
DOCTORAL THESIS

Novel Neural Network
Accelerator Architectures
for FPGAs

Madis Kerner

TALLINNA TEHNIKAÜLIKOOL

TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2024

TALLINN UNIVERSITY OF TECHNOLOGY DOCTORAL THESIS
16/20244

Novel Neural Network Accelerator
Architectures for FPGAs

MADIS KERNER

TALLINN UNIVERSITY OF TECHNOLOGYSchool of Information TechnologiesDepartment of Computer Systems
The dissertation was accepted for the defence of the degree of Doctor of Philosophy on
27 March 2024

Supervisor: Prof. Dr. Jaan Raik,
Department of Computer Systems, School of Information Technologies,
Tallinn University of Technology,
Tallinn, Estonia

Co-supervisor: Assoc. Prof. Dr. Kalle Tammemäe,IT College, School of Information Technologies,
Tallinn University of Technology,
Tallinn, Estonia

Co-supervisor: Prof. Dr.-Ing. Thomas Hollstein,

Opponents:

Research Center Future Aging,
Frankfurt University of Applied Sciences,
Frankfurt, Germany
Prof. Dr. Alberto Bosio,
Institute of Nanotechnology Ecully,
Ecully, France
Prof. Dr. Jari Nurmi,
Faculty of Information Technology and Communication Sciences,
Tampere University,
Tampere, Finland

Defence of the thesis: 10 April 2024, Tallinn
Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree elsewhere.

signatureMadis Kerner

Copyright: Madis Kerner, 2024 ISSN 2585-6898 (publication) ISBN 978-9916-80-130-7 (publication)ISSN 2585-6901 (PDF)ISBN 978-9916-80-131-4 (PDF)
DOI https://doi.org/10.23658/taltech.16/2024
Printed by Koopia Niini & Rauam

Kerner, M. (2024). Novel Neural Network Accelerator Architectures for FPGAs [TalTech
Press]. https://doi.org/10.23658/taltech.16/2024

https://digikogu.taltech.ee/et/Item/3568fe35-19c3-43e6-9525-73c79371ab13

TALLINNA TEHNIKAÜLIKOOL DOKTORITÖÖ
16/2024

Uudsed närvivõrkude kiirendite
arhitektuurid FPGAdele

MADIS KERNER

Contents

List of Publications . 7
Author’s Contributions to the Publications . 8
Abbreviations . 9
1 Introduction . 101.1 Motivation . 111.2 Problem Formulation . 121.3 Contribution . 121.4 Thesis Organization . 13
2 Efficient Hardware Architecture for Contractive Autoencoders . 152.1 Introduction . 152.2 Contractive Autoencoder . 182.3 Literature Review. 192.4 Background: Theory of Contractive Autoencoder . 222.4.1 Forward Pass. 222.4.2 Loss Function . 232.4.3 Gradient Descent . 242.4.4 Weight and Bias Update . 262.5 Novel Architecture for Contractive Autoencoders . 272.5.1 Equations optimization. 272.5.2 Execution time estimation . 282.5.3 Architecture 1: Baseline (BL) . 292.5.4 Architecture 2: Efficient Communication (CCom) . 332.5.5 Architecture 3: Resource Optimised CAE with efficient Communi-cation (CCom-RO) . 372.5.6 Usage of HW Resources . 392.5.7 Performance Comparison . 402.5.8 Field Test with MNIST database . 412.6 Conclusions . 41
3 Multiply-Accumulate Unit for DNN . 433.1 Introduction . 433.2 Literature Review. 463.3 Data type selection. 493.3.1 Design Space Exploration . 503.3.2 Triple Fixed-Point . 523.4 Simulation . 543.4.1 Environment . 543.4.2 Triple Fixed-Point Convolutional Layer for MATLAB. 553.4.3 Results . 563.5 HDL design. 593.5.1 Input Multiplexer Selection . 623.5.2 MAC Output Formation . 643.5.3 Usage of HW Resources . 643.6 Conclusions . 66

5

4 Conclusions and future work . 68
List of Figures . 71
List of Tables . 72
References . 73
Acknowledgements . 83
Abstract . 84
Kokkuvõte . 86
Appendix 1 . 89
Appendix 2 . 93
Appendix 3 . 101
Curriculum Vitae . 107
Elulookirjeldus . 109

6

List of Publications
The present Ph.D. thesis is based on the following publications that are referred to in thetext by Roman numbers.
I M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “An Efficient FPGA-based Archi-tecture for Contractive Autoencoders,” in 2020 IEEE 28th Annual International Sym-posium on Field-Programmable Custom Computing Machines (FCCM), pp. 230–230,Institute of Electrical and Electronics Engineers Inc., 5 2020II M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “Novel Architectures for Contrac-tive Autoencoders with Embedded Learning,” in 2020 17th Biennial Baltic ElectronicsConference (BEC), vol. 2020-October, pp. 1–6, IEEE Computer Society, 10 2020III M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “Triple Fixed-Point MAC Unit forDeep Learning,” in 2021 Design, Automation & Test in Europe Conference & Exhibi-tion (DATE), vol. 2021-February, pp. 1404-1407, Institute of Electrical and ElectronicsEngineers Inc., 2 2021

7

Author’s Contributions to the Publications
I In I, I was the main author, wrote the Verilog HDL, conducted simulations, preparedthe figures, wrote the manuscript, and presented the work.
II In II, I was the main author, wrote the Verilog HDL, conducted simulations, preparedthe figures, wrote the manuscript, and presented the work.
III In III, I was the main author, wrote the Verilog HDL, conducted MATLAB and HDLsimulations, prepared the figures, wrote the manuscript, and presented the work.

8

Abbreviations

AE AutoencoderANN Artificial Neural NetworkASIC Application Specific Integrated CircuitBFP Block Floating-PointBL baselineCAE Contractive AutoencoderCCom CAE with efficient CommunicationCCom-RO Resource Optimised CAE with efficient CommunicationCNN Convolutional Neural NetworkCPU Central Processing UnitDFxP Dual Fixed-PointDL Deep LearningDNN Deep Neural NetworkDSP Digital Signal ProcessingECG ElectrocardiogramEEG ElectroencephalogramFP Floating-PointFPGA Field Programmable Gate ArrayFSM Finite State MachineFxP Fixed-PointGPS Global Positioning SystemGPU Graphical Processing UnitHDL Hardware Description LanguageHW HardwareIOU Intersection over UnionIP Intellectual PropertyLSTM Long short-term memoryLUT Look Up TableMAC Multiply-AccumulatemAP Mean Average PrecisionMSE Mean Squared ErrorNN Neural NetworkPE Processing ElementPL Programmable LogicRAM Random Access MemoryReLU Rectified Linear UnitSoC System On ChipSVM Support Vector MachineSW SoftwareTFxP Triple Fixed-Point

9

1 Introduction
The Deep Learning (DL) systems have made their way to different domains nowadaysand enhance the contemporary information age in many ways. Examples of more or lesssuccessful deployments of DL can be found in almost any field, including self-driving cars[1, 2], monitoring the operation of the human heart [3], classifying the human activity [4],including the activity related to sport [5], and monitoring the industrial machinery [6] tomention few. Not only that, the different algorithms and methods are so widespread thatoften the user of the system is not even aware of the existence of a DL network excellingin the background. Due to its increasing popularity, it is no longer explicitly mentioned oradvertised but considered the normality.While the increasing number of successful deployments can give the impression thatDL networks and algorithms are relatively new inventions, it is not so: the earliest multi-layer network was published quite a while ago, in 1965: the network described in [7] canbe considered the first of its kind. However, the authors in the cited work did not usebackpropagation to train the network. Instead, they trained the network layer-by-layerusing least-squares fitting.Speaking of Convolutional Neural Networks (CNNs), this type of network is a famil-iar invention, too, and can be dated back to 1979: authors in [8] published a networkwith convolutional and pooling layers similar to the ones deployed nowadays. However,they did not use backpropagation for training but relied on reinforcement learning: theyincreased the weight values of neuron connections firing together on different layers. Fig-ure 1 presents the network as was initially proposed by the authors: the layered structureand feature extraction scheme resembles that of the contemporary CNNs.

Figure 1 – Architecture of the CNN like network, published in 1979 ([8]). The layered structure and
feature extraction scheme are similar to what is used in contemporary algorithms.

However, the backpropagation methods also have a long history and date back to the1960s. Thework published in [9] is the first implementation similar to the training schemeused in contemporary networks, although the author did notmention the neural networksas the target application for the provided method.The first implementation of backpropagation for training the DL network is presentedin [10], where the network was trained to recognize hand-written digits. The system alsogot successfully deployed to read the hand-written checks.Despite the existence of methods and successful applications like [10], the DLgained little popularity. Instead, the Support Vector Machine (SVM) introduced in [11]enjoined the attention of researchers. Figure 2 presents a simple separable problem intwo-dimensional space as was presented by the authors.The true advent of DL still had to wait for its opportunity, and it arrived with increasedcomputational power in personal computers. Moreover, the appearance of Graphical Pro-cessing Units (GPUs) played an evenmore prominent role here. With themore reasonable
10

optimal margin

optimal hyperplane

Figure 2 – An example of a separable problem in a 2-dimensional space, [11].

training times and suitable platforms, it turned out that DL models can achieve better re-sults than other algorithms if trained enough, and this becomes possible using Hardware(HW) like GPUs with enough computational power.
1.1 Motivation
Coming the long way, applications of DL networks are really ubiquitous nowadays.Therefore, researchers also address issues running these algorithms on battery-poweredresource-constraint systems to expand the usage even more. Naturally, the interest inrunning these algorithms on less powerful devices follows successful deployments onmore powerful HW: there are no arguments about the usefulness of DL.Training methods, or the loss function of the network, can roughly be divided intosupervised- or unsupervised ones. In supervised learning, there is a need for labeled data,and the network output is analyzed based on that, i.e., the loss function is constructedusing the actual network response to the input and labels on that specific input. Thesekinds of networks require pre-training, and due to the need for labeled data, it has tobe carried out before deployment; therefore, there are no restrictions to the HW for thetraining phase. For example, training the supervised DL networks can freely be carriedout using GPUs.Unsupervised DL networks can also be pre-trained using GPUs. However, it has to benoted that these kinds of networks do not rely on labeled data. Therefore, the trainingprocess can autonomously carry on during the entire lifespan of a system. An excellentscenario example requiring constant network training is provided in [12]. Authors use thepre-trained DL network to detect analog trojans in the manufactured integrated circuits.They claim that there might be a need to change the network weight values based on theenvironmental noise level. This need could be handled by letting the system train itself andautonomously handle the drifts of normality. Therefore, accelerators, which also addressthe training phase of the network, are needed to run unsupervised Deep Neural Networks

11

(DNNs) on resource-constraint systems.Regarding resource-constrained systems, the majority of research focuses on execut-ing the pre-trained DL models on these platforms. So, naturally, there are issues to tackle:storage of the network weights and other parameters, levels of possible parallelisms, andreplacing the floating point data representations with something less HWhungry variants,to mention a few. However, it has to be emphasized that the focus is precisely on runningpre-trained networks, i.e., on forward pass, or inference phase, and the network traininghas to be performed on more powerful HW. This is the field this thesis focuses on: en-able the HW based training of unsupervised networks and provide a suitable data-type toreplace the floating point representations.Elaborating on data-types, the common practice in resource-constraint systems is tobinarize the network hyperparameters or rely on fixed-point data representations. How-ever, both of these methods require retraining of the network: existing floating-pointbased already trained DL implementations can not be directly converted to resource-constraint targets. Therefore, the study of possible data representation that can directlyreplace the floating point values is needed.
1.2 Problem Formulation
Field Programmable Gate Arrays (FPGAs) have gained a lot of attention among researchersto accelerate DL networks ([13, 14]). This is caused by a relatively rapid development cyclecompared to the specialized integrated circuits and relatively low power consumptioncompared to theGPUs. Also, FPGA is a classical and proven approach for rapid prototypingcircuits.First, this thesis focuses on executing an unsupervisedDL network Contractive Autoen-coders (CAEs), a flavor of an Autoencoder (AE) with an additional regularization term, onFPGA. The provided implementations also address the HW based training. Also, as pre-viously noted, the floating point data type is very HW hungry. Therefore, it has to bereplaced, and a search for a suitable replacement is required.The research questions being investigated in this thesis are:

1. If unsupervised neural networks are implemented in hardware, they also requirethe hardware-based training process. Using contractive autoencoder as an ex-ample, can the architecture be efficiently implemented in hardware, includinghardware-based training?
2. Hardware implementations of any artificial neural network need efficient process-ing elements for the network nodes. How must the generic, high-precision, andhardware-efficient processing node be designed, and is the floating point data typerequired, or can it be replaced by a more hardware-conservative counterpart?

1.3 Contribution
This thesis contributes to finding solutions for FPGA based HWaccelerators and addressesaccelerating the learning phase as well.First, chapter 2 presents the HW architectures of the CAE Artificial Neural Network(ANN). Although implementations of FPGA based accelerators for ANNs are available inthe literature, the presented architectures in this thesis are novel because they embedthe HW based learning in CAE for the first time.Two conference publications back up the presented proposals: the first paperwas pub-lished in the International Symposium on Field-Programmable Custom Computing Ma-

12

chines, FCCM, in 2020, [15]. Further, the second extended publication about the FPGAbased CAE architectures with embedded learning was published in Baltic Electronics Con-ference, BEC, also in 2020, [16].Secondly, the thesis takes a broader look and proposes Multiply-Accumulate (MAC)architecture, which uses triple-fixed-point datatype. Testing results show that the pro-posed architecture can replace the floating-point-based calculations without retrainingthe YOLOv2 CNN [17]. This contribution shows that using triple-fixed-point data enablesrunning DNNs on embedded platforms like FPGAs even while using the same network hy-perparameter and weight values as in the case of GPU based counterparts excelling withfloating point. Also, this thesis proposes to compare the network’s actual output whilecomparing the accuracy using different data types: the network’s output should stay thesame. Comparing the inference accuracy can yield wrong conclusions: changing the datatype can introduce effects hiding issues related to the network training, like overfitting.The contribution about using triple-fixed-point based MAC is backed up by a confer-ence paper published in Design, Automation and Test in Europe, DATE in 2021, [18].Summarizing, the main scientific contributions of this thesis beyond the state-of-the-art are:
• First contractive autoencoder implementation in hardware with hardware-basedlearning.
• Novel Triple Fixed-Point (TFxP) based MAC unit suitable for various neural networkarchitectures, having high numerical precision (comparable to floating point) andvery hardware-efficient implementation. This architecture can be directly used inANN networks (e.g., CNN), which have been trained in software as hardware imple-mentation, without retraining the network. The results are identical to using floatdata types but do not require implementing floating point support in HW.

