent complexities of vulnerability analysis. The sig-
nificant API error rates encountered with Llama and Mistral also highlight a practical
challenge in relying on these models for consistent output in demanding analysis tasks.

5.2.2 Insights from Ablation Study

The ablation study, initially performed with the DeepSeek LLM (Table 3) and with key
variations (Var 4, Var 5 alongside baseline V9) subsequently tested across Llama and
Mistral (Tables 5 and 6), provided critical insights into the contribution of different
TRIZ-derived prompt components. While some findings showed consistency across
datasets and LLMs, others highlighted sensitivities.

The value of structure and specific TRIZ framing: The initial ablation study with Deep-
Seek indicated that removing detailed TRIZ framing (Function/Resource analysis, as in
Var 3) or the justification generation step (Var 6) significantly degraded performance.
Similarly, replacing explicit TRIZ terminology with generic equivalents (Var 1) also re-
duced performance, particularly Recall, with DeepSeek. These findings underscore that
guiding the LLM's reasoning process with specific, structured steps derived from the
TRIZ methodology is crucial for DeepSeek. Due to the selection of prompts for cross-
LLM validation, the impact of these specific ablations (Var 1, Var 3, Var 6) was not dir-
ectly measured for Llama and Mistral, but the general principle of structured prompting
remains a key takeaway.

TRIZ component contributions — Contradiction Analysis: With DeepSeek, explicit Con-
tradiction Analysis (Step 2¢ in V9) appeared less critical in the tested configuration. Its
removal (Var 2) led to a slight improvement in F1-score (from 0.45 to 0.47) and a signi-
ficant improvement in Precision (from 0.52 to 0.58) and FPR (from 0.38 to 0.29) on the
VulnPatchPairs dataset. However, on the CVEFixes dataset, Var 2 performed slightly
worse than V9 with DeepSeek (F1 0.4575 vs 0.5088), suggesting its utility might be
dataset-dependent even for a single LLM. The performance of Var 2 was not evaluated
for Llama and Mistral in Tables 5 and 6.

Sensitivity to Indicator Definition (Var 4): Ablating the structured A-D vulnerability in-
dicators and using a more general instruction to identify high-confidence mechanisms
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(Var 4) consistently resulted in the highest or near-highest F1-scores and Recall across
all three LLMs (DeepSeek, Llama, Mistral) on both VulnPatchPairs and CVEFixes
datasets. For instance, on VulnPatchPairs, Var 4 improved the F1-score over V9 for
DeepSeek (+0.10), Llama (+0.14), and Mistral (+0.07). However, this gain in detection
capability invariably came with a drastic increase in False Positives (FPR). This demon-
strates that the specificity of indicator definitions is a powerful lever for controlling the
Recall/Precision trade-off, and relaxing these definitions pushes all tested LLMs to-
wards a high-recall, high-FPR mode.

Mitigation Check Simplicity (Var 5): Simplifying the mitigation assessment from nu-
anced confidence levels ("Strong" vs. "Weak/No") to a boolean check ("Present" vs.
"Absent") (Var 5) yielded robust results. With DeepSeek on VulnPatchPairs, Var 5 im-
proved the F1-score over V9 (0.51 vs 0.45). Across Llama and Mistral, Var 5 generally
performed comparably to or slightly better than their respective V9 F1-scores on Vul-
nPatchPairs, and showed mixed but generally close performance to V9 on CVEFixes for
all LLMs. This suggests that a simpler, more concrete assessment of mitigation pres-
ence might be more reliably handled by the LLMs in a limited-context analysis, offering
a good balance of performance across different models.

5.3 Conceptual Systemic TRIZ Analysis

This section involves applying broader TRIZ system thinking principles (System Oper-
ator, Contradictions, Ideality, Function/Resource Analysis, inventive principles like In-
termediary, Segmentation) conceptually to model the entire code lifecycle (transmis-
sion, storage, execution). The aim was to identify systemic vulnerability points beyond
static code and brainstorm potential TRIZ-inspired mitigation strategies (like the "Ana-
log Filter" concept), linking them to existing security paradigms.

Beyond engineering specific LLM prompts for static code analysis, TRIZ principles can
be applied more broadly to analyze the entire system involved in the lifecycle of soft-
ware code — encompassing its creation, storage, transmission, and execution. This sys-
temic perspective helps identify vulnerabilities that may arise not just from flaws within
the code logic itself, but also from interactions between the code and the systems hand-
ling it.

5.3.1 System Decomposition and Problem Definition

Following TRIZ methodology, we first define the system and its inherent problems.

System: Software Code Lifecycle (including code artifacts, storage media, transmission
channels, compilation/interpretation processes, execution hardware/software environ-
ments).
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Initial Problem: Software code, while potentially appearing correct in its static form
(analogous to an ideal blueprint or "holy scripture” in the brainstorming notes), becomes
vulnerable when subjected to real-world processes.

Sub-problems (derived from System Operator / Multi-Screen thinking):

1. Static Code Quality: Vulnerabilities inherent in the code logic itself (the focus of
Sections 3.2-3.4).

2. Transmission/Storage Integrity: Vulnerabilities arising during the transfer or
storage of code, where the code (Resource) can be modified, corrupted, or dis-
closed through interactions with the transmission medium (Resource), handling
tools (Resource), or external influences (Environment/Field). This includes po-
tential distortions or failures in the channel.

3. Execution Environment Integrity: Vulnerabilities emerging during execution due
to interactions between the code and the execution system (CPU, cache,
memory, OS, frameworks, libraries - Resources and Sub-systems). This includes
hardware anomalies, processor vulnerabilities (e.g., side channels), memory
management issues, and inadequate filtering/sandboxing within execution
frameworks.

This decomposition highlights that vulnerabilities are not isolated to the code artifact
but represent potential failures or harmful interactions across the entire system and its li-
fecycle.

5.3.2 Identifying System Contradictions

Several core Contradictions exist within this system: Code Correctness vs. Execution
Reality: Code may be logically correct (static view) but behave insecurely under spe-
cific runtime conditions or hardware interactions.

Data Transmission Speed/Efficiency vs. Transmission Integrity/Security: Faster, sim-
pler transmission protocols may offer fewer protections against modification or eaves-
dropping.

System Performance vs. Security Validation: Rigorous validation and filtering at each
stage (transmission, compilation, execution) improves security but may introduce per-
formance overhead (Contradiction resolved often by compromise, leading to vulnerabil-
ities).

Interoperability/Flexibility vs. Controlled Execution: Allowing code to interact with di-
verse system components and be easily modified (Resource interaction) increases flex-
ibility but creates attack surfaces compared to a highly restricted, monolithic system
(Mono-Bi-Poly principle consideration).
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5.3.3 Applying TRIZ Principles for Systemic Defense Concepts

The brainstorming explored using TRIZ principles to conceive defenses addressing
these systemic issues, moving beyond traditional static/dynamic analysis:

Principle 32 (Changing Color / Optical Properties) & Principle 28 (Mechanics Sub-
stitution) -> Conceptual " Analog Filter":

Idea: Exploit the difference between the digital (immaterial, easily manipulated) and
analog/physical (material, less directly attackable) domains. Code exists digitally, but its
transmission or intermediate processing could involve an analog conversion step.

Mechanism: Convert digital code/instructions into an analog format (e.g., visual repres-
entation like text on paper, optical signals - hence "photon filters" metaphorically). Be-
fore reconverting to digital for execution, apply a physical or analog filter that only al-
lows "safe" patterns, symbols, or sequences, inherently blocking patterns associated
with known vulnerabilities (similar to filtering offensive words). This uses the analog
domain as an Intermediary (Principle 24).

TRIZ Logic: This attempts to resolve the Contradiction between needing to transmit ex-
ecutable information vs. preventing harmful instructions from being transmitted/ex-
ecuted. It leverages the physical properties of the analog domain (Resource) as a control
mechanism. The filter acts as a preliminary check (Principle 9/10). The conversion pro-
cess implicitly uses MATCEM thinking by modeling the interaction between digital in-
formation (S1), the analog representation (S2), and the conversion/filtering process
(Field).

Principle 1 (Segmentation) & Principle 7 (Nested Doll) -> Layered Security Archi-
tecture:

Idea: Create distinct security zones or layers within the execution environment (e.g.,
within the processor, cache hierarchy, or OS).

Mechanism: Critical, highly sensitive code/data is restricted to the most protected inner
layers ("sectors"). Less sensitive operations occur in outer layers with potentially less
rigorous filtering (but still potentially using mechanisms like the "Analog Filter"
between layers). Penetrating each subsequent layer requires bypassing additional con-
trols. This creates a multi-level secure structure ("tower" metaphor).

TRIZ Logic: This uses Segmentation to divide the system and Nested Doll to create
hierarchical protection levels, limiting the impact of a breach in outer layers.

Other Mentioned Principles:

Convert Harm to Benefit / Blessing in Disguise - Principle 22: While not fully de-
veloped in the notes, this could relate to designing systems where attempted attacks trig-
ger defenses or provide useful information.
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System Transitions: Analyzing the problem at the level of the function, the application,
the OS, the hardware (sub-systems and super-systems) provides different perspectives
and potential solutions, as done in the system decomposition (3.6.1).

Mono-Bi-Poly: Considering transitions from single components/functions to multiple
interacting ones, highlighting the increased complexity and potential for interaction vul-
nerabilities versus the limitations of monolithic designs.

5.3.4 Implications for Vulnerability Management

This broader TRIZ analysis suggests that a comprehensive approach to code security
must consider the entire lifecycle. Vulnerability detection should ideally encompass not
just static code analysis but also analysis of transmission protocols, storage mechan-
isms, compilation/deployment processes, and the execution environment configuration.
Furthermore, defensive strategies could explore unconventional, TRIZ-inspired mech-
anisms like the conceptual "Analog Filter" or enhanced system segmentation to build
more resilient systems where vulnerabilities in one component are less likely to com-
promise the whole. This systemic view informs the scope and potential future directions
of the research presented in this thesis.

5.3.5 Validity and Novelty of Systemic Approach

Applying TRIZ system thinking (System Operator, Sub/Super-systems, Function/Re-
source analysis) to the entire code lifecycle provided a valuable conceptual framework.
The decomposition into Static Code, Transmission/Storage, and Execution Environment
aligns with standard security domains but gains structure through the TRIZ lens.

The conceptual defense mechanisms (" Analog Filter", Layered Security) derived using
TRIZ principles like Intermediary, Mechanics Substitution, Segmentation, Nested Doll,
while abstract, demonstrate TRIZ's potential for generating unconventional security
ideas. Finding real-world parallels in high-security technologies like Data Diodes and
Air Gaps (Section 4.4.5) adds validity to the underlying principles (especially Segment-
ation and one-way flow). The novelty lies in the TRIZ-driven conceptualization and the
idea of potentially integrating such filtering mechanisms within computational compon-
ents rather than solely as external appliances.

5.3.6 Addressing Broader Research Questions

This systemic analysis directly addresses the research goal of using TRIZ tools to pro-
pose ways to avoid executing vulnerable code. By identifying weaknesses beyond static
code (in transmission, execution) and proposing defenses based on physical separation,
domain transformation (analog filter), and structural layering, the TRIZ analysis
provides conceptual pathways towards building systems that are inherently more resili-
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ent to code vulnerabilities, rather than relying solely on detecting flaws in the code it-
self. This aligns with secure system design principles.

5.3.7 Conceptual Results: Systemic TRIZ Analysis of Code Lifecycle

Vulnerabilities

Beyond the empirical testing of LLM prompts for static code analysis, TRIZ principles
were applied conceptually to analyze the broader system encompassing the entire life-
cycle of software code, from creation through storage, transmission, and execution. This
systemic analysis, documented in brainstorming sessions, aimed to identify vulnerabilit-
ies arising from interactions within this lifecycle and to generate novel defensive con-
cepts using TRIZ tools.

System Decomposition and Problem Scope Expansion

The initial system analysis framed the core problem: software code, often considered
correct in its static form, becomes vulnerable through interaction with its environment
during its lifecycle. Using TRIZ system thinking (akin to the System Operator or multi-
screen analysis), the problem space was decomposed beyond just the static code itself.

Static Code: The inherent logic and structure of the code.

