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Introduction

Coastal and nearshore areas develop under the influence of a large number of different
drivers of greatly varying magnitude, duration and scale. Coastal areas are perceived as
having high value, including their economic value, their amenity and their aesthetics.
Given the range of values, benefits and services it is natural that coastal areas are
among the most densely populated regions in the world. These areas are also one of
the most dynamic and fastest changing environments, the health and status of which is
often not well understood. This situation gives rise to a multitude of contradictory and
often rapidly changing desires and expectations of different people, communities,
companies, governments and other groups of stakeholders with interest in the coast.
As a natural consequence, the use, planning and management of coastal and nearshore
areas usually functions in an extremely complicated “landscape” of conflicting
perceptions, interests, visions and goals where decision-making must take into account
not only instantaneous impacts but also delayed and threshold-based reactions, and
long-term and cumulative influences.

This situation naturally calls for the development and implementation of advanced
tools that make it possible to gather, compare, analyse and interpret information from
fundamentally different sources at different spatio-temporal resolutions to be used for
informed decision-making. These tools, often called decision support systems (DSS),
have to be able to merge fundamentally different kinds of information, from time series
of totally quantitative hydrometeorological and geological variables, to perceptions and
personal values associated with people’s relationships with the coast. On the one hand,
the use of data and the outcome of using such tools, ideally, should be transparent and
clearly related to the input information in order to be of real use in the described
“landscape” of perceptions, to convince society that the offered solution is the best. On
the other hand, such tools should naturally employ the most advanced methods of data
analysis and synthesis that are sometimes incomprehensible even to highly qualified
experts.

This thesis attempts to address the described challenges by providing a systematic
overview of existing DSSs and their main components. Based on this information,
several more specialised versions of DSSs are developed and implemented to address
decisions associated with the selection of locations for wind energy production in
marginal seas, and options for the quantification of coastal vulnerability on a country
scale. Another implementation addresses a sister problem of wind and solar energy site
selection challenges in inland areas.

The nearshore and coasts under increasing pressure

The problems addressed are evident worldwide. The environmental challenges present
specific threats to nations and adversely affect global communities. They are globally
augmented by climate change that is an environmental issue with significant impacts
on both humans and non-human species (Al-Masri et al., 2023). Climate change poses a
significant threat to coastal regions worldwide (IPCC, 2022). There is strong evidence
that climate change is likely to increase extreme sea levels, accelerate sea level rise,
reduce sea ice cover, and enhance wave heights (Hinicke et al., 2015; von Storch et al.,
2015; Farquharson et al., 2018; Nerem et al., 2018). These changes commonly lead to
other adverse effects such as higher or more frequent storm surges, increased erosion
rates, and flooding of low-lying areas (Nicholls et al., 2007). In densely populated coastal



areas, these hazards cause substantial damage to infrastructure and human livelihoods
(Nichols et al., 2019; Tanner et al., 2014). Climate-related hazards also can destroy
ecosystem services, impact biodiversity and disrupt the functioning of ecosystems in
marine and coastal environments (Myers et al., 2019). Coastal areas are particularly
vulnerable to hazards triggered by extreme events (Easterling et al., 2000), and pressures
on coastal resources are expected to intensify due to climate change (Nursey-Bray et al.,
2014). The vulnerability of these areas and the exposure of human infrastructure to
flooding and wave impacts shape the impact of these events (Maanan et al., 2018).
The construction of coastal structures also significantly increases the risk of coastal
erosion in neighbouring segments of shoreline (Mentaschi et al., 2018; Bagdanavicitteé
et al., 2019).

The production and consumption of energy are responsible for approximately 80%
of greenhouse gas emissions (Edenhofer et al., 2014). Renewable energy resources like
wind, wave or solar energy are abundant in many locations. Using these resources for
electricity production can greatly decrease greenhouse gas emissions. Also, their use
produces no air pollution during the maintenance phase, making them environmentally
friendly in particularly vulnerable areas (Wang and Qiu, 2009). Many countries have
redirected their energy policies to focus on renewable energy systems to support
economic growth and tackle environmental issues simultaneously (Aydin et al., 2010).
The vast potential of these renewable energy sources needs to be explored,
environmental concerns addressed, and economic implications considered, alongside
an emphasis on sustainable development (Omer, 2008).

These aspects signal that the rapid increase in renewable energy production increases
pressure on the marine environment, the nearshore and the coast. On the one hand,
the development of offshore wind farms, especially in regions with optimal wind
conditions, has proven to be a viable option for reducing carbon emissions-induced
climate change (Cali et al., 2024). On the other hand, their development interferes with
other marine and coastal activities such as shipping, tourism, commercial fishing, or
seabed resource exploitation. There are also concerns about their impact on wildlife
(European MSP Platform, 2018a) and their impact on aesthetics (Zhou et al., 2022).

An important aspect in handling this challenge is the need to ensure sustainable
development, defined as progress that satisfies current demands without jeopardizing
the ability of future generations to meet their needs (Steele, 1997). This approach not
only emphasises economic growth but also supports practices that are economically
viable, environmentally beneficial, and socially acceptable (Bhattacharyya, 2012).
The selection of sites for renewable energy plants is a critical component in achieving
this goal (Aghaloo et al., 2023) as it significantly affects electricity production capacity
and socio-economic benefits (Shao et al., 2020).

Environmental, social, economic, technical, and infrastructure considerations
influence the suitability of locations for renewable energy technologies. Many of the
issues associated with the construction of offshore wind farms are also encountered by
onshore wind farm sites (Wang and Wang, 2015). For example, land use conflicts can
lead to social and political challenges (Brannstrom et al., 2017; Diaz-Cuevas et al., 2019;
Gonzalez et al., 2016; Scholten and Bosman, 2016). As the site selection process seeks
to reduce environmental impacts and optimise economic benefits (Golestani et al., 2021;
Nedjati et al., 2021) while also being acceptable to communities, it is crucial to establish
effective site selection criteria and assessment methods.
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Decision support tools for coastal planning and management

The described issues necessitate a complex planning process that considers
environmental, social, and economic factors (Tercan et al., 2020; Virtanen et al., 2022).
In other words, this highlights the importance of decision support systems (DSSs) in
addressing the related environmental challenges (Walling and Vaneeckhaute, 2020;
Wong-Parodi et al., 2020).

DSSs for environmental management have become increasingly popular in recent
years (Walling and Vaneeckhaute, 2020; Wong-Parodi et al., 2020). By integrating
computer-based tools into environmental management and long-term planning, these
systems facilitate decision-making and provide a variety of problem-solving
approaches, in both coastal and inland areas that aim to achieve both environmental
sustainability and development goals (Wong-Parodi et al., 2020). The incorporation of
DSSs into planning allows decision-makers to assess risk levels and prioritise areas
requiring urgent mitigation and adaptation measures (Torresan et al., 2016). By
mapping or modelling the interaction between hazards and exposures, a DSS enhances
decision-makers’ understanding of management options. One obvious objective is to
identify appropriate buffer zones for areas of high environmental value and for
infrastructure projects that may have significant impact (Wong-Parodi et al., 2020).

DSS outputs, such as classification maps or predictive models, contribute to
managing coastal hazards (Zanuttigh et al., 2014; Torresan et al.,, 2016). These
technologies have become essential tools in addressing challenges posed by climate
change and environmental pressures (Zhu et al., 2010). Tools ranging from models to
databases and visualisation platforms support decision-making processes with critical
information and analysis (Mysiak et al., 2005; Giupponi, 2007).

A DSS commonly uses several computer-based decision support tools (DSTs)
designed to facilitate decision-making, including geographical information systems
(GIS), multi-criteria decision analysis (MCDA), artificial neural networks (ANN), Google
Earth Engine (GEE), and model-driven techniques (Yarian et al., 2020). As discussed in
this thesis, integrating multiple DSTs tends to provide better results compared to using
a single tool. In particular, robust and user-friendly DSTs are needed to facilitate
effective and equitable coastal management strategies under climate change impacts
(Nicholls et al., 2007).

DSS rely heavily on GIS tools due to their ability to represent, analyse, and visualise
spatial data (Ahmed et al., 2022; Armenio et al., 2021; Hoque et al., 2019; Rehman et al.,
2022) by combining multiple parameters (Thirumurthy et al., 2022). While GIS provides
a systematic framework for processing, and managing spatial data, allowing the
inclusion of diverse parameters (Diaz-Cuevas et al., 2019), MCDA assigns context-based
values to evaluation parameters and combines qualitative and quantitative attributes,
including the opinions of experts, to prioritise different parameters and locations
(Mytilinou et al., 2018). The integration of MCDA and GIS provides an effective framework
for incorporating spatial data and expert opinions to generate actionable insights
(Malczewski and Rinner, 2015) in various site selection studies (Gil-Garcia et al., 2022;
Geng et al.,, 2021; Li et al., 2022), especially in large-scale marine spatial planning (Tercan
et al., 2020). This integration helps enhance the understanding of outputs through the
inclusion of expert opinions and trade-offs among decision goals (Bell et al., 2003).

A DSS is useful for generating decision support indices (DSIs) to quantify coastal
vulnerability, which can be used for coastal adaptation planning (Gargiulo et al., 2020).
A DSI usually incorporates environmental and socioeconomic variables that reflect
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vulnerability, risk, and resilience (Furlan et al., 2021). Assessing coastal vulnerability is
essential for developing effective strategies to mitigate and adapt to the impacts of
climate change and human activities on coastal regions. Several indices have been
developed to provide comprehensive evaluations of coastal vulnerability, each addressing
different aspects and dimensions of the issue. For example, the Coastal Vulnerability
Index (CVI) combines physical, ecological, and socioeconomic data to assess coastal
vulnerability, identifying hotspots for targeted mitigation and implementation of
adaptation strategies (McLaughlin and Cooper, 2010; Ramieri et al., 2011). The CVI
supports the development of strategies that promote human well-being while
balancing environmental sustainability (IPCC, 2019; Wong-Parodi et al., 2020).

Renewable energy farm site selection in offshore and inland areas

The pervasive use of fossil fuels is the principal contributor to global warming, with CO»
and other greenhouse gases being emitted into the atmosphere (IPCC, 2021).
In response, renewable energy technologies are increasingly favoured for electricity
production as a response to climate change. The utilization of renewable energy
systems plays a vital role in mitigating the effects of greenhouse gas emissions (Alsema,
2000). Renewable energy plants are gradually becoming more cost-efficient than those
using traditional energy sources (IRENA, 2020).

The global demand for renewable energy is increasing as fossil fuel use declines.
Projections indicate that by 2050, renewable sources could account for approximately
two-thirds of global energy demand (Gielen et al., 2019). The European Union has
implemented multiple strategies to transition to a more efficient and diverse energy
model, which involves not only reducing greenhouse gas emissions but also using
renewable energy resources efficiently and improving energy efficiency (Diaz-Cuevas
et al., 2019). Energy distribution in renewable energy facilities has primarily been based
on resource availability and access to an electrical grid, often overlooking broader
factors of location suitability or the potential for integrating multiple energy sources
(Diaz, 2013). For example, renewable energy farms should be located in geologically
suitable places, away from protected areas, acceptable in terms of other marine space
and land use, far from marine traffic but close to land-based transport networks.
The analysis of these factors aims to balance multiple considerations: maximise
economic benefits, minimise negative environmental impacts, enhance energy
efficiency (Diaz-Cuevas et al., 2019) while minimising social impacts (Department for
Energy Security and Net Zero, 2022).

Wind energy is cost-effective, safe, and environmentally beneficial (Noorollahi et al.,
2016a; Gielen et al., 2019). In recent decades, the adoption of wind power has
significantly increased, primarily driven by reduced generation costs (Osman et al.,
2022; Guchhait and Sarkar, 2023). Offshore wind power plants offer substantial
advantages over onshore farms, including higher energy yields and reduced aesthetic
and noise impacts (Bilgili et al., 2011; Wu et al., 2018). They also benefit from greater
flexibility for the installation of devices in marine environment. Critical factors in the
construction of foundations and cable connections include water depth, distance from
shore, and port accessibility (Khan et al., 2021). Although deeper water and remote
locations require more expensive infrastructure, these areas often offer optimal wind
conditions as demonstrated in Paper II.

The last few years have seen a rapid increase in the interest in wind power
generation in the Baltic Sea, particularly in its southern parts. This has led to extensive
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studies on the technical aspects of such developments (Klinge Jacobsen et al., 2019;
Scolaro and Kittner, 2022; Ziemba, 2022). Due to the significant reduction of energy
supply from the Russian Federation, it is important to increase energy production
capacity in the European Union (European Commission, 2022). It is well known that
effective site selection for renewable power plants significantly impacts energy
production and installation costs (Shafiee, 2022). However, these developments also
impact not only marine ecosystems but a range of existing human activities in the Baltic
Sea, including fisheries, shipping routes, coastal tourism, and several socioeconomic
factors (Reckermann et al., 2022). Therefore, it is crucial to evaluate optimal locations
for offshore wind power plants by integrating technical, social, economic, and
environmental factors to mitigate environmental concerns and enhance energy
production (Tercan et al., 2020). In particular, it is imperative to identify and prioritise
suitable offshore wind power plant sites to maximise energy productivity, minimise
costs, reduce environmental impacts, and enhance social benefits as the offshore wind
power industry grows and evolves.

It is therefore natural that the site selection process for offshore wind power plants
involves a complex planning approach that is able to balance minimizing environmental
disruptions with maximizing economic benefits (Golestani et al., 2021; Nedjati et al.,
2021). Therefore, comprehensive and adequate analysis of potential power plant
locations using advanced DSSs becomes essential to systematically incorporate
environmental, economic, and social considerations into the decision-making process,
thus promoting the development of a sustainable energy infrastructure and effectively
responding to the complex dynamics of renewable energy management. In this
context, various single decision support tools incorporating GIS techniques are essential
for identifying optimal locations for renewable energy infrastructure both onshore and
offshore (Aydin et al., 2010; Tegou et al., 2010; Vagiona and Karanikolas, 2012; Emeksiz
and Demirci, 2019; Gonzalez and Connell, 2022). The best results commonly combine
the use of GIS with other appropriate tools, such as multi-criteria decision analysis
(MCDA) (Gasparovi¢ and Gasparovic, 2019).

Another approach for offshore wind site selection is the levelised cost of energy
(LCOE) method. This method evaluates the economic feasibility of potential sites by
calculating the ratio of total energy production costs to the total energy generated over
the project's lifetime (Johnston et al.,, 2020). By considering both initial investment
expenses and recurring operational costs, LCOE provides an average cost per unit of
energy output (Johnston et al., 2020). It is thus most useful for identifying the most
cost-effective locations for offshore wind farms. However, as sustainable development
and exploitation of offshore wind energy resources require a comprehensive
understanding of how environmental, economic, and social factors interact (Fetanat
and Khorasaninejad, 2015; Vagiona et al., 2018), it is essential to use the LCOE
technique simultaneously with approaches that take into account existing space usage
and environmental and social aspects. Doing so promotes the reliability and accuracy of
the site selection results.

The same tools are appropriate for inland locations. This versatility is demonstrated
by presenting results from a study incorporating both wind and solar renewable energy
farm locations in Iran. The main goal is to identify and develop a robust methodology
for evaluating potential sites for renewable energy facilities based on local and regional
characteristics and a variety of parameters that must be thoroughly examined before
construction (GasSparovi¢ and Gasparovic, 2019).
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Coastal vulnerability assessment in the Baltic Sea

As discussed above, climate change induced coastal hazards threaten the physical
environment, human infrastructure, livelihoods, and biodiversity worldwide (IPCC,
2022; Torresan et al., 2008). Enhancing the resilience of coastal communities and
mitigating potential damage necessitates a thorough understanding and addressing of
the related risks. ldentifying and assessing the susceptibility of coastal areas to various
hazards has become crucial. A large part of this work comes from coastal vulnerability
assessments that consider both natural and human-induced factors, assisting coastal
managers and planners in evaluating the vulnerability of specific locations (Adger et al.,
2005).

Such assessments are vital for several reasons. They help identify and prioritise
high-risk areas, ensuring effective resource allocation and disaster prevention. They
also provide valuable data for infrastructure planning and development, improving the
design of new projects to account for potential hazards. This helps coastal communities
avoid costly damage and enhances their safety and sustainability. Furthermore,
by highlighting regions where natural habitats and ecosystems are at risk, these
assessments support environmental conservation efforts by protecting biodiversity and
maintaining ecosystem services.

By integrating various parameters, the Coastal Vulnerability Index (CVI) helps
prioritise the vulnerability of different coastlines (Rangel-Buitrago et al., 2020). In terms
of evaluating the likelihood of socioeconomically valuable features being affected by
hazards such as flooding, the Coastal Exposure Index (CEl) is used. The CEl utilises flood
maps from hydrodynamic models to determine exposure levels (Bagdanaviciute et al.,
2019). The combination of CVI and CEl constitutes the Coastal Risk Index (CRI)
(Bagdanaviciaté et al.,, 2019). For land-use planning to prioritise areas for coastal
protection, the Coastal Area Index (CAl) is used. It considers parameters like elevation,
coastal slope, and land use to balance conservation and development (Dhiman et al.,
2019). To estimate the capacity of coastal areas to respond to hazards, the Coastal
Resilience Index (CoRl) is used. It focuses on factors such as distance from the coastline,
elevation, and human activities, integrating them into coastal planning (Gargiulo et al.,
2020).

The Analytical Hierarchy Process (AHP) is widely used to assess coastal vulnerability
in the frame of GIS-MCDA applications. Recently, machine learning algorithms have
become popular for mapping hazard susceptibility. Techniques like Random Forest are
effective in handling large datasets and complex interactions (Wang et al., 2016).
Incorporating GIS, MCDA, and machine learning models into coastal vulnerability
assessments offers a more comprehensive view of coastal hazards and robust
methodologies for coastal vulnerability assessments. Both methods provide a valuable
insight into coastal vulnerability, essential for informed decision-making and effective
adaptation While MCDA provides a structured approach that incorporates expert
opinions, machine learning techniques handle complex datasets and interactions more
efficiently. It is thus necessary to compare GIS-MCDA techniques with other
approaches, such as machine learning methods, to evaluate their strengths,
weaknesses, and applicability to regions with complex coastal characteristics, like the
eastern Baltic Sea.

The assessment of coastal vulnerability is particularly important in the eastern Baltic
Sea region, especially in Estonia, due to its complex shoreline characteristics and
increasing threats posed by climate change-induced hazards (Orviku et al.,, 2003;
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Rosentau et al., 2017). The low-lying coastal areas, dominated by fine sediment and
easily erodible moraine deposits, are highly susceptible to erosion, storm surges, and
sea level rise (tabuz, 2015; Orviku, 2018). The gently sloping shores of islands of
Hiiumaa and Saaremaa and low-lying shores of Western Estonia are especially
vulnerable (Suursaar et al., 2008). Storm surges in the Baltic Sea, partially driven by
excess water volume lasting up to several weeks (Andrée et al., 2023), strong winds,
and wave action, pose a significant threat to the Estonian coast (Hiinicke et al., 2015).
Certain wind directions lead to high wave setup on specific coastal sections (Pindsoo
and Soomere, 2015). Coastal flooding is exacerbated by sea level rise, shorter winter ice
cover, and increased storm frequency (Orviku et al., 2003; Harff et al., 2017). These
hazards are likely to worsen many current and future social, economic, and
environmental problems (Rosentau et al., 2017). The vulnerability of coastal regions to
extreme events, amplified by sea level rise and storm frequency, necessitates proactive
adaptation measures (Harff et al., 2017).

By incorporating a variety of tools, systems, and indices, and considering also less
obvious variables such as nature protection areas, land tenure, and setbacks through
high-resolution maps, this thesis aims to provide a comprehensive assessment of
coastal vulnerability, risk, and resilience, contributing to the development of effective
and sustainable coastal management strategies. This integrated approach will help
identify priority areas for intervention and inform decision-making processes to
enhance the resilience of coastal communities by delivering accurate and
comprehensive vulnerability assessments, crucial for informed decisions and effective
adaptation measures.

The objective and outline of the thesis

The primary objective of this thesis is to develop and implement an appropriate
decision support system to evaluate the optimal locations for offshore wind farm
installations in the Baltic Sea region, to perform an assessment of coastal vulnerability
in eastern Baltic Sea, and explore options of applications of this system in different
environments, including for solar and wind farm site selection in inland areas. The study
uses Geographic Information Systems (GIS), multi-criteria decision analysis (MCDA), and
machine learning using the Random Forest (RF) technique to improve decision-making
processes in coastal planning and management, sustainable offshore wind infrastructure
development, coastal vulnerability assessment, and renewable energy site assessment
in inland areas. A comprehensive set of parameters, including those often overlooked
in previous studies, is considered alongside existing and potential wind farm locations.

The main objectives are to:

e Provide a comprehensible view on existing implementations of decision support
tools (DSTs) for coastal planning and management, which incorporates GIS, MCDA,
and machine learning to promote coastal decision-making process.

e Analyse the potential economic viability and environmental suitability of offshore
wind farm locations using GIS-MCDA and GIS-based levelised cost of energy models
for the entire Baltic Sea.

e Combine of two-dimensional and one-dimensional parameters to analyse coastal
vulnerability for the whole of Estonian coast using, in parallel, the classic GIS-MCDA
technique and machine learning applications.
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e Explore the options for integration of different measures of water level variability
to improve the classic estimates of coastal vulnerability assessment.

e Demonstrate that the established DSSs are applicable to a different environment
by examining wind and solar farm site selection in inland areas based on GIS and
MCDA.

To achieve these objectives, Chapter 1 explores the application of decision support
tools (DSTs) to coastal planning and management. An integrated approach to coastal
management is presented that combines GIS, MCDA, and machine learning. This chapter
emphasises the significance of these tools in contributing to a sustainable coastal
development and assessing coastal vulnerability.

Chapter 2 discusses the application of DSTs for selection of offshore wind farms in
the Baltic Sea. The environmental suitability and economic viability of offshore wind
farm locations is evaluated using in parallel the GIS-MCDA technique and GIS-based
levelised cost of energy (LCOE) models. It emphasises the importance of selecting an
optimal site in order to minimise negative environmental impacts and maximise
economic benefits.

Chapter 3 discusses the application of DSTs for coastal vulnerability assessment in
the eastern Baltic Sea region. A GIS-MCDA is used in order to assess coastal
vulnerability for the entire nearshore of Estonia. A new development is the analysis
of vulnerability up to 2 km inland. The aim is to provide coastal managers and
decision-makers with valuable insights into comprehensive vulnerability analyses based
on several different approaches.

Chapter 4 discusses benefits from integration of a machine learning technology,
based on Random Forest technique, into the evaluation of vulnerability of Estonian
coasts and the inclusion of water level variations into estimates of coastal vulnerability
along the Lithuanian shoreline. As an example of wide applicability of the presented
techniques, Chapter 4 also examines how to select the best site for wind and solar
farms in inland areas, taking into account environmental, social, economic, technical,
and infrastructure factors.

Presentation of the results to scientific community
These basic results have been presented by the author at the following scientific
conferences:

Oral presentations:

Barzehkar, M., Parnell, K., Soomere, T. 2024. Integrating multi-criteria decision analysis
and GIS for coastal vulnerability assessment: a case study in Estonia, Eastern Baltic Sea.
Nordic Geographers Meeting in Copenhagen (24-27 June 2024, Copenhagen, Denmark).

Barzehkar, M., Koivisto, M., Parnell, K.E., Soomere, T. 2022. An integrated decision
support system for offshore wind farm site selection in the Baltic Sea. 18th European
Academy of Wind Energy (EAWE) PhD Seminar in Wind Energy (2—-4 November 2022,
Bruges, Belgium).

Barzehkar, M., Parnell, K.E., Soomere, T. 2021. An integrated decision support system
for the resilience assessment of eastern Baltic Sea coasts. CoastGIS 2021: Sustainable
Coastal Management in a Changing World (16—-17 September 2021, Raseborg, Finland,
online).
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Poster presentations:

Barzehkar, M., Parnell, K.E.,, Soomere, T. 2020. Decision support tools for the
management of eastern Baltic Sea coasts. 3rd Baltic Earth Conference “Earth system
changes and Baltic Sea coasts (2—3 June 2020, Jastarnia, Hel Peninsula, Poland,
online).

Oral presentations by co-authors:

Soomere, T. (presenter), Barzehkar, M., Parnell, K., Bagdanaviciate, |. 2024. In search
for suitable parameters quantifying the contribution of water level variations into
coastal vulnerability index of microtidal seas. 5th Baltic Earth Conference “New
Challenges for Baltic Sea: Earth System Research” (13—17 May 2024, Jirmala, Latvia).

Soomere, T. (presenter), Bagdanaviciate, |., Barzehkar, M., Parnell, K.E. 2024. Towards
implementing water level variations into coastal vulnerability index of microtidal seas.
17th International Coastal Symposium (IC52024) “Coastlines Under Global Change”
(24-27 September 2024, Doha, Qatar).

Barzehkar, M., Parnell, K.E. (presenter), Soomere, T. 2024. Incorporating a machine
learning approach as an established decision support system for coastal vulnerability in
the Eastern Baltic Sea. 17th International Coastal Symposium (IC52024) “Coastlines
Under Global Change” (24-27 September 2024, Doha, Qatar).

Abbreviations

AHP Analytical Hierarchy Process
ANN Artificial Neural Network

CAPEX Capital Expenditure

CAl Coastal Area Index

CEl Coastal Exposure Index

CRI Coastal Risk Index

Ccvi Coastal Vulnerability Index

CoRlI Coastal Resilience Index

DSI Decision Support Index

DSS Decision Support System

DST Decision Support Tool

GEE Google Earth Engine

GIS Geographical Information System
IPCC Intergovernmental Panel on Climate Change
LCOE Levelised Cost of Energy

MCDA Multi-Criteria Decision Analysis
OPEX Operational Expenditure

RF Random Forest
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1 Decision support tools for coastal planning and
management

A selection of decision support tools (DSTs), decision support systems (DSSs), and
decision support indices (DSls) is discussed in this chapter in order to highlight the basic
properties of their constituents and known limitations and experience of their
implementation. On the one hand, this kind of information is eventually useful to assist
with coastal planning and management for a sustainable coastal environment and for
infrastructure development. The focus for these tools is handling of extreme water
levels, inundation, and coastal erosion. On the other hand, this material serves as
important input for development of more specialised applications in the subsequent
chapters.

This chapter also explores the importance of effective DSTs and DSSs for calculating
indices such as the Coastal Vulnerability Index (CVI), Coastal Exposure Index (CEl),
Coastal Risk Index (CRI), and Coastal Resilience Index (CoRI) (Paper Il). As a means of
coastal vulnerability and resilience assessment, multi-criteria decision analysis (MCDA),
geographical information systems (GIS), and artificial neural networks (ANNs) are
integrated. The analytical hierarchy process (AHP), fuzzy standardisation and logic, and
weighted linear combination (WLC) are MCDA approaches that incorporate expert
preferences. A geographical information system (GIS) assists in storing, displaying, and
analysing spatial data, mapping vulnerable coastal areas, and supporting long-term
planning (Malczewski and Rinner, 2015; Gargiulo et al., 2020) while ANNs are used to
classify maps, detect features associated with vulnerable ecosystems, and predict
environmental changes (Rumson et al., 2020).

There have been numerous applications of DSTs in environmental hazard
assessment, employing tools such as GIS, MCDA, and ANN (Jena et al., 2020; Yariyan et
al., 2020a; Arabameri et al., 2021; Pham et al., 2021). Although clear advancements
have been made, many studies lack a formal justification for selecting or combining
these tools. Paper | aimed to fill this gap by systematically evaluating a variety of DSTs,
DSSs, and DSIs to guide managers and decision-makers in choosing the most
appropriate tools. This Chapter largely follows the material presented in Paper|I.
The detailed characteristics and contributions of various implementations of DSTs,
DSSs, and DSls towards strengthening coastal management planning are presented in
Tables 1 and 2 of Paper I.

1.1 Decision support tools and systems

Contemporary informed decision-making ideally relies on the best available
information that is properly quantified, analysed and put into an appropriate context.
Any decision-making process thus start from the identification of necessary
information, selection of important parameters, choice of spatio-temporal resolution
and collection of necessary data from various sources, from research papers to classic
maps. Alternatively, the necessary information is often generated using various
numerical models tuned specifically to provide the best data stream for solving a
particular management problem.

As much of this information in coastal and marine areas is presented in the form of
(raster) maps, tools like GIS form an intrinsic constituent of the process. Subsequently,
the data from various sources have to be converted into a usable form for further
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analysis. This is often done using so-called fuzzy normalisation. Different drivers and
parameters generally have a different impact on the decision. Therefore, the weight of
each parameter should be estimated as adequately as possible. Finally, the compound
estimate for decision-making (e.g., normalised vulnerability index) is commonly
reached using these weights.

1.1.1 Numerical models

The numerical models are now a common tool to simulate factors such as wind, waves,
and other physical processes that affect coastal areas (Coelho et al., 2020; Glover et al.,
2011). They provide atmospheric variables (Hersbach et al., 2020), and wave variations
and properties both globally (Morim et al., 2022) and locally (e.g., Bjorkqvist et al.,
2018). Based on wind data, it is possible to configure and run contemporary wave models
such as SWAN (Booji et al., 1999) and WAM (Komen et al., 1994), or user-friendly
implementations, such as MIKE 21 (DHI, 2017) for the region of interest to simulate and
estimate wind-generated waves. If it is too time-consuming and computationally
demanding to run these models locally, as it is often the case (Chini and Stansby, 2015),
databases such as the Copernicus or ERA5 sources (https://cds.climate.copernicus.eu/)
provide ready-to-use data. The data can be used with local wave models to calculate
storm surge levels (Lorenz and Grawe, 2023), wave setup (Soomere et al., 2020), and
runup (Marsooli and Lin, 2018).

Models such as the MIKE 21 model are also able to estimate sediment transport and
coastal morphology (DHI, 2017), and model shoreline changes at local and regional
scales (Coelho et al., 2020). In this respect, a number of challenges must be addressed,
including determining accurate boundary conditions, managing external waves, and
dealing with energy dissipation (Masselink et al., 2011). The modelled data sets can be
complemented with extensive sources of information derived using various remote
sensing applications, e.g., the worldwide map of coastline changes (Luijendijk et al.,
2018) that also covers the entire Baltic Sea.

1.1.2 Geographical information system (GIS) and Google Earth Engine (GEE)
A GIS is essential for the storage, display, and analysis of spatial data, making it a
cost-efficient tool for spatial planning in general, and for coastal planning in particular
over the long term (Pan et al., 2005). The integration of different approaches that
support decision-making with GIS promotes the process by prioritizing and weighting
map data (Malczewski and Rinner, 2015). For example, an analysis of vulnerable coastal
areas is commonly carried out using GIS for the evaluation of indices such as the
Coastal Vulnerability Index (CVI, Section 1.4) and Coastal Resilience Index (CoRlI, Section
1.4) (Hoque et al., 2019; Gargiulo et al., 2020). It provides managers and the public with
accessible maps (lyalomhe et al.,, 2013; Aporta et al., 2020) that support informed
decisions (Rangel-Buitrago et al., 2017, 2020b). Tools such as DESYCO and THESEUS
were developed to raise public awareness and assess risks through GIS. The DESYCO
system provides adaptable risk assessments for sea level rise and coastal erosion
(Santoro et al., 2013; Torresan et al., 2016). Based on analytical models and expert
opinions, THESEUS assesses coastal risks and mitigation options (Kane et al.,, 2014;
Zanuttigh et al., 2014).

Google Earth Engine (GEE) is a cloud-based platform for processing large geospatial
datasets. To analyse regional and global satellite imagery, JavaScript and Python
algorithms are used (Vos et al., 2019; Tamiminia et al., 2020). The GEE provides access
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to extensive satellite image collections, such as Landsat-8 and Sentinel-2, which can be
used for geospatial analyses of various features, such as shoreline position changes and
land use changes (Chu et al., 2020; Arruda et al., 2021). The CoastSat application of GEE
creates time-series data to classify coastline changes over the past 30 years (Vos et al.,
2019).

1.2 Multi-criteria decision analysis (MCDA) approaches

To reach rational and informed decisions and to determine management goals, more
generally, to operationalise the management process (Townend et al., 2021), it is
necessary to put the environmental and socioeconomic parameters selected and
gathered for decision-making into context. This includes their quantification (e.g., via
GIS and/or GEE), normalisation, weighting, and ranking (Mafi-Gholami et al., 2019).
An effective tool for complex coastal management decisions (Uhde et al., 2015) is the
multi-criteria decision analysis (MCDA) that helps to prioritise vulnerable locations and
risk areas based on various parameters (Johnston et al., 2014) and makes it possible to
incorporate expert preferences and expertise into coastal decision-making (Haque,
2016; Adem Esmail and Geneletti, 2017). MCDA incorporates fuzzy logic standardisation,
analytical hierarchy process (AHP), and weighted linear combination (WLC) methods
(Malczewski and Rinner, 2015).

1.2.1 Fuzzy standardisation and fuzzy logic
Input information on the properties of coastal and nearshore areas as well as the
description of various hydrometeorological drivers is often available or presented as
raster maps. Because these maps are intrinsically measured with different units and
scales, it is crucial to normalise their numerical values before combining them
(e.g., Eastman, 2009). Fuzzy logic is commonly used in the MCDA process to standardise
raster map pixels, reduce uncertainties and normalise data variability (PaperI).
The range of normalised variables from 0 to 1 is used as a standard, where O represents
very low and 1 very high vulnerability (e.g., Araya-Mufioz et al., 2017). A linear scale is
the most common method for normalizing raster layers, which is often based on
minimum and maximum values (e.g., Cheng et al., 2023). This range is usually divided
into subranges that characterise very low (values from 0 to 0.2), low (0.2, 0.4), medium
(0.4, 0.6), high (0.6, 0.8), and very high (0.8, 1) vulnerability with respect to a particular
parameter (e.g., Hoque et al., 2021). In a similar way, resilience and other parameters
can be standardised

An intrinsic feature of environmental parameters is that, for some of them
increasing values indicate an increase in vulnerability (e.g., extreme water level, sea
level rise rate, maximum significant wave height, called increasing functions) while for
others a larger value means lower vulnerability (e.g., land elevation, coastal slope,
called decreasing functions). Moreover, frequently values over a certain threshold R,
(or below another threshold R,,;,) do not further increase or decrease the associated
vulnerability. The level of vulnerability is thus constant (1 or 0) for such input values.
Such features are usually accommodated using the following piecewise linear
transformations

X () _ Ri _Rmin
= Rmax _Rmin

for increasing functions and

, X,() = 0ifR; < Ry, X,(i) = 1ifR; > Ry, (1)
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. Rmax - Ri i . . .

X)) =————, X,(i{) = 0ifR; > Ry, X1(i) = 1ifR; < Ry (2)
Rmax _Rmin

for decreasing functions (e.g., Kao, 2010).

While the classic fuzzy logic captures a continuum of values between 0 and 1 (e.g.,
Zarin et al.,, 2021), another class of its input functions form custom user-defined
discrete functions. They are expressed as discrete estimates that characterise, e.g.,
vulnerability associated with geomorphology, type of sediment, presence or absence of
nature protection areas or coastal protection structures, land use, and land tenure
(see Paper Ill for examples and references). On some occasions (e.g., presence or
absence of nature protection areas or coastal protection structures) the input for fuzzy
logic is like a Heaviside function with only two values 0 and 1.

1.2.2 Analytical Hierarchy Process (AHP)
AHP is a widely used pairwise comparison method where each parameter is weighted
against others to determine the relative significance of all parameters (Chai et al., 2013;
Mu and Pereyra-Rojas, 2018). It is often used as part of coastal vulnerability, risk, and
resilience assessments (Ishtiaque et al., 2019; Hadipour et al., 2020b; Sekovski et al.,
2020). It allows for the quantitative analysis of parameters that affect CVI, CRI, and CoRl
(Mani Murali et al., 2018). The weighting and prioritisation are performed based on
expert assessments. Each factor is ranked using a pairwise comparison matrix
(see, e.g., Table 7 in Paper lll). The selected parameters are usually weighted on a scale
from 1 to 9, where 9 indicates extreme importance (or influence), 7 very strong
importance, 5 strong importance, 3 moderate importance, and 1 minimum importance,
with intermediate values also used (Saaty and Tran, 2007; De Serio et al., 2018).
The pairwise comparison matrix is completed by inserting reciprocal values (e.g., 1/3,
1/5, 1/7, 1/9) into the transposed positions (Saaty and Tran, 2007).
The consistency in the weighting process is characterised by the so-called
consistency ratio CR (Saaty and Tran, 2007; Gargiulo et al., 2020)
CI
CR = RT (3)
that is a ratio of consistency index CI to the Random Index RI. The consistency index CI
defined by Saaty and Tran (2007) is computed as (e.g., Klutho, 2013):
cp = tmax =N ()
N -1
where A,,., is the largest eigenvalue of the pairwise comparison matrix, and N is its size,
equivalently, the number of parameters or attributes being compared. The random index
RI is found using the same equation as the usual value for the totally random pairwise
comparison matrix (Saaty and Tran, 2007). The RI values, evaluated from a large
number of randomly filled matrices, increase to about 1.5 as N increases from 1 to 10
and level off around 1.6 for larger values of N (Aguarén and Moreno-Jiménez, 2003;
Saaty and Tran, 2007). The AHP results are consistent if CR < 0.1. This condition is
routinely checked in studies based on the AHP method (e.g., Diaz-Cuevas et al., 2020).
The AHP method is used in Papers Il, lll, and IV as described below.
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1.2.3 Weighted linear combination (WLC)

WHLC is a common tool to integrate various environmental and socioeconomic data for
calculating coastal DSls, ranking vulnerabilities and risks across different areas
(Hadipour et al., 2020a, 2020b) in situations where different components may have
different importance, priority or impact. WLC assessment can be effectively
accomplished with GIS using map algebra (Tomlin, 1990; Malczewski, 2000). In essence,
WLC is a direct generalisation of the simple sum or direct average of single estimates of,
e.g., vulnerability driven by some factor X; by means of assigning weights (or ranks) W;
to each component X; of normalised data using fuzzy standardisation, to obtain a
weighted estimate:

n
WLC = ijwj. (5)
j=1

The users of this method often call the addressed components or parameters
attributes (Ghosh and Lepcha, 2019). In coastal studies, examples of attributes are
elevation, slope, geology, shoreline change rate, or land use.

1.3 Advanced methods

Paper | also presents an overview of several advanced, rapidly developing techniques in
decision making in coastal matters that have not been implemented in the studies
presented below.

1.3.1 Artificial Neural Networks (ANNs)

The ANNs are based on biological neural networks and are used to model
environmental hazards for more than two decades (e.g., Chen et al., 2004; Gokceoglu
et al., 2005). This approach has provided reasonably good estimates without fully
understanding the underlying processes in, for example, hydrological applications
(Gudiyangada Nachappa et al., 2020). On many occasions, e.g., to predict coastal
erosion, the benefits of GIS and ANN are combined (Peponi et al., 2019). To identify
vulnerable coastal ecosystems, ANNs have been used to classify images and maps
(Rumson et al., 2020).

ANNs are based on neurons, where the output of one layer becomes the input for
the next (Ahmadlou et al., 2020). A multi-layer perceptron (MLP) is the most common
ANN for coastal change classification, which uses supervised classification with input,
hidden, and output layers (Goldstein et al., 2019). A backpropagation algorithm (BPA) is
used for MLP training to minimise mean-square errors between output and expected
values (Ghorbanzadeh et al., 2019a). The complexity of a problem determines how
many hidden layers are needed. For MLP, random samples are selected to represent
hazards and non-hazards (Dao et al., 2020). Yariyan et al. (2020b) divided 101 hazard
and 101 non-hazard locations 70:30 for training and testing. Depending on the study
scope and desired accuracy, sample size and ratio may vary (Thi Ngo et al., 2021).

1.3.2 Bayesian Networks (BN)

In environments with limited data, various graphical probabilistic models provide
additional resources for the analysis and synthesis of existing information (e.g., Ben-Gal,
2008). Among these, Bayesian networks (BN) have become increasingly popular since
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about 2000. They often rely on Bayesian statistics for the posterior probability of
forecast

0;|F; )p(Fy)
p(iloy = LD ©
]

where p(Fi|Oj) is the posterior probability of forecast F; given observations 0;,
p(0j|Fi) is the likelihood of observations O; given forecast F;, p(F;) is the prior
probability of F;, and p(Oj) is the prior probability of 0;. However, the use of BN does
not necessarily imply the use of Bayesian statistics (Ben-Gal., 2008).

In essence, BN models provide graphic representations of probability distributions of
e.g. coastal hazards (Sahin et al., 2019) based on predictive modelling. This technology
is increasingly being used to model coastal vulnerability and risk assessments in the
face of significant uncertainty (Sahin et al., 2019; Guo et al., 2020). The BN outcome
shows the probability distribution of hazards graphically (Sahin et al., 2019), commonly
forecasting erosion and accretion rates in relation to sea level rise. The nodes of the BN
can be used to represent factors such as coastal response, boundary conditions,
location, hazards, and wave properties, with undirected or directed edges (arrows)
showing their interconnections (Plomaritis et al., 2018).

Another way of implementation of the BN technique is the use of a directed acyclic
graph (DAG), for example, to demonstrate causal relationships between parameters
that are associated with coastal hazards (Giardino et al., 2019). Multiple variables are
integrated into BNs to provide robust data-driven or model-driven forecasts (Giardino
et al., 2019). A BN model can provide alternatives to numerical models when assessing
the effects of coastal hazards on infrastructure and ecosystems (Plomaritis et al., 2018).

1.4 Decision Support Indices (DSls)

The concept of vulnerability refers to a system's susceptibility and inability to deal with
adverse effects (Adger, 2006). A coastal vulnerability index (CVI) quantifies coastal
segments to identify those that may be more vulnerable with respect to the joint
impact of a multitude of drivers and thus may require protection for community
resilience (Bagdanavicitté et al., 2015; Hoque et al., 2019; Koroglu et al., 2019).

While the first application of a CVI incorporated only a small number of variables
(elevation, lithology, geomorphology, relative sea level change, shoreline displacement,
tidal range and wave heights; Gornitz, 1991), most of contemporary studies include >10
parameters and Paper lll addresses 16 parameters. It is customary to normalise the
numerical values of CVI index into the range from 0 to 1 and divide the areas into five
classes similar to the outcome of the fuzzy standardisation in Section 1.2.1.

A CVI may be split into or be considered as a set of multiple sub-indices, including
the coastal characteristics vulnerability index (CCVI), the coastal forcing vulnerability
index (CFVI), and the socioeconomic vulnerability index (SEVI). The factors contributing
to the SEVI include population density, infrastructure, cultural heritage, land use, and
land cover (Mullick et al., 2019; Ng et al., 2019; McLaughlin et al., 2010).

Various coastal exposure indices (CEl) have been developed for the evaluation of
socioeconomically important areas in terms of their vulnerability to hazards such as
flooding (Bagdanavicitté et al., 2019). They may employ both land-based (e.g., heavy
precipitation or river flooding) and marine sources of coastal flooding, such as storm
surges, tsunamis, and high waves. The CEl is often evaluated based on hydrodynamic
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models that predict maximum water levels for the creation of flood maps
(Bagdanavicitté et al., 2019). In these maps, extreme water level return periods are
evaluated, recognizing that predictions may change over time (Mucerino et al., 2019).

Based on the CVI and CEl, the coastal risk index CRI can be developed that quantifies
hazards impacting coastal sectors (Bagdanaviciate et al., 2019). Various implementations
of CRI assist to identify the most vulnerable locations, for example, with respect to
climate change (Bagdanavicitté et al., 2019). Another example is the flood exposure
map used to assess the susceptibility of infrastructure and communities to flooding
(Chaib et al., 2020). Using this approach, strategies to enhance infrastructure resilience
and coastal disaster protection plans can be developed in response to climate
change-induced hazards (Chaib et al., 2020).

Different coastal area indices (CAl) assist in land-use planning by prioritising coastal
protection zones, especially in development zones (Dhiman et al., 2019). They are
commonly designed to provide decision-makers with a quantitative means of classifying
coastal areas on the basis of their vulnerability to infrastructure development (Dhiman
et al.,, 2019). As part of the CAl, factors such as elevation, coastal slope, shoreline
change rate, geological formation, soil texture, vegetation, land use, and land cover are
taken into account (Dhiman et al., 2018). Based on this index, coastal management can
be balanced between conservation and sustainable development (Dhiman et al., 2018,
2019).

A coastal resilience index (CoRl) assesses a coastal area's ability to withstand
climate-related hazards, assisting in the development of adaptation strategies (Gargiulo
et al., 2020). Resilience is influenced by factors such as distance of a particular location
from the coast, elevation, and human activities, with low-lying, densely populated
regions being especially vulnerable (Roy et al., 2019; Gargiulo et al., 2020). Coastal
resilience can further be reduced by tourism and urbanisation (Kim et al., 2017).
The use of this kind of assessment makes it possible to highlight also sustainable
development goals and propose potential solutions (Sajjad et al., 2020).

1.5 Organisation of workflow for coastal planning and management

The main conclusions from the overview in Paper | are mostly straightforward. First of
all, an effective method for coastal management involves integrating different decision
support tools (DSTs) into the decision support system (DSS) and calculating decision
support indices (DSIs). A recommended combination of DSTs to be implemented in

Objectives of decision-making

Determination and the gathering of environmental and socioeconomic data

Application of DSS (e.g., GIS, MCDA and ANN)

MOIPIOA
MOS0

Production of CVI, CEI, CRI, CAl, and CoRI maps as an output of DSS

An integrated framework for decision-making

Figure 1. Systematic steps for applying an integrated DSS in coastal planning and management.
Adapted from Paper |.
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coastal planning and management is shown in Figure 1. The use of the steps of MCDA,
fuzzy standardisation followed by the analytical hierarchy process (AHP) to standardise
and prioritise environmental and socioeconomic data, makes it possible to combine
them using a weighted linear combination (WLC) method in GIS (as described below in
Chapters 2 and 3). An example expanded workflow for steps 2 and 3 of the process in
Figure 1 is shown in Figure 2. GIS and MCDA tools have traditionally been preferred in
this step (Hadipour et al., 2020a; Tercan et al., 2020). Finally, it is important to classify
or validate the results using other means, such as artificial neural networks (ANN)
(Yariyan et al., 2020b; Pham et al., 2021) (Figure 2). Even though large datasets and
computational resources are necessary (Dao et al., 2020), ANN methods have become
valuable for classifying and ranking environmental hazards. Rumson et al. (2020)
demonstrate that a comprehensive assessment of coastal risks and resilience can be
obtained by integrating MCDA, GIS, and potentially ANN. It is likely that this
combination improves coastal adaptation planning, hazard mitigation, and resilience
initiatives (Kontopoulos et al., 2021).

The overall perception in the literature is that a combination of DSTs provides
several advantages for the implemented DSS for coastal planning and management
(Figure 3). The outcome can be used to generate effective coastal protection maps,

Objective: Coastal vulnerability assessment for hazards

Data determination: Data for vulnerability assessment

Physical Geological Socioeconomic

Application of fuzzy logic to standardise the values of
vulnerability parameters

Application of AHP to obtain the weights of vulnerability
parameters

Data combination based on WLC approach in GIS software to
prepare vulnerability map

Choose random points from the map as training points, then
converting to a raster layer

Use ANN to classify CVI as an output of DSS

Figure 2. An integrated DSS workflow for a coastal vulnerability assessment using GIS-MCDA-
ANN. Adapted from Paper .
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An integrated DSS framework

Involves the production of Outputs for stakeholder
maps engagement
Consideration of variable Enables consideration of
results uncertainty

Produces high-quality results Requires human-machine

Facilitates long-term interaction

applicability and monitoring

Figure 3. Benefits from using a DSS for coastal planning and management. Adapted from Paper .

such as setting appropriate setback zones for erosion and inundation control. As part of
this integrated approach, coastal planners can determine the optimal width of buffer
zones, establish infrastructure setback distances, and develop construction projects
management plans. In particular, the outcome can also assist in specifying floor heights
for buildings and identifying shoreline sections that require specific interventions to
mitigate erosion, such as sea walls or beach nourishment. Examples of combining these
tools in a coastal management system are presented in Bagdanaviciaté et al. (2019),
Mullick et al. (2019) and Hadipour et al. (2020a). It is clear that sea level rise and human
activities are increasingly impacting coastal areas, and individual tools are often limited
in their long-term functionality (Schumacher et al., 2018). By considering vulnerability,
risk, and resilience changes at finer scales, an integrated approach commonly leads to
more precise assessments (Mullick et al., 2019).

The assessment of error and uncertainty is critical in such projections. The use of
single methods like AHP can cause rankings to differ, whereas an integrated DSS
reduces inconsistencies by applying expert knowledge to calibration and validation
(Paper VI), which is similar to ensemble methods used in statistics and machine
learning (Berk, 2006). The described integrated methods enable the identification and
minimization of these errors (Yariyan et al., 2020a). It is particularly helpful to use ANN
methods to analyse uncertainty and perform sensitivity analyses to ensure that the
model is well-fitted to reality (Bayat et al., 2019; Peponi et al., 2019; Yariyan et al.,
2020a).

Using DSTs and developing DSS require human-machine interaction. To interpret
data effectively, experts must ensure accurate data inputs and reliable outputs
(Rumson et al., 2020; Yun et al., 2021). Experts are able to break complex decisions
down into manageable segments despite the fact that DSSs cannot do so independently
(Rashidi et al., 2018).
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1.6 Experience with applications of integrated DSSs in coastal planning
and management

The ultimate task of a DSS for coastal matters is to create a framework integrating
environmental and socioeconomic data for coastal planning and management.
Combining various DSTs enhances decision-making for coastal issues. The integration of
GIS and MCDA is well-established in the literature (BagdanaviciGté et al., 2019;
Hadipour et al., 2020a; Tercan et al., 2020; Masoudi et al.,, 2021). Effective
combinations like GIS-MCDA, GIS-ANN, GEE-ANN, GIS-MCDA-ANN, and GIS-BN have
been also reported in the literature (Peponi et al., 2019; Guo et al., 2020; Hadipour
et al., 2020a; Yariyan et al., 2020a; Arruda et al., 2021).

Recent studies emphasise the effectiveness of applying ANN for sensitivity and error
analysis. For the majority of environmental applications, combination of GIS-MCDA
(fuzzy logic, AHP and WLC) with ANN methods create an effective DSS (Jena et al., 2020;
Yariyan et al.,, 2020a; Pham et al., 2021). These approaches generate visual products
that assist public perception of environmental hazards and can be used to raise
awareness of coastal sustainability and facilitate expert discussions. Despite the lack of
strict conclusions, comparing different approaches reveals several practical
implications.

A combination of DSTs addresses various environmental management challenges,
such as environmental risk and hazard classification, site selection, land-use zoning, and
resilience classification (Table 3 in Paper |). MCDA tools are beneficial for incorporating
environmental, social, and economic objectives into decision-making (Tercan et al.,
2020; Masoudi et al., 2021). Scientists and stakeholders provide useful inputs, which
promote the decision-making process with their expertise (Uhde et al.,, 2015). ANNs
methods contribute to a validation of results by considering future conditions alongside
the present situation (Peponi et al., 2019), especially in areas with large datasets
(Lamba et al., 2019; Yariyan et al., 2020a). However, implementation of ANNs without
MCDA may lead to a lack of expert knowledge in determining the relationships
between datasets (Sarbayev et al., 2019).

Bayesian network methods are effective for predicting environmental changes but
are computationally complex and require high expertise (Sahin et al., 2019), and are
less community-friendly (Guo et al., 2020). The use of tools like Google Earth Engine are
effective when it integrated with ANN for analysing publicly available large satellite
datasets (Arruda et al., 2021), which require specialised skills to apply.