1.4 Thesis Organization
The rest of this thesis is organized as follows.Chapter 2 is devoted to the CAE. Section 2.1 provides an introducion to the AEs ingeneral, followed by section 2.2 describing specifics of CAE. The literature review de-scribing the state-of-the-art is presented in section 2.3. Section 2.4 and its subsectionsprovide the mathematical background of the CAE network, including forward pass, lossfunction, gradient descent, and equations for updating the weight and bias values dur-ing the training phase. Section 2.5 provides the details of the implementation. First, thetheoretical equations are optimized in subsection 2.5.1, followed by theoretical estima-tions for the execution times in subsection 2.5.2. Subsections 2.5.3 to 2.5.5 descibe thethree proposed architectures. The usage of HW resources is provided in table 6, and theperformance of the provided implementation is compared in subsection 2.5.7. In subsec-tion 2.5.8, the MNIST database of handwritten digits is used for training and evaluationpurposes to prove the functionality of the provided solutions. Section 2.6 concludes thechapter 2.Further, chapter 3 presents the study performed on MAC unit suitable for DNN im-plementations in general. Section 3.1 provides an introduction to the MAC unit as a DNNbuilding block, and a literature review of existing solutions is provided in section 3.2. Fur-ther, section 3.3 discusses possible candidates for the data type for the MAC unit realiza-tion, followed by the description of the MATLAB simulation environment and simulationresults using the selected type in section 3.4. Section 3.5 describes the Hardware Descrip-tion Language (HDL) design of the MAC unit, including details about the HW resources

13

provided in subsection 3.5.3. The second part of the thesis is concluded in section 3.6.Overall conclusions of the thesis and guidelines for possible future work are providedin chapter 4.

14

2 Efficient Hardware Architecture for Contractive Autoen-
coders

2.1 Introduction
This chapter introduces the AEs before going into the theory and following proposals.Autoencoders are a kind of ANN that reconstruct the network input to its output.Although this might not sound useful, the real benefit of such a network is related toits middle layer.Figure 3 present a typical AE network. As can be seen, the network consists of twomain portions: the encoder part following the input and the decoder part following themiddle layer. As the name suggests, the encoder’s role is to encode the input signal andrepresent it in the middle layer. Then, the following decoder portion uses this represen-tation to reconstruct the network input to its output. Also, the number of layers used insuch a network may vary, but the principal idea remains the same.One side comment or explanation about the coloring scheme used in figure 3: thesame colors will be used throughout the entire chapter 2. Green will be used for themiddle layer features, and blue denotes the external layers.

z1 z2 . . . zn

d1 d2 . . . dn

y1 . . . ym

c1 . . . cm

x1 x2 . . . xn

w11 w21 wn1

w1m

w2m
wnm

w11 w21

wn1 w1m

w2m
wnm

dec
odin

g
enc

odin
g

Figure 3 – Architecture of the AE. Middle layer Y is the compressed representation of input X , and
Z is the reconstruction of X . The rest of the figures and tables use the same color scheme: blue
denotes the external nodes, while green identifies the middle layer.

AEs, as a typical ANN, construct a layer output based on scaled inputs from the previ-ous layer. These scales are referred to as weight values: every connection in the networkhas its weight value w associated with it. The same principle holds for the encoder anddecoder portions of the AE. In theory, this corresponds to the MAC operation.While the operation of the AE is not complicated, there are things to note.First, AEs are unsupervised networks: there is no need to have labeled data availablefor the training process. This is caused by the nature of the AE: the network’s output mustbe the same as its input, i.e., everything is inherently available for constructing the lossfunction, which is the metric used for the network training.This fact that AEs are unsupervised networks brings them to the focus of this the-sis. Providing three state-of-the-art AE architectures for resource-constraint systems withHW enable learning is especially valid for unsupervised networks. On the other hand,embedding the learning process into the final deployment platform is not required forsupervised networks: the training process requires labeled data and, therefore, can notbe performed while already deployed. Therefore, the training process can be carried out
15

using any available powerful enough HW.Further, beyond the fact that AEs are unsupervised networks, the central feature is therepresentation of the input data in its middle layer. What is important here is that AEs areconstructed so that the output can not directly mirror the input. In figure 3, the middlelayer is deliberately narrower, with less Processing Elements (PEs) on it to illustrate this:the network has to compress its input signal. Further, these compressed features are thenused to construct the network output. Therefore, as the output has to match the input,themiddle layer of the well-trained AE has to contain intrinsic features of the input signal.The ability of AEs to extract the input signal featuresmakes it potentially helpful in datapre-processing and paves the road for future work. E.g., feeding the following ANN withfeatures extracted by a AE potentially reduces the layer count of the following network oralternatively speeds up the cascaded ANN training process.However, feature extraction in AE network requires additional care to succeed. Forexample, a possible scenario would be remembering the input signal and producing theoutput based on memorized indexes. This is a typical overfitting problem: the networkperforms exceptionally well on training data but poorly on a test set. Figure 4 presentsthis behavior: on figure 4a, the middle layer node c1 has learned to react on a specificinput and is the only node participating in the output code formation. Figure 4b presentsthe same scenario for the middle layer node cm.
z1 z2 . . . zn

d1 d2 . . . dn

y1 . . . ym

c1 . . . cm

x1 x2 . . . xn

w11 w21 wn1

w1m

w2m
wnm

w11 w21

wn1 w1m

w2m
wnm

dec
odin

g
enc

odin
g

(a) Middle layer node c1 is the only one reacting to the
specific input, and the output is constructed using the
same single node.

z1 z2 . . . zn

d1 d2 . . . dn

y1 . . . ym

c1 . . . cm

x1 x2 . . . xn

w11 w21 wn1

w1m

w2m
wnm

w11 w21

wn1 w1m

w2m
wnm

dec
odin

g
enc

odin
g

(b) Middle layer node cm is the only one reacting to the
specific input, and the output is constructed using the
same single node.

Figure 4 – Example of the overfit AE network: a specific middle layer node has learned to represent
a single input.

This thesis concentrates on delivering state-of-the-art architectures for the CAE, withthe learning process also performed in HW. While CAE is still an AE, section 2.2 introducesits regularization methods.Further, in addition to the background information provided in this section, the thesiscontinues with the literature review in section 2.3.The theoretical background and understanding of the required calculations are def-initely necessary before realizing any HW accelerator. Therefore, all the mathematicalbackground of the CAE forward pass and backpropagation is provided in subsections 2.4.1and 2.4.3. These subsections provide the full calculation scheme, including the descrip-tions of the Rectified Linear Unit (ReLU) normalization function and all the equations forderivatives used for training.
16

Additionally, as the basis of the backpropagation, the training process, the loss func-tion deserves a separate paragraph: subsection 2.4.2. The backbone of the loss functionis Mean Squared Error (MSE); however, CAE introduces an additional regularization term,which should reduce the sensitivity of the coded values to the small input changes. Math-ematically, this term is the Frobenius norm of the Jacobian matrix. The total loss function,MSE plus the additional regularization, is the input for the training process, as in the caseof any ANN, although the loss functions vary case by case. Subsection 2.4.4 present theresults of the backpropagation calculations: equations for weight and bias updates.
Although themathematical background is well covered, implementing the calculus onreal HWmight require additional optimizations. These optimizations should partition theequations to make it possible to reuse the calculated values. Subsection 2.5.1 addressesthis and provides updated equations for weight and bias updates.
In total, three different architectures are described in the following chapters. Althoughthey all realize the same network, there are differences in either communication schemesbetween the PEs or optimizations of those, i.e., optimizations in targeting performanceor conserving the HW while keeping the same functionality. Furthermore, as mentionedbefore, all three approaches canperform the learning process entirely inHW. In a nutshell,all three PEs architectures wrap a HW Digital Signal Processing (DSP) slice complementedby dedicated control Finite State Machine (FSM), block Random Access Memory (RAM)and some registers for storing the intermediate calculation results.
The first described architecture, baseline (BL), described in subsection 2.5.3, followsthe structure of the actual CAE network: there are dedicated PEs for different networklayers. Also, the data flow follows the layered structure, and the architecture uses a cross-bar switch for communication between the PEs.
In addition to the node architecture’s data path, subsection 2.5.3 also provides tablesspecifying the detailed execution flow during the forward pass and backpropagation. Atthe same time, the coloring scheme in the presented tables helps to understand the lay-ered execution, and the accompanying description provides a complete understanding.Also, the BL architecture uses optimized equations described in subsection 2.5.1.
The scalability of the BL architecture is limited by the resources available in the targetplatform: every PE wraps a HW DSP slice. However, the equations provided in the the-oretical discussion section must be developed further for vertical scalability to supportadditional layers.
The second architecture, CAE with efficient Communication (CCom), described in sub-section 2.5.4, focuses on optimizing the HWcost of the communication channel. Althoughthe cross-bar switch connects all the PEs, subsection 2.5.6 shows that the area of the ac-tual HW occupied by it is relatively high compared to the resources allocated for PEs.
The CCom architecture skips the cross-bar-switch style communication channel. In-stead, it uses a carousel-like transmission scheme: data is rotated to the next node everytimestep.
Furthermore, there is an additional consequence: while the BL architecture PEs aresynchronized by the availability of data or communication resources providedby the cross-bar, the PEs of the CCom architecture are designed to be synchronous, i.e., the PEs expectthe transmission channel to be available at certainmoments. Therefore, in addition to thefewer resources allocated for the inter-PE communication, as shown in subsection 2.5.6,subsection 2.5.7 shows that the throughput of the CCom architecture is also higher com-pared to the BL. Moreover, the throughput of the CCom architecture is almost equal tothe theoretical maximum presented in subsection 2.5.2. This effect can be explained bythe availability of the resources guaranteed by the synchronous design; there are more

17

infrequent wait cycles compared to the BL version.As with BL architecture, the datapath of the PE of the CCom is also presented, and theflow of calculations is the same. However, the CCom architecture does not differentiatebetween PEs based on the layer they belong to; all the PEs share the same design andwrap a HW DSP slice. This makes the architecture more universal, and together with alighter use of HW resources spent for the inter-node communication, subsection 2.5.6shows that it ultimately allows a bigger CAE network to be synthesized on the same targetplatform.Subsection 2.5.5 presents the third CAE architecture provided in this thesis: ResourceOptimised CAE with efficient Communication (CCom-RO). It is similar to the CCom versionbut skips some performance-biased additions introduced in the latter. It also uses thecarousel-like transmission channel, but unlike CCom, CCom-RO does differentiate nodesbased on the network layer.The configuration of the CCom-RO design flows from the widest CAE network layertowards the narrower ones. First, the most expansive layer defines the features requiredby all the PEs. Next, if implementing the following layer requires some additional HW,only the amount of nodes matching the narrower layer PE count include the requiredadditions.However, optimizing away some of the HW from CCom-RO network nodes comes ata price. That means that the CCom architecture keeps all the PEs constantly busy andeven calculates multiple sets of some results during the execution to ensure the data isavailable on every timestep. However, that is not the case for CCom-RO: some results arecalculated only by the fully equipped PEs, and the carousel transmission channel intro-duces an additional delay. It requires additional timesteps to rotate the necessary data toall the depending PEs.As stated before, all the described architectures perform the same from the functionalpoint of view. The differences come from the inter-PE transmission channel and differentemphasis on execution speed or allocated HW resources or performance.The synthesis results presented in subsection 2.5.6 show that the CCom-RO yieldsthe most extensive CAE network on the same target platform. This result was expected:it improves the communication channel over the BL architecture and, as the acronymsuggests, is resource optimized compared to the CCom version.Also, the performance of all three architectures is compared in subsection 2.5.2. It isshown that the CCom architecture results in the fastest possible CAE network. Moreover,CCom architecture almost reaches the theoretical maximum using the presented theoret-ical basis.Further, the proof of the correct execution is provided in subsection 2.5.8: the MNISTdatabase of handwritten digits was used for that purpose. Finally, it is shown that thenetwork converges and can produce an output similar to the network input, as requiredby autoencoders, CAE being one of those.
2.2 Contractive Autoencoder
As stated before, AE is a type of ANN that reconstructs its input signal to the output usingthe extracted features on the middle layer. Furthermore, there are different types of AEs,distinguished using the regularization methods: additional criteria in the loss function toforce the middle layer encoding towards valuable features.One natural assumption would be that similar inputs should yield similar encoding onthe middle layer, i.e., if the input changes very little, it can be reconstructed using almostthe same set of features. This is precisely the basis of how the CAE uses regularization.

18

To achieve this, CAE uses the regularization term based on derivatives of the encodingwith respect to the input in addition to the primary qualification that the output has tobe the same as the input.In mathematical terms, this additional regularization is expressed as the Frobeniusnorm. In a nutshell, a Frobenius norm is a matrix of partial derivatives of middle-layerfeatures with respect to the inputs. This additional regularization forces small changes inthe inputs to yield the same features: it makes similar inputs to contract in generating theoutput. In conclusion, for CAE, the regularization controls the behavior of the encoderportion of the network.
2.3 Literature Review
This chapter reviews the state-of-the-art implementations of AEs found in the literature,while the thesis focuses on implementing CAE on a resource constraint system such as aFPGA. More precisely, as the CAE is an unsupervised network, the provided architecturesembed the training process in HW to enable autonomous operations, and the literatureis reviewed accordingly.ANNs have gained popularity in various fields nowadays. If carefully searched, exam-ples can probably be found for any possible application, including image recognition, nat-ural language translation, human activity recognition, and anomaly detection [19, 20, 21].The most appealing feature of such algorithms is the ability to extract latent featuresfrom the data automatically. Furthermore, this kind of behavior increases the modelingcapabilities [22].However, regarding handheld and similar resource-constraint devices, the networksare usually pre-trained on other platforms, or data is offloaded to the cloud for compu-tations [23]. While the state-of-the-art addresses FPGA based ANN accelerators ([13, 14]),CAE with embedded learning is missing from the literature.Further, focusing towards AEs, they are beneficial for squeezing latent features out ofthe input data or reducing the data dimensionality as stated in [24]. While the extractedfeatures can indeed be used in various applications, anomaly detection is one of the fieldswhere AEs have proved to be a reasonable solution.Thework presented in [25] uses AE for detecting anomalies. At the same time, authorsin [26] use AE for detecting anomalies in multi-dimensional time-series data. Finally, tocomplement the theoretical background, authors in [27] use AE for unsupervised anomalydetection scenario, while they also claim that CAE, the same AE flavor addressed in thisthesis, excel very well in this field.Authors in [28] propose using autoencoders to compress the captured biometric Elec-trocardiogram (ECG) data in wearable devices. While the compression results and recon-structor error are proved to be feasible, authors execute the algorithm on the Cortex-M4microcontroller. Moreover, the training process is performed using separate hardware inthiswork. Anotherwork, [29], also proposes autoencoders for biometric data analysis: au-thors use Electroencephalogram (EEG) signals to analyze the pilots’ fatigue. Although theexecution HW platform is not restricted in this work, it supports the idea of using autoen-coders for biomedical data. However, peoplemove around, and analyzing their health andoverall condition can be beneficial. Therefore, this is the field for wearable and resource-constrained devices, and having suitable implementations around would accelerate thedeployment of these methods.Besides analyzing biological data, autoencoders have shown their usefulness inmotionrecognition. Authors in [30] use a mobile phone and its sensor data to detect differentmotions of a human. However, again, the training of the AE is not performed using the

19

same HW. This prevents the network from learning new trends or changes in a user’smovements or requires the data to be offloaded to the cloud.Another work using sensor data for motion detection is presented in [31], where au-thors address the problem of detecting unseen falls using the AEs. They state that detect-ing the fall is not trivial due to the lack of labeled data and train the AE using only regularmotions. While this work does not address resource-constrained devices, it supports theidea that the availability of such implementations would broaden the deployment pos-sibilities. Constant unsupervised learning of the regular motions in a wearable devicecould improve the accuracy of such a system even more. Finally, the work presented in[32] provides another example of using AEs for motion detection and, therefore, possibledeployment of proposals presented in this thesis.Further, another field of study of applications of DNNs addresses the predictive main-tenance scenarios. For example, the work presented in [33] runs AE on a FPGA to extractfeatures from the regular operation of a motor. Although the authors train the cascadedclassifier on the same target HW, the AE portion of the proposal lacks this feature and istrained separately. There are not many implementation details available, but it is worthnoting that authors emphasize the need to run this DNN application on such resource-constraint platforms. Transferring all the data to the cloud for processing throughout themonitored system’s entire lifecycle is not always feasible.The work presented in [34] provides energy- and area-efficient implementation of anAE. Authors use the extracted features, the middle layer of the AE, as an input to theCNN based fault classifier. However, the CNN portion of the solution is running on thecontroller, not FPGA, but is executed upon request. This idea is presented in figure 5:software-based CNN can complement the binary classifier, using the features extracted bythe AE as its input. Compared to the proposals in this thesis, the presented work partiallybinarises the calculations and misses the HW based training of the network.