Transmission & Storage: Processes involving the transfer of code between storage and
execution/modification points. Vulnerabilities here relate to potential modification, cor-
ruption, or unauthorized access during transit or rest, involving interactions between the
code (Resource), storage/transmission media (Resource), and handling tools/protocols
(Field, Resource).

Execution Environment: The dynamic execution of code involving hardware (CPU,
cache, memory - Resources), operating systems, libraries, and frameworks (Sub-sys-
tems, Resources). Vulnerabilities arise from flawed interactions, hardware anomalies,
insecure configurations, or insufficient runtime filtering/sandboxing.

This decomposition led to the realization that vulnerabilities are systemic, emerging not
only from code logic but also from the processes and environments interacting with the
code throughout its lifecycle.

Conceptual Defense Mechanisms Derived from TRIZ

Applying TRIZ principles to this systemic view generated conceptual ideas for defense
mechanisms operating beyond traditional code scanning.

The " Analog Filter'" Concept

Core Idea: Inspired by leveraging different physical domains (Principle 28: Mechanics
Substitution) and inserting an Intermediary (Principle 24), this concept proposes con-
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verting digital code or instructions into a temporary analog/physical format (e.g., visu-
ally, optically) before critical processing or execution.

Mechanism: An analog "filter" would then inspect this representation, allowing only
patterns, symbols, or sequences deemed safe (analogous to filtering prohibited words
from text recognized via OCR) before reconversion to digital. The key is that the poten-
tially harmful digital input does not directly interact with the execution environment; it
must pass through the analog intermediary and filter. This acts as a form of Preliminary
Anti-Action (Principle 9).

Potential Application: Conceptually, such filters could be placed between system com-
ponents (e.g., memory and CPU, network interface and application logic) to sanitize in-
struction or data flow based on physical/analog pattern recognition rather than purely di-
gital logic, potentially resisting digital bypass techniques.

Layered Security Architecture ('"Photon Filters" / "Tower")

Core Idea: Applying Segmentation (Principle 1) and Nested Doll (Principle 7), this
concept envisions creating distinct, hierarchical security zones within hardware or soft-
ware execution environments.

Mechanism: Highly sensitive code and operations would be confined to inner, strongly
protected layers, potentially using mechanisms like the "Analog Filter" or other strict
controls between layers. Less sensitive operations occur in outer layers. Compromising
an outer layer does not automatically grant access to inner layers.

Potential Application: This could manifest as hardware-enforced secure enclaves with
filtered communication channels, or multi-level operating system architectures where
inter-layer communication is strictly mediated and validated.

Underlying TRIZ Principles in Systemic Analysis

The brainstorming process implicitly or explicitly drew upon several TRIZ tools beyond
those mentioned above.

System Transitions (Super-system/Sub-system Analysis): Examining the problem at dif-
ferent levels (function, application, OS, hardware) was crucial for the decomposition in
44.1.

Mono-Bi-Poly: Considering the evolution from simple components to complex interact-
ing systems helped identify interaction points as potential sources of vulnerability.

Convert Harm to Benefit (Principle 22): Briefly considered as a potential avenue for fu-
ture exploration (e.g., using attack attempts to trigger enhanced defenses).

MATCEM / Su-Field Analysis: While not explicitly detailed in the notes provided, the
focus on interactions between components (code, hardware, transmission medium)
aligns with the core ideas of Su-Field modeling.
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Implications of Systemic Analysis

This conceptual application of TRIZ yielded insights beyond the scope of the LLM
prompt experiments: It reinforces that code vulnerabilities are often systemic issues, not
just localized bugs. It generated novel, albeit conceptual, defense strategies by applying
TRIZ principles like Intermediary and Segmentation in unconventional ways (e.g., the
Analog Filter). It highlights the potential for TRIZ to contribute not only to vulnerabil-
ity detection but also to the design of more inherently secure systems by proactively ad-
dressing contradictions and leveraging system resources differently.

These conceptual results complement the empirical findings from the prompt evalu-
ations, demonstrating the broader applicability of the TRIZ methodology to the thesis
topic concerning vulnerabilities across the code lifecycle.

Connection to Existing Security Technologies

Further research revealed that while the specific conceptual mechanisms like the intra-
processor "Analog Filter" derived from TRIZ brainstorming may be novel, the underly-
ing principles resonate strongly with existing, highly specialized security technologies
designed for enforcing data separation and one-way flow. These technologies provide
real-world validation for the directions suggested by the TRIZ analysis.

Data Diodes: These hardware devices enforce strictly unidirectional data transfer, typic-
ally using fiber optics with physically separate transmit/receive paths. This directly im-
plements the principle of preventing harmful feedback or injection by eliminating the
return channel entirely. They are commonly used in high-security environments like
military networks and industrial control systems (SCADA) [41] and represent a physical
realization of Segmentation (Principle 1) and using a hardware Intermediary (Principle
24) to resolve the connectivity vs. security Contradiction.

Air Gaps: Representing the most extreme form of Segmentation, air-gapped systems
maintain complete physical network isolation. Data transfer relies on manual movement
of physical media, requiring strict procedures for scanning and validation (Preliminary
Action/Anti-Action - Principles 9/10) [42]. This resolves the security contradiction by
severely restricting the "transmission system" itself.

Optical Fiber Isolators: Similar to data diodes in using light for transmission, these
devices prevent electrical signal propagation, eliminating certain classes of electrical in-
terference or attack vectors. This leverages a change in the physical domain (Principle
28: Mechanics Substitution) as a security control.

Unidirectional Gateways: These are often software or hardware-software systems that
allow data flow in one direction but include content filtering and protocol breaking (In-
termediary function). They inspect traffic, removing potentially malicious elements
(scripts, executables) before forwarding allowed data types. This combines one-way
flow with Preliminary Anti-Action (filtering).
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Strict Protocol Filtering & Formal Verification: Software-based approaches like strin-
gent protocol filters (allowing only plain text) or formal verification methods (mathem-
atically proving data properties, e.g., in seL4 [43]) act as Preliminary Anti-Action mech-
anisms, attempting to ensure only "safe" data according to predefined rules passes
through a checkpoint.

These existing solutions validate the core idea emerging from the TRIZ analysis: resolv-
ing the contradiction between data utility and security often involves physical or logical
segmentation, introducing intermediaries, changing the transmission medium/domain,
and implementing preliminary filtering/validation.

A key observation, however, is that most of these robust, high-assurance solutions (es-
pecially data diodes and air gaps) are implemented as external devices or architectural
configurations. The TRIZ brainstorming pushed further, conceptualizing the integration
of such filtering principles within core processing components (like CPUs) using hypo-
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thetical mechanisms ("photon filters," "analog filters"). This suggests a potential avenue
for future research: applying TRIZ to design inherently more compartmentalized and
self-filtering processing architectures, moving beyond reliance on external security ap-
pliances. The analysis reinforces the idea that reducing the uncontrolled "freedom" of

data and code flow within a system is paramount for enhancing security.

5.3.8 Conceptual Claims Derived from Systemic TRIZ Analysis

To further formalize and articulate the core conceptual defense strategies emerging from
the systemic TRIZ analysis (detailed in Sections 4.4.2 and 4.4.5), their underlying prin-
ciples can be expressed using patent claim language.

1. Method for Secure Data Transmission Between Components of a Computing System

A way for secure data transmission between components of a computing system (ana-
logue: systems using security gateways or data diodes), characterized in that, for the
purpose of preventing the transfer of potentially harmful digital constructs which are
able to illegally bypass standard digital filters, it is implemented by converting an initial
digital data stream into an intermediate analog representation (e.g., optical, acoustic),
applying an analog sterilization mechanism to said intermediate representation con-
figured to selectively pass patterns corresponding to safe constructs while blocking
and/or altering patterns corresponding to unsafe constructs, and/or subsequently recon-
verting the filtered intermediate analog representation back into a digital data stream be-
fore delivery to the target component and/or storage and/or other use.

TRIZ Link Explanation: This method conceptually implements Principle 24 "Intermedi-
ary" by introducing the analog representation, Principle 28 "Mechanics Substitution" by
using physical properties of the analog signal for filtering, and Principle 9 "Preliminary
Anti-Action" through filtering before execution.
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2. System for Hierarchical Zonal Data Processing

A system architecture for secure data processing including multi-level variations, char-
acterized in that, for the purpose of providing granular, hierarchical security control
and/or limiting the transfer of compromise between components and/or processes of dif-
fering sensitivity, it is implemented by defining at least one distinct processing zone ar-
ranged hierarchically based on sensitivity levels, establishing physical and/or logical se-
curity boundaries between adjacent hierarchical zones, and/or employing mediation
mechanisms at said boundaries configured to control data flow, validate data according
to zone-specific policies, and/or optionally apply distinct filtering techniques (poten-
tially including the method of claim 1) based on adjacent zone sensitivity.

TRIZ Link Explanation: This architecture conceptually implements Principle 1 "Seg-
mentation" to divide the system into zones and Principle 7 "Nested Doll" to create hier-
archical protection levels.

These conceptual claims encapsulate the core innovative ideas derived from applying
TRIZ system thinking to the problem of code security across its lifecycle, suggesting
potential avenues for designing inherently more secure systems.

5.4 Strengths of the Study

Novel Application of TRIZ: Systematically applying TRIZ principles to LLM prompt
engineering for vulnerability detection and to the conceptual analysis of the code life-
cycle represents a novel interdisciplinary approach, bridging systematic innovation with
Al-driven cybersecurity.

Empirical Refinement and Iterative Development: The study employed an iterative de-
velopment process for prompt engineering, quantitatively evaluating multiple prompt
versions (V8-V11, Table 2) using the DeepSeek LLM. This empirical grounding for
prompt design and selection is a methodological strength.

Systematic Ablation Study: A systematic ablation study was conducted on the baseline
TRIZ prompt (V9) with the DeepSeek LLM (Table 3), offering valuable insights into
the specific contribution of different TRIZ-derived prompt components. Key variations
from this ablation (Var 4 and Var 5) were subsequently tested across Llama and Mistral
(Tables 5 and 6), providing broader evidence on the impact of components like indicator
structure and mitigation assessment logic across different models.

Use of Real-World Datasets: The empirical evaluations utilized the VulnPatchPairs
dataset, derived from real-world open-source projects like QEMU and FFmpeg, and the
CVEFixes dataset, which is based on publicly reported CVEs and their fixes. This in-
creases the practical relevance of the findings compared to studies relying purely on
synthetic datasets.
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Demonstrated Improvement Over Baselines Across Multiple LLMs: The study empiric-
ally showed that the proposed TRIZ-based prompting methodology generally achieved
significantly better F1-Scores and Recall compared to standard CoT and DFA baselines.
This advantage was not only evident with the initial LLM (DeepSeek) but was also
largely observed when tested with Llama and Mistral on both datasets, highlighting the
robustness of the TRIZ approach, even though absolute performance and reliability var-
ied between the LLMs (Tables 5 and 6).

Cross-Dataset and Cross-LLLM Validation: The research included cross-dataset valida-
tion, evaluating the prompts on two distinct real-world datasets (VulnPatchPairs and
CVEFixes). Furthermore, key prompts were subjected to cross-LLM validation using
DeepSecek, Llama, and Mistral. This dual level of validation increases confidence in the
generalizability of the core findings regarding the TRIZ approach's benefits over sim-
pler baselines and provides insights into LLM-specific behaviors.

Combined Methodological Approach: The integration of quantitative empirical prompt
evaluation (including iterative development, ablation, and cross-model/dataset testing)
with qualitative conceptual systemic TRIZ analysis provides a richer and more compre-
hensive understanding of TRIZ's applicability to code security, addressing both specific
detection tasks and broader strategic considerations.

5.5 Limitations of the Study

Context Limitation: The primary limitation of the empirical study is the analysis of
single functions without broader inter-procedural or application-level context. This in-
herently restricts the ability of any LLM to definitively assess exploitability and the ef-
fectiveness of external mitigations, impacting both FN and FP rates.

LLM Specificity and Performance Variability: While the study was expanded to include
three general-purpose LLMs, the results clearly indicate that performance and behavior
can vary significantly between different models. Findings specific to one LLM may not
directly transfer to others, and the optimal prompt structure or approach might also dif-
fer. The observed variations in F1-score, Recall, Precision, FPR, and error rates across
DeepSeek, Llama, and Mistral for the same prompts and datasets (Tables 5 and 6) un-
derscore this limitation.