GIS and MCDA tools are popular due to their widespread availability and ease of use
(Malczewski and Rinner, 2015). ANN methods require extensive training, but their
accessibility is improving across many fields particularly for environmental specialists
(Lamba et al.,, 2019; Pham et al, 2021). The applications of GIS-MCDA-ANN
combinations are expected to become standard for DSS investigations in situations
where large input data are available. However, there may be situations where such a
combination is not appropriate. This may happen if there is not enough input data
available or if the data cannot be generated (Jena et al., 2020). Importantly, outputs
from GIS-MCDA or GIS-MCDA-ANN combinations, whenever applicable, can be easily
interpreted by managers, decision-makers and stakeholders (Yariyan et al., 2020a).
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2 Offshore wind farm site selection

A global shift to renewable energy resources is driven by a need to reduce fossil fuel
dependence (e.g., Moriarty and Honnery, 2012) and mitigate climate change impacts
(e.g., Bogdanov et al.,, 2019). An important resource for renewable energy is wind
energy, which is a cost-effective, environmentally friendly, and sustainable source of
electricity on both a global scale (Ang et al., 2022) and at country level (Baban and
Parry, 2001; Latinopoulos and Kechagia, 2015). Due to significant reductions in
generation costs (Osman et al., 2022) and the ability to provide power near load
centres, wind energy is becoming increasingly popular (Chang et al., 2022). A number of
advantages exist for offshore wind power plants over onshore installations
(Fernandez-Guillamén et al., 2019), including higher wind speeds, fewer visual impacts,
and reduced noise (Bilgili et al., 2011; Wu et al., 2018).

Choosing suitable offshore wind power plant sites is crucial for optimizing energy
production and minimizing costs (Arrambide et al., 2019). This selection process must
take into account a variety of environmental, social, and economic factors (Gil-Garcia
et al., 2022; Tercan et al., 2020). Many studies of offshore wind farm development
typically concentrate on relatively small sea areas, such as the waters around Denmark
(Moller et al., 2012), the United Kingdom renewable energy zone (Cavazzi and Dutton,
2016), Canarian waters (Schallenberg-Rodriguez and Montesdeoca, 2018), Turkey’s
seas (Geng et al., 2021), or the Gulf of Maine (Gil-Garcia et al., 2022).

According to some estimates (Samuelsson, 2020), in Europe, the North Sea accounts
for 77% of all cumulative off-shore wind capacity, the Irish Sea 13%, and the Baltic Sea
10%. The reason is that the Baltic Sea is located within the so-called North Atlantic
storm track (Rogers, 1997), along which low pressure systems move from the Atlantic
Ocean to the east. The Baltic Sea offers ideal conditions for offshore wind power
development because of its favourable wind conditions and extensive coastal regions
(Hasager et al., 2011; Rusu, 2020). There is a need for increased energy production
capacity in response to the significant decrease in energy supplies from the Russian
Federation (European Commission, 2022). However, site suitability assessments for
offshore renewable energy in the Baltic Sea region are limited and focus primarily on
seabed characteristics (Nyberg et al., 2022). Paper Il attempts to close this gap by using
different decision support tools (DSTs) to assess the suitability of offshore wind farms in
the entire Baltic Sea (Baltic-wide approach). This Chapter mainly follows the material
discussed in Paper Il. To provide a detailed spatial analysis at a high spatial resolution,
this study combines geographic information systems (GIS) with multi-criteria decision
analysis (MCDA) as described in Chapter 1 with a levelised cost of energy (LCOE) model
by taking into consideration a variety of parameters for offshore wind farm site
selection.

2.1 Study area

The Baltic Sea (Figure 4) is a body of water in Northern Europe that is partially enclosed.
This area borders Finland, Estonia, Lithuania, Latvia, Denmark, Sweden, Germany,
Poland, and Russia. It covers 392,978 km? with an average depth of 54 m and a brackish
water ecosystem (Leppdranta and Myrberg, 2009). Various human activities and
pressures impact the Baltic Sea, including massive discharge of nutrients and pollution
that creates pressures on the entire ecosystem, fisheries, extremely intense shipping,
and increasing levels of tourism (Reckermann et al., 2022). These activities, if not
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handled properly, may exert a negative impact on marine ecosystems, coastal tourism,
fisheries, and socioeconomic conditions in all Baltic Sea countries (Reckermann et al.,
2022). The development of wind farms will eventually add to this pressure. It is therefore
important to take into account technical, socioeconomic, and environmental factors
when planning offshore wind farms (Tercan et al., 2020).

The presence of extensive relatively shallow areas in the Baltic Sea is favourable for
the installation of wind turbines and the properties of the seabed in these areas are
generally known (Nyberg et al., 2022). The installed generation devices and associated
infrastructure will be impacted by several types of hydrometeorological drivers.

The Baltic Sea is microtidal, with the maximum range of tidal-driven water level
variations being only a few centimetres (Leppdranta and Myrberg, 2009). The water
level of the entire sea may still exert substantial atmospheric-driven variations, up to
0.5 m as monthly mean (Johansson and Kahma, 2016) and up to 0.8 m for a few weeks
(Soomere and Pindsoo, 2016). It is uncommon that wind speed reaches hurricane level;
however, a 10-min average wind speed 32.5 m/s was recorded on 02 January 2019 in
the Sea of Bothnia (Bjorkquvist et al., 2020). The majority of moderate and strong winds
blow from the south-west or west but there is evidence that the strongest ever winds
could blow from the north-north-west (Soomere, 2001) or north (Bjorkqvist et al., 2020).
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Figure 4. The bathymetry of the Baltic Sea.
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The wave climate of the Baltic Sea is generally mild, with long-term average
significant wave height slightly exceeding 1 m only in the central part of the open Baltic
Sea (Baltic proper) and Sea of Bothnia (Bjorkqvist et al., 2018). The complex shape of
the sea gives rise to extensive variability in the wave properties in different parts of the
sea (Bjorkqvist et al., 2018; Giudici et al., 2023). The wave climate, however, is extremely
intermittent (Soomere and Eelsalu, 2014): some 30% of the annual wave energy flux
arrives within the stormiest week and about 50% within the two stormiest weeks.
Also, some parts of the sea may host extremely severe wave conditions, with significant
wave height close to 10 m (Soomere et al., 2008; Bjérkqvist et al., 2018). The maximum
recorded significant wave height to date is 8.2 m (Bjorkqvist et al., 2017).

Perhaps the most problematic driver is seasonal sea ice. In extreme cases the entire
sea may freeze (Leppéaranta and Myrberg, 2009). Even though the duration of ice
season and the extent of sea ice cover have considerably shortened (Haapala et al.,
2015), ice is still common in the nearshore also in southern parts of the sea.

2.2 Methods

2.2.1 Levelised Cost of Energy (LCOE) model

Paper Il addresses the problem of offshore wind farm site selection in the Baltic Sea
from the viewpoint of the levelised cost of energy (LCOE). This parameter provides a
comprehensive measure of the economic feasibility of projects in the energy sector
(Johnston et al., 2020). In essence, it expresses a ratio between the total costs of
energy production and the total energy expected to be produced over the project’s
lifetime. It is thus a natural measure of the cost-effectiveness of various energy sources
over their entire lifetimes, and technologies are often compared using this model.

The calculations of LCOE take into account both initial investment (CAPEX) and
recurring operational costs (OPEX). The generic expression for LCOE is (Johnston et al.,
2020):
¢ _ mizgmc -
E ¥EMME
where C is the total cost over the project lifetime and E is the total energy output. Both
quantities are expressed as the sum of the relevant costs or energy output from the
start of the project t = 0 until the end of the lifetime t = end. The costs include but
are not limited to the initial investment, planning, feasibility studies, permits, legal fees,
development, and decommissioning, and recurring costs like maintenance and fuel.
The LCOE for the Baltic Sea study in Paper Il incorporates critical factors such as water
depth, distance to shore, and wind capacity factor, all of which affect foundation and
grid connection costs.

The total cost is traditionally divided into the investment cost I; in a specific year ¢,
operations and maintenance expenditures M;, and fuel cost F;. The costs of fuel for
offshore wind turbines (F;) are negligible except for fuel used for maintenance.
The LCOE is commonly estimated based on annual costs and taking into account annual
discount rates as follows:

LCOE =

& I+ M, +F < E
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where t now has the meaning of single years, the lifecycle is LT years and discount rate
r (in %) is constant (Johnston et al., 2020). In more complex systems, such as those
incorporating a battery bank, and processes with various properties, Eq. (8) can be
expanded to include the capital cost of each component (e.g., wind turbine, battery
bank, civil works, inverter, miscellaneous expenses), and adjustments for escalation
(e.g., Geng et al., 2012). In such cases, Eq. (8) becomes more complex:

ln=1(Cl' X CRFi) + Com

LCOE = , 9
E, 9)

where C; represents the capital cost of each component:
C = lye X B, (10)

I,e is the product of the specific cost of each component, and P. is the rated power,
which is the maximum power output a wind turbine can generate under optimal
conditions. E,, represents the total output, similar to Eq. (8), which is essentially the
potential maximum output multiplied by the capacity factor. This representation
addresses the variability in capital recovery factors CRF; of individual components,
which may have different discount rates r and lifetime n (Geng et al., 2012):

n
CRF; = M (11)
@a+nm -1
This method also accounts for the escalation of operation and maintenance costs M,
[€/year], which are adjusted for escalation as follows:
Com [ _ (1 + eom)n

T — €ym @+nnr
where the term C,n,_, .. represents the escalated operation and maintenance cost,
taking into account the increase in these costs over the system's lifetime, C,,,, = M; is
the initial operation and maintenance cost for the first year, and eom is the escalation
ratio of operation and maintenance costs. The escalation ratio from 2015 to 2020 is
approximately 0.986, indicating a 0.986% decrease in operational and maintenance
costs over this period. Different from Geng et al. (2012), Paper Il does not include
scenarios where a wind turbine or farm is sold or bought.

M,=cC (12)

OM_gsc —

2.2.2 LCOE model for the Baltic Sea

The model described in Section 2.2.1 is adapted in Paper Il to the entire Baltic Sea to
identify the spatial pattern of LCOE across different sea areas, taking into account
environmental conditions, but assuming the start of a project remains constant. In this
way, the model is simplified, making it more practical for large-scale geographic
analysis. This framework simplifies the expression for LCOE to:

. CAPEX(t) + OPEX(¢)

_ at=l 1+t 13
LCOE = i E(t) ' )
t=1(1 + )t

where CAPEX(t) includes the capital expenditures during the year t, OPEX(t)
represents the operational and maintenance expenditures during the same year, and
E(t) is the energy generation during this year.

The LCOE model application in a GIS environment is illustrated in Figure 5. The Baltic
Sea was divided into pixels of 5000 m by 5000 m for standardised data analysis.
As described in Chapter 1, ArcGIS software was used to extract key parameters such as
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capacity factor, water depth, and distance from shore into raster layers used in the
LCOE calculation. The Global Wind Atlas (2022) provided high-resolution wind climate
data, and the HELCOM portal provided shoreline data. Cost data for the Baltic Sea
region are derived from the DEA Technology Data Catalogue (Danish Energy Agency
DEA, 2016). Next, the initial CAPEX was calculated based on rotor diameter, hub
height, generating capacity, specific power, and area coverage of wind turbines
(Table 1) based on Danish Energy Agency DEA guidelines that represent typically used
turbines in the Baltic Sea. The total CAPEX was calculated by summing the initial
CAPEX in the first year 2020, the foundation costs (dependent on the depth of the
water), and the grid connection costs (dependent on the distance from the shore).
The foundation costs increase rapidly for larger depths but have become considerably
less expensive in the period 2015-2020 (DEA, 2016). For the base case depth of 20 m
they were 0.74 M€/MW in 2015 and 0.42 M€/MW in 2020 (see Table 2 in Paper Il).

The expected total grid connection costs in 2015 prices were derived from Energinet,
(2017), detailing the costs associated with connecting the latest four projects in the
Baltic Sea (HR2, Rgdsand 2, Anholt, and HR3). These costs were estimated as
0.4 M€/MW for offshore wind power plants that have an on-site transformer station,
out of which the estimated offshore platform cost 0.16 M€/MW, project management
and environmental assessment 0.027 M€/MW, transformer station onshore
0.016 M€/MW and sea/land cable costs 0.00269/0.00134 M€/km/MW (Table 3 and
Table 4 in Paper Il). These projected costs for each pixel were assessed by comparing
differences in water depth and distance to shore in each pixel from the base case
(water depth 20 m; distance to shore 30 km, land cable 50 km). For every 1 m deviation
from the depth of 20m, foundation costs were modified by 0.0206 M€. These
estimates apply to power plants with capacities between 400 and 600 MW (DEA, 2016).

A fixed and variable OPEX was then calculated for 2020 using data provided by the
Danish Energy Agency DEA (2016) (Table 1). These costs cover the entire project
lifetime and do not vary based on water depth or distance from shore. Using the
capacity factor multiplied by 8760 hours per year, energy production was calculated.

o Distance from
Capacity factor Water depth
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Figure 5. Flowchart for offshore wind farm site selection methodology using GIS-LCOE. From Paper Il.
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Table 1. Technical and financial data related to large offshore wind turbines costs in 2020 for the
base case 20 m water depth and 30 km distance to shore (Danish Energy Agency DEA, 2016).

Year of investment decision
2015 2020
Generation capacity for one unit (MW) 8 10
Average annual full-load hours (MWh) 4400 4500
Technical lifetime (years) 25 27
Rotor diameter (m) 164 190
Hub height (m) 103 115
Specific power (W/m?) 379 353
Specific area coverage (MW/km?) 5.4 4.5
Nominal investment (M€/MW) 2.86 2.13
of which equipment 1.11 0.79
of which installation 1.35 0.96
of which grid connection 0.40 0.38
Fixed operation and maintenance (€/MW/year) 57,300 40,059
Variable operation and maintenance (€/MWh) 4.3 3.0

The generation of electricity was projected annually between 2020 and 2047, including
power losses of 10%. The LCOE values for each pixel were calculated using the total
costs divided by total energy generation over a 27-year project lifetime, with a discount
rate of 8%.

2.2.3 Steps of GIS-multi-criteria decision analysis (MCDA)

Site selection for offshore wind power plants using GIS-MCDA involves several steps
(Figure 6) as described in Section 1.2. The first step is to specify constraints and identify
potential locations based on various data sources, from research and technical
literature, various databases, national regulations, etc. The input data used in Paper Il
use information about wind resources, physical/environmental and socioeconomic
aspects. The necessary information was retrieved from DEA standards and databases
(Danish Energy Agency DEA, 2016), the European Maritime Spatial Planning platform

Step 1: Collect data i tance fi
Foon I Wind speed Capacity factor Water depth Distance from
for 05?:2?[:::31 farm - 3 nature protection

site selectio
Distance from
ports

Distance from Distance from

military area shipping routes Distance from
fishing area

Step 3: Standardize
raster layers with
consistency tuzzy logic
0.1

Distance from

Seabed geology Wave height

seabed
infrastructure

Step 2: Use AHP to
obtain weights
(importance) of

parameters

ance from

shoreline

II
o

Step 5: Rank the
suitable locations by
TOPSIS method

Step 4 : Combine
raster maps with
WLC method in GIS

e s ralell Step 6: Validate GIS-MCDA

revise weights
. ghts map through ROC curve

Figure 6. Flowchart for offshore wind farm site selection methodology using GIS-MCDA. From
Paper Il.
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(European MSP Platform, 2018a,b,c,d) and European Commission (2020). The estimates
of Gil-Garcia et al. (2022) were used for wave information.

The list of parameters used in the analysis include wind speed (threshold values for
fuzzy logic standardisation R, =7 m/s and R, = 10 m/s, increasing function),
capacity factor (35% and 55%, increasing, Figure 7), water depth (10 m and 50 m,
decreasing), distance from nature protection areas (2 km and 5 km, increasing), seabed
geology (0 for rocks and boulders, 1 for muddy seabed), wave height (<10 m,
decreasing), and distance from various objects: ports (10 km and 80 km, decreasing),
seabed infrastructure (0.5 km and 5km, increasing), shoreline (10 km and 80 km,
decreasing), military areas (0.5 km and 5 km, increasing), shipping routes (3.7 km and
5 km, increasing), and fishing areas (0.5 km and 5 km, increasing) (Table 5 in Paper ).
The derived information about these parameters was identified and quantified with a
spatial resolution (pixel size) of 5000 x 5000 m pixels using ArcGIS based on the
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ETRS_1989 LAEA reference coordinate system (Annoni et al., 2003).

In the second step of the MCDA process, raster layer values were standardised to
facilitate quantitative assessments of site suitability (e.g., Noorollahi et al., 2022) using
a fuzzy logic algorithm to reclassify data across layers, that is to convert the values of
the pixels of raster maps into a scale from 0 to 1 (Section 1.2.1). As described in Section
1.2.1, any value below the lower threshold R, represents the least appropriate value,
and any value above the upper threshold R, is considered optimal (increasing
function) (e.g., Latinopoulos and Kechagia, 2015). For example, a minimum acceptable
distance from a nature protection area is set at 2 km and R,,,,, is set to 5 km. Thus, all
locations within 2 km are assigned a suitability value of 0, whereas locations more than
5km away are assigned a suitability value of 1. Water depth is an example of a
decreasing function: depths <10 m are rated as highly suitable, while values >50 m are
rated as unsuitable. The fuzzy membership functions X; (i) and X,(i) are defined in
Egs. (1) and (2) (Section 1.2.2).

The third step in the MCDA design involves specifying the contribution of various
parameters to wind farm site suitability using the Analytical Hierarchy Process (AHP)
(Section 1.2.2). For the study in Paper ll, expert opinions were gathered from 10
specialists with expertise in coastal management. The geometric mean was used to
aggregate their judgments, effectively balancing the differences in their opinions
(Mu and Pereyra-Rojas, 2018).

The pairwise comparison matrix (see Table7 in Paperll) was normalised
columnwise. The row sums were then averaged to calculate the weights of each
parameter, following Vasileiou et al. (2017) and Mahdy and Bahaj (2018). For the
matrix size N = 12, the Random Index RI = 1.54 (Aguarén and Moreno-Jiménez,
2003) and the consistency index (Section 1.2.2) CI = 0.04. The assigned weights are
presented graphically in Figure 8.

The fourth step involves combining raster maps within a GIS environment to
generate a site suitability map (Section 2.3). The Weighted Linear Combination (WLC)
method (Section 1.2.3) is used in the GIS environment, following the implementation of
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Figure 8. Weights assigned to the factors using the AHP method. From Paper Il.
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the map algebra techniques in Malczewski and Rinner (2015) to combine raster maps
for calculation of site suitability (Diaz-Cuevas et al., 2019). In the output layer, a rank of
1is the most appropriate.

2.2.4 Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS)

Paper Il employs the Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS) to enhance confidence in the results by ranking suitable locations. This
technique is an efficient method for selecting the best option among multiple
alternatives (Vagiona et al., 2022). This approach is based on the idea that the optimal
alternative should be closest to the positive ideal solution and farthest from the
negative ideal solution (Sindhu et al., 2017). The positive ideal solution represents the
maximum benefit, while the negative ideal solution signifies the minimum benefit
(Diaz and Guedes Soares, 2021).

Initially, a decision matrix was constructed with /] = 15 alternatives (locations Al to
A15, Figure 11) and N = 12 criteria, representing each criterion i and alternative j as
x;j. The decision matrix was then normalised (Konstantinos et al., 2019):

xij

' (14)
~/Z§=1xi2j

Next, weighted normalised values v;; were computed (Vagiona et al., 2022):
vij =W]T'U, i = 1,2,,N, ]= 1,2,] (15)
The positive ideal solution (Vj+) and negative ideal solution (V;") were identified
following Vagiona et al. (2022):
At =, V), V= {(max(vy),j € 1), (min(vy), j €J)). (16)
A" ={7, ...V} V7 ={(min(v;),j € J'), (max(v;), j€]")}. (17)
In this context, J' represents the set of indices from 1, 2, ..., ] associated with benefit
criteria and /" represents a similar set related to the cost criteria (Vagiona et al., 2022).
The study in Paper Il uses for evaluation only benefit-oriented criteria, concentrating on
positive impacts and improvements rather than negative aspects. Therefore Egs. (16)
and (17) were simplified via setting ]’ = {1,2,...,J}and J" = @. The differences of the
alternatives from the positive S;* and negative S; ideal solutions were calculated
(Foroozesh et al., 2022):

Tij =

st= 3 (vy -Vt i=12.,m (18)

i = Xjmalvy - Vj_)zf i=12,..,m. (19)

In the final step, the calculation of the relative closeness to the positive ideal
solution for site selection was calculated as in Vagiona and Kamilakis (2018) in terms of
how far from the ideal the realistic locations are:

st .
C+= L ]=1,2,...,]. (20)

7 st+s7’
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2.2.5 Validation

A receiver operating characteristic (ROC) curve (Figure 9) is used in this step to confirm
the accuracy of the model's predictions (Ghorbanzadeh et al., 2019b). The GIS-LCOE
and GIS-MCDA models were both used for this analysis. In the ROC curve, the x-axis
represents the cumulative distribution function of the false-positive rate and the y-axis
indicates the sensitivity (Chen et al., 2018). By plotting the false positive rate against
the true positive rate, a curve is generated (Pourghasemi et al., 2016).

The true positive rate was determined by existing wind farms, whereas the false
positive rate was determined by locations from GIS-LCOE and GIS-MCDA maps with no
wind farms. An area under the curve (AUC) value of 1 indicates a perfect suitability
map, and a value of 0.5 indicates poor performance (Orhan, 2021). The model’s
sensitivity, specificity, and accuracy were calculated as follows (Tien Bui et al., 2016;
Chen et al., 2017):

TP TN TP +TN
TP + FN' FP+TN Y S Tp T FP A TN + PN
Validation of the model outputs was conducted using a receiver operating
characteristic curve (ROC curve). Figure 9 illustrates how false-positive rates are
compared with true-positive rates in this method for assessing model predictions. True
positive rates were determined by existing wind power plants (Figure 7), and false
positive rates were determined by potential sites identified by the models. Area under
the curve (AUC) values for both LCOE and Fuzzy logic-AHP-WLC maps were over 92%,
which indicates a high level of accuracy in location prediction. TOPSIS had an AUC of
82%, which was slightly lower than LCOE and Fuzzy logic-AHP-WLC.

(20)

Sensitivity = Specificity =

2.3 Mapping site suitability based on LCOE, MCDA and capacity factor

There are several parameters that determine the most suitable areas in the south and
east of the Baltic Sea, including high wind speeds, fine seabed sediments, shallow
waters, and suitable distances from pipelines, shipping routes, military areas, and
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Figure 9. Validation of results using the ROC model. From Paper II.
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nature protection areas (Section 2.2). The LCOE maps and the GIS-MCDA techniques
treat these parameters very differently. Still, some similarities exist between the
outcome of the GIS-LCOE (Figure 10) and GIS-MCDA (Figure 11) models for identifying
suitable offshore wind sites in the Baltic Sea. This feature supports the conjecture that
both methods can be used to identify sites with high wind speeds and low energy costs,
based on the Danish Energy Agency and the European Maritime Spatial Planning
platform guidelines.

The GIS-LCOE analysis identifies locations with low LCOE values, generally near
Danish shores. This feature mirrors the presence of high wind speeds, large capacity
factors and shallow water depths in these locations. These areas have also lower
capital expenditures because of shorter electrical cables and lower construction costs.
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Figure 10. Offshore wind power plant site suitability based on the GIS-LCOE. Lower LCOE values
indicate better suitability, and higher values indicate less suitability. From Paper II.
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In contrast, locations such as the Gulf of Bothnia, offshore areas of the Baltic proper far
from Polish and German shores, and the central Gulf of Riga with lower wind speeds
and deeper waters have higher LCOE values. The outcome of the GIS-MCDA analysis,
which incorporates AHP, fuzzy logic, and WLC (Section 1.2), supports these findings
(Figure 11), emphasizing locations near the shore with shallow water and high wind
speeds, but away from nature protection areas, seabed infrastructure, military zones,
shipping routes, and fishing areas.

The spatial distribution of the capacity factor (Figure 7) reveals high energy output
areas (capacity factor > 50%) mainly in the nearshore of Denmark, Sweden, Germany,
and Poland. Consequently, the locations in the southern Baltic Sea have greater
capacity to meet the energy demands of communities.
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Figure 11. Offshore wind power plant site suitability based on the GIS-MCDA. The labels Al to
A15 indicate the ranking of suitable sites based on the TOPSIS method. Higher MCDA values
indicate better suitability, and lower values indicate less suitability). From Paper II.
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In terms of the best 20% of the relevant estimates, the most suitable areas according
to the long-term energy cost (Figure 10) have LCOE values of 42-58 €/MWh (33% of the
total sea area) while the most suitable areas in terms of MCDA (Figure 11) have
relevant normalised values of 0.78-0.92 (9.6%), and the most suitable areas in terms of
capacity factors (Figure 7) have this factor in the range of 0.52-0.55 (19%). The 20%
least suitable areas have LCOE values between 107 and 210 €/MWh (3%), normalised
MCDA values between 0.34 and 0.59 (6.6%), and capacity factor values between
0.30 and 0.43 (4%). The northern Baltic Sea is generally less suitable for wind farm
development due to lower capacity factors (< 50%). There are, however, certain
locations near Finnish coasts that may be suitable because of their close proximity to
shorelines and ports.

2.4 Application of the TOPSIS technique in site suitability

To finalise the analysis in Paper Il, the technique for order of preference by similarity to
ideal solution (TOPSIS) was applied to prioritise and rank the most suitable locations
identified by GIS-MCDA (Figure 11). TOPSIS was assessed using an initial matrix (Table 9
of Paper Il), which provides a list of numerical values for the parameters listed in
Section 2.2.3 across the top 15 sites Al to A15 (Figure 11). The geometric distances of
these sites from the positive and negative ideal solutions (Section 2.2.4) were then
determined using Egs. (18), (19) and (20). The rankings (see Table 10 of Paper Il) reveal
that distance from military areas significantly contributes to the higher rankings of sites
Al and A2. The distance from fishing areas played a crucial role for sites A3 and A4.
Both the distance from nature protection areas and the geology of the seabed
impacted the rankings of sites A5, A6, and A7. The winds speed and capacity factor
were the main factors contributing to the higher rankings of sites A8, All, and A13.
Distance from the seabed infrastructure and proximity to ports were significant
parameters influencing the rankings of sites A10 and A15.

The TOPSIS methodology focuses primarily on parameters with the highest distance
from the negative ideal solutions or the lowest distance from the positive ideal
solutions (Azadeh et al., 2011). In this way, sites that are further away from nature
protection zones, military areas, or seabed infrastructure are more suitable from the
viewpoint of this technique. In contrast, the GIS-MDCA (Fuzzy-AHP-WLC) approach
adheres to buffer requirements based on national guidelines and standards. This
comparison in Paper Il suggests that GIS integrated with fuzzy logic, AHP, and WLC
techniques provides a more consistent and balanced approach for standardisation,
weighting, and combining of parameters. It is likely that this feature is invariant with
respect to the particular sources of input information (the European Maritime Spatial
Planning platform, Danish Energy Agency standards, and experts’ perspectives in
Paper Il). The application of the TOPSIS model for suitability analysis provides additional
confidence in the results by validating the suitability rankings. This means that
integrating both approaches can promote the robustness and reliability of the offshore
wind energy site selection process.
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2.5 Further analysis of offshore wind farm site suitability

The map outcome of the GIS-MCDA technique (Figure 11) clearly show line features
that correspond to shipping routes and pipelines. These areas are definitely not
suitable for wind power plant development even though the relevant map usually
indicates only low suitability. There are nature protection areas in the Swedish, Latvian,
Polish, and German nearshore and in the offshore of these countries, which are also
inappropriate as wind farm sites. Even though the close proximity to the shore may be
generally preferred for wind power plants based on the criteria used, they are often
excluded because of noise generation and visual disturbance constraints.

To account for these considerations, Paper Il continued the analysis of estimates
presented in Figure 10 (GIS-LCOE) and Figure 11 (GIS-MCDA) towards the inclusion into
these maps restrictions related to marine protected areas and locations within 4 km of
the shore. Also, areas with water depths > 50 m were excluded as the high LCOE costs
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Figure 12. Offshore wind power plant site suitability based on the GIS-LCOE, with marine
protected areas, locations within 4 km of the shore and, and areas with water depths greater
than 50 m coloured into brown. From Paper II.
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render energy produced in such areas non-competitive. With these restrictions
included, the results of both analyses (Figure 12, Figure 13) show clear similarity.

A comparison of the above results with the map of capacity factor map (Figure 7)
that incorporates these restrictions (Figure 14) shows that, not unexpectedly, areas
with high capacity factors are commonly associated with lower LCOE values, indicating
lower electricity production costs.

The experts consulted for this study identified wind speed, capacity factor, and
water depth as the most important site suitability parameters (Section 2.2.3, Figure 8).
Distance from nature protection areas, wave height, seabed geology, and distance from
shipping routes were also significant, but to a lesser extent. Expert judgments were
reliable and consistent, as indicated by a consistency ratio of 0.03 (Section 2.2.3), which
is well below the acceptable threshold of 0.1. However, most experts involved in the
study reported by Paper Il placed a greater emphasis on environmental parameters

4600000 5200000
1 1

Suitability class Percent N
(%)
Very low (0.46 — 0.62) 66
=) Low (0.62 — 0.68) 7.5 =)
=3l Moderate (0.68 —0.74) 11.5 K=
3 High (0.74 — 0.80) 10 3
Very high (0.80 - 0.91) 5
Sum of classes 100
B Existing wind farms
B TOPSIS ranking
Suitability class
g | | M very Low 8
[=] o
8 [Low 8
~; [ Moderate ~
A3
B High
I Very High
I Al restrictions (Very Low Value )
[ ]Land and Island
8 8
8- L8
(=] (=]
© @
(3] (3]
e Km
3 Al4 550100 200 300 |g
o o
o O
o T T o
p- g 4600000 5200000 P

Figure 13. Offshore wind power plant site suitability based on the GIS-MCDA, with marine
protected areas, locations within 4 km of the shore and, and areas with water depths greater
than 50 m coloured into brown. The labels Al to A15 indicate the ranking of suitable sites based
on the TOPSIS method. From Paper Il.
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over wind power generation parameters and assigned parameter weights using only
half of the available scale — values from 1 to 5 of the maximum of 9. A different
approach was taken for renewable energy site selection in Iran (PaperVI; see
Chapter 4), where energy generation parameters were prioritised by experts who used
full scale of weighting for parameters from 1 to 9. This discrepancy indicates that
European experts tend to prioritise environmental concerns more strongly than
economic considerations for renewable power generation.

In conclusion, a variety of parameters and methodologies were used to identify
offshore wind farm sites in the Baltic Sea in Paper Il and described in this chapter.
By employing LCOE, Fuzzy logic-AHP-WLC, and the TOPSIS technique, the analysis
provided robust and reliable assessments, considering both environmental and
economic parameters. The integration of these techniques within a GIS framework
facilitates marine spatial planning and decision-making, which provide a comprehensive
approach to optimise offshore wind farm site selection in the Baltic Sea.

4609000 520?000
. N
Capacity factor class | Percent
(%)
Very low (0.33 —0.43) 64.7
8 Low (0.43 —0.47) 5 3
S- Moderate (0.47 —0.49) | 83 -3
Q High (0.49 — 0.52) 12 Q
Very high (0.52 — 0.55) 10
Sum of classes 100
B Existing wind farms
Value
S - Very Low 3
g- [ Low -8
g |:] Moderate q
I High
- Very high
- All restrictions (Very Low Value )
D Land and Island
o o
o o
o o
Is& O
o o
0 [+
(3} (3]
o [ —] ] °
S 0 50100 200 300 =
o~ O
o T T o
& 4600000 5200000 3

Figure 14. Offshore wind power plant site suitability based on the capacity factor, with marine
protected areas, locations within 4 km of the shore and, and areas with water depths greater
than 50 m coloured into brown. From Paper II.
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The integration of multiple methodologies, particularly multi-criteria decision
analysis (MCDA) and the method of levelised cost of energy (LCOE), enhances the
reliability of the outcomes by using diverse datasets. Incorporating the analytical
hierarchy process (AHP) into the MCDA framework effectively integrates expert opinions
into parameter weighting, and thus contributes to knowledge-based decision-making
for site suitability assessment. The MCDA approach reveals significant variations in the
importance of different parameters across the study area. For example, the northern
Baltic Sea benefits from high wind speeds, however, parameters such as proximity to
shore and ports are influential, primarily due to the distance to grid connection points,
as noted by Martinez and Iglesias (2022). Seabed substrate suitability is also crucial
near the shores of Denmark, Germany, and Poland.

The use of GIS to implement LCOE model for offshore wind farm site selection offers
several advantages, including the inclusion of buffers and exclusion zones and easy
comparison to other methodologies. This study takes a broader view of parameters
than seen in previous studies (Caceoglu et al.,, 2022; Gil-Garcia et al., 2022;
Gkeka-Serpetsidaki and Tsoutsos, 2022; Salvador et al., 2022). It adheres to the latest
industrial standards and environmental policies from the Danish Energy Agency and
European Maritime Spatial Planning Platform. The use of two well-established
techniques and multiple datasets improves the accuracy and efficiency of the analysis.
The LCOE and MCDA approaches provide managers and decision-makers with
evidence-based considerations when planning future wind farm installations in the
Baltic Sea. The combination of GIS with fuzzy logic-AHP-WLC, TOPSIS, and GIS with
LCOE provides better results than single-technology studies. It enables the selection of
suitable locations from both an environmental and economic perspective, assisting in
balancing these objectives for long-term wind farm development.

Although Vagiona and Kamilakis (2018) found that combining GIS with AHP and
TOPSIS methods is useful for hierarchical ranking, the analysis in Paper Il suggests that
TOPSIS does not significantly enhance the analysis, aligning with Gil-Garcia et al. (2022)
in the Gulf of Maine context. A limitation of the presented analysis and the underlying
study in Paper Il is the lack of data on potential grid connections. Based on discussions
in Estonia, this feature may have a significant impact on the selection of wind farm sites
in the Baltic Sea. A close proximity to grid connection points is preferred because power
transfer costs are lower.
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3 Coastal vulnerability assessment for Estonia

Coastal regions globally are increasingly vulnerable to hazards induced by climate
change (IPCC, 2022), such as sea level rise, storm surges, and the subsequent flooding
of low-lying areas (Nicholls et al., 2007; Torresan et al., 2008). These hazards can
adversely impact infrastructure and human livelihoods (Tanner et al., 2014; Nichols et al.,
2019) and contribute to the loss of ecosystem services and biodiversity (Myers et al.,
2019). Specifying the causes and impacts of marine-driven threats (Rutgersson et al.,
2022) enables communities to effectively manage these hazards, enhance social
well-being, and minimise economic damage.

One effective planning strategy to strengthen coastal communities’ resilience to
hazards is vulnerability assessment (Adger et al., 2005). It is essential to include climate
change-induced hazards, human-induced environmental changes, and socio-economic
developments in these assessments (Ramieri et al.,, 2011). The Coastal Vulnerability
Index (CVI) is a tool used to estimate coastal vulnerability (Rangel-Buitrago et al., 2020).
Its streamlined format enhances its effectiveness as a practical management tool
(Ramieri et al., 2011). While various alternative indices have been proposed (Mullick
et al., 2019; Alcantara-Carrid, 2024), the CVI introduced by Gornitz et al. (1991) remains
the most widely used method for evaluating coastal vulnerability (Rangel-Buitrago
et al., 2020). This broad applicability is one of the main reasons that this tool is used in
this analysis.

As described in Chapter 1 and Chapter 2, decision support tools (DSTs) assist in
integrating these estimates into coastal adaptation planning strategies (Gargiulo et al.,
2020) and Geographical Information Systems (GIS) enable the integration of various
parameters in vulnerability assessment (Thirumurthy et al., 2022).

Multi-criteria decision analysis (MCDA, Section 1.2) employs spatial data and expert
priorities to produce information for the decision-making process (Malczewski and
Rinner, 2015). It facilitates trade-offs between different decision goals (Bell et al.,
2003). All these techniques and approaches are proven to be effective along relatively
straight coastlines. However, the situation becomes significantly more complicated in
areas with intricate geometry, morphology, and geology, especially in locations
with diverse coastal engineering structures. A coastal vulnerability assessment of the
Estonian coast was conducted using MCDA techniques, especially fuzzy logic, AHP,
and WLC, integrated with GIS, in Paper Ill. The evaluation covers a land strip extending
up to 2 km inland and takes into account various factors not addressed in Chapter 1
and Chapter 2, such as vulnerable infrastructure and population density across a
broad coastal area. The core new feature in Paperlll and in the presentation in
this chapter is an extension of classic one-dimensional vulnerability analysis into a
quasi-two-dimensional situation.

3.1 Study area

The area addressed in Paper lll and in this Chapter is the entire coastline of Estonia and
its large islands. Large parts of Estonia's coastline are characterised by low elevations
and are primarily composed of moraine deposits, encompassing various types of
sedimentary coasts such as gravels, sands, and silts, along with regions of limestone
coastal cliffs (Tonisson et al., 2013; tabuz, 2015; Orviku, 2018). The western islands
usually have narrow gravel beaches and commonly show visible signs of erosion
(Suursaar et al., 2008), some of which are extremely rapid (Suursaar et al., 2015).
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Landforms along the Estonian coast are significantly shaped by land uplift, leading to
general progradation in the past. However, many areas suffer from deficit of fine
sediment, which greatly increases their vulnerability to present and anticipated climate
changes (TGnisson et al., 2013; tabuz, 2015).

As discussed in Section 2.1, in the Baltic Sea, storm surges are primarily driven by the
sea’s water volume, strong winds, and wave action (Hunicke et al., 2015). Water levels
across the entire Baltic Sea can increase by up to 0.8 m above the long-term average for
several weeks (Soomere and Pindsoo, 2016) due to significant changes in water volume
(Weisse et al., 2021), known as preconditioning (Andrée et al., 2023). The local impact
of storms can be significantly intensified by the high water level background, potentially
leading to catastrophic surges in the eastern Baltic Sea (Suursaar et al., 2006).

Wave conditions are typically influenced by wind speed and direction, and long-period
remote swell waves are almost non-existent (Bjorkqvist et al., 2018). The wind direction
is capable of intensifying wave set-up along specific coastal sections (Pindsoo and
Soomere, 2015), which supports the formation of extremely high water levels in some
locations (Eelsalu et al., 2014). The most significant recorded storm surges in Parnu,
for example, occurred in 2005 and 1967, where water levels reached 2.75 m and
2.53 m above approximate long-term mean water level based on the Kronstadt datum,
respectively, with massive damage in populated areas (Suursaar et al., 2006; Suursaar
and Sooaér, 2007). An increase in storm frequency, along with sea level rise and a
shorter duration of winter ice cover, are other contributing factors that influence
coastal flooding (Harff et al., 2017). Thus, climate change-driven extreme events can
severely impact coastal communities along the Estonian coast (Kont et al., 2003).
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3.2 Steps in the vulnerability analysis

As discussed in Section 1.1, the identification of parameters to be included in a
vulnerability assessment is a crucial initial step in the analysis (see Figure 2 and Table 1
in Paper lll). The traditional method proposed by Gornitz et al. (1991) incorporates five
categories: geomorphology, relative sea level change, shoreline displacement, tidal
range, and wave heights and seven parameters used in the analysis: elevation,
lithology, geomorphology, relative sea level change, shoreline displacement, tidal range
and wave heights. However, in the microtidal Baltic Sea, the tidal range is not a
pertinent factor, and relative sea level change may show minimal variation within a
small nation (for example, Lithuania; Bagdanavicitté et al. (2015)). Subsequently,
Gornitz et al. (1994) expanded the number of parameters to 13.

The contemporary perception is that coastal vulnerability is determined by three
main elements: exposure, sensitivity, and resilience. This framework was developed by
Turner et al. (2003) and applied by Adger (2006), El-Shahat et al. (2021) and many
others. This study utilises 16 parameters (Figures 16—23) that collectively represent the
essential elements of exposure, sensitivity, and resilience (Turner et al., 2003) (Table 1,
Paper Ill). Exposure relates to the intensity, duration, and extent of hazards affecting a
system and encompasses both environmental and socio-political pressures. The exposure
factors consist of land surface elevation above mean sea level (MSL), beach slope,
underwater slope, shoreline change, closure depth, extreme water level above MSL,
relative sea level change, and the maximum significant wave height. The selection of
exposure parameters (Figures 16—19) in this study aligns with a well-established set of
parameters that have been shown to effectively characterise vulnerability across
diverse conditions (see, for example, Bagdanaviciateé et al., 2015, and Kovaleva et al.,
2022 in the context of the Baltic Sea).

370000 440000 s10000 ss0000 0000 T20000

Land surface elevation N
(m) A
BEmo-2 B
i T «
Hmm2s SN~ v Ne———— I
ms-15 -y
I 15-20 { )
HE 20 \ i i e e i i
H J | n |
W x g ¢ Beach slope N
‘?'-\Hl\umaﬂa"m (Degrees) A
\/: - SR S T
. et N g
i R W L R Y 3-5 ‘!t; -
Y ~ 1 . \
% ;azremaa 4 \ o . 5-7
34 oF : . -7
i : =
f 1
3 ] !
3 ’ =1 Ay
¥ @5\ Estonia
) g Moonsund §

\J Saa remaa
Qhrc’w \'\r
p f

73 J e —— T
L% { 01020 40 60 80

450000
e4sto00

Y Coordinate System: Estonia_1997_Estonia_National_Grid

aruon 45000 510000 ss000 asto0 Tato00

Figure 16. Land surface elevation (left) and beach slope (right). From Paper Il.

47



3000 om0 $10000 580000 650000 720000

Closure depth N
(m) N A
{4 T e A
s4-5
[5-6
I >
! e e e -
2 Hiiumaa Underwater slope N
(Degrees) A
g Moonsund g | mm0.02-01 - 1) J)\N\-’_\-J %
H A LY [01-03
[703-05
\‘Q\ Saaremaa B >0.5
i | i
H
Estonia
i b
§ H H
310000 wac00 10000 Saaremaa
b !
o — —
0 10 20 40 60 80
g Coordinate System: Estonia_1997_Estonia_National_Grid g

Figure 17. Closure depth (left) and underwater slope (right). From Paper Ill.
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Figure 18. Shoreline change (left) and extreme water level (right). From Paper ll.

Sensitivity assumes that the resource is subjected to the hazard and describes the
relative impacts of that exposure (Feng et al., 2021). The parameters used to assess
sensitivity include geomorphology, sediment type, the existence of nature protection
areas, land use and land cover types, land tenure, and population density. The selection
of sensitivity parameters (Figures 20-22) is influenced by the specific coastal type and
the intended scope of the vulnerability assessment.

48



Relative sea level rise

(mmlyear)

B -2.18--1.95
§- | [-1.95--1.73

-1.73 - -1.50

I -1.50 - -1.27

. 127

s10000 w0000

i

i
§ Maximum significant wave height
(m)
ENo03-05
Hos-1
g_ E1-15
Em15-2
.2

Estonia

Moonsund

Saaremaa

 — w— T
0 10 20 40 60 80

Cocrdinate System: Estonia_1997_Estonia_National_Grid

830000 650000 720000

Estonia

Geomorphology _!
I Artificial shoreline (walk, dike, quay) without beach

Beach with rocky platform
I Erodible rock and/or cliff, with rock waste and sediments (sand or pebbles) at its base

I Muddy coastiine, including tidal fiat, salt marsh
I Sand beach fronting upland (> 1 Km long)

srosen oo stoneo saaae0 asoonn rasaen
N
k PASS
4y ) S H
Ve N——
s Estonia
g b Sediments
Classification
B Tl Loam and sandy loam with stones, debris.
S0 Py B Technogenous deposits, Fill, irt _§
(B Marsh deposits. Peat

[ Marine deposits. Pebble, sand, silt, sandy loam, loam, clay, sapropel
[ILacustrine deposits. Pebbie, sand, sit, sandy loam, loam, clay, sapropel, lake ime
[ inland water body (lake, water reservoir)

B Glaciolacustrine deposits. Pebble, sand, silt. sandy loam, loam, clay

B Glaciofluvial deposits. Pebble, gravel, sand

1 Biown (aeolian) deposits. Sand .g
E Area with thin Quaternary cover (thickness <1m i.e. alvar)

W Alluvial deposits. Pebble, gravel, sand, silt, sandy loam, loam, mud

- — — T
01020 40 60 80

Coordinate System: Estonia_1997_Estonia_National_Grid

Figure 20. Geomorphology (left) and sediments (right). From Paper Iil.



This may involve assessing only the shoreline from a societal perspective or
extending the analysis inland to incorporate ecological values. The parameter choices aim
to expand the Coastal Vulnerability Index (CVI) analysis into a quasi-two-dimensional
framework, seeking a broader perspective without substantially increasing the number
of parameters compared to classic studies, such as those by Gornitz et al. (1994).
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In addition to traditional parameters like geomorphology and sediment, the analysis
included the presence of protected natural areas, types of land use and cover, land
tenure, and population density as two-dimensional sensitivity parameters to provide a
more comprehensive view of inland vulnerability.

Resilience is the ability of a system to withstand or recover from physical, economic,
and infrastructure damage caused by a hazard (Mullick et al., 2019). Resilience
parameters (Figure 23) involve coastal protection structures and coastal setback.
The resilience parameters are relatively few. To characterise shoreline conditions,
the presence of coastal protection structures and measured the setback distance from
the shoreline to the nearest infrastructure are used.

Following these ideas, the analysis in Paper Ill applied 16 parameters to the entire
coastline of Estonia (Figure 15) in the multi-criteria decision analysis (MCDA) process
(Section 1.2). The target was a 2 km wide nearshore zone from the 1 m elevation isoline
relative to MSL (0 m contour). This approach effectively created a quasi-two-dimensional
(2D) representation of parameters, which are essentially one-dimensional (1D)
variables. The 1D parameters, which include beach slope, closure depth, extreme water
level, geomorphology, maximum significant wave height, relative sea level rise, setback
(the distance between the shoreline and the first infrastructure on the landward side),
shoreline change, and underwater slope (Paper lll), have distinct values at each specific
coastal location and vary along the shoreline. Several other parameters are naturally
two-dimensional, especially those associated with land features: land surface elevation,
land tenure, land use and land cover, population density, the presence of nature
protection areas, and sediment types (Paper lll). Coastal protection structures are
represented by specific locations (polygons) (Figure 23) for illustrative purposes but are
accurately defined in the analysis. Thus, they are classified as “Not applicable” for both
1D and 2D categories in this context.

The data for GIS analysis were processed and prepared in ArcGIS Pro, using a spatial
resolution of 10 x 10 m, based on the Estonia 1997 National Grid reference coordinate
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system. This resolution was applied to the entire Estonian shoreline, including areas
selected for detailed analysis (Figure 15). Parameters initially available at a coarser
resolution were interpolated to a 10 x 10 m raster using the inverse distance weighting
method. Parameters that are inherently one-dimensional at the shoreline (e.g., closure
depth) were extended to inland calculation cells perpendicular to the shoreline.
The vertical datum system employed is the European Vertical Reference Frame 2007.
The 0 m contour (Estonian Land Board, maaamet.ee) was used as an approximate mean
sea level (MSL). In reality, MSL fluctuates between +19 cm and +27 cm relative to the
datum (Estonian Land Board, 2023), largely due to the low (and spatially changing)
salinity of the Baltic Sea waters (Ekman and Makinen, 1996).

The second step in the MCDA process (Figure 2 in Paper lll) is to standardise the
selected parameters using fuzzy logic standardisation (Section 1.2.1) so that they
increase linearly between threshold values R, and R, have zero value if the input is
< R,,» and are equal to 1 if the input value is > R, (Egs. (1), (2)). The input data
(Table 2 in Paper ) include land surface elevation (digital terrain model from Estonian
Land Board, maaamet.ee; threshold values R, =2 m and R, = 5 m, decreasing
function), beach slope (maaamet.ee; 1° and 7°, decreasing), underwater slope
(maaamet.ee; 0.02° and 1°, increasing), shoreline change (EMODnet, emodnet-
geology.eu; -1 m for erosion and 1m for accretion, decreasing), closure depth
(Soomere et al. (2013); 3 m and 6 m, increasing), extreme water level (Wolski et al.
(2014); 1 m and 2.5 m, increasing), relative sea level rise (Madsen et al. (2019);
-2 mm/yr and =1 mm/yr, decreasing), maximum significant wave height (Giudici et al.
(2023); Najafzadeh et al. (2024); 0.3 m and 2.8 m, increasing). Information about
geomorphology (0 for cliffs, 1 for artificial beach), sediments (0 for sand, 1 for gravel),
nature protection areas (0 for no protection, 1 for nature protection areas with most
vulnerable species and habitats), land use and land cover (0 for forests, marshes, water
bodies, sea and ocean, 1 for industrial and commercial areas), land tenure (0 for
public property, 1 for private property), population density (< 10 person/km? and
> 250 person/km?, increasing), coastal protection structures (0 for seawalls, 1 for no
protection structures), and coastal setback (20 m and 150 m, decreasing) has been
retrieved from various public sources.

The third step in the MCDA is implementing the Analytical Hierarchy Process (AHP),
which relies on the personal assessments of experts regarding the relative importance
of various parameters in coastal vulnerability assessment (Section 1.2.2). In the analysis
performed in Paper lll, the opinions of 10 experts were analysed to assess the
significance of each parameter similar to the procedure described in Section 2.2.3.
The geometric mean was used to calculate the relative weights of the parameters also
here because it effectively accommodates the possibly diverging viewpoints of the
experts (Table 3 in Paperlll), providing a more balanced representation of their
assessments (Mu and Pereyra-Rojas, 2018). These estimates were incorporated
into a matrix to calculate their relative weights (importance) (Section 1.2.2). Finally,
the weighted linear combination (WLC) technique was used to calculate the coastal
vulnerability index (CVI) using all 16 parameters. The highest rank is set to 1 for the
output map. As an additional step, vulnerability was re-evaluated across all raster
points using only the three parameters with the highest weights from the AHP analysis:
extreme water level, shoreline change, and geomorphology. The weights were
renormalised to sum to 1 and applied in the Weighted Linear Combination (WLC)
method to align with the map that reflects all 16 parameters. The CVI calculation was
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performed at a 10 x 10 m spatial resolution by multiplying the standardised and
weighted parameters to obtain a vulnerability score for each grid cell across the entire
study area, including regions chosen for more detailed analysis.

The AHP analysis reveals that the most crucial parameters for a vulnerability
assessment of the Estonian coast according to experts’ opinions are extreme water
levels, shoreline changes, and geomorphology. Closure depth, population density, and
land tenure were the least significant parameters for coastal vulnerability assessment
(Figure 24). Most experts provided weights in the range 1-5, not giving weights over
the full scale from 1 to 9 (Table 3 of Paper Ill). This suggests that experts perceived
only moderate differences in parameter importance. It is likely that they aimed to keep
their evaluations consistent and dependable, using their professional judgment to
avoid exaggerating the distinctions between parameter weights. Despite this feature of
the opinions, the consistency ratio between experts’ perspectives is CR = 0.04.
As the method remains valid if the consistency ratio is < 0.1 (Saaty and Tran, 2007),
it is reasonable to use the retrieved weights of the parameters.

3.3 Coastal vulnerability index (CVI) analysis

The calculations performed in Paper Il show that the CVI values range between 0.24
(very low vulnerability) and 0.72 (very high vulnerability). Therefore, the range of 0.48
which is almost half of the theoretically possible total range from 0 to 1 is covered by
the calculated CVI index. It is therefore likely that the classic method of dividing CVI
values for single locations equally into five linearly increasing classes provides a sensible
representation of coastal vulnerability (Table 2).

Segments that have low or moderate vulnerability occur in almost the entire study
area (Figure 25). The northern coast of Estonia has many segments with very low
vulnerability dominantly comprising areas with stable limestone cliffs (Figure 25).
The coastline of the interior water body of the West Estonian Archipelago, Moonsund,
has also very low or low vulnerability along many its sections. This feature appears to
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Land surface elevation I 0.066
Beach sediments IEIEEGEGNG—G—_—__ 0.063
Relative sea level I 0.063
Setback GG 0.059
Nature protection areas I 0.053
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Land use and land cover NN 0.048
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Closure depth NG 0.041
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Figure 24. Relative weights assigned to the parameters using the AHP method. From Paper Ill.
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Table 2. Coastal vulnerability analysis using MCDA and all 16 parameters. Areas are calculated
for coastal land up to 2 km from MSL using equal interval classification method in ArcGIS Pro.