CLASSIFIER

DECODER
ENCODER

Auto-Encoder

CNN
Input

Binary FaultDetection

FaultClassification

Figure 5 – Cascaded DL network presented in [34]. The features extracted by the AE are used as the
input to the software based CNN to complement the binary fault detection output upon request.

The extension to the previous work is provided in [35], where authors propose a par-tially binarized AE for detecting anomalies in the bearing systems of industrial apparatus.The implementation is very power- and area-efficient but, as stated before, lacks trainingin HW. However, the missing HW based training should not be taken as criticism towardsauthors: not every application necessarily needs it. Instead, this reference serves as anexample that HW implementations with embedded training are mostly missing from theliterature.An FPGA-based solution for monitoring industrial machinery is proposed in [6]. More-over, again, authors restrict themselves to semi-supervised learning using another more
20

powerful HW than the deployment target FPGA. Therefore, the availability of solutions orproposals for the training process on the target HW platform could open new opportuni-ties for these kinds of studies.
Another work addressing unsupervised anomaly detection in resource-constraint de-vices is presented in [36]. Although the proposed method uses a flavor of a CAE network,the main focus is on the algorithm and not the HW realization. However, the presentedstudy calls for efficient HW based implementations of such algorithms.
AEs have also found their way to boost indoor location services’ capabilities. However,solutions based on Global Positioning System (GPS) are not applicable here due to thesatellites’ signal unavailability. Instead, the parameters of wireless network signals areused. Authors in [37] propose a solution to extract such signal features using an AE. Theyuse FPGA based accelerator for executing the network, but again, do not have the learningimplemented in HW: the network has to be trained on a different platform.
Authors in [38] use AE stacked with Long short-term memory (LSTM) for outlier de-tection. This work nicely demonstrates the benefit of using an ensemble of different net-works: LSTM is fed with latent features extracted by the AE. The target platform usedin this work is based on Xilinx FPGA, DL accelerators are realized using programmablelogic. However, the proposed accelerator involves only the inference phase, and the net-work’s training is performed before deployment. On the other hand, outlier detectioncould benefit from continuous training to overcome the drift in the normality of moni-tored processes.
Another work that uses AE for anomaly detection is presented in [12]. Authors use theAE for detecting analog trojans in manufactured integrated circuits and get good results.Also, the implementation is based on FPGA, but again, misses the HW based training.However, as stated in this referenced work, changing the weight values might be requiredif the noise level changes. This excellent example of an environmental drift demonstratesthe need for constant HW based training to overcome the issue.
Further, authors in [39] present the FPGA based implementation of an AE with thefocus on the inference phase, no training included. However, the authors claim that us-ing fixed-point data representation gives comparable results to using floating-point datatypes, supporting the proposals presented in this thesis. Also, the extensive analysisprovided in this work clearly shows that FPGA based implementations are more power-conservative compared to the GPU counterparts. However, there is a considerable per-formance gap between these two platforms in this referenced work, leaving some inter-pretation room in the presented power figures.
Another general FPGAbasedANNaccelerator is proposed in [40]. The referencedworkis somewhat similar to the proposals presented in this thesis: only the most expansivelayer is implemented in HW, and all the following layers reuse these resources. However,the activation function is implemented separately as a single shared unit for all the PEs,reducing the execution speeds. Nevertheless, on the other hand, this approach allowsusing higher HW complexity for the activation function; a single unit can reservemore HWresources that do not multiply by the size of the implemented layer. However, comparedto the proposals in this thesis, the solution lacks HW based training.
Yet another realization of the AE on FPGA can be found in [41]. However, similar tothe previously reviewed works, this implementation addresses the inference phase only.But there are also similarities: the referenced work uses fixed-point data representation.Also, the work provides a comparison to GPU platform using floating-point. Authors claimthat using fixed-point data degrades the precision of the network, but the loss stays within

10%, depending on the exact format selection.
21

Finally, authors in [42] provide a solution for HW based inference and training for astacked AE. The referenced work also compares the FPGA based solution to the GPUbased implementation, where FPGA outperforms the GPU in power consumption but lagsin terms of performance. Furthermore, the performance of the FPGAbased solution is sig-nificantly lower for both inference and backpropagation phases. This performance degra-dation can be related to the fact that authors useOpenCL high-level language for the FPGAdesign. Naturally, this kind of approach accelerates the development cycle. However,carefully crafted solutions using lower level HDL like Verilog or VHDL surely can increasethe network’s throughput andmake FPGA based solutions more appealing alternatives toGPU counterparts.To conclude the review, there are quite a few implementations of different flavorsof AEs on FPGA platform, but the HW based training still needs to be addressed by theresearchers: this is the field where this thesis provides its contribution. Although thefocus is on the FPGA based implementation of CAE, the ideas can be used to extend theproposals for other types of networks.The main contribution of this work is to provide the first full hardware-based imple-
mentation of the CAE [43], comprising hardware-implemented learning. Additionally, thethesis follows the proposals from the authors of [44] and shares the network weights onthe encoder and decoder parts of the CAE, which helps to conserve the memory require-ments of the implementation. Additionally, as proposed in [45], the weights and biasesand all the calculations use the fixed-point representation of data.
2.4 Background: Theory of Contractive Autoencoder
2.4.1 Forward Pass
The forward pass, inference phase of an ANN generates the output of the network. Dur-ing this phase, the input signal passes all the network layers and undergoes all the cor-responding transforms using the network weight values, layer-specific coefficients, andglobal network parameters found during the network’s training.The following presents the equations for CAE forward pass calculations for the networkpresented in figure 3, where n stands for the width of the input and output layers and mdenotes the number of nodes in the hidden layer.First, the network receives its input via the x nodes, the input layer. Then, all the inputlayer nodes connect to the next layer using the weight values w as the scaling factors: theweight values define the impact of a node input.Equations (1) and (2) present the calculations to evaluate the c and y values in themid-dle layer, where b stands for the node bias value. The same equations hold if there weremore layers in the network presented in figure 3: every node in every layer accumulatesthe scaled inputs from the previous layer, adds the bias value, and applies the activationfunction. The activation function used in the current example is computationally inexpen-sive ReLU. While the original ReLU function was proposed in [46], authors in [47] proposea modification to allow low negative values to leak to the output to avoid dying neuronsproblem analyzed by the authors. Figure 6 illustrate the differences between these twoactivation functions. This thesis makes use of the modified, leaky ReLU.

c j =
n

∑
i=1

wi jxi +b(c)j (1)
y j = f (c j) = ReLU(c j) (2)

The nodes y in the middle layer hold the coded input value. A similar procedure then
22

relu(z) = max(0,z)

(a) ReLU activation function, all input values below
zero are limited to zero.

lrelu(z) =

{
z, if z >= 0
αz, otherwise

(b) LeakyReLU activation function multiplies negative in-
puts by α , allowing low negative values to leak to the out-
put.

Figure 6 – ReLU and LeakyReLU activation functions.

follows in the decoding layer: equations (3) and (4) present the calculations for evaluatingthe output of the network.
di =

m

∑
j=1

wi jy j +b(d)i (3)
zi = g(di) = ReLU(di) (4)

2.4.2 Loss FunctionTraining of the ANN, including CAE, is about minimizing the loss function. The trainingdata is pre-labeled for supervised networks, like CNN, and the network output is assessedbased on these labels. On the other hand, training the unsupervised networks like CAEdoes not require manually prepared data: in the case of CAE, the output has to be thesame as the input.MSE can be used to evaluate the similarity of the network output to its input: equa-tion (5). The network loss L increases if the output does not match the input, and theinternal weight and bias values can be changed based on that information.
L(X ,Z) =

1
n

n

∑
i=1

(zi− xi)
2 (5)

In addition to this, the CAE network adds a regularization term to the loss function.The purpose of an additional regularization is to fulfill some specific criterion: in the caseof CAE the additional term should reduce the sensitivity of the input to the coded values inthe middle layer and yield to more robust encoding. Mathematically this term translatesto the Frobenius norm of the Jacobian matrix (equation (6)) and ensures that a slightchange in networks input translates to the same encoding in the middle layer.
‖J f (x)‖2

F =
n

∑
i=1

m

∑
j=1

(
∂y j

∂xi

)2 (6)
The final loss function of the CAE network is the sum of equations (5) and (6): equa-tion (7), where θ = W,B(c),B(d) is the collection of all the network parameters, weights

23

and biases, and λ is the hyper parameter to limit the amount of the contraction term inthe total loss.
JCAE(θ) = L(x,g(f (x)))+λ‖J f (x)‖2

F (7)
If the network output corresponds to the input, theMSE portion of the loss function isminimal: every network weight and bias value is adjusted accordingly during the training,and the standard method for this is gradient descent, covered in subsection 2.4.3.

2.4.3 Gradient DescentThe gradient descent is the standard method for training the ANNs, including CAE. Thepurpose of the procedure is to adjust all the network weight and bias values based on theoutput of the loss function. First, the derivatives of the loss functionwith respect to all thenetwork parameters are calculated, and the values are updated based on these results.The total loss of the network, equation (7), is the sum of two terms: the MSE termand the additional contraction term, and the derivatives for these two can be calculatedseparately.After substituting the term (zi−xi)
2 with li =(zi−xi)

2 in in equation (5), the derivativeof theMSE with the respect to a weight value wuv can be found using the chain rule as perequation (8).
∂L

∂wuv
=

1
n

n

∑
i=1

(
∂ li
∂ zi

∂ zi

∂di

∂di

∂wuv

)
(8)

The first term in the chain rule is the MSE loss derivative with respect to zi: equa-tion (9).
∂ li
∂ zi

= 2(zi− xi) (9)
The second term is the derivative of the ReLU activation function, zi with respect to

di: equation (10).
∂ zi

∂di
=

{
1, if di >= 0
α, otherwise (10)

The derivative of the decoding di with respect to theweightwuv needs to consider onlyone term from the equation (3): the onewhere j = v. All the other terms are independentof wuv; therefore, they have zero gradients. The weight value of this selected term is
marked as w(d)

iv if the following equations and its first index is marked as i(d).However, y j in equation (3) is the function of weights itself (equations (1) and (2)).Similar to the equation (3), equation (1) has to consider only the term which has thedependency to wuv: the one where i = u. Again, the weight value in questions is marked
as w(c)

iv , and its first index is marked as i(c) = u.The weight value included by the term selected from the equation (1) has both of its
indexes fixed to i = u and j = v, while w(d)

iv can have i(d) 6= u. This condition specifies ifthe weight values included by terms selected from equations (1) and (3) are the same ornot, or in other words if the y j in equation (3) is the function of the same weight value itis multiplied to. Equation (11) specifies these two cases for the derivative calculation.
∂di

∂wuv
=

{
∂di
∂yv

∂yv
∂cv

∂cv
∂wuv

, if i(d) 6= u

yv +wiv
∂yv
∂cv

∂cv
∂wuv

, if i(d) = u
(11)

24

where:
∂di

∂yv
= wiv (12)

∂yv

∂cv
=

{
1, if cv >= 0
α, otherwise (13)

∂cv

∂wuv
= xu (14)

Figure 7 illustrates the term i(d) 6= u in equation (11), and makes an example for calcu-lation path ∂d2/∂w11, u = 1 and v = 1. There is exactly one path from the node d2, whichincludes the weight value w11. The dotted line indicates the path in question, which goesthrough w21 in the decoder portion, marked with the blue arrow, and w11 in the encoder,marked with the red arrow.
z1 z2 . . . zn

d1 d2 . . . dn

y1 . . . ym

c1 . . . cm

x1 x2 . . . xn

w11 w21 wn1

w1m

w2m
wnm

w11 w21

wn1 w1m

w2m
wnm

dec
odin

g
enc

odin
g

Figure 7 – Illustration for equation (11): calculation path for ∂d2/∂w11, u = 1 and v = 1. The decoder
portion has to select the path through the weight value w21, where i(d) = 2. Here, i(d) 6= u.

Further, figure 8 illustrates the term i(d) = u in equation (11), and makes an examplefor calculation path ∂d2/∂w21, u = 2 and v = 1. The value of node y1 also depends on
w21, and the derivative chain rule applies. The dotted line indicates the calculation path,which goes through the same weight w21 in the decoder and encoder portions, markedwith red arrows.Calculating the gradients for the bias values has no exceptional case, as the coding anddecoding layers have a separate set of those.

Equation (15) specifies the calculation of the MSE loss derivative w.r.t. b(d)i .
∂L

∂b(d)i

=
1
n

∂ li
∂ zi

∂ zi

∂di

∂di

∂b(d)i

(15)
Equation (16) specifies the derivative of the MSE loss w.r.t. b(c)j .

∂L

∂b(c)j

=
1
n

n

∑
i=1

 ∂ li

∂ zi

∂ zi

∂di

∂di

∂y j

∂y j

∂c j

∂c j

∂b(c)j

 (16)

The contraction term is specified by the equation (6). equation (17) specifies the cal-culation of derivatives of yi w.r.t. xi included in the contraction term.
25

z1 z2 . . . zn

d1 d2 . . . dn

y1 . . . ym

c1 . . . cm

x1 x2 . . . xn

w11 w21 wn1

w1m

w2m
wnm

w11 w21

wn1 w1m

w2m
wnm

dec
odin

g
enc

odin
g

Figure 8 – Illustration for equation (11): calculation path for ∂d2/∂w21, u = 2 and v = 1. The decoder
portion has to select the path through the weight value w21, where i(d) = 2. Here, i(d) = u.