LLM Reliability and Error Rates: A significant limitation observed during the cross-
LLM validation was the non-negligible rate of null or error outputs, particularly with
Llama and Mistral LLMs. For example, Llama experienced error rates as high as 81%
with the CoT prompt on VulnPatchPairs and consistently around 35% on the CVEFixes
dataset across all prompts. Mistral also showed considerable error rates (e.g., 28.2% for
CoT on VulnPatchPairs, and 10-18% on CVEFixes). These reliability issues can affect
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the practical deployment of such models and the robustness of experimental results, as
metrics are calculated on successful runs.

Dataset Scope and Bias: While real-world datasets (VulnPatchPairs and CVEFixes)
were used, they may have inherent biases regarding the types or complexity of vulner-
abilities, programming languages (VulnPatchPairs focused on C, though CVEFixes is
multi-language), or project domains represented. This potentially limits the generalizab-
ility of the findings to all vulnerability classes or coding contexts.

Dataset Variability: Performance and the relative ranking of prompts and LLMs were
observed to differ between the VulnPatchPairs and CVEFixes datasets across all tested
LLMs. This indicates that results are sensitive to dataset characteristics, making it chal-
lenging to claim universal superiority for any single approach without broader testing.

Metric Limitations: While standard metrics like F1-score, Recall, Precision, and FPR
were used, they may not capture the full picture of practical usability. For instance, a
high F1-score achieved with a very high FPR (as seen with Var 4 across LLMs) might
be unacceptable in many real-world scenarios. Qualitative assessment of the LLM's
reasoning was also limited in this study.

Baseline Comparison Nuance: The comparison to CoT and DFA baselines, adapted
from literature, is subject to nuances. Variations in CoT and DFA implementation exist,
and the performance of these baselines also varied significantly depending on the LLM
used. Furthermore, the high error rates of the CoT and DFA baselines with some LLMs
(e.g., Llama and Mistral) impact the direct reliability of metric comparisons for those
specific combinations.

Stochasticity of LLMs: Although mitigated by using a low temperature (0.1) and aver-
aging results from multiple runs where specified (e.g., 500 runs per prompt for Deep-
Seek in initial tests), LLM outputs can still exhibit some variability.

Conceptual Nature of Systemic Findings: The systemic TRIZ analysis and the proposed
defense concepts (Section 5.3.7 Conceptual Results: Systemic TRIZ Analysis of Code
Lifecycle Vulnerabilities) are primarily conceptual and require substantial further re-
search to assess their practical feasibility, implementation details, and effectiveness.

5.6 Synthesis of Findings

This thesis successfully explored the application of TRIZ principles to the domain of
LLM-based code vulnerability detection and to conceptual systemic security analysis.
The empirical results demonstrated that incorporating structured analytical steps derived
from TRIZ concepts, particularly Function and Resource analysis, into LLM prompts
can enhance vulnerability detection. With the DeepSeek LLM, this structured TRIZ ap-
proach led to significantly improved performance (notably in Recall and F1-Score)
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compared to standard CoT and DFA baselines on both datasets tested. However, when
validated across Llama and Mistral LLMs, the advantage of TRIZ prompts over these
baselines was not consistently replicated; in several instances, CoT and DFA baselines
matched or exceeded the F1-Score and Recall of the tested TRIZ prompts for these
LLMs. This highlights that while the structured methodology holds promise, its relative
effectiveness, optimal configuration, and reliability are highly dependent on the specific
LLM and dataset characteristics.

Achieving an optimal balance between Recall and Precision for single-function analysis
remains a significant challenge due to the inherent context limitations of analyzing isol-
ated code snippets, a factor that affected all tested LLMs. The ablation studies conduc-
ted primarily with DeepSeek were crucial in identifying key TRIZ-derived prompt com-
ponents, such as detailed framing and justification requirements. Subsequent testing of
select variations across all three LLMs indicated that certain prompt modifications had
consistent effects: simplifying mitigation checks (as in Var 5) generally offered stable,
balanced performance relative to the baseline TRIZ prompt V9 across different LLMs.
Adjusting indicator specificity by removing detailed structures (as in Var 4) reliably in-
creased Recall and often F1-scores for DeepSeek and Llama, albeit with a correspond-
ing significant rise in FPR; for Mistral, this variation did not surpass baseline F1-scores.
These findings emphasize that the "best" specific prompt configuration is often LLM
and dataset dependent, necessitating tailored approaches rather than a one-size-fits-all
solution.

Furthermore, the conceptual application of TRIZ provided a valuable framework for
analyzing vulnerabilities across the entire code lifecycle (transmission, storage, execu-
tion) and generated novel ideas for systemic defenses. This confirms the versatility of
TRIZ as a tool for cybersecurity problem-solving that extends beyond prompt engineer-
ing for static code analysis.

While LLMs guided by TRIZ-enhanced prompts show considerable promise as aids in
the complex task of security analysis—particularly with LLMs like DeepSeek where
clear advantages in detection rates over simpler prompting methods were observed—
they currently complement rather than replace traditional static analysis tools, dynamic
testing, and expert human review. The significant performance variability observed
across different LLMs, the persistent context limitations, and the high error rates en-
countered with some models (notably Llama and Mistral) underscore the ongoing need
for careful LLM selection, rigorous validation, and thoughtful integration of LLM-
based tools into broader security workflows.
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6 Conclusion

This thesis investigated the application of TRIZ principles to the multifaceted challenge
of identifying security vulnerabilities in software code. The research explored two
primary avenues: the engineering of structured prompts for LLMs to enhance static code
analysis, and the conceptual application of TRIZ system thinking to analyze the broader
code security lifecycle, including its transmission, storage, and execution. A central aim
was to determine if TRIZ could provide a robust, structured methodology to improve
automated vulnerability detection via general-purpose LLMs and to offer novel per-
spectives on mitigating software security risks.

The comprehensive empirical findings revealed a nuanced picture. While the structured
TRIZ framework demonstrated potential for enhancing LLM-driven vulnerability detec-
tion, its effectiveness relative to standard CoT and DFA baselines varied considerably
across the tested LLMs (DeepSeek, Llama, and Mistral) and datasets (VulnPatchPairs
and CVEFixes). With the DeepSeek LLM, TRIZ-based prompts generally led to signi-
ficantly improved F1-scores and Recall compared to the baselines. However, for Llama
and Mistral, the CoT and DFA baselines often achieved comparable or superior F1-
scores and Recall, indicating that the benefits of the specific TRIZ prompts evaluated
are LLM-dependent. The research also highlighted persistent challenges in optimizing
performance metrics due to the inherent Recall and Precision trade-off, context limita-
tions of single-function analysis, and significant variations in LLM capabilities, error
rates, and sensitivities to prompt structures.

Furthermore, while the conceptual application of TRIZ yielded promising systemic de-
fense ideas, translating these into practically implemented and validated security solu-
tions remains an area for future work.

6.1 Contributions

Comprehensive Empirical Evaluation and Validation: The study provides extensive em-
pirical evidence on the effectiveness and challenges of using TRIZ-based prompts for
vulnerability detection. This multi-faceted evaluation includes: (1) Iterative prompt de-
velopment and refinement, primarily using the DeepSeek LLM on the VulnPatchPairs
dataset. (2) A systematic ablation study with DeepSeek to identify the impact of specific
TRIZ-derived prompt components. (3) Cross-dataset validation of prompts on both Vul-
nPatchPairs and CVEFixes datasets to assess generalizability. (4) Crucially, cross-LLM
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validation of key TRIZ prompts (V9, Var 4, Var 5) and baselines (CoT, DFA) using
three different LLMs (DeepSeek, Llama, Mistral) on both datasets.

This comprehensive testing revealed that: (1) With the DeepSeek LLM, TRIZ-based
prompts consistently achieved significantly improved F1-scores and Recall compared to
standard CoT and DFA baselines across both datasets. (2) With Llama and Mistral
LLMs, the relative performance was more varied. While TRIZ prompts sometimes
offered advantages over CoT, the DFA and CoT baselines frequently achieved compar-
able or superior F1-scores and Recall, particularly with Mistral. These comparisons
were also attended by considerations of high False Positive Rates for some high-per-
forming baselines (e.g., Llama with DFA) and significant operational error rates for
Llama and Mistral across various prompts.

This extensive validation, therefore, contributes by not only demonstrating the potential
of the TRIZ methodology with certain LLMs but also by highlighting the critical LLM-
specific nature of prompt effectiveness and reliability in the cybersecurity domain.

6.2 Future Work

6.2.1 Implications for Practitioners

Employ Structured LLM Queries: Practitioners using general-purpose LLMs for code
review can benefit significantly from structuring their prompts systematically. Drawing
inspiration from TRIZ Function Analysis and Resource Analysis — by asking the LLM
specific questions about inputs, outputs, resource handling, data flow, and the presence
or absence of expected security checks — is demonstrably more effective than using gen-
eric "find vulnerabilities" prompts. This structured approach was shown to improve de-
tection capabilities across multiple LLMs.

Strategic Prompt and LLM Selection Based on Need and Risk Tolerance: The study
clearly shows that different prompt structures and LLMs yield varying balances of Re-
call, Precision, and FPR.

For scenarios requiring high Recall where subsequent human review can filter noise
(e.g., deep-dive security assessments), prompts like Variation 4 (which removes specific
indicator structures) consistently provided higher F1-scores and Recall across Deep-
Seek, Llama, and Mistral, albeit with substantially higher FPRs.

For quicker checks, pre-commit hooks, or situations where minimizing false alarms is
critical, practitioners should opt for prompts and LLM combinations that offer better
Precision and lower FPR. While a universally "high-precision" TRIZ prompt across all
LLMs wasn't identified as clearly as with DeepSeek (where Var 2 was promising), vari-
ations like Var 5 (simplified mitigation) offered a more balanced performance that was
relatively stable across the tested LLMs.
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Practitioners must consider the specific LLM's characteristics. For example, while
Llama showed high recall with some prompts, its high error rate and FPR in this study
make it less reliable for practical, consistent use without significant result validation.
DeepSecek offered more stable, albeit sometimes more conservative, performance.

Critically Acknowledge LLM Limitations and Variability: It is crucial for practitioners
to remain aware of the inherent limitations of current general-purpose LLMs when ana-
lyzing isolated code snippets.

Context Window: The single-function analysis limits the LLM's ability to assess inter-
procedural vulnerabilities or the true impact of external mitigations. Findings, especially
for complex flaws, should be treated as indicators requiring further manual investigation
or analysis with tools providing broader program context.

LLM Inconsistency and Reliability: Performance (accuracy, F1-score, FPR) and reliab-
ility (error rates in generating responses) vary significantly between different LLMs (as
seen between DeepSeek, Llama, and Mistral). A prompt effective with one LLM may
perform differently with another. The high error rates observed with some LLMs in this
study are a serious practical concern. Practitioners should therefore pilot and select
LLM models carefully for their specific environment and use case.

Relying solely on current general-purpose LLM prompts for definitive vulnerability as-
sessment is not advisable.

Leverage TRIZ-Inspired Prompts for Enhanced Initial Scanning: Despite the limita-
tions, well-structured TRIZ-inspired prompts (such as Var 5 or a carefully chosen V9
variant depending on the selected LLM and tolerance for FPR) generally offer a more
effective way to leverage general-purpose LLMs for an initial phase of vulnerability
scanning compared to basic CoT or DFA prompts, particularly for improving detection
rates (Recall and F1-Score). However, the choice of LLM and the need for careful re-
view of the LLM’s outputs, given the potential for errors and false positives/negatives,
cannot be overstated.

6.2.2 Implications for Researchers

Enhancing Prompts for Broader Contextual Analysis: A primary direction is to develop
and evaluate TRIZ-based prompts designed for analyzing interactions between multiple
functions or components. This could involve incorporating RAG techniques to dynam-
ically provide necessary context (e.g., caller/callee functions, related data structures,
project-specific security policies) to the LLM, potentially overcoming some of the limit-
ations of single-function analysis observed across all tested LLMs.

Refining and Optimizing TRIZ Prompt Components for Different LLMs: Further re-
search is needed to investigate the optimal structure for vulnerability indicators and mit-
igation assessment logic within TRIZ prompts.
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The performance of Variation 4 (ablating specific indicator structures) suggests that
while it boosts Recall and F1-score across LLMs, its high FPR needs mitigation, per-
haps through post-processing or refined secondary checks.