Vulnerability class Area (km?) Percent (%) Main locations
Very low (0.24-0.34) 121 3.8 North-west
Low (0.34-0.44) 1496 47 North-west and north-east
Moderate (0.44-0.53) 1350 42.5 North-west, north-east, Parnu Bay and western
islands
High (0.53-0.63) 207 6.5 North-east, Parnu Bay, and western islands
Very high (0.63-0.72) 6 0.2 Parnu Bay and western islands

be a result of gradual uplift, moderate variations of water levels (Mannikus and
Soomere, 2023), and also because of limited wave heights.

There are a number of areas identified as the most vulnerable in the study area;
mostly low-lying areas experiencing very high water level extremes. Additional factors
contributing to the level of vulnerability are gradual erosion and the presence of
various infrastructure located near the coast. The majority of areas with high and very
high vulnerability are located on the western shore of Saaremaa and near Parnu Bay.
The main likely reasons for this classification are the possibility of high water levels
(Suursaar and Sooaar, 2007; Eelsalu et al.,, 2014), shoreline erosion on the eastern
shore of the Gulf of Riga (Tonisson et al., 2013), and being open to storm events from
the west (western coast of Saaremaa). However, the presented classification is to some
extent counter-intuitive and does not always match the general perception of
vulnerability. For example, problems and damage associated with high water levels,
including major economic losses, are frequent in Parnu (classified as having moderate
vulnerability) but similar problems have not been reported for the western shore of
Saaremaa, for which the MCDA analysis shows high vulnerability.

To shed more light on this issue, Paper lll also presents another view of coastal
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Figure 25. From left to right: Coastal vulnerability using the MCDA technique (all 16 parameters)
and three most important parameters (extreme water level, shoreline change and
geomorphology) based on the perception of experts. From Paper lll. Pink boxes indicate sub-areas
for which inland vulnerability is discussed below.
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vulnerability that is evaluated as above but only the three parameters given the highest
priority by experts (Figure 24) are considered (Figure 25). Namely, only extreme water
levels, shoreline changes, and geomorphology are taken into account and all social or
economic parameters are ignored. The results of both maps (the 16-parameter and
three-parameter analyses) are qualitatively similar but show clear quantitative
differences, highlighting differing levels of vulnerability in certain coastal segments.
Experts did not prioritise some intuitively significant parameters, such as land elevation,
coastal protection structures, and maximum wave height, as shown in the pairwise
comparison matrix (Table 3, Paper Ill). Instead, they emphasised historical extreme
water levels and specific physical characteristics (shoreline change and geomorphology).
This reflects a limitation within the analytical hierarchy process (AHP), where expert
preferences may diverge for parameters that straightforwardly support resilience,
like high land elevation. This also emphasises the complexity of using expert judgments
and the influence of contextual biases in decision-making, suggesting the value of
incorporating perspectives outside traditional coastal science to enhance the focus on
socio-economic parameters, possibly by asking experts to propose additional
parameters and criteria to further strengthen the assessment.

The range of the CVI index with this approach is 0.64 (Table 3), which covers almost
two-thirds of theoretically possible values. On the one hand, the resulting map contains
a significantly smaller proportion of locations with low vulnerability than in Table 2.
On the other hand, the proportion of locations with high vulnerability is clearly larger.
Large segments of the south-western and north-eastern shores of Estonia have high
vulnerability based on these three most important parameters. Consistently with the
general perception, Parnu Bay together with extended sections of the eastern coast of
the Gulf of Riga has a generally high vulnerability to coastal hazards. This area is prone
to high water levels during extreme events (Suursaar and Soo&ar, 2007) and the coastal
landscape contains many low-lying areas. It is likely that the frequent occurrence of
particularly elevated water levels in the Gulf of Riga and severe wave events on the
eastern shore of this gulf (Mannikus and Soomere, 2023) contribute to the vulnerability
of the eastern shores of the Gulf of Riga. This classification is still not perfect as several
locations on the western shore of Saaremaa, areas of gravel and sandy beaches on the
north-eastern coast of Estonia, and various locations on the eastern shore of Sorve
Peninsula are classified as high-vulnerability areas even though they are usually
considered as stable being partially protected by boulders at the waterline.

The CVI range calculated using only three parameters (0.2244 to 0.8688) is
considerably larger than the range obtained when all parameters are included (0.2441
to 0.7251). This outcome aligns with the general observation that adding more
parameters tends to compress the range of CVI values under Baltic Sea conditions
(Soomere et al., 2024). Furthermore, the standard deviation of CVI values with three

Table 3. Coastal vulnerability analysis using MCDA and three most important parameters
according to the perception of experts. Areas are calculated for the coastal land up to 2 km from
MSL using equal interval classification method in ArcGIS Pro.

Vulnerability class Area (km?) | Percent (%) Main locations
Very low (0.22-0.35) 247 7.7 North-west
Low (0.35-0.48) 807 25.4 North-west and north-east
Moderate (0.48-0.61) 1637 51.5 North-west, north-east, Parnu Bay and western
islands
High (0.61-0.74) 464 14.6 North-east, Parnu Bay, and western islands
Very high (0.74-0.86) 25 0.8 Parnu Bay and western islands
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parameters (0.1015) is nearly twice as high as that derived from all parameters (0.0597).
The point-to-point correlation between the two CVI datasets is 0.565, indicating a
moderate relationship while reflecting significant differences in the information they
contain. This result reinforces the main conclusion of Fig. 25: while the two measures
share some spatial patterns and structural similarities, they are not perfectly aligned.

3.4 Extended vulnerability analysis

Paper lll also explored options of extension of estimates of coastal vulnerability by
up to 2km inland, to emphasise vulnerability in low-lying areas where critical
infrastructure may be located. For consistency, we present results using both all 16
parameters and the three most critical parameters identified by experts. A detailed
quasi-two-dimensional coastal vulnerability index was developed to evaluate the spatial
distribution of vulnerability within this coastal strip based on the classic CVI values on
the shore and properties of this strip. Consistent with the above, Parnu Bay (Figure 26),
south-western Saaremaa (Figure 27) and Tallinn Bay (Figure 28) are among the areas
with high vulnerability. The nearshore landscape of Estonia has generally relatively
strong slope towards onshore. Thus, most of the described coastal strip area is
elevated, with the exception of a few locations, such as Matsalu Bay directly to the east
of Moonsund (Figure 15) or the vicinity of Haapsalu. Consequently, most inland areas of
Estonia within 2 km from the waterline have very low vulnerability as the land elevation
increases inland and this feature becomes dominant in the estimates (Figure 25). Only
low-lying river valleys and other low-lying areas, such as former coastal lagoons, have
high vulnerability.

The influence of various coastal parameters, such as wave height, creates a pattern
of different vulnerability levels in inland areas if this type of approach is used. This pattern
should be disregarded in management decisions. This recommendation becomes
particularly evident when CVI maps are constructed using only three parameters
(extreme water levels, shoreline changes, and geomorphology) (Figure 25, right panel;
also Figures 26—28). Therefore these estimates can be applied only to a narrow coastal
strip and cannot be applied further away from the coastline.

The estimated relatively high level of vulnerability of the south-western shore of
Saaremaa (Figure 27) is determined by the specific characteristics of the coastal area.
There are some locations that are highly vulnerable due to the openness of this area to
strong westerly winds, which can result in very high local water levels (Eelsalu et al.,
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Figure 26. Coastal vulnerability map of the vicinity of Pdrnu (see Figure 15) using MCDA based on
all parameters (left), and three most important parameters (right). From Paper Ill.
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2014) (Figure 27). The map based on the three most important parameters (Figure 27,
right panel) has much less detail. However, unlike the case of Parnu (Figure 26), this
map offers a reasonable generalisation of the map based on 16 parameters.
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Figure 27. Coastal vulnerability map of western Saaremaa (see Figure 15) using MCDA based on
all parameters (left), and three most important parameters (right). Pilguse is the birthplace of
Fabian Gottlieb von Bellingshausen. From Paper Ill.

The estimated relatively high level of vulnerability of the south-western shore of
Saaremaa (Figure 27) is determined by the specific characteristics of the coastal area.
There are some locations that are highly vulnerable due to the openness of this area to
strong westerly winds, which can result in very high local water levels (Eelsalu et al.,
2014) (Figure 27). The map based on the three most important parameters (Figure 27,
right panel) has much less detail. However, unlike the case of Parnu, this map offers a
reasonable generalisation of the map based on 16 parameters.

The geomorphology and coastal orientation make the northern coastline of Estonia
along the Gulf of Finland less vulnerable. To the east of Tallinn, the historical coastal
changes and the frequency and intensity of extreme events are lower (Suursaar and
Sooaér, 2007). This region is characterised by cliffed coasts, extensive areas of pebbles,
cobbles and boulders near the waterline, and areas with higher land surface elevation
compared to the south and west of Estonia (Orviku, 2018). However, the vulnerability
map of the Tallinn area (Figure 28) accurately identifies several well-known features,
such as the low-lying areas on the Paljassaare Peninsula and the city centre around the
Old Harbour. However, it does not accurately represent the significant variations in
land elevations.
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Figure 28. Coastal vulnerability map of the vicinity of Tallinn (see Figure 15) using MCDA based on
all parameters (left), and three most important parameters (right). From Paper Ill.

57



Several areas near the mouth of the Pirita River are estimated as moderately
vulnerable in Paper lll, as their elevation is sufficient to mitigate marine hazards.
Despite the presence of extensive infrastructure and high population density in Tallinn
compared to Parnu and the western coast of Saaremaa, many coastal areas near Tallinn
have moderate and low vulnerability according to the presented estimates (Figure 28).
This somewhat surprising outcome is likely due to the extensive coastal engineering
and protection structures. It is likely that experts did not distinguish between low-lying
natural sections and heavily engineered sub-areas. They also did not prioritise social
and economic factors, which may be significant in some small regions.

The cliffs on the north-eastern coast of Estonia contribute to low to moderate
coastal vulnerability (Figure 29). The low priority given to land surface elevation by the
experts resulted in very high CVI values for this coastal segment in the metrics based on
the three most important parameters (Figure 29).

In conclusion, it has become increasingly common to use decision support systems
and systematic assessments of coastal vulnerability to inform coastal management
decision-making (Wong-Parodi et al., 2020; Paper I). Even though Paper Ill and most of
the other solutions presented in this thesis aim to assist coastal managers and
stakeholders in identifying vulnerable areas for spatial planning and investment
decisions, significant shortcomings have been identified from the critical consideration
of the outcome.

First of all, issues arise from using a limited number of parameters or when experts
prefer certain parameters over others. Numerous studies on coastal processes along
the Estonian coast and nearby areas (Kovaleva et al., 2022) typically focus on small
regions (Orviku et al., 2009; Tdnisson et al., 2018) or specific sets of related coastal
processes (Kont et al., 2008; Tonisson et al., 2011; Méannikus and Soomere, 2023).
These studies have identified specific vulnerabilities that can be compared to, but not
always match, our findings. An exception is TOnisson et al. (2013), which considers a
country-wide approach but focuses specifically on coastal erosion.

The country-wide approach in Paper Il takes into account a variety of coastal
hazards affecting land, infrastructure, and inhabitants, rather than only focusing on
coastal erosion, which is often regarded as the primary coastal hazard (Bagdanaviciate
et al., 2015, 2019; Armenio et al., 2021). The extension of coastal vulnerability analysis
also up to 2 km inland allows for the logical identification of interactions between land
and sea environments, particularly in the lower reaches of rivers and estuaries.
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Figure 29. Coastal vulnerability map of the north-eastern coast of Estonia (see Figure 15) using
MCDA based on all parameters (left), and three most important parameters (right). From Paper
1.
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However, this approach must be used cautiously, as some parameters are one-
dimensional in nature.

This study also applies and expands MCDA and GIS methods to assess high-resolution
coastal vulnerability in Estonia, filling gaps in prior studies by Kovaleva et al. (2022) in
the eastern Gulf of Finland and Bagdanavicitité et al. (2019) in Lithuania by extending
the analysis. Findings indicate that about 90% of Estonia’s coast has low to moderate
vulnerability, although some areas show high vulnerability, especially when focusing on
three key parameters. Additional socio-economic and two-dimensional data are
incorporated, revealing integration challenges between 1D and 2D data. The assessment
spans 2 km inland, identifying areas of potential concern, such as regions behind dunes
and along river valleys, offering valuable insights for coastal managers.

The response to a vulnerability assessment is a separate issue, which requires
consideration of many factors, especially resource availability, environmental factors,
and political considerations. Possible responses range from hard engineering solutions
to do-nothing options (Masselink et al., 2011).
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4 Conceptual and local applications

As discussed in the previous Chapters, coastal areas may be adversely affected by many
marine-induced drivers, such as sea level rise and storm surges, causing flooding of
low-lying areas (Nicholls et al., 2007), damage to infrastructure and human livelihoods
(Tanner et al.,, 2014; Nicholls et al., 2019), or loss of ecosystem services, and
disturbance to biodiversity (Myers et al., 2019). The coastal vulnerability index (CVI) is a
commonly used tool for coastal vulnerability assessment. Decision support tools (DSTs)
allow coastal vulnerability assessments to be integrated into adaptation planning
(Gargiulo et al., 2020). Multi-criteria decision analysis (MCDA) combines spatial data
with expert opinions to provide information for the decision-making process
(Malczewski and Rinner, 2015). A geographical information system (GIS) is used for
representing, analysing, and visualizing spatial data.

Many studies have analysed coastal vulnerability using variations of the described
classic GIS-MCDA methods or various implementations of the CVI (Bagdanavicitte
et al., 2019; Armenio et al., 2021; Ghosh and Mistri, 2022) as described in Paper | and
Chapter 1. Several crucial limitations of these methods have been highlighted in
Paper Il and Paper Il and reiterated in Sections 2.5 and 3.4. This Chapter includes two
attempts to mitigate these limitations by means of implementation of machine learning
technologies into coastal vulnerability assessment (Paper IV) and by incorporating
advanced estimates of the properties of extreme water levels into the classic CVI
estimates (Paper V). Finally, it is demonstrated that the techniques used in this thesis in
marine and coastal context can also be applied to inland applications (Paper VI).

4.1 Integrating machine learning into coastal vulnerability assessment

The use of machine learning algorithms and geospatial techniques has gained popularity
for mapping hazard susceptibility worldwide (Lei et al., 2020). A Random Forest model
(RF) is a machine learning method that can process large datasets and model
interactions between inputs (Wang et al.,, 2016). Machine learning techniques were
used, e.g., by Ennouali et al. (2023) and Fannassi et al. (2023) in coastal vulnerability
assessments in Morocco. There is, however, a lack of systematic comparison between
the results of coastal vulnerability assessments from GIS-MCDA and machine learning
methods.

The majority of the techniques described in the previous chapters work well
along relatively straight shorelines where coastal vulnerability varies smoothly (e.g.,
Bagdanaviciaté et al., 2015, 2019). Most studies in this field concentrate on small
geographic regions (Ennouali et al., 2023; Fannassi et al., 2023) or specific coastal
processes (Asiri et al., 2024). Hasan et al. (2023) took a broader approach by evaluating
coastal vulnerability to flooding on a country-wide scale, with a primary focus on
physical vulnerability parameters. A different situation exists in the eastern Baltic Sea,
where complex geomorphology, geology, and coastal engineering structures are
present (Kovaleva et al., 2022).

The analysis in Paper IV combines machine learning with GIS to assess coastal
vulnerability using the RF technique. This assessment also incorporates less obvious
and less studied parameters, such as nature conservation areas, land ownership,
and setback, extending as in Paper lll up to 2 km into inland from the long-term mean
sea level (0 m in the EH2000 datum) (Figure 15) along the entire Estonian coastline.
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4.1.1 Merging multi-criteria decision analysis (MCDA) with machine learning
The first steps of the analysis are the same as in Chapter 3 and Paper lll. As described in
Section 1.2, the MCDA method incorporates GIS, fuzzy logic standardisation, analytical
hierarchy process (AHP), and weighted linear combination (WLC) to assess coastal
vulnerability. The first step is to collect environmental and socioeconomic data, and to
use the GIS environment for data quantification and raster analysis mapping.

The coastal vulnerability components are exposure, sensitivity, and resilience.
Each of these components may be described by several parameters as detailed in
Section 3.2. Larger values of some of these parameters (e.g., a higher value of extreme
water level, sea level rise, maximum significant wave height, beach slope, or shoreline
change) correspond to higher vulnerability, whereas a higher value of some other
parameters (e.g., land elevation) indicates lower vulnerability. The numerical values of
these parameters need to be standardised to take into consideration their different scales
and meanings (Eastman, 2009). This is done using fuzzy standardisation algorithm that
converts the input values into the range from 0 to 1 (Section 1.2.1, Egs. (1) and (2)).

The AHP technique (Section 1.2.2) is employed next to determine the relative
importance of each parameter using weights ranging from 1 to 9 according to Saaty and
Tran (2007). The process is validated by a consistency ratio CR < 0.1. Finally, the WLC
technique (Section 1.2.3) is used in the GIS environment to generate the final map by
multiplying the relative weight of each parameter by its normalised value (Eq. (5)).

The main advancement in Paper IV is incorporation of one of the machine learning
techniques, namely the RF algorithm, into the analysis of coastal vulnerability. In essence,
the RF algorithm is a supervised machine learning technique that can be applied for
classification or regression (lzquierdo-Horna et al., 2022). It is beneficial to specify the
weight of parameters through investigating the relationship between independent and
dependent variables (Gigovi¢ et al., 2019). The RF algorithm is a combination of numerous
decision trees, each of which makes predictions. They are constructed using random
samples from the original data through a technique known as bootstrapping and by
taking into account the available predictors (lzquierdo-Horna et al., 2022). Each decision
tree is developed after both the predictive and target variables are specified (Rihan et al.,
2023).

To implement this technique, hazard and non-hazard locations (target variables) are
specified and divided into two groups, which are used for training and testing the
model. In the analysis performed in Paper IV, 1000 samples were selected randomly
from the MCDA map to be used in the RF technique. From these, 700 points were used
for training of the model and 300 points for testing. The coastal vulnerability
parameters (predictive variables) were incorporated in the GIS environment and the
training datasets were extracted for the hazard and non-hazard locations to proceed
with the training process.

In the present work, the Receiver Operating Characteristic (ROC) curve was used as
the primary method for validating the overall performance of the RF model. The ROC
curve is widely recognised in the literature as an effective validation tool for
probabilistic models, especially in natural hazard susceptibility assessments like floods
and landslides (Gudiyangada Nachappa et al.,, 2020; Pradhan, 2013; Tien Bui et al.,
2016). The ROC curve is generated by plotting the true positive rate (TPR), which
represents the proportion of correctly identified vulnerable areas (sensitivity), against
the false positive rate (FPR), which indicates the proportion of non-vulnerable areas
that were incorrectly classified as vulnerable (specificity), across various threshold
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values. This provides a clear representation of the model’s ability to distinguish
between vulnerable and non-vulnerable areas. The area under the curve (AUC) is then
calculated to quantify the model’s accuracy. Higher AUC values indicate stronger model
performance, with an AUC of 1.0 representing a perfect model and an AUC of 0.5
representing a model that is not performing well.

4.1.2 Coastal vulnerability analysis based on MCDA and RF techniques

The comparative assessment of coastal vulnerability in the eastern Baltic Sea using
multi-criteria decision analysis (MCDA, Paper Ill, Chapter 3) and RF techniques produced
different outputs. In the MCDA framework, experts prioritised extreme water levels,
shoreline change, and geomorphology (Section 3.2, Figure 24). A high consistency,
characterised by small consistency ratio CR = 0.04 « 0.1 (Saaty and Tran, 2007)
indicates strong agreement among experts (but not necessarily that the experts were
right). The Coastal Vulnerability Index (CVI) map derived from MCDA (Figure 30)
showed a high proportion of regions with low (47%) to moderate (42.5%) vulnerability
(Table 2 in Section 3.3), with high-vulnerability areas concentrated along the western
shoreline of Saaremaa and Parnu Bay. This pattern is attributed to the frequent
elevated water levels and shoreline erosion in the Gulf of Riga and susceptibility to
westerly storm events on the western coast of Saaremaa (Section 3.3).

In contrast, the RF technique classified a larger proportion of areas (65.6%; Table 4)
as having low vulnerability (Figure 31). The high vulnerability areas identified by RF are
mainly located in the Gulf of Riga, including parts of Pdrnu Bay. Despite some
discrepancies in categorizing vulnerable locations, particularly in the Gulf of Riga, the
western shore of Saaremaa, and Tallinn Bay, both techniques showed a degree of
alignment in their spatial patterns with respect to high vulnerable areas in south of the
country on the shores of the Gulf of Riga.
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slightly different form in Paper Ill. From Paper IV.
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Table 4. Coastal vulnerability analysis using MCDA (left two columns) and RF (right two columns)

techniques.
Vulnerability class Area (km?) MCDA % MCDA Area (km?) RF % RF
Very low 121 3.8 15 0.5
Low 1496 47 2086 65.6
Moderate 1350 42.5 793 24.9
High 207 6.5 236 7.4
Very High 6 0.2 50 1.6
Sum of classes 3180 100 3180 100

The RF analysis highlighted geomorphology, maximum significant wave height, and
shoreline change as the most significant parameters. Table 4 compares the areas and
percentages of vulnerability classifications between the MCDA and RF techniques,
providing a comprehensive understanding of the spatial distribution of coastal
vulnerability. The shores of the north-western region of Estonia show very low
vulnerability, the north-east regions exhibit low vulnerability. Moderate vulnerability is
characteristic in Tallinn Bay, some parts of Parnu Bay, and the western islands. High and
very high vulnerability levels are present to the south of Parnu Bay and on some shores
of the western islands.

The use of machine learning techniques, especially the RF approach, offers
significant benefits for handling large datasets and identifying critical parameters
through data-driven algorithms. However, the RF technique lacks the capability to
incorporate expert opinions and site-specific knowledge, which are integral to MCDA
techniques. The sequence of MCDA methods, such as fuzzy standardisation and logic,
AHP, and WLC, provide flexibility in managing uncertainty and offer a detailed
representation of vulnerability assessments. In this context it is likely that the
integration of machine learning into coastal vulnerability assessment typically enhances
the reliability of the outcomes compared to traditional methods.
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For this study, the ROC curve was generated to assess the coastal vulnerability
analysis validation using RF technique, and the results are illustrated in Figure 32,
showing the trade-offs between sensitivity (TPR) and specificity (FPR) across different
thresholds used in the analysis. The AUC (Area Under the Curve) for the Random Forest
model was 0.94, which indicates that the model has a strong ability to distinguish
between vulnerable and non-vulnerable coastal areas. An AUC of 0.94 suggests that the
model performs significantly better than random guessing and demonstrates high
accuracy in predicting coastal vulnerability. A model with this AUC value has a 94% chance
of correctly ranking a randomly chosen vulnerable area higher than a non-vulnerable one.

The analysis in Paper lll and Paper IV introduces a novel quasi-two-dimensional
approach by examining a 2 km wide inland zone from the shoreline (0 m contour that
represents the approximate long-term mean sea level), which facilitates the mapping of
two-dimensional parameters. While both MCDA and RF methods have their strengths,
challenges persist in integrating one-dimensional variables such as extreme water
levels, shoreline change, coastal setback, etc., which naturally exist as line variables
along the shoreline (Paper lll, Chapter 3). Machine learning techniques like Random
Forest can identify key parameters without explicitly modelling complex relationships.
These algorithms automatically recognise patterns and correlations, which enable
them to extract crucial parameters contributing to coastal vulnerability without
relying on detailed prior knowledge or assumptions about the underlying relationships.
This enhances the comprehensiveness and accuracy of a coastal vulnerability assessment.
It is recommended that both techniques be applied in complex coastal environments to
generate detailed vulnerability maps and support informed decision-making for
sustainable coastal planning and management.
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validation using the random forest algorithm. From Paper IV.
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4.2 Incorporating water level variations into coastal vulnerability
indexes in a microtidal sea

The geologically young and rapidly evolving shores of the Baltic Sea pose a major
coastal management challenge due to spatial variability in climate change effects on
coastal processes (Eelsalu et al., 2024; Soomere, 2024). This variability is largely driven
by extremely intermittent wave impacts (Soomere and Eelsalu, 2014), loss of sea ice
(Orviku et al., 2003; Ryabchuk et al., 2011), and probably most importantly by the
dynamics of water level during severe wave storms (Weisse et al., 2021). Early efforts
to quantify coastal vulnerability (Gornitz et al.,, 1991) included two parameters to
describe water level variations: relative sea level change and tidal range. These
parameters are inappropriate to describe alongshore variations in the vulnerability in
the Baltic Sea. As described above, tidal range is only a few centimetres in this
microtidal sea and relative sea level varies very slowly along the shore even on a
country scale (Leppéaranta and Myrberg, 2009).

The above has shown that implementation and interpretation of alongshore
variations of different vulnerability parameters can be challenging. For instance, areas
with large tidal ranges may be resilient to water level variations, whereas areas with
smaller variations but mobile sediments might be more susceptible. Using traditional
indicators can lead to contentious results, as seen in the vulnerability of the entire
coastline of Estonia based on modelled extreme water level, shoreline change and
geomorphology (Figure 33). Several shore segments that are considered vulnerable
(such as Saaremaa) are protected by numerous rocks and/or resilient vegetation.
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However, moderate to low vulnerabilities can also be found in highly sensitive
bayheads and beaches, such as the interior of Parnu Bay (Section 3.3).

This situation motivates the search for parameters or variables that describe more
comprehensibly the contribution of spatially varying (extreme) water levels into coastal
vulnerability index. Recently several candidates for this purpose have emerged.
Projections of extreme water levels with a 50-year return period are used in Paper I
and Chapter 3 above. In many applications water levels with shorter return periods
provide additional information for planning. All parameters of this kind represent past
events. The scale parameter of the exponential distribution of local storm surges
(Soomere et al., 2015) has a certain predictive power because the properties of storms
vary slowly. The rate of increase in typical annual water level extremes (Soomere and
Pindsoo, 2016; Pindsoo and Soomere, 2020) greatly varies along the eastern Baltic Sea
shore. Finally, alongshore variations of the shape parameter of the generalised extreme
value distribution along the eastern Baltic Sea (Viigand et al., 2024b) provide a proxy for
estimates of the potential rate of increase of severity of extreme events.

The purpose of this Section is to present results of a pilot study (Paper V) of the
potential uses of several parameters that characterise water level variations over a
relatively short length of coast in estimating coastal vulnerability. More specifically,
Paper V analyses how integration of various projections of extremely high and low
water levels with different return periods affects the values of the classic CVI index.

4.2.1 Adapted coastal vulnerability index (CVI)

Paper V provides detailed analysis of the potential of inclusion information about
extremely high and low water levels into the existing Coastal Vulnerability Index (CVI)
framework to assess the susceptibility of the Lithuanian coast on the eastern shore of
the microtidal Baltic Sea. The idea was to include, one by one, several variables that
carry this information into the analysis performed by Bagdanaviciuté et al. (2015,
2019). These works modify the approach originally developed by Gornitz et al. (1994) to
reflect the unique characteristics of the study area. Specifically, the following factors
were used to evaluate the CVI values: historical shoreline change rate, beach width,
beach height, beach sediment type, underwater slope, number of sand bars, and
significant wave height.

Data for these variables were gridded into 500 m long sections along the coastline of
Lithuania and analysed using ArcGIS, as detailed in Bagdanaviciaté et al. (2019). Each
variable was assigned a vulnerability score ranging from 1 (very low) to 5 (very high).
To ensure compatibility with earlier results, the study in Paper V used exactly the same
procedures and dataset as Bagdanavicitté et al. (2019) and only adjusted the weights
of individual parameters. Different from the analysis in all other parts of this thesis, the
AHP and WLC techniques were not implemented and all criteria were considered to
have an equal impact on coastal vulnerability. In other words, the CVI was calculated
using the arithmetic mean of the scores. Similar to the above, the ranges of
vulnerability for each parameter and the resulting CVI values were categorised into five
equal classes, from very low to very high vulnerability.
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4.2.2 Projections of extremely high and low water levels

The classic parameters such as projections of extreme water levels with 10 yr and 50 yr
return periods were used to analyse the modifications of estimated vulnerability of
coastal sectors of Lithuania. Unusually low water levels add vulnerability, e.g., in terms
of safety of shipping in shallow waterways (Parker and Huff, 1998). The projections are
based on two sets of modelled sea level time series for the Baltic Sea with a resolution
of 2 x 2 nautical miles (Figure 33): the Rossby Centre Ocean (RCO) model data from
1961 to 2005 (Meier et al., 2003), which accurately replicates water levels in the
eastern Baltic Sea (Soomere et al., 2015), and the RCA4-NEMO model data from 1961
to 2009 (Hordoir et al., 2013), which follows average and lower water levels closely
(Viigand et al., 2024a). Projections for extreme sea levels at various return periods were
made using an ensemble of reconstructions of parameters of extreme value
distributions based on the block maxima method (Soomere et al., 2018; Viigand et al.,
2024a). The projected sea level extremes significantly vary along the coasts of
Lithuania, Latvia, and Estonia (Figure 34, Paper V). For example, the projected 50-year
return period extreme sea level ranges from about 1.2 m in southern Lithuania to over
2m in Parnu Bay (Viigand et al.,, 2024a). Alongshore variations of projections of
extremely low sea levels mirror those of extreme highs but with less pronounced
spatial variation. Both extreme high and low sea levels exhibit about +10% variation
from their average values along the Lithuanian shore. This level of variations is
expected to noticeably impact the CVI values.
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4.2.3 Sea level maxima and minima once in 10 years

The analysis in Paper V reveals that contribution of sea level maxima with a 10-year
return period to the CVI exhibits notable contrasts compared to the other seven
constituents (Figure 35, Paper V). This parameter shows a distinct maximum for the
northern Lithuanian shoreline, a minimum from Palanga to Klaipéda and for the
northern Curonian Spit, and slightly above-average values for the southern Curonian

67



Spit. While its alongshore variation somewhat parallels other parameters, it apparently
provides unique information. In contrast, the sea level minima with a 10-year return
period provide different information, showing minimal vulnerability in the north where
absolute values are smaller, and highest values in the south.

The impact of both parameters on the CVI is similar. Their inclusion results in minor
changes to the minimum CVI value, increasing it from 1.71 to 1.75 for maxima and to
1.88 for minima (Table 1 of Paper V). The maximum CVI values change from 4.57 to
4.125 for maxima and to 4.25 for minima. The range of CVI values in different CVI
estimates varied insignificantly, usually less than 10% compared to this range in the
original work. Only if all four parameters were included, the range narrowed by about
20% (Table 1 in Paper V). Incorporating sea level maxima slightly increases CVI values in
the north, while sea level minima do the same in the south. This indicates that both
parameters provide different but equally important information for a reliable CVI.
The patterns and magnitudes of spatial variations in extremely high and low sea levels
once in 50 years follow those of the 10-year sea levels, suggesting similar contributions
to the CVI. However, these variations are not identical.
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Figure 35. Relative coastal vulnerability evaluated based on: (a) historical shoreline change, (b)
beach width, (c) beach height, (d) beach sediments, (e) underwater slope, (f) sandbars, (g)
significant wave height, and (1) the Coastal Vulnerability Index (CVI) calculated from these factors
using equal weights and an equal-interval classification from Bagdanaviciaté et al. (2019). In
panel (ll), the CVI calculation includes the additional factor of (h) sea level extremes, specifically
showing sea level maxima on the left and minima on the right, based on a 10-year return period.
Note that the CVI in line (1) remains consistent for both panels.
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All parameters agree that the central part of the study area, about 15 km north and
south of Klaipéda, has low vulnerability to both high and low sea levels (Figure 36,
Paper V). They also concur that the southernmost part is more vulnerable to sea level
variations. Interestingly, the shore is less vulnerable to sea level extremes occurring
once in 50 years compared to those occurring once in 10 years.

The four sea level variation parameters show disagreement in the northern part of
the study area, which is highly vulnerable to sea level maxima but has very low
vulnerability to sea level minima. Integrating each parameter and all considered
parameters into the CVI using equal weights does not drastically change the alongshore
variation of the CVI values but adds some nuances (Figure 36, Paper V). The length of
segments with high and very high vulnerability decreases by 3-10%, while segments
with moderate vulnerability increase by 9-21% (Figure 37).

Therefore, in Paper V, initial steps were taken to systematically include water level
variations in estimating coastal vulnerability in microtidal water bodies using modelled
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Figure 36. Left: Relative coastal vulnerability for (a) minimum sea level with a 10-year return
period, (b) maximum sea level with a 10-year return period, (c) minimum sea level with a 50-year
return period, and (d) maximum sea level with a 50-year return period, compared to (I) the CVI
values based on the 7 criteria from Bagdanaviciaté et al. (2019). Right: Relative coastal
vulnerability for (a) the CVI values based on the 7 criteria from Bagdanaviciateé et al. (2019) with
equal weights and equal intervals classification, (b) CVI including minimum sea level with a 10-
year return period, (c) CVI including maximum sea level with a 10-year return period, (d) CVI
including minimum sea level with a 50-year return period, (e) CVI including maximum sea level
with a 50-year return period, and (I) the CVI index based on 11 criteria with equal weights.
Graphics by Ingrida Bagdanaviciaté. From Paper V.
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Figure 37. Distribution of CVI classes in coastal sections using different parameters of water level
variations. From Paper V.

sea levels. The findings emphasise that extreme sea level projections for different
return periods are crucial and stable parameters, complementing traditional
geomorphological data. Both sea level minima and maxima provide unique insights,
and incorporating these projections into the CVI reduces the range of CVI values due to
the more diverse characterisation of vulnerability by different parameters.

In conclusion, it is safe to say that integration of projections of extreme water levels
with various return periods provide important information about coastal vulnerability
even along fairly featureless (in terms of the development of high and low water levels)
coastal segments of Lithuania. This approach highlights the independent information
provided by projected extreme sea levels with different return periods. A coastal
vulnerability index based on these quantities is discussed in the context of local and
regional variations.

4.3 Wind and solar farm site selection in inland area

Even though the described methods and techniques have been implemented in the
context of marine and coastal tasks, they are fully usable, and sometimes in a more
contrasted and clear manner in inland applications, where the role of interactions of
different parameters, cumulative effects and long-range impacts are usually much
smaller. To provide such an example that allows for identification of the necessary
modifications in the process of preparation of evidence for decision-making, an
examination of the methodologies and findings related to wind and solar farm site
selection in the inland areas of Isfahan Province, Iran, is presented in this Section,
following the analysis in Paper VI. Similar to the core task of Paper lll in Chapter 3, the
primary objective is to optimise renewable energy site selection using a combination of
decision support tools (DSTs), ensuring environmental sustainability and economic
viability.

To overcome the intermittency issues associated with relying on a single renewable
energy resource, the performed analysis highlights the importance of considering wind
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and solar energy. In earlier analyses, Diaz-Cuevas et al. (2019) found that weighted
linear combination (WLC), analytical hierarchy process (AHP), and geographical
information systems (GIS) (see Sections 1.1 and 1.2) are effective tools for ranking
potential wind and solar farm sites. Further, Rekik and El Alimi (2023) demonstrated the
effectiveness of using WLC, AHP, and GIS in their study on optimal wind and solar farm
site selection. Their findings assisted policymakers in planning and implementing
renewable energy infrastructure projects to meet national energy goals.

The study in Paper VI goes one step further. Namely, multi-criteria decision analysis
(MCDA), including AHP and WLC techniques, is complemented in this analysis with
fuzzy standardisation and logic to determine which locations in Isfahan Province, Iran
(Figure 38), are most suitable for wind and solar farms. By integrating these techniques,
a decision support system (DSS) is provided in Paper VI for identifying potential wind
and solar farms, balancing environmental protection needs with socio-economic
benefits for the human communities.

There have been numerous studies on renewable energy site selection that have
primarily focused on a small number of tools and only one kind of renewable energy,
solar or wind energy, for site suitability assessment (Uyan, 2017; Moradi et al., 2020;
Xu et al., 2020; Ahadi et al., 2023). For this reason, another purpose of the study in
Paper VI is to evaluate and compare several computer-based decision support systems
(DSS) and how they can be used together. The background idea is that managers and
decision-makers can use this integrated DSS to identify the most suitable inland sites
for wind and solar farms.
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Figure 38. The location of Isfahan Province (in pink), Iran (Isfahan Province Management and
Planning Organization, 2018). From Paper VI.
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4.3.1 Study area

The Isfahan Province (Figure 38), located in central Iran, covers 107,017 km?, which is
more than two times the area of Estonia and roughly % of the area of the Baltic Sea.
Different from the Northern Europe, it has an arid to semi-arid climate. The province
has a diverse physiographic region (Figure 39), densely populated cities, and numerous
industrial centres, resulting in significant energy demand (Zoghi et al., 2015). During the
selection of renewable energy sites, important ecological sites such as Ghomishloo
National Park, Gavkhouni Wetland, Mouteh Wildlife Refuge, and Kolah Ghazi National
Park must be protected. The high solar radiation and wind speeds in the region present
significant potential for renewable energy development (Noorollahi et al., 2016b).

4.3.2 Data acquisition

In the initial phases of this study (Figure 3 in Paper VI), the most important parameters
for evaluating wind and solar farm sites were determined. To do so, an extensive
review of the literature along with regulations and standards relevant to renewable
energy spatial planning was conducted first (Barzehkar et al., 2016; Yushchenko et al.,
2018). It is crucial to select sites for solar and wind energy farms that have a high
concentration of solar radiation and high wind speeds. The World Bank Group and
Solargis (2019) provided long-term solar irradiance data, and the Iran Energy Efficiency
Organization (2018) provided wind speed data, which was normalised to average
annual wind speeds at 80 m above ground level. The evaluation of potential sites also
considered slope, flood probability, distance from faults, soil texture, geological
formations, and proximity to rivers (Table 1 in Paper VI). Similar to the analysis in
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Section 2.5, the potential locations excluded areas with high biodiversity value, such as
nature protection areas. Our analysis also included socioeconomic parameters such as
proximity to power transmission lines, population centres, and land use/cover.

4.3.3 Steps of analysis

The parameters were first retrieved and quantified into raster layers on the extent of
Isfahan province using ArcGIS 10.7 based on UTM Zone 39N coordinate system.
The analysis in Paper VI starts from normalising raster layers. As explained in
Section 1.2.1, it is necessary to standardise the numerical values characterising the
factors before they can be combined because they are measured at different scales
(Eastman, 2009). Piecewise linear fuzzy membership functions expressed by Eq. (1) and
Eqg. (2) were used to normalise raster layers on a scale from 0 to 1 and to convert
increasing and decreasing functions into a united framework (Section 1.2.1). The 12
parameters employed in the analysis include slope (threshold values for fuzzy logic
standardisation R, = 3% and R.,,, = 5%, decreasing function), solar radiation (1500
and 2000 KWh/m?/year, increasing), wind speed (6 m/s and 7 m/s, increasing), distance
from rivers (0.5 km and 1 km, increasing), flooding (0 for areas within the flood plain,
1 for areas outside the flood plain), distance from fault lines (0.5 km and 1 km,
increasing), soil texture (0 for sandy, 1 for clay and silt clay textures), geological
formations (0 unconsolidated deposits, 1 for igneous, metamorphic, and sedimentary
rocks), distance from wetland and protected areas (0.5 km and 1km, increasing),
distance from population centres (0.5 km and 2 km, increasing), distance from roads
(0.5 km and 2 km, decreasing), distance from transmission lines (0.5 km and 1 km,
decreasing), and land use (0 for forests, water bodies, and wetlands, 1 for barren lands
and areas with very low plant density) (Table 2 in Paper VI). These parameters are all
measured in two-dimensional (2D) formats in inland areas of Isfahan Province.

The following step involved the application of the analytical hierarchy process (AHP)
(Section 1.2.2). As common in applications of this technique, the significance of
different parameters in wind and solar farm site selection is assessed by expert
judgment. Different from marine and coastal applications where experts limited their
estimates to minimum 1 and maximum 5 (Paper I, Paper 1ll), most experts engaged
into the study in Paper VI used the full scale from 1 to 9 proposed by (Saaty and Tran,
2007) (Table 3 in Paper VI). A pairwise comparison matrix was developed with input
from twenty experts from Iran's Energy Efficiency Organization and the Iranian
Department of Environment. Their opinions were complemented by five experts from
academic institutions who are experienced in environmental planning and
environmental impact assessment in the energy sector. The geometric mean of expert
values assigned to each parameter for a pairwise comparison was calculated as
explained in Section 1.2.2 and Papers | and Il to determine its “priority” (Mu and
Pereyra-Rojas, 2018). The relative weights (importance) of each parameter were
evaluated using the Super Decisions software. The value of the Random Index for
N =12 is RI = 1.535 (Aguardn and Moreno-Jiménez, 2003). As the consistency ratio
CR = 0.09 < 0.1, the comparisons are consistent (Saaty and Tran, 2007).

In the final step, raster maps were combined in GIS to create a map of the suitability
of a site. In the GIS environment, weighted linear combination (WLC) is used to
combine raster maps using map algebra technique following (Malczewski and Rinner,
2015) (Section 1.2.3).
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4.3.4 Wind and solar farm site suitability

Based on the experts' perspectives (Figure 40), wind speed, solar radiation, and
distance from power transmission lines were the most significant parameters for
determining wind and solar farm site suitability in Isfahan Province. The distance from
fault lines, soil texture, and geological formations were considered the least important
parameters for site suitability analysis (Figure 40). Therefore, different from marine
applications, experts prioritised energy generation parameters over distance-based
parameters to protect the environment.
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Figure 40. Relative weights assigned to parameters in wind farm site selection (above) and
solar farm site selection (below) using the AHP method. From Paper VI.
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The analysis demonstrated that 18% of the province is (highly) suitable for wind
energy production whereas 26% is suitable for solar energy production (Table5).
The high suitability areas are characterised by low flooding probability, low permeable
soil like clay, and large distances from wetlands, protected areas, fault lines, and rivers.
The potential locations are also near cities, roads, and transmission lines, ensuring
socioeconomic benefits to the community. Sites suitable for wind farms should have
winds speeds of 6—7 m/s, while sites suitable for solar farms should have diffuse
horizontal irradiance (DHI) of 1500-2000 KWh/m?.

Table 5. Wind and solar farm site suitability analysis using GIS-MCDA.

Wind farms Solar farms
Class of Area (km?2) Percentage of Area (km?2) Percentage of

suitability area (%) area (%)
Very Low 15771 15 7656 7

Low 31494 29 26813 25
Moderate 40959 38 44929 42

High 18793 18 27619 26

Total 107017 100 107017 100

As shown in Figure 41, a higher suitability for wind farms is identified in the north
and east of the province. These regions are associated with higher wind speeds.
Likewise, the northern and eastern regions are better suited for solar energy (Figure 42)
due to fewer cloudy days.

In conclusion, the study in Paper VI, additionally to the classic steps of MCDA, such
as AHP and WL, also used fuzzy logic to standardise raster maps on a scale from 0 to 1.
On the one hand, by standardising pixel values in each raster layer, fuzzy logic reduces

400I000

SDOIOOO

SOOIOOO

7OOIOOO

800.000

QOOIOOO

3709000 380?000

360?000

350?000

3400000

Wind site suitability

Value
- Highest Value : 0.9

B Lowest Value : 0.015

Coordinate System: UTM Zone 39
Datum:WGS 1984

O — KM

0 1530 60 90 120

T T T
3600000 3700000 3800000

T
3500000

T
3400000

400‘000

500'000

600’000

700’000

Figure 41. Wind farm site suitability map. From Paper VI.

75

800’000

900’000



uncertainty in site selection and thus eventually provides decision-makers and planners
with better-informed options for site selection. On the other hand, the combination of
fuzzy logic with AHP, WLC, and GIS offers a flexible approach to analyse land suitability
for wind or solar energy development.

The results indicate that optimising the locations of wind and solar farms using a
combination of GIS-MCDA techniques provides better outputs for environmental
planning and sustainable development. This conjecture is built on a broad range of
environmental and socioeconomic parameters that are considered in the study to
ensure that renewable energy development aligns with environmental conservation
and community energy needs. An important implication is that different areas of the
province support better different renewable energy production. An implicit conjecture
is that due to the variable climate conditions in Isfahan, neither wind nor solar energy
alone could meet the energy needs. A hybrid approach is therefore required.
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Conclusions

Summary of the results

The studies presented in this thesis explore the development and application of
decision support systems (DSSs) for offshore wind farm site selection, coastal
vulnerability assessment, and inland renewable energy site selection, offering
significant insights into the integration and effectiveness of various methodologies.

A comprehensive overview of developments towards reliable integrated decision
support systems for coastal planning and management is presented (Paper ). Such a
system should be developed by combining various decision support tools such as GIS,
multi-criteria decision analysis (MCDA), artificial neural networks (ANN), Google Earth
Engine (GEE), and/or Bayesian networks. The integration of GIS and MCDA, especially
with fuzzy standardisation and logic, Analytical Hierarchy Process (AHP), and weighted
linear combination (WLC), was highlighted as being effective in creating robust DSS
frameworks. The inclusion of ANN methods generally enhances the robustness of the
DSS in terms of sensitivity and error analysis. Various environmental management
challenges were addressed through the combination of these tools, including risk and
hazard classification, site selection, land-use zoning, and resilience classification.
Bayesian networks are effective at predicting environmental changes, but they are
computationally complex and require high expertise.

The lessons from this analysis were implemented for the analysis of several
challenges in the Baltic Sea region. A detailed consideration of site selection for
offshore wind farms in the Baltic Sea (Paper Il) highlighted the most suitable locations
of wind power plants for grid electricity production in terms of the levelised cost of
energy (LCOE) values. The analysis includes parameters such as wind speed, sediment
on seabed, water depth, pipelines, shipping routes, military areas, and nature
protection zones. The Danish waters are identified as most suitable locations due to the
high wind speeds, large capacity factors, and shallow water depths. The GIS-MCDA
analysis, incorporating AHP, fuzzy logic, and WLC techniques, supported these findings,
emphasizing the suitability of nearshore areas with high wind speeds. The application
of the technique for order of preference by similarity to ideal solution (TOPSIS) to rank
the identified most suitable areas provided extra confidence in site suitability
assessments. This integrated decision support framework contributes to the reduction of
uncertainty of analysis, taking into consideration the standards of Danish Energy Agency
DEA and European Maritime Spatial Planning platforms guidelines and expert knowledge.

The assessment of coastal vulnerability in Estonia using the Coastal Vulnerability
Index (CVI) (Paper lll) revealed a range of CVI values from 0.24 (very low vulnerability)
to 0.72 (very high vulnerability), covering almost half of the possible range from 0 to 1.
Segments with low or moderate vulnerability were identified along the northern coast
with stable limestone cliffs and the West Estonian Archipelago with gradual land
uplift. High vulnerability areas were mostly low-lying regions experiencing extreme
water levels, erosion, and the presence of infrastructure near the coast, such as the
western shore of Saaremaa and Parnu Bay. The influence of the three most important
parameters (extreme water level, shoreline change, and geomorphology) resulted in a CVI
range of 0.64, highlighting more high-vulnerability locations than using 16 parameters for
coastal vulnerability assessment. Extending the vulnerability assessment up to 2 km
inland revealed that most inland areas had generally lower vulnerability due to higher
elevation, with exceptions in low-lying river valleys and coastal lagoons. The study
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emphasised the need for careful consideration of parameter selection and prioritisation
of parameters in vulnerability assessment and the logical extension of coastal
vulnerability analysis into inland areas.

A comparative assessment of coastal vulnerability in the eastern Baltic Sea using
MCDA and Random Forest (RF) techniques (Paper|V) demonstrated that these
methods produce different outputs. The MCDA framework identified coastal areas
mainly with low to moderate vulnerability, while the RF technique classified a larger
proportion of areas as having low vulnerability. High vulnerability areas identified by
both techniques were primarily located in the Gulf of Riga, including Parnu Bay. The RF
analysis highlighted geomorphology, maximum significant wave height, and shoreline
change as the most significant parameters. The MCDA approach provided a flexible
method for managing uncertainty and incorporating expert opinions. The integration of
machine learning into coastal vulnerability assessment enhances the reliability of
outcomes compared to traditional methods by identifying patterns and correlations
without requiring detailed prior knowledge or assumptions about the underlying
relationships between parameters.

Incorporating sea level maxima and minima with 10-year and 50-year return periods
into the CVI estimates (PaperV) provided some useful insights into vulnerability
assessment along the Lithuanian shoreline. These parameters showed distinct maxima
and minima patterns, contributing significantly to the CVI. The integration of these sea
level projections reduced the range of CVI values due to more diverse characterisations
of vulnerability by different parameters, emphasising the importance of including both
sea level extremes and geomorphological data in coastal vulnerability assessments.

Finally, the thesis explored the similarity and differences of the use of the renewable
site selection technologies in marine and inland conditions. For inland renewable
energy site selection in Isfahan Province, Iran (Paper VI), experts prioritised wind speed,
solar radiation, and distance from power transmission lines for determining site
suitability assessment of wind or solar. The study showed that 18% of the province is
highly suitable for wind energy production, and 26% is suitable for solar energy
production. High suitability areas are characterised by low flooding probability, low
permeable soil, and large distances from wetlands, protected areas, fault lines, and
rivers. The combination of fuzzy logic with AHP, WLC, and GIS provided a flexible
approach for analysing land suitability and optimising the locations for wind and solar
farms. The results indicated that a hybrid approach, considering both wind and solar
energy, is necessary to meet the energy needs of the province due to its variable
climate conditions. Also, this study highlights the adaptability and effectiveness of the
decision support tools in varying geographical contexts, reinforcing their applicability
beyond coastal and offshore environments.

Overall, the studies highlight the critical role of integrating various decision support
tools (DSTs) to improve coastal and renewable energy management. The findings
highlight the importance of considering the different word views of experts,
as exemplified by the discrepancy in expert priorities of environmental and economic
parameters in different regions. European experts tended to emphasise environmental
concerns more strongly than energy generation aspects, using only half of the available
weighting scale (values from 1 to 5), while experts in Iran prioritised energy generation
parameters, using the full weighting scale (values from 1 to 9). This discrepancy
highlights the need for adaptable DSS that can accommodate varying priorities across
different contexts, ensuring robust and informed decision-making processes.
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Main conclusions proposed to defend

1. A comprehensive overview of the recent developments of decision support systems
(DSS) demonstrates that integrating environmental and socioeconomic data is effective
for coastal planning and management. The integration of GIS with other tools, such as
multi-criteria decision analysis (MCDA), artificial neural networks (ANN), Google Earth
Engine (GEE) or Bayesian network (BN) tools within the DSS framework enhances
decision-making by addressing various environmental management challenges,
including risk and hazard classification, site selection, land-use zoning, and resilience.

2. The analyses undertaken show that the combination of GIS and MCDA, especially
when GIS is integrated with fuzzy logic, Analytical Hierarchy Process, and weighted
linear combination, creates robust DSS frameworks that can handle large datasets. ANN
methods improve sensitivity and error analysis, along with validation of the results.
Bayesian networks are effective for predicting environmental changes, but require high
expertise and are less community-friendly compared to more accessible tools like GIS
and MCDA. The central conjecture is that integrated DSS is highly likely to provide
better and effective outcomes for different environmental management challenges.

3. For offshore wind farm site selection in the Baltic Sea, parameters such as wind
speed, capacity factor, water depth, and distance from nature protection areas are
critical. The levelised cost of energy (LCOE) and the GIS-MCDA techniques treat these
parameters differently. The LCOE values of 42-58 €/MWh cover 33% of the total sea
area. The lowest LCOE values are generally near Danish shores. The Gulf of Bothnia,
offshore areas of the Baltic proper far from Polish and German shores, and the central
Gulf of Riga waters have higher LCOE values. The northern Baltic Sea is less suitable for
wind farms due to a lower capacity factor.