∂y j

∂xi
=

∂y j

∂c j

∂c j

∂xi
(17)

where:
∂c j

∂xi
= wi j (18)

Therefore, every element in the contraction term equals to equation (19).
ri j =

(
∂y j

∂xi

)2

=

(
∂y j

∂c j

)2

w2
i j (19)

Derivative term ∂y j/∂c j in equation (19) is constant according to the equation (13).Therefore, derivative of ri j w.r.t. wi j can be calculated according to the equation (20).
∂ ri j

∂wi j
= 2wi j

(
∂y j

∂c j

)2 (20)
2.4.4 Weight and Bias UpdateThe negative value of the gradient specifies the direction of change for a parameter tominimize the loss function (equation (7)).The sum of equations equations (8) and (20) specify the gradient of a weight value.Therefore, the new values forweights have to be calculated according to the equation (21),where α stands for the learning rate and λ limits the effect of the contraction term.

wi j = wi j−α

(
∂L

∂wi j
+λ

∂ ri j

∂wi j

)
(21)

The bias value updates should follow a similar scheme. Equations (22) and (23) presentthe update formulas, where β sets the update rate for the biases.
b(d)i = b(d)i −β

∂L

∂b(d)i

(22)

b(c)j = b(c)j −β
∂L

∂b(c)j

(23)

26

2.5 Novel Architecture for Contractive Autoencoders
This section presents the HW architectures for CAE inference and backpropagation calcu-lations. In total, three architectures are proposed.The Xilinx Zynq-7020 System On Chip (SoC) is the target HW platform in this work. Ithas dual-core ARM Cortex-A9 processors and a programmable logic portion for customHW implementations. The programmable logic section contains 85K logic cells, 53200LUTs, 106400 flip-flops, 140 36Kbit block RAMs, and 220 DSP slices.According to the equations (1), (3) and (8), the multiply-accumulate calculations areheavily used; therefore, all the proposed architectures make use of the DSP IntellectualProperty (IP) blocks available in the target architecture. Utilizing the DSP IPs frees the restof the programmable logic for other purposes and allows packing more network nodes tothe target HW.
2.5.1 Equations optimization
While the HW implementations of the CAE forward pass exist, the backpropagation andweight update functions presented in subsections 2.4.3 and 2.4.4 are more complex andharder to implement in HW efficiently. Therefore, this section regroups the calculationsand defines some reusable values. As shown below, those reusable values can be calcu-lated once and reused multiple times, yielding more efficient HW.First, equation (24) defines the term ki:

ki =
1
n

∂ li
∂ zi

∂ zi

∂di
(24)

Using this newly defined term ki, rewriting the equation (8) results in equation (25):
∂L

∂wuv
=

n

∑
i=1

(
ki

∂di

∂wuv

)
(25)

Next, substituting equations (12) and (14) into equation (11) gives equation (26):
∂di

∂wuv
=

{
wiv

∂yv
∂cv

xu, if i(d) 6= u

yv +wiv
∂yv
∂cv

xu, if i(d) = u
(26)

From equation (26), it can be seen that the check for the case where i(d) = u can beignored while calculating equation (25) and the correction term kuyv can be added to theresult to compensate for it: equation (27).
∂L

∂wuv
= xu

∂yv

∂cv

n

∑
i=1

(kiwiv)+ kuyv (27)
Further, equation (28) defines the reusable summation Sv.

Sv =
∂yv

∂cv

n

∑
i=1

(kiwiv) (28)
The weight update value can be rewritten by using this reusable term: equation (29)

∂L
∂wuv

= xuSv + kuyv (29)
27

Using equation (21) and these newly defined substitutions and reordering the weightvalue update can be rewritten: equation (30).
wi j = wi j−α (xiS j + kiy j)−2αλwi j

(
∂y j

∂c j

)2 (30)
Similarly, the output layer bias value calculations, equations (15) and (22), can use thereusable term ki: equation (31).

b(d)i = b(d)i −βki (31)
Also, the internal layer bias value calculations, equations (16) and (22), can be rewrittenusing the reusable term S presented in equation (28): equation (32).

b(c)j = b(c)j −βS j (32)
In conclusion, recognizing and pre-calculating the k (equation (24)) and S (equa-tion (28)) values allows the network weight and bias update process to reuse theseresults.

2.5.2 Execution time estimation
This subsection provides the theoretical timing estimations for the forward pass and back-propagation execution steps. Then, the described architectures will be compared againstthe derived values to assess the actual throughput in subsection 2.5.7.During the forward pass, every network node, PE, must multiply every input from theprevious layer by the corresponding weight value and accumulate the results. In addition,every PE must add the bias value and apply the ReLU activation function: equations (1)to (4). As every PE accommodates a HW DSP slice, all these operations execute in a singlecycle. This includes the activation function ReLU as it boils down to single multiplication.Equation (33) presents the generalized formula for the required cycles to complete theforward pass, where l stands for the number of layers and ni is the i-th layer input size.

C f wd =
l

∑
i=1

(ni +2) (33)
For example, applying equation (33) for the network presented in figure 3 results in

n+m+4 cycles to complete the forward pass.To estimate the theoretically required cycle count for backpropagation, equation (21)presenting the formula for updating a single weight value is followed.The term ∂L/∂wi j is computationally most demanding as it includes the summationterm as per equation (8). To calculate the required cycle count for this term, ∂ li/∂ zi re-quires one cycle for subtraction, ∂ zi/∂di requires one cycle, and ∂di/∂wuv requires threecycles. Multiplying these values takes another two cycles. Therefore, the summation termrequires 7n cycles in total.Further, ∂ ri j/∂wi j (equation (19)) requires four cycles: one cycle for ∂y j/∂c j, onecycle for calculating power of two, and another two cycles to multiply this value to theweight value and to multiply it by two.Additionally, multiplying ∂ ri j/∂wi j by λ consumes one cycle, adding the correction
yv to ∂L/∂wi j present in equation (11) and multiplying this to 2/n consumes two cycles.Adding these two terms takes another cycle, and multiplying this sum by α takes onecycle. Finally, subtracting the result from the present weight value also takes one cycle.

28

Therefore, it takes ten cycles in addition to the 7n cycles required by the summationterm present in equation (8) to complete the update for a single weight value.The network presented in figure 3 has m weight values assigned to every PE, and allthese values have to go through the same updated procedure: equation (34) presents theformula for the required cycle countCbpw.
Cbpw = m(7n+10) (34)

However, subsection 2.5.1 provides some optimizations for the backpropagation cal-culations. Extracting re-usable portions speeds up the calculations and should also beconsidered for theoretical timing estimations for a true comparison.Equation (30) has to be followed to estimate the required cycles for updating all theweight values.The cycle count for the contraction term is the same as before: four cycles. Plus, anadditional cycle to multiply by the term αλ , totaling five cycles.The remaining operations in equation (30) are single cycle multiplications, additions,and subtractions: the total required cycle count for updating a single weight value totalseleven cycles.However, equation (30) contains the re-usable k and S values, which require additionalcycles to calculate.Equation (24) has to be followed to estimate the cycle count for k, where ∂ li/∂ zi takestwo cycles, ∂ zi/∂di takes one cycle and multiplying these values and the constant 1/ntakes additional two cycles. Therefore, the total cycle count to calculate k is five cycles.Further, equation (28) defines the required calculations for S. The summation termcontains a multiply-accumulate operation carried out by the DSP slice in a single cycle.Therefore, calculating S requires n+1 cycles.Equation (35) defines the total cycle count required to update all the weights in thenetwork: eleven cycles times m to update all the weights according to the equation (30),plus 5+n+1 cycles to calculate the reusable portions k and S.
Cbpw_optimized = 11m+n+6 (35)

2.5.3 Architecture 1: Baseline (BL)
This subsection presents the BL architecture for CAE. As the following architectures, theBL version can also execute training, i.e., backpropagation, in the HW.Although the BL architecture makes use of optimizations of calculations presented insubsection 2.5.1, it follows the logical structure of the CAE network: every network nodeis implemented as a separate PE. Data flow and execution of calculations also follow theactual CAE architecture. Forward pass calculations start by propagating the input valuesto the middle layer nodes where multiply and accumulate operation (equation (1)) andapplying the activation function (equation (2)) takes place, followed by similar operationsin the output layer (equations (3) and (4)). The network training follows a similar layer-to-layer flow but in the opposite direction, from the output layer towards the networkinput.This schememeans that while the nodes of different network layers arewell separatedandmore straightforward controlling state machines can be used, only one layer executesat a time; the resources associated with the other layers stay idle.The BL and the following architectures utilize the HW block RAM IPs for storing thenetwork parameters and weight values; Zynq-7020 has 140 units of 36 Kbit RAMs, and

29

every unit is configurable as two 18 Kbit blocks totaling 280 units. However, the designconsideration is which network nodes to assign these resources.As the internal layer holds the compressed input representation, there are usuallyfewer middle layer units than input and output units. Therefore, the BL architecture as-signs the block RAMs to the middle layer: as m < n, this scheme uses fewer blocks whilestoring more values to a single RAM, as every middle layer PE connect to n external layernodes (figure 3) and has to store n weight values compared to m values in case of an inputor output node. Figure 9 illustrates this situation, assigning weight value block RAMs toexternal layer nodes (figure 9a), requires more, but smaller size block RAMs compared towhen assigned to the internal layer nodes (figure 9b).
z1 z2 z3

d1 d2 d3

z1 z2

d1 d2

z1 z2 z3

d1 d2 d3

W11

W11

W21

W21

W31

W31

W32

W32

W12

W12

W22

W22

W11
W12

RAM

W11
W12

RAM

W21
W22

RAM

W21
W22

RAM

W31
W32

RAM

W31
W32

RAM

(a) Block RAMs assigned to the external layer nodes.

z1 z2 z3

d1 d2 d3

z1 z2

d1 d2

z1 z2 z3

d1 d2 d3

W11

W11

W21

W21

W31

W31

W32

W32

W12

W12

W22

W22

W11
W21

RAM

W31

W12
W22

RAM

W33

(b) Block RAMs assigned to the internal layer nodes.

Figure 9 – Assigning block RAMs to external layer nodes requiresmore, but smaller RAMs, compared
to when assigned to the internal layer.

Figure 10 depicts the data path of the BL architecture external layer PE. Every unitcontains one DSP slice, supporting multiply and accumulate operations and registers T ,
b, z, and x for result storage. Inputs of the DSP slice have multiplexers to select necessarydata for calculations. TheCxx block is the communication channel entry port to exchangedata between the PEs.Further, figure 11 presents the data path of the BL architecture middle layer PE. Again,every unit contains one DSP slice, supporting multiply and accumulate operations andregisters y, T , b for result storage. Also, DSP slice inputs are connected to themultiplexers.Compared to the external layer PE, middle layer version includes the block RAMs to holdthe weight values. The Cxx block is the communication channel entry port to exchangedata between the PEs.The CAE architecture, figure 3, requires that every network node can communicateto all the nodes in adjacent layers. However, implementing all these connections in Pro-grammable Logic (PL) is not possible due to the HW limitations.The BL architecture uses a cross-bar switch for communication: figure 12. However,the main focus of this thesis is the design of the CAE network nodes using the DSP blocksand block RAMs available in the hardware. Therefore, this thesis does not provide an

30

−β

zbT

∂ z
∂d

Cxx

x

Figure 10 – Data-path of the CAE external layer PE.

−α
∂y
∂c−αλ

RAMbTy

Cxx

−β

Figure 11 – Data-path of the CAE middle layer PE.

in-depth analysis of different cross-bar flavors but selects butterfly architecture.As required by the CAE architecture, every input-output PE has to be able to commu-nicate to every internal PE and vice versa. Connecting input-output nodes to one sideand internal nodes to the other side of the butterfly cross-bar satisfies this requirement.Additionally, connecting one communication port from both sides of the cross-bar to theAXI bus allows the Zynq processing unit to communicate to every node for controlling andinitialization purposes.Thewidth of the data bus depends on the selected data format: 16 bits in the context ofthis thesis. However, the implementation adds additional source and destination addressfields to indicate the origin and select the target node of data.The implementation also adds the method to control the network nodes over cross-bar ports marked CNTRL in figure 12, and there are two of those to control the PEs onboth sides of the cross-bar. The controlling ARM processor uses these ports to writethe network’s hyperparameters, input the data, and read the network output. Duringthe operation, network nodes, PEs, can distinguish between the control and networkexecution data by checking the source address: address zero is used for control regardlessof the network size.Table 2 presents the calculation steps for the CAE forward pass, and the coloringscheme indicates the PEs performing the calculations. In step 1, all the input-outputnodes broadcast their input value xi to the middle layer nodes. The following steps, 2 to
4, calculate the sum presented in equation (1), and step 5 adds the bias term b(c)j to thesum. Step 6 completes the calculation of the middle layer representation y j by applyingthe non-linearity function f (equation (2)).Steps 7 to 8 calculate the terms for summation (equation (3)) and transfer the results

31

S00

S01

N1

N2

N3

N4
S02

S03

N5

N6

N7

CTRL
S10

S11

S12

S13

S20

S21

S22

S23

N1

N2

N3

N4

N5

DL
DL

CTRL

Figure 12 – Layout of the butterfly cross-bar switch. Layers of the CAE connect to the different sides.
CTRL ports are used by the ARM processing unit for flow control and data transfer.

to the corresponding input-output nodes. Input-output nodes perform the summation of
these terms in steps 9 to 11 and add thebias b(d)i in step 12 (equation (3)). Step 13 completescalculating the output Z after applying the non-linearity function g (equation (4)).

Table 2 – Calculations of the CAE forward pass

1 C1∗ = x1 ... Cn∗ = xn

2 A(c)
1 =C11 ∗w11 ... A(c)

m =C1m ∗w1m

3 A(c)
1 =C21 ∗w21 +A(c)

1 ... A(c)
m =C2m ∗w2m +A(c)

m
...

4 A(c)
1 =Cn1 ∗wn1 +A(c)

1 ... A(c)
m =Cnm ∗wnm +A(c)

m

5 T (c)
1 = b(c)1 +A(c)

1 ... T (c)
m = b(c)m +A(c)

m

6 y1 = T (c)
1 = T (c)

1 ∗ f1 ... ym = T (c)
m = T (c)

m ∗ fm

7 C11 = T (c)
1 ∗w11 ... C1m = T (c)

m ∗w1m
...

8 Cn1 = T (c)
1 ∗wn1 ... Cnm = T (c)

m ∗wnm

9 A(d)
1 =C11 ... A(d)

n =Cn1

10 A(d)
1 =C12 +A(d)

1 ... A(d)
n =Cn2 +A(d)

n
...

11 A(d)
1 =C1m +A(d)

1 ... A(d)
n =Cnm +A(d)

n

12 T (d)
1 = b(d)1 +A(d)

1 ... T (d)
n = b(d)n +A(d)

n

13 z1 = g1 ∗T (d)
1 ... zn = gn ∗T (d)

n

Table 3 presents the execution steps for updating the weights and biases, and thecoloring scheme of the table corresponds to the table 2. First, every output layer PEcalculates the ki (equation (24)) as the starting point of the gradient descent in table rows1 to 3 and broadcasts the value to every middle layer PE. Next, table rows 4 and 5 describethe update of the output layer bias values according to the equation (31).Further, rows 6 to 9 calculate the Sv (equation (28)) and transfer the result back toevery connected input-output node. Also, themiddle layer PEs transfer their forward pass
32

value y. Rows 10 and 14 multiply every value received from the middle layer by x, add the
kiy j term (equation (30)), and transfer the result back to the middle layer. In parallel,every middle layer unit updates its bias value (rows 12-13).The internal layer finalizes the update process. First, it prepares the weight updatevalue resulting from the contraction term (equation (30)) in rows 17-18. Next, the middlelayer unit repeats steps 19-22 for every connected input-output node to finalize theweightupdate process.
2.5.4 Architecture 2: Efficient Communication (CCom)
This subsection presents the CAE architecture with further optimizations. While the BLarchitecture nodes are entirely asynchronous and react upon data sent or received fromthe communication cross-bar switch, the CCom version takes another approach: the PEsare synchronous and expect specific data to be present in its communication channel inputand output certain data in a specific clock cycle. This approach simplifies the design of theFSMs inside PEs and can use a communication channel without handshake and addresssignals.Therefore, the CCom architecture skips the cross-bar switch style communicationchannel and replaces it with a carousel-like design: figure 13.