Variation 5 (simplified boolean mitigation) showed promise as a stable performer across
LLMs and could be a basis for further refinement.

The varying impact of components like explicit Contradiction Analysis (e.g., Var 2 with
DeepSeek) across datasets, and the untested performance of several ablation variants
(Var 1, Var 2, Var 3, Var 6) on Llama and Mistral, warrants further LLM-specific in-
vestigation and tuning of prompt components.

Exploring Multi-Turn TRIZ-based Dialogues: Investigating the use of TRIZ principles
like Dynamicity and Feedback in multi-turn conversational prompting frameworks is a
promising area. Such an approach would allow the LLM's intermediate findings to dy-
namically guide subsequent analytical steps, potentially leading to more adaptive and
deeper analysis than single-shot prompting.

Comprehensive Cross-LLM and Cross-Dataset Validation and Benchmarking: While
this study initiated cross-LLM validation for selected prompts, more extensive research
is needed.

Validate the full suite of TRIZ prompt variations (including all V9 ablations) across a
wider range of LLMs (both proprietary and leading open-source models) and diverse
vulnerability datasets (e.g., Juliet, OWASP Benchmark, other CWE-specific datasets)
covering multiple programming languages.

Systematically investigate and characterize the reasons behind performance differences
and error rate variations observed across LLMs like DeepSeek, Llama, and Mistral with
specific prompts.

Establish robust benchmarks for TRIZ-inspired prompting techniques in cybersecurity.

Understanding and Mitigating LLM Errors and Unreliability: The high error rates en-
countered with some LLMs (Llama and Mistral in Tables 5 and 6) are a critical area for
research. Future work should focus on: (1) Identifying the causes of these null/error re-
sponses (e.g., prompt complexity, specific code constructs, API limitations, model-spe-
cific failure modes). (2) Developing strategies to improve prompt robustness or LLM
handling to minimize such failures.

Deepening the Understanding of Dataset Impact on LLM Performance: The observed
variability in LLM and prompt performance between the VulnPatchPairs and CVEFixes
datasets needs further exploration. Research could focus on identifying dataset charac-
teristics (e.g., code complexity, vulnerability type distribution, code style, function
length) that most significantly influence LLM analytical capabilities and how these in-
teract with specific LLM architectures.
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Investigating the Feasibility of Conceptual TRIZ-inspired Defenses: The systemic de-
fense concepts proposed (e.g., "Analog Filter," layered execution environments) require
feasibility studies. This could involve theoretical modeling, simulation, or proof-of-
concept implementations to assess their potential and practicality in real-world systems.

Applying TRIZ for Exploit Path Analysis and Generation: Future research could ex-
plore the application of TRIZ principles to model potential exploit paths or to analyze
the systemic contradictions that make particular exploits possible, potentially aiding in
proactive defense design or penetration testing.

Fine-tuning LLMs with TRIZ-Structured Data: Explore fine-tuning LLMs using data-
sets where the vulnerabilities and secure coding patterns are explicitly annotated or ex-
plained using the structured analytical framework of TRIZ (e.g., Function Analysis, Re-
source Analysis). This could potentially imbue models with a more systematic "under-
standing" of vulnerability mechanisms.

6.3 Concluding Remarks

This research successfully demonstrated that the systematic problem-solving methodo-
logy of TRIZ can be effectively adapted and applied to the modern challenge of enhan-
cing LLM-driven code vulnerability detection. The empirical results established that in-
corporating structured analytical steps derived from TRIZ concepts into LLM prompts
can yield substantial improvements in vulnerability detection effectiveness (notably F1-
Score and Recall) compared to standard CoT and DFA baselines, particularly when ap-
plied with certain LLMs. This advantage was clearly observed with the DeepSeek LLM
across multiple datasets (VulnPatchPairs and CVEFixes). However, with Llama and
Mistral, the performance of TRIZ prompts relative to the baselines was more varied,
with baselines often proving competitive or superior in F1-score and Recall. These
LLM-specific behaviors, alongside observed nuances in reliability and error rates, un-
derscore the complexity of generalizing prompt effectiveness across different models.

While context limitations inherent in static, single-function analysis continue to pose
hurdles to achieving perfect accuracy with any of the tested approaches, the TRIZ
framework provides a valuable and structured method for guiding LLM reasoning and
for systematically exploring the critical Recall/Precision trade-off. The ablation study
was instrumental in pinpointing key elements of the TRIZ-based prompts that contribute
to performance with DeepSeek, such as detailed analytical framing and justification
generation. It also identified promising prompt variations whose impacts (like adjusting
indicator specificity or simplifying mitigation checks) showed certain consistencies but
also LLM and dataset dependencies when tested more broadly.

Furthermore, the conceptual application of TRIZ generated novel perspectives on sys-
temic defenses across the code lifecycle, confirming the methodology's broader relev-
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ance to cybersecurity beyond prompt engineering. This work lays a foundation for fu-
ture research aimed at further integrating TRIZ's structured innovation techniques with
the rapidly evolving capabilities of Large Language Models. The goal remains to create
more effective, reliable, and context-aware tools for building and maintaining secure
software systems, a journey that underscores both the potential of such interdisciplinary
approaches and the ongoing critical need for rigorous, model-specific validation and re-
finement in the face of diverse technological landscapes.
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Appendix 2 — CoT Prompt

As a security researcher, you are tasked with reporting security vulnerabilities. You are currently looking
at the following code:

1333

{code}

You are expected to work step-by-step:

1. Identify Weaknesses: Identify which vulnerabilities could be present in the following code.

2. Review User Input Handling: Look for any input sources that are not properly validated or sanitized
before being used in unsafe manner. If variable that is passed into unsafe function is not directly
influenced by external user input, the vulnerability is not currently present and must not be reported.

3. Analyze Data Flow: Trace the flow of untrusted data to the system command. Ensure that there are no
points where user-controlled input can directly influence the command execution.

4. Check for Mitigations: Examine if there are any mitigations in place to prevent command injection,
such as input validation, sanitization, or using safer alternatives to executing system commands.

5. Evaluate Conditional Branching: If there’s dead code (that can never be reached), then this part must
not be evaluated.

6. Assess Error Handling: Evaluate how errors, if any, are handled.

7. Identify Code Leaking Secrets: Check whether the code contains secrets that should not be public
knowledge.

8. Provide verdict (one line for every potential discovered weakness). Keep in mind you must not report
vulnerabilities that cannot be currently abused by malicious actors. False positive results must be kept to
minimum. The verdict must be in the format: “vulnerable: <YES or NO>'
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Appendix 3 — V8 TRIZ prompt

ROLE:

You are an expert Al assistant specializing in software security analysis. Your primary methodology
integrates standard security knowledge with the systematic problem-solving principles of TRIZ (Theory
of Inventive Problem Solving) to provide deep, context-aware vulnerability assessments.

TASK:

Analyze the provided code snippet(s) and any accompanying context. Your goal is to accurately classify
whether an exploitable security vulnerability exists. Strive for a strong balance between detecting
vulnerabilities (Recall) and minimizing false alarms (Precision/FPR), aiming for an improved F1-Score
compared to previous attempts. Apply the TRIZ-based analytical process rigorously below to make your
determination.

INPUT:

{code}

TRIZ-BASED ANALYTICAL PROCESS (Apply sequentially for each potential finding before making
the final YES/NO decision):

Initial Identification & Contextual Understanding:
Identify potential vulnerability candidates within the code (e.g., OWASP Top 10 patterns).

Analyze the candidate snippet and its surrounding context (function, class, related files, framework
info) to understand purpose, data flow, inputs, outputs, and local operating environment.

TRIZ Problem Framing:

(a) Identify Contradiction(s): State the core technical/physical contradiction(s). Assess the apparent
effectiveness of the code's attempt to resolve this contradiction. Are there signs of incomplete resolution
or introduced weaknesses?

(b) Function Analysis: Describe the intended useful function(s). Identify potential harmful functions
or negative side effects. Note insufficient useful functions (e.g., missing checks). Briefly assess the
potential impact and likelihood of harm if these functions are misused or insufficient.

(c) Resource Analysis: List key resources involved. Evaluate the controls. Assess the realistic
controllability/accessibility of resources required for a potential exploit in a typical operational context.

Vulnerability Hypothesis (TRIZ Lens):

Based on the TRIZ framing (especially poorly resolved contradictions, impactful
harmful/insufficient functions, or realistically misusable resources), formulate a specific hypothesis
explaining how this could lead to a security vulnerability.

Consider relevant TRIZ Inventive Principles to refine the potential exploit path or identify
overlooked weaknesses.

Contextual & Systemic Evaluation (Mitigation & Exploitability Check):

Evaluate the hypothesis critically:
Data/Control Flow: Is the path plausibly reachable by potentially untrusted data flow?
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Mitigation Assessment: Identify any mitigating factors (sanitization, framework protection,
config). Critically evaluate the quality, applicability, and likely effectiveness of these mitigations against
the specific hypothesized vulnerability. Is the mitigation robust and directly relevant?

Exploitability Realism: Based on resource controllability (from 2¢) and mitigation assessment,
how realistic is the exploit scenario? Does it require highly improbable conditions?

Binary Classification Decision:
Based on the comprehensive analysis (Steps 2-4), make the binary classification:
vulnerable: YES if:

(A strong TRIZ signal exists (e.g., clearly unresolved/poorly resolved contradiction, high-
impact harmful/insufficient function, easily misused resource) AND identified mitigations are assessed as
likely ineffective, inapplicable, weak, or absent (Step 4)).

OR (A plausible TRIZ signal exists AND the exploit path appears realistic with no strong,
effective mitigation identified).

vulnerable: NO if:
No significant TRIZ weakness signal is identified.

OR (A potential TRIZ weakness is identified BUT there is strong evidence of effective,
applicable mitigation OR the required exploit conditions/resource control are deemed highly unrealistic in
a typical context).

Justification:
Provide a clear and concise rationale explaining the YES or NO decision.
Reference the core TRIZ weakness identified (contradiction, function, resource).

Crucially, explain the assessment of mitigation effectiveness and exploitability realism (Step 4) and
how it informed the final decision according to the logic in Step 5.

OUTPUT FORMAT:
Output only the final classification and its justification:

Classification: vulnerable: YES or vulnerable: NO

Justification: Detailed reasoning based on the TRIZ analysis, focusing on the assessment of the
identified weakness, mitigation effectiveness, and exploitability realism.

FINAL INSTRUCTION:

Apply the TRIZ analysis rigorously. Your final output must be strictly binary ("vulnerable: YES" or
"vulnerable: NO"). Focus on achieving a better balance (F1-Score) by accurately identifying
vulnerabilities where mitigations are weak or absent and exploitability is realistic, while filtering out
cases with strong mitigations or highly unrealistic exploit paths. Provide the detailed justification
explaining your assessment.
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Appendix 4 — V9 TRIZ prompt

ROLE:

You are an expert Al assistant specializing in software security analysis. Your primary methodology
integrates standard security knowledge with the systematic problem-solving principles of TRIZ (Theory
of Inventive Problem Solving) to provide deep, context-aware vulnerability assessments for individual
functions.

TASK:

Analyze the provided code_snippet (representing a single function) and any accompanying context. Your
goal is to accurately classify whether this function contains an exploitable security vulnerability
("vulnerable: YES" or "vulnerable: NO"). Aim to maximize the F1-Score by achieving the best possible
balance between detecting true vulnerabilities (Recall) and minimizing false alarms (Precision). Apply the
TRIZ-based analytical process rigorously below, focusing on identifying high-confidence vulnerability
indicators verifiable within the snippet.

INPUT:

{code}

TRIZ-BASED ANALYTICAL PROCESS (Apply sequentially before making the final YES/NO
decision):

Initial Contextual Understanding:

Analyze the code_snippet and any provided context to understand the function's purpose, inputs,
outputs, and apparent operating environment.

TRIZ Problem Framing & Weakness Identification:

(a) Function Analysis: Describe intended useful functions. Identify potential harmful functions
(actions with negative security consequences like executing commands, writing arbitrary data) or
insufficient useful functions (missing necessary security actions like validation, checks, cleanup - violates
Principle 11: Beforehand Cushioning).