4. The Coastal Vulnerability Index (CVI) significantly varies along the Estonian shores.
High vulnerability areas are primarily located in low-lying regions exposed to very high
water levels and coastal erosion. Extending the vulnerability assessment up to 2 km
inland based on two-dimensional parameters for the entire Estonian coast highlighted
the importance of considering land elevation, coastal infrastructure, population density,
etc.

5. The multi-criteria decision analysis and Random Forest (RF) techniques provide
different distributions of vulnerability of Estonian shores. The RF technique classified a
larger proportion of areas than MCDA as having low vulnerability. The high vulnerability
areas identified by RF are mainly located in the Gulf of Riga, including parts of Parnu Bay.
6. Inclusion of sea level maxima and minima with different return periods in the CVI
calculations contributes significantly to the vulnerability estimates for the Lithuanian
shores. The information about extreme water level minima is an important constituent
of CVI estimates.

7. For inland renewable energy site selection in Isfahan Province, experts prioritised
wind speed, solar radiation, and proximity to power transmission lines. The integration
of fuzzy logic with AHP, WLC, and GIS provided a flexible and reliable method for
analysing land suitability and optimising renewable energy site selection.

8. The discrepancy in expert prioritisation of environmental and economic parameters
between different regions and inland and marine environments highlights the need for
adaptable DSS that can accommodate varying priorities. European experts emphasised
environmental concerns strongly, while experts in Iran prioritised energy generation
parameters.
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Recommendations for future work

Several results presented in this thesis demonstrate the need to further enhance the
effectiveness and applicability of decision support systems (DSS) for coastal and
environmental management. While the current DSS frameworks effectively integrate
environmental and socioeconomic data, incorporating more advanced analytical
methods such as deep learning and other machine learning techniques, can improve
their accuracy and predictive capabilities. These advancements can provide more
dynamic and responsive decision-making capabilities, essential for managing complex
coastal environments.

The methods of integration of diverse data sources into DSS frameworks should be
expanded. Incorporating real-time data will eventually provide a more comprehensive
and up-to-date dataset on many occasions, thus enhancing the effectiveness of coastal
management strategies. This will promote accurate predictions and assessments.
Another direction of future work should focus on refining the selection and weighting
of parameters using more advanced approaches than AHP within DSS frameworks.
A clear issue for further consideration is the use of only part of the scale in experts’
opinions, particularly in marine applications and the ambiguity of interpretation of the
contribution to vulnerability provided by different hydrometeorological phenomena.
Developing reliable methods for obtaining, weighting and normalising expert opinions
and incorporating stakeholder feedback will ensure that the most relevant and
impactful parameters in coastal decision-making process are included.

Long-term monitoring programs are essential for validating the effectiveness of DSS
frameworks in real-world applications. By tracking the outcomes of decisions made
using DSS tools and comparing them with predicted outcomes, experts can identify
areas for improvement and ensure that DSS tools remain accurate and reliable over
time. Moreover, incorporating climate change projections into DSS frameworks will be
crucial for adapting to long-term environmental changes and to ensure sustainable
coastal planning and management.

Future studies on onshore and offshore renewable energy site selection should use
the capabilities of machine learning approaches to improve site suitability assessment.
Unlike traditional MCDA methods, which rely on predefined criteria and subjective
weighting of experts, machine learning can analyse large datasets to specify patterns
and correlations, providing a more adaptive and data-driven approach. Compared to
LCOE, which focuses mainly on economic factors, machine learning can simultaneously
consider environmental, technical, and economic parameters, contributing to a
comprehensive and balanced site selection outcome.

For inland renewable energy site selection and similar problems in other fields of
economy and environment, future studies should investigate the potential of hybrid
solutions that combine multiple renewable energy sources, such as wind, solar,
biomass, and geothermal. This approach can ensure a reliable and resilient energy
supply, particularly in regions with diverse climatic conditions.

It would be helpful if the user-friendliness of DSS tools by developing more intuitive
visualisation tools and interactive platforms, such as WebGlS, could be improved. This
will increase their accessibility and usability among a wider range of stakeholders,
including non-experts. Interactive maps for future assessments will allow stakeholders
to engage with the data dynamically, improving the effectiveness of communication
and decision-making processes.
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It is important to encourage cross-disciplinary collaboration among scientists,
engineers, policymakers, and stakeholders for the development and application of DSS
frameworks. Such collaboration ensures that diverse perspectives and expertise are
incorporated into the decision-making process.

Finally, public awareness and education about the capabilities and benefits of DSS
tools should be increased. That can be achieved by implementing educational
programs, workshops, and materials, which will assist stakeholders to better
understand how DSS tools can support sustainable coastal management. This increased
awareness and understanding will promote the wider application and effectiveness of
DSS tools in various environmental situations.
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Abstract

Decision support tools for the management of eastern Baltic
Sea coasts

This thesis addresses the development and application of decision support systems
(DSS) for coastal vulnerability assessment, offshore wind farm site selection, and inland
renewable energy site selection. The primary motivation is to promote environmental
and socioeconomic planning and management through robust, data-driven frameworks
in the context of climate change and growing energy demands. Existing Decision
Support Tools (DSTs), such as Geographical Information Systems (GIS), Multi-Criteria
Decision Analysis (MCDA), and Artificial Neural Networks (ANN), amongst others, are
critically evaluated in the coastal context, offering a formal justification for tool selection
and integration. Different hybrid combinations of such tools are evaluated for their
effectiveness. It is demonstrated that combining various tools improves decision-
making processes for coastal issues and promotes the creation of comprehensive DSS
frameworks. These approaches are particularly useful for environmental risk
classification, site selection, land-use zoning, and resilience classification.

The Baltic-wide analysis of offshore wind farm site selection is performed using
parallel an integrated GIS-MCDA technique and a Levelised Cost of Energy (LCOE)
model at high spatial resolution, considering various parameters such as wind speeds,
seabed sediments, and distances from infrastructure and protected areas to balance
environmental sustainability with economic feasibility. The LCOE and the GIS-MCDA
techniques treat these parameters differently. The lowest LCOE values of 42-58 €/MWh
cover 33% of the total sea area. The lowest LCOE values are near the Danish shores
while the Gulf of Bothnia, offshore areas of the Baltic proper and the central Gulf of
Riga waters have higher LCOE values. The northern Baltic Sea is less suitable for wind
farms due to lower capacity factor.

The coastal vulnerability for the entire shoreline of Estonia is performed at high
resolution for the coastline and is extended towards a quasi-two-dimensional analysis
up to 2 km inland. The applied GIS-MCDA approach and a variation of the machine
learning, Random Forest, technique treat differently diverse factors such as elevation,
geomorphology, vulnerable infrastructure, population density, etc. Both approaches
identify the western shores of Saaremaa and Parnu Bay as the most vulnerable areas,
which are prone to elevated water levels and coastal erosion. Various parameters
characterising water level variations, most importantly high and low extreme sea levels
for different return periods, provide independent information for the estimate of
coastal vulnerability even on the relatively short and generally homogeneous
Lithuanian shore, offering additional information for managing coastal hazards.

Several computer-based DSSs are applied, evaluated and compared to identify
optimal sites for inland renewable energy site selection using the example of wind and
solar farms in Isfahan Province, Iran, showing the suitablility of the discussed methods
beyond coastal environments. By integrating GIS-MCDA techniques with fuzzy logic,
suitable sites are identified for both types of renewable energy production that align
with environmental conservation and community energy needs.

Overall, the presented results highlight the critical role of integrating diverse DSTs to
enhance the effectiveness of DSS frameworks in coastal and inland planning and
management.
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Liihikokkuvote

Ladnemere idaranniku haldamise otsuste tugivahendid

Analuusitakse rannikupiirkonna haldamise otsuste tugivahendite arendamise ja kasuta-
mise vdimalusi Eesti ranniku ja Lddnemere kontekstis peamise eesmargiga leida voima-
lused oluliste sotsiaal-majanduslike haldus- ja planeerimisiilesannete lahendamiseks
keskkonnasdobralikul moel kvaliteetsete andmete abil ka muutuva kliima ja suureneva
energiatarbe tingimustes. Neid vahendeid rakendatakse Eesti ja Leedu rannikute tund-
likkuse ja Ladnemere meretuule kasutamise majanduslike aspektide hindamiseks.

Kriitiliselt vaadeldakse tugisiisteemide kesksete komponentide (geoinfosiisteemid,
multimodaalne otsustusanallis, tehisnarvivorgud jne) toimimist rannikute kontekstis
ning pdhjendusi Uksikute meetodite ja nende kombinatsioonide valikuks. Kirjanduse
alusel hinnatakse hibriidmeetodite sobivust ja efektiivsust. Naidatakse, et meetodite
kombineerimine annab parema aluse informeeritud otsuste tegemiseks ning sobib
siistemaatiliselt toimivate otsustustoeslisteemide arendamiseks. Kirjeldatud Iahenemist
rakendatakse keskkonnaohtude hindamiseks, oluliste objektide asukoha planeeri-
miseks, maakasutuse tsoneerimiseks ja sdilenGtkuse klassifitseerimiseks.

Hinnatakse meretuuleparkidest toodetava elektri maksumust seadmete ja
tihenduste kogu elukaare valtel lahutusvdimega 5 km kogu Lddnemerel, rakendades
kombineeritult geoinfoslisteeme ja  multimodaalset otsustusanallilisi  ning
tasakaalustades flilsikalistest, geograafilistest ja looduskaitselistest aspektidest
(tuulekiirus, vee sligavus, merepdhja iseloom, tuugenite kaugus teistest taristutest jne)
tulenevad aspektid majanduslike kaalutlustega. Toodetud elektri hinnanguline
maksumus on 2020. a hindades 42—-58 €/MWh ligikaudu Ghel kolmandikul kogu merest,
sh enamikus Eesti majandustsoonist. Elektri maksumus on madalaim Taani rannavetes,
kuid kérgem Liivi lahe keskosas ja Botnia merel ning suurim mere p&hjaosas, kus tuul on
ebapusiv.

Kogu Eesti ranniku tundlikkust merelt Iahtuvate ohtude suhtes on anallisitud
korglahutusega (10 m) andmestiku ja 16 parameetri alusel, alates maapinna digitaalsest
mudelist, geomorfoloogia, lainetuse ja veetasemete omadustest kuni taristu omaduste
ja asustustiheduseni. Uuenduslikult on analiils laiendatud 2 km sligavusele sisemaale.
Ndidatakse, et geoinfoslisteemide ja multimodaalse otsustusanaliilisi kombinatsiooni ja
masindppe (nn juhusliku metsa) tehnoloogia rakendamine annab kohati oluliselt
erinevad tulemused. Mdlemad ldhenemised toovad esile, et Parnu imbrus ja Saaremaa
lddnerannik on kdige tundlikumad; eelkdige kdrge veetaseme ja ranna erosiooni tottu.
Selgub, et veetaseme muutlikkust peegeldavad suurused, nt eri korduvusperioodidele
vastavad Ulikérged ja llimadalad veetasemed, annavad séltumatut informatsiooni eri
rannapiirkondade tundlikkuse kohta isegi sellisel suhteliselt lihikesel ja vahevahelduval
rannaosal nagu Leedu rannik.

Demonstreeritakse, et ranniku ja mere jaoks sobivad otsustustoesiisteemid, sh
algoritm, mis sobib Ladnemere tuugenite optimaalse asukoha leidmiseks, toimivad hasti
ka sisemaa haldusilesannete puhul. Geoinfosiisteemi, multimodaalse otsustusanaliiiisi
ja hagusloogika kombinatsiooni abil on leitud parimad kohad péaikeseenergia
tootmiseks ja tuugenite paigutamiseks Isfahani provintsis Iraanis nii, et taastuvenergia
vajaduse ja maksumuse kdrval on arvestatud keskkonnahoidu ja kohalike kogukondade
seisukohti. To66 tulemused on seega universaalselt rakendatavad efektiivsete ja
tasakaalustatud otsustustoe slisteemide loomiseks nii ranniku, mere kui ka sisemaa
planeerimis- ja haldamisiilesannete jaoks.
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Coasts worldwide are facing enormous challenges relating to extreme water levels, inundation and coastal
erosion. These challenges need to be addressed with consideration given to the need for infrastructure such as for
ports and other socio-economic developments, especially for coastal tourism. Choosing the optimal decision
support tools (DSTs) for coastal vulnerability and resilience assessment is a major challenge for decision-makers
and coastal planners. The robustness and flexibility of coastal decision-making can be improved by using
effective DSTs, particularly for the management of coastal hazards. This study provides an overview of the
construction and use of decision support systems (DSSs) as combinations of DSTs, such as the commonly used
multi-criteria decision analysis (MCDA) methods and an artificial neural network (ANN), integrated with a
geographical information system (GIS). The experience of many researchers is that the combination of MCDA
techniques based on fuzzy logic, analytical hierarchy process (AHP) and weighted linear combination (WLC),
with GIS, and possibly also incorporating ANN, provides decision-makers with a comprehensive tool for effi-
ciently calculating decision support indices (DSIs). Hybrid tools are becoming more popular and relevant among
experts due to their multiple functionalities that facilitate decision-making. An integration of DSTs in a DSS and
further development of DSIs provides a path for the integration of quantitative and qualitative parameters into
the decision-making process, and providing materials to be used in consultation processes. An integrated DSS is
more likely to produce high-quality results for decision-makers, handle the uncertainty of analysis, and extend
the long-term applicability of tools employed by coastal managers.

1. Introduction Vousdoukas et al. (2020) estimated that European countries alone spend

1.4 billion euros per year on coastal flood damage, an amount that is

Coastal communities are constantly subject to a wide range of haz-
ards. Studies show that coastal areas are experiencing an increasing
number of extreme events. Increases in the height and frequency of
extreme sea levels, changes in the rate of sea level rise, the erosion rate,
sea-ice cover, and wave height are all examples of changes that are
almost certainly enhanced by climate change (Farquharson et al., 2018;
Hiinicke et al., 2015; Mioduszewski et al., 2018; Neves, 2020; Nerem
et al., 2018; Palutikof et al., 2019; Reguero et al., 2019; Soomere et al.,
2018; Vitousek et al., 2017a; 2017b; von Storch et al., 2015).
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expected to increase significantly by the end of the century. Vitousek
et al. (2017a) found that coastal flooding will become twice as frequent
within the coming decades in the tropics, a region that is already
socio-economically challenged. Various marine-driven hazards may
cause damage to infrastructure and human livelihoods in populated
coastal areas (Nichols et al., 2019; Tanner et al., 2014), and
climate-influenced hazards may disrupt core ecological values such as
biodiversity and marine and coastal ecosystem services (Myers et al.,
2019). It is widely accepted that the world’s coastal resources are under
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pressure, and will be even more so given climate change projections
(Nursey-Bray et al., 2014).

The physical, ecological, and socioeconomic environments of coastal
areas are particularly susceptible to hazards triggered by extreme events
(Easterling et al., 2000). Their impact depends on the coast’s vulnera-
bility and the exposure of human infrastructure to flooding (Maanan
et al., 2018) and wave impact. Human activities such as dredging
(Vitousek et al., 2017b) or building of coastal structures can be a major
element in increasing the likelihood of coastal erosion (Bagdanaviciute
et al., 2019; Mentaschi et al., 2018). Managing the coast effectively is
thus crucial, from both social and ecological perspectives (Nursey-Bray
et al., 2014).

Despite having been described for many years (Poch et al., 2004), the
use of decision support systems (DSSs) has become increasingly preva-
lent in recent years (Walling and Vaneeckhaute, 2020; Wong-Parodi
et al., 2020). A DSS is the combination of computer-based decision
support tools (DSTs) designed to assist in decision-making, applied to
such matters as the management of environmental problems and
long-term planning (Wong-Parodi et al., 2020). Relying on only indi-
vidual DSTs may not guarantee effective planning and management
decisions when they are compared with combinations of DSTs (Bar-
zehkar et al., 2020). A DSS is a set of problem-solving approaches to
assist in achieving both environmental sustainability and development
goals in coastal areas (Wong-Parodi et al., 2020). The incorporation of
DSSs into the planning process (Zanuttigh et al., 2014) will help
decision-makers to efficiently assess risk levels and appropriately pri-
oritize areas where mitigation and adaptation measures are urgently
needed (Torresan et al., 2016).

The effectiveness of a DSS can be increased if accurate data at a small
grid-cell scale is incorporated into a vulnerability analysis (Mullick
et al., 2019), as experts are then more likely to accurately identify the
spatial distribution of vulnerability at the local level (Mullick et al.,
2019). In other words, the determination of the spatial extent and dis-
tribution of the vulnerable locations with high accuracy is the initial
phase in determining satisfactory management options (Arabameri
et al., 2021). For example, a DSS might allow decision-makers to better
understand the options for coastal management by mapping or modeling
the relationships between hazards and exposures, enabling the identi-
fication of suitable buffer zones for coastal protection and infrastructure
development (Wong-Parodi et al., 2020). A DSS is primarily a data-based
and model-based approach to help managers organize and analyze a
large amount of pertinent spatial information assisted by analytical or
predictive models (Abdel-Fattah et al., 2021). The use of a DSS, a set of
tools employing realist rationality (Rousseau, 2020), does not negate the
need to incorporate other considerations such as the values, preferences,
and experiences of decision-makers, communities, and other stake-
holders (Ibrahim, 2018).

The application of a DSS supports the development of decision sup-
port indices (DSIs) relating to measures of coastal vulnerability to assist
decision-makers undertaking tasks such as coastal adaptation planning
(Gargiulo et al., 2020). DSIs are index-based approaches allowing the
combination of multiple environmental and socioeconomic dimensions
of vulnerability, risk, and resilience (Furlan et al., 2021). The outputs of
DSSs (such as classification maps or predictive models) relating to
coastal vulnerability, can assist in management actions relating to
mitigation measures applied to coastal hazards (Torresan et al., 2016;
Zanuttigh et al., 2014). A DSS may include a number of tools including
geographical information systems (GIS), multi-criteria decision analysis
(MCDA), artificial neural network (ANN) techniques, Google Earth En-
gine (GEE), and model-driven approaches such as Bayesian network
(BN) and numerical methods (Yariyan et al., 2020a).

The recent literature has many examples of the application of DSSs,
combining various DSTs, in environmental management. Arabameri
et al. (2021) applied GIS-based MCDA and artificial intelligence models
for zoning land-subsidence susceptibility in Iran. Pham et al. (2021)
used GIS, MCDA based on the analytical hierarchy process (AHP), and an
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Artificial Neural Network (ANN) for flood risk assessment in Vietnam.
Jena et al. (2020) applied GIS, ANN-AHP for earthquake risk mapping in
Indonesia. Yariyan et al. (2020a) undertook earthquake risk mapping
using Fuzzy-AHP based on GIS and ANN in Iran. Hadipour et al. (2020a)
employed an integrated approach using GIS-MCDA to classify coastal
risk in Iran. Tercan et al. (2020) applied the integration of GIS and
MCDA methods for offshore wind energy infrastructure site selection in
the Aegean Sea. Mullick et al. (2019) incorporated fuzzy logic and GIS
into the coastal decision support framework in Bangladesh.
Bagdanaviciute et al. (2019) used GIS, AHP, and weighted linear com-
bination (WLC) for risk classification of the Lithuanian coast of the Baltic
Sea. Peponi et al. (2019) utilized GIS-ANN to predict the coastal erosion
changes in Portugal. Dao et al. (2020) analyzed and mapped the sus-
ceptibility of the landslide in Vietham by combining GIS and ANN.
Arruda et al. (2021) used GEE and ANN for mapping and classifying
forest fires in Brazil. Vos et al. (2019) employed GEE and ANN to
examine shoreline changes in Australia. Sahin et al. (2019) predicted the
extent of coastal erosion based on rising sea levels by the integration of
GIS and a Bayesian Network (BN). Furlan et al. (2020) applied GIS-BN to
provide scenarios for hazard probability distributions and probabilistic
maps for marine spatial planning in the Adriatic Sea. A review of recent
literature across environmental management applications indicates that
a combination of GIS with MCDA and ANN is becoming increasingly
common and flexible approaches to vulnerability assessments (Pham
et al., 2021; Yariyan et al., 2020a).

Even though many studies use DSTs in coastal management, a formal
consideration of why a particular tool or a combination of tools has been
chosen for a particular problem is lacking. A DSS framework is needed,
for example, to support the decision-making process in the context of
coastal adaptation strategies based on socio-ecologic system evaluation
(Palutikof et al., 2019). The available literature indicates that coastal
vulnerability, risk, and resilience assessments are often performed using
individual tools. However, the advantages of using a combination of
DSTs in a DSS have not been systematically considered for the man-
agement of coastal areas. The main aim of this overview is to provide
information about the use of various DSTs and DSSs in different appli-
cations for coastal science, management, and assessment. Based on
recent research literature, we discuss the usefulness and efficacy of
combinations of DSTs and DSSs that are adapted specifically to assist
decision-makers working on coastal risk and resilience.

The applicability of various DSTs and DSSs reported in the coastal
management literature to a particular problem can be confusing. For this
reason, we focus on three important and interrelated objectives appli-
cable to coastal areas. First, we review and characterize different DSTs
and DSSs that have been applied to the management of coastal regions.
Second, we attempt to identify DSSs that can take into account several
elements including coastal sustainability, social needs, and economic
considerations throughout the management process. Third, we attempt
to characterize, mostly qualitatively, which DSTs and DSSs can be best
applied to the development of DSIs for coastal hazard mitigation and the
implementation of adaptation measures. The outcome is intended to
assist coastal managers and decision-makers to determine which tools
would be most appropriate to address a particular problem.

2. DSSs for coastal planning and management

Coastal managers are usually confronted with making multi-
objective decisions that have significant environmental, social, and
economic implications (Uhde et al., 2015; Westmacott, 2001). Such
decisions can be complex and they often cannot be generalized due to
the interconnectedness of human activities within an ecosystem,
ecosystem dynamics (Garmendia et al., 2010), and the complexity of the
response of a particular environment (such as a water body) to a
changing climate (Pindsoo and Soomere, 2020). Computer-based deci-
sion support tools use the capabilities of interactive software to assist
decision-makers to gain useful information from a combination of raw
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data sets by employing a logical scientific framework (Marto et al.,
2019). The quality of the decision-making process can be markedly
improved by considering different DSTs along with up-to-date and ac-
curate information (Wong-Parodi et al., 2020). An integrated DSS may
be an appropriate method to prioritize coastal segments based on the
levels of vulnerability, risk, and resilience (Bagdanaviciute et al., 2019;
Sajjad et al., 2020).

DSSs can provide a quantitative approach to decisions in situations
where coastal issues are normally expressed in qualitative terms (Sajjad
etal., 2020). Integrating and dealing with diverse data types is one of the
advantages of DSSs (Rodela et al., 2017). DSSs can assist in minimizing
costs and delays by assisting managers and decision-makers to make
rapid decisions (Kitsios and Kamariotou, 2018), encouraging coastal
adaptation strategies to be implemented rather than being indefinitely
delayed (Gargiulo et al., 2020). An additional advantage is that the maps
that may be generated by DSSs provide information in a form that can be
helpful for raising public awareness of the process and decisions, such as
the socio-ecological benefits of identifying and applying coastal buffer
zones (Povak et al., 2020). They can be used as community engagement
tools that engage with the ideas and experiences of local people, thereby
reinforcing participatory coastal management (Aporta et al., 2020).
Fig. 1 shows the advantages of DSSs for coastal planning and
management.

3. Computer-based decision support tools (DSTs)
3.1. Google Earth Engine (GEE)

Google Earth Engine (GEE) (not to be confused with Google Earth)
has been widely used in the geospatial big data processing. GEE is a web-
based (cloud computing) platform built on algorithms written in Java-
Script and Python environments that enable an analysis of regional and
planetary-scale geospatial data (Tamiminia et al., 2020; Vos et al.,
2019). It provides wide access to a series of satellite images and affords
global scale analysis capabilities, which enables practitioners to un-
dertake geospatial analyses (Arruda et al., 2021). The application of GEE
using Landsat-8 and Sentinel-2 satellite images is a useful DST to analyze
changes in shoreline position information using satellite altimetry, and
land use (Chu et al., 2020). CoastSat, based on Python, is an example of
GEE that enables managers to generate a time-series of available satellite
images for classifying coastline changes over the last 30 years (Vos et al.,
2019). This classification may identify the vulnerability of coastal seg-
ments in any region in the world based on shoreline changes, at least for
locations where the change has been significant (Vos et al., 2019).

3.2. Geographical information system (GIS)

GIS is a powerful DST for storing, displaying, and analyzing spatial
data (Iyalomhe et al., 2013), including large amounts of coastal data
(Rangel-Buitrago et al., 2020a) from different sources. GIS is, in essence,
a technology for effective representation, analysis, and visualization of
geographical data. Its flexibility for controlling spatial data has made it a
cost-effective technique for long-term planning of coastal adaptation
(Pan, 2005). Its usefulness in decision-making can be further enhanced
by the integration of MCDA methods into the mathematical operations
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for determining priorities by allocating values and weights to maps
(Malczewski and Rinner, 2015). It can be used to map vulnerable coastal
areas by combining map layers to calculate a Coastal Vulnerability Index
(CVID) (Hoque et al., 2019). It is also an effective tool for the analysis of
coastal resilience, integrating and then mapping resilience parameters
and calculating a Coastal Resilience Index (CoRI) (Gargiulo et al., 2020).
GIS can be used as an engagement tool by providing output maps
accessible to both coastal managers and nonspecialists (Aporta et al.,
2020; Iyalomhe et al., 2013). Digital maps can be visualized and inter-
preted to identify the location of susceptible coastal areas. This knowl-
edge ultimately will support the decision-making (Rangel-Buitrago
et al., 2017, 2020b).

In particular, DESYCO software is a DST based on GIS, which has
been specifically developed as an engagement tool to raise public
awareness about the effects of sea level rise and coastal erosion on
human assets and ecosystems (Torresan et al., 2016). It reinforces the
concept of adaptation planning and builds a pathway for
decision-makers to determine the most suitable adaptation strategies
(Santoro et al., 2013). DESYCO is a flexible tool that provides updatable
risk assessments, which are accessible to the public via communication
and training (Torresan et al., 2016). THESEUS is another GIS-based
software tool, which is used to assess coastal risks and the implica-
tions of various mitigation options for flooding and erosion (Zanuttigh
et al., 2014). It is used to assess mitigation options such as engineering
defense, environmentally-based solutions, and socioeconomic mitiga-
tion based on a balance between analytical models and experts’ opinions
(Kane et al., 2014).

3.3. Multi-criteria decision analysis (MCDA) methods

The MCDA approach integrates tools such as the analytical hierarchy
process (AHP), fuzzy logic, and weighted linear combination (WLC)
methods (Malczewski and Rinner, 2015). It has been widely used for
incorporating the preferences and expertise of specialists into the coastal
decision-making process (Adem Esmail and Geneletti, 2018; Haque,
2016). It specifies and prioritizes vulnerable locations and risk areas
based on multiple criteria (Johnston et al., 2014) and is one of the most
productive tools to facilitate complex coastal management decisions
(Uhde et al., 2015). Environmental and socioeconomic parameters
(Townend et al., 2021) that are aligned with goals are identified and
then weighted and ranked (Mafi-Gholami et al., 2019).

3.3.1. Analytical hierarchy process (AHP)

AHP is one of the MCDA approaches used to rank the priorities set by
decision-makers for coastal vulnerability, risk, and resilience assess-
ments (Hadipour et al., 2020b). It is based on a pairwise comparison
matrix for ranking the importance of each factor compared to others
based on an assessment by experts (Sekovski et al., 2020), with different
values being assigned to the variables of coastal risk and resilience
(Serafim et al., 2019). A set of questionnaires reflecting the vulnerability
and resilience of coastal areas are given to relevant experts for the
ranking of each parameter based on its relative weight (significance)
(Ishtiaque et al., 2019). Normally, a scale from 1 to 9 is used, where rank
1 represents a very low influence of a given parameter, and rank 9 in-
dicates a very high influence (De Serio et al., 2018). This kind of

| Quick decision-making |

I Quantitative support for decisions

DSS

,vl Inclusion of various types of data |

| Encourage adaptation strategies I/

!

\“ Foster participatory management |

Reduce cost and work delays

Fig. 1. The advantages of DSS for planning and management.
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categorization makes it possible to provide quantitative information
about the importance of parameters that influence the total CVI, Coastal
Risk Index (CRI), and CoRI (Mani Murali et al., 2018). The final stage of
an AHP is the comparison between the individual experts’ perspectives.
The outcome is the consistency ratio CR (Gargiulo et al., 2020)

Cl
CR=—, 1
R (€3]
where CI is the consistency index of the pairwise comparison matrix, and
RI is the average consistency index calculated from a large number of
randomly generated reciprocal matrices (Diaz-Cuevas et al., 2020). The
consistency index (Ahmed et al., 2021) is evaluated as
A max —
cr=tre @
n—1
where Anq is the largest eigenvalue of the pairwise comparison matrix,
and n is the order of the comparisons. The index RI can be calculated by
the randomly generated average consistency index of size n, where 1 yqx
is the average value of Ay for a large number of n x n matrices (Klutho,
2013):

RI = Amar =1 3
n—1
The AHP analysis is acceptable if CR is less than or equal to 0.10
(Diaz-Cuevas et al., 2020).

3.3.2. Fuzzy logic

The pixels (cells) of raster map data layers (such as elevation, land
use, etc.) are often not standardized and are measured in different units
(Barzehkar et al., 2016). Fuzzy logic is an approach to standardize the
pixels of raster maps in a range between 0 and 1 (Araya-Munoz et al.,
2017), where the endpoints represent very low or very high vulnera-
bility. Within this range, vulnerability is usually considered on a 5-step
scale, as low, low/moderate, moderate, moderate/high, and high
(Hoque et al., 2021). Other parameters (such as resilience) can be
handled similarly. There are different ways for normalization of raster
layers, applying minimum and maximum values (Barzehkar et al.,
2016). The most common approach is to use a linear scale. This
approximation may require reversing the sequence of these five steps
depending on whether the particular variable contributes to a decrease
or increase in vulnerability (Barzehkar et al., 2020). For example, the
number assigned decreases for elevation, coastal slope, the rate of
shoreline change, cyclone track density, or population density and in-
creases for sea level rise rate, significant wave height, flooding, or beach
sediment size.

The fuzzy standardization of parameters is based on the following
normalizations:

R, — R
(i) = R nin_ 4
i S @
Rywe — R
X, (i) = #7 5)

where Eq. (4) is used for increasing and Eq. (5) for decreasing, functions.
Here X; (i) and X (i) are the fuzzy membership functions, R; is the input
raster value of each parameter, Ry, is the minimum threshold and Ryax
is the maximum threshold of this parameter (Kao, 2010).

3.3.3. Weighted linear combination (WLC)

The prioritization and zoning of coastal vulnerability and resilience
are of vital importance (Seker et al., 2016). WLC is a widely used method
in MCDA for the integration of various environmental and socioeco-
nomic data to calculate DSIs for coastal management, to rank vulnera-
bility and risk in different parts of the system (Hadipour et al., 2020a,
2020Db). In this context, GIS based on the Map Algebra tool is effective in
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developing zones for generating maps for WLC assessment (Malczewski,
2000). The WLC approach is implemented by applying the following
expression:

WLC = Z agw;, 6)

Jj=1

where q; is the i-th rank of the j-th attribute and wj is the weight of the
Jj-th attribute (Ghosh and Lepcha, 2019). Attributes can be, e.g., eleva-
tion, slope, geology, shoreline change rate, land use, etc. Numerous
researchers have utilized this method for coastal vulnerability assess-
ment, including Bagdanaviciuteé et al. (2019), Hadipour et al. (2020a,
2020b), and Simoes Vieira et al. (2017).

3.4. Artificial neural network (ANN)

Machine learning techniques using ANN are mathematical, algo-
rithmic, and software models influenced primarily by biological artifi-
cial neural networks (Hill et al., 1994). They are data-based methods
that can mathematically express nonlinear features of environmental
hazard built on previously collected data without the need to completely
understand all the fundamental physical processes involved (Gudiyan-
gada Nachappa et al., 2020). ANN methods are popular for classifying
images and maps to detect features of vulnerable coastal ecosystems
(Rumson et al., 2020). Interactions between the layers of a network are
determined through neurons such that the output of the first layer (input
layer) is considered as the input to the next layer (hidden layer)
(Ahmadlou et al., 2020).

The most widely used ANN in coastal change classification is a multi-
layer perceptron (MLP) based on supervised classification, which is
influenced by several layers showing an input layer, one or more hidden
layers, and an output layer (Goldstein et al., 2019). In supervised clas-
sification, both the input and output data are recognizable and each
feature is labeled as compatible with latent relationships of data to
predict the labels of unseen data after training the model (Panahi et al.,
2021). An ANN based on MLP has to be trained with a backpropagation
algorithm (BPA), which is the most prevalent algorithm for training
ANN (Ghorbanzadeh et al., 2019). The number of hidden layer units of
any MLP depends on the complexity of the problem. The initial weights
of input parameters are randomly selected by the BPA. The difference
between the output values and expected values are obtained across all
observations until the mean-square error stabilizes at an adequately low
level (Ghorbanzadeh et al., 2019).

The MLP is used for studying nonlinear dynamic systems and for
approximation problems (Ghorbanzadeh et al., 2019). Samples in MLP
are randomly chosen, which represent hazard and non-hazard locations
so that the output is predicted (Dao et al., 2020). For example, Yariyan
etal. (2020b) samples 101 hazard and 101 non-hazard locations. Hazard
locations are divided into two groups based on a ratio, for example
70:30, 71 points for training of the model and 30 points for testing of the
model. The same process for non-hazard locations is implemented. The
number of samples and the ratio depends on the study area extent and
the desired output accuracy. More data lead to a more accurate pre-
diction (Thi Ngo et al., 2021).

3.5. Bayesian Network (BN)

BN models are graphical representations of the probability distri-
bution of changes based on predictive modeling that processes multi-
type data and can work in a poor data-collection environment (Guo
et al., 2020). BN is becoming a popular DST for modeling vulnerability
and risk assessments of coastal areas where there is considerable un-
certainty (Sahin et al., 2019). The outcome of a BN is a graphical display
of the probability distribution of a hazard (Sahin et al., 2019). One
common application of a BN is to forecast erosion and accretion rates in
relation to sea level rise (Sahin et al., 2019). The BN contains nodes
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showing factors such as coastal response, boundary conditions, location,
hazards, and wave properties (usually period and height) which are
connected with arrows indicating connections between nodes (Plomar-
itis et al., 2018). The resulting directed acyclic graph (DAG) represents
causative connections between two parameters related to coastal haz-
ards (Giardino et al., 2019). In essence, a BN often serves as an appro-
priate substitute for numerical modeling of coastal hazards and for
calculating hazard impact on infrastructure and the ecosystem (Plo-
maritis et al., 2018).

As this DST integrates information from multiple variables, it likely
provides robust data-driven or model-driven forecasts (Giardino et al.,
2019). The formula for a BN is (Giardino et al., 2019):

OF)p(F)

ooy = " @

where the left-hand side of Eq. (7) is the updated conditional probability
(posterior probability) of a forecast F; based on a particular set of ob-
servations O;. The first term of the numerator on the right-hand side is
the likelihood of observations O; based on the forecast F;. The second
term of the numerator on the right is the prior probability distribution of
F; (the probability of a given forecast based on the entire training
dataset, in the absence of any additional observations). The denomina-
tor contains the prior probability distribution of O; (Giardino et al.,
2019).

3.6. Numerical methods and satellite measurements

Numerical models have increasingly become an important DST to
simulate drivers such as wind, waves, and other physical processes in
coastal areas (Coelho et al., 2020). They can model the spatio-temporal
variations of wave properties (Hiinicke et al., 2015), estimate along-
shore sediment transport (DHI, 2017), and model shoreline change
including sediment budgets (Coelho et al., 2020) at local and regional
scales. Numerical methods such as the Simulating WAves Nearshore
model (SWAN) (Booij et al., 1999), WAve Model (WAM) (Komen et al.,
1994), MIKE 21 software by the Danish Hydraulic Institute, and others,
are widely used to simulate the generation and propagation of
wind-generated waves, estimating wave parameters (such as significant
wave height SWH) and distributions over periods of time based on
measured or modelled wind datasets (DHI, 2017). However, the use of
process-based numerical models is time-consuming, due to the simula-
tion of all coastal processes simultaneously, and they can be computa-
tionally time-intensive (Chini and Stansby, 2015). Coastal numerical
models can provide information about storm surge levels, and when
combined with wave models, about wave setup and runup (Marsooli and
Lin, 2018). Generic difficulties with numerical models are how to
specify the correct boundary conditions, how to deal with tide or swell
waves generated outside of the model’s domain, and how to handle
energy dissipation within the model (Masselink et al., 2011). Some
numerical models (e.g., MIKE 21) have extensions that can be used for
estimates of sediment transport and development of coastal morphology
(DHI, 2017).

Satellite altimetry may be an alternative for measuring some vari-
ables such as water level (Alsdorf et al., 2007) or SWH (Gallego Perez
and Selvaraj, 2019). Its applications in coastal areas and semi-enclosed
and seasonally ice-covered seas require special care to avoid distortion
of land and ice cover and to compensate for missing values of low wave
heights (Kudryavtseva and Soomere, 2017). The CFOSAT, Sentinel-3B,
and 3A satellite images provide instantaneous and extensive spatial
coverage and time-series data for measuring SWH (Gallego Perez and
Selvaraj, 2019).
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3.7. Relationship between DSTs and an integrated DSS for coastal
management

Due to the complexity of coastal decisions and significant spatio-
temporal variations of coastal processes, the most suitable decision
support method, or a combination of methods, must be considered for
particular problems (Uhde et al., 2015). Hybrid methods can be devel-
oped using an integration of DSTs to improve functionality in the
decision-making process (Uhde et al., 2015). AHP and fuzzy logic, for
example, can contribute to determining the relative weights and ranking
of the parameters involved in coastal management (Hadipour et al.,
2020b), and GIS for visualizing and communicating interactive maps to
the community (Assumma et al., 2021). Hybrid tools are effective in
tackling complicated problems related to climate change effects and
human activities in coastal areas (Maanan et al., 2018), where the
combined expertise of many stakeholders is needed to plan for the
long-term consequences of coastal hazards (Molino et al., 2020).

The provided analysis suggests that integration of combinations of
GIS (possibly with GEE), ANN, and MCDA methods, along with BN and
numerical models is appropriate and satisfactory for quantifying the
dual objectives of community resilience and environmental sustain-
ability for most problems. The integrated approach enhances decision-
makers’ choices to classify vulnerable areas based on their vulnerability
and resilience ranking and criteria weighting. The output maps derived
from this approach are effective in identifying areas where coastal
changes, such as shoreline movements and sea level rise, are likely to
affect communities and ecosystems. Table 1 shows the contribution of
various computer-based DSTs in strengthening the process of coastal
management planning. The ‘Sources’ column provides a selection of
resources including illustrative examples of the use of the tools.

4. Decision support indices (DSIs) for coastal planning and
management

4.1. Coastal Vulnerability Index (CVI)

CVI provides a quantitative analysis for vulnerability ranking of
coastal segments to identify the susceptible areas requiring protection
measures for community resilience (Hoque et al., 2019; Bagdanavicitite
etal., 2015; Koroglu et al., 2019). Vulnerability is the degree to which a
system is susceptible to, and is unable to cope with, adverse effects
(Adger, 2006). CVI has several sub-indices that can be used in combi-
nation (Mullick et al., 2019). The coastal characteristics vulnerability
index (CCVI) is used for parameters such as slope, elevation, and the rate
of shoreline change (Mullick et al., 2019). The coastal forcing vulnera-
bility index (CFVI) incorporates factors such as sea level rise, cyclone
track density, and significant wave height into the CVI (Mullick et al.,
2019). The socioeconomic vulnerability index (SEVI) considers popu-
lation density, infrastructure, cultural heritage, land use, and land cover
(McLaughlin et al., 2010; Mullick et al., 2019; Ng et al., 2019).

4.2. Coastal exposure index (CEI)

The CEI evaluates the likelihood of socioeconomically valuable fea-
tures such as infrastructure and urban areas to be negatively affected by
ing can be either land-derived (e.g., river/estuarine flooding when
combined with high tides) or marine-driven (e.g., storm surge, tsunami,
attack by unusually high waves). Flood maps are an important proxy in
determining the CEI, which is often developed from hydrodynamic
models based on the maximum water level (Bagdanaviciute et al., 2019).
The exposure map provides information to understand extreme water
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Table 1

The contribution of various computer-based DSTs in strengthening coastal management planning.
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Decision Support
Tools (DSTs)

Characteristics

Contribution

Other Considerations

Sources

GEE Uses regional-scale satellite imagery; high- ~ Monitoring long-term shoreline
speed processing; a library of application changes; analyzing coastal land-use
programming interfaces. changes.

GIS Spatial data analysis and visualization; Provides digital maps for coastal
handling large data; a long-term digital managers; producing spatial
database. information with respect to

stakeholder preferences and coastal
conditions.

MCDA  AHP A participatory tool; hierarchy creation Combination of priorities of decision-
between criteria and sub-criteria; pairwise =~ makers and multiple criteria;
comparisons; consistency investigation; development of a strategy with
provides for/requires the input of experts. analytical support for coastal

managers.

Fuzzy Designed for complex problems; flexibility =~ Normalization of pixels in raster maps

logic in the standardization of maps to address to create a comparable assessment for
data variability and imprecision. the evaluation of the variability of

coastal vulnerability.

WLC Integration of multiple data to create A logical approach for classifying and
output maps for vulnerability and ranking coastal vulnerability and
resilience analysis. resilience.

ANN Integration of data; solving complex spatial ~ Shoreline detection; identification of
problems. vulnerability changes; feature

exploration; able to be used for future
prediction of environmental changes.

BN A single probabilistic model; causal Forecast long-term shoreline change
dependencies between parts of a system; associated with sea level rise;
graphically represents expert’s knowledge.  Interactive probabilistic predictions

for coastal erosion.

Numerical Simulation of hazards and time-series Model wave parameters; sediment

models analysis; modeling the distribution of transport modelling.

Time-series mapping; easy download of
satellite images from GEE.

Used for zoning of coastal vulnerable areas;
applying knowledge-based decision making;
an engagement tool to offer visualized outputs
to the community.

Aggregation of coastal data with information

from interviews to create management zones;
ranking the importance of parameters relevant
to coastal vulnerability.

Handles effectively the uncertainty of large-
scale vulnerability.

Defines a set of alternatives for coastal
decision-making.

Classifying the map or image; properly
demarcates an area into different classes of
environmental hazard susceptibility with
respect to the historical extreme events;
determination of error in the weighting of
parameters by sensitivity analysis.

High flexibility to integrate with GIS for
generating probabilistic predictionmaps; an
approach to model dealing with uncertainties.

Capacity to simulate wave parameters in 2D or
3D; predict patterns of storm surge, setup, and

Vos et al. (2019);
Tamiminia et al.
(2020)

Gargiulo et al.
(2020); Pan (2005)

Malczewski and
Rinner (2015); De
Serio et al. (2018)

Mullick et al.
(2019); Barzehkar
et al. (2020)

Malczewski and
Rinner (2015);
Tercan et al. (2020)
Goldstein et al.
(2019);

Peponi et al.
(2019);

Yarriyan et al.
(2020a)

Giardino et al.
(2019); Sahin et al.
(2019)

Coelho et al.
(2020); DHI (2017)

hazards.

runup.

level return periods, acknowledging that there can be changes to esti-
mates of these return periods over time (Mucerino et al., 2019). The
exposure criteria are normally assessed on the low probability of events
such as 10-year or longer return periods (Bagdanavicitite et al., 2019).

4.3. Coastal risk index (CRI)

The CRI is an approach that can be used for identifying the most
vulnerable locations associated with climate change effects
(Bagdanaviciute et al., 2019). For the calculation of the CRI, an exposure
map of infrastructure and a community’s exposure to flooding is used
(Chaib et al., 2020). The CRI is derived from the CVI and CEI to identify
the coastal sectors that are affected by natural hazards and to quantify
those hazards (Bagdanaviciute et al., 2019). Not only does this approach
facilitate the strategies for promoting the resilience of infrastructure, it
can also assist with the creation of plans for coastal protection against
climatic-caused hazards (Chaib et al., 2020). This means that the CRI
can be used to help quantify the impacts of combined high anthropo-
genic pressure and climate change on coastal areas (Bagdanavicitite
et al., 2019). The results of CRI analysis can be used as a basis of an
engagement strategy for stakeholders (Bagdanaviciute et al., 2019). This
index is useful for determining which protective measures may help to
prevent a problem, such as loss of land (Bagdanaviciute et al., 2019).

4.4. Coastal area index (CAID)

The CAI is used in land-use planning strategies to determine the
priority areas for coastal protection in regions subject to development
activities (Dhiman et al., 2019). Using a quantitative analysis based on
CAI will allow decision-makers to classify the coastal areas according to
their sensitivity to infrastructure development (Dhiman et al., 2019).
Factors such as elevation, coastal slope, rate of shoreline change,

geological formation, soil texture, vegetation, land use, and land cover
are parameters for the calculation of CAI (Dhiman et al., 2018). This
decision index emphasizes the scientific basis for sustainable manage-
ment of coastal areas rather than the interest of stakeholders (Dhiman
et al., 2018). It strengthens decision-making for the classification of
coastal areas, which could contribute to the creation of a trade-off be-
tween conservation and sustainable development (Dhiman et al., 2019).

4.5. Coastal Resilience Index (CoRI)

The CoRI is used to measure the capacity of the coastal area to
respond to (e.g., climate-induced) hazards in such a way that the im-
pacts of hazards will be reduced (Gargiulo et al., 2020). This provides
input for flexible adaptation strategies to changes triggered by climate
change (Gargiulo et al., 2020). Many factors influence coastal resilience,
but the three most important elements are the distance from the coast-
line, elevation, and human activities, as the populated low-lying regions
that are close to the shoreline, are the most susceptible (and thus the
least resilient) to storm surge and flooding (Gargiulo et al., 2020), and to
sea level rise (Roy et al., 2019). Human actions such as tourism or urban
development might also contribute to land-use changes and declining
the resilience of coastal areas (Kim et al., 2017). The assessment em-
phasizes sustainable development objectives and synthesizes potential
solutions (Sajjad et al., 2020). Resilience can be better framed by
incorporating economic, environmental, and social aspects into coastal
planning and integrating the knowledge of professionals and local
people (Townend et al., 2021).

4.6. Contributions of DSIs for coastal management

The use of indices can help to identify vulnerable coastal zones
(Chaib et al., 2020), and their use have become popular in a drive to
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meet the coastal management goals (Bagdanaviciute et al., 2019). The
presented analysis indicates that depending solely on the most common
index (the CVI) does not necessarily guarantee the success of long-term
planning for coastal sustainability and the safety of people and infra-
structure. The integration of environmental sustainability and social
welfare goals in coastal regions is more likely to be captured when
multiple DSIs are incorporated into the coastal management process.
The inclusion of CRI, CoRI, and CAI into coastal management strategies
can create a pathway to identify the locations under the largest pressure
by, e.g., sea level rise and shoreline change. Such an integrated approach
based on a quantitative analysis could contribute substantially to pro-
active mitigation and adaptation. Not only would this strengthen the
adaptive capacity of coastal ecosystems to climate change, but it would
also advance risk assessment procedures. Managers need to employ tools
that can be utilized to enhance both risk mitigation measures and the
potential capacity of coastal areas. This is more likely to be achieved by a
mix of several DSIs to satisfy the socioeconomic needs (human liveli-
hoods and safety) of people in the community and combating climate
change-induced hazards. Table 2 shows the characteristics and contri-
butions of various DSIs to improve coastal planning and management.

5. Methodology of hybrid methods and tools for coastal
decision-making

An appropriate methodology may be to combine DSTs into a DSS,
and then calculate DSIs. An example of a methodology combining DSTs
into a DSS is standardizing and prioritizing environmental and socio-
economic raster layers using fuzzy logic and AHP, aggregating them
using a WLC approach in GIS, and either classifying or validating the
results using an ANN model (Pham et al., 2021; Yariyan et al., 2020a).
Determining the proper combination of methods is a strategic step,
allowing the development of an inclusive plan for fostering hazard
mitigation, coastal adaptation planning, and resilience initiatives
(Kontopoulos et al., 2021).

Until relatively recently, the combination of MCDA tools and GIS has
been the most common and preferred DSS approach (Hadipour et al.,

Table 2
The characteristics of DSIs and their contributions to improve coastal manage-
ment planning.

DSIs Functionalities Contributions Sources

CVvI Multi-scale vulnerability A suitable index to Bagdanavicitté
analysis; map calculate coastal et al. (2015);
representation; vulnerability; and McLaughlin et al.
statistical distribution of  provides an effective (2010)
vulnerabilities; management approach
vulnerability scenarios. for tackling climate-

induced hazards.

CEI Coastal inundation Identify better prevention =~ Bagdanaviciute
analysis; inundation measures for coastal et al. (2019);
scenarios; map flooding to plan for Chaib et al.
representation. population and (2020)

infrastructure safety.

CRI Coastal risk analysis; risk ~ Facilitate coastal risk Bagdanaviciuté
mitigation scenarios; mitigation measures; et al. (2019);
map representation. consideration of socio- Chaib et al.

economic needs and (2020)
environmental
protection.

CoRI  Coastal resilience Foster coastal adaptation Gargiulo et al.
analysis; resilience strategies; taking into (2020);
scenarios; map account human safety Townend et al.
representation. and coastal (2021)

sustainability.

CAI Coastal protection Minimize the effects of Dhiman et al.

analysis; sensitivity human activities on (2018);
scenarios; map sensitive coastal areas; Dhiman et al.
representation. long-term planning for (2019)

protecting susceptible
regions.
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2020a; Tercan et al., 2020). For many problems, this combination may
still be adequate and realistic (Bagdanaviciute et al., 2019; Masoudi
et al., 2021; Tercan et al., 2020). However, recently there has been
increased recognition of the value of including the use of ANN methods
for problems including the classification and ranking of environmental
hazards (Pham et al., 2021; Yariyan et al., 2020a). ANN requires large
data sets (which may not be available) and the computation time may
restrict its value when working with big datasets from wide areas. If a
big dataset is used, graphical processing units or cloud computing ser-
vices are required (Dao et al., 2020).

The application of MCDA and GIS, and perhaps also including ANN,
enables environmental, social, and economic data to be used in coastal
risk and resilience assessments (Rumson et al., 2020), which includes
ranking coastal segments and prioritizing them for interventions. Using
a combination of DSTs can assist in the production of suitable maps to
plan effectively for coastal protection measures such as establishing an
adequate setback zone for erosion and coastal inundation control. The
combined application can contribute to decision-making for common
coastal planning problems such as the determination of an appropriate
width of a buffer zone, the setback for infrastructure development at a
particular location, or a management plan for (e.g. port) construction.
Similarly, it is possible to determine the required floor level heights for
buildings, and identify the parts of the shoreline that need specific
measures such as seawalls or beach nourishment to control erosion.
Some examples of the combined application of tools in a DSS for coastal
problems can be found in Bagdanaviciute et al. (2019), Mullick et al.
(2019), and Hadipour et al. (2020a).

An integrated approach aims to promote the quality of analysis for
coastal vulnerability and resilience evaluations while allowing for
ongoing monitoring. Monitoring permits the evaluation of previous
decisions or interventions, particularly for identifying any unplanned or
inadvertent outcomes. This knowledge is useful to understand whether
unplanned effects arise from an inexact description of a single hazard
(which may lead to another problem being created) or are related to the
overall course of events, that may need a completely different approach.
An integrated approach, may provide better information than using
single tools and has led to sound environmental planning decisions
(Pham et al., 2021; Yariyan et al., 2020a).