CTRL N1N2N3Nn

C1C2C3CnCn+1

Figure 13 – Carousel like communication channel. Data advances in every clock cycle. The node CTRL
is connected to the controlling ARM processing unit.

The carousel implementation advances the data in every clock cycle. However, as theBL architecture, the CCom network needs to be configured as well: the implementationadds two additional data bits to achieve this. One of these bits indicates if a PE sendscontrol data, and the other is used to denote the control from the processor attached tothe CTRL port. The PEs use the control bit to send the result values of a layer execution,and a separate control bit for data sent by PEs allows the CTRL port to distinguish and logthose values.Figure 14 presents the data-path of the CCom network node or PE. The overall ap-proach is the same as in the case of BL architecture: every PE wraps a HWMAC unit. Andevery PE has a block-RAM, registers for holding various values, and multiplexers for MACinputs. In the case of CCom architecture, all the PEs share the same architecture.As stated before, the PEs of the CCom architecture are synchronous: they process thedata received from the communication in a sequence defined in the design time.The first processing step during the execution is the forward-pass calculation. For this,the controlling processor outputs the network input values xi to the carousel, and everyPE stores one of the input values to its x register.Every PE has layer weight values stored in the block RAM, and the MAC operationfollows. During this phase, every MAC performs A ∗ B +C operation, where A and Binputs of the DSP slice are connected to the block RAM and register X outputs, and input
C is connected to the communication channel. At the same time, the result of the MACoperation is output to the carousel. This means that every PE adds a wi jxi term to thevalue received from the carousel and forwards it, where i is the physical location of the

33

Table 3 – Calculations of the CAE gradient descent

1 T (d)
1 = z1− x1 ... T (d)

n = zn− xn

2 T (d)
1 = 2∗T (d)

1 ... T (d)
n = 2∗T (d)

n

3 C1∗ = T (d)
1 = ∂ z1

∂d1
∗T (d)

1 ... Cn∗ = T (d)
n = ∂ zn

∂dn
∗T (d)

n

4 A(d)
1 =−β ∗T (d)

1 ... A(d)
n =−β ∗T (d)

n

5 b(d)1 = b(d)1 +A(d)
1 ... b(d)n = b(d)n +A(d)

n

6 A(c)
1 =C11 ∗w11 ... A(c)

m =C1m ∗w1m

7 A(c)
1 =C21 ∗w21 +A(c)

1 ... A(c)
m =C2m ∗w2m +A(c)

m
...

8 T (c)
1 =Cn1 ∗wn1 +A(c)

1 ... T (c)
m =Cnm ∗wnm +A(c)

m

9 C∗1 = T (c)
1 = T (c)

1 ∗ ∂y1
∂c1

... C∗m = T (c)
m = T (c)

m ∗ ∂ym
∂cm10 A(d)

1 =C11 ∗ x1 ... A(d)
n =Cn1 ∗ xn11 C∗1 = y1 ... C∗m = ym

12 A(c)
1 = T (c)

1 ∗−
β

2 ... A(c)
m = T (c)

m ∗−β

213 b(c)1 = b(c)1 +A(c)
1 ... b(c)m = b(c)m +A(c)

m

14 C11 =C11 ∗T (d)
1 +A(d)

1 ... Cn1 =Cn1 ∗T (d)
n +A(d)

n
...

15 A(d)
1 =C1m ∗ x1 ... A(d)

n =Cnm ∗ xn

16 C1m =C1m ∗T (d)
1 +A(d)

1 ... Cnm =Cnm ∗T (d)
n +A(d)

n

17 T (c)
1 = [−αλ]∗ ∂y1

∂c1
... T (c)

m = [−αλ]∗ ∂ym
∂cm18 T (c)

1 = T (c)
1 ∗ ∂y1

∂c1
... T (c)

m = T (c)
m ∗ ∂ym

∂cm19 A(c)
1 =C11 ∗ [−α/2] ... A(c)

m =C1m ∗ [−α/2]
20 A(c)

1 = T (c)
1 ∗w11 +A(c)

1 ... A(c)
m = T (c)

1 ∗w1m +A(c)
m

21 A(c)
1 = w11 +A(c)

1 ... A(c)
m = w1m +A(c)

m

22 w11 = A(c)
1 ... w1m = A(c)

m
...

23 A(c)
1 =Cn1 ∗ [−α/2] ... A(c)

m =Cnm ∗ [−α/2]
24 A(c)

1 = T (c)
1 ∗wn1 +A(c)

1 ... A(c)
m = T (c)

1 ∗wnm +A(c)
125 A(c)

1 = wn1 +A(c)
1 ... A(c)

m = wnm +A(c)
m

26 wn1 = A(c)
1 ... wnm = A(c)

m

34

−α

∂y
∂c λ

∂ z
∂d

Cxx

−β

x

RAM
z

K

b(d)

y

S

b(c)

Figure 14 – Data-path of the CCom network node. All the nodes share the same design.

PE in the carousel and j stands for the execution step: every PE adds the value rotating inthe carousel to the wi jxi term and forwards it, resulting in complete ∑
n
i=1 wi jxi operation.

After this procedure, every PE holds one of the completedMAC results, adds the layerbias value to it, and applies the ReLU activation function, completing the equation (2).Also, it is worth mentioning that the ReLU activation function is computationally light,even in the case of leaky ReLU: it is the multiplication by 1 in the case of a positive valueor by a predefined constant otherwise.
The same procedure follows for every layer present in the network. However, onemore optimization in CCom architecture targets the execution speed if the execution flowgoes from the layer with more PEs towards the narrower one. In that case, all the PEsstill perform the calculations, resulting in more than one set of values available for thefollowing layer calculations. For example, if there are n PEs in the currently calculatinglayer and m PEs in the next layer, and m < n, only m PEs need to complete the calculationof the next layer values, resulting in m PEs finally holding the correct data for furtherexecution. This means the values must circulate the entire carousel to be available forall the PEs. In the case of CCom, multiple sets of required values are calculated, and ittakes m cycles for all the nodes to receive the data.
However, this means that the count of PEs on the following layers has to be multipleof the PEs in the previous one: the PEs are synchronous and expect the values to arrivein the correct sequence. Therefore, the carousel has to contain dummy PEs to satisfy thisrequirement.
Table 4 provides an example of CCom calculating multiple sets of middle layer values.In this example, there are seven output layer nodes and five middle layer nodes: threedummy nodes D1...D3 must be included to allow two sets of middle layer values to becalculated. However, one of the dummy nodes can be skipped as a communication nodein every chain acts the same. Every value has to rotate all the PEs, so it takes a total of tencycles to complete the calculations, and after this step, every PE receives the input datafor the next layer calculations in five cycles in the correct sequence.
Figure 15 illustrates the carousel’s state after calculatingmiddle layer values; the figurecomplements table 4. Every PE can expect fivemiddle layer output values in the successivefive clock cycles, although the ordering of received values is not the same for all the PEs.However, different ordering is not an obstacle: controlling FSMs can be parameterizedduring the synthesis to cope with this.

35

Table 4 – Performance biased calculation scheme of CCom architecture. Multiple sets of values are
calculated to speed up the following execution steps.

D3 D2 D1 N7 N6 N5 N4 N3 N2 N1

Y (1)
1 Y (2)

5 Y (2)
4 Y (2)

3 Y (2)
2 Y (2)

1 Y (1)
5 Y (1)

4 Y (1)
3 Y (1)

2

Y (1)
2 Y (1)

1 Y (2)
5 Y (2)

4 Y (2)
3 Y (2)

2 Y (2)
1 Y (1)

5 Y (1)
4 Y (1)

3

Y (1)
3 Y (1)

2 Y (1)
1 Y (2)

5 Y (2)
4 Y (2)

3 Y (2)
2 Y (2)

1 Y (1)
5 Y (1)

4

Y (1)
4 Y (1)

3 Y (1)
2 Y (1)

1 Y (2)
5 Y (2)

4 Y (2)
3 Y (2)

2 Y (2)
1 Y (1)

5

Y (1)
5 Y (1)

4 Y (1)
3 Y (1)

2 Y (1)
1 Y (2)

5 Y (2)
4 Y (2)

3 Y (2)
2 Y (2)

1

Y (2)
1 Y (1)

5 Y (1)
4 Y (1)

3 Y (1)
2 Y (1)

1 Y (2)
5 Y (2)

4 Y (2)
3 Y (2)

2

Y (2)
2 Y (2)

1 Y (1)
5 Y (1)

4 Y (1)
3 Y (1)

2 Y (1)
1 Y (2)

5 Y (2)
4 Y (2)

3

Y (2)
3 Y (2)

2 Y (2)
1 Y (1)

5 Y (1)
4 Y (1)

3 Y (1)
2 Y (1)

1 Y (2)
5 Y (2)

4

Y (2)
4 Y (2)

3 Y (2)
2 Y (2)

1 Y (1)
5 Y (1)

4 Y (1)
3 Y (1)

2 Y (1)
1 Y (2)

5

Y (2)
5 Y (2)

4 Y (2)
3 Y (2)

2 Y (2)
1 Y (1)

5 Y (1)
4 Y (1)

3 Y (1)
2 Y (1)

1

CTRL N1N2N3

Y1Y2Y3Y5 Y4Y5Y1Y2Y3Y4

N4N5N6N7D1D2

Figure 15 – Data present on carousel nodes after completion of the middle layer values calculations
in case of CCom architecture.

36

2.5.5 Architecture 3: ResourceOptimised CAEwith efficient Communication (CCom-RO)
The CCom-RO architecture is similar to CCom: they share the carousel-like communicationchannel architecture (figure 13). Also, the architecture of PEs is combined: there are nodedicated PEs for different layers.However, as the architecture name suggests, the CCom-RO is a resource-optimizedversion of CCom, and not all the PEs share the same design. For example, if the CAEnetwork contains m internal and n external layer nodes, and m < n, only m PEs include allthe registers and, therefore, wider multiplexers to accommodate all the features requiredto act as a PE belonging to either of those layers.Figure 16 presents the data-path of the CCom-RO full PE architecture. Every PE iswrapped around the DSP slice, which performs the actual MAC operations. DSP inputsare connected to the multiplexers to select the required signals and registers b(d), b(c),
x, y, z, K, and S hold the calculation results. The communication port Sxx is required tocommunicate to the network’s other PEs.

−α

∂y
∂c λ

∂ z
∂d

Cxx

−β

z

RAM
x

y

K

S

b(d)b(c)

Figure 16 – Data-path of the CCom-RO architecture full PE. This PE can act as it belongs to both
internal- or external layers.

As the name of the architecture hints, it tries to optimize the HW resources. Therefore,some of the PEs can act only as part of the external layer. Figure 17 presents this kind ofreduced version PE: it misses registers b(c), y, and S. Also, the constant values requiredonly on the middle layer are removed, which yields narrower multiplexers. Otherwise,the PEs carry the same logic compared to the full version: they wrap the DSP slice, addnecessary registers for storing the results, and include the communication port Cxx toexchange data with the rest of the network.The optimizations of the PEs abandon the CComarchitecture speed-up if the executionflow goes from awider CAE layer towards the narrower one. Therefore, for a networkwith
m internal and n external layer nodes, and m < n, there is a maximum n−m cycles delayfor an external layer to start receiving the internal layer output. However, an additionalcarousel node is present in the real design: a node for communicationwith the controllingprocessor. This adds one additional delay step.Table 5 illustrates the effect of optimizations introduced by the CCom-RO architeturein case of the CAE network with n = 7 external- and m = 5 middle layer PEs. Only the first
m nodes, N1 . . .N5, hold the y j values upon completion of the middle-layer calculation;the remaining n−m nodes have a simplified structure. However, all the PEs must receiveall the middle layer values y j to complete the calculations of the next layer. Therefore,there is an additional delay for PE N5 before it starts receiving those.Figure 18 illustrates the carousel’s state after calculating middle layer values in the

37

∂ z
∂d

Cxx

−β

z

RAM
x

K

b(d)

Figure 17 – Data-path of the CCom-RO architecture reduced PE. The reduced version can operate
only as an external layer PE.

Table 5 – Resource optimised calculation scheme for CCom-RO architecture. Only one set of internal
layer values are calculated. Network nodes N6 . . .N7 do not implement all the features required to
act as the internal layer node.

C. N7 N6 N5 N4 N3 N2 N1

Y1 - - - Y5 Y4 Y3 Y2
Y2 Y1 - - - Y5 Y4 Y3
Y3 Y2 Y1 - - - Y5 Y4
Y4 Y3 Y2 Y1 - - - Y5
Y5 Y4 Y3 Y2 Y1 - - -- Y5 Y4 Y3 Y2 Y1 - -- - Y5 Y4 Y3 Y2 Y1 -- - - Y5 Y4 Y3 Y2 Y1

38

case of CCom-RO architecture; the figure complements table 5. The node N5 must idlethe longest before it starts receiving the middle layer value for further execution.
CTRL N1N2N3

Y1Y2Y3− Y4Y5−−

N4N5N6N7

Figure 18 – Data present on carousel nodes after completion of the middle layer values calculations
in case of CCom-RO architecture.

2.5.6 Usage of HW Resources
This subsection presents the synthesis results for the proposed CAE architectures, and thework was performed using the Xilinx Vivado Software (SW). All three architectures weredesigned using the Verilog HDL.

All the PEs wrap a HW DSP slice. Therefore, the total amount of possible PEs is limitedto the availability of those. The target platform used for this thesis, Xilinx Zynq 7020, has220 DSP slices.
Table 6 provides the resources used for synthesizing all three architectures for thetarget platform. During the synthesis, the count of PEs in the CAE internal layer was fixedto 30, and the number of PEs in the external layer was increased to fill up the target HW.In addition, the clock frequency driving the programmable logic was set to 100MHz.

Table 6 – Maximum network sizes and hardware usage for CAE synthesis targeting Zynq7020 SoC;
the size is expressed in FPGA slices.

ExtNode MidNode Chnl DSP bRAMArch Count Size Total Count Size Total Size Count Count
BL 100 65 6500 30 90 2700 7500 130 15ExtNode Mid+ExtNode Chnl DSP bRAMCCom N/A N/A N/A 150 105 15750 4377 150 75CCom-RO 170 75 12750 30 105 3150 1678 200 100

The column size expresses the count of consumed HW slices by the design. Each sliceon the target platform, Xilinx Zynq 7020, consists of four Look Up Tables (LUTs), eight stor-age elements, multiplexers, and carry logic. The table cells Total under columns ExtNodeandMidNode express the total slices used by either external or middle layer PEs, respec-tively.
Additionally, the column chnl presents the number of slices used by the communica-tion channel: cross-bar switch in case of BL architecture, and carousel type channel incase of CCom and CCom-RO variants. The columns DSP and bRAM hold the number ofDSP slices and block RAMs used by the design.
The data in table 6 suggests that the BL architecture allows the CAE network with thefewest nodes to be synthesized to the target HW, while the number of slices used by a PEis the smallest. However, the communication channel design consumes almost twice thenumber of slices compared to the CCom. At the same time, the difference is much moreradical compared to the CCom-RO version.