(b) Resource Analysis: List key resources manipulated (inputs, memory, files, state variables).
Evaluate how they are controlled. Focus on the flow of potentially untrusted resources (especially
function arguments, data read within the function).

(c) Contradiction Analysis: Identify any core contradictions the function attempts to resolve (e.g.,
process input quickly vs. process input safely). Note signs of poor resolution.

Identify High-Confidence Vulnerability Indicators (TRIZ Lens):
Based on Step 2, determine if any of the following high-confidence indicators are clearly present
within the function's logic:

Indicator A (Taint Flow to Sink): Clear path for a potentially untrusted input/resource (Resource)
to reach a known dangerous sink (e.g., system call, DB query, unescaped web output, file path operation -
Harmful Function) without verifiable evidence of standard, effective sanitization/validation/encoding
applied to that specific resource before the sink (Insufficient Useful Function, Lack of Principle 9/10).
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Indicator B (Resource Mishandling): Clear logical flaw in resource management visible within the
function (e.g., pointer arithmetic suggesting buffer overflow, clear potential for double-free/use-after-free
based on resource state tracking within the function, leak of sensitive data Resource to logs/output).

Indicator C (Auth/Access Control Flaw): Clear absence of necessary authorization/access control
checks within the function before performing an operation identified as security-sensitive based on its
name or actions. (Insufficient Useful Function).

Indicator D (Dangerous Function Usage): Direct use of known insecure functions/APIs (e.g.,
strepy, sprintf, insecure random number generator for security context) with inputs whose size or content
is not demonstrably controlled within the function.

Contextual Evaluation (Mitigation Check for Indicators):
If one or more High-Confidence Indicators (A, B, C, D) were identified in Step 3:

Re-examine the code_snippet specifically for concrete evidence of standard, applicable, and
correctly implemented mitigating controls that directly and effectively neutralize the identified
indicator(s) within the function's scope. (E.g., Does the function itself apply htmlspecialchars right before
echoing user input? Does it use snprintf instead of sprintf with size limits?)

Assess Mitigation Confidence: Strong Internal Mitigation (clear, standard, effective control found
within the function for the specific indicator), Weak/No Internal Mitigation (no clear/standard/effective
control found within the function for the indicator).

Binary Classification Decision:
Based on the analysis:
Classify "vulnerable: YES" if:

One or more High-Confidence Indicators (A, B, C, or D from Step 3) were clearly identified
AND

Step 4 assessed the mitigation within the function as Weak/No Internal Mitigation.
Classify "vulnerable: NO" if:
No High-Confidence Indicators were clearly identified in Step 3.

OR A High-Confidence Indicator was identified, BUT Step 4 found Strong Internal Mitigation
effectively neutralizing it within the function's scope.

Justification:
Provide a clear rationale explaining the YES or NO decision.

If "YES": State which High-Confidence Indicator(s) (A, B, C, D) were triggered, explain the
supporting TRIZ analysis (taint flow, resource issue, missing checks), and state why internal mitigation
was assessed as Weak/No.

If "NO": State that no High-Confidence Indicators were clearly identified OR specify the indicator
found and explain the Strong Internal Mitigation identified within the function that neutralizes it.

OUTPUT FORMAT:
Output only the final classification:

Classification: vulnerable: YES or vulnerable: NO

FINAL INSTRUCTION:

Apply the TRIZ analysis rigorously, focusing on identifying the specified High-Confidence Indicators
based on evidence within the provided code snippet. Base your final decision on the presence of these
indicators coupled with the assessment of verifiable mitigations within the function. Aim for the optimal

F1-Score. Provide a detailed justification. Your output must be only "vulnerable: YES" or "vulnerable:
NO".
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Appendix 5 — V10 TRIZ Prompt

ROLE:

You are an expert Al assistant specializing in software security analysis. Your primary methodology
integrates standard security knowledge with the systematic problem-solving principles of TRIZ (Theory
of Inventive Problem Solving) to provide deep, context-aware vulnerability assessments for individual
functions.

TASK:

Analyze the provided code_snippet (representing a single function) and any accompanying context. Your
goal is to accurately classify whether this function contains an exploitable security vulnerability
("vulnerable: YES" or "vulnerable: NO"). Aim to maximize the F1-Score by maintaining high Recall
while reducing the False Positive Rate compared to the previous attempt. Apply the TRIZ-based
analytical process rigorously below, focusing on high-confidence indicators and verifiable mitigations
(standard or effective non-standard) within the snippet.

INPUT:

{code}

TRIZ-BASED ANALYTICAL PROCESS (Apply sequentially before making the final YES/NO
decision):

Initial Contextual Understanding:

Analyze the code_snippet and context to understand purpose, inputs, outputs, data flow, and
operating environment.

TRIZ Problem Framing & Weakness Identification:

(a) Function Analysis: Describe intended useful functions. Identify potential harmful functions
(actions with negative security consequences) or insufficient useful functions (missing necessary security
checks, validation, cleanup - violates Principle 11: Beforehand Cushioning). Assess potential impact.

(b) Resource Analysis: List key resources (inputs, memory, state). Evaluate controls. Focus on
potentially tainted resources and their flow towards sensitive operations.

(c) Contradiction Analysis: Identify relevant security contradictions (e.g., input flexibility vs. safety).
Note signs of poor resolution.

Identify High-Confidence Vulnerability Indicators (TRIZ Lens - Refined):

Based on Step 2, determine if any of the following indicators are clearly present and appear non-
trivial within the function's logic and context:

Indicator A (Taint Flow): Clear path for a potentially untrusted input/resource (Resource) to reach
a known dangerous sink (Harmful Function) AND lack of verifiable, standard
sanitization/validation/encoding applied before the sink (Insufficient Useful Function), AND any simple
non-standard checks present appear obviously insufficient (e.g., flawed blacklist).

Indicator B (Resource Mishandling): Clear logical flaw demonstrable within the function leading
to likely unsafe resource state (e.g., concrete off-by-one in loop interacting with buffer, definite
conditional path to double-free/use-after-free, clear leak of sensitive data Resource). Avoid purely
speculative issues.
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Indicator C (Auth/Access Control Flaw): Clear absence of expected authorization/access control
checks within the function before a security-sensitive operation, where context doesn't strongly imply
external checks. (Insufficient Useful Function).

Indicator D (Dangerous Function Usage): Direct use of known insecure functions/APIs where the
dangerous aspect is influenced by function inputs, and internal controls (like size limits for sprintf) are
missing or clearly insufficient.

Contextual Evaluation (Mitigation Check - Refined):
If one or more High-Confidence Indicators (A, B, C, D) were identified in Step 3:

Search the code_snippet specifically for concrete evidence of mitigating controls that directly and
effectively neutralize the identified indicator(s) within the function's scope.

Consider both:
Standard Mitigations: Are they present, correctly applied, and relevant?

Non-Standard Mitigations: Is there custom logic (validation, state checks, combined partial
checks) that clearly and completely addresses the specific indicator's risk based on the function's internal
logic?

Assess Mitigation Confidence: Strong Mitigation (clear evidence of effective standard OR
clear/complete non-standard mitigation found), Weak/No Mitigation (no clear/effective mitigation found,
or only partial/unclear/bypassable non-standard mitigation found).

Binary Classification Decision:
Based on the analysis:
Classify "vulnerable: YES" if:

One or more High-Confidence Indicators (A, B, C, or D from Step 3) were clearly identified
AND

Step 4 assessed the mitigation within the function as Weak/No Mitigation.
Classify "vulnerable: NO" if:
No High-Confidence Indicators were clearly identified in Step 3.

OR A High-Confidence Indicator was identified, BUT Step 4 found Strong Mitigation (either
standard or demonstrably effective/complete non-standard) neutralizing it within the function's scope.

Justification:

Provide a clear rationale explaining the YES or NO decision.

If "YES": State which High-Confidence Indicator(s) were triggered, explain the supporting TRIZ
analysis, and state why internal mitigation was assessed as Weak/No (lacking standard or clear/complete
non-standard controls).

If "NO": State that no High-Confidence Indicators were clearly identified OR specify the indicator
found and explain the Strong Mitigation (standard or non-standard) identified within the function and
why it is considered effective and applicable in neutralizing the indicator.

OUTPUT FORMAT:
Output only the final classification: vulnerable: YES or vulnerable: NO.

FINAL INSTRUCTION:

Apply the TRIZ analysis rigorously, focusing on identifying the specified High-Confidence Indicators
based on clear evidence within the code. Base your final decision on the presence of these indicators
coupled with a careful assessment of verifiable mitigations (standard or effective non-standard) within the
function. Aim to reduce False Positives from the previous run while retaining as much Recall as possible,
improving the F1-Score. Provide a detailed justification. Your output must be only "vulnerable: YES" or
"vulnerable: NO".
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Appendix 6 — V11 TRIZ Prompt

ROLE:

You are an expert Al assistant specializing in software security analysis. Your primary methodology
integrates standard security knowledge with the systematic problem-solving principles of TRIZ (Theory
of Inventive Problem Solving) to provide deep, context-aware vulnerability assessments for individual
functions.

TASK:

Analyze the provided code_snippet (representing a single function) and any accompanying context. Your
goal is to accurately classify whether this function contains an exploitable security vulnerability
("vulnerable: YES" or "vulnerable: NO"). Aim to significantly improve Recall compared to the previous
attempt, while still leveraging TRIZ to maintain reasonable Precision, thereby improving the F1-Score.
Apply the TRIZ-based analytical process rigorously below.

INPUT:

{code}

TRIZ-BASED ANALYTICAL PROCESS (Apply sequentially before making the final YES/NO
decision):

Initial Contextual Understanding:

Analyze the code_snippet and context to understand purpose, inputs, outputs, data flow, and
operating environment.

TRIZ Problem Framing & Weakness Identification:

(a) Function Analysis: Describe intended useful functions. Identify potential harmful functions
(actions with negative security consequences) or insufficient useful functions (missing necessary security
checks, validation, cleanup - violates Principle 11: Beforehand Cushioning ). Assess potential impact.
Prioritize identifying these functional issues.

(b) Resource Analysis: List key resources (inputs, memory, state). Evaluate controls. Focus on potentially
tainted resources and their flow towards sensitive operations (Resource misuse). Prioritize identifying
taint flow issues.

(c) Contradiction Analysis: Identify relevant security contradictions (e.g., input flexibility vs. safety ).
Note signs of poor resolution.

Identify Plausible Vulnerability Indicators (TRIZ Lens):

Based on Step 2 (prioritizing Function and Resource analysis), determine if any plausible indicators of
weakness are present within the function's logic:
Indicator A (Taint Flow): A path exists for a potentially untrusted input/resource (Resource) to reach
a known dangerous sink (Harmful Function) without clear, standard sanitization/validation applied before
the sink (Insufficient Useful Function, Lack of Principle 9/10 ).
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Indicator B (Resource Mishandling): Logical flow suggests potential unsafe resource state (e.g.,
boundary condition errors in loops handling buffers, potential path to double-free/use-after-free, leak of
sensitive data Resource).

Indicator C (Auth/Access Control Flaw): Absence of apparent authorization/access control checks
within the function before a potentially sensitive operation (Insufficient Useful Function).

Indicator D (Dangerous Function Usage): Use of known insecure functions/APIs where inputs are
not clearly and safely constrained within the function.

Contextual Evaluation (Mitigation Check - Stricter Assessment):
If one or more Plausible Indicators (A, B, C, D) were identified in Step 3:

Search the code_snippet specifically for concrete evidence of mitigating controls that directly,
effectively, and completely neutralize the identified indicator(s) within the function's scope.

Consider both:
Standard Mitigations: Are they present, correctly applied, and fully relevant?

Non-Standard Mitigations: Is there custom logic? Assess critically: Does it unambiguously and
completely address the specific risk identified? Partial or potentially bypassable custom logic does not
count as strong mitigation.

Assess Mitigation Confidence: Strong Mitigation (clear evidence of effective and complete
standard OR unambiguous and complete non-standard mitigation found), Weak/No Mitigation (no
clear/effective/complete mitigation found).

Binary Classification Decision (Bias towards Recall):
Based on the analysis:
Classify "vulnerable: YES" if:
One or more Plausible Indicators (A, B, C, or D from Step 3) were identified AND
Step 4 assessed the mitigation within the function as Weak/No Mitigation.
Classify "vulnerable: NO" if:
No Plausible Indicators were identified in Step 3.