Sea level rise and increase in extreme water levels combined with
anthropogenic activities have affected many coastal areas and their joint
impact is continuing to grow (Sahin et al., 2019). Some individual tools
for coastal management have strong functionality to help mitigate these
problems, however their functions usually do not go beyond the lifetime
of a particular project (Schumacher et al., 2018). The long-term appli-
cability of DSTs for coastal planning is important to protect coastal
ecosystems and to promote the livelihoods of local people. Furthermore,
most coastal hazards are localized in small segments of the shore. The
mitigation thus needs to be addressed at a local scale that considers the
specific characteristics of the coast (Mullick et al., 2019). Analyzing such
hazards at a local scale is often extremely complicated because of the
lack of high-resolution data. Coastal management thus requires the
flexibility of DSTs to handle the variability of various hazards in
different locations. The integration of DSTs creates a new pathway to
consider the spatial changes of coastal vulnerability, risk, and resilience
at finer scales (down to the pixel level in models), which can realistically
determine the rates of change at appropriate scales.

An assessment of error or uncertainty is important and is incorpo-
rated in MCDA tools based on fuzzy logic and in ANN algorithms
implemented in MLP (Yariyan et al., 2020a). The effective communi-
cation of uncertainty is crucially important for the community. If fuzzy
logic and ANN methods are integrated into the decision support
framework, errors or uncertainties that occur in a single technique will
likely be identified and removed using other methods so that uncertainty
is minimized (Yariyan et al., 2020a). ANN methods are particularly
useful in analyzing uncertainty. The advantage of ANN to the MCDA
based on AHP is related to the determination of uncertainty for the
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weighting of parameters (Gudiyangada Nachappa et al, 2020). A
sensitivity analysis for weighting of parameters implemented in ANN
shows the importance, or usefulness, of the various input variables in a
specific neural network. Sensitivity analysis also finds the variables that
can be neglected in the analyses and the variables that need to be
maintained (Peponi et al., 2019). By implementing a sensitivity analysis,
the network error is determined by comparing the observed values of
each variable input with the estimated values of outputs (Bayat et al.,
2019). This comparison is continued until the mean-square error (MSE)
reaches a very low level and the coefficient of determination (RZ) is high
so that the ANN model is appropriately fitted to reality, and suits the
purpose of the investigation (Yariyan et al., 2020a).

Using single methods (e.g., AHP) could increase the possibility of
variable rankings, depending on the allocation of weights to a particular
criterion. An increased number of inputs from different tools may lead to
variable rankings (Walling and Vaneeckhaute, 2020). However, an in-
tegrated DSS, when appropriately considered by professionals, is more
likely to produce consistent results than single methods (Barzehkar
et al., 2020), which may individually make too many assumptions, using
data sets that have considerable noise or uncertainty. Using DSS can
reduce the production of inconsistent outcomes by taking into account
expert knowledge for calibration and validation of methods. Thus, by
using a range of techniques, different tools can be assessed in terms of
their consistency (or divergence) so that the best decision is the one that
matches the results of most tools. This approach has conceptual simi-
larity to ensemble methods in statistics and machine learning (Berk,
2006).

Human-machine interaction is becoming increasingly important in
the use of DSTs and the development of DSS (Yun et al., 2021). The
operator has to ensure that correct input data are incorporated and that
the outputs are a reasonable and reliable reflection of reality. Good
expert knowledge is required for the interpretation of the input data for
managing coastal hazards (Rumson et al., 2020). Only then will coastal
managers benefit from the decision-making process. However, a DSS is
not capable of facilitating the analysis of complex decisions (Rashidi
et al., 2018). It is the expert who must structure complex decisions into
smaller comprehensible segments e.g., creating buffer zones on output
maps.

Fig. 2 shows the steps for applying a particular combination of DSTs
in coastal planning and management with an example workflow for
steps 2 and 3 shown in Fig. 3. Fig. 4 summarizes the potential benefits of
using a DSS for coastal planning and management.

6. Discussion

The aim of the overview of DSTs is to provide a rational framework
that incorporates environmental and socioeconomic data to assist in
coastal planning and management. Many coastal problems may benefit
from a combination of DSTs to strengthen the effectiveness of the
decision-making process. Previous studies (Arruda et al., 2021; Guo

| Objectives of decision-making |

l

| Determination of, and the gathering of, environmental and socioeconomic data I

!

[ Application of DSS (c.g., GIS, MCDA and ANN) |

| Production of CVI, CEI, CRI, CAI, and CoRI maps as an output of DSS |

!

| An integrated framework for decision-making |

Fig. 2. Systematic steps for applying an integrated DSS in coastal planning
and management.
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et al., 2020, Hadipour et al., 2020a; Peponi et al., 2019; Yariyan et al.,
2020a, and many others) use a combination of GIS-MCDA, GIS-ANN,
GEE-ANN, GIS-MCDA-ANN, or GIS-BN for prioritizing and ranking a
variety of environmental hazards. While many studies have successfully
combined GIS and MCDA into a DSS (Bagdanaviciute et al., 2019;
Hadipour et al., 2020a; Masoudi et al., 2021; Tercan et al., 2020), recent
literature suggests the addition of ANN adds significantly, particularly
concerning sensitivity and error analysis. Based on the existing literature
(Jena et al., 2020; Pham et al., 2021; Yariyan et al., 2020a), we can
conclude that the combination of GIS and MCDA (using AHP, fuzzy
logic, and WLC approaches), with the additional application of ANN
tools, is the most effective DSS for most coastal applications. Impor-
tantly, these combinations use tools, particularly those available in GIS
to produce products, that can visually aid interpretation for the public,
raise public awareness of coastal sustainability, and provide the basis for
discussion among experts for knowledge-based decision-making.

Even though one cannot derive any strict conclusions from the pre-
sented comparison of different approaches, the analyzed material, in our
opinion, still makes it possible to identify several practical implications.
As can be seen from Table 3, combinations of methods effectively
address different problems in environmental management, such as
environmental risk classification, infrastructure site selection, land-use
zoning, and environmental resilience classification.

An important advantage of a combination including MCDA is that it
easily allows the incorporation of environmental, social, and economic
objectives into decision-making (Masoudi et al., 2021; Tercan et al.,
2020). Another advantage of this method is the involvement of scientists
and other stakeholders, who can provide input based on their knowl-
edge, experience (particularly related to community expectations), and
values, thereby overcoming some of the issues associated with using a
realist, quantitative approach to a problem that has many dimensions
(Uhde et al., 2015). This aspect is particularly important for coastal
management planning, which may require the simultaneous consider-
ation of several disparate hazards. It can be important for reinforcing a
positive public perception of the decision-making process. The use of
ANN better meets the need for the validation of results and consider-
ation of future conditions and changes, as well as present conditions
(Peponi et al., 2019), and it enables improved determinations of envi-
ronmental hazards particularly in areas where large datasets are avail-
able (Lamba et al., 2019; Yariyan et al., 2020a). Combinations including
only ANN methods without MCDA do not generally integrate the
knowledge of experts in determining the relationships between input
and output data for weighting of parameters (Sarbayev et al., 2019). BN
methods are similarly effective in predicting environmental changes
(Sahin et al., 2019), however they are computationally complex and
require even more expertise and experience to implement and interpret
(Sahin et al., 2019). Moreover, they provide outputs that are less
user-friendly for community engagement (Guo et al., 2020). They are
incapable of demonstrating the dynamic relationships and feedbacks
between parameters (Guo et al., 2020). GEE is useful to access and
analyze large publicly available satellite datasets and can be used in
combination with ANN as an alternative combination when appropriate
data sets are available (Arruda et al., 2021). This combination requires
specialist skills to apply.

GIS and MCDA tools are widely available in most organizations, and
the combination is already employed by many practitioners, due to the
wide accessibility of its components and ease with which the methods
can be used and applied (Malczewski and Rinner, 2015). ANN methods
require more training and are therefore less accessible. However, this is
changing with ANN skills now being taught across more fields including
for environmental practitioners (Lamba et al., 2019; Pham et al., 2021).
GIS-MCDA or GIS-MCDA-ANN combinations will generate outputs for
managers, decision-makers, and governmental authorities, that are
easily understandable to others within the decision-making commu-
nities and other stakeholders (Yariyan et al., 2020a). As GIS-MCDA
methods are conceptually simple, accessible, and produce outputs
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| Objective: Coastal vulnerability assessment for hazards |

y

| Data determination: Data for vulnerability assessment |

Physical

Geological

A 4 \ 4

Socioeconomic

A

Sea level i Beach height Population density
cafevelnse . Beach width Land-use

Mean significant wave height Underwater slope Land cover

Storm surges S .

L h i tt it Historical shoreline change Land tenure
ong shore sediment (ranspo Beach and seabed sediments Setback width

v

I I

| Application of MCDA based on AHP to obtain the weights of vulnerability parameters |

v

| Application of MCDA using fuzzy logic to standardize the values of vulnerability parameters |

!

| Data integration using MCDA based on WLC approach in GIS software to prepare vulnerability map |

!

| Choose points randomly from the map as training points, then converting to a raster layer |

.

| Use ANN based on MLP to classify coastal vulnerability and the generation of a CVI as an output of DSS |

.

| An integrated approach for decision-making |

Fig. 3. An integrated DSS workflow for a coastal vulnerability assessment using GIS-MCDA-ANN.

| Application of DSS |

| Calculation of DSI (often involving the production of maps)

oy

| Produces high-quality results

k for decisi king |—>| Enables consideration of variable results |

Y

|Enablesconsiderationofuncertaimy| | Provides outputs for stakeholder engagement | | Requires human-machine interaction I

Facilitates long-term applicability
and monitoring

Fig. 4. Effectiveness of using a DSS for coastal planning and management.

readily able to be used in consultation, this combination has been very
widely used (Malczewski, 2006). However, the advantages of incorpo-
rating ANN are now recognized (Yariyan et al, 2020a). The
GIS-MCDA-ANN combination is likely to become the standard for in-
vestigations that require the use of a DSS. Although this integrated DSS
is appropriate where large input data are available for the important
parameters, it may not be appropriate where sufficient input data are
not available or able to be produced (Jena et al., 2020).

Best practice understanding of coastal risk and resilience is impor-
tant for coastal protection and infrastructure development, and human

safety. The use of an appropriate DSS in planning and management is
becoming widespread. This process can appropriately incorporate the
consideration of economic and social parameters alongside environ-
mental parameters. However, a DSS remains a support tool using realist
rationality (Rousseau, 2020), essentially a normative and descriptive
process (Jankelova and Puhovichovd, 2020), which is data-based or
model-based (Abdel-Fattah et al., 2021) and broadly aligned with
science-based decision-making. Such an approach can be dismissive of
both local interests and the preferences of stakeholders (Dhiman et al.,
2018). While some DSTs allow for expert input, particularly for the
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Table 3

Characteristics of various combinations of DSTs in a DSS. In the references,
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* indicates a coastal application, and " indicates other applications.

DSS References Advantages Limitations Accessibility Most commonly
addressed problems
GIS Bagdanavicitte et al. Provides for the contribution of experts ~ Access to a group of experts GIS is widely used by Environmental risk
MCDA  (2019)* [coastal risk and specialists. with knowledge across arange  environmental management classification.
assessment]; Provides outputs easily explained to of fields is required. professionals, and is available in Appropriate
Hadipour et al. (2020a)*  communities (particularly maps) that The method does not assess most organizations. infrastructure site
[coastal flooding risk can be used for consultation. future changes. It is easy for practioners to access selection.
assessment]; Unable to incorporate a very and learn the methods. Appropriate land-use
Tercan et al. (2020)* large dataset into the decision- zoning.
[offshore wind energy making process. Environmental
site selection]; resilience
Masoudi et al. (2021)" classification.
[sustainable land-use
planning];
Assumma et al. (2021)"
[land resilience
assessment]
GIS Peponi et al. (2019)* Excellent ability to work with noisy data ~ Does not provide the GIS is readily available in most Classification of
ANN [coastal erosion in difficult, non-ideal contexts. contribution of experts and organizations. environmental
modelling]; Provides prediction of future specialists. ANN is difficult for practioners to changes.
Dao et al. (2020)" [the environmental changes. Requires extensive training. access and learn the methodsdueto  Future environmental
prediction of landslide Computationally expensive. the need for special skills to changes.
susceptibility] develop the model. Environmental
hazards classification.
GEE Arruda et al. (2021)" Access, manipulate, and analyze large Requires high-end computer GEE is easily available to Ranking and
ANN [forest fires assessment]; ~ amounts of data. with large memory and practioners and it is easy to learn classifying
Vos et al. (2019)* The integration of various datasets. storage for the maps and how to use the tools. environmental
[shoreline change Uses freely available data sets (e.g. images. Spatial data and images are readily ~ changes.
assessment] satellite images). Does not integrate experts’ available, with coverage Environmental
knowledge into decision- continually improving. hazards classification
making. Statistical and computing skills are
Requires extensive training. required for advanced
Computationally expensive. functionality.
ANN is difficult for practioners to
access and learn the methods.
GIS Sahin et al. (2019)* [sea  Convenient for locations where either Computational complexity. GIS is extremely available to the Probability modelling
BN level rise and coastal data is unavailable or difficult to collect, ~ Not able to show the dynamic  public. of environmental
erosion]; or local conditions are challenging for relationships and feedbacks BN is less accessible to practitioners ~ changes.
Furlan et al. (2020)* physical data collection. between parameters. due to unfamilarity with software. Prediction of
[maritime spatial environmental
planning]; hazards
Guo et al. (2020)"
[ecological risk
prevention assessment]
GIS Jena et al. (2020)" Possibility for the contribution of Requires large datasets. GIS and MCDA allow the Environmental risk
MCDA  [earthquake risk experts and specialists. Advanced computing skills are  incorporation of practioners local classification.
ANN assessment]; Provides outputs with good accuracies required. knowledge.

Pham et al. (2021)"
[flood risk assessment];
Yariyan et al. (2020a)"
[earthquake risk
assessment]

that can be used for community
consultation.

Validation of results.

Sensitivity analysis and error
determination in weighting of
parameters.

ANN is difficult for practioners to
access and learn the methods.

weight given to certain parameters, a DSS as described above does not
allow for the direct application of less quantifiable values, emotions,
preferences, motivations, intuitions, traditions, and experiences of
decision-makers, professionals, stakeholders, and community members,
all of which must be taken into account for optimal decision making
(Hahn et al., 2018). The use of a DSS must therefore only be regarded as
a part of the final decision-making process and does not abrogate the
responsibility of decision-makers to incorporate the less quantifiable
factors (Ibrahim, 2018).

7. Conclusions

Based on the review of recent literature, we conclude that the inte-
gration of GIS, multi-criteria decision analysis (MCDA), and artificial
neural network (ANN) is a useful combination of decision support tools
(DSTs) to apply to many coastal problems. The resulting decision sup-
port system (DSS) can assist coastal managers and stakeholders mitigate
current coastal hazards and help predict future coastal changes. Outputs
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may include resources, such as maps, that can be used for the commu-
nication of management options for mitigation and adaptation.

A DSS serves to assist decision-makers, consultants, and govern-
mental authorities to determine appropriate coastal buffer zones and
vulnerable coastal areas requiring protection, identify where develop-
ment may occur in areas with high resilience, and prioritize areas with
high risk or high resilience to inform investment decisions. The outputs
of DSSs, including decision support indices (DSI), can be used to engage
with managers, stakeholders, community and governmental organiza-
tions for a better understanding of the options for environmental hazard
management and adaptation.

While not neglecting the requirement to consider less tangible pa-
rameters such as values, traditions, and preferences, the use of evidence-
based management tools based on high-quality data and analysis is vital
for a prosperous society and a sustainable coastal environment. An in-
tegrated decision support framework can assist with the planning of
appropriate mitigation and adaptation measures, providing for human
safety and protection of infrastructure and the coastal environment
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sustainability in the long term.
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The selection of suitable sites for offshore wind power plants is an important marine spatial planning problem in
the Baltic Sea. The application of multiple and different decision support tools (DSTs) can facilitate site selection.
This study employs a geographical information system (GIS) integrated with the levelized cost of energy (LCOE)
model, and GIS with multi-criteria decision analysis (MCDA) using an analytical hierarch process (AHP), fuzzy
logic, weighted linear combination (WLC), and the technique for order of preference by similarity to ideal so-
lution (TOPSIS) as an extension of MCDA. The core novelty of the study is the use of several concurrent state-of-
the art techniques to quantify the detailed spatial pattern of suitability of different sea areas for offshore wind
power plant installations for the entire Baltic Sea at an unprecedented, for such a large sea area, resolution.
Important parameters were identified and data from the Global Wind Atlas, HELCOM, and EMODnet portals
were used. The most appropriate areas exhibit LCOE values between 42 and 58 €/MWh, MCDA values in the
range of 0.78-0.92, and capacity factor values from 0.52 to 0.55. The areas identified as the least appropriate
were characterized by LCOE values ranging from 107 to 210 €¢/MWh, MCDA values between 0.34 and 0.59, and
capacity factor values within the range of 0.30-0.43. The outcomes using both methodologies were similar. The
decision preferred are mostly locations close to shore in shallow water and with a high capacity factor. The
largest suitable areas are in the south-west Baltic Sea whereas some suitable locations are identified further to the
north and east.

1. Introduction

The increasing demand for renewable energy worldwide mirrors the
reduction in the use of fossil fuels, coupled with industrial development
and population growth (Emeksiz and Demirci, 2019). Renewable energy
technologies for the generation of electricity are being used and fav-
oured worldwide (Akarsu and Geng, 2022), in large part as a response to
climate change (Genc and Gokcek, 2009). Renewable energy can supply
two-thirds of the total global energy demand by 2050 (Gielen et al.,
2019).

One of the most important renewable energy resources is wind
(Noorollahi et al., 2016; Gielen et al., 2019), which is a cost-effective,
safe, and an environmentally preferred source for producing elec-
tricity (Baban and Parry, 2001; Latinopoulos and Kechagia, 2015). The
use of wind energy has risen substantially in recent decades (Guchhait
and Sarkar, 2023), primarily attributed to a reduction in the costs of
generation (Osman et al., 2022). Wind energy also has the potential to
produce power in the vicinity of load centers, mitigating transmission
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losses and facilitating power distribution in remote regions (Genc,
2011).

The development of offshore wind power plants has the potential to
generate more energy and reduce considerably aesthetic and noise ef-
fects compared to onshore wind farms (Bilgili et al., 2011; Wu et al.,
2018). Greater economic benefits for offshore installations mostly stem
from higher wind speeds in marine areas and more flexibility for the
installation of devices. The expenses relating to foundation construction
and cable connection depend primarily on the water depth and distance
to shore (Khan et al., 2021) and the availability of suitable ports. On the
one hand, more expensive foundations and/or longer cables are required
when plant is located in deeper water or farther offshore. On the other
hand, locations further from the shore may provide better wind condi-
tions and thus a higher capacity factor. However, the construction of
offshore wind power plants can conflict with human activities such as
marine space for shipping, tourism, commercial fishing, and seabed
resource exploitation (Virtanen et al., 2022).

Selecting an appropriate location for offshore wind power plants
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requires a complex planning process that is based on diverse environ-
mental, social, and economic factors (Tercan et al., 2020). There are
conflicting objectives in the site selection process, which encompass
reducing the rate of environmental disruption and maximizing eco-
nomic profits (Golestani et al., 2021; Nedjati et al., 2021). Site selection
for wind power plants has a major impact on energy production and
installation costs (Shafiee, 2022). This kind of analysis is surprisingly
scarce in the literature for the Baltic Sea region, an area that is consid-
ered as one of the best locations for production of offshore wind energy
(Hasager et al., 2011, 2020; Shipkovs et al., 2013; Rusu, 2020). It has
only addressed seabed characteristics (Nyberg et al., 2022). This study
makes an attempt to systematically fill this gap based on contemporary
decision support tools (DSTSs).

It is well known that the application of DSTs can assist in selecting
optimal locations for the establishment of renewable energy infra-
structure (Gonzalez and Connell, 2022). Several DSTs have been used for
offshore wind power plant site selection. They commonly incorporate
the use of Geographical Information Systems (GIS) and are popular for
both onshore and offshore wind power plant site selection (Aydin et al.,
2010; Emeksiz and Demirci, 2019; Vagiona and Karanikolas, 2012;
Tegou et al., 2010).

The advantage of using a GIS is that it provides a systematic frame-
work for analysis, processing, and management of spatial data that
makes it possible to include various parameters together with specific
applications for their analysis (Diaz-Cuevas et al., 2019). Multi-criteria
decision analysis (MCDA) is a widely used method for ranking and
prioritizing different locations, and for the integration of qualitative and
quantitative attributes in the decision-making process (Mytilinou et al.,
2018). GIS combined with MCDA methods is often used to address ho-
listically the renewable energy site selection issues (Vagiona et al.,
2022). A GIS-based MCDA is a methodology that integrates geographical
information (input maps) and the priorities of experts into an output
(Malczewski and Rinner, 2015). There have been numerous studies
using GIS with MCDA (Gil-Garcia et al., 2022; Genc et al., 2021; Li et al.,
2022). MCDA methods are highly suitable for large-scale marine spatial
planning (Tercan et al., 2020) and are now well established for
site-selection studies.

Spyridonidou and Vagiona (2020) added the technique for order of
preference by similarity to ideal solution (TOPSIS) to their analysis.
Vagiona and Kamilakis (2018) concluded that the combined application
of GIS with analytical hierarch process (AHP) and TOPSIS methods is
useful to rank suitable areas in hierarchical order. There is still discus-
sion as to whether the TOPSIS method provides significant added value
to the analysis, as noted, e.g., by Gil-Garcia et al. (2022) in a study of
wind power plant site selection in the Gulf of Maine, USA. In our study,
we address this issue in the context of the Baltic Sea, in a greatly
different context and wind climate.

Another approach to the problem of site selection is the levelized cost
of energy (LCOE) technique applied to a similar problem by Martinez
and Iglesias (2022). This approach has been extensively used for single
(sets of) mainland locations (Genc et al., 2012a; 2012b; Gokcek and
Geng, 2009, among many others). However, it has been usually applied
only for sea areas of fairly limited size, such as sea areas surrounding
Denmark (Moller et al., 2012), the UK renewable energy zone (Cavazzi
and Dutton, 2016), Canarian waters (Schallenberg-Rodriguez and
Montesdeoca, 2018), Turkey’s seas (Geng et al., 2021), or the Gulf of
Maine (Gil-Garcia et al., 2022).

While the use of DSTs to assist with wind energy generation site
selection is now commonplace, this study makes three particular con-
tributions and innovations.

Firstly, we extend this type of analysis from looking at a few single
locations or limited sea areas, to the construction of a Baltic-wide ho-
listic view of spatial variations in the suitability of different areas for
installing wind power plants, across many national borders and covering
effectively about 400,000 km? of the region favorable for wind energy
generation. To do so, our analyses use both LCOE and MCDA
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Fig. 1. The Baltic Sea.

methodologies within a GIS framework to easily enable consideration of
large areas, such as the entire Baltic Sea. We benefit from the extensive
coverage of the Baltic Sea for the necessary data.

Secondly, given the scale of the addressed region, we perform the
analysis with a very high resolution (about 5km) that resolves the
properties of the marine environment and uses of marine space with
unprecedented accuracy, comparable to the examples of this analysis for
relatively small mainland regions (Karipoglu et al., 2021).

Thirdly, the LCOE model analysis has been applied in an integrated
GIS environment in combination with more conventional MCDA (plus
TOPSIS) methods to provide extra confidence in the results.

Finally, we provide detailed consideration of a large number of pa-
rameters, some of which have been overlooked in earlier studies, in
conjunction with existing wind farm sites, and with suggestions for new
wind farm locations.

This approach eventually can foster international cooperation in the
field and ultimately, better use of resources. In addition, application in a
GIS framework provides tools for easy dissemination of results to a range
of audiences, stakeholders and decision-makers. The results can be
immediately applied to specify the optimal location of new wind power
plants that are being currently considered (Danish Energy Agency DEA,
2022) in the Baltic Sea.

Our analysis focuses on large offshore wind turbines that are
commonly used or are planned to be used in the Baltic Sea and reflected
in the Danish Energy Agency (DEA) guidelines. Extension of our results
to other types of devices and different systems, including those consid-
ered in (Geng et al., 2012a, 2012b; Gokeek and Geng, 2009), is basically
straightforward as for doing so it is only needed to replace the relevant
parameters that are constant for the entire study area. However, the
resulting pattern is generally not invariant with respect to a change in
the device type.

The composition of the paper follows the classic scheme. Section 2
introduces the study area and describes the used material, the variety of
employed data sets and applied methods, and presents the flowchart of
their use. Section 3 provides an overview of spatial patterns of suitability
of sea areas as wind farm locations from different viewpoints and por-
trays differences of this pattern obtained using different methods and/or
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external restrictions. The discussion in Section 4 attempts to relate some
specific features of environmental and sea space use data with the
resulting maps while the core conclusions are formulated in Section 6.

2. Materials and methods
2.1. The study area

The study area, the Baltic Sea (Fig. 1), is a semi-enclosed sea in
Northern Europe. It is surrounded by Finland, Estonia, Lithuania, Latvia,
Denmark, Sweden, Germany, Poland and Russia, with an area of
392,978 km?, an average water depth of 54m and brackish water
ecosystem (Lepparanta and Myrberg, 2009).

The Baltic Sea is subjected to a variety of human pressures including
fisheries, offshore wind power plants, shipping, and tourism (Reck-
ermann et al., 2022). Interest in wind power generation in the Baltic Sea
(particularly in the south) has significantly increased, with a lot of
research on technical aspects (Klinge Jacobsen et al., 2019; Scolaro and
Kittner, 2022; Ziemba, 2022) while recognizing that these developments
have effects on marine ecosystems, shipping routes, coastal tourism,
fisheries, and socioeconomic aspects (Reckermann et al., 2022). Thus,
the evaluation of optimal locations for offshore wind power plants
incorporating technical and socio-economic and environmental vari-
ables is urgent, to reduce environmental concerns and boost energy
production (Tercan et al., 2020). Increased production capacity has
become even more urgent with the significant reduction of energy
supplied from the Russian Federation (European Commission, 2022).

2.2. Methodology

2.2.1. Levelized cost of energy (LCOE) model

In the energy sector, the levelized cost of energy (LCOE; or levelized
cost of electricity when relating to the electricity market specifically) is
the most common way of calculating and discussing the cost of elec-
tricity (Johnston et al., 2020) and other carriers of energy, such as
hydrogen (Genc et al., 2012a). This is the reason why this quantity is
commonly used in estimates of economic feasibility of energy produc-
tion at a particular site. The numerical values of LCOE represent the
ratio of the costs of energy production to the energy generation over the
total lifetime of a project. These costs are usually split into the initial
(nonrecurring investment) costs (from setup and planning, feasibility
studies, permits and legal costs over investments into development and
build etc., until decommission) and recurring operational costs (main-
tenance, fuel, and similar). The LCOE is thus the average cost per unit of
output over the lifetime of the project or wind turbine. The principal
expression for the LCOE values is (Johnston et al., 2020)
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| Y
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Here, C is the total cost over the entire lifetime (with a dimension of
some currency) and E is the total output (e.g., MWh for electricity or kg
for hydrogen) from the launch of the project at some time instant t = 0 to
the end of life at some (usually much later) time instant t = LT, after full
decommissioning and eventually environmental rehabilitation of the
site.

The quantities CandE may involve a multitude of constituents C and
E that appear in the cost list during different time periods and may have
different expected service times and/or discount rates, and may be
modulated by different escalation rates (e.g., Geng et al., 2012a). In the
energy sector, the constituents and discount rates are usually expressed
as annual values. The total cost is traditionally split into the investment
cost I; in a specific year t, operations and maintenance expenditures M;
and fuel cost F,. For the constant discount rate r% and LT years of

Regional Studies in Marine Science 73 (2024) 103469

lifetime, the constituents of the right hand side of Eq. (1) read (Johnston
et al., 2020):

=L 1=LT
~ I, +M +F, ~ E,
C= Zg‘ E=Y. @
=1 =1

t
(1+7r) (1+7r)"
For marine wind turbines, fuel costs are evidently zero except for
maintenance-related fuel. For more complicated systems (e.g., including
battery bank) and processes with different properties Eq. (2) can be
expanded to explicitly embrace, e.g., the capital cost of each component
(wind turbine, battery bank, civil works, inverter, miscellaneous) as well
as an option to adjust for escalation (Geng et al., 2012a) as kindly but
strongly suggested by one anonymous referee. In such a case Eq. (1)
obtains a more complicated appearance:

n

> (Ci x CRF;) + Cy

LCOE = *‘Ei (3)
P

where C;

Ci =1y, X P,. @

represents the capital cost of each component (e.g., wind turbine, bat-
tery bank, civil works, inverter, miscellaneous expenses), expressed as
the product of the specific cost I, of each component and the rated
power P, (maximum power output that a wind turbine can generate
under optimal conditions), and E, is the total output expressed similar to
Eq. (2). In essence, it is the potential maximum output multiplied by so-
called capacity factor. This representation encounters the situation
where capital recovery factors CRF; of single components may have
different discount rate r and lifetime T; (Geng et al., 2012a):

(141" xr
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The method developed in Geng et al. (2012a) makes it possible to

take into account escalation of operation and maintenance costs M,

[€/year] adjusted for escalation and calculated (Geng et al., 2012a):
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M, = Cop oo = 1-

(6)

= €om

(147)"

where C,,, = M; is the initial operation and maintenance cost for the
first year, and e,n is the escalation ratio of operation and maintenance
costs. The escalation ratio from 2015 to 2020 is approximately 0.986,
indicating a 0.986% decrease in operational and maintenance costs over
this period. On top of that, the model is expanded in Geng et al. (2012a)
to incorporate situations when a wind turbine or farm is being sold or
bought.

2.2.2. LCOE model for the Baltic Sea

The model described in the previous subsection can be used for many
purposes, from estimates of feasibility of a few wind generators to es-
timates of the cost of electricity and subsequent hydrogen production
reportedly reaching the accuracy of several valid significant digits
(Geng, 2010; Akarsu and Geng, 2022) when all details are taken into
account. As we focus on the quantification of different sea areas in terms
of their suitability for wind farms, such exact estimates and exact rep-
resentation of possible changes (escalation ratios) of operation and
maintenance costs are not necessary. Instead, we aim at solutions that
express the spatial pattern of LCOE generated by the variety of envi-
ronmental conditions and assuming that all other aspects (e.g., the start
of the project) are equal for any location.

This focus leads to several natural simplifications of the model
expressed in Egs. (3-6). First of all, the resulting pattern is invariant with
respect to presence or absence of additional features (e.g., battery banks,
hydrogen production, etc.). It is evident from the structure of Eq. (3) that
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Fig. 2. Flowchart for offshore wind farm site selection methodology using GIS-LCOE.

accommodation of such features will only add a constant to the map of
LCOE values and these features can be left out. Further, any escalation
rate works uniformly for the entire study area. We focus on the task of
highlighting the spatial pattern of LCOE under a fixed start instant of
activity. For simplicity, we also assume that the capital recovery factor is
the same for all non-recurring and recurring costs. In this framework, the
expression for LCOE is essentially Eq. (2) with F, = 0.

To maintain a visual link between the names and content of the used
variables, we use the abbreviation CAPEX(t) = I, for the whole capital
expense at time t, OPEX(t) = M, for the operation and maintenance
expenses at time t, and E(t) = E, for the energy generation at time t. The
numerical values of LCOE represent the ratio of the costs of energy
production to the energy generation over the lifetime LT of a project:

LT
> CAPEX(1)+OPEX (1)

7)

where, now, summation is performed over full years from 1 to LT. The
specific cost of the wind farm related to wind turbines, civil works,
inverter, miscellaneous, etc., were incorporated in initial CAPEX(1) as
the sum of the expenses for equipment and installation in the first year
2020. The rated power in our study is the generation capacity for one
unit (MW). In our study, C,n = M refers to OPEX(1), which corresponds
to the 2020 cost based on the Danish Energy Agency data catalogue
(Danish Energy Agency DEA, 2016).

2.2.3. Flow chart of calculations

A flow chart of the application of the LCOE model in a GIS envi-
ronment is shown in Fig. 2. The first step is to prepare raster layers and
extract values for essential parameters used in LCOE calculation, namely
capacity factor (defined as the annual power production divided by the
maximum potential annual production; Danish Energy Agency DEA,
2016), water depth, and distance to shore. The whole Baltic Sea was
divided into pixels with dimensions of 5000 * 5000 m (Fig. 2) for
standardizing data and for quantitative analysis as recommended in Diaz
and Guedes Soares (2020). For every pixel, water depth, distance to
shore, and capacity factor were calculated using ArcGIS software and
appropriate datasets.

Many older analyses of LCOE (Bilgili and Sahin, 2009; Geng, 2010,
2011, Geng and Gokcek, 2009; Geng et al., 2012a, 2012b, among others)

rely on actually measured wind data at the standard height of 10 m
above surface. In these sources, the recorded data are projected to the
wind generator height using a log law and approximated by a 2-dimen-
sional Weibull distribution. Main parameters of the wind climate are
optionally translated to the location of the generator using the WAsP
software. Finally, the capacity factor is evaluated using the scale
parameter of the Weibull distribution for the local wind climate.

This approach cannot be directly applied for marine conditions. A
state of the art solution is provided by the Global Wind Atlas (2022)
(GWA). The properties of marine wind climate are reconstructed from
atmospheric re-analysis data. The existing resource is based on the ERA5
dataset (Hersbach et al., 2020) from the European Centre for
Medium-Range Weather Forecasts (ECMWF) for the time period of
2008-2017 with a spatial resolution of approximately 30 km. A higher
resolution wind climate with a resolution of 3 km is evaluated using the
Weather Research and Forecasting (WRF) mesoscale model (Global
Wind Atlas, 2022). This information is further detailed via a WAsP
calculation of local wind climates for every 250 m at 10; 50; 100; 150
and 200 m height. This calculation includes evaluation of the capacity
factor with the same spatial and vertical resolution. The capacity factor
data come from the Global Wind Atlas (2022) using capacity factor class
L. The use of this class matches the importance of the suitability of high
specific power turbines for very high wind locations in terms of LCOE
optimization (Swisher et al., 2022). This selection also ensures that our
cost considerations align with offshore wind industry standards,
providing a robust foundation for our analysis. The water depth is also
taken from the Global Wind Atlas (2022). The shoreline data are taken
from the HELCOM portal (HELCOM, 2022b).

The LCOE values for offshore wind power plant in every pixel were
calculated using Eq. (7). The costs were specified in terms of total capital
expenditures (CAPEX), and operational and maintenance expenditures
(OPEX). The total CAPEX depends on water depth (foundation costs),
the distance to shore (grid connection costs), and initial CAPEX (Mar-
tinez and Iglesias, 2022). Initial CAPEX is the cost associated with the
installation, development, equipment, and materials above the sea sur-
face for the first year of the project, which is fixed for the total CAPEX
calculation.

In step 2, the initial CAPEX was calculated including cost of wind
turbine, in particular, by incorporating rotor diameter (m), hub height of
wind turbine (m), size of wind turbine in terms of generating capacity
for one unit (MW), specific power (W/m?), and area coverage (MW/
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Table 1
Offshore wind turbine costs in 2020 for the base case 20 m water depth and
30 km distance to shore (Danish Energy Agency DEA, 2016).

Regional Studies in Marine Science 73 (2024) 103469

Table 4
Total grid connection costs for offshore wind turbines for the base case (2015
prices) (Danish Energy Agency DEA, 2016).

Technical/financial data Large offshore wind turbines Grid connection costs (2015 prices) (M€/MW)
Year of final investment Total grid connection costs 0.40
decision Offshore platform 0.16
Project management and environmental assessment 0.027
2015 2020 Transformer station onshore (M€/MW) 0.067
Generation capacity for one unit (MW) 8 10 Sea cable costs per km (M€/km/MW) 0.00269
Average annual full-load hours (MWh) 4400 4500 Land cable costs per km (M€/km/MW) 0.00134
Technical lifetime (years) 25 27 Base case cable lengths km
Rotor diameter (m) 164 190 Sea cable 30
Hub height (m) 103 115 Land cable 50
Specific power (W/m?) 379 353
Specific area coverage (MW/km?) 5.4 4.5
Nominal investment (M€/MW) 2.86 213 the distance to shore (Tables 3 and 4) (Danish Energy Agency DEA,
- of which equipment 1.11 0.79 2016).
- of which installation 1.35 0.96 . . . .
~ of which grid connection 0.40 0.38 TheA grid connection costs for plant§ in each pixel to shore based on
Fixed operation and maintenance (€/MW/year) 57,300 40,059 the estimated values for the 30 km distance to shore (Table 3) were
Variable operation and maintenance (€/MWh) 4.3 3.0 calculated using (Danish Energy Agency DEA, 2016) (Table 4). Grid
connection data (Table 4) are based on the Energinet (Energinet, 2017)
ble 2 which provides the costs of connecting the latest four projects in the
Table

Foundation costs for different water depths (Danish Energy Agency DEA, 2016).

Water depth (m) Foundation costs (M€/MW)

2007 study 2014 study
10 0.48 Not specified
20 (base case) 0.74 0.42
30 1.18 0.67
40 1.88 0.84
50 Not specified 1.05

Table 3
Grid connection costs for different distances to shore (Danish Energy Agency
DEA, 2016).

Distance to shore (km) Total grid connection costs (M€/MW)

10 0.35
20 0.37
30 (base case) 0.40
40 0.43
50 0.45
60 0.48
70 0.51
80 0.53

km?) (Table 1). The information shows the parameters of turbines that
have been commonly used in the Baltic Sea based on the DEA guidelines
(Table 1). We do not address in this analysis turbines and systems that
are not commonly used or considered for use for the Baltic Sea wind
power plants.

The fixed part of operation and maintenance (OPEX) costs result
from maintaining the wind turbines and associated infrastructure
(Martinez and Iglesias, 2022). The variable part of OPEX costs depend
on energy generation over any period of interest and vary with energy
production (California ISO, 2018). As the LCOE is calculated over many
years into the future, the future years need to be discounted to their
present values using a discount rate. It indicates the market value of
equity and debt (Myhr et al., 2014).

The foundation costs (costs for wind turbine structures below sea
surface) for corresponding water depths with respect to the “base case”
20 m water depth (Table 2) were derived based on the DEA Technology
Data Catalogue (Danish Energy Agency DEA, 2016). This source reports
studies made in 2007 and 2014. We have used the 2014 study because it
is based on a more recent price forecast for Siemens wind power turbines
and is the only available data set of good quality for Baltic Sea condi-
tions. We only consider bottom-fixed foundations at water depths
<50 m. Grid connection costs depend on sea cable cost per km and on

Baltic Sea (HR2, Rgdsand 2, Anholt and HR3). The estimated grid
connection costs are 0.4 ME/MW for offshore wind power plants with
the transformer station located on the offshore platform, power plants of
400-600 MW, and plants located about 30 km from the shore (Tables 3
and 4) (Danish Energy Agency DEA, 2016). It is assumed that the grid
connection costs are 0.3 M€/MW for near-shore wind power plants that
are connected to onshore transformer stations, power plants of
50-200 MW, and located 4-10 km from the shore (Danish Energy
Agency DEA, 2016). The grid connection costs in 2020 have been
calculated by 1% cost reduction per year until 2020. We assume a
minimum distance of 4 km for the LCOE calculations because we vali-
date the model against existing locations, some of which are very close
to shore. New large offshore wind power plants are likely to be built
much further from shore (Danish Energy Agency DEA, 2016).

A relationship between water depth and foundation costs (Table 2),
and distance to shore and grid connection costs (Table 3) were calcu-
lated from Danish Energy Agency DEA (2016). They were used to
evaluate the foundation and grid connection cost difference between the
base case and other water depth and distance to shore values.

Total costs for grid connection presented in Table 4 were calculated
for each pixel by multiplying and summing land cable length with land
cable costs per km, and sea cable length with sea cable costs per km,
along with the sum of the costs for the offshore platform, project man-
agement and environmental assessment, and the transformer station
onshore. Most of these costs were assumed to be fixed for all pixels. Only
sea cable and land cable length were evaluated for each pixel (Table 4).

The offshore wind turbine cost in 2020 (Table 1) was used to
calculate the LCOE based on Eq. (3). Calculations of total offshore in-
vestment costs (CAPEX) (M€/MW) were performed using values for the
above-described base case (20 m water depth and 30 km distance to
shore) (Danish Energy Agency DEA, 2016). The deployment plans for
offshore wind power plants in the Baltic Sea were expected to reduce the
nominal investment costs (CAPEX), and operation and maintenance
costs (OPEX) (costs drop by 1% per year) alongside increasing capacity
of turbines from 2015 to 2020 through increased output power in
building wind power plants (Danish Energy Agency DEA, 2016). In re-
ality, there is ongoing technological improvement towards
larger-capacity turbines with higher hubs, bigger rotors, and longer
blades to capture more wind energy and produce more electricity and to
reduce the capital and operation costs per unit of installed capacity
(IRENA, 2019). There is also an increase in annual power production
(MWh) per installed power (MW) (average annual full-load hours) from
2015 to 2020 but this depends on the location of the plant, technological
features of the individual turbines, and wake losses (Table 1) (Danish
Energy Agency DEA, 2016).
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Fig. 3. Flowchart for offshore wind farm site selection methodology using GIS-MCDA.

In step 3, the total CAPEX was calculated as the sum of the expenses
for equipment and installation in the first year 2020 (initial CAPEX
which was held constant for the total CAPEX calculation), foundation
costs (dependent on water depth) and grid connection costs (dependent
on distance to shore) in million euros (M€). The costs for each pixel were
evaluated based on the difference in the water depth and distance to
shore from those of the base case. For each 1 m depth difference from the
base case 30 m, the foundation costs were changed by 0.0206 M€. For
each 1 km difference in the distance to shore from the base case (30 km),
the sea cable cost was changed by 0.00269 M€/km/MW.

In step 4, the fixed and variable OPEX were calculated for 2020 using
(Danish Energy Agency DEA, 2016) (Table 1). The total OPEX is the sum
of fixed and variable components, covering the whole expected lifetime
of the project. The OPEX values do not depend on water depth and
distance to shore. All CAPEX and OPEX values refer to the 2020 cost data
projections in Danish Energy Agency DEA (2016).

In step 5, the energy production of the offshore wind power plant
(LCOE) was calculated by multiplying the capacity factor by 8760 h/yr
to acquire the annual energy production of the farm, assuming an
installed capacity of 1000 MW. In large offshore wind farms, energy
losses caused by turbine wakes are expected to be 10-20% of total power
output. This is a contributing consideration for investments (Barthelmie
etal., 2007). For every year from 2020 to 2047 (assumed lifetime 27 yr;
Danish Energy Agency DEA, 2016), energy production was calculated by
taking into consideration power losses of about 10%. In the final stage,
the LCOE was calculated for every pixel using Eq. (3) by dividing the
sum of costs by the sum of energy generation for 27 years, using a dis-
count rate of 8% (Freyman and Tran, 2018).

2.2.4. GIS-multi-criteria decision analysis (MCDA)

2.2.4.1. Data collection. The first step of the MCDA is to specify the
constraints and potential locations for the development of offshore wind
power plants from a review of the literature and national regulations
(Fig. 3). The process for the identification of the most important pa-
rameters for plant site selection is based on previous works (Wu et al.,
2018). The layers for GIS analysis were created for 5000 * 5000 m pixels
in ArcGIS with the ETRS_1989 LAEA reference coordinate system
(Annoni et al., 2003).

The parameters are determined based on the DEA standards (Danish
Energy Agency DEA, 2016), the European Maritime Spatial Planning
(MSP) platform (European MSP Platform, 2018a,b,c,d,e, 2019) and
other literature (Chaouachi et al., 2017; Deveci et al., 2020; Emeksiz and

Demirci, 2019; Geng et al., 2021; Gil-Garcia et al., 2022; Spyridonidou
and Vagiona, 2020; Tercan et al., 2020), the data source, and the
parameter descriptions. (Danish Energy Agency DEA, 2016) is the only
available set of standards for water depth and distance from shore, that
determine how these parameters affect the cost and location of wind
farms. A variety of parameters were used in this study (Table 5): wind
speed, capacity factor, water depth, distance from nature protection
area, seabed geology, wave height, distance from ports, distance from
seabed infrastructure, distance from shoreline, distance from military
area, distance from shipping routes, and distance from fishing area.

2.2.4.2. Analytical Hierarchy Process (AHP). The second step in the
MCDA design is to specify the contribution of the different parameters to
wind farm site suitability. The AHP is, in essence, a pairwise comparison
exercise in which each factor (parameter) is weighted against other
factors to determine its relative significance (Mu and Pereyra-Rojas,
2018). If larger values are “better”, the weights of parameters range
from 1 to 9 as recommended in the classic work (Saaty and Tran, 2007).
Class 9 corresponds to an extremely prioritized situation, class 7 to very
strongly prioritized, class 5 to strongly prioritized, class 3 to moderately
prioritized and class 1 to equally prioritized (neutral) situation. Experts
asked to evaluate priorities may also use intermediate values 2, 4, 6, 8
between the classes. If smaller values are better, the weights are
decreasing (e.g., 1/3, 1/5, 1/7, 1/9, Saaty and Tran, 2007).

One way to obtain the relative weights of factors is to use super
decisions software (Mu and Pereyra-Rojas, 2018) by comparing the
importance of factors to each other. It is part of the AHP methodology
that expert opinions are collected to determine appropriate weightings
for parameters, using a pairwise comparison matrix. For this study, 10
experts in various academic institutes and governmental agencies with
backgrounds in renewable energy and coastal sciences were interviewed
(Table 6). In this study, the geometric mean was employed for aggre-
gating judgments in AHP due to its ability to capture the reciprocal
nature of experts’ opinions (Mu and Pereyra-Rojas, 2018).

The calculation of the weight for each criterion used the geometric
mean of the values (Mu and Pereyra-Rojas, 2018) provided by experts
for each pair of comparisons (Table 7). Then pairwise comparison ma-
trix of these values was normalized by dividing the value in each cell by
the sum of values over all cells in the relevant column. The sum of the
rows of the normalized matrix leads to a new one-column matrix. The
entries of this matrix can be eventually normalized by dividing the
values in each cell by the number of criteria (average) to calculate
weights (relative importance of parameters) (Mahdy and Bahaj, 2018;
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The most important parameters, their data source and description, for offshore wind power plant site selection in the Baltic Sea.

Criteria Sub-criteria

Data source

Description

Wind resource Wind speed

Physical Capacity factor

Water depth

Distance from nature
protection area

Seabed geology

Wave height

Socioeconomic  Distance from ports

Distance from seabed
infrastructure

Distance from
shoreline

Global Wind Atlas (2022)

Global Wind Atlas (2022)

Global Wind Atlas (2022) derived from
GEBCO Bathymetric Compilation Group
(2020)

HELCOM (2022a)

EMODnet (2022a)

Copernicus Marine Service (2020)

EMODnet (2022b)

EMODnet (2022b)

HELCOM (2022b)

Wind speed is the crucial parameter for the energy production of wind power plants and
investment returns (Tercan et al., 2020). The average wind speed is estimated at 100 m
above the sea surface, which is the normal height of a turbine hub. An average wind
speed of 7.0 m/s is generally regarded as a minimum wind speed for offshore wind
power plant sites (Genc et al., 2021; Vinhoza and Schaeffer, 2021). According to (Danish
Energy Agency DEA, 2016), the maximum annual average wind speed at 100 m height is
10 m/s in the Baltic Sea. The highest power generation is reached at ~ 12 m/s and at
~25 m/s the power generation is reduced Between 12 and 25 m/s the maximum power
generation remains stable (Danish Energy Agency DEA, 2016).

The capacity factor is the annual power production divided by the maximum potential
annual production (Danish Energy Agency DEA, 2016). This parameter has a major
impact on the anticipated investment returns (Chaouachi et al., 2017). The average
capacity factor for offshore wind power plants worldwide was 33% in 2018 and new
offshore wind turbines are planned to have a capacity factor between 40-50% (IEA,
2019). The capacity factor in coastal locations of the Baltic Sea is over 31% (Tonderski
and Jedrzejewski, 2013).

Water depth influences the foundation costs of offshore wind power plants. Water
depths >50 m are not considered as potential locations of offshore wind power plants in
(Danish Energy Agency DEA, 2016). Most offshore wind turbines have been installed at
sites with water depths of less than 50 m (Spyridonidou and Vagiona, 2020). Between
the water depths of 0 — 50 m, lower values are better. There may be a scour issue in
shallow water depths caused by the effects of waves and currents on the seabed causing
negative impacts on the wind power plant. This problem requires scour protection if it
exists (Thor Ugelvig, 2014).

Protected areas including NATURA 2000 areas, marine protected areas, wetlands, and
RAMSAR areas must be considered. The environmental impacts of wind power plants
are related to bird collisions and changes to fauna and flora habitats (Bailey et al., 2014;
Wang and Wang, 2015). The construction process impacts are noise and habitat
degradation, along with the increased ship traffic, and the wind power plant operational
impacts are noise, movement of marine animals from their normal habitats, and
collisions (European MSP Platform, 2018a). This source specifies a minimum 2 km
distance from marine protected to avoid disturbance of seabirds. Above 2 km distance,
bigger distances are better.

The costs of offshore wind power plant installation increase if the seabed is rocky (
Emeksiz and Demirci, 2019). A muddy substrate is more suitable for offshore wind
power plant construction than sandy sediments (Rambgll, 2014). A muddy substrate has
very high suitability, muddy sand/sandy mud substrates have high suitability, sand
substrates have moderate suitability, coarse substrates have low suitability and mixed
coarse sediments have very low suitability for the location of offshore wind power plants
(Gkeka-Serpetsidaki and Tsoutsos, 2022). According to (European MSP Platform,
2018b), sediments comprised of (finer) sediments are suitable for the establishment of
wind turbine foundations.

Wave height affects the offshore wind power plant design (Wu et al., 2018). Large waves
influence construction, operation, and maintenance costs due to access issues (Deveci
etal., 2020; Eelsalu et al., 2024), and in small water depths large waves may jeopardize
the offshore wind turbine foundations. A maximum single wave height >10 m is not
suitable for offshore wind power plant locations (Gil-Garcia et al., 2022). Maximum
single wave height H,,,, is approximately 1.6-2 times significant wave height (SWH) Hg
(Satish et al., 2019), that is approximately equal to the average height of the highest
one-third of waves (Diaz and Guedes Soares, 2020). The maximum measured SWH in the
Baltic Sea is 8.2 m and maximum SWH up to 10 m may occur in contemporary climate (
Bjorkqvist et al., 2018). The maximum SWH between 1993-2020 based on Copernicus
dataset was approximately 3.9 m in the vicinity of selected locations of offshore power
plants in Fig. 8. However, maximum SWH>4 m are rare in the Baltic Sea, so wave height
is unlikely to be a problem in this water body.

A short distance from ports is vital to minimize the costs of installation and maintenance
of offshore wind power plants (Gil-Garcia et al., 2022). A distance of between 10-80 km
from ports is suitable. Within this range, the lower values are better. Areas more than
80 km from ports are generally considered unsuitable (Spyridonidou and Vagiona,
2020). Evaluation of the minimum distance from a port includes an analysis of the
distance from the shoreline (see below).

Seabed infrastructure may be present for the transport of gas, oil, water, or electricity.
Existing infrastructure should not be adversely affected by wind power plants (Emeksiz
and Demirci, 2019). It is also a potential obstacle during the installation of plants (
Tercan et al., 2020). A minimum distance of 500 m from seabed infrastructure is used in
this study (Vinhoza and Schaeffer, 2021). Above 500 m, larger distances are better. The
International Cable Protection Committee (ICPC) suggests an exclusion zone of 500 m
from existing cables in shallower waters (up to a depth of 75 m) (European MSP
Platform, 2018c).