39

The CCom allows the CAE network with more PEs to be synthesized compared to theBL architecture. While the PEs itself consume more HW slices as they combine the func-tionality from all the network layers, the communication channel is lighter. It has to benoted that the CCom synthesis was configured to include 30 middle layer PEs. However,the design of the external and middle layer PEs is merged. Therefore, the final count ofPEs is 30 internal layer PEs and 150 external layer PEs, resulting in 50 more PEs comparedto the BL architecture.Finally, the CCom-RO architecture results in the largest CAE network. Again, an addi-tional explanation is required to interpret the presented numbers correctly: 30 PEs as-signed to the column Mid+ExtNode also act as the external layer nodes, as the columnheader suggests. Therefore, the total number of external layer PEs is 170+30 = 200. Inaddition, the HW slices consumed by the CCom-RO communication channel must also benoted. Middle layer PEs require a pipeline as more data must be simultaneously sent.Therefore, the reduction in required resources is expected because the CCom-RO archi-tecture has fewer of those than the CCom architecture.
2.5.7 Performance ComparisonThis subsection provides an execution time comparison of described CAE architectures.The CAE network used for benchmarking consisted of 200 external- and 30 middle-layernodes, totaling 230 PEs, and the cycle clockwas set to 100MHz. The execution timeswereacquired using the Xilinx Vivado HDL simulator.Table 7 provides the execution times for the described architectures: both forwardpath and training or backpropagation times were measured. In addition, the first tablerow Theoretical provides the timing estimation using the equations provided in subsec-tion 2.5.2.
Table 7 – Execution time of the CAE with 200 external- and 30 middle layer nodes. The clock speed
of the designs was set to 100MHz.

Arch Forward Pass (µs) Training (µs)
Theoretical 2.3 5.4BL 13.4 25.7CCom 2.8 5.9CCom-RO 6.1 9.5

According to the timing measurements, the fastest architecture is CCom, described insubsection 2.5.4: it is about four times faster compared to the BL architecture (subsec-tion 2.5.3). The communication channel used by different architectures can explain this.The BL architecture uses the cross-bar switch as the communication channel, and thechannel availability synchronizes the PEs. This technique yields less HW resources usedper PE (subsection 2.5.6), but at the same time, PEs are forced to idle if data is required orhas to be sent, but the channel is not available. In other words, competition for commu-nication resources slows down the overall execution. Further, this kind of resource race isexpected: all the PEs start the execution synchronously and require the communicationchannel simultaneously as they all perform the same amount of calculations.On the other hand, PEs in CCom architecture are synchronized by design: the state ofneighboring PEs is known, and therefore, the availability of the communication resourcesis expected and guaranteed. This type of PE architecture requires more HW resourcescompared to the BL version, but the lighter communication channel compensates for it.Furthermore, avoiding the PEs to race for the resources yields fewer idle cycles and faster
40

execution speeds: data can be sent as soon as it becomes available, and the availability ofthe communication channel is guaranteed by the synchronous behavior of the PEs.
CCom-RO architecture uses the same kind of communication channel as CCom. How-ever, as the name suggests, CCom-RO is resource optimized; therefore, the reduced exe-cution speed compared to the CCom is expected. Nevertheless, CCom-RO architecture is

∼ 1.6 times faster compared to the BL version.
Comparing the presented architectures to the theoretical execution time shows thatthe CCom architecture almost reaches the target: it can be concluded that PEs in CComarchitecture are utilized the best.

2.5.8 Field Test with MNIST database
To test the correct behavior of the described architectures, the MNIST database of hand-written digits was used [48].

For successful operation, the middle layer of the CAE should extract compressed fea-tures of the input data, i.e., these features should be sufficient to reproduce the inputdata in the CAE output.
Furthermore, as the CAE is unsupervised ANN, these compressed features could beused as the input for another unsupervised network. Extracting the features of the inputdata with a relatively simple CAE network could speed up the training process of thefollowing ANNs. Alternatively, the size of the following network could be reduced afterpreprocessing.
While the original MNIST database contains 28x28 pixel images, the data was com-pressed to 14x14 pixels. This compression yields 196 input data bits, suitable for the targetplatform used in this thesis, Xilinx Zynq-7020 SoC.
The CAE network used in this test was configured to have 196-bit input and outputlayers to match the size of the compressed MNIST database digits and a 10-bit middlelayer. On the target platform, it was possible to synthesize this network using CCom-ROarchitecture (table 6).
Further, 20 images from the MNIST database were used for the test, while every digitwas input 200 times to the CAE, and the network was configured to use 16-bit fixed-pointdata with 12 fractional bits. In parallel to the HW experiment, MATLAB implementation ofthe CAE was used to verify the correct behavior.
Figure 19 shows the results of the conducted test: the output of the 3-layer 196-10-196nodes CAE (figure 19b) correlates to the down-scaled 14x14 MNIST database input images(figure 19a), i.e., it can be concluded that the middle layer successfully extracted essentialfeatures of the input data.

2.6 Conclusions
This section presents the conclusions of the CAE ANNs presented in previous chapters.

First of all, the motivation of chapter 2 is to provide a CAE implementation which issynthesizable on FPGAs. Further, AE, CAE being one of them, can provide the meansof input data filtering for the following ANN: the middle layer of trained CAE eventuallycontains compressed features of the input signal. This way, the following ANN can eitherbe lighter, containing fewer layers, and PEs or be trained more quickly. Furthermore,CAE is a self-learning, unsupervised network suitable for deploying in fully autonomousenvironments: data processing can adapt to the changes in the surroundings.
It is important to emphasize that learning in HW is essential for CAE just becauseit is an unsupervised network. Otherwise, a training process with labeled data would

41

(a) Input to the CAE, down-scaled 14x14
MNIST images.

(b) Output of the CAE, using 16.12 fixed-
point representation and 10 internal layer
nodes.

Figure 19 – Operation example of the trained 3-layer 196-10-196 nodes CAE using 16.12 fixed-point
representations.

be necessary if it were a supervised network. This kind of separate training could beperformed using any HW, not necessarily on resource-constrained devices.The main contribution of chapter 2 was to present the first implementations of theCAE architectures with full HW based learning. Naturally, this claim has timing limitationsto be valid: studies in the field of ANN HW accelerators are very active nowadays.To bemore precise, this thesis’s contribution is to provide the first full hardware-basedimplementation of the CAE [43], comprising hardware-implemented learning. In addition,the provided implementations follow proposals to use shared weights on the input andoutput layers [44] and fixed point representations for weights and biases [45].The embedded proposals to share the weight values on different layers and to use thefixed point representation for data representation allows for reducing the HW require-ments of the target platform: hyperparameters require less storage space. Therefore, thetarget HWplatform could have fewer resources, yieldingmore negligible power consump-tion. This effect should not be overlooked.

42

3 Multiply-Accumulate Unit for DNN
3.1 Introduction
This chapter takes a step from the CAE HW architecture realization proposals presentedin the previous chapter towards versatile execution of the DL algorithms on embeddedtargets like FPGAs: HW friendly MAC unit suitable to be used as the building block fora DL network is presented and proposed here. Naturally, as DL algorithms and applica-tions based on these algorithms are actively researched nowadays, different proposalsaddressing various aspects can be found in the literature, including proposals for MACunit designs and data types in use. However, the novelty of the MAC unit proposed in thisthesis is that it makes use of the Triple Fixed-Point (TFxP) data type, which allows directconversion of the network parameters without retraining the network, and it makes veryefficient use of the DSP IP blocks found in FPGAs. On top of that, the method of analyzingthe suitability of the replacement data type is also studied. This thesis proposes not to usethe network’s inference precision for comparison but to analyze and compare the actualoutput of the network. The problem is that replacing the data type might increase theinference precision of the original network in case the original network was overfitted.The main idea is that the network should behave the same after modifications: it shouldnot perform better or worse.

First, everything is present in the DL architectures for executing the algorithm on con-ventional computers; why are the research on data types and proposals for HW architec-tures required at all? Modern computers use the GPUs, and floating point calculationsand successful deployments can be found everywhere.
However, even though FPGAs are suitable for designing and deploying parallel archi-tectures and, therefore, similar to the GPUs, can be used as the execution platform for theinherently parallel DL algorithms, there is an essential obstacle: more efficient support forfloating point data types is required.
Naturally, floating point calculations are possible on FPGAs, but the realizations wouldconsumemuchmore limited HW resources and energy compared to the fixed point arith-metics. In addition, FPGAs have HW DSP slices available, but again, those slices do notsupport floating point data. Therefore, the floating-point-based algorithms can not makeuse of these otherwise available IPs, leave the HW unused, and consume the FPGA logicto rebuild the functionality. Or alternatively, make use of the DSP slices, but spend severalto infer a single MAC caused by the floating point requirements.
On the other hand, the total amount of required MAC calculations for a typical DL al-gorithmmust also be analyzed: there would be no real benefit to fine-tuning an algorithmstep that is only seldom executed and, therefore, relatively little contributes to the finalexecution time. Also, additional consumed resources are not critical if only one instanceof a specific HWblock is used to realize the algorithm. However, neither assumption holdsfor the MAC unit: MAC operations dominate in executing a DL algorithm, and the algo-rithms are suitable for parallel execution as well. All the PEs can execute in parallel, andevery PE requires aMAC unit. Therefore, performance increases if moreMAC units can beinferred in the target HW, provided that the architecture can feed all the units with inputdata and the MAC units can all execute.
As stated before, the MAC operations dominate while executing a DL network; thetotal amount can be derived from the equations in use. E.g., equations (1) to (4) definethe operations required for the forward pass for the network presented in chapter 2. If weset the number of external layer nodes to 200 and 30 for themiddle layer nodes, the totalnumber of MAC operations equals n ∗m+m ∗ n = 200 ∗ 30+ 30 ∗ 200 = 12000. Adding

43

biases on middle- and external layers requires 200+ 30 = 230 operations and an equalamount for the ReLU activation function. Sowe can see thatMAC operations form 12000∗
100/12460 ≈ 96% of the total. The same holds for the gradient descent; following theequations presented in subsection 2.4.3, it can be seen that the MAC operations indeeddominate.

Also, continuing the analysis of the same previously presented AE network, every PEinfers a MAC unit to achieve the node-level parallelism. Therefore, fewer HW resourcesspent per MAC unit enable more PEs to be inferred, potentially increasing the perfor-mance.
So we can conclude that ≈ 96% of total operations are MAC operations for the net-work presented previously, plus every PE incorporates one of the MAC units. The pro-posed unit should be moderate in HW utilization numbers and execute fast to avoid be-coming the bottleneck.
Further, as the importance of the MAC unit performance and amount of inferred re-sources per unit is essential and explained above, this chapter continues with the litera-ture review in section 3.2. The literature review brings out various studies on executing DLnetworks on resource-constraint targets, like FPGAs, while focusing on MAC unit design,the usage of HW resources and retraining requirement.
Section 3.3 analyzes the consequences of using floating point data representation.Also, the section states that fixed point arithmetics suit well for DSP slices available inFPGAs, but the represented values lack the dynamic range. Further, as stated in sec-tion 3.3, using the Block Floating-Point (BFP) data representations solves the dynamicrange problem, but using a somewhat arbitrary list of possible exponents calls for ad-ditional HW resources, like multiplexers to ensure proper alignment after each MAC op-eration.
Subsection 3.3.1 selects YOLOv2 ([49]), a CNN, as the target network to analyze therange requirements of the data type. In addition to the static analysis of the weight val-ues of the trained network, the chapter also provides a dynamic analysis of the requirednumerical ranges during the execution: the range of the layer activation values during theinference.
Following the analysis, the exploration of the design space, subsection 3.3.2 proposesTFxP as the data type for the MAC unit. The type reserves two bits for selecting the expo-nent used for a specific value; therefore, the possible number of required re-alignments ofmultiplication results is well limited, while the achievable representation range can be ad-justed based on the actual DL network in use. Also, the proposed architecture conductsthe radix point alignment of the operands in the DSP slice input, ensuring the internalmultiplication result inside the DSP slice always has the exact radix point location. This ap-proach allows using the DSP internal accumulator data paths, increasing the performanceand conserving required additional resources.
Section 3.4 conducts the simulation of the converted YOLOv2 network, using the COCOdataset for precision assesment ([50]). Considering the simulation environment, MATLABwas selected as a widely used and accepted software package for various calculations.While MATLAB is well-optimized and excels very efficiently in the matrix calculus domainusing floating point data, it is not so in the case of using a type not native for the underlyingHW like Central Processing Units (CPUs) and GPUs, as described in subsection 3.4.1.
However, MATLAB allows complementing its functionality using C functions. This ap-proach was used to simulate the YOLOv2 DL network converted to use the TFxP data rep-resentations in this thesis. Also, the C extension functions use GPU to enhance the sim-ulation time; subsection 3.4.2 describes the C++ and CUDA-based MATLAB convolutional

44

layer extension with the TFxP data type support.Subsection 3.4.3 presents the simulation results of the converted YOLOv2 network,using the MATLAB software extended with TFxP support. The overall conclusion is thatTFxP can replace the Floating-Point (FP) type without retraining the network. However,the paragraph also states that Mean Average Precision (mAP) is not the best metric toassess the suitability of the TFxP as FP replacement: the network precision might evenincrease if the original network is not trained perfectly. Instead, Intersection over Union(IOU) is used to measure the similarity of the network outputs: the original network usingFP and the one converted to TFxP. This way, the evaluation criterion is not the overallnetwork precision but that the converted network must produce the same output as theoriginal one. For example, if the original network is overfit, the new type should not solvethis but retain the original behavior to be considered a suitable replacement.Further, section 3.5 provides the details about the HW implementation of the TFxPMAC unit, where the proposal makes use of the DSP HW slices available in the targetFPGA: Xilinx Zynq SoC. Two flavors of DSPs are considered: DSP48E1, found in the Zynq-7000 series, and newer DSP48E2, present in Zynq Ultrascale devices. The overall idea ofthose two flavors is the same, regardless of the actual DSP: multiplying two TFxP numbersproduces the result with variable radix point location, depending on the ranges of theinputs. This fact disables the internal accumulation path of theDSP slice: it is impossible todirectly accumulate valueswith different radix lengths. Therefore, the paragraphproposesto fix the radix point in the output and alter the input operands accordingly.Altering the input operands to guarantee the same output radix length raises anotherissue: multiple possible combinations of connecting the inputs. Subsection 3.5.1 describesthe issue and proposes the algorithm that balances the input multiplexers. While the to-tal number of possible combinations is well limited for TFxP data, the method has to bedefined to allow automatic HDL code generation. Furthermore, balancing the inputmulti-plexers increases the possible clock frequency for the FPGAby balancing the combinatorialpaths and also infers fewer HW resources. The assumption about fewer resources usedis that the logic blocks in FPGAs allow building multiplexers with the power of two as theinput count; a multiplexer with three inputs consumes the same amount of logic blocksas a multiplexer with four inputs. The fifth input would infer additional HW. Therefore,using two four-input multiplexers infers fewer resources than two multiplexers with fiveand three inputs.Further, subsection 3.5.2 describes the MAC unit output formation. First, the accept-able range for the TFxP representation has to be selected; this is achieved by observingthe actual magnitude of the output. If possible, the maximum possible fractional part isselected to retain the precision. And vice versa, the fractional part is reduced to fit theoutput value if required by the output magnitude. In addition, as the output of the DSPslice is 48 bits wide, the under- and overflow check is also possible and conducted.Finally, chapter 3 is concluded by subsection 3.5.3 where the actual HW usage persingle MAC unit is presented.The main contributions of chapter 3 are:
• Novel Triple Fixed-Point (TFxP) based MAC unit suitable for various neural networkarchitectures, having high numerical precision (comparable to floating point) andvery hardware-efficient implementation. This architecture can be directly used inANN networks (e.g., CNN), which have been trained in software as hardware imple-mentation without retraining the network.
• This chapter also proposes a different evaluationmethod of the data-type suitability