OR A Plausible Indicator was identified, BUT Step 4 found clear evidence of Strong Mitigation
(standard or non-standard) effectively and completely neutralizing it within the function's scope.

Justification:

Provide a clear rationale explaining the YES or NO decision.

If "YES": State which Plausible Indicator(s) were triggered, explain the supporting TRIZ analysis
(Function/Resource/Contradiction), and state why internal mitigation was assessed as Weak/No (lacking
standard or clear/complete non-standard controls).

If "NO": State that no Plausible Indicators were identified OR specify the indicator found and
explain the Strong Mitigation (standard or non-standard) identified within the function and why it is
considered effective and complete in neutralizing the indicator.

OUTPUT FORMAT:
Output only the final classification:

Classification: vulnerable: YES or vulnerable: NO

FINAL INSTRUCTION:

Apply the TRIZ analysis rigorously, prioritizing Function and Resource analysis to identify plausible
weaknesses. Base your final decision on the presence of these indicators unless clear, effective, and
complete mitigation (standard or non-standard) is verifiable within the function. Aim to significantly
increase Recall while maintaining reasonable Precision. Provide a detailed justification. Your output must
be only "vulnerable: YES" or "vulnerable: NO".
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Appendix 7 — V9 Variation 1 TRIZ Prompt

ROLE:

You are an expert Al assistant specializing in software security analysis. Your primary methodology
integrates standard security knowledge with systematic problem-solving principles to provide deep,
context-aware vulnerability assessments for individual functions.

TASK:

Analyze the provided code_snippet (representing a single function) and any accompanying context. Your
goal is to accurately classify whether this function contains an exploitable security vulnerability
("vulnerable: YES" or "vulnerable: NO"). Aim to maximize the F1-Score by achieving the best possible
balance between detecting true vulnerabilities (Recall) and minimizing false alarms (Precision). Apply the
systematic analytical process rigorously below, focusing on identifying high-confidence vulnerability
indicators verifiable within the snippet.

INPUT:

{code}

SYSTEMATIC ANALYTICAL PROCESS (Apply sequentially before making the final YES/NO
decision):

Initial Contextual Understanding:

Analyze the code_snippet and any provided context to understand the function's purpose, inputs,
outputs, and apparent operating environment.

Problem Framing & Weakness Identification:

(a) Functional Security Review: Describe intended useful functions. Identify potential harmful
functions (actions with negative security consequences like executing commands, writing arbitrary data)
or insufficient useful functions (missing necessary security actions like validation, checks, cleanup -
violates principles of preparing for potential issues).

(b) Data/Resource Handling Analysis: List key resources manipulated (inputs, memory, files, state
variables). Evaluate how they are controlled. Focus on the flow of potentially untrusted resources
(especially function arguments, data read within the function).

(c) Conflicting Requirements Check: Identify any core conflicting requirements the function
attempts to resolve (e.g., process input quickly vs. process input safely). Note signs of poor resolution.

Identify High-Confidence Vulnerability Indicators:
Based on Step 2, determine if any of the following high-confidence indicators are clearly present
within the function's logic:
Indicator A (Taint Flow to Sink): Clear path for a potentially untrusted input/resource to reach a
known dangerous sink (e.g., system call, DB query, unescaped web output, file path operation - a harmful
function) without verifiable evidence of standard, effective sanitization/validation/encoding applied to

that specific resource before the sink (an insufficient useful function, lack of performing necessary actions
beforehand).
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Indicator B (Resource Mishandling): Clear logical flaw in resource management visible within the
function (e.g., pointer arithmetic suggesting buffer overflow, clear potential for double-free/use-after-free
based on resource state tracking within the function, leak of sensitive data/resource to logs/output).

Indicator C (Auth/Access Control Flaw): Clear absence of necessary authorization/access control
checks within the function before performing an operation identified as security-sensitive based on its
name or actions. (an insufficient useful function).

Indicator D (Dangerous Function Usage): Direct use of known insecure functions/APIs (e.g.,
strepy, sprintf, insecure random number generator for security context) with inputs whose size or content
is not demonstrably controlled within the function.

Contextual Evaluation (Mitigation Check for Indicators):
If one or more High-Confidence Indicators (A, B, C, D) were identified in Step 3:

Re-examine the code_snippet specifically for concrete evidence of standard, applicable, and
correctly implemented mitigating controls that directly and effectively neutralize the identified
indicator(s) within the function's scope. (E.g., Does the function itself apply htmlspecialchars right before
echoing user input? Does it use snprintf instead of sprintf with size limits?)

Assess Mitigation Confidence: Strong Internal Mitigation (clear, standard, effective control found
within the function for the specific indicator), Weak/No Internal Mitigation (no clear/standard/effective
control found within the function for the indicator).

Binary Classification Decision:
Based on the analysis:
Classify "vulnerable: YES" if:

One or more High-Confidence Indicators (A, B, C, or D from Step 3) were clearly identified
AND

Step 4 assessed the mitigation within the function as Weak/No Internal Mitigation.
Classify "vulnerable: NO" if:
No High-Confidence Indicators were clearly identified in Step 3.

OR A High-Confidence Indicator was identified, BUT Step 4 found Strong Internal Mitigation
effectively neutralizing it within the function's scope.

Justification:
Provide a clear rationale explaining the YES or NO decision.

If "YES": State which High-Confidence Indicator(s) (A, B, C, D) were triggered, explain the
supporting analysis (taint flow, resource issue, missing checks), and state why internal mitigation was
assessed as Weak/No.

If "NO": State that no High-Confidence Indicators were clearly identified OR specify the indicator
found and explain the Strong Internal Mitigation identified within the function that neutralizes it.

OUTPUT FORMAT:
Output only the final classification:

Classification: vulnerable: YES or vulnerable: NO.

FINAL INSTRUCTION:

Apply the analysis rigorously, focusing on identifying the specified High-Confidence Indicators based on
evidence within the provided code snippet. Base your final decision on the presence of these indicators
coupled with the assessment of verifiable mitigations within the function. Aim for the optimal F1-Score.
Provide a detailed justification. Your output must be only "vulnerable: YES" or "vulnerable: NO".
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Appendix 8 — V9 Variation 2 TRIZ Prompt

ROLE:

You are an expert Al assistant specializing in software security analysis. Your primary methodology
integrates standard security knowledge with the systematic problem-solving principles of TRIZ (Theory
of Inventive Problem Solving) to provide deep, context-aware vulnerability assessments for individual
functions.

TASK:

Analyze the provided code_snippet (representing a single function) and any accompanying context. Your
goal is to accurately classify whether this function contains an exploitable security vulnerability
("vulnerable: YES" or "vulnerable: NO"). Aim to maximize the F1-Score by achieving the best possible
balance between detecting true vulnerabilities (Recall) and minimizing false alarms (Precision). Apply the
TRIZ-based analytical process rigorously below, focusing on identifying high-confidence vulnerability
indicators verifiable within the snippet.

INPUT:

{code}

TRIZ-BASED ANALYTICAL PROCESS (Apply sequentially before making the final YES/NO
decision):

Initial Contextual Understanding:

Analyze the code_snippet and any provided context to understand the function's purpose, inputs,
outputs, and apparent operating environment.

TRIZ Problem Framing & Weakness Identification:

(a) Function Analysis: Describe intended useful functions. Identify potential harmful functions
(actions with negative security consequences like executing commands, writing arbitrary data) or
insufficient useful functions (missing necessary security actions like validation, checks, cleanup - violates
Principle 11: Beforehand Cushioning).

(b) Resource Analysis: List key resources manipulated (inputs, memory, files, state variables).
Evaluate how they are controlled. Focus on the flow of potentially untrusted resources (especially
function arguments, data read within the function).

~~(c) Contradiction Analysis: Identify any core contradictions the function attempts to resolve (e.g.,
process input quickly vs. process input safely). Note signs of poor resolution.~~

Identify High-Confidence Vulnerability Indicators (TRIZ Lens):
Based on Step 2, determine if any of the following high-confidence indicators are clearly present
within the function's logic:

Indicator A (Taint Flow to Sink): Clear path for a potentially untrusted input/resource (Resource)
to reach a known dangerous sink (e.g., system call, DB query, unescaped web output, file path operation -
Harmful Function) without verifiable evidence of standard, effective sanitization/validation/encoding
applied to that specific resource before the sink (Insufficient Useful Function, Lack of Principle 9/10).

88



Indicator B (Resource Mishandling): Clear logical flaw in resource management visible within the
function (e.g., pointer arithmetic suggesting buffer overflow, clear potential for double-free/use-after-free
based on resource state tracking within the function, leak of sensitive data Resource to logs/output).

Indicator C (Auth/Access Control Flaw): Clear absence of necessary authorization/access control
checks within the function before performing an operation identified as security-sensitive based on its
name or actions. (Insufficient Useful Function).

Indicator D (Dangerous Function Usage): Direct use of known insecure functions/APIs (e.g.,
strepy, sprintf, insecure random number generator for security context) with inputs whose size or content
is not demonstrably controlled within the function.

Contextual Evaluation (Mitigation Check for Indicators):
If one or more High-Confidence Indicators (A, B, C, D) were identified in Step 3:

Re-examine the code_snippet specifically for concrete evidence of standard, applicable, and
correctly implemented mitigating controls that directly and effectively neutralize the identified
indicator(s) within the function's scope. (E.g., Does the function itself apply htmlspecialchars right before
echoing user input? Does it use snprintf instead of sprintf with size limits?)

Assess Mitigation Confidence: Strong Internal Mitigation (clear, standard, effective control found
within the function for the specific indicator), Weak/No Internal Mitigation (no clear/standard/effective
control found within the function for the indicator).

Binary Classification Decision:
Based on the analysis:
Classify "vulnerable: YES" if:

One or more High-Confidence Indicators (A, B, C, or D from Step 3) were clearly identified
AND

Step 4 assessed the mitigation within the function as Weak/No Internal Mitigation.
Classify "vulnerable: NO" if:
No High-Confidence Indicators were clearly identified in Step 3.

OR A High-Confidence Indicator was identified, BUT Step 4 found Strong Internal Mitigation
effectively neutralizing it within the function's scope.

Justification:
Provide a clear rationale explaining the YES or NO decision.

If "YES": State which High-Confidence Indicator(s) (A, B, C, D) were triggered, explain the
supporting analysis (taint flow, resource issue, missing checks), and state why internal mitigation was
assessed as Weak/No.

If "NO": State that no High-Confidence Indicators were clearly identified OR specify the indicator
found and explain the Strong Internal Mitigation identified within the function that neutralizes it.

OUTPUT FORMAT:
Output only the final classification:

Classification: vulnerable: YES or vulnerable: NO.

FINAL INSTRUCTION:

Apply the analysis rigorously, focusing on identifying the specified High-Confidence Indicators based on
evidence within the provided code snippet. Base your final decision on the presence of these indicators
coupled with the assessment of verifiable mitigations within the function. Aim for the optimal F1-Score.
Provide a detailed justification. Your output must be only "vulnerable: YES" or "vulnerable: NO".
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Appendix 9 — V9 Variation 3 TRIZ Prompt

ROLE:

You are an expert Al assistant specializing in software security analysis. Your primary methodology
integrates standard security knowledge with systematic problem-solving principles inspired by TRIZ
(Theory of Inventive Problem Solving) to provide deep, context-aware vulnerability assessments for
individual functions.

TASK:

Analyze the provided code_snippet (representing a single function) and any accompanying context. Your
goal is to accurately classify whether this function contains an exploitable security vulnerability
("vulnerable: YES" or "vulnerable: NO"). Aim to maximize the F1-Score by achieving the best possible
balance between detecting true vulnerabilities (Recall) and minimizing false alarms (Precision). Apply the
systematic analytical process rigorously below, focusing on identifying high-confidence vulnerability
indicators verifiable within the snippet.

INPUT:

{code}

SYSTEMATIC ANALYTICAL PROCESS (Apply sequentially before making the final YES/NO
decision):

Initial Contextual Understanding:

Analyze the code_snippet and any provided context to understand the function's purpose, inputs,
outputs, and apparent operating environment.

High-Level Weakness Identification:

Briefly analyze the function's purpose, inputs, outputs, key resources (especially inputs and state),
and logic to identify potential areas where security weaknesses might occur (e.g., complex logic, external
interactions, data handling, missing checks, conflicting requirements).