Distance from the shoreline is an important constituent of the installation and
maintenance costs. DEA (2016) does not consider wind power plants located less than
10 km from shore. The Estonian Maritime Spatial Plan (2019) specified a 10 km
distance from the shore to reduce visual disturbance by offshore wind power plants and
to assure that plants do not interfere with surfing and sports activities in marine areas. A

(continued on next page)
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Criteria Sub-criteria Data source

Description

Distance from military EMODnet (2022b)

area

Distance from shipping
routes

EMODnet (2022b)

Distance from fishing EMODnet (2022b)

area

wind power plant close to the shoreline might create visual and noise impacts (Zhou
et al., 2022) or influence human activities, so marine areas with proximity to the
shoreline should be excluded from analysis (Diaz and Guedes Soares, 2020).

Offshore wind power plants can interfere with areas used for military activities and
these areas need to be free of offshore wind turbine developments (European MSP
Platform, 2019). Marine areas used for military purposes, particularly for military
exercises and training, are excluded from the offshore wind power plant site selection (
Zhou et al., 2022). The European MSP Platform (2019) determined a 500 m distance
from military areas as a buffer zone for the safety of these areas. Above 500 m distance
from military areas, the greater distances are better.

Shipping routes are significant because the construction of wind power plants in areas
with busy shipping routes can increase the potential for accidents (Deveci et al., 2020).
The safety of a wind power plant is better in marine areas with lower ship traffic. The
EMODnet’s shipping density map is used for this study, which shows the time spent by
all ship types in hours per month per km? (EMODnet, 2019). The high traffic routes are
extracted visually in ArcGIS from the shipping density map. The European MSP
Platform (2018d) recommends a minimum distance of 2 nautical miles (approximately
3.7 km) between the outside borders of the offshore wind power plant and the shipping
route for safety purposes.

The installation and operation of a wind power plant may also contribute to the
displacement or disturbance of fish caused by noise and lead to the reduction of fish
production (European MSP Platform, 2018e). Maintaining distance from a fishing area
reduces conflicts (Tercan et al., 2020) and offshore wind farms should avoid areas of
particularly intense fishing activity. Fishing activities, particularly trawling which is the
most common fishing method in Europe, are not allowed within the locality of offshore
wind power plants and their cables (European Commission, 2020). According to the
United Nations Convention on the Law of the Sea (UNCLOS), a buffer zone of 500 m
around offshore wind power plants is established. Fishing activities in Europe in the
North Sea may be (and are by several countries) excluded within a 500 m distance of
offshore wind power plants and their cables (European Commission, 2020).

Vasileiou et al., 2017).

To validate the results of the weighting by AHP, a consistency ratio
CI must be estimated (Mu and Pereyra-Rojas, 2018). This quantity is the
ratio between the consistency index

Amax — N
==v— (8)
of the pairwise comparison matrix and the Random Index RI of Saaty
and Tran (2007). Here, Amax is the largest eigenvalue of the pairwise
comparison matrix and N is the size of this matrix. The values of RI are
calculated (Saaty and Tran, 2007) from the analysis of the N-by-N matrix
of random decisions. In each such matrix the entries above the main
diagonal are filled at random from the 17 values {1/9,1/8,.1/2, 1, 2,...,
8, 9}. The entries below the diagonal are filled with their reciprocals (e.
g. 9—1/9) whereas ones are put on the main diagonal. The RI is the
average consistency index of such n-by-n matrices (Saaty and Tran,
2007). The values of RI rapidly increase to about 1.5 when N increases
from 1 to 10 and then level off around 1.6 (Aguarén and Mor-
eno-Jiménez, 2003). The size of the matrix N = 12 in this study and the
associated RI is 1.54. The AHP result for the weighting of parameters is
consistent if the (consistency) ratio of the consistency index CI and RI is
below 0.1 (Saaty and Tran, 2007):
Ccl

CR=—<0.1. 9
RI — ©)

2.2.4.3. Fuzzy logic. The third step is to standardize the values of raster

Table 6
Details of the experts used for weighting of parameters.

layers to make a quantitative assessment of site suitability (Fig. 3). As
factors are measured on different scales, it is important to standardize
(normalize) their numerical values before combining them (Eastman,
2009). The fuzzy logic technique involves normalizing the values of
estimates of various factors or parameters in single pixels of raster maps
between 0 and 1 (see Barzehkar et al., 2021 for an overview of various
implementations of fuzzy logic into DSTs). Fuzzy logic is based on the
principle that binary (Boolean) logic does not have the ability to express
some transitional conditions between true (1) and false (0) values (Zarin
et al., 2021). To apply this approach, the data were reclassified to
normalize the values in the different layers (Gil-Garcia et al., 2022).
After reclassification, lower and upper threshold values for factors were
specified. A lower threshold value (minimum) represents the least
appropriate value. The larger the estimate, the better is the suitability
according to this parameter. All values over an upper threshold
(maximum) are optimal (Latinopoulos and Kechagia, 2015). In other
words, the result at each pixel in the fuzzy map indicates its suitability in
relation to a given parameter (Noorollahi et al., 2022). Table 8 shows
threshold values and the associated types of fuzzy membership functions
to standardize different raster layers in ArcGIS software.

The fuzzy standardization of parameters was made, for example, as
follows. If the minimum acceptable distance from nature protection
area, “a”, is 2 km, then all locations less than 2 km from the nature
protection area are not appropriate and assigned the value zero. The
value “b” is 5 km. Thus, the relevant parameter was assigned the value 1
whenever the distance is >5 km as all these locations are well suitable.
On the contrary, for water depth, “a” is 10 m. This means that water

Demography of experts Governmental organizations Academic institutions
Male/Female (number) 2/2 3/3

Age range (years) 37-58 40-60

Education (degree) MSc or PhD MSc or PhD

Field of expertise Offshore wind farm development; Renewable energy

Coastal geomorphology; Coastal processes and oceanography; Offshore renewable energy
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Table 7

Pairwise comparison matrix of parameters for offshore wind power plant site selection.

Pairwise comparison matrix

Parameters for offshore
wind farm site selection

Distance from
fishing area

Wave

Seabed
geology

Distance from Distance from Distance from
military area

Distance

Distance from seabed

infrastructure

Water Distance

Capacity
factor

Wind

height

nature protection

area

shipping routes

from shore

from ports

depth

speed

Wind speed

1/2
1/4
1/3
1/4

Capacity factor
Water depth

1/3
1/4
1/3

1/3
1/4

1/3
1/3

Distance from ports

1/3

Distance from seabed

infrastructure
Distance from shore

1/3
1/2

1/2

1/2
1/3

1/4
1/3

1/4
1/3

1/2

Distance from military

area
Distance from shipping

172

1/3

1/3

1/3

route
Distance from nature

172

172

1/3

protection area
Seabed geology
Wave height

172

172

1/3
1/3
1/3

1/3
1/3
1/3

1/2 1/4 172 172

1/2

1/2

1/2

1/2

1/2

Distance from fishing area
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depth less than 10 m is always suitable (the value 1) and between
10-50 m the lower numbers are better. The number “b” for water depth
is 50 m. All locations with this and larger water depths were also given
the value zero indicating unsuitability of such locations. Finally, the
fuzzy membership functions X1 (i) and X2(i) are generated:

Ri — Run
X1(i) = R Koo 10
O = R R a0
x2(i) :M. an

Eq. (10) was used for increasing functions and Eq. (11) was applied
for decreasing functions, R; is the input raster value of each parameter,
R, is the minimum threshold and R,,,, is the maximum threshold of this
parameter from Table 8 (Kao, 2010).

2.2.4.4. Weighted linear combination (WLC). The fourth step is to
combine raster maps in GIS to prepare a map of site suitability (Fig. 3).
The WLC method is applied in the GIS environment using map algebra
techniques to combine raster maps (Malczewski and Rinner, 2015). This
approach was used to calculate site suitability (Diaz-Cuevas et al.,
2019), by multiplying the relative weight W; of the factor and the
normalized (fuzzy standardized) value X; of the factor, where N is the
number of criteria (Diaz-Cuevas et al., 2019).

S=3 WX (12)

To complete the WLC method, all cells on the output layer were
ranked with respect to their overall rating. The cell with the rank of 1 is
the most suitable option (Malczewski, 2000).

2.2.4.5. Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS). A fifth step, used to provide confidence in the results, is to
rank the suitable locations using a complementary method, order of
preference by similarity to ideal solution (TOPSIS). TOPSIS is a simple
and effective MCDA approach for choosing the most appropriate solu-
tion from a series of alternatives (Vagiona et al., 2022). The TOPSIS
methodology is based on the concept that the best alternative must have
the shortest geometric distance from the positive ideal solution and the
longest geometric distance from the negative ideal solution (Sindhu
et al., 2017). The highest benefit is contained in the positive-ideal so-
lution and the lowest benefit is represented by the negative-ideal solu-
tion (Diaz and Guedes Soares, 2021). This method was used in the final
step of the assessment for ranking the sites with the highest site suit-
ability derived from the Fuzzy-AHP-WLC method. First, a decision ma-
trix was created with J = 15 alternatives (locations Al to A15 in Fig. 8)
and the above-described N = 12 criteria based on the integration of each
criterion i and alternative j given as x;;. Second, the decision matrix was
normalized (Konstantinos et al., 2019):

13)

j=1"ij

The third step encompasses the calculation of the weighted
normalized values v; (Vagiona et al., 2022):

vy =wirg, i=1,2,.,N; j=12..J 14

In the fourth step, the positive ideal solution V;" and negative ideal
solution V;” were determined:

AT ={V{, . Vi E V= {(max(vy), j € ), (min(vy), j € J)}. (15)
A" ={Vy,...,Vy b Vi = {(min(vy), j € J), (max(vy), j€J)}.  (16)

Here, J' denotes the set of indices from 1,2, ...,J that correspond to
benefit criteria and J' denotes the similar set that corresponds to the cost
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Table 8
Threshold values and fuzzy membership function to standardize raster layers in fuzzy logic for offshore wind power plant site selection.
Criteria Sub-criteria Reference Threshold values Type of the Fuzzy membership function
Minimum Maximum
threshold a threshold b
Wind resource ‘Wind speed Danish Energy Agency DEA 7 m/s 10 m/s Increasing
(2016)
Physical Capacity factor Wind Europe (2019) 35% 55% Increasing
Water depth Danish Energy Agency DEA 10 m 50 m Decreasing
(2016)
Distance from nature European MSP Platform (2018a) 2 km 5 km Increasing
protection area
Seabed geology European MSP Platform (2018b) 0 (Rocks and 1 (Muddy) User-defined based on expert judgement
boulders) and literature
Wave height Gil-Garcia et al. (2022) <10m >10m Decreasing
Socioeconomic  Distance from ports Based on the distance to shore 10 km 80 km Decreasing
(see below)
Distance from seabed European MSP Platform (2018c) 500 m 5000 m Increasing
infrastructure
Distance from shoreline Danish Energy Agency DEA 10 km 80 km Decreasing
(2016)
Spyridonidou and Vagiona (2020)
Distance from military area European MSP Platform (2019) 500 m 5000 m Increasing
Distance from shipping routes ~ European MSP Platform (2018d) 3.7 km 5km Increasing
Distance from fishing area European Commission (2020) 500 m 5000 m Increasing
4600000 5200000
1 1
LCOE class Percent N
(€/MWh) (%)
Very low (42 — 58) 33
o Low (58 —72) 29 o
§ Moderate (72 — 87) 23 §
S High (87— 107) 12 S
= Very high (107 - 210) 3 =
Sum of classes 100
B Existing wind farms
LCOE class
- Very Low
[=} o
3 T4 3
S+ oW S
S S
~ - Moderate ~
[ v
- Very High
|:| Land and island
[=} o
= s}
S =}
S+ Fo
[} o
@ @
13} 3}
e KM
8 0 50100 200 300 8
s} s}
¥ o
(=} T T =
3 4600000 5200000 3

Fig. 4. Offshore wind power plant site suitability based on the GIS-LCOE (low value is better).
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Fig. 5. Offshore wind power plant site suitability based on the GIS-MCDA (high value is better).

criteria (Vagiona et al., 2022). In our case, the criteria identified for
evaluation were inherently benefit-oriented, focusing on positive im-
pacts and improvements rather than negative aspects. Therefore, in our
analysis J' = {1,2,...,J} and J' = @. Then the differences of the alter-
natives from the positive S/ and negative S; ideal solutions were
calculated (Foroozesh et al., 2022):

N 2

SE= > = V) =102, a7
N 2

Sy= > = Vi) =12 18)

In the final step, the calculation of the relative closeness to the
positive ideal solution for site selection was calculated (Vagiona and
Kamilakis, 2018).

+
o+

Cf =ty j=1,2,...
P Tsies T

J (19)

to determine how far from the ideal the realistic locations are. Fig. 3
shows the steps for offshore wind power plant site selection using the
GIS-MCDA methodology.

2.2.4.6. Validation. The sixth step is to validate the outputs of models.
We use the receiver operating characteristic (ROC) curve, a common
method for verifying a model’s prediction (Ghorbanzadeh et al., 2019).
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The method was applied to both GIS-LCOE and GIS-MCDA. The ROC
curve is a measure of sensitivity as a function of the false-positive rate
(specificity), where the x-axis shows the cumulative distribution func-
tion of the false positive rate, and the y-axis is the sensitivity (Chen et al.,
2018). It is generated by plotting the false positive rate on the x-axis and
the true positive rate on the y-axis (Pourghasemi et al., 2016).

In this study, we used existing wind power plants as indicative of the
true positive rate and the chosen locations from GIS-LCOE and GIS-
MCDA maps as the false positive rate because there is not, in reality, a
wind power plant in these locations. The value for the area under the
curve (AUC) was used in the accuracy analysis of the suitability map,
where the value of 1 shows that the model is perfect and 0.5 represents a
model that is not performing well (Orhan, 2021). In this study, sensi-
tivity, specificity, and accuracy were used to assess the performance of
the model as follows (Chen et al., 2017; Tien Bui et al., 2016):

TN

Sensitivity = PN

TP .
7P+ FN ety =

TP + TN
TP+ FP+TN + FN’

(20)
Accuracy =

Here false positive (FP) and false negative (FN) are the number of
pixels that are incorrectly classified, true positive (TP) and true negative
(TN) are the number of pixels that are correctly classified.
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Fig. 6. Capacity factor for offshore wind power plant site suitability.

3. Results
3.1. Mapping based on LCOE, MCDA and capacity factor

The outputs derived from the GIS-LCOE model (Fig. 4), and GIS-
MCDA (Fig. 5) for offshore wind locations in the Baltic Sea have broad
similarity. It is thus likely that both techniques are capable of identifying
suitable locations in the Baltic Sea where the wind speed is high and the
cost of energy is low based on the DEA and European MSP platform
guidelines and regulations.

The most appropriate offshore wind power plant locations based on
GIS-LCOE analysis have low LCOE values (lower values are better for
wind site suitability). Such areas are close to the shores (especially
Danish shores) with high wind speeds and shallow water depths (Fig. 4).
These are areas with likely lower capital expenditures that require
shorter electric cables for grid connection and lower construction costs.
Locations far from the shore with lower wind speeds and deep water
received higher LCOE values. These locations are mainly in the Gulf of
Bothnia, the Gulf of Riga, and areas far from German and Polish shores
(Fig. 4).

The application of GIS-MCDA using AHP, fuzzy logic, and WLC
(Fig. 5) indicates a similar pattern of the most suitable locations for the
installation of offshore wind power plants as large values of the output of
this technique. These were prioritized by European MSP platform
guidelines and expert’ perspectives as those with close proximity to
shore, shallow water depths, areas with high wind speeds, far from

nature protection areas, reasonably separated from seabed
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infrastructure (pipelines, cables), military areas, shipping routes, fishing
areas, and have finer bottom sediments and lower wave heights. The
higher values of this map (Fig. 5) are better. The locations with low site
suitability do not have these characteristics.

Another view on the suitability of wind power plants can be inferred
from the spatial pattern of the capacity factor (Fig. 6). This projection
does not take into account environmental and socioeconomic factors. In
this view, a significant proportion of annual energy outputs (i.e., ca-
pacity factors of over 50%) are in the south of the Baltic Sea. These areas
for wind farm installation have the potential to meet the energy de-
mands of southern Baltic countries, especially Denmark, Sweden, Ger-
many and Poland.

The most suitable areas have LCOE values in the range of about
42-58 €/MWh (about 33% of the total sea area) (Fig. 4), MCDA values of
0.78-0.92 (9.6% of the total sea area) (Fig. 5), and capacity factor values
of 0.52-0.55 (19% of the total sea area) (Fig. 6). The least suitable areas
have LCOE values from 107 to 210 €/MWh (3% of the sea area), MCDA
values 0.34-0.59 (6.6%), and capacity factor values of 0.30-0.43 (4%).

The north of the Baltic Sea is less favorable for wind farm develop-
ment as the capacity factor is generally less than 50% in this region.
However, when all the environmental and socioeconomic parameters
are taken into account, a few locations in northern Baltic Sea, particu-
larly close to the Finnish coasts, could also serve as suitable locations for
wind power generation because of small distance from shoreline,
proximity to ports, etc. (Fig. 5). In the south and east of the Baltic Sea,
the most suitable areas generally follow spatial distributions of other
parameters, such as (high) wind speeds, seabed consisting of fine
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Table 9
Matrix assessment of the most suitable sites identified by the TOPSIS method. Locations Al to A15 are shown in Fig. 8.
Sites  Wind Capacity Water Distance Distance from Distance Distance Distance Distance Seabed Maximum Distance
Speed factor depth from seabed from from from from nature geology significant from
(m/s) (%) (m) ports infrastructure shoreline military shipping protection wave height fishing
(km) (km) (km) area (km) route area (km) (m) between area (km)
(km) 1993-2020
Al 8.96 53 6.00 48.49 17.68 12.10 276.91 33.99 9.71 0.2 212 279.39
(Mixed
sediment)
A2 8.55 52 15.00 14.58 156.45 12.77 245.73 54.03 10.86 0.2 1.76 420.27
(Mixed
sediment)
A3 8.76 53 16.00 41.48 21.92 15.58 92.67 4.88 26.38 0.6 (Sand) 1.41 505.77
A4 8.87 53 28.00 44.69 19.51 33.00 38.30 26.15 29.25 0.8 (Mud 1.62 429.61
to muddy
sand)
A5 8.95 54 15.00 52.45 28.59 34.69 24.52 21.71 35.34 0.8 (Mud 1.74 416.03
to muddy
sand)
A6 8.80 53 40.00 30.73 43.90 10.41 29.25 9.75 38.31 1 (Mud) 1.27 412.06
A7 8.86 54 39.00 44.09 51.09 12.34 14.62 24.91 29.60 1 (Mud) 1.35 398.19
A8 9.37 56 18.00 45.10 28.34 26.71 70.02 10.88 26.31 0.6 (Sand) 3.38 78.58
A9 9.15 55 26.00 34,51 91.36 21.94 79.08 34.51 13.74 0.8 (Mud 1.95 128.03
to muddy
sand)
Al0 9.11 55 5.00 55.40 108.60 36.78 114.68 20.76 6.87 0.2 1.77 113.69
(Mixed
sediment)
All 9.44 57 19.00 48.62 17.63 48.29 134.47 9.75 15.44 0.6 (Sand)  3.42 28.36
Al2 9.10 56 26.00 34.10 107.20 15.01 229.25 6.88 20.10 0.2 2.09 10.92
(Mixed
sediment)
A13 9.38 57 27.00 41.73 34.13 15.79 162.55 39.33 17.63 0.8 (Mud 3.20 24.89
to muddy
sand)
Al4 9.7 56 13.00 67.96 98.60 14.86 26.28 47.93 15.41 0.4 3.19 96.94
(Coarse
sediment)
Als 897 55 1.00 73.22 108.12 11.38 37.06 59.59 13.77 0.2 1.05 115.79
(Mixed
sediment)
3.2. Application of the TOPSIS technique
Table 10

Geometric distance of sites from the negative and positive ideal solution and
final ranking using the TOPSIS method. Locations Al to A15 are shown in Fig. 8.

Sites Si™ S ct Site suitability ranking
Al 0.0280 0.0243 0.5351 11
A2 0.0300 0.0216 0.5820 3
A3 0.0279 0.0228 0.5504 8
A4 0.0280 0.0205 0.5777 4
A5 0.0327 0.0190 0.6332 1
A6 0.0296 0.0235 0.5566 7
A7 0.0262 0.0222 0.5413 10
A8 0.0282 0.0216 0.5668 6
A9 0.0241 0.0228 0.5142 15
Al0 0.0274 0.0252 0.5214 13
All 0.0259 0.0242 0.5171 14
Al2 0.0256 0.0222 0.5347 12
A13 0.0255 0.0215 0.5434 9
Al4 0.0288 0.0214 0.5742 5
Al5 0.0315 0.0224 0.5844 2

sediments (muddy and sandy), shallow water depths, reasonable dis-
tance from pipelines and military areas, etc. It is also clear that distance
from shipping routes and pipelines, distance from nature protection
areas, and distance from shoreline largely affect the suitability of po-
tential wind farm locations in the entire Baltic Sea basin (Fig. 5).
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As a final step, the most suitable areas determined using GIS-MCDA
(with the ranking of suitability) for offshore wind power plants were
prioritized and ranked (sites Al to A15) based on the TOPSIS method
(Fig. 5). The initial assessment matrix to implement the TOPSIS
approach (Table 9) shows the numerical values for parameters for the
most appropriate sites. Then, the geometric distance of the sites (Al to
A15) from the positive and negative ideal solutions was calculated
(Table 10). It is clear that the distance from a military area contributes
significantly to the higher ranking of A1 and A2, and the distance from a
fishing area is important in the higher ranking of A3 and A4. Both the
distance from a nature protection area and the seabed geology influence
the ranking of A5, A6, and A7 (Table 9).

Wind speed and capacity factor are the contributing parameters that
give the higher ranking to A11, A13, and A8 sites. Distance from seabed
infrastructure and proximity to ports have impacted the A10 and A15
rankings. The TOPSIS methodology ranking is mainly influenced by the
highest value of the factor (distance from the negative ideal solution) or
the lowest value of the factor (distance from the positive ideal solution)
(Azadeh et al., 2011). The TOPSIS ranking (Fig. 5 and Table 9) was
affected significantly by the highest distance from the negative ideal
solution including a nature protection area, military area, seabed
infrastructure, etc. This means that the highest distance from these ob-
jects is better for wind site suitability, while the GIS-Fuzzy-AHP-WLC
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Fig. 7. Offshore wind power plant site suitability based on the GIS-LCOE, with all areas of restrictions highlighted.

required only a buffer based on the national guidelines and standards for
site selection. The presented feature suggests that GIS integrated with
fuzzy logic, AHP and WLC provides a more consistent and balanced
approach than TOPSIS for standardization, weighting, and combining
factors based on the European MSP platform standards and experts’
perspectives. However, the TOPSIS analysis may be worth performing to
provide extra confidence in the results.

Site suitability maps constructed based on GIS-LCOE (Fig. 7) and GIS-
MCDA (Fig. 8) techniques were produced by excluding marine protected
areas, areas less than 4 km from shore, and areas with water depth
>50 m (bold brown color). The classification boundaries in Figs. 7 and 8
were chosen by taking into account these limitations for offshore wind
farm site selection. The map of final capacity factor (Fig. 9) was pro-
duced incorporating the restrictions, and by including 10% energy losses
for large offshore wind turbines. The locations with high capacity factors
are in areas where LCOE values are low. This means that the costs of
electricity production per year would be lower in locations where wind
turbines have greater capacity factors.

Experts consulted for this study advised that the most important
parameters that influence the offshore wind power plant site suitability
evaluation in the Baltic Sea were wind speed, capacity factor, and water
depth. The distance from nature protection areas, wave height, seabed
geology and distance from shipping routes had somewhat lower weights
(Fig. 10). The distance from a fishing area had the lowest priority. The
consistency ratio (Eq. (9)) between experts’ opinions was 0.03, which is
much less than 0.1.

Only a few experts in this study used full range of 1-9. Most experts
used half the range of 1-5 for weighting of parameters. Wind speed and
capacity factor received higher weights (importance) from experts in
comparison to other parameters. A majority of experts have preferenced
distance-based parameters over wind power generation parameters.
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This may reflect different ‘world views’ of experts. However, the small
consistency ratio signals that this feature did not undermine the validity
of the results of the AHP method.

The resulting site suitability maps were validated using the ROC
curve (Fig. 11). The AUC value for both maps is slightly over 92%
(92.2% for the GIS-LCOE map and 92.6% for the GIS-Fuzzy-AHP-WLC
map). This indicates that the chosen locations closely align with the
actual locations of existing wind farms. Thus, there is a high correlation
between current sites of wind power plants and the high suitability sites
identified by GIS-LCOE and GIS-MCDA. In other words, the classifier of
the ROC method is highly capable of distinguishing between pixel
classes of actual and chosen locations. The AUC value for the TOPSIS
model is 82%, which is lower than the other two models.

4. Discussion

There are clearly distinguishable line features in Fig. 4 (GIS-LCOE)
and Fig. 5 (GIS-MCDA) that match the vicinity of shipping routes and
pipelines as unsuitable for wind power plants. Nature protection areas in
the Swedish, Latvian, Polish and German nearshore are also clearly
identifiable. Areas close to shore are preferred for offshore wind power
plant location. If marine protection areas, locations closer than 4 km to
shore, and areas with water depths >50 m are excluded (bold brown
colors in Figs. 6 and 7), the two methods produce similar results.

The application of different and multiple techniques provides addi-
tional confidence that the outcome of our research properly reflects the
suitability in question, given that the MCDA and LCOE methods use
quite different data. Application of the AHP approach to the results
derived using the MCDA technique adds opinions of experts, reflected in
the weights of the parameters (Chaouachi et al., 2017), providing even
more confidence in the results that, in general, should lead to better
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Fig. 8.

spatial planning and decision making. Notably, the existing wind power
plants are located in areas with low LCOE and high MCDA values.

The analysis also highlights large variations in the relative impor-
tance of variables in different part of the study area. For example, the
northern parts of the Baltic Sea have high wind speeds, but other factors
such as proximity to the shore and to ports, dominate the results. Mar-
tinez and Iglesias (2022) suggested this was primarily influenced by the
distance to grid connection points. The importance of suitable seabed
substrate influenced suitable areas located near the Danish, German,
and Polish shores.

Although the use of LCOE methods for wind farm site selection is
well established (Martinez and Iglesias, 2022), its implementation in a
GIS framework for site selection, as has been done in this study, has not
previously been reported. The benefits of this approach include the
ability to easily incorporate buffer and exclusion zones, and the ease
with which the results can be compared with those using other meth-
odologies such as MCDA.

This study considered a wider variety of parameters than earlier
studies (Caceoglu et al, 2022; Gil-Garcia et al., 2022;
Gkeka-Serpetsidaki and Tsoutsos, 2022; Salvador et al., 2022, among
others) for wind farm site suitability at the scale of the Baltic Sea. This
exercise is the first basin-scale suitability assessment of its kind in the
region. It also incorporates state-of-the-art industrial (Danish Energy
Agency) standards and high-level environmental policy guidelines, such
as European Maritime Spatial Planning Platform guidelines. The use of
three different techniques, and multiple datasets provide confidence in
the adequacy (and timeliness) of the outcome. The use of various
environmental and socioeconomic parameters encourages managers
and decision-makers to rely on this type of evidence-based consider-
ations when planning future wind farm installations in the Baltic Sea.

The consideration of various MCDA methods in this study based on
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Offshore wind power plant site suitability based on the GIS-MCDA, with all areas of restrictions highlighted.

fuzzy logic-AHP-WLC and the TOPSIS integrated with GIS and com-
parison with LCOE provided better outputs than studies based on a
single technique (Caceoglu et al., 2022; Gil-Garcia et al., 2022; Martinez
and Iglesias, 2022; Sanchez-Lozano et al. 2022). This approach makes it
possible to choose suitable locations not only from the environmental
perspective but also from an economic viewpoint. These considerations
assist managers and decision-makers to create a balance between both
environmental and economic objectives for wind farm development and
to facilitate wind turbines investments and environmental protection in
the long-term. Even though Vagiona and Kamilakis (2018) concluded
that the combined application of GIS with AHP and TOPSIS methods is
useful to rank the suitable areas in hierarchical order, our analysis
suggests that the TOPSIS method does not necessarily add significant
value to the analysis, similar to a conjecture by Gil-Garcia et al. (2022) in
the context of the Gulf of Maine, USA.

In this study, experts presented diverse worldviews, but they did not
utilize the full weighting scale for making pairwise comparisons. This
variation in utilization depends on the individual preferences of experts.
Most experts favored environmental parameters over wind power gen-
eration parameters. In a study for renewable energy site selection in Iran
(Barzehkar et al., 2020), most experts allocated higher priorities to en-
ergy generation parameters over those of parameters that are
distance-based to protect the environment. This may indicate that ex-
perts in Europe prioritize environmental concerns more strongly than
economic considerations when it comes to renewable power generation
issues.

A limitation of the present study is the lack of data relating to po-
tential grid connection points. This information may considerably affect
wind farm site selection process in the Baltic Sea. The areas closer to grid
connection points will be preferred over other sites due to lower cost for
transferring power to the grid.
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Fig. 9. Capacity factor for offshore wind power plant site suitability, with all areas of restrictions highlighted.
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Fig. 10. Final weights assigned to the factors using the AHP method.

5. Conclusions

This study has been undertaken using multiple parameters, and a
range of methods, considering the locations of existing wind farms, to
suggest new sites for wind farms. This analysis helps experts to improve
the accuracy of modelling and evaluation processes for wind farm site
selection at a large scale (the Baltic Sea).

The study employed two well established techniques, the levelized
cost of energy (LCOE) and multi-criteria decision analysis (MCDA)
approach based on an analytical hierarch process (AHP), fuzzy logic,
and weighted linear combination (WLC), with the technique for order of
preference by similarity to ideal solution (TOPSIS) as an extension of the
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Fig. 11. Validation of results using the ROC model.

MCDA analysis, to analyze and map suitability for offshore wind farms
locations.

The methods were applied within the framework of a GIS. The GIS
technologies enable easy exclusion or buffering of areas based on
important factors (such as the presence of marine protected areas). The
use of both GIS-LCOE and GIS-MCDA provides a sound basis for spatial
planners and decision makers to identify, rank, and optimize the loca-
tions of offshore wind farm at a large regional scale, in this case the
entire Baltic Sea.

The use of different methodologies and different data types enables a
comparison which supports confidence in the results. The two main
techniques gave quite similar results that also match the already made
decisions about the location of wind farms in the study area. It is thus
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likely that both are suitable for application at the Baltic Sea scale when
suitable input data are available. We used the guidelines of the Danish
Energy Agency and the European Maritime Spatial Planning Platform, as
well as publicly available scientific datasets. The addition of the TOPSIS
technique did not add significantly to the study.

The most important factors determining site suitability in the Baltic
Sea were wind speed, capacity factor, and water depth. Distance to
nature protection area was also very significant. Some areas were spe-
cifically excluded (marine protection areas, sites too close to the shore,
water depths >50 m). Some other areas require buffers (military areas,
fishing areas, shipping lanes). While the most suitable areas for wind
farms are in the south-west Baltic Sea, several suitable locations are
identified further to the north and east.
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The assessment of vulnerability to coastal hazards is a significant coastal management problem in regions with
complicated shoreline, such as Estonia. This study implements the vulnerability assessment based on the multi-
criteria decision analysis using fuzzy logic, analytical hierarchy process, and weighted linear combination
(including input from experts) integrated with a geographical information system, to map the coastal vulnera-
bility index (CVI) of the Estonian coasts at high resolution based on 16 parameters. The novelty of our approach
is that we expand this assessment to a 2 km wide inland area that is an intrinsic but often overlooked part of
coastal vulnerability estimates. The Estonian shores have mostly low and moderate vulnerability. Short segments
with high vulnerability are impacted by severe waves and highly elevated water levels. The CVI also charac-
terizes low-lying areas, such as large river valleys, reasonably well. Estimates of coastal vulnerability based on
the three most important parameters according to experts’ judgements provide a reasonable approximation of
the 16-parameter CVI in mostly homogeneous coastal regions, but less so elsewhere where its value is questioned.
The results show that the application of the developed integrated decision support system, applied to a 2 km wide
coastal strip, provides more information than single tools to assist coastal managers and stakeholders in planning,

preparing for and responding to hazards.

1. Introduction

Coastal areas worldwide are susceptible to climate change induced
hazards (IPCC et al., 2022; Torresan et al., 2008; WMO, 2021; Tokunaga
et al., 2021). Coastal regions can be adversely affected by sea level
changes, storm surges, and resulting inundation of low-lying areas
(Torresan et al., 2008; Nicholls et al., 2007). Coastal hazards can cause
damage to the physical environment and may lead to loss of land (Wong
et al., 2014). They can also negatively affect infrastructure and human
livelihoods (Nichols et al., 2019; Tanner et al., 2014), along with loss of
ecosystem services and biodiversity in marine and coastal ecosystems
(Myers et al., 2019).

The identification of causes and effects of marine-driven threats
(Rutgersson et al., 2022) assists a community to deal effectively with the
hazards, to improve social well-being and reduce economic damage. An
appropriate strategy for coastal protection and management should
specifically identify climatic hazards, the exposure of people and assets
to the hazards, and the susceptibility of human and natural systems to
damage (IPCC et al, 2014). Coastal vulnerability describes the

* Corresponding author.
E-mail address: mojtaba.barzehkar@taltech.ee (M. Barzehkar).

https://doi.org/10.1016/j.ecss.2024.109014

characteristics and circumstances of an asset, community, or system that
make it susceptible to the harmful effects of coastal hazards
(Rangel-Buitrago et al., 2020). One planning strategy is vulnerability
assessment, which has become increasingly used by scientists and
managers to help coastal communities become resilient to hazards
(Adger et al.,, 2005). It assists coastal managers and planners to
comprehend the impacts of natural elements and to determine the
vulnerability of locations in terms of planning environmental manage-
ment strategies (Thirumurthy et al., 2022). Not only is it important to
incorporate climate change-induced hazards into coastal vulnerability
assessments, but also human-induced environmental changes and
socio-economic developments, and their interactions (Ramieri et al.,
2011).

Coastal vulnerability indicators are parameters or values derived
from environmental parameters that describe some aspect of the state of
a coastal system. They may represent a moment in time, or if appro-
priately measured, may show changes or trends. A coastal vulnerability
assessment may be based on indicators alone, as analysed or reviewed
by relevant experts. Indicators can be characterized, and then by
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aggregation and/or weighting, be the basis of an index (Mclaughlin and
Cooper, 2010), sometimes referred to as a ‘composite indicator’ (Hinkel,
2011). For some problems consideration of indicators alone may be
sufficient, but for others, including for comparison and decision support,
indexes may be more useful.

Although the weighting and ranking of variables involves some
subjectivity, with well-defined criteria, the resulting index becomes a
valuable tool for decision-makers. Its simplified format enhances its
utility as a practical management tool (Ramieri et al., 2011) Although
other indices have been proposed (Mullick et al., 2019; Alcantara-Carrio
et al., 2024), the coastal vulnerability index (CVI) (Gornitz et al., 1994)
remains the most used method to calculate coastal vulnerability
(Rangel-Buitrago et al., 2020). It is a numerical method for prioritizing
the vulnerability of coastal segments considering the contribution of
different parameters describing geophysical (Bagdanaviciute et al.,
2015; Koroglu et al., 2019) and socio-economic (Serafim et al., 2019;
Tanim et al., 2022; Sethuraman et al., 2024) conditions. This flexibility
is one of the reasons is why we decided to employ this quantity for our
analysis.

The application of decision support tools (DSTs) assists the estimates
of coastal vulnerability to incorporate into coastal adaptation planning
strategies (Gargiulo et al., 2020). Geographical Information Systems
(GIS) have been widely used in many studies of coastal vulnerability
(Ahmed et al., 2022; Armenio et al., 2021; Hoque et al., 2019; Rehman
etal., 2022). The use of GIS allows spatial information to be represented,
analyzed, and visualized effectively (Barzehkar et al., 2021), and makes
combining different parameters in a vulnerability assessment possible
(Thirumurthy et al., 2022).

Multi-criteria decision analysis (MCDA) is a methodology for speci-
fying and allocating values to the evaluation parameters according to
the decision situation. The integration of GIS and MCDA provides a set of
tools that transform and combine spatial data and expert priorities to
generate information for the decision-making process (Malczewski and
Rinner, 2015). MCDA provides a way to better understand the outputs
incorporating the opinions of experts and enables trade-offs among de-
cision goals (Bell et al., 2003).
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The application of GIS and MCDA based on the analytical hierarchy
process (AHP) has been used in many studies for coastal vulnerability
assessment (Armenio et al., 2021; Bagdanaviciuté et al., 2015; Ghosh
and Mistri, 2022; Sekovski et al., 2020). Mullick et al. (2019) undertook
a coastal vulnerability analysis by integrating GIS and fuzzy logic in
Bangladesh. This exercise was revisited using principal component
analysis to map climate vulnerability of the coastal region of Bangladesh
(Uddin et al., 2019). Bagdanavicitte et al. (2019) employed GIS, AHP,
and weighted linear combination (WLC) for coastal vulnerability and
exposure assessment of the Lithuanian coast of the Baltic Sea. Kovaleva
et al. (2022) employ both the classic CVI estimates based on the
approach of Gornitz (1991) and its weighted version for the eastern Gulf
of Finland in the Baltic Sea. A further of extension of this kind of analysis
is addressed by (Fannassi et al., 2023) who made an attempt to integrate
machine learning models in this technique.

All these techniques and approaches work well along relatively
straight shores where the parameters that govern coastal vulnerability
vary smoothly. The situation is much more complicated in regions with
complex geometry, morphology and geology, and even more in loca-
tions that have various coastal engineering structures, such as in the
vicinity of major cities in the eastern Baltic Sea (Kovaleva et al., 2022).

While different approaches to assess coastal vulnerability could be
used, in this study we choose to apply and develop the most widely used
method, the CVI, to make three specific contributions to fill gaps in the
existing literature, while also providing an assessment of the coastal
vulnerability for Estonia, eastern Baltic Sea (Fig. 1), in this sense serving
as a major extension of the analysis of Kovaleva et al. (2022) undertaken
for the eastern end of the Gulf of Finland in a similar intricate situation.

The three objectives of this study are: (1) in the context of the CVI, to
apply various MCDA techniques based on fuzzy logic-AHP-WLC, inte-
grated with GIS to produce a coastal vulnerability assessment of the
Estonian coast at high resolution, (2) to integrate less obvious and less
used parameters such as the location of nature protection areas, land
tenure (ownership), and setbacks (the distance of the first infrastructure
from the shoreline) to improve the coastal vulnerability analysis, and (3)
to produce a vulnerability assessment for the whole Estonian coast
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extending to a distance of 2 km inland.

Consideration of this inland strip is significant in the vulnerability
assessment for two reasons. Firstly, on many occasions estimates of
vulnerability are relevant over a substantial distance from the shoreline,
e.g., behind coastal dunes or along river valleys. Secondly, many pa-
rameters used in such assessment reflect various properties (e.g., the
presence of vulnerable infrastructure or population density) over a quite
wide coastal area. The resulting countrywide assessment is provided as
an example of the application of a coastal vulnerability analysis at a
scale not common in the literature. By addressing these three objectives
this research aims to provide accurate and better analyses of coastal
vulnerability in Estonia, and using this example, further develop the CVI
approach as an important constituent of integrated decision support
systems (DSSs) for sustainable coastal planning and management.

The vulnerability assessment of the study area employs multi-criteria
decision analysis combined with the techniques of fuzzy logic, analytical
hierarchy process, and weighted linear combination. The analysis is
integrated with a geographical information system, to map the CVI of
the Estonian coasts and the nearshore land strip in high resolution based
on 16 parameters that express all three basic constituents of vulnera-
bility — exposure, sensitivity, and resilience (Turner II et al., 2003). The
resolution of description of these parameters varies from several kilo-
metres (e.g., water level extremes) down to 10 m for the land elevation
map.

We begin with descriptions of the study area and the methods used,
the scheme of data acquisition and an overview of the justification,
sources, resolution and properties of the 16 parameters that we consider.
As the shoreline of the study area has quite a complicated shape and
strongly varying properties, we provide maps of all of the used variables.
We perform fuzzy standardization of the parameters, employ the
analytical hierarchy process, verify the consistency of the outcome, and
apply the weighted linear combination method. The methodology in-
cludes seeking the input of experts. Three of the parameters are regarded
by experts as being the most influential with respect to coastal vulner-
ability, and we repeat the analysis using only those three parameters.
Finally, we summarize the outcome and lessons from the performed
analysis.

2. Material and methods
2.1. The study area

The study area is the entire coast of Estonia, including the major
western islands (West Estonian Archipelago). We consider a 2 km wide
region inland from the 1 m height isoline (top of the beach) over which
parameters are mapped (Fig. 1). The required elevation data are
extracted from a digital terrain model with 10 m spatial resolution
generated from LIDAR elevation points 2018-2022 (Table 1). The
intention is to ensure that not only the coastal environment but also
critical infrastructure, crucial for regional resilience and community
function, located up to 2 km away from the shoreline, is appropriately
evaluated for vulnerability to coastal hazards. Both low-lying coastal
areas, such as low-lying river valleys or coastal lakes, and infrastructure,
such as roads, utilities, and buildings, may be significantly affected by
hazards like coastal flooding, storm surges, depending on local
geomorphological characteristics, even if they are located further
inland.

Estonian coasts are mainly low in elevation and are dominated by
moraine deposits, but with many different types of sedimentary coasts
comprised of gravels, sands and silts. There are also areas with limestone
coastal cliffs (Labuz, 2015; Orviku, 2018). The western islands (the
largest of which are Hiiumaa and Saaremaa) have mostly heights of
1-10 m above mean sea level (MSL). These islands have narrow gravel
beaches and frequently visible erosion (Orviku et al., 2003; Suursaar
et al., 2008). Landforms along the Estonian coast are strongly influenced
by land uplift and as a result are generally prograding but many have
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insufficient sediment (Labuz, 2015) that significantly increases their
vulnerability in the light of current and expected climate changes.

The majority of the study area experiences a deficit of fine sediment
and gradual erosion (Orviku, 2018). As erosion is expected to dominate
during times of high water level, water level extremes are commonly
considered as a threat to the coast. The Baltic Sea is a microtidal water
body, with tidal range 2-5 cm in most of the basin and up to 10 cm in
some locations of the eastern Gulf of Finland (Leppéranta and Myrberg,
2009). The course of water level is thus almost completely governed by
almost stationary halosteric effects and atmospheric impacts with time
scales from a few hours to a few months. In the Baltic Sea, the course of
water level is mainly influenced by the water volume of the sea, strong
winds, and the effects of waves (Hiinicke et al., 2015). Water levels in
the entire Baltic Sea may be elevated up to 0.8 m above the long-term
mean by large-scale water volume changes for periods up to a few
weeks (Weisse et al., 2021). The local impact of storms may be largely
enhanced due to the resulting high water level background (so-called
preconditioning, Andrée et al., 2023) and may lead to catastrophic
surges in the eastern part of the Baltic Sea (Suursaar et al., 2006).

Wave conditions are usually directly related to wind speed and di-
rection, with long-period remote swell waves being virtually absent
(Bjorkqvist et al., 2021). The wind direction can intensify wave set-up on
certain sections of coast (Pindsoo and Soomere, 2015), which contrib-
utes to extremely high water levels (Eelsalu et al., 2014). The biggest
documented storm surges were in Parnu in 2005 and 1967, with
maximum water levels of 2.75 m and 2.53 m, respectively (Suursaar
etal., 2006; Suursaar and Sooaar, 2007). An increase in storm frequency
coupled with sea level rise and a shorter duration of winter ice cover are
other factors that contribute to coastal flooding (Harff et al., 2017).

Extreme events driven by climate change may have severe effects on
coastal communities located along the Estonian coast (Kont et al., 2003).
Many current and future social, economic, and environmental problems
could also be exacerbated by such hazards (Rosentau et al., 2017).
Therefore, vulnerability assessment of the Estonian coasts is needed, to
assist with the mitigation of and adaptation to coastal hazards, and to
facilitate plans for coastal community resilience.

2.2. Methods
2.2.1. GIS-multi-criteria decision analysis (MCDA)

2.2.1.1. Data acquisition. Determination of the parameters to be
considered in a vulnerability assessment is an important first step of the
analysis (Fig. 2 and Table 1). The classic approach of Gornitz et al.
(1994) includes only five parameters: geomorphology, relative sea level
change, shoreline displacement, tidal range and wave heights. However,
tidal range is irrelevant in the microtidal Baltic Sea and relative sea level
change may have almost negligible impact on coastal vulnerability as-
sessments at the scale of a small country, such as Lithuania
(Bagdanaviciute et al., 2015) or Estonia where country-scale variations
in the rate of relative water level change are below 2 mm/yr (Suursaar
and Kall, 2018). The number of parameters was increased to 13 in
Gornitz et al. (1994). The most relevant parameters characterize the
impact of oceanographic processes such as waves and surges, and ex-
press the contribution of coastal characteristics comprising elevation,
coastal slope, geomorphology, human factors, etc., to the vulnerability
of a particular coastal segment (Mullick et al., 2019).

We adopt the concept proposed by Turner II et al. (2003) identifying
three core components of vulnerability: exposure, sensitivity, and
resilience. A sensible measure of coastal vulnerability should include
variables or parameters that contribute to all these components. Expo-
sure refers to the degree, duration, and extent of hazards that a system is
influenced by, and includes environmental and socio-political pressures
(Adger, 2006). The selection of exposure parameters in this study fol-
lows the classic set of the relevant parameters that have been proved to
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| Step 1: Data acquisition for coastal vulnerability assessment |

A 4

Resilience

Land surface Geomorphology Coastal protection
elevation Sediments structures
Beach slope Nature protection areas
Setback

Underwater slope
Shoreline change
Closure depth

Land use and land cover
Land tenure
Population density

Extreme water level
Relative sea level rise

v

| Step 2: Application of fuzzy logic to standardize the raster values of vulnerability parameters |

]

| Step 3: Application of AHP technique to obtain the importance of vulnerability parameters |

|

| Step 4: Data combination using WLC technique in GIS to prepare final vulnerability map |

Fig. 2. An integrated DSS framework for coastal vulnerability assessment using GIS-MCDA showing the parameters used in this study.

adequately characterize vulnerability in largely different conditions (e.
g., Bagdanaviciute et al., 2015; Kovaleva et al., 2022 in the context of the
Baltic Sea): land surface elevation above MSL, beach slope, underwater
slope, shoreline change, closure depth, extreme water level above MSL,
relative sea level change, and maximum significant wave height.
Sensitivity presumes that the resource is exposed to the hazard and
characterizes the relative consequences of that exposure (Feng et al.,
2021). The choice of such parameters depends on the particular coastal
type and on whether the vulnerability is evaluated only for the shoreline
and from the viewpoint of society, or is extended to some distance inland
and includes values relating to nature. Our selection of the relevant
parameters is to some extent dictated by the wish to extend the CVI
analysis to the quasi-two dimensional case while not radically increasing
the total number of parameters when compared with the classic studies,
such as Gornitz et al. (1994). Thus, additionally to the classic parame-
ters, such as geomorphology, sediments, we also included the presence
of nature protection areas, type of land use and land cover, land tenure,

and population density as two-dimensional sensitivity parameters to
characterize vulnerability of the inland region. Resilience is the capacity
of a system to withstand or recover from physical, economic, and
infrastructure damage from a hazard (Mullick et al., 2019). The number
of resilience parameters is limited. We chose the presence of coastal
protection structures to characterize the situation at the shoreline and
the measured setback from the shoreline to the first infrastructure.

The data for GIS analysis were processed and prepared with a spatial
resolution of 10 x 10 m in ArcGIS Pro based on the 1997 Estonia Na-
tional Grid reference coordinate system. The vertical datum system used
is the European Vertical Reference Frame 2007. The 0 m contour
(Estonian Land Board, maaamet.ee) was used as approximate mean sea
level (MSL). In reality, MSL varies between +19 cm and +27 cm with
respect to the local datum (Estonian Land Board, 2023) that is related to
the Amsterdam Ordnance Datum. These large positive values mostly
reflect low salinity of the Baltic Sea waters (Ekman and Makinen, 1996).
In this study we apply 16 parameters (Figs. 3-10) that together reflect
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the core aspects of exposure, sensitivity, and resilience (Turner II et al.,
2003) (Table 1). Some parameters exhibit a clearly defined value at
every specific coastal location that varies along the shore. These pa-
rameters include beach slope, closure depth, extreme water level, geo-
morphology, maximum significant wave height, relative sea level rise,
setback, shoreline change, and underwater slope. These values are then
applied to the entire 2 km wide nearshore stretch from the 1 m elevation
isoline with respect to MSL, effectively creating a quasi-two-dimensional
(2D) representation of what is essentially a one-dimensional (1D) vari-
able. Several other parameters are naturally two-dimensional, particu-
larly those related to land features such as coastal protection structures,
land surface elevation, land tenure, land use and land cover, population
density, the presence of nature protection areas, and type of sediments.
All calculations were performed with a spatial resolution of 10 x 10 m.
This resolution was applied to the entire shoreline of Estonia, including
areas selected for more detailed analysis (Fig. 1). The values of param-
eters that were available at a coarser resolution were interpolated to 10
x 10 m raster using the inverse distance weighting method. The pa-
rameters that are intrinsically one-dimensional at the shoreline (e.g.,
closure depth) were extended to inland calculation cells along shore

normal.

2.2.1.2. Fugzzy standardization. The second step in the procedure (Fig. 2)
is standardization of the parameters before they are combined due to the
different scales on which they are measured or evaluated (Eastman,
2009). The fuzzy logic method analyzes data from any measurement
scale, and experts in the field provide judgments to assign values for
each factor (Pradhan, 2011; Ramesh and Igbal, 2020). Fuzzy logic uses
standardized (normalized) data in the range from O to 1, where 0 and 1
indicate lowest and highest values respectively. The ranges for very low
(0, 0.2), low (0.2, 0.4), medium (0.4, 0.6), high (0.6, 0.8), and very high
(0.8, 1) values are usually chosen as linearly increasing (Cheng et al.,
2023).

The vulnerability increases with the assigned or observed values R; of
a selected parameter at a single location for extreme water level, sea
level rise rate, maximum significant wave height, etc. (so-called
increasing functions in Table 2) while it decreases for elevation, coastal
slope, shoreline change, etc. (so-called decreasing functions in Table 2)
(Barzehkar et al., 2021). It is therefore necessary to convert both
increasing and decreasing functions of vulnerability into the
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standardized input of fuzzy logic. It may also occur that values over (or
below) some (possibly expert-recommended) threshold Rmax (Rmin) do
not further increase or decrease the associated vulnerability.

To do so, the input data for the use of fuzzy logic is built from the
gathered data sets that represent increasing functions using a piecewise
linear function X(i) that is (i) set to 0 if the particular (pixel or assigned)
value R; < Rpin, (ii) set to 1 if it is R; > Rmax, and (iii) increases linearly
as X(i) = (Ri —Rmin) /(Rmax —Rmin) if it is between Rpyin and Rmax. For
decreasing functions, the function X(i) is set to 0 if R; > Rpax, to 1 if
Ri < Rin, and to X(i) = (Rmax — Ri) /(Rmax —Rmin) for all other occasions
(Kao, 2010).

The third class of input functions for fuzzy logic form custom user-
defined functions expressed as discrete estimates that characterize

vulnerability associated with geomorphology, type of sediment, pres-
ence or absence of nature protection areas or coastal protection struc-
tures, land use, and land tenure. A proxy of standardized fuzzy layers is
created for such parameters using literature sources and expert knowl-
edge (expert judgement and literature in Table 2).

In some occasions (e.g., presence or absence of nature protection
areas or coastal protection structures) the relevant input for fuzzy logic
is like a Heaviside function with discrete values 0 and 1. The choice of, e.
g., which land use correspond to 0 (low vulnerability) and which one to
1 (high vulnerability), or whether some intermediate values should be
used, is often debatable and different types of the coast may require the
use of different numerical values. In such aspects we rely on the opinions
of local experts that is a common approach for modeling such variable-
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category relationships in coastal vulnerability assessment (Teck et al.,
2010).