45

as the floating-point replacement: instead of analyzing the inference precision, thenetwork outputs are compared directly.
3.2 Literature Review
As there is no doubt in the usefulness of the DL networks, the area is very actively re-searched. Proposals to use various numeric systems and other strategies to bring theDL algorithms into resource-constraint systems are found in the literature; the goal is tobring down the power consumption of the executing HW. FPGAs are the natural choice forthese kinds of tasks: they enable parallelism similar to the GPUs. However, they are moreconservative regarding the energy budget and can be more cost-effective depending onthe specific make andmodel. This chapter provides a literature review of such acceleratordesigns, focusing on data type selection and MAC unit design.Traditionally, DL algorithms rely onfloating-point calculations: this is the natural choicefor an application running on CPU or GPU, but not well suited for resource constraintsystems. However, it has to be stated that floating-point calculations are indeed possiblein embedded targets, such as FPGAs: floating-point calculation units can be synthesizedif not available as HW IP blocks. Various proposals are available in the literature to enableand enhance the floating point calculations for such targets: [51, 52, 53, 54, 55, 56, 57, 58,59, 60].Also, floating point calculations are proposed for executing DL networks on FPGAs. Forexample, authors in [61] analyze the power and performance of single-precision floating-point MAC units. However, this reference work does not utilize the DSP blocks availablein modern FPGA architectures. Authors in [62] simplify the floating-point format and pro-pose another architecture not based on DSP blocks, leaning more towards ApplicationSpecific Integrated Circuit (ASIC) designs. Another work where authors propose a ASICflavoring design and use a simplified floating-point data type can be found in [63]. Contin-uing with research proposing modified floating point data types, authors in [64] proposeLOCOFloat and target FPGA as the execution platform. However, the proposed modifi-cation still yields the inference of HW resources comparable to the floating point-baseddesigns. Further, authors in [65] propose to keep the weight values in floating-point for-mat but use the fixed-point representations for activations. This approach is also moresuitable for ASIC designs as it still needs some means of floating-point HW and does notdirectly fit to the DSP blocks available in FPGAs.Another research direction is to use integer data types in DL networks; integer-basedcalculations are less HW hungry and are well suited for FPGAs. For example, authors in[66] experiment with integer representation and conserve approximately half of the re-quired HW resources compared to the floating point-based design. In addition, they alsopropose the training method: it is only possible to use such severe quantization by re-training the network. Another works using 8-bit integer representations can be found in[67, 68, 69]. Although the architectures are not entirely presented in theseworks, authorsshow that the power consumption of the FPGA based solution is reduced by more thanan order of magnitude compared to the GPU based counterpart. Also, authors in [70]experiment with the integer data type. Again, the implementation of the HW is not pre-sented, but this work also demonstrates that the floating-point precision is unnecessaryand integer types can be used instead. Another similar work can be found in [71], whereauthors analyze the performance and precision of using integer data types instead of float-ing point representations. The authors conclude that a 16-bit integer is best suited for thatpurpose. However, they also retrain the network to maintain accuracy. Moreover, usinghighly quantized data types, the retraining requirement opens another research direction;

46

authors in [72, 73, 74, 75, 76] analyze the problems related to low-bit width training andprovide proposals for accelerators.
The low bit width of the network parameters and activations provides an interestingoptimization possibility: it is possible to pack two multiply operations into a single DSPslice. Authors in [77, 78] provide an example of this kind of design. Also, the same ap-proach is provided in [79, 80], where authors perform two eight-bit multiplications usinga single DSP slice.
Further, it is possible to reduce the bit width of the data types even more: anotherwell-studied approach in enabling the DL algorithms to run on FPGAs uses binary- orternary data representations. These approaches yield low usage of HW resources, butas a drawback, the network requires retraining.
For example, authors in [81] propose a ternary network. The work demonstrates thatthe inference accuracy of such a DL network can be adequate, but the network has to beretrained, and the authors also implement and propose tools to achieve that. Also, theauthors claim that ternary data representation yields severe accuracy loss if the networkcontains a fully connected layer and propose a fixed-point approach as a subject to studyto overcome this.
Another study of a severely quantized DL network can be found in [82], where thedata type is reduced to a single bit, binary values. This kind of network also requiresretraining. Furthermore, the loss of precision is also encountered. Authors overcome thereduced precision by executing the floating point-based version of the network on CPUif the output of the binary network can not be classified with high enough confidence.This approach boosts the precision, but the network’s latency is no longer constant. Inaddition, authors foresee the FPGA accelerator using more bits for data representation asfuture work.
A similar deeply quantized network is presented in [83]. Authors achieve a frame rateof 1000 fps while processing the handwritten digits from the MNIST database. This highthroughput is expected from a deeply quantized network. However, the presented ap-proach requires special adoption and training of such a network; no direct conversion ofa floating-point-based network is possible. Also, the authors discuss time-domain multi-plexing of signals to increase the bit-width of the representations.
Also, similar works can be found from [84, 85], all yield efficient hardware but sharethe same shortcomings: direct conversion is impossible.
Considering the binarization of the network parameters, authors in [86] take an addi-tional step further and apply compression to such a network. They achieve the compres-sion by analyzing the distribution of kernels on DL network layers and select subsets thatcover the variation the best. As a result, the authors successfully reduced the networksize and improved the performance, with the cost of a slight accuracy drop. However, thisresearch direction requires retraining. In addition, the proposed architecture uses full pre-cision layers as the first and last one, dictating the presence of floating point capableMACunits in the design.
However, these deep quantization techniques are outside this thesis’s scope: insteadof rebuilding and retraining the network, this thesis searches for a direct replacement forthe floating point. Keeping that in mind, it is clear that the dynamic range of binary repre-sentations is not sufficient. Sure, the precision can be reclaimed after such substitutionswith retraining. Also, binary and ternary representations are undoubtedly conservativewith the HW resources. However, retraining the network is a cost that has to be paid.Nevertheless, this research direction should be noted: these works suggest that the highdynamic range of floating point representations is unnecessary, and the format can be

47

replaced.
Literature also proposes to convert the floating point representations to a differentdomain while conserving the precision. One work of this kind can be found in [87], whereauthors investigate the usability of the logarithmic numeric system. The benefit of us-ing logarithmic representations comes from multiplication and division, which convert toaddition and subtraction, respectively. However, the drawback of such a conversion isthat simple addition and subtraction operations become much more complex. So, thisapproach can not be considered a good option for MAC unit: simplifying the multiplica-tion at the cost of the complexity of addition operations does not yield a good solution asthe resources conserved in one phase are wasted elsewhere. In addition, additional HWis required for conversions. However, this can be avoided if the conversion is performedbefore the network deployment.
Another work targeting the logarithmic numeric system can be found in [88]. Authorsuse 8-bit wide BFP data and convert the values to logarithmic scale beforemultiplications.Further, the values are converted back to the linear scale to avoid the added complexityof the accumulation operation in the logarithmic domain. While the proposed methodyields accuracy comparable to the network using the floating point representations, theback-and-forth data conversion from linear to logarithmic scale does not allow the designto use the DSP blocks found in FPGAs.
Another numeric system scientists have studied for DNN is the posit: authors in [89]use the format to implement the MAC unit. They show that the posit numeric systemyields better accuracy than the floating point for lower bit widths. However, the usage ofHWresources and energy consumption is comparable to the floating point-based solution.
The posit numeric system and related HWarchitectures are also studied in [90], whereauthors propose a generator for hardware instantiation. However, the work presented in[91] proposes that the overall cost of the posit HW can even increase compared to therequirements of the floating-point-based systems. Nevertheless, as the authors claim,using posit numeric systems can increase the accuracy of computations.
Another research direction in the literature uses BFP data representations. This ap-proach uses fixed-point values and adjusts the fractional portion upon the actual weightor activation values in the DL network. For example, authors in [92, 93, 94] show thatBFP quantization can be used without retraining and still preserve the precision of thenetwork. Further, to decrease quantization error, authors in [95, 96] propose a methodof the fractional exponent to effectively use the full range of given mantissa of BFP. How-ever, the detailed HW implementation has not been provided. As another example, au-thors in [97] experiment with different approximation techniques, including the BFP andalso report conserved HW resources compared to the floating-point-based designs whilepreserving the precision. Also, authors in [98] report the suitability of BFP format for DLnetworks and propose an accelerator for CNN networks.
Despite floating-point computations being constantly optimized and improved, fixed-point calculations conserve less energy and HW resources. Also, as shown in this review,DL networks do not necessarily need the magnitude of representations provided by thefloating-point: proposals to use even single-bit data representations exist. However, thereal drawback is that such networks require retraining: deploying an existing network ona resource-constraint system after direct conversion is impossible. Also, as shown, BFP is apromising research direction: authors successfully convert the weight values and performthe inference without sacrificing accuracy. Keeping that in mind, authors in [99] provideDual Fixed-Point (DFxP) representation which positions between the floating-point andBFP approaches. This format uses a single bit to decide the radix point position. This idea

48

is developed further in [100], where authors propose dynamically configuring the radixpoint locations. Further, authors in [101, 102] analyze the resource usage and accuracyof the DFxP calculations: it conserves HW resources compared to the floating-point im-plementations, and on the other hand, increases the dynamic range of the fixed-pointvalues.Continuing from here, this thesis proposes TFxP numeric format as a direct replace-ment for the floating-point data in DL networks: this format adds the third possible radixpoint located between the highest magnitude and highest precision regions also achiev-able with the DFxP numbers. Therefore, the precision in the middle range is increased.Also, the proposed architecture uses the DSP blocks found in the FPGAs.
3.3 Data type selection
The data type selection directly impacts the MAC unit and the entire accelerator’s over-all performance. First of all, FPGAs have DSP slices integrated into the programmablefabric, including those existing hard IP blocks to the MAC architecture gives the best com-putational performance. However, these blocks are best suited for integer calculations.Floating-Point (FP) arithmetic is possible, but it requiresmore than oneDSP block perMACunit [103], totaling to less MAC units on a selected FPGA platform and, therefore, reducedpossible parallelism.Although there are FPGAs available with hard FP DSP IP blocks, the integer perfor-mance is over 20% better [104]. Also, as only the higher-end devices pack the FP HW, itseverely limits selecting a target platform.Here, we search for a data type that can directly replace the FP parameterswithout thenetwork retraining. Therefore, binary or ternary quantization techniques do not qualify.On the other hand, going beyond the deep quantization infers much more FPGA HW, andto avoid that, wrapping the MAC unit around the existing DSP slice is a natural choice.DSP slices integrated into the FPGA are especially suitable for integer calculations.However, integer representations fail to represent fractional numbers, including theranges (−1,0) and (0,1). Therefore, the multiplication of integer operands can onlyamplify layer activation values.Fixed-Point (FxP) representationmakes amuch better choice for implementing NeuralNetworks (NNs) on FPGAs. This format fixes the radix point to a specific location and canrepresent fractional numbers. If x is the value of a memory field interpreted as an integer,and b is the number of FxP fractional bits, equation (36) defines the conversion of x to FPvalue d.

d = x ·2−b (36)
Integer math directly applies to summing FxP numbers if operands have the same bamount of fractional bits. For multiplication, the result’s fractional part length is the sumof fractional part lengths of operands (equation (37)), which has to be corrected, resultingin shift operation in HW.

dmult = (x1 ·2−b) · (x2 ·2−b) = x1 · x2 ·2−2b (37)
The issue with FxP compared to the FP is its much narrower representation range.Authors have addressed this by setting the radix point location b per NN layer or applyinganother type of partitioning: radix point location is set according to the pre-analysis fordifferent phases. This technique is known as Block Floating-Point (BFP): [94] provides anexcellent example of accelerating CNNs using BFP.

49

BFP format requires determining the common exponent value bc for a block of data,while the data can be partitioned to match communication patterns or by other means.After partitioning, each data chunkX containsN values with possibly different exponents:equation (38).
X = (x1 ·2b1 ,x2 ·2b2 , . . . ,xN ·2bN) (38)

The maximum exponent value is used as the common exponent bp for the entire par-tition (equation (39)), effectively avoiding overflows.
bp = max1≤i≤N(bi) (39)

For calculations, the values xi in a partition X are right-shifted by bp− bi positions,forming the new data chunk Xp where all the values share the same exponent value bp:equation (40).
Xp = (xp1,xp2, . . . ,xpi) ·2bp (40)

However, BFP conversions do not limit the set of possible exponent values. Eachunique exponent bp requires a different shift operation inMAC output to correct the radixpoint location, which yields configurable shifters and adds the HW complexity.The authors in [99] propose DFxP format to extend the range of FxP. This formatsacrifices one bit, E, of the representation to select between two possible radix pointlocations, extending the range of FxP. This technique effectively combines two FP ranges,and the equation (41) defines the value d the representation holds.
d =

{
x ·2−b0 if E = 0
x ·2−b1 if E = 1

(41)
Figure 20 illustrates the DFxP representation, where ax and bx are the lengths of theinteger and fractional part of ranges. If a value can not fit RANGE 0, the precision isreduced, and the value is stored in RANGE 1, using range selection bit E to notify that.However, if DFxP combines ranges with exponent values b0 and b1 apart enough, thevalues just not fitting the RANGE 0 suffer the most. The precision of values just outsidethe reach of FxP experience accuracy drop in that case.

RANGE 0RANGE 1

−2a0 2a0 −2−b0−2a1 2a1 −2−b1

Figure 20 – DFxP representation adds an additional, less precise range to extend the FxP.

To add someflexibility to range selections, authors in [100] take a step towards BFP anduse FPGA reconfiguration to adjust the DFxP ranges for different NN layers: they identifyNN layers as partitions for BFP which share the same exponent settings. However, re-configuration decreases the overall throughput, which can be somewhat mitigated usingbatch execution. Batch execution, on the other hand, increases the latency.
3.3.1 Design Space Exploration
This subsection analyzes a typical DNN to understand a candidate data type’s necessaryrange and precision. The target network is YOLOv2: a CNN comprising 23 convolutional

50

layers [49]. Although thementioned network has a newer version available, version two isconsidered enough for an example in this thesis. Figure 21 presents the YOLOv2 structure.