Identify High-Confidence Vulnerability Indicators:

Based on Step 2, determine if any of the following high-confidence indicators are clearly present
within the function's logic:

Indicator A (Taint Flow to Sink): Clear path for a potentially untrusted input/resource to reach a
known dangerous sink (e.g., system call, DB query, unescaped web output, file path operation) without
verifiable evidence of standard, effective sanitization/validation/encoding applied to that specific resource
before the sink.

Indicator B (Resource Mishandling): Clear logical flaw in resource management visible within the
function (e.g., pointer arithmetic suggesting buffer overflow, clear potential for double-free/use-after-free
based on resource state tracking within the function, leak of sensitive data to logs/output).

Indicator C (Auth/Access Control Flaw): Clear absence of necessary authorization/access control
checks within the function before performing an operation identified as security-sensitive based on its
name or actions.
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Indicator D (Dangerous Function Usage): Direct use of known insecure functions/APIs (e.g.,
strepy, sprintf, insecure random number generator for security context) with inputs whose size or content
is not demonstrably controlled within the function.

Contextual Evaluation (Mitigation Check for Indicators):
If one or more High-Confidence Indicators (A, B, C, D) were identified in Step 3:

Re-examine the code_snippet specifically for concrete evidence of standard, applicable, and
correctly implemented mitigating controls that directly and effectively neutralize the identified
indicator(s) within the function's scope. (E.g., Does the function itself apply htmlspecialchars right before
echoing user input? Does it use snprintf instead of sprintf with size limits?)

Assess Mitigation Confidence: Strong Internal Mitigation (clear, standard, effective control found
within the function for the specific indicator), Weak/No Internal Mitigation (no clear/standard/effective
control found within the function for the indicator).

Binary Classification Decision:
Based on the analysis:
Classify "vulnerable: YES" if:

One or more High-Confidence Indicators (A, B, C, or D from Step 3) were clearly identified
AND

Step 4 assessed the mitigation within the function as Weak/No Internal Mitigation.
Classify "vulnerable: NO" if:
No High-Confidence Indicators were clearly identified in Step 3.

OR A High-Confidence Indicator was identified, BUT Step 4 found Strong Internal Mitigation
effectively neutralizing it within the function's scope.

Justification:
Provide a clear rationale explaining the YES or NO decision.

If "YES": State which High-Confidence Indicator(s) (A, B, C, D) were triggered, explain the
supporting analysis (taint flow, resource issue, missing checks), and state why internal mitigation was
assessed as Weak/No.

If "NO": State that no High-Confidence Indicators were clearly identified OR specify the indicator
found and explain the Strong Internal Mitigation identified within the function that neutralizes it.

OUTPUT FORMAT:
Output only the final classification:

Classification: vulnerable: YES or vulnerable: NO.

FINAL INSTRUCTION:

Apply the analysis rigorously, focusing on identifying the specified High-Confidence Indicators based on
evidence within the provided code snippet. Base your final decision on the presence of these indicators
coupled with the assessment of verifiable mitigations within the function. Aim for the optimal F1-Score.
Provide a detailed justification. Your output must be only "vulnerable: YES" or "vulnerable: NO".
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Appendix 10 — V9 Variation 4 TRIZ Prompt

ROLE:

You are an expert Al assistant specializing in software security analysis. Your primary methodology
integrates standard security knowledge with the systematic problem-solving principles of TRIZ (Theory
of Inventive Problem Solving) to provide deep, context-aware vulnerability assessments for individual
functions.

TASK:

Analyze the provided code_snippet (representing a single function) and any accompanying context. Your
goal is to accurately classify whether this function contains an exploitable security vulnerability
("vulnerable: YES" or "vulnerable: NO"). Aim to maximize the F1-Score by achieving the best possible
balance between detecting true vulnerabilities (Recall) and minimizing false alarms (Precision). Apply the
TRIZ-based analytical process rigorously below, focusing on identifying high-confidence vulnerability
mechanisms verifiable within the snippet.

INPUT:

{code}

TRIZ-BASED ANALYTICAL PROCESS (Apply sequentially before making the final YES/NO
decision):

Initial Contextual Understanding:

Analyze the code_snippet and any provided context to understand the function's purpose, inputs,
outputs, and apparent operating environment.

TRIZ Problem Framing & Weakness Identification:

(a) Function Analysis: Describe intended useful functions. Identify potential harmful functions
(actions with negative security consequences like executing commands, writing arbitrary data) or
insufficient useful functions (missing necessary security actions like validation, checks, cleanup - violates
Principle 11: Beforehand Cushioning).

(b) Resource Analysis: List key resources manipulated (inputs, memory, files, state variables).
Evaluate how they are controlled. Focus on the flow of potentially untrusted resources (especially
function arguments, data read within the function).

(c) Contradiction Analysis: Identify any core contradictions the function attempts to resolve (e.g.,
process input quickly vs. process input safely). Note signs of poor resolution.

Identify High-Confidence Vulnerability Mechanisms:

Based on the TRIZ analysis (Step 2), determine if any high-confidence vulnerability mechanisms
(e.g., potential for injection, unsafe resource handling, missing access controls, use of dangerous
functions with uncontrolled input) are clearly present within the function's logic.

Contextual Evaluation (Mitigation Check for Mechanisms):
If one or more High-Confidence Vulnerability Mechanisms were identified in Step 3:
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Re-examine the code_snippet specifically for concrete evidence of standard, applicable, and
correctly implemented mitigating controls that directly and effectively neutralize the identified
mechanism(s) within the function's scope. (E.g., Does the function itself apply htmlspecialchars right
before echoing user input? Does it use snprintf instead of sprintf with size limits?)

Assess Mitigation Confidence: Strong Internal Mitigation (clear, standard, effective control found
within the function for the specific mechanism), Weak/No Internal Mitigation (no clear/standard/effective
control found within the function for the mechanism).

Binary Classification Decision:
Based on the analysis:
Classify "vulnerable: YES" if:

One or more High-Confidence Vulnerability Mechanisms (from Step 3) were clearly identified
AND

Step 4 assessed the mitigation within the function as Weak/No Internal Mitigation.
Classify "vulnerable: NO" if:
No High-Confidence Vulnerability Mechanisms were clearly identified in Step 3.

OR A High-Confidence Vulnerability Mechanism was identified, BUT Step 4 found Strong
Internal Mitigation effectively neutralizing it within the function's scope.

Justification:
Provide a clear rationale explaining the YES or NO decision.

If "YES": State which High-Confidence Vulnerability Mechanism(s) were triggered, explain the
supporting TRIZ analysis, and state why internal mitigation was assessed as Weak/No.

If "NO": State that no High-Confidence Vulnerability Mechanisms were clearly identified OR
specify the mechanism found and explain the Strong Internal Mitigation identified within the function
that neutralizes it.

OUTPUT FORMAT:
Output only the final classification:

Classification: vulnerable: YES or vulnerable: NO.

FINAL INSTRUCTION:

Apply the TRIZ analysis rigorously, focusing on identifying high-confidence vulnerability mechanisms
based on evidence within the provided code snippet. Base your final decision on the presence of these
mechanisms coupled with the assessment of verifiable mitigations within the function. Aim for the
optimal F1-Score. Provide a detailed justification. Your output must be only "vulnerable: YES" or
"vulnerable: NO".
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Appendix 11 — V9 Variation 5 TRIZ Prompt

ROLE:

You are an expert Al assistant specializing in software security analysis. Your primary methodology
integrates standard security knowledge with the systematic problem-solving principles of TRIZ (Theory
of Inventive Problem Solving) to provide deep, context-aware vulnerability assessments for individual
functions.

TASK:

Analyze the provided code_snippet (representing a single function) and any accompanying context. Your
goal is to accurately classify whether this function contains an exploitable security vulnerability
("vulnerable: YES" or "vulnerable: NO"). Aim to maximize the F1-Score by achieving the best possible
balance between detecting true vulnerabilities (Recall) and minimizing false alarms (Precision). Apply the
TRIZ-based analytical process rigorously below, focusing on identifying high-confidence vulnerability
indicators verifiable within the snippet.

INPUT:

{code}

TRIZ-BASED ANALYTICAL PROCESS (Apply sequentially before making the final YES/NO
decision):

Initial Contextual Understanding:

Analyze the code_snippet and any provided context to understand the function's purpose, inputs,
outputs, and apparent operating environment.

TRIZ Problem Framing & Weakness Identification:

(a) Function Analysis: Describe intended useful functions. Identify potential harmful functions
(actions with negative security consequences like executing commands, writing arbitrary data) or
insufficient useful functions (missing necessary security actions like validation, checks, cleanup - violates
Principle 11: Beforehand Cushioning).

(b) Resource Analysis: List key resources manipulated (inputs, memory, files, state variables).
Evaluate how they are controlled. Focus on the flow of potentially untrusted resources (especially
function arguments, data read within the function).

(c) Contradiction Analysis: Identify any core contradictions the function attempts to resolve (e.g.,
process input quickly vs. process input safely). Note signs of poor resolution.

Identify High-Confidence Vulnerability Indicators (TRIZ Lens):
Based on Step 2, determine if any of the following high-confidence indicators are clearly present
within the function's logic:

Indicator A (Taint Flow to Sink): Clear path for a potentially untrusted input/resource (Resource)
to reach a known dangerous sink (e.g., system call, DB query, unescaped web output, file path operation -
Harmful Function) without verifiable evidence of standard, effective sanitization/validation/encoding
applied to that specific resource before the sink (Insufficient Useful Function, Lack of Principle 9/10).
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Indicator B (Resource Mishandling): Clear logical flaw in resource management visible within the
function (e.g., pointer arithmetic suggesting buffer overflow, clear potential for double-free/use-after-free
based on resource state tracking within the function, leak of sensitive data Resource to logs/output).

Indicator C (Auth/Access Control Flaw): Clear absence of necessary authorization/access control
checks within the function before performing an operation identified as security-sensitive based on its
name or actions. (Insufficient Useful Function).

Indicator D (Dangerous Function Usage): Direct use of known insecure functions/APIs (e.g.,
strepy, sprintf, insecure random number generator for security context) with inputs whose size or content
is not demonstrably controlled within the function.

Contextual Evaluation (Mitigation Check for Indicators):
If one or more High-Confidence Indicators (A, B, C, D) were identified in Step 3:

Re-examine the code_snippet specifically for concrete evidence of standard, applicable, and
correctly implemented mitigating controls that directly and effectively neutralize the identified
indicator(s) within the function's scope. (E.g., Does the function itself apply htmlspecialchars right before
echoing user input? Does it use snprintf instead of sprintf with size limits?)

Assess Mitigation Presence: Mitigation Present (clear, standard, effective control found within the
function for the specific indicator), Mitigation Absent (no clear/standard/effective control found within
the function for the indicator).

Binary Classification Decision:
Based on the analysis:
Classify "vulnerable: YES" if:

One or more High-Confidence Indicators (A, B, C, or D from Step 3) were clearly identified
AND

Step 4 assessed mitigation as Mitigation Absent.
Classify "vulnerable: NO" if:
No High-Confidence Indicators were clearly identified in Step 3.

OR A High-Confidence Indicator was identified, BUT Step 4 assessed mitigation as Mitigation
Present.

Justification:
Provide a clear rationale explaining the YES or NO decision.

If "YES": State which High-Confidence Indicator(s) (A, B, C, D) were triggered, explain the
supporting TRIZ analysis, and state that internal mitigation was assessed as Absent.

If "NO": State that no High-Confidence Indicators were clearly identified OR specify the indicator
found and explain the Mitigation identified within the function that neutralizes it.

OUTPUT FORMAT:
Output only the final classification:

Classification: vulnerable: YES or vulnerable: NO.

FINAL INSTRUCTION:

Apply the TRIZ analysis rigorously, focusing on identifying the specified High-Confidence Indicators
based on evidence within the provided code snippet. Base your final decision on the presence of these
indicators coupled with the assessment of verifiable mitigation presence within the function. Aim for the
optimal F1-Score. Provide a detailed justification. Your output must be only "vulnerable: YES" or
"vulnerable: NO".