The intermediate values based on the fuzzy logic approach are
assigned to the parts of the coast with low-moderate or moderate-high
vulnerability, e.g., areas with stable coasts, erodible cliffs, heteroge-
neous beaches, coastal lagoons, areas occupied with agriculture and
plantations, etc. These parameters are specifically coastal protection
structures, geomorphology, land use and land cover, land tenure, and
sediments, where fuzzy intermediate values are assigned for categorical
parameters.

2.2.1.3. Weighting of parameters. The third step in the analysis (Fig. 2) is
to use the analytical hierarchy process (AHP), which is a popular
approach that considers the relative importance of parameters in multi-
criteria decision analysis (MCDA) (Hadipour et al., 2020). This meth-
odology relies on the subjective perception of experts on the relative
importance of various parameters in the coastal vulnerability assess-
ment (Ghosh and Mistri, 2022). It is based on a n x n pairwise com-
parison matrix of n parameters that represents the experts’ qualitative

judgments of the importance of these parameters (Chai et al., 2013). The
experts’ ranking of parameters in this method is usually scaled from 1 to
9, where class 9 represents an extremely high level of prioritization,
class 7 conveys a very strong prioritization, class 5 denotes strong pri-
oritization, class 3 implies a moderate level of prioritization, and class 1
characterizes a neutral situation. Experts can also employ intermediate
values like 2, 4, 6, and 8 (Saaty and Tran, 2007). The pairwise com-
parison matrix is completed by inserting reciprocal values (e.g., 1/3,
1/5, 1/7, 1/9) into the transposed positions (Saaty and Tran, 2007).
The pairwise comparison matrix (Table 3) was built in this study
based on opinions of 10 experts from the academic and governmental
sectors with expertise in coastal management. A geometric mean of all
values assigned by experts for each pair of comparisons was used to
compute an estimate of the “priority” of each parameter (Mu and
Pereyra-Rojas, 2018) because it effectively accommodates the possibly
diverging viewpoints of experts (Mu and Pereyra-Rojas, 2018). In the
next step, these estimates were incorporated into a matrix to calculate
the relative weights (importance) for each parameter (Mu and
Pereyra-Rojas, 2018). Then, the entries in this matrix can be normalized
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by dividing the values in each cell by the number of criteria, which is
used to calculate the weights, representing the relative importance of
parameters (Saaty, 1980).

2.2.1.4. Consistency of the estimates. The relevance of the pairwise
comparison matrix is checked using the consistency ratio CR = CI/ RI
(Saaty and Tran, 2007). The consistency index CI = (e —n) /(n—1) is
defined by the largest eigenvalue Apq, of this matrix, where n = 16 in our
study of 16 parameters. The so-called random index RI provides this
value for the totally random input (Saaty and Tran, 2007). The RI value
for n =16 is 1.59 (Aguardn and Moreno-Jiménez, 2003). The outcome
of weighting by the AHP method is acceptable if CR < 0.1 (Saaty and
Tran, 2007). Otherwise, the consistency of the comparison may be
questionable.

The calculated consistency ratio among experts’ perspectives was
CR = 0.04. Thus, it is reasonable to use the experts’ opinions to weight
the used parameters based on the AHP technique as the experts’
judgements are consistent in terms of (Saaty and Tran, 2007). The most
significant parameters based on the experts’ perspectives for coastal
vulnerability assessment of the Estonian coasts using AHP were extreme
water level, shoreline change, and geomorphology, whereas closure
depth, population density, and land tenure were the least important
parameters for coastal vulnerability (Fig. 11).

Most experts used a limited range from 1 to 5 of the weighting scale
(Table 3), when assigning weights to parameters through the AHP
technique. This feature together with the effect of using the geometric
mean to calculate the values presented in Table 3 tends to compress the
range of values. This phenomenon is commonly encountered in appli-
cations of the AHP when the goal is to achieve consensus and agreement
among experts (Mu and Pereyra-Rojas, 2018), but does not invalidate
the approach as long as the consistency ratio is < 0.1.

2.2.1.5. Data combination. The final step (Fig. 2) is to employ the
weighted linear combination (WLC) technique in MCDA for the com-
bination of spatial data in the GIS environment to calculate the coastal
vulnerability index (CVI) using n =16 parameters (Hadipour et al.,
2020) as

CVI= XH:W,-X,u

i=1

(€3]

This map combination technique was used to combine the weights
W; of each parameter (raster layer) with the values X; of this parameter
in the raster layers (Malczewski and Rinner, 2015). A natural condition

is that the sum of the weights is 1. The WLC was also performed to obtain
the final ranking of pixels (cells) for the output map, where the highest
rank is 1 (Malczewski, 2000).

As an extra step, the analysis was repeated to evaluate vulnerability
at all raster points of the study area using only the three parameters with
the largest weights according to the full AHP analysis: extreme water
level, shoreline change and geomorphology. The weights were then
renormalized to have their sum equal to 1. These normalized weights
were used in the WLC method to maintain consistency with the map
reflecting all 16 parameters while focusing on the top three parameters.

To summarize the presented material, in this study, the CVI was
calculated by integrating the standardized and weighted parameters to
obtain a vulnerability score for each grid cell with dimensions of 10 x
10 m along the shoreline and within a 2 km wide inland strip. The spatial
resolution for the CVI calculation was thus 10 x 10 m in the entire study
area, including the areas selected for more detailed discussion. These
areas were chosen based on their particular vulnerability properties or
geographical significance. This high resolution was intrinsically present
in some of the input data, such as land elevation, location of infra-
structure and coastal protection, or natural protection areas. The data
relating to hydrodynamic properties were of much lower resolution (e.
g., relative sea level increase or maximum significant wave height) and
were interpolated to the 10 x 10 m raster using the inverse distance
weighting technique.

3. Results
3.1. Coastal vulnerability based on 16 parameters

The resulting CVI values are normalized between 0 and 1. They range
from 0.24 (very low vulnerability in the context of the study area) to
0.72 (very high vulnerability). The entire range of the CVI values is 0.48
and thus covers almost half of the theoretically possible span. This wide
span suggests that a sensible representation of spatial variations of
coastal vulnerability is provided by the classic approach of dividing the
CVI values for single locations into five equally spaced classes (Table 4).

Perhaps surprisingly, almost entire study area has either low or
moderate vulnerability. As expected, several segments with very low
vulnerability are located on the northern coast of Estonia in areas with
stable limestone cliffs (Fig. 12). Also, many sections of the shores of
Moonsund, the interior water body of the West Estonian Archipelago,
have very low or low vulnerability. This feature apparently reflects
gradual uplift of this archipelago and moderate values of extreme water
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The parameters used in the vulnerability assessment of the Estonian coast, the data sources and description.

Parameter and resolution

Data source

Description

Core component 1: Exposure

Land surface elevation, 10 x 10 m

Beach slope, 10 m

Closure depth, from a wave model with a 5.5 km
resolution

Underwater slope, 10 m for shoreline data, 5.5 km for

closure depth

Shoreline change, input data: about 2.5 km (at a
1:250,000 scale) and 3.5 km (at a 1:350,000 scale)
along the shore interpolated to 10 m raster

Extreme water level, 3.7 km

Relative sea level rise, 10 m for shoreline

Maximum significant wave height, 2 km

Digital terrain model (DTM) from Estonian
Land Board, maaamet.ee

DTM from Estonian Land Board. maaamet.ee

Soomere et al. (2013)

DTM from Estonian Land Board, maaamet.ee
and closure depth from Soomere et al. (2013)

Coastal migration from the European Marine
Observation and Data network (EMODnet)

Soomere et al. (2016)

European Environment Agency, eea.europa.eu

Significant wave height (1993-2021) from
Copernicus Marine Service, data.marine.
copernicus.eu

Elevation is defined here as the height of the land surface at a point,
above approximate MSL. Land surface elevation is a significant
parameter to determine land which is potentially inundated at a
certain water level (Mullick et al., 2019). The areas with land surface
elevation smaller than elevated water levels are flooded and are
ranked high to very high vulnerability. The DTM was generated from
LIDAR elevation points 2018-2021.

Beach slope is defined here as the average gradient from the waterline
at the MSL to the 1 m elevation contour. Beach slopes typically >7°
have very low vulnerability, and <1° very high vulnerability (Pantusa
et al., 2018). Beach slope was calculated from the DTM.

Closure depth is the offshore limit to significant cross-shore sediment
transport (Masselink et al., 2011). The transportation of longshore
sediments occurs over the beach profile down to this limit (Nguyen
et al., 2021). This variable is estimated from the wave model. The
larger closure depths (>5 m) are associated with the largest wave
intensities in the Baltic proper. Smaller closure depths (<5 m) are
found in the Gulf of Riga and along the southern coast of the Gulf of
Finland (Soomere et al., 2013).

Underwater slope, defined as the ratio of the closure depth to the
distance from the waterline at the MSL to the location of the closure
depth, is an important parameter for assessing the coastal
vulnerability. Steeper underwater slopes are associated with higher
vulnerability of the coast due to waves. Gentle underwater slopes can
provide more capacity to dissipate wave energy and diminish the
wave impacts on the shoreline (Bagdanaviciute et al., 2015;
Bagdanaviciute et al., 2019). Larger underwater slope is ranked high
and very high due to the dissipation of wave energy in a smaller area.
Underwater slope was calculated using the MSL from the DTM and
modelled closure depth.

Shoreline change for this study is classified as one of three discrete
values: erosion, accretion or stable. Accreting coastal areas are less
vulnerable than eroding ones (Mohamed, 2020). The values for the
shoreline vulnerability classification were obtained from the rate of
mean annual shoreline change from 2007 to 2017 using satellite data
for sandy beaches (Luijendijk et al., 2018), and field measurements
for other coastline types from the EMODnet geology dataset,
specifically within the field data category of 250k-350k (htt
ps://www.emodnet-geology.eu/, last access: November 24, 2022).
The spatial resolution of this data along the shore is approximately 2.5
km and 3.5 km and depends on the scale of the maps. This data is
interpolated to the 10 m raster using the inverse distance weighting
(IDW) technique. Segments with observed erosion or accumulation
rate within the margin of error, as per EMODnet measurements, were
classified as stable. This ensures that areas with insignificant erosion
are not inaccurately labeled as eroding.

Extreme water level is the maximum water level that can be
reasonably expected at a coastal site due to joint impact of
atmospheric pressure variations, storm surge, and wave driven effects
(e.g. set-up and runup). This parameter in some ways replaces tidal
range in this location. The coastal areas with expected elevated water
levels >2 m above MSL have high vulnerability (Wolski et al., 2014).
The extreme water level on Estonian coasts for a 50-year return period
with a resolution of 2 nautical miles (about 3.7 km, Soomere et al.,
2016) was used for the analysis.

Relative sea level rise is the balance at the shoreline between eustatic
sea level change caused primarily by global eustatic sea level change
and sea level change caused by isostatic (local and regional)
mechanisms (Masselink et al., 2011). The Baltic Sea MSL level
increased at a rate of around 2 mm per year over the past 50 years,
which is faster than the global average (Weisse et al., 2021). The areas
with relative sea level decrease are less vulnerable. The observed
trend slope in sea level change relative to land since 1970 for tide
gauges along the Europe coastline was used as this parameter. The
closest properly calibrated tide gauges to the Estonian coast in
Lithuania (Klaipeda) and Finland (Fig. 1) were used for analysis. The
data from these tide gauge stations were interpolated using the
Inverse Distance Weighting (IDW) method.

Significant wave height (SWH) is a measure of the average height of
the largest one-third of waves, reflecting the wave energy that
influences the coastal sediment budget. The average SWH in the
nearshore of Estonia is well below 1 m (Giudici et al., 2023;
Najafzadeh et al., 2024). The coastal areas with SWH>1 m are

(continued on next page)
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Parameter and resolution

Data source

Description

Core component 2: Sensitivity
Geomorphology, 2.5 km (at a 1:250,000 scale) and 3.5
km (at a 1:350,000 scale)

Sediments, 4 km (at 1:400,000 scale)

Nature protection areas, 1 km (at 1:100,000 scale) from
Natura (2000) dataset.

Land use and land cover, 100 x 100 m

Land tenure, positional accuracy of 0.1 m in high-density
areas and 0.35 m in low-density areas.

Coastal type from EMODnet, emodnet-geology.

eu

Quaternary Deposits Map from Estonian Land
Board, maaamet.ee

HELCOM, helcom.fi

Copernicus global land service, land.
copernicus.eu

Cadastral data from Estonian Land Board,
maaamet.ee
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classified as highly vulnerable. For this analysis, we used the
maximum values 1993-2021 of hourly time series of SWH data with a
spatial resolution of 2 x 2 km, in single nearshore wave model grid
cells. The SWH data was interpolated into the 10 m alongshore
resolution using the inverse distance weighting method.

The coastal geomorphology variable classifies coastal landforms by
type (Woodroffe, 2002). The study area includes erosion resistant
cliffed coasts, muddy coasts, beaches, etc. Geomorphology is
important to determine the vulnerability of the coastal segments
because of the different reaction of the materials in a landform to the
coastal hazards (Mohd et al., 2019).

In this study sediments are defined by their environment of deposition
and grain size. There are various sedimentary environments in the
study area with combinations of sediments including glacial and
fluvial (pebble/gravel/sand), alluvial (pebble/sand/silt/loam/mud),
lacustrine (pebble/sand/silt/loam/clay/sapropel) depositional
environments, etc. Sediments affect the recession of the coast and are
influenced by physical coastal processes. In reality, fine sediments,
particularly gently sloping sandy beaches, may be less vulnerable
because they dissipate much of the incoming wave energy during the
wave breaking process across a broad surf zone (Woodroffe, 2002). In
contrast, gravel beaches are associated with steep-gradient slope (
Woodroffe, 2002). Sandy beaches are generally considered more
vulnerable in coastal vulnerability assessments due to their
susceptibility to long-term erosion, despite their ability to dissipate
wave energy across a broad surf zone. This contrasts with gravel
beaches, which have a steep-gradient slope and are more resistant to
erosion but are less efficient at dissipating wave energy (Woodroffe,
2002). Our analysis employs this traditional perception, as sandy
beaches experience significant changes over time and can thus be
considered more vulnerable in the long term.

Nature protection areas protect ecosystems which provide services for
people and help protect the most valuable species and habitats (
HELCOM, 2021). Such areas are designated as bird protection for
endangered species (A), as habitat protection (B), and both bird and
habitat protection for the most vulnerable species and habitats (C).
The nature protection areas under six management categories of
International Union for Conservation of Nature and Natural Resources
(IUCN) including strict nature reserves and wilderness areas, national
parks, natural monuments or features, habitat/species management
areas, protected landscapes or seascapes, and protected areas with
sustainable use of natural resources (Dudley et al., 2008) are assigned
with a higher ranking of vulnerability than other ecosystems.

In this study land cover includes beaches and dunes, forests, wetlands,
agriculture, etc. This property reflects the human activities on the
land (Armenio et al., 2021), particularly for tourism, housing,
industrial and commercial areas, construction sites, transportation
networks, etc. Land use can characterize vulnerability of human
infrastructure to coastal hazards (Mullick et al., 2019), and whether it
is economically valuable to conserve the coast (Furlan et al., 2021).
Thus, economic value is used for the vulnerability classification of
land use. Urban and industrial areas are interpreted as regions with
very high vulnerability (based on the value of their infrastructure)
while barren lands, water bodies, marshes, sparsely vegetated areas,
and bare rock are areas with very low vulnerability because of their
very low economic value.

Land tenure is defined as who owns the land. Different land tenures
(e.g., private vs state owned land) directly affect many things such as
the ability and agility to react to hazard (e.g., Fetoui et al., 2021;
Pérez-Valdez et al., 2021). Rules of tenure govern how land rights are
distributed within societies and determine different land tenures (
FAO, 2002). The access to the beach is generally open to anyone for
public property, whereas e.g., forest lands may fall under the mandate
of the state (FAO, 2002). For private property, individuals have
exclusive rights to properties, and other members of the community
are excluded from using these resources without the consent of those
people (FAO, 2002). Private ownership makes it difficult for
managers and decision-makers to allow for retreat measures or the
construction of coastal protection and therefore privately owned land
is classified as having higher vulnerability.

The study area includes public property, state property, private
property, etc. Natural disasters such as flooding, cyclones and
hurricanes may contribute to insecure land tenure. The occurrence of
such hazards can lead to a loss of rights in land (Reale and Handmer,
2011).

(continued on next page)
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Parameter and resolution Data source

Description

Population density, 1 x 1 km

Core component 3: Resilience
Coastal protection structures, 10 x 10 m
maaamet.ee

Coastal setback, 1 m

Statistics Estonia, estat.stat.ee

Orthophotos (2022) from Estonian Land Board,

Buildings and transportation infrastructure
locations from Estonian Land Board and
orthophotos (2022), maaamet.ee

The population density in the area adjacent to the coast is determined
with respect to census blocks, measured as the number of people per
unit area (km?) (Mafi-Gholami et al., 2020). Mesh blocks are at a
resolution of 1 x 1 km. All raster cells in our data set within the mesh
block are recorded as having the same population density. The coastal
areas with higher population density generally have higher economic
importance and more human activities along the coast than areas with
low population density. The mesh blocks with population density
>250 people per km? were categorized as areas with very high
vulnerability (Bagdanaviciute et al., 2019).

This parameter is defined as the absence or presence, and type of
infrastructure meant to protect the shore from coastal hazards and
thus to influence coastal resilience (El-Shahat et al., 2021). The
coastal protection structures are primarily seawalls and groins in the
study area. Seawalls and bulkheads eliminate or significantly reduce
coastal vulnerability against storm surges and waves (Khazai et al.,
2007). Properly constructed, this infrastructure comes at high cost,
but reduces vulnerability to coastal hazards. In locations with no
protection structures the vulnerability is high. Coastal protection
structures were identified using orthophotos provided by the Estonian
Land Board (2022), with each orthophoto map tile covering 5 x 5 km
and having a ground sample distance (GSD) of 10-16 cm for
low-altitude flights. These structures were digitized in ArcGIS Pro and
then converted into a raster dataset with a spatial resolution of 10 x
10 m for further analysis.

Coastal setback in this study is defined as the distance between the
shoreline and the first infrastructure on the landward side. The
setback distance was measured perpendicular to the shoreline using
orthophotos and was determined to the nearest meter. The study area
contains buildings, roads, parking lots, port facilities, etc. Coastal
setbacks facilitate the plans for sustainable coastal development and
to conserve the coastal environments. A setback of 100 m to protect
infrastructure and settlements from adverse effects of coastal hazards
is often regarded as being reasonable (Sano et al., 2011). Shorelines
with a setback of at least 150 m to the first infrastructure have low and
very low vulnerability to coastal hazards.

levels (Mannikus and Soomere, 2023).

As expected, the most vulnerable areas are low-lying locations that
experience very high water levels and gradual erosion, host harbour
facilities, and where buildings or transportation infrastructure are
located close to the coast. The areas characterized by high and very high
vulnerability are mostly located on the western shore of Saaremaa and in
the neighbourhood of Parnu Bay. The main reasons for this catego-
risation are evidently the possibility of having very high water levels
(Suursaar and Sooaar, 2007; Eelsalu et al., 2014), shoreline erosion in
several spots of the eastern shore of the Gulf of Riga, or being open to
westerly storm events (western coast of Saaremaa). This outcome pro-
vides confidence in the approach and techniques used.

3.2. Coastal vulnerability based on three most important parameters

Another view of coastal vulnerability becomes evident if only three
parameters with largest priority by experts are taken into account
(Table 4, Fig. 12). Most notably, this selection reflects the views of the
particular group of experts and excludes all social and economic pa-
rameters, only using extreme water level, shoreline change and geo-
morphology (Fig. 12). Properties of extreme water level and shoreline
change were systematically considered as most important properties
(Fig. 12) while geomorphology was estimated as slightly more impor-
tant than several other variables.

The range of CVI index using this approach increases to 0.64, much
larger than when using all 16 parameters and thus covers almost 2/3 of
the theoretically possible span. The proportion of areas with low
vulnerability is much smaller than in the analysis based on 16 param-
eters (Table 4) and the proportion of locations with high vulnerability is
clearly larger. The CVI-based map of coastal vulnerability based on these
three parameters (Fig. 12) and the rightmost columns of Table 4 show a
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greater number of vulnerable locations than coastal vulnerability esti-
mates based on all 16 parameters (Fig. 12). Areas with high vulnerability
according to this criterion are mostly located in the south-west and in
the north-east of Estonia.

The Gulf of Riga coast, including Parnu Bay, has a generally high
vulnerability to coastal hazards, evidently reflecting the possibility of
highly elevated water levels during extreme events (Mannikus et al.,
2019) and the presence of many relatively low-lying areas. Frequent
co-occurrence of elevated water levels and severe wave events
(Mannikus and Soomere, 2023) additionally contributes to the vulner-
ability of the eastern shores of the Gulf of Riga. Several locations of the
western shore of Saaremaa, a segment on the eastern shore of the Sorve
Peninsula and several sections of gravel and sandy beaches in the
north-eastern Estonia belong into areas with high vulnerability in this
metrics.

The range of CVI values using only three parameters (from 0.2244 to
0.8688) is clearly larger than the similar range using all parameters
(from 0.2441 to 0.7251). This is in line with the general perception that
an increase in the number of parameters leads to a smaller range of the
resulting CVI values in the Baltic Sea conditions (Soomere et al., 2024).
Also, the standard deviation of the CVI values using three parameters
(0.1015) is almost twice as large as the one using all parameters
(0.0597). The point-to-point correlation of CVI values for these two
cases is 0.565, indicating that the two sets of CVI values are clearly
related but obviously contain a large portion of different information.
This estimate reinforces the main message from Fig. 12: the two mea-
sures share some spatial pattern and overall structure but are not
perfectly aligned.
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3.3. Vulnerability of inland locations

The approach used in study involves 2 km wide nearshore region and
thus leads to a quasi-2D coastal vulnerability index (CVI) map, to
highlight vulnerability in low-lying areas where critical infrastructure
may exist. For consistency we show results using both 16 parameters and
the 3 most important parameters according to experts.

The properties of this map are represented in Table 4 but the relevant
details of vulnerability are not visible in the scales of maps on Fig. 12.
Coastal sections of very high and high vulnerability, both in metrics
representing all parameters and three most important parameters, are
few in terms of alongshore coverage, small in terms of percentage of the
2 km wide nearshore area, and scattered over different regions. How-
ever, these sections are likely those that eventually provide challenges
for managers and local communities. We highlight for further discussion
some areas (Parnu Bay, south-western (SW) Saaremaa, Tallinn Bay and a
selection of the north-eastern coast) that host several coastal segments
with high vulnerability.

It is typical that land elevation increases relatively rapidly in the
inland of Estonia, except for a few locations such as Matsalu Bay directly
to the east of Moonsund (Fig. 1) or the vicinity of Haapsalu. It is thus
natural that the inland, usually clearly elevated, parts of the 2 km wide
nearshore area exhibit much lower vulnerability (Fig. 12) whereas the
areas with higher vulnerability follow low-lying river valleys and other
low-lying spots. The “impact“ of several truly coastal parameters, such
as wave height, is translated into a pattern of lower and higher values of
vulnerability of inland areas. This pattern that is aligned along the shore
normal provides for many locations a spurious effect and should be
ignored in management decisions. This effect becomes particularly sig-
nificant in CVI maps constructed using only three main parameters
(extreme water level, shoreline change, and geomorphology) (Fig. 12).
The resulting estimates are basically applicable to a narrow coastal strip
along and cannot be used at any larger distance from the waterline.

The appearance of a spatial pattern of vulnerability substantially
depends on the nature of the particular coastal area. While vulnerable
areas mostly follow river valleys in delta regions (Fig. 13), they largely
reflect the local elevation map and complexity of the coastline on the
open, mostly limestone south-western shore of Saaremaa that is partially
protected by pebble, cobble and boulder pavement (Fig. 14). As the land
elevation slowly increases inland, patches of high vulnerability are
found at a distance of 1-2 km from the shoreline. It is likely that this high
vulnerability represent openness of this area to strong westerly winds
that may create very high local water levels (Eelsalu et al., 2014). This
vulnerability translates inland on in a few locations of the northern part
of the coastal segment shown in Fig. 14. As above, the map based on
three most important parameters (Fig. 14) has much less detail. Differ-
ently from the Péarnu case, this map provides to some extent reasonable
generalisation of the map based on 16 parameters.

The northern coastline along the Gulf of Finland has lower vulner-
ability, due to the geomorphology and the coastal orientation. East of
Tallinn, past coastal change and the frequency and magnitude of
extreme events are lower, and there are cliffed coasts and areas with
higher land surface elevation than in the south and west.

On the one hand, the vulnerability map of the vicinity of Tallinn
(Fig. 15) correctly recognizes several well-known features, such as low-
lying areas on the Paljassaare Peninsula and the city centre around the
Old Harbour but fails to follow the major differences in the land
elevation in the highlighted area. On the other hand, it declares as
moderately vulnerable several areas near the Pirita River mouth that are
actually elevated enough to compensate for any marine-driven hazards
in this region. It is also surprising that the large proportion of coasts in
the vicinity of Tallinn have moderate vulnerability (Fig. 15) and low
vulnerability (Fig. 15) despite the more extensive infrastructure and
higher population density in Tallinn than in Parnu and on the western
coast of Saaremaa. It is likely that the outcome is steered to some extent
by the massive presence of coastal engineering (harbours) and
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protection structures. It may be also the result of the methodology,
where experts did not distinguish between sub-areas in their assessment,
and did not regard the social and economic parameters as being overall
of great importance, even though they may be in some small geographic
areas.

The low to moderate vulnerability of shores on the north-eastern
coast of Estonia, eventually attributed to the presence of cliffs
(Fig. 16), is significantly influenced by land surface elevation. However,
the relatively low ranking given to land surface elevation by experts
resulted in very high CVI values for this coastal segment in metrics that
is based on three most important parameters (Fig. 16).

4. Discussion

The results obtained for the coastal vulnerability index using the GIS-
MCDA (multi-criteria decision analysis) technology first of all highlight
the impact of parameter selection on coastal vulnerability mapping in
Estonia. The 16 parameter analysis (Fig. 12, left) selected parameters
based on diverse physical and socioeconomic aspects of coastal areas in
Estonia. The alternative approach (Fig. 12, right) used only a few
physical parameters (extreme water level, shoreline change, and geo-
morphology) chosen based on their perceived high importance accord-
ing to experts’ opinions. The results are qualitatively similar but clearly
differ in quantitative terms and highlight differently vulnerability of
some coastal segments.

Interestingly, experts did not prioritize some parameters that logic
would suggest would be highly important, especially land surface
elevation, coastal protection structures, and maximum significant wave
height, as is evident from the pairwise comparison matrix of parameters
(Table 3). They highlighted historical extreme water levels, and some
parameters describing the physical environment (previous shoreline
change and geomorphology) as being more significant. This choice re-
flects a methodological issue in analytical hierarchy process (AHP),
where experts’ preferences in selection of parameters differ from those
that provide persuasive information or arguments that guarantee resil-
ience of a certain location, for example, relatively high elevation at a
certain distance from the shoreline. This highlights the complexity of
experts’ judgments in decision-making process, emphasizing the need
for a detailed awareness of contextual biases when dealing with (quasi)
two-dimensional estimates. This may also suggest that it is important to
involve people whose priorities are outside of classic coastal science and
whose opinions would increase the weight of socio-economic aspects,
and possibly even that experts in some way be asked to suggest addi-
tional parameters and criteria.

The difference in the resulting vulnerability maps highlights the
significance of incorporating a diverse set of parameters and possibly
repeating exercises of this type with different selections of experts. This
approach aims to provide a more reliable and dependable picture of
coastal vulnerability in Estonia than only a few physical parameters for
vulnerability assessment.

The use of decision support systems and systematic calculation of
coastal vulnerability has proved to be very popular in coastal manage-
ment decision making (Wong-Parodi et al., 2020; Barzehkar et al.,
2021). While the results of such studies should be able to be used by
managers and other stakeholders to focus attention on vulnerable areas
for incorporation in spatial plans and for investment decisions, we have
highlighted some significant shortcomings if too few parameters are
used, and for whatever reason, certain parameters are preferred by the
experts consulted. Confidence in the methodology and results is
increased if they are consistent with other research undertaken at a more
local scale. Many studies of processes on the Estonian seashore or in the
region (Bagdanavicituté et al., 2015, 2019; Kovaleva et al., 2022)
concentrate on small areas (Orviku et al., 2009; Tonisson et al., 2018), or
on single and sets of related coastal processes (Kont et al., 2008;
Tonisson et al., 2011; Mannikus and Soomere, 2023), however, they
identify some particular vulnerabilities for some areas that can be
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Table 2
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Fuzzy standardization for the quantification of parameters in the coastal vulnerability assessment. For decreasing functions any value below the minimum threshold
Rmin is associated with maximum vulnerability (1) and any value above the maximum threshold Rpma.x with minimum vulnerability (0). In a similar manner, for
increasing functions, any value below the minimum threshold is associated with minimum vulnerability (0) and any value above the maximum threshold with

maximum vulnerability (1).

Criteria Sub-criteria Reference used for the Threshold values Type of the function
determination of thresholds Minimum threshold Rpyin Maximum threshold Rpmax
Exposure Land surface elevation Tonisson et al. (2013); Averkiev 2m 5m Decreasing
and Klevannyy (2010)
Beach slope Pantusa et al. (2018) 1° 7° Decreasing
Underwater slope Calculated by the closure depth 0.02° 1° Increasing
Shoreline change Luijendijk et al. (2018); —1 (Erosion) 1 (Accretion) Decreasing
emodnet-geology.eu/
Closure depth Soomere et al. (2013) 3m 6m Increasing
Extreme water level Wolski et al. (2014) 1m 2.5m Increasing
Relative sea level rise Madsen et al. (2019) —2 mm/yr —1 mm/yr Decreasing
Maximum significant Giudici et al. (2023); Najafzadeh 0.3 m 2.8 m Increasing
wave height et al. (2024)
Sensitivity ~ Geomorphology Koroglu et al. (2019) 0 (Cliffs) 1 (artificial beach) Expert judgement
and literature
Sediments Woodroffe (2002) 0 (Sand) 1 (Gravel) Expert judgement
and literature
Nature protection areas Dudley et al. (2008) 0 (No protection) 1 (nature protection areas with most Expert judgement
vulnerable species and habitats) and literature
Land use and land cover Armenio et al. (2021) 0 (Forests, marshes, water 1 (Industrial and commercial areas) Expert judgement
bodies, sea and ocean) and literature
Land tenure Asante et al. (2017); FAO (2002) 0 (Public property) 1 (Private property) Expert judgement
and literature
Population density Bagdanaviciuté et al. (2019) <10 person/km? >250 person/km? Increasing
Resilience  Coastal protection Mohamed, (2020) 0 (Seawalls) 1 (No protection structures) Expert judgement
structures and literature
Coastal setback Sano et al. (2011) 20 m 150 m Decreasing
Table 3

Pairwise comparison matrix of 16 parameters A-P for coastal vulnerability assessment. The geometric means of estimates by 10 experts are rounded to the nearest
integer or the nearest inverse of an integer. The experts generally chose to use only part of the possible range of rankings of the parameters (from 1 to 9). The rankings
>1 in a cell mean that the parameter shown in the relevant row is estimated as more important than the parameter in the relevant column. The larger the value, the
more dominant the parameter with respect to the other parameter is, as considered by the experts. The fractional entries are reciprocals of the estimates >1, used to fill

the comparison matrix (Saaty and Tran, 2007) for further analysis.

No Parameters for coastal vulnerability assessment

A B C D E F G H I J K L M N (o] P
1 A - Land surface elevation 1 2 1 172 2 1 1 1 1 1 1 2 2 1 1 1
2 B - Beach slope 172 1 1 172 1 172 1 172 1 1 1 2 2 1 1/3 172
3 C - Underwater slope 1 1 1 1/2 1 1/2 1 1 1 1 1 1 2 1 172 1
4 D - Shoreline change 2 2 2 1 5 1 2 1 2 5 1 2 3 2 1 1
5 E — Closure depth 1/2 1 1 1/5 1 1/3 172 1 172 1 1 1 2 1 172 172
6 F — Extreme water level 1 2 2 1 3 1 3 2 2 2 2 3 4 3 2 2
7 G - Relative sea level change 1 1 1 1/2 2 1/3 1 1 1 2 1 2 2 2 1 1
8 H - Maximum significant wave height 1 2 1 1 1 1/2 1 1 1 2 2 2 3 2 1 1
9 I - Geomorphology 1 1 1 1/2 2 1/2 1 1 1 2 4 2 3 2 1 1
10 J — Sediments 1 1 1 1/5 1 172 172 172 172 1 2 2 4 3 1 2
11 K — Nature protection areas 1 1 1 1 1 172 1 1/2 1/4 172 1 1 2 2 1 1
12 L - Land use and land cover 172 172 1 1/2 1 1/3 1/2 1/2 1/2 1/2 1 1 3 3 1 1
13 M - Land tenure 1/2 1/2 1/2 1/3 1/2 1/4 1/2 1/3 1/3 1/4 172 1/3 1 1 172 172
14 N - Population density 1 1 1 1/2 1 1/3 172 1/2 172 1/3 172 1/3 1 1 1 1
15 O - Coastal protection structures 1 3 2 1 2 172 1 1 1 1 1 1 2 1 1 2
16 P — Setback 1 2 1 1 2 1/2 1 1 1 1/2 1 1 2 1 1/2 1

compared to our results. One exception is Tonisson et al. (2013), which
takes a country wide approach but concentrates specifically on coastal
erosion.

The core novelty of our study is a quasi-two-dimensional approach
that considers a 2 km zone extending inland from the coast. This
approach makes it possible to incorporate parameters that are 2-dimen-
sional in nature, but which must be excluded from an analysis which is
undertaken in one dimension (along the coast, which is typical in CVI
research). Not all parameters of this type are appropriate for inclusion,
but some variables, like land tenure and land use and land cover, are
suitable for representation as areas within this framework. However,
challenges arise when incorporating into this approach variables that

13

are essentially one-dimensional such as significant wave height or
setback. For example, high water levels may impact the area behind
dunes along a low-lying valley that enters the sea kilometres away. An
assumption in our analysis is that a single value of such variables (except
for water level) along the shoreline is chosen to represent the entire 2 km
wide coastal segment. We emphasize the need for a detailed under-
standing of how different interpretations of the impact range of such
variables and measurement or evaluation methods of such impacts affect
the interpretation of results.
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Fig. 11. Relative weights assigned to the employed parameters using the
AHP method.

4.1. Limitations

In addressing limitations of the performed study and methodological
concerns of the AHP methodology for coastal vulnerability assessment in
Estonia, a critical examination of the significance of specific parameters,
is necessary. Land surface elevation plays an important role in shaping
vulnerability of the Estonian coast. The reason for a lower ranking given
to this parameter by experts, when we expected it to be more highly
ranked is not clear, but the impact on the outcome is significant, and is

Table 4
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particularly seen in the vulnerability rankings when using all parameters
and the top three on the north-east Estonian coast. We believe that the
description of the parameter given to experts is reasonable and clear.
Some other parameters, such as the current setback distance to first
infrastructure might also have been expected to be more highly ranked.

It is also clear that the spatial resolution of the available data relating
to different parameters (Table 1) is a methodological issue worthy of
further consideration. Some important parameters, such as the highly
ranked shoreline change parameter only has three values (erosion, sta-
ble, accretion) and this is reflected in the blocky visual appearance of the
outcome of the exercise with only three-parameters involved. In this
study, the application of more MCDA techniques and a greater number
of parameters based on fuzzy logic, AHP, and weighted linear combi-
nation (WLC) was meant to reduce uncertainty and provide more con-
fidence in the results compared to other coastal vulnerability
assessments (Armenio et al., 2021; Bagdanaviciute et al., 2015, 2019;
Sekovski et al., 2020). The danger of relying on a few parameters that
may be regarded as particularly important by experts, is highlighted by
our work.

The determination of values of thresholds through MCDA using fuzzy
logic for standardizing raster values in maps involves a judgment-based
element. However, it is crucial to emphasize that the process of assigning
values is not arbitrary, as it follows a systematic and reasoned approach
(Robinson, 2003). This makes it a robust approach to implement the
standardization based on the environmental and socioeconomic condi-
tion of the Estonian coasts and to deal with the uncertainty during
coastal vulnerability analysis process. The results of this study align with

Coastal vulnerability analysis using MCDA and two sets of parameters (all 16 versus the three most important as determined by experts). Areas are calculated for the
coastal land up to 2 km from approximate MSL using the equal interval classification method in ArcGIS Pro.

CVI based on 16 parameters

CVI based on 3 most important parameters

Vulnera-bility CVIrange  Area, % Main locations CVIrange  Area % Main locations
class km? km?
Very low 0.24-0.34 121 3.8 North-west 0.22-0.35 247 7.7 North-west
Low 0.34-0.44 1496 47.0  North-west and North-east 0.35-0.48 807 25.4  North-west and North-east
Moderate 0.44-0.53 1350 42.5  North-west, Pdarnu Bay and western 0.48-0.61 1637 51.5 North-west, north-east, Parnu Bay and western
islands islands
High 0.53-0.63 207 6.5 Parnu Bay and western islands 0.61-0.74 464 14.6  North-east, Parnu Bay, and western islands
Very high 0.63-0.72 6 0.2 Parnu Bay and western islands 0.74-0.86 25 0.8 Parnu Bay and western islands
s s s s s e
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Fig. 12. Coastal vulnerability map using the MCDA technique (all 16 parameters, left) and three most important parameters (extreme water level, shoreline change
and geomorphology, right) based on the perception of experts. Pink boxes indicate sub-areas in which inland vulnerability is discussed below. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 13. Coastal vulnerability map of the vicinity of Parnu (see Fig. 1) using MCDA based on all parameters (left), three most important parameters (middle), and

topographic basemap (right).
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Fig. 14. Coastal vulnerability map of western Saaremaa (see Fig. 1) using MCDA based on all parameters (left), three most important parameters (middle), and
topographic basemap (right). Pilguse is the birthplace of Fabian Gottlieb von Bellingshausen.

Tallinn Bay

Fig. 15. Coastal vulnerability map of the vicinity of Tallinn (see Fig. 1) using MCDA based on all parameters (left), three most important parameters (middle), and

topographic basemap (right).
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Fig. 16. Coastal vulnerability map of the north-eastern coast of Estonia (see Fig. 1) using MCDA based on all parameters (left), three most important parameters

(middle), and topographic basemap (right).
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the outcome of the study conducted by Mullick et al. (2019) for coastal
vulnerability assessment in Bangladesh. Both studies highlight the
effectiveness of fuzzy logic in providing detailed local-level vulnerability
information, supporting its role in coastal planning and management.

Another implicit limitation of our study is that we have not per-
formed a detailed statistical analysis of the numerical outcome of our
research. This kind of analysis, albeit fairly complicated because of the
use of a sequence of different methods, would provide much more
confidence in the presented results, serve as important constituent of
their proper interpretation, and offer a clearer view on the replicability
of our study when upgraded datasets or another set of parameters will be
used.

4.2. Recommendations based on country-wide approach

In this study, the coastal vulnerability analysis used a country-wide
approach, helping coastal managers and decision-makers to plan for
coastal hazards affecting coastal lands, infrastructure and inhabitants,
rather than considering only coastal erosion, which is often considered
synonymously with coastal hazard (Armenio et al, 2021;
Bagdanaviciute et al., 2015, 2019). The coastal vulnerability analysis
that includes areas up to 2 km inland provides possibilities to identify
logically the interactions between the land and sea environments,
particularly with respect to the lower reaches of rivers and estuaries, but
must be used with care, considering that some parameters are 1-D in
nature. The difference between the classic (1D) and our quasi-2D
approach is almost immaterial for continuously cliffed or sandy areas
with elevated inland, such as the north-eastern coast of Estonia (Fig. 16)
where the situation in the 2 km wide inland strip is insensitive to what
happens at the relevant location of the coastline. The difference is
clearly evident in urban regions (Fig. 15) where socioeconomic pa-
rameters play more of a role. The pattern of vulnerability has an
extensive cross-shore gradient in gently sloping locations, such as the
western coast of Saaremaa (Fig. 14). This pattern is even more obvious
in segments with low-lying (river) valleys oriented parallel to the
shoreline (Fig. 13). In such places highly vulnerable locations may occur
behind resilient high dunes.

A decision support analysis should not be used in isolation. There is
no substitute for local knowledge interpreted by experts, but is a tool for
decision makers that highlights areas that may be otherwise ignored. It
provides another perspective on areas that may be thought to be highly
vulnerable, which may not be, possibly due to them being well known
(urban areas are an obvious example), or areas that are perceived as
being safe, but have vulnerability that has not been identified. The
response to a vulnerability assessment is another matter and must take
into account various other factors including the availability of resources,
environmental considerations, political considerations, etc. The range of
responses is large, ranging from hard engineering through to do-nothing
options (Masselink et al., 2011). The choice of strategy should be based
on the specific needs and conditions of each coastal area, and should
actively engage stakeholders, drawing upon their local knowledge and
insights in the decision-making process. This collaborative effort will not
only enhance coastal resilience but also provide trust and ensure the
long-term sustainability of coastal environments.

The provided analysis and results lead to several recommendations
and possibilities for further research. First of all, there is clear need for
adequate express estimates of coastal vulnerability based on a few easily
measurable or quantifiable parameters with sufficient resolution to
properly describe the coastal segment in question or under planning
consideration. This challenge includes not only an optimal choice of
these few parameters but also a comprehensive understanding of how
increasing the number of parameters influences the outcome when the
number of parameter increases. Another crucial challenge is how to
incorporate the impact of extreme water levels into the CVI analysis.
There are currently several metrics of this parameter, from measured or
modelled maximum values over some time period (used in our analysis)
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up to variables with prognostic value, such as the slope parameter of the
exponential distribution of local storm surge heights (Soomere et al.,
2015) or the shape parameter of the generalized extreme value distri-
bution (Soomere et al., 2018). A small selection of these variables have
been recently discussed and tested for the Lithuanian shore (Soomere
et al., 2024). There is also great potential for integrating advanced
machine learning and deep learning techniques into CVI research
(Barzehkar et al., 2024). These approaches could allow for better pre-
diction and modelling of coastal vulnerability, particularly when
incorporating large datasets. Future studies could focus on further
enhancing the robustness of these models by combining environmental
and socioeconomic data with advanced artificial intelligence techniques
for improved decision-making and policy recommendations.

5. Conclusions

In this study we apply and extend widely used MCDA and GIS
techniques to assess coastal vulnerability in Estonia, eastern Baltic Sea,
at a high resolution thereby filling gaps in the literature while spatially
extending previous analysis elsewhere in the region by Kovaleva et al.
(2022) in the eastern Gulf of Finland and Bagdanaviciute et al. (2019) in
Lithuania. The study shows that most (about 90%) of the Estonian has
moderate, low or very low vulnerability, but there are areas, as ex-
pected, with high and very high vulnerability (slightly more when an
analysis based on only 3 parameters regarded by experts as most
important is used).

We added parameters to the analysis that are not typically used,
particularly socio-economic parameters and parameters that are
appropriately measured in 2D. We did not find a method to seamlessly
integrate appropriately measured 1D and 2D data. Excluding 2D pa-
rameters leads to important parameters being excluded but including
them leads to parameters that are necessarily measured only at the coast
being over-emphasized inland, leading to some spurious results. Adding
parameters provided some methodological challenges but excluding
them limits the analysis significantly. This is clearly shown in our
analysis using the only three most important parameters determined by
experts. We did this to determine if it was feasible to reduce the inputs
and still achieve reliable results. However, some spurious results became
evident, e.g. with areas close to the coast being determined as being
vulnerable, despite them being at relatively high elevation.

Very importantly, this vulnerability assessment is made for the whole
Estonian coast extending to a distance of 2 km inland, considering
vulnerability in areas, e.g., behind coastal dunes or along river valleys,
where there may be significant populations and infrastructure. The
resulting countrywide assessment provides some insights that may
highlight locations of interest and importance that may be otherwise not
be considered by coastal managers.

The AHP method typically uses the opinion of experts to produce
weightings for the parameters. We highlight both advantages and
problems of this approach. It was clear that the experts were only using
about half of the ranking scale available to them, and were, with con-
sistency as measured by the Consistency Ratios, making decisions, the
reasons for which was not clear. This meant that some parameters that
we thought should have been regarded as very important for coastal
vulnerability (such as land surface elevation, coastal setback to infra-
structure) were ranked lower than expected.

The CVI analysis and output maps provide an extra layer of infor-
mation to coastal managers and policymakers when undertaking strat-
egy assessments, including planning for infrastructure and coastal
hazard mitigation. The outputs may also be effective for communication
and consultation purposes. However, we emphasize the importance of
interpreting the results in the context of local knowledge and on-site
expert advice.
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Assessing coastal susceptibility to hazards is a critical input for coastal management for countries with long
and greatly varying shorelines, such as Estonia. The use of different decision support systems eventually
contributes to a better understanding of the functionalities and limitations of tools. The conventional multi-
criteria decision analysis (MCDA) techniques using fuzzy logic, analytical hierarchy process, and weighted
linear combination were applied to map the coastal vulnerability index (CVI) for the Estonian coast. As a
promising alternative, we used machine learning based on the Random Forest (RF) algorithm based on the
same set of 16 vulnerability parameters. The results of the MCDA methodology showed that about 47% and
42% of the Estonian coast were in the classes of low and moderate vulnerability, respectively. The estimate
based on the RF technique indicates a much larger proportion of the coast (65.6%) in the class of low
vulnerability and 24.9% in the class of moderate vulnerability. Almost all vulnerable locations identified by
machine learning were in the south of the country. The differences may reflect the larger role of the opinions
of experts in the MCDA analysis, providing a more detailed consideration of the local situation and the
integration of qualitative data.

ADDITIONAL INDEX WORDS: Coastal management, geographical information systems (GIS), multi-criteria
decision analysis, Random Forest algorithm.

INTRODUCTION

Coastal areas can experience negative consequences to
changes in sea level and storm surges, and this can lead to
flooding of low-lying regions (Nicholls et al, 2007).
Infrastructure and human livelihoods may suffer adverse effects
from these coastal hazards (Nichols et al., 2019; Tanner et al.,
2014), potentially also leading to both the loss of ecosystem
services and disruptions to biodiversity in marine and coastal
ecosystems (Myers ef al., 2019). Identifying hazards demands an
appropriate approach that considers evaluating the exposure of
people and assets to hazards, along with assessing the
susceptibility of both human and natural systems to damage
(IPCC, 2014). Vulnerability assessment is becoming popular
among planners to assist coastal communities to enhance their
resilience to hazards (Adger et al., 2005). A coastal vulnerability
index (CVI) is widely used to assess coastal vulnerability
(Rangel-Buitrago et al., 2020).

Using decision support tools (DSTs) provides a possibility to
integrate coastal vulnerability estimates into adaptation planning
(Gargiulo et al., 2020). A geographical information system (GIS)
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is a decision support tool (DST) that facilitates spatial informa-
tion representation, analysis, and visualization (Barzehkar et al.,
2021). The combination of GIS with the multi-criteria decision
analysis (MCDA) technique provides a methodology for
integrating spatial data with experts’ opinions to produce
information for a decision-making process (Malczewski and
Rinner, 2015). Numerous studies have employed GIS and
MCDA techniques to assess coastal vulnerability (Armenio et al.,
2021; Bagdanavicitté et al., 2019; Ghosh and Mistri, 2022).

In recent years, machine learning algorithms and geospatial
techniques have become increasingly popular in mapping hazard
susceptibility globally (Lei et al., 2020). Random Forest (RF) is
a machine learning technique, which models intricate interac-
tions between inputs and can handle large datasets (Wang et al.,
2016). For example, machine learning techniques were used by
Ennouali et al. (2023) and Fannassi et al. (2023) to integrate
these models into coastal vulnerability assessment in Morocco.

However, there exists no systematic comparison of the
outcome of MCDA and machine learning techniques for coastal
vulnerability assessment. Also, the majority of the above-
mentioned methodologies work successfully along relatively
straight shorelines where smooth variation in coastal
vulnerability is likely. The situation is different, e.g., in the
eastern Baltic Sea with complex geometry, morphology, and
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geology, and with a variety of coastal engineering structures
(Kovaleva et al., 2022).

Thus, three distinct gaps in the literature are addressed in this
study using the example of the evaluation of coastal
vulnerability in Estonia in the eastern Baltic Sea.

Firstly, the application of a machine learning technique based
on Random Forest (RF) technique has been integrated with GIS
and compared with well-established MCDA techniques with
respect to their use in coastal vulnerability assessment. Secondly,
the analysis incorporates less apparent and less explored
variables, such as the location of nature conservation areas, land
ownership, and setback (the distance between the initial
infrastructure and the shoreline) extending up to 2 km over low-
lying inland areas with high spatial resolution, to provide a
comprehensive coastal vulnerability assessment. Finally, the
implementation of a coastal vulnerability assessment covers the
entire Estonian coastline. To delineate the study area, the eastern
Baltic Sea coast was selected, extending 2 km inland from the
line corresponding to the long-term mean sea level (0 m in
EH2000 datum), as shown in Figure 1.

METHODS
Multi-Criteria Decision Analysis (MCDA)

The MCDA technique employed for coastal vulnerability
integrates GIS with analytical hierarchy process (AHP), fuzzy
logic, and weighted linear combination (WLC), organized into
the following steps. Firstly, the significant environmental and
socioeconomic parameters influencing the vulnerability are
gathered and incorporated into GIS environment for data
quantification and raster analysis mapping. Following the
framework established by Turner et al. (2003) and applied by
El-Shahat et al. (2021), we consider exposure, sensitivity, and
resilience as the components of coastal vulnerability. Exposure
parameters are land surface elevation, beach slope, closure depth,
extreme water level, maximum significant wave height, relative
sea level rise, shoreline change, and underwater slope.
Sensitivity parameters are geomorphology, land use and land
cover, land tenure, nature protection areas, population density,
and sediments. Resilience parameters are coastal protection
structures and coastal setback.

Vulnerability increases with higher values of specific parame-
ters (e.g., extreme water level, sea level rise rate, maximum sig-
nificant wave height) and decreases with higher values of other
parameters (e.g., elevation, beach slope, shoreline change). Due
to the different scales and meanings of an increase or decrease in
the values of these parameters, it is essential to standardize (nor-
malize) their numerical values before application of the tech-
nique (Eastman, 2009). Fuzzy logic is then applied to standard-
ize the pixels of raster maps, assigning values between 0 and 1
(Barzehkar et al., 2021). AHP is then used to obtain the relative
importance (contribution) of each parameter, producing weights
for individual parameters (Mu and Pereyra-Rojas, 2018). Param-
eter weighting values range from 1 to 9, following the methodol-
ogy established by Saaty and Tran (2007), with validation em-
ploying a consistency ratio (CR) of equal to or less than 0.1 (Mu
and Pereyra-Rojas, 2018). Weighted parameters are then com-
bined in GIS using the WLC technique to produce the final map,
achieved by multiplying the relative weight of each parameter
by its normalized value (Malczewski and Rinner, 2015).

Machine Learning using RF Technique

The RF algorithm is a supervised machine learning technique
that can be applied for classification or regression (Izquierdo-
Horna et al., 2022). This is a beneficial method to specify the
weight of parameters through investigating the relationship
between independent and dependent variables (Gigovi¢ et al.,
2019). In this study, the independent variables are the
parameters involved in coastal vulnerability assessment and the
dependent variables are the hazard and non-hazard locations for
vulnerability analysis. The RF algorithm is a combination of
numerous decision trees. Each tree is an individual model that
makes predictions. They are constructed by using random
samples from the original data (a technique called bootstrapping)
and considering the available predictors (Izquierdo-Horna et al.,
2022). Each decision tree is built when both the predictive and
target variables are defined (Rihan et al., 2023).