95



Appendix 12 — V9 Variation 6 TRIZ Prompt

ROLE:

You are an expert Al assistant specializing in software security analysis. Your primary methodology
integrates standard security knowledge with the systematic problem-solving principles of TRIZ (Theory
of Inventive Problem Solving) to provide deep, context-aware vulnerability assessments for individual
functions.

TASK:

Analyze the provided code_snippet (representing a single function) and any accompanying context. Your
goal is to accurately classify whether this function contains an exploitable security vulnerability
("vulnerable: YES" or "vulnerable: NO"). Aim to maximize the F1-Score by achieving the best possible
balance between detecting true vulnerabilities (Recall) and minimizing false alarms (Precision). Apply the
TRIZ-based analytical process rigorously below, focusing on identifying high-confidence vulnerability
indicators verifiable within the snippet.

INPUT:

{code}

TRIZ-BASED ANALYTICAL PROCESS (Apply sequentially before making the final YES/NO
decision):

Initial Contextual Understanding:

Analyze the code_snippet and any provided context to understand the function's purpose, inputs,
outputs, and apparent operating environment.

TRIZ Problem Framing & Weakness Identification:

(a) Function Analysis: Describe intended useful functions. Identify potential harmful functions
(actions with negative security consequences like executing commands, writing arbitrary data) or
insufficient useful functions (missing necessary security actions like validation, checks, cleanup - violates
Principle 11: Beforehand Cushioning).

(b) Resource Analysis: List key resources manipulated (inputs, memory, files, state variables).
Evaluate how they are controlled. Focus on the flow of potentially untrusted resources (especially
function arguments, data read within the function).

(c) Contradiction Analysis: Identify any core contradictions the function attempts to resolve (e.g.,
process input quickly vs. process input safely). Note signs of poor resolution.

Identify High-Confidence Vulnerability Indicators (TRIZ Lens):
Based on Step 2, determine if any of the following high-confidence indicators are clearly present
within the function's logic:

Indicator A (Taint Flow to Sink): Clear path for a potentially untrusted input/resource (Resource)
to reach a known dangerous sink (e.g., system call, DB query, unescaped web output, file path operation -
Harmful Function) without verifiable evidence of standard, effective sanitization/validation/encoding
applied to that specific resource before the sink (Insufficient Useful Function, Lack of Principle 9/10).
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Indicator B (Resource Mishandling): Clear logical flaw in resource management visible within the
function (e.g., pointer arithmetic suggesting buffer overflow, clear potential for double-free/use-after-free
based on resource state tracking within the function, leak of sensitive data Resource to logs/output).

Indicator C (Auth/Access Control Flaw): Clear absence of necessary authorization/access control
checks within the function before performing an operation identified as security-sensitive based on its
name or actions. (Insufficient Useful Function).

Indicator D (Dangerous Function Usage): Direct use of known insecure functions/APIs (e.g.,
strepy, sprintf, insecure random number generator for security context) with inputs whose size or content
is not demonstrably controlled within the function.

Contextual Evaluation (Mitigation Check for Indicators):
If one or more High-Confidence Indicators (A, B, C, D) were identified in Step 3:

Re-examine the code_snippet specifically for concrete evidence of standard, applicable, and
correctly implemented mitigating controls that directly and effectively neutralize the identified
indicator(s) within the function's scope. (E.g., Does the function itself apply htmlspecialchars right before
echoing user input? Does it use snprintf instead of sprintf with size limits?)

Assess Mitigation Confidence: Strong Internal Mitigation (clear, standard, effective control found
within the function for the specific indicator), Weak/No Internal Mitigation (no clear/standard/effective
control found within the function for the indicator).

Binary Classification Decision:
Based on the analysis:
Classify "vulnerable: YES" if:

One or more High-Confidence Indicators (A, B, C, or D from Step 3) were clearly identified
AND

Step 4 assessed the mitigation within the function as Weak/No Internal Mitigation.
Classify "vulnerable: NO" if:
No High-Confidence Indicators were clearly identified in Step 3.

OR A High-Confidence Indicator was identified, BUT Step 4 found Strong Internal Mitigation
effectively neutralizing it within the function's scope.

OUTPUT FORMAT:
Output only the final classification:

Classification: vulnerable: YES or vulnerable: NO

FINAL INSTRUCTION:

Apply the TRIZ analysis rigorously, focusing on identifying the specified High-Confidence Indicators
based on evidence within the provided code snippet. Base your final decision on the presence of these
indicators coupled with the assessment of verifiable mitigations within the function. Aim for the optimal
F1-Score. Your output must be only "vulnerable: YES" or "vulnerable: NO".
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Appendix 13 — Experiment Script

import json

import argparse

import os

import sys

import time

from openai import OpenAl

SECRET FILE = ".secret"
DEFAULT OUTPUT SUFFIX =" llm results.jsonl"

defread _api key(file path):
try:
with open(file_path, "r", encoding="utf-8') as file:
api_key = file.read().strip()
if not api_key:
print(f"Error: API key file '{file path}'is empty.", file=sys.stderr)
sys.exit(1)
return api_key
except FileNotFoundError:
print(f"Error: API key file '{file path}' not found.", file=sys.stderr)
sys.exit(1)
except Exception as e:
print(f"Error reading API key from '{file path}': {e}", file=sys.stderr)
sys.exit(1)

def read_prompt_template(prompt_type):
file path = f"prompt_{prompt type}.txt"
try:
with open(file path, "r", encoding="utf-8'") as file:
prompt_template = file.read()
if "{code}" not in prompt template:
print(f"Warning: Prompt file '{file path}' does not contain the '{{code}}' placeholder.",
file=sys.stderr)
return prompt_template
except FileNotFoundError:
print(f"Error: Prompt file '{file_path}' not found.", file=sys.stderr)
sys.exit(1)
except Exception as e:
print(f"Error reading prompt file '{file_path}": {e}", file=sys.stderr)
sys.exit(1)

def process_code_snippet(snippet, client, prompt_template, item_id, func_type):
if not snippet:
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print(f'Skipping empty {func type} snippet for ID: {item id}")
return None
prompt_message = prompt_template.format(code=snippet)
print(f'Processing {func_type} for ID: {item id}...")
try:
response = client.chat.completions.create(
model="deepseek-chat", # Adjust model if needed
messages=|

n.n "nn

{"role": "user", "content": prompt message}
1
temperature=0.1, # Optional adjustments
max_tokens=512
)
result = response.choices[0].message.content
print(f" -> Received response for {func_type} ID {item id}.")
return result
except Exception as e:
print(f" -> FAILED to process {func type} for ID {item id}.", file=sys.stderr)
print(f" -> Error: {e}", file=sys.stderr)
time.sleep(5) # Wait after an error
return None

def parse_llm_verdict(llm_response_text):
if not llm_response_text:
return None
lower_response = llm_response_text.lower()
found_yes = "vulnerable: yes" in lower_response
found no = "vulnerable: no" in lower response
if found yes and not found no:
return "1"
elif found no and not found yes:
return "0"
elif found yes and found no:

print(f" -> Warning: Ambiguous verdict. Both 'vulnerable: yes' and 'vulnerable: no' found. Setting
vulnerable: yes!", file=sys.stderr)

print(f" -> Response sample: ...{llm_response_text[-150:]}", file=sys.stderr)
return "1"
else:

print(f" -> Warning: Could not parse verdict. Neither 'vulnerable: yes' nor 'vulnerable: no' found.",
file=sys.stderr)

print(f" -> Response sample: ...{llm_response_text[-150:]}", file=sys.stderr)
return None

def parse_arguments():
parser = argparse.ArgumentParser(
description="Process vulnerable/patched code pairs using an LLM API (DeepSeek) "
"and save results incrementally to a JSON Lines file."
)
parser.add_argument(
"input_json_file",
help="Path to the input JSON file containing function pairs."
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)

parser.add_argument(

"prompt_type",

help="Prompt type identifier (e.g., 'triz' for prompt_triz.txt)."
)

parser.add_argument(

n nn
>

-0", "--output",
help=f"Optional: Path to the output JSON Lines file (.jsonl). "
f'Defaults to '<input_base> <prompt type>{DEFAULT OUTPUT SUFFIX}""
)

return parser.parse_args()

def main():
args = parse_arguments()
input_file = args.input_json_file
prompt_type = args.prompt type

if args.output:
output file name = args.output
if not output_file name.lower().endswith('.jsonl'):

print(f"Warning: Specified output file '{output file name}' does not end with .jsonl. Appending
results in JSON Lines format.", file=sys.stderr)

else:
base, = os.path.splitext(input_file)
output_file name = f"{base} {prompt type} {DEFAULT OUTPUT SUFFIX}"

print(f"Input JSON: {input file}")
print(f"Prompt Type: {prompt type}")
print(f"Output JSON Lines: {output file name} (appending)") # Indicate append mode

api_key =read_api_key(SECRET_FILE)
prompt_template = read_prompt_template(prompt_type)
client = OpenAl(api_key=api_key, base url="https://api.deepseek.com")

try:
with open(input_file, 'r', encoding="utf-8") as infile:
function_pairs_data = json.load(infile)
if not isinstance(function_pairs_data, list):
print(f"Error: Input file '{input file}' does not contain a JSON list.", file=sys.stderr)
sys.exit(1)
except FileNotFoundError:
print(f"Error: Input file not found: {input_file}", file=sys.stderr)
sys.exit(1)
except json.JSONDecodeError as e:
print(f"Error: Invalid JSON format in {input_file}: {e}", file=sys.stderr)
sys.exit(1)
except Exception as e:
print(f"Error reading input file {input file}: {e}", file=sys.stderr)
sys.exit(1)
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total items = len(function_pairs_data)
processed_count =0
error_count =0

try:
with open(output _file name, 'a', encoding="utf-8') as outfile:
for index, item in enumerate(function_pairs_data):

item_id = item.get("id")

vuln_code = item.get("vulnerable func")

patched code = item.get("patched func")

print(f"\n--- Processing Item {index + 1}/{total items} (ID: {item_id}) ---")

if not item_id:
print(" -> Warning: Skipping item due to missing 'id.", file=sys.stderr)
error_count += 1
continue

vuln_response = process_code_snippet(vuln_code, client, prompt_template, item_id,
"vulnerable func")

vuln_verdict = parse_llm_verdict(vuln_response)

time.sleep(1) # Small delay

patched response = process_code_snippet(patched code, client, prompt template, item_id,
"patched_func")

patched verdict = parse_llm_verdict(patched response)
time.sleep(1) # Small delay

result_item = {
"id": item_id,
"vulnerable func": vuln_verdict,
"patched func": patched verdict

}

try:
outfile.write(json.dumps(result_item, ensure ascii=False) + "\n')
outfile.flush() # Ensure it's written to disk immediately
processed_count += 1
except Exception as write e:
print(f" -> Error writing result for ID {item id} to {output file name}: {write e}",
file=sys.stderr)
error_count += 1
except IOError as e:
print(f"\nFATAL: Error opening or writing to output file {output file name}: {e}", file=sys.stderr)
sys.exit(1)
except Exception as e:
print(f"\nFATAL: An unexpected error occurred during processing: {e}", file=sys.stderr)
sys.exit(1)

print("\n--- Processing Complete ---")

print(f'Total items in input: {total items}")
print(f'Successfully processed and written: {processed count}")
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print(f"'Items skipped or failed during processing/writing: {error _count + (total items -
processed count)}")

print(f"Results appended to {output file name}")

"

if name ==" main_ "
main()
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Appendix 14 — DFA Prompt

You are a security researcher, expert in detecting security vulnerabilities. Carefully analyze the given
code snippet and track the data flows from various sources to sinks. Assume that any call to an unknown
external API is unsanitized. Please provide a response only in the following format:

Here is a data flow analysis of the given code snippet:
A. Sources: <numbered list of input sources>

B. Sinks: <numbered list of output sinks>

C. Sanitizers: <numbered list of sanitizers, if any>

D. Unsanitized Data Flows: <numbered list of data flows that are not sanitized in the format (source, sink,
why this flow could be vulnerable)>

E. Vulnerability analysis verdict: vulnerable: <YES or NO>

Is the following code snippet prone to any security vulnerability?

{code}

Review your initial answer and find problems with that answer. Feel free to answer in any format you
prefer.

Based on the problems found, improve your initial answer:

Provide response only in following format:

vulnerable: <YES or NO>

Do not include anything else in response.
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