To implement this technique, the parameters used for
vulnerability assessment serve as predictors, and the hazard and
non-hazard locations serve as target variables in a classification
problem for categorizing and classifying other locations. Hazard
and non-hazard locations must be specified and divided into two
groups, typically based on a ratio of 70:30 to be used for training
and testing of the model (Yariyan et al., 2020). In this study, a
total of 1000 samples were selected randomly from the MCDA
map to be used in the RF technique, with 700 points for training
of the model (coastal vulnerability classification) and 300 points
for testing (validation) of the model.
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Values >0.44 from the MCDA map were chosen as hazard
locations and values <0.44 were chosen as non-hazard locations.
The numbers of hazard and non-hazard locations were similar in
order to avoid bias (Wang et al., 2021; Rufat and Botzen, 2022).
The coastal vulnerability parameters were used in the next step
of training the model. The sixteen vulnerability parameters (in
the format of raster maps) were incorporated in the GIS
environment. In the final step, the pixel values of the raster

Journal of Coastal Research, Special Issue No. 113, 2024

59



Incorporating a Machine Learning Approach for Coastal Vulnerability in the Eastern Baltic Sea

layers for vulnerability parameters were extracted for the hazard
and non-hazard locations to obtain the training datasets and to
proceed with the training process to classify vulnerability along
a strip 2 km inland from the shoreline, defined as mean sea level.

RESULTS
Coastal Vulnerability based on MCDA and RF Techniques

The comparison between the MCDA and RF in coastal
vulnerability assessment of the eastern Baltic Sea highlights the
different outputs of the two techniques. In the MCDA
framework, experts prioritized extreme water levels, shoreline
change, and geomorphology, while giving less importance to
closure depth, population density, and land tenure. The
computed consistency ratio among experts' opinions was
CR = 0.04, which shows the consistency of experts' perspectives
(Saaty and Tran, 2007).

Despite the use of weighting scales from 1 to 5 by experts, the
geometric mean for weight computation resulted in compression
in the value range, which is a common practice to reach
consensus. Across the study domain, the CVI map derived by
MCDA indicated a high proportion of regions with low (47%) to
moderate  (42.5%) vulnerability. High-vulnerability areas,
particularly those vulnerable to high water levels, gradual
erosion, and proximity to human infrastructure, were
concentrated along the western shoreline of Saaremaa and Parnu
Bay (Figure2). The rationale relating to this pattern are
attributed to (1) the frequent occurrence of elevated water levels
in the Gulf of Riga (Suursaar and Soodidr, 2007; Eelsalu et al.,
2014) and associated shoreline erosion along various sections of
the eastern Gulf of Riga, or (2) susceptibility to westerly storm
events especially on western coast of Saaremaa.
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In contrast, RF technique produced a different vulnerability
classification, with a much larger proportion of areas with low
vulnerability (65.6%) than the MCDA technique. The high
vulnerability areas identified by the RF technique are mainly
located in the Gulf of Riga, including Pdrnu Bay (Figure 3). The
overall spatial pattern of vulnerability classes represented an

alignment between the two methodologies, providing some
confidence in the results.

However, there are big discrepancies in categorizing
vulnerable locations particularly in the Gulf of Riga, the western
shore of Saaremaa, and Tallinn Bay. More vulnerable areas are
mostly located in the south of the country on the shores of the
Gulf of Riga. The most significant parameters based on the
machine learning approach wusing RF technique, were
geomorphology, maximum significant wave height, and
shoreline change. Based on the results from both techniques
(Table 1), very low vulnerability is in the North-west, low
vulnerability is in the North-west and North-east, moderate
vulnerability is in the North-west, Pdrnu Bay, and western
islands, high and very high vulnerability are found in Parnu Bay
and western islands. The detailed analysis using MCDA and RF
techniques provides a comprehensive understanding of the
spatial distribution of coastal vulnerability.

Table 1. Coastal vulnerability analysis using MCDA (lefi two columns)
and RF (right two columns) techniques.

Vulnerability Area (km?) MCDA % MCDA Area (km*) RF % RF

Very low 121 38 15 0.5
Low 1496 47 2086 65.6
Moderate 1350 42.5 793 249
High 207 6.5 236 7.4
Very High 6 0.2 50 1.6
Sum of classes 3180 100 3180 100
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Figure 3. Coastal vulnerability map using the RF technique.

DISCUSSION

Machine learning techniques, especially the RF approach, are
beneficial for handling large datasets and identifying essential
parameters through data-driven algorithms. However, they
cannot integrate expert opinions or site-specific knowledge into
the analysis. On the other hand, MCDA techniques offer a
decision-support framework explicitly designed to incorporate
experts’ perspectives. Employing various MCDA techniques,
such as fuzzy logic, AHP, and WLC provides greater flexibility
to manage uncertainty and ensure a more accurate representation
of vulnerability assessment in the eastern Baltic Sea (and
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apparently in similar locations) than machine learning based on
the RF technique.

Incorporating machine learning into the coastal vulnerability
assessment typically enhances confidence in the outcomes when
compared to other studies. Studies on coastal vulnerability
assessment using machine learning commonly focus on small
geographic areas (Ennouali ef al., 2023; Fannassi et al., 2023) or
specific coastal processes (Asiri ef al., 2024). Hasan et al. (2023)
chose a country-wide approach to coastal vulnerability
assessment to flooding, although primarily emphasizing the
physical parameters of vulnerability.

Our study presents a novel quasi-two-dimensional approach,
examining a 2 km wide zone extending inland from the coast,
which facilitates the mapping of parameters with inherent two-
dimensional data types. By comparing MCDA techniques and
machine learning based on RF, we demonstrate how machine
learning adds value by providing a data-driven approach to
analyzing coastal vulnerability. However, challenges arise for
both methods when incorporating variables that are essentially
one-dimensional, such as extreme water level, setback, etc.,
which naturally exist as line variables along the shoreline
(Barzehkar et al., 2024).

Machine learning techniques like RF can still identify key
parameters without explicitly modeling complex relationships.
This means that these algorithms can automatically recognize
patterns and correlations, allowing them to extract key
parameters contributing to coastal vulnerability without relying
on detailed prior knowledge or assumptions about the underlying
relationships. This enhances the comprehensiveness and
accuracy of coastal vulnerability assessment.

The response to vulnerability assessment requires considera-
tion of resource availability, and environmental and political
factors, with options ranging from hard engineering to doing
nothing (Masselink et al., 2011). Coastal resilience and long-
term sustainability are improved when using strategies for
specific coastal conditions and actively engaging stakeholders.

CONCLUSIONS

The vulnerability assessment of the Estonian coast performed
using two techniques (MCDA and machine learning based on
RF) generated relatively different but still consistent
vulnerability maps. The application of different techniques
highlights in more detail the impact of different parameters and
thus provides a better scientific basis and confidence for the
interpretation of the results.

The most significant factors influencing vulnerability of the
Estonian coasts based on the AHP were extreme water level,
shoreline change, and geomorphology, whereas geomorphology,
maximum significant wave height, and shoreline change
influenced significantly the coastal vulnerability based on
machine learning using RF technique. The output of the MCDA
technique showed that more Estonian coasts have low and
moderate vulnerability (which is aligned with the situation of the
eastern Baltic Sea coasts) than does machine learning using RF
technique. It is recommended that both techniques be applied in
complex coastal environments to prepare coastal vulnerability
maps and investigate further the results of those decision support
systems for sustainable coastal planning and management.
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ABSTRACT |1

variations into coastal vulnerability indexes in microtidal seas. /n: Phillips, M.R.; Al-Naemi, S., and Duarte, C.M.
(eds.), Coastlines under Global Change: Proceedings from the International Coastal Symposium (ICS) 2024 (Doha,
Qatar). Journal of Coastal Research, Special Issue No. 113, pp. 48-52. Charlotte (North Carolina), ISSN 0749-0208.

We explore the potential of several quantities that reflect the magnitude of local water level variations to char-
acterize the contribution of water level into estimates of the Coastal Vulnerability Index (CVI) in microtidal
seas hosting substantial water level variations. The analysis is based on sea level time series reconstructed with
the Rossby Centre Ocean model for 1961-2005 and an early version of the RCA4-NEMO model for 1961—
2009. The projections of extremely high and low sea levels for return periods of 10 and 50 yrs are constructed
using sea level extremes in 12 month long time intervals, block maximum method and several extreme value
distributions. The focus is on the relatively straight Baltic proper shore of Lithuania. We show that projected
extremely high and low sea levels once in 10 and 50 yrs provide certain independent information about
vulnerability along this coastal segment. The use of a larger number of parameters shrinks the range of the
output values of the CVI. The outcome provides important input for coastal management but also suggests that
more elaborated quantities might better characterize the impact of varying water levels on coastal vulnerability.

ADDITIONAL INDEX WORDS: CVI index, Generalized Extreme Value distribution, block maximum, Baltic Sea.

INTRODUCTION

Coastal areas are under gradually increasing joint pressure by
various hydrodynamic loads owing to climate change and differ-
ent kinds of stresses stemming from growing concentration of
people and escalating infrastructure. A particular concern is the
increase in wave power (Kiimmerer et al., 2024) or (compound)
flood events over the whole European domain (Heinrich et al.,
2023). These developments have reinforced the importance of
the proper reaction of coastal communities to the amplifying
pressures on sedimentary shores. In particular, the (geologically)
young and rapidly developing shores of the Baltic Sea (Harff et
al., 2017) serve as a significant coastal management challenge
(Bagdanaviciute et al., 2015) because of unusually strong wave
impact (Viska and Soomere, 2013), presence of water level
outliers (Suursaar and Soodér, 2007) and spatial variability in
the climate change driven modifications of drivers of coastal
processes (Eelsalu et al., 2024; Soomere, 2024).

A natural way to meet this challenge is to develop an ade-
quate measure of resilience or vulnerability of single beaches
and coastal segments. This is a nontrivial task because the
coastal zone is influenced by a large number of drivers. The first
attempt to quantify the vulnerability of open ocean shores
(Gornitz et al., 1991) includes seven parameters: elevation,
lithology, geomorphology, relative sea level change, shoreline
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displacement, tidal range and wave heights. Of these, tidal range
is irrelevant in microtidal basins, such as the Baltic Sea or
Caspian Sea, and has limited impact in many other sea areas,
such as the Red Sea. Relative sea level change often varies
insignificantly even on a country scale of many small countries,
such as Latvia or Lithuania (Bagdanaviciute et al., 2015, 2019).

In essence, coastal vulnerability should incorporate exposure,
sensitivity, and resilience (Turner et al., 2003). This means the
necessity of involving many more parameters. Each of these
components can be represented by several quantities. For
example, the common exposure parameters are land surface
elevation, beach slope, underwater slope, shoreline change,
closure depth, extreme water level, relative sea level change, and
wave loads. Geomorphology, sediments or population density
could characterize sensitivity and coastal protection structures
and coastal setback may indicate the level of resilience (e.g.,
Barzehkar et al., 2024).

While the use of an extended set of parameters but still
following Gornitz et al. (1994) provides many more nuances to
the pattern of coastal vulnerability also at small scales (Bagda-
naviciute et al., 2015, 2019), the resulting pattern is sometimes
controversial. A generic problem is that interpretation of
alongshore variations of some parameters is not straightforward
even for experts in the field. The classic example is tidal range:
if this range is large, the shore has already adjusted to varying
hydrodynamic loads and strong wave storms infrequently occur
exactly at tide maximum. Therefore, many beaches with large
tidal range are actually resilient to large variations in the water
level while coastal sectors where water level variations are
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smaller but sediment is mobile could be vulnerable with respect
to even moderate elevations of water level.

It is thus not unexpected that the use of usual indicators of
vulnerability may lead to controversial results. This feature
becomes clear from the vulnerability of the entire shoreline of
Estonia in the eastern Baltic Sea using a small selection of key
parameters: modeled extreme water level, shoreline change and
geomorphology (Figure 1). Several shore segments that are
categorized as vulnerable (e.g., on Saaremaa) are naturally
protected by numerous rocks and/or resilient vegetation. At the
same time, highly sensitive bayheads and beaches, such as the
interior of Pérnu Bay, formally have moderate or even low
vulnerability (Figure 1).
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Figure 1. Left: Coastal vulnerability map of Estonia based on three most
important parameters: extreme water level, shoreline change and
geomorphology. See details in Barzehkar er al. (2024). Right:
Circulation model calculation points for data in Figure 2. The blue box
shows the area of evaluation of the CVI index in Figures 3, 4, and 5.

To shed more light on the challenge of the use of measures of
alongshore water level variations in estimates of coastal vul-
nerability at the scale of a small country, in this paper we dis-
cuss the potential of several parameters that characterize water
level variations. The focus is on projections for extremely high
and low water levels for a selection of return periods. We show
that alongshore variations of these projections along even fairly
featureless (in terms of development of high and low water lev-
els) coastal segments of Lithuania provide important additional
information about coastal vulnerability. The benefits from the
use of such quantities are discussed in the context of local and
regional variations in the resulting coastal vulnerability index.

METHODS

Coastal Vulnerability Index

We employ here the framework of evaluation of coastal
vulnerability index (CVI) adjusted to the conditions of the low-
lying Lithuanian coast on the eastern shore of the microtidal
Baltic Sea (Bagdanaviciuté et al., 2015, 2019) by modifying the
approach of Gornitz ez al. (1994) considering specific features of
the study area. Specifically, we tested the “impact” of several
quantities characterizing water level variations on the CVI
values based on classic properties that portray coastal
susceptibility: the historical shoreline change rate (HSC, m/yr),

beach width (BW, m), beach height (BH, m), beach sediment
type (BS), underwater slope (US), number of sand bars (SB) and
significant wave height (SWH, m) (Bagdanavicitté et al., 2019).

Data for each of these variables was gridded into 500 m long
sections of the coastline and analyzed using the ArcGIS 10.3
type of analysis, different criteria can contribute differently to
coastal vulnerability. Each criterion's potential role in each grid
cell was assigned a value from 1 to 5, indicating very low to
very high vulnerability, respectively. We intentionally used the
same data set (including significant wave height evaluated using
the SWAN model for 2006-2009), except for adjusting the
weights of individual parameters, as in Bagdanaviciaté et al.
(2019) to identify the potential of different characteristics of
water level for the use as a constituent of CVI values. In this
analysis, all criteria were presumed to have an equal
contribution to coastal vulnerability, and the CVI was calculated
using the arithmetic mean formula. Both the ranges of
vulnerability with respect to each parameter and the resulting
CVI values are divided into five classes of equal width, from
very low (1) (lower 20% of the range) to very high (5) (upper
80-100% of the range) vulnerability.

Projections of Extremely High and Low Water Levels

The classic parameters to characterize vulnerability of a
coastal sector are extremely high water levels in the past. In
some applications, such as safety of shipping in shallow
waterways, also the extremely low water levels could be
decisive (Parker and Huff, 1998). A natural generalization of
these quantities is the projection of extreme sea level maxima
and minima for certain return intervals (Figure 2). These
projections are built using two sets of modeled sea level time
series for the entire Baltic Sea. The 6-hourly output of the
Rossby Centre Ocean (RCO) model for 1961-2005 (Meier et al.,
2003) adequately replicates the course of water level in the
eastern Baltic Sea (Soomere ef al., 2015) while the hourly output
of an early version of RCA4-NEMO model (Hordoir et al., 2013)
for 1961-2009 follows well the average and lower water levels
(Viigand et al., 2024). Both models use the same family of
primitive equations and a regular rectangular grid of 2 x2
nautical miles (nmi) based on stationary topography. They have
been extensively discussed in the above cited scientific literature.

We use projections of extreme sea levels for different return
periods based on an ensemble of various reconstructions of
parameters of extreme value distributions using the block
maxima method and annual maxima and minima of sea level
extremes as well as such maxima and minima during 12-month
intervals from June to July of subsequent year. This ensemble
includes the full Generalized Extreme Value (GEV) distribution,
its particular case Gumbel distribution, and 2-parameter Weibull
distribution to evaluate the lower threshold of sea level extremes
for given return periods. The relevant procedures are provided in
Soomere et al. (2018) and Viigand et al. (2024).

Figure 2 shows that the magnitudes of sea level extremes
greatly vary along the shores of Lithuania, Latvia, and Estonia.
For example, the projected extreme sea level with a return
period of 50 yrs varies from about 1.2m in the south of
Lithuania up to values over 2 m in Pérnu Bay. The existing
projections of this type qualitatively follow the observed water
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level maxima but do not replicate the full range of water level
extremes (Viigand et al., 2024).
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Figure 2. Ensemble of projections of maximum (upper panel) and
minimum (lower panel) sea level once in 50 yrs in terms of sea level
with 50-yr return period along the shores of Estonia, Latvia and
Lithuania. The bold red line indicates the ensemble average used in the
analysis. The lower cluster of projections in the lower panel is based on
the RCA4-NEMO model and the upper cluster on the RCO model.
Graphics by Katri Viigand. See details in Viigand et al. (2024).

The projections of extremely low sea levels to some extent
mirror projections of extreme elevations but have a clearly
smaller range and less pronounced spatial variation. Both these
quantities vary about 20% (+10% from their average values)
along the Baltic proper shores of Latvia and Lithuania. This
level of variation is apparently large enough to become evident
in the CVI index. Similar variations are characteristic to
extremely high and low sea levels once in 10 yrs (not shown).

RESULTS

Sea Level Maxima and Minima Once in 10 Years

The contribution of sea level maxima with a return period of
10 yrs (Figure 3) into the CVI index has a relatively contrasted
appearance compared to the alongshore variations of its other 7
constituents mentioned above. It has a clearly defined maximum
in the north of the Lithuanian shoreline, a minimum from
Palanga to Klaipéda and in the northern part of the Curonian
Spit, and values somewhat larger than average in the southern
part of the Lithuanian sector of the Curonian Spit. The
alongshore variation of this parameter to some extent follows a
similar variation of other parameters used in the estimates.

However, it evidently provides information that is not present in
other parameters. As sea level changes slowly along such a
relatively straight coastline, it is natural that local variations in
the 10-yr maximum sea level are clearly smaller than similar
variations in several other parameters.

The situation is different with sea level minima with 10-yr
return period (Figure 3, right panel). This parameter seems to
provide information that is tangential to the majority of other
parameters. The associated estimated vulnerability is the
smallest in the north of the study area where its absolute values
are smaller. Its largest values occur in the south of the study area.

H

Figure 3. Relative coastal vulnerability with respect to (a) historical
shoreline change, (b) beach width, (c) beach height, (d) beach sediments,
(e) underwater slope, (f) sand bars, (g) significant wave height, (I) CVI
based on these criteria, equal weights, equal intervals classification, (II)
CVI with equal weights but using also (h) sea level maxima (left) or
minima (right) with a 10-yr return period. Note that line (I) is the same
for both panels.

Interestingly, the contribution of both these parameters into
the CVI is similar. Their use insignificantly changes the
minimum CVI value from 1.71 to 1.75 for maxima, or to 1.88
for minima (Table 1). The changes to the CVI maxima are larger:
from 4.57 to 4.125 for maxima or 4.25 for minima.
Incorporation of sea level maxima slightly increases the
resulting CVI values in the north while the use of sea level
minima does the same in the south (as seen from a comparison
of lines I and II in Figure 3). It is therefore likely that these
parameters carry different information and are equally important
constituents of a reliable CVI index.

The pattern and relative magnitude of spatial variation of
extremely high and low sea levels once in 50 yrs largely follows
these aspects for sea levels in 10 yrs (Figure 4). It is therefore
expected that their contribution to the CVI index varies in a
similar manner along the study area.

Figure 4 signals that these variations are still not exactly
equivalent. This feature apparently reflects certain alongshore
variations in the shape parameter of the generalized extreme
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value distribution in the study area. Namely, its larger values
indicate a faster increase in the projected sea level in the
particular location (Coles, 2004).

PR S S S R/ (N
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Figure 4. Left: Relative coastal vulnerability according to (a) minimum
sea level with 10-yr return period, (b) maximum sea level with 10-yr
return period, (¢) minimum sea level with 50-yr return period, (d) maxi-
mum sea level with 50-yr return period based versus (I) the CVI values

(b) CVI with minimum sea level with 10-yr return period, (c) CVI with
maximum sea level with 10-yr return period, (d) CVI with minimum sea
level with 50-yr return period, (¢) CVI with maximum sea level with 50-
yr return period, (I) CVI index based on 11 criteria, equal weights.

All these parameters show agreement that the central part of
the study area, about 15 km to the north and south of Klaipéda,
has low vulnerability with respect to both high and low sea lev-
els (Figure 4). They also agree that the southernmost part of the
study area is more vulnerable to sea level variations than the
central part. Intriguingly, the shore is less vulnerable with re-
spect to sea level extremes that occur once in 50 yrs than with
respect to those that occur once in 10 yrs. The four parameters
reflecting sea level variations disagree with respect to vulnera-
bility in the north of the study area. While this segment is char-
acterized as very vulnerable with respect to sea level maxima, it
has very low vulnerability with respect to sea level minima.

Table 1. The range of CVI values in different CVI estimates in Figure 4.

Index type Number of CVI index range
variables Min Max

Reference CVI (RCVI) 7 (see above) 1.71 4.57
RCVI+10-yr minimum 8 1.88 4.25
RCVI+10-yr maximum 8 1.75 4.125
RCVI+50-yr minimum 8 1.75 4.125
RCVI+50-yr maximum 8 1.75 4.125
RCVI+all above 11 1.64 3.64

Integration of every single parameter as well as all the consi-
dered parameters into the CVI index using equal weights does
not radically change the alongshore variation in the CVI index
but still adds some nuance to its appearance (Figure 4). The
length of segments with high and very high vulnerability
decreases by 3—-10% while the share of segments with moderate
vulnerability increases by 9-21% (Table 2, Figure 5).

Table 2. Distribution of CVI classes in coastal sections in Figure 3 and 4.
%

Vulnera-

o CVI

bility range  RCVI +10_—yr +10-yr +5Q—yr +50-yr All

class min max min max
Verylow 1.0-1.8 0.6 - 0.6 0.6 0.6 2.8

Low 1.8-2.6 309 202 236 236 264 253
Moderate 2.6-3.4 483  69.1 60.1 652 573 635

High 3442 163 7.9 13.5 84 13,5 6.2
Very high 4.2-5 1.7 0.6 0.0 - - -
No data — 2.2 2.2 2.2 2.2 2.2 2.2
+s0ymax _ o 1 2
+10ymin _ ) 8 lz

: mverylow mlow ©moderate ® high lver'ymgh nodata “ :

Figure 5. Distribution of CVI classes in coastal sections in Figure 3 and 4.

DISCUSSION

We have made a first step towards systematic inclusion of
water level variations into estimates of coastal vulnerability in
microtidal water bodies in terms of modeled sea levels. The
analysis first of all demonstrates that, not unexpectedly, water
level variations serve as an important constituent of coastal vul-
nerability in such water bodies. Natural parameters characteriz-
ing these variations are the projections of extreme sea levels
with various return periods. It is likely that these parameters are
more stable than time series of modeled sea levels or observed
water levels and provide important information that
complements similar information provided by classic parameters
that describe the geomorphology and history of the beaches.

Somewhat surprisingly, both sea level minima and maxima
provide clearly independent information even though they agree
in some parts of the study area. Also, projections of sea level
extremes for different return periods seem to provide a certain
amount of independent information. This feature signals that
more elaborate parameters, such as the scale parameter or
exponent of empirical probability distribution of sea levels
(Soomere et al., 2015), or even the shape parameter of the
generalized extreme value distribution, might carry even more

Journal of Coastal Research, Special Issue No. 113, 2024

51



Towards Implementing Water Level Variations Into Coastal Vulnerability Indexes in Microtidal Seas

useful information even though their values are noisy and
contain substantial uncertainties depending on the particular
method of their evaluation (Soomere ef al., 2018).

A general feature of the inclusion of one or more of the
discussed parameters into the CVI is that the range of the
resulting CVI values becomes smaller and in particular its
highest values are reduced. This feature is not unexpected as
different parameters intrinsically characterize vulnerability
differently and the use of a larger selection of parameters tends
to shrink the range of the resulting CVI values.

CONCLUSIONS

We have demonstrated that projected extremely high and low
sea levels with 10-yr and 50-yr return periods provide certain
independent information about coastal vulnerability even along
fairly straight coastal segments of microtidal water bodies, such
as the Baltic Sea. The use of a larger number of parameters
naturally shrinks the range of the output values of the Coastal
Vulnerability Index.
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Abstract

Optimizing the location of wind and photovoltaic solar power plants is a significant environmental management problem.
The effectiveness of the site selection process for renewable energy systems (RES) could be strengthened by flexible spa-
tial and environmental planning strategies using decision support systems (DSS) to critically identify the most productive,
environmentally friendly and acceptable sites for the production of sustainable and reliable wind and solar energy. This
study discusses hybrid DSS, using multi-criteria evaluation based on the analytical hierarchy process (AHP), a geographical
information system (GIS), fuzzy logic, and a weighted linear combination (WLC) approach to determine optimal locations
for renewable energy generation infrastructure. In the first stage, the most decisive factors for evaluating the site suitability
were identified, based on experts’ opinions. Next, raster layers of ecological and socioeconomic sub-criteria were prepared
GIS software. After incorporating the raster maps of each parameter, fuzzy membership functions were applied to normalize
each raster layer between 0 and 1. The relative weights of different indicators were calculated using super decision software.
Prioritizing vital elements were performed using AHP. In the final stage, the WLC approach was utilized to amalgamate
layers in the GIS environment, which afforded the final site suitability maps. In Isfahan Province, Iran, 26% of the land area
was found to be highly suitable for solar farms with 18% being highly suitable for wind farms. The results illustrate that
using and comparing the results from combinations of computer-based DSS are more likely to result in better decisions than
using individual DSS tools for the determination of the most suitable sites for RES location.
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Introduction

Human communities have been subjected to global warm-
ing effects caused primarily by the increasing usage of fos-
sil fuels (Amjad and Ali Shah 2020). Conventional energy
resources such as coal, oil, and gas are becoming less attrac-
tive because they release substantial amounts of greenhouse
gases, especially CO,, into the atmosphere (Pambudi and
Nananukul 2019). Furthermore, they have been considered
as the major contributing factor in disturbing the ecological
values of important natural ecosystems, particularly through
air pollution or reducing the quality of ecosystem services
(Giamalaki and Tsoutsos 2019).

Existing electric power plants have been recognized as
drivers in damaging habitats and degrading the soil through
their construction and maintenance phases (Suuronen et al.
2017). Many countries are now choosing sustainable sources
of energy, which could contribute to environmental sustain-
ability and provide alternatives to meet the energy demands
of a community (Solangi et al. 2019). The majority of coun-
tries, particularly wealthy nations, have embraced renewable
energy power plants, which are considered to be sustainable
and environmentally friendly, and are often more affordable
than using traditional energy resources (Konstantinos et al.
2019). Renewable energy sources, such as wind and solar
farms, have paved the way toward innovative, affordable,
long-term investments and created much more profitable and

@ Springer

economically viable solutions for the societies, as well as
for the next generations, to satisfy energy needs and address
climate change (Dhunny et al. 2019). In some instances,
green jobs associated with renewable energy have been
used to provide indigenous peoples with good employment
opportunities and to tackle critical environmental challenges
(Suuronen et al. 2017).

There has been a pressing obligation for environmental
specialists and policy-makers to develop and apply new tools
to help with these important energy priorities (Doorga et al.
2019), including developing strategies to find the most suita-
ble locations for wind and solar energy infrastructure to both
develop the energy potential and mitigate the consequences
of climate change (Nait Mensour et al. 2019), in environ-
mentally sustainable ways. A common and effective way to
achieve these aims is to use decision support systems (DSS)
to effectively and accurately identify the most suitable sites
for the installation of wind and solar power plants, based
on different indicator parameters (Villacreses et al. 2017).

Geographical information systems (GIS) have been com-
monly used as an efficient decision-support tool to store,
analyze, and map the criteria regarding spatial planning for
the renewable energy sector (Gasparovic and Gasparovic
2019). GIS is a tool that can help to minimize the time and
cost of precise site planning while taking into consideration
a database of information on the best possible sites. Another
widely utilized method is multi-criteria decision-making
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(MCDM), which is a powerful tool for specifying and pri-
oritizing candidate locations in the site selection process
for energy planning (Diaz-Cuevas 2018). The combination
of GIS and MCDM provides a new possibility to devise
an integrated approach to effectively investigate locations
for the planning of wind and solar farms. This combined
problem-solving model has high efficiency, flexibility, and
inclusiveness in determining the environmental capacity of
an area based on ecological, social, and economic factors
to be applied to the site specifications (Baseer et al. 2017).

Since relying on only one kind of renewable energy
cannot guarantee future generations’ energy needs, it has
become fundamentally important to consider both wind and
solar farms to minimize intermittency problems. Based on
the sustainable development goals for exploiting renewable
energies, environmental sustainability and social welfare,
indexes are incorporated into DSS for the identification of
appropriate hybrid solar and wind generation sites (Aktas
and Kabak 2019). It is feasible to develop both wind and
solar farms at the same physical location (Ali et al. 2019).

There have been many studies regarding renewable
energy plant site planning. Moradi et al. (2020) employed
GIS and AHP as DSS for wind farm site selection in Alborz
Province, Iran. Their research outcomes indicated that this
method has high functionality to divide the spatial problem
into smaller ones to achieve reliable results for site selection.
Xu et al. (2020) undertook site selection for wind farms by
considering stochastic VIKOR and interval analytical hier-
archy processes (IAHP). They concluded that the integration
of two methods could handle effectively the variability of
weights given to the relative importance of parameters and
the main calculations for selecting the candidate sites con-
nected with diverse indicators. Koc et al. (2019) used GIS
and AHP to identify desirable sites for solar and wind energy
installations in Igdir Province, Turkey. They concluded that
the best outcomes were obtained by comparing the results
of the two methods. Dhunny et al. (2019) undertook wind
and solar farm site selection by including fuzzy logic into
the decision-making process. Their results showed that fuzzy
logic assisted in the aggregation of qualitative and quantita-
tive results for finding optimal locations.

Ali et al. (2019) applied GIS and MCDA, such as AHP, to
determine areas that have the suitability for wind and solar
installations in Thailand, advocating an integrated approach.
Diaz-Cuevas et al. (2019) utilized an approach employing
AHP and WLC in a GIS environment. They found this
method useful for more sensibly prioritizing wind, solar,
and biomass farm locations in Southern Spain. Uyan (2017)
used GIS and AHP to optimize suitable locations for solar
power plants in Karaman, Turkey. He found that the GIS-
based MCE approach was a useful technique to determines
feasible sites for solar farms from a range of alternatives.

Anwarzai and Nagasaka (2017) used MCDA and GIS to
assess wind and solar energy farm locations in Afghanistan.
They showed that the incorporation of MCDA applications
in the ArcGIS environment could make a significant dif-
ference in determining better sites for energy development.
Jahangiri et al. (2016) utilized Boolean logic to identify
appropriate sites for the establishment of solar and wind
power plants in the Middle-East. Their results indicated
that this method was a more definitive approach to locate
areas that have potential for energy exploitation. Watson
and Hudson (2015) employed a GIS-based multi-criteria
evaluation using Boolean logic and AHP to analyze the
suitability of areas for large-scale wind and solar farm site
assessments in England. They found that this method has the
ability to make a significant contribution to the site selection
process for renewable energy facilities in coastal regions. In
a similar study, Janke (2010) used a GIS-based model using
multi-criteria approaches to examine the potential areas for
wind and solar farms in Colorado State, USA. The research
results demonstrated that wind energy is more beneficial for
large-scale farms, while solar power plants are more suited
to small-scale farms.

As demonstrated above, the use of a decision support tool
(or tools) to assist in site determination for renewable energy
systems (RES) is now common. The main contribution and
novelty of this study is the comparison and investigation
of the diverse strategic, computer-based DSS available,
and their use in combinations that can be implemented by
experts and environmental authorities to help determine the
best sites for RES location.

This research focuses on three objectives, and uses the
case of Isfahan Province, Iran as a case study. Firstly, we
identify areas that are environmentally preferred for the loca-
tion of wind and solar farms. Secondly, we consider land
use, where a balance between renewable energy expansion
and environmental conservation must be considered and
achieved, and where there must be a high-degree of commu-
nity acceptance. Thirdly, we identify for the study area the
optimal sites for wind and solar energy facility development.
To achieve these goals, the most flexible and inclusive DSS
for wind and solar power plant site selection are considered.

Site selection criteria

Site selection for wind and solar farms needs to incorporate
a wide range of criteria to optimize electricity production
and the protection of natural environments. As the goals of
energy efficiency and environmental conservation are inex-
tricably intertwined (Diaz-Cuevas et al. 2019), it is impera-
tive to integrate both environmental and socioeconomic
factors into decision-making to enable the generation of the
required energy as well as respecting the natural ecosystems
(Jahangiri et al. 2016).
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Renewable energy farms should be at locations distant
from protected areas. Areas which are prone to floods and
soil erosion, and where there are steep slopes or nearby
active faults should be excluded. Optimal sites should be
in close proximity to power transmission lines and trans-
port networks to avoid excess costs and maximize efficacy
(Solangi et al. 2019). Obviously and most importantly, solar
radiation and wind speed are key drivers for solar and wind
renewable energy farm site selection. Potential sites for wind
and solar energy farms are selected by considering several
environmental specifications (Table 1) including wind
speed, potential solar radiation, slope, probability of flood-
ing, distance from faults, soil texture, geological formations,
and distance from rivers. Protected areas, with high biodi-
versity values, are removed from consideration as possible
sites. Socioeconomic factors (Table 1) such as distance from
power transmission lines, distance from population centers,
land use/cover, and distance from roads are incorporated
in the analysis (Anwarzai and Nagasaka 2017). The impor-
tance of various parameters for site selection was determined
through consultation with professional environmental and
energy experts and scrutinizing reputable international pub-
lications on the identification of wind and solar farm sites.
It has been universally recognized that the environmental
and socioeconomic factors have different priorities (Dhunny
et al. 2019) but with many commonalities, which may vary
depending on local conditions. Data sources used for the
parameters in this study are indicated: (1) Digital Elevation
Model (DEM) derived from Isfahan Province Management
and Planning Organization (2018); (2) Iran Energy Effi-
ciency Organization (2018); (3) The World Bank (2017);
4) (5) (6) (7) (8) (9) (10) (11) (12) (13) Isfahan Province
Management and Planning Organization (2018).

Materials and methods
The study area

The study area, Isfahan Province, is in the center of Iran.
It covers an area of 107,017 square kilometers. The cli-
mate is generally described as arid and semi-arid, although
there are a variety of physiographic regions. Due to densely
populated cities and many industrial centers, satisfying the
energy demands of the inhabitants of Isfahan is important
(Zoghi et al. 2017). There are valuable wetlands and pro-
tected areas with high ecological values, in particular Ghom-
ishloo National Park, Gavkhouni Wetland, Mouteh Wild-
life Refuge, and Kolah Ghazi National Park, which must

@ Springer

be considered and protected when renewable energy power
plant site selection is undertaken. It is generally believed
that solar radiation and wind speed are sufficiently high for
renewable energy to provide for the sustainable develop-
ment goals of the province (Noorollahi et al. 2016). Figure 1
shows the location of Isfahan Province in Iran, and Fig. 2 is
a land-use map of the study area.

Methodology
Fuzzy logic

The first stage of the research was to identify the most effec-
tive criteria and sub-criteria concerning wind and solar
farms site evaluation through a comprehensive literature
review. This was supplemented using the international stand-
ards and regulations required for renewable energy spatial
planning (Yushchenko et al. 2018). After identifying the
ecological and socioeconomic parameters for renewable
energy site evaluation, each sub-criteria or spatial factor was
quantified into obtain raster layers. This was implemented
with the pixel size of 10X 10 m using the raster analysis
operator of ArcGIS 10.7 software (Asakereh et al. 2017) in
the coordinate system WGS 1984/UTM Zone 39.

For solar energy, the long-term yearly average of diffuse
horizontal irradiance (DHI) based on kilowatt-hours per
square meter (KWh/m?), covering the period of 1999-2015
was sourced from The World Bank (2017), who used satel-
lite digital images and atmospheric datasets. Solar energy
of at least 1500 kWh/m?/year is suitable. Wind energy was
monitored by field measurements at large-scale (country
level). Wind data were collected at 161 locations over the
entire country (Iran) including 10 locations in Isfahan Prov-
ince, and normalized to average annual wind speed 80 m
above the ground (hub height). An inverse distance weight-
ing (IDW) method was used to generate a wind raster map
(Iran Energy Efficiency Organization 2018). Data for other
parameters were obtained from Isfahan Province Manage-
ment and Planning Organization (2018). Then, the raster lay-
ers of each parameter were standardized by applying a fuzzy
membership function normalizing raster factors between the
scales of 0 and 1, which relies heavily on fuzzy function
types, whether it is increasing or decreasing (see below), for
site suitability preferences (Wu et al. 2018). Table 2 shows
the indicator parameters for wind and solar energy power
plant site selection that were used.

In the fuzzy standardization method, the “member-
ship” of a pixel in the raster map is evaluated from zero
(lack of full membership) to one, (full membership). On
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this scale, larger numbers are more desirable. There are
diverse approaches for fuzzy standardization of data lay-
ers using minimum and maximum values. The logical
way is using a linear scale, which has been applied to this
study. The fuzzy membership approach using this method
functions differently for any particular variable based
on decreasing or increasing functions (Barzehkar et al.
2016). Some parameters such as slope, and distance from
population centers, power transmission lines and roads,
are of a decreasing type. This means that between a mini-
mum threshold (a) and a maximum threshold (») which is
acceptable, the number assigned decreases. An increasing
type is the opposite. Distance from rivers, fault lines and
protected areas are of increasing type, which indicates that
the anything above the maximum threshold is also suit-
able. Formulas (1) and (2) show how to calculate the fuzzy
standardized degree. For example, for distance from fault
lines, “a” is 500 m, which means less than 500 m from the
fault lines is not acceptable and gives zero number. The
number “b” is 1000 m and is assigned the value 1, and dis-
tances greater than 1000 m are also suitable and assigned
the value 1. The fuzzy standardization of other parameters
based on Table 2 was also calculated using Eqs. (1) and
(2), where X; is the value assigned to the fuzzy stand-
ardized layer, R; is raw score of each pixel of the map,
R,.in is the minimum threshold and R, ,, is the maximum
threshold, and whether the parameter is of increasing or
decreasing type is shown in Table 2.

Isfahan Province Management and Planning Organization (2018)

Data source

X = Ri - Rmin
- M
max min

Rmax - Ri
R R, @

min

X, =
R

max

in environmental quality and agricultural/industrial produc-
tion, the land use of regions is considered (Diaz-Cuevas et al.

In terms of ecological value and potential, as well as their role
2019)

Description

AHP approach

Because the significance of different factors varies based
on experts’ knowledge, it was crucially important to assign
weights to each sub-criterion using the AHP before employ-
ing the WLC method. One of the most popular decision-
making tools, an analytical tool based on super decision
software (SDS) for prioritizing and weighting various fac-
tors, was used (Uyan 2017). The SDS was utilized to obtain
the final weights of each parameter by applying a pairwise
comparison matrix of distinct elements. Before implement-
ing this vital step, the comments of highly qualified environ-
mental and energy experts were sought using questionnaires
regarding the relative importance of different parameters
(values from 1 to 9). As can be seen from Table 3, twenty
experts from the Iran Energy Efficiency Organization and

Sub-criteria
Land use/cover'?

Table 1 (continued)

Criterion

@ Springer
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Fig. 1 Location of Isfahan Province (in pink), Iran (Isfahan Province Management and Planning Organization (2018))

Iran’s Department of Environment, plus five others from
academic institutions chosen based on their expertise were
asked to prioritize factors. A matrix was developed based
on the geometric mean values of the expert opinions, which
reflects the importance of each factor compared to other fac-
tors. As shown in Table 4, for example, the distance from a
protected area is 2 times more important than land use when
assessing the sites of wind farms. The geometric mean of
the responses to the questionnaires was utilized as an input
to the super decisions software to attain the final weights
of ecological and socioeconomic sub-criteria (Davtalab
and Alesheikh 2018). Inconsistency between expert judg-
ments was determined by obtaining an inconsistency ratio
(IR) among a variety of factors. IR is determined by energy
experts and environmental specialists using a prioritiza-
tion process of parameters in SDS (Aydin et al. 2013). An
IR> 0.1 represents a low evaluation of the criteria and the
outcomes should not be accepted, while IR <0.1 indicates a
consistency between specialists’ judgments and the results
are acceptable.

@ Springer

Table 5 represents the priorities of decision-makers for
ranking of site selection factors concerning the importance
of each parameter to others based on the scale 1-9.

WLC approach

One of the most widely used methods for the combina-
tion of different raster layers in ArcGIS is to employ the
WLC approach (Barzehkar et al. 2016). In the following
stage, the determination of the final site suitability map
for either wind or solar farms was carried out by mul-
tiplying each fuzzy standardized factor and its weight,
and aggregation of all factors using the raster analysis
function based on WLC method in ArcGIS (Tavana et al.
2017). The multi-criteria evaluation (MCE), which was
used in this research, used Eq. (3) (Ali et al. 2019) below,
where S is the site suitability of the region, W; is the rela-
tive weight of the sub-criteria, X is the fuzzy standard-
ized layer, and n is the number of sub-criteria (Ali et al.
2019). Figure 3 shows the steps for wind and solar farms



Decision support tools for wind and solar farm site selection in Isfahan Province, Iran

1187

4200!)'0 000000 54000.0 000000

SGWDID 000000 73000'0 000000 90000‘0 000000

3800000

0 36000(:0 e 3700000

3500000 "

3400000

000000

g

Land use type

® |sfahan city

- Barren lands
\:| Gardens
- Forests

Alluvial sediments
V777 wetland
- Lake
- Rangelands
l:| Residential areas
- Built-up areas
- Protected areas
E Mountainous areas
|:| Desert areas
- Agricultural lands

T
3600000 ¢

T
3500000 "

3400000

PV PP

T T T
660000 780000 900000

Fig.2 Land-use map of Isfahan Province, Iran (Isfahan Province Management and Planning Organization (2018))

site selection using the fuzzy logic and WLC method in
Isfahan Province.

S= inWi 3
=

Results and discussion

In this study, integration of GIS, multi-criteria evaluation
based on AHP, fuzzy membership functions and the WLC
approach has been employed to investigate and identify

which sites have the feasibility to become wind and solar
power plant locations. Since either wind or solar energy
alone might not be able to address the energy shortages in a
society and owing to the unpredictability of climate condi-
tions in each region of Isfahan, both are considered.

An integrated site selection process is the best strategic
decision-making system to equally prioritize both environ-
mental protection goals and demands for socioeconomic
development. An efficient site selection strategy could
strengthen coordination in environmental conservation
measures especially among energy efficiency organizations
and other governmental corporations. Consequently, the
land-use conflicts between renewable energy development
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Table 2 Threshold values and fuzzy membership function to stand-
ardize different layers in fuzzy logic for (a) solar farm (Nait Mensour
et al. 2019; Doorga et al. 2019; Solangi et al. 2019; Ali et al. 2019;

Tavana et al. 2017) and (b) wind farm (Konstantinos et al. 2019;
Diaz-Cuevas et al. 2019; Ali et al. 2019; Rezaian and Jozi 2016;
Azizi et al. 2014), site selection

Row Environmental and socioeco- Suitability Threshold value Type of the fuzzy
nomic layers — - membership func-
Minimum threshold a Maximum threshold b tion
1 Slope 3-5% 3% 5% Decreasing
2a  Solar radiation 1500-2000 kWh/m?/year 1500 kWh/m*/year 2000 kWh/m*year ~ Increasing
2b  Wind speed 6-7 m/s 6 m/s 7 m/s Increasing
3 Distance from rivers 500-1000 m 500 m 1000 m Increasing
4 Flooding Areas outside the flood plain - - User-defined
5 Distance from fault lines 500-1000 m 500 m 1000 m Increasing
6 Soil texture Clay and silt clay textures - - User-defined
7 Geological formations Igneous, metamorphic, and sedi- — - User-defined
mentary rocks
8 Distance from wetland and pro- ~ 500-1000 m 500 m 1000 m Increasing
tected areas
9 Distance from population centers  500-2000 m 500 m 2000 m Increasing
10 Distance from roads 500-2000 m 500 m 2000 m Decreasing
11 Distance from transmission lines  500-1000 m 500 m 1000 m Decreasing
12 Land use Barren lands and areas with very — - User-defined

low plant density

Table 3 Demographics of the experts used for prioritizing the relative
importance of parameters

Governmental departments  University
Male/female (number) 13/7 3/2
Age range (years) 30-57 38-60
Education (degree) Bachelors, Masters, PhD PhD
Field of expertise Energy management Land-use plan-
Energy engineering ning
Environmental planning Environmen-
and management tal impact
Environmental protection assessment

and education
Environmental impact
assessment

and environmental preservation would be substantially
reduced.

Experts’ perspectives, together with international regula-
tions, were used for determining the parameters for wind
and solar energy power plant site selection. Not surprisingly,
experts and decision-makers assigned the highest weights to
wind speed and solar radiation. Distance from power trans-
mission lines and distance from population centers were

@ Springer

of secondary importance. Soil texture and geological for-
mations had the lowest priorities, based on the specialists’
perceptions.

Figure 4 shows the final weights and priorities assigned
to the environmental and socioeconomic factors for wind
farm site selection, and Fig. 5 presents the final weights and
priorities assigned to the environmental and socioeconomic
factors for solar farm site selection.

Figure 6 shows results from the fuzzy logic and WLC
approach for wind farm site selection (range 0.015-0.9),
and Fig. 7 shows the results for solar farm site selection
(range 0.068-0.88). In this research, the IR was calculated
to be 0.09 in the super decision software environment for
the ecological and socioeconomic parameters of wind and
solar power plants site evaluation. The consistency between
experts’ perspectives is acceptable. The final suitability map
for either wind or solar farms was classified into five catego-
ries shown in Tables 6 and 7. For wind energy, 18% of the
province has high suitability, and for solar energy 26% has
high suitability.

In this research, fuzzy logic and WLC approach are
employed to standardize the environmental and socio-
economic raster layers and the aggregation of them,
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Table 5 The priorities of decision-makers for pairwise comparison of
parameters (Saaty 1980)

Priorities of decision-makers Numerical value

Extremely prioritized 9
Less important than the above priority 8
Very strongly prioritized 7
Less important than the above priority 6
Strongly prioritized 5
Less important than the above priority 4
Moderately prioritized 3
Less important than the above priority 2
Equally prioritized 1
Less important than the above priority 172
Moderately unprioritized 1/3
Less important than the above priority 1/4
Strongly unprioritized 1/5
Less important than the above priority 1/6
Very Strongly unprioritized 1/7
Less important between the above priority 1/8
Extremely unprioritized 1/9

‘ Adoption of the study area

)

‘ Identification of the ecological and socioeconomic factors

)

| Entering data to ArcGIS software and mapping the parameters

)

‘ Fuzzy standardization of raster layers between 0 and 1 ‘

l

| Prioritizing and ranking factors via pairwise comparison matrix based on AHP |

)

| Raster analysis of parameters in ArcGIS using the WLC approach |

)

| Final site suitability map derived from WLC technique ‘

Fig.3 Steps for wind and solar farms site selection using fuzzy logic
and WLC method
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respectively, leading to an estimate of the degree of site suit-
ability on a continuous scale. The high class of land suitabil-
ity is located in the areas where the probability of flooding
is low, with low permeable soils such as clay, and which
are far from the wetland and protected areas, fault lines and
rivers. The potential locations are also located in the areas
with proximity to cities, roads, and transmission lines, which
is logical to guarantee the socioeconomic benefits of energy
generation for the community. The suitable sites for wind
farms are influenced by the wind speed of 6-7 m/s, and the
appropriate sites for solar farm are influenced by a DHI of
1500-2000 kWh/m?/year.

The previous studies implemented by Diaz-Cuevas et al.
(2019) and Anwarzai and Nagasaka (2017) suggested that
the combination of WLC, AHP, and GIS would be useful
for ranking the potential sites of wind and solar farm. In
this research, the application of fuzzy logic is also used
to standardize the raster maps on a wider scale (from 0
to 1). This gives the decision-makers more choice with
better information when considering wind and solar farm
site selection. The fuzzy membership functions are also
effective in reducing the uncertainty of site selection, by
standardization of pixels in each raster layer. Therefore,
the integration of fuzzy logic with AHP, WLC, and GIS
is a flexible approach to the analysis of land suitability for
either wind or solar energy.

As seen in Fig. 6, areas in the north and east of the prov-
ince have generally higher suitability for wind farms than
the areas located in south and west. The most suitable loca-
tions are generally areas that are sparsely populated with
little vegetation, are distant from protected areas, and have
generally higher wind speeds and a higher number of windy
days. With respect to solar wind farm location, Fig. 7 shows
that the north and east are even more favored than the south
and west, with solar energy levels being higher than in other
regions due to fewer cloudy and rainy days. For both wind
and solar farm location, the north and east were also more
favored by decision-makers than the south and west.

Using these methods, environmental authorities and
planners have better tools to understand the energy gen-
eration capability of this diverse province, and increased
ability to incorporate both environmental and socioeco-
nomic capacity for renewable energy utilization into plan-
ning frameworks. Fuzzy logic, which has been utilized
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in this study, is highly effective as a logical research
framework for comparative assessment of possible sites
of wind and solar power projects with great ability to
handle the uncertainty of large-scale suitability analy-
sis through the normalization of relevant factors. The
appropriate prioritization of wind and solar farm sites is
of importance with respect to land use for environmental
protection and energy development. The proposed fuzzy
approach, coupled with AHP, WLC, and GIS, is useful in
ranking the suitability of different candidate sites. It has
also been determined that the outcomes of an integrated
approach, through the combination of diverse decision-
making tools, may provide better information than using
single tools.
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Conclusions

This study highlights a combination of desirable decision
support tools that encompass MCE based on AHP, fuzzy
logic, the WLC method, and GIS models to formulate a
meaningful research framework that incorporates environ-
mental and socioeconomic data associated with site selec-
tion for wind and solar farm installations. The application
of MCE enabled us to define a set of important parameters,
which represent the site suitability for renewable energy
power plants in the Isfahan Province, Iran. It may be pos-
sible to incorporate a wider variety of parameters includ-
ing further ecological, social, and economic indicators to
improve site selection even further.
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Fig.6 Wind farm site suitability

The use of the high suitability sites selected may help
rationalize the provision of energy to people in the com-
munity with protection of the environment for the next
generations. Not only is this an intelligent problem-solv-
ing approach for decision-makers to tackle environmen-
tal issues of renewable energy system site selection, but
it could also provide impetus for further development of
wind and solar energy in a region.

It is concluded that the optimal energy systems are
likely to be achieved by a mix of two or more renewable
energy technologies to provide sustainable electricity in
terms of satisfying the energy demands of people in the
society and overcoming intermittency of supply, as well
as providing a cost-effective way for energy expansion.
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Blended decision support tools lead to more satisfactory
and flexible environmental planning decisions. In this
study, three main criteria and 12 sub-criteria for wind or
solar farms were applied to the decision-making process,
with the north and east of the province being found to be
generally more suitable for both solar and wind farm loca-
tion than the south and west, but with considerable local
variability within the regions. The number of parameters
considered can be increased in future research to enhance
the performance of the site evaluations.
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Table 6 Land suitability as a percentage of the area of Isfahan Prov- Table 7 Land suitability as a percentage of the area of Isfahan Prov-
ince for wind farm site selection using the fuzzy logic and WLC ince for solar farm site selection using the fuzzy logic and WLC
approach approach
Class of suitability Area (km?) Percentage Class of suitability Area (km?) Percentage

of area (%) of area (%)

Very Low 15,771 15 Very low 7656 7
Low 31,494 29 Low 26,813 25
Moderate 40,959 38 Moderate 44,929 42
High 18,793 18 High 27,619 26
Sum of Suitability 107,017 100 Sum of suitability 107,017 100
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