416x416
208x208
208x208
104x104
104x104
104x104
104x104
52x52
52x52
52x52
52x52
26x26
26x26
26x26
26x26
26x26
26x26
13x13
13x13
13x13
13x13
13x13
13x13
13x13
13x13
13x13
13x13
13x13

26x26
13x13

2x2/2

2x2/2
2x2/2

2x2/2

2x2/2

3x3
3x3
3x3
3x3
3x3
3x3
3x3
3x3
3x3

3x3
3x3
3x3
3x3
3x3
3x3

1x1

1x1

1x1
1x1

1x1
1x1

1x1

3x3

32Conv

512Conv

64
128
64
128
256
128
256
512
256
512
256
512

1024
512
1024
512
1024
1024
1024
1024

5x(5+C)

Conv
Conv
Conv
Conv
Conv
Conv
Conv
Conv
Conv
Conv
Conv
Conv

Conv
Conv
Conv
Conv
Conv
Conv
Conv
Conv
Conv

MPool
MPool

MPool

MPool

MPool

2048Reorg

Concat 3072

TYPE Cnt SIZE OUTPUT

TYPE Cnt SIZE OUTPUT

Figure 21 – Structure of the YOLOv2 DL networks: there are total of 23 convolutional layers.

The analysis was performed using MATLAB software. The layer information and pre-trained weight values were loaded using the Darknet Importer1 add-on. For execution, acustom wrapper was developed to collect intermediate activation values.
The first aspect of analyzing was the network weights’ range and mean values: thecandidate data type should accommodate the values without overflows.
1https://se.mathworks.com/matlabcentral/fileexchange/71277-deep-learning-

darknet-importer

51

Table 8 presents the results of the analysis: weight values occupy the range
[−18.6,99.5], while the mean value equals 13.7. This hints that 5 integer bits are enoughto hold the values without overflows.

Table 8 – Analysis of the weights values of YOLOv2.

Minimum Maximum Median
Weights -18.6 99.5 13.7

Next, intermediate layer activation values were analyzed using realistic photos andimages with all pixels set to black or white. Although the analysis was run in MATLAB,the values were captured right after the convolution operation, just before the activation,batch normalization, or any other operation, which corresponds to theMACoutput inHW.Table 9 shows the maximum, minimum, and mean values averaged over all layers. As canbe seen, the most comprehensive numerical range is required for the actual photo frame:
7 integer bits are required to avoid overflows. On the other hand, all the activations’meanvalue equals≈ 1, requiring only a single-bit integer portion.

Table 9 – Analysis of the layer activation values of YOLOv2.

Input Minimum Maximum Median
Photo -113.9 106.3 0.7

All white -57.9 31.6 1.4
All black -23.1 28.6 1.2

Deviation in range requirements hints that single FxP format can not be used: eitherprecision is lost due to the lack of fractional bits, or overflows are introduced if the lengthof integer bits field does not suffice. This is especially true for activation values: the meanvalues show that most calculations benefit from more fractional bits. At the same time,extreme cases require more integer digits to avoid overflows.
3.3.2 Triple Fixed-Point
Data-type suitable for MAC operations in a NN should provide a suitable range to avoidoverflows and sufficient precision. Providing suitable precision means that most bitsshould carry information: exponent value has to be adjustable, just like in FP. However,FP calculations infer a lot of HW resources in FPGAs, and therefore, a better alternativewith comparable precision is required.As the analysis in subsection 3.3.1 shows, the number of integer bits ranges from noneto seven in the YOLOv2 network. Most activation values use zero integer bits, while ex-treme cases require seven bits during the inference using a real photo (table 9).The results found in the research publications show that BFP can successfully replacethe FP format in NNs[94]. And DFxP ([99]) gives promising results too, especially if devel-oping the format towards BFP by adding partition based exponent selection ([100]).Here, I present the TFxP format. It is related to DFxP and carries a similar idea.According to the analysis of YOLOv2 CNN, low median values require that all the bitsare used for the fractional portion, while the highest values call for seven integer bits.

52

Most calculations require the lower range, while the higher range is needed to avoidoverflows. The values between these two ranges would be converted to the higher rangein the DFxP format. TFxP adds a middle range to increase the precision for values in thatregion: TFxP has three possible exponents to select from for every value.
TFxP representation requires up to four and a minimum of three memory fields: themode selection field E, the sign bit, integer portion bits, and fractional bits. Dependingon the pre-configuration, the integer- or fractional bits may be missing: the integer orfractional portion may occupy all the bits reserved for representing the actual value.
In the following text, the notion n_b0_b1_b2 will be used to define the TFxP format,where n stands for the total bit length of the representation, and b0 . . .b2 define the ex-ponent values for three TFxP ranges.
Table 10 presents thememory allocation for a TFxP format 16_13_9_5. The first range,identified by the range selection field E value 0, has zero integer bits: all bits are reservedfor the fractional portion.

Table 10 – TFxP format 16_13_9_5.

E Signed significand
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 S fraction0 1 S integer fraction1 0 S integer fraction

Figure 22 gives the visual representation of ranges in TFxP format. Here, ax and bx arethe bit lengths of integer and fractional portions. The representation has three possibleranges that do not have to be adjacent: exponent values are predefined on design time tosuit the system best. The range with the highest exponent value, b0 in figure 22, has thefinest gradation but can represent valueswith the lowest absolutemagnitude. If the rangecapability does not suffice, the next exponent value b1 can be selected, which extends theabsolute magnitude with the cost of precision. The lowest exponent value, b2, yields thehighest range.

RANGE 0RANGE 1RANGE 2

Fixed-Point
DFP
TFP

−2a0 2a0 −2−b0−2a1−2a2 2a1 −2−b1 2a2 −2−b2

Figure 22 – TFxP representation. Ranges 1 and 2 increase the range while sacrificing the precision.

For backward conversion, from TFxP to FP, equation (42) defines the actual value theTFxP coded memory field holds, where x is the value of combined integer and fractionalfields interpreted as an integer, E defines the range, and b is the exponent value of thatrange.
53

d =

x ·2−b0 if E = 0
x ·2−b1 if E = 1
x ·2−b2 if E = 2

(42)

To convert a value to the TFxP format, forward conversion, a suitable target range hasto be selected first. Equation (43) presents the range selection criteria: the first rangecapable of accommodating the value is selected. After determining the target range, theconverted value must be truncated to have bx fractional bits determined by the selectedexponent value E and possibly masked to have a maximum of ax integer bits. Equa-tion (44) presents the width of the integer portion, where n stands for the total bits usedby the representation. Overflow can be flagged if the converted range overflows the TFxPhighest range.

E =

0 if −2a0 < D < 2a0 −2−b0 else
1 if −2a1 < D < 2a1 −2−b1 else
2 if −2a2 < D < 2a2 −2−b2 else
3 overflow

(43)

ax = n−bx (44)
3.4 Simulation
Apart from the fact that TFxP format extends the range of FxP and improves the preci-sion of the DFxP, the usefulness has to be proved. Studies with BFP [94], DFxP [99] anddynamic DFxP [100] show that the FP format can be replaced, even without retraining ofthe network. However, these approaches either add HW complexity because of the highamount of possible exponents the system has to support or introduce a time penalty ifFPGA reconfiguration scheme is used.This section provides the simulation results of the YOLOv2 CNN [49] using the newTFxP format for MAC operations.
3.4.1 Environment
The simulation environment used in this work is based onMATLAB software. Therewas noparticular reason to chooseMATLABover other possibilities like Python and its DL libraries.Also, it would have been possible to use the "darknet" software 2 developed especially forthe YOLO, but MATLAB provides better visualization and debugging mechanisms than theC console application.Dataset, the input data to the system under test, is another essential aspect to con-sider. Although comparing the TFxP versus FP network output is the primary simulationcriteria here, a community-improved dataset is better. Firstly, public datasets have a vastamount of data to use. Secondly, results from a common dataset allow a sounder com-parison to other works.In this work, the COCO validation dataset has been used for simulations [50]. Thisdataset has 40504 pre-annotated images: surely enough to compare the inference accu-racy of TFxP based MAC to FP. However, inference accuracy is not the primary evaluationcriterion used in this thesis, but the proposed TFxP datatype has to present similar resultscompared to the FP instead.

2https://github.com/pjreddie/darknet

54

Undoubtedly, MATLAB is an accepted software for solving mathematical problems,training, and inferring DNNs among them: it has an additional toolbox available for theDNN analysis. However, FP is the default datatype MATLAB can effectively use. Addi-tionally, FxP can be used, although it slows down the execution. This speed penalty isunderstandable as the underlying HW does not have native support for FxP operations,and software wrappers must be used.
The support for TFxP is missing in MATLAB, naturally, which can be added using asoftware layer. However, a possible speed penalty has to be carefully considered here:using a vast amount of testing data, around 40K images from the COCO dataset, wouldtake a long time to execute. E.g., 1 second extra time spent per input frame results in

40504/60/60≈ 11 additional hours run time. On the other hand, there are approximately
6.29e10MAC operations involved in the inference of a single input image in YOLOv2 CNN.Therefore, to introduce 1 second additional delay in network output formation, everyMAC operation has to execute as little as 1/6.29e10 = 1.59e−11 seconds longer. As aresult, implementing a straightforward TFxP wrapper yielded an execution time of overhalf a year for the COCO dataset, and this is only for a single TFxP setting. With run timelike this, sweeping the middle range was totally out of the question.

For these kinds of problems,MATLAB supports extending its functionality bymex func-tions: C/C++ can be used to add support for new data types, like TFxP in this thesis. Also,mex functions can benefit from GPU support: although MATLAB supports GPU directly,direct CUDA [105] programming gives more refined control over the parallel execution.
3.4.2 Triple Fixed-Point Convolutional Layer for MATLAB
The MATLAB TFxP mex extension performs the entire convolution operation: the entireconvolutional layer functionality, requiring the TFxPMAC operation, was pushed out fromMATLAB and written in C++ and CUDA.

Algorithm 1 presents the high-level structure of the mex extension function. It acceptsthe layer activation, layer weight values, and TFxP ranges as the inputs, checks the inputs’integrity, and pushes the data to the GPU memory for processing. Input batches arespread over separate CUDA streams to maximize the parallelism.
Algorithm 1: TFxP convolution layer mex function
Input: Layer activations[N]
Input: Layer weights
Input: TFxP ranges
Result: Convolution resultSanityCheck() // Check the inputstoGPU(weights) // Copy to GPU
/* CUDA streams loop */
for i← 1 to N dotoGPU(activations(i))padding(activations(i))toCols(activations(i)) // flatten 3-D activation in GPU memoryMAC(activations(i),weights,ranges)fromGPU(activations(i))
end

The function "toCols()" flatten the input activation data structures to two-dimensionalmatrixes: 3-D layer activation input is flattened to 2-D in memory to guarantee sequentialmemory access during the MAC operation. Figure 23 illustrates this operation. The selec-
55

tion box B, equal to the layer’s convolution filter’s size, moves across the activation input,and the selected values are transferred to a sequential memory location. The selectionsoutside the input data’s bounds are set to zero; this operation is known as "padding."

x0,0,0

x1,0,0

x2,0,0

xm,0,0

x0,1,0

x1,1,0

x2,1,0

xm,1,0

x0,2,0

x1,2,0

x2,2,0

xm,2,0

x0,n,0

x1,n,0

x2,n,0

xm,n,0

...

...

...

...

...

............

u

v
c

u∗ v∗ c

...

...

...

...

...

b0,0,0 b1,0,0 b2,0,0 b0,1,0 bu,v,c

b0,0,0 b1,0,0 b2,0,0 b0,1,0 bu,v,c

b0,0,0 b1,0,0 b2,0,0 b0,1,0 bu,v,c

b0,0,0 b1,0,0 b2,0,0 b0,1,0 bu,v,c

B0,0

B0,0

B1,0

B2,0

Bm,n

m∗n

Figure 23 – 3-D layer activation input is flattened to 2-D in memory to guarantee sequential memory
access during the MAC operation.

The function "MAC()" performs the actual multiply and accumulate operation: it sim-ulates the execution of the target DSP HW slice. For performance, every output value, theinput selected by the boxBmultiplied by correspondingweight values in the convolutionalfilters and accumulated, is evaluated by a separate CUDA kernel.
3.4.3 Results
This subsection provides the TFxP based MAC simulation results. In the experiment,YOLOv2 was tested using the COCO evaluation dataset, comprising 40K images.The network weights were converted from FP to TFxP for testing. No additional train-ing was performed, and the network output was compared to the ground truth: the eval-uation dataset. For evaluation, the mAP for output confidence level 0.5 . . .0.95 was usedfor the assessment. The hypotheses used: if the converted network reaches the samemAP as the original one, the FP can be directly replaced.The mAP of the original, unconverted network was calculated first. Further, the net-work weights were converted to DFxP_13_12_5 format, and for comparison, themAPwasfound for this configuration too.Table 11 presents the mAP results of YOLOv2 network inference using the COCO eval-uation dataset. As an interesting observation, the mAP is higher if the network was con-verted to the DFxP_13_12_5 format, i.e., the network under test predicts better if theprecision of weights and calculations is decreased.

Table 11 – mAP of YOLOv2 using FP and DFxP_13_12_5 datatypes

FP DFxP
mAP@[0.5,0.95] 0.277 0.289

56

A similar simulation was carried out for the YOLOv2 network after converting theweight values to the TFxP format n_b0_b1_b2. The notion used here is the same asexplained in subsection 3.3.2: n stands for the total bits the format uses, and bx specifiesthe length of the fractional part.Figure 24 presents the inference results of YOLOv2 network with weight values con-verted to TFxP format. Four different ranges were tested, where the middle range frac-tional part length, b1, was swept over all the possible values (b2,b0).Again, the precision of the TFxP converted network outperforms the original, FP basedversion. Considering the results of DFxP (table 11), this was expected. However, the loss ofprecision for meaningful middle-range fractional lengths is another phenomenon requir-ing additional investigation. Here,meaningfulmiddle range fractional lengths are consid-ered to be the ones where b1 is located in the middle region of the range (b2,b0): themiddle range is considered more meaningful if it adds precision and does not closely fol-low one of the edge ranges.

5 6 7 8 9 10 11 12
b1

0.287

0.2875

0.288

0.2885

0.289

0.2895

0.29

m
AP

@
[0

.5
0:

0.
95

]

TFxP_15_12_b1_5
TFxP_16_13_b1_4
TFxP_16_13_b1_5
TFxP_16_13_b1_6

Figure 24 – mAP@[0.5,0.95] of YOLOv2 network with weights and calculations converted to TFxP
format n_b0_b1_b2, where b_1 is swept for the simulated ranges.

The presented analysis results clearly show that mAP is not suitable to conclude if theTFxP can directly replace the FP. The increase of mAP for reduced precision can not beaccurate, but it indicates that the original network could be trained better.Going further, we can set another criterion to assess the suitability of the replacementtype: the proposed type, TFxP, has to produce similar results as the original version. If theoriginal network is overfit, the new type should not solve it, but it has to stay that way.The same holds the other way around: if the network is perfectly trained, the new datatype should not alter the situation, and the network should produce the same results.Therefore, to evaluate the reproducibility of the FP results, the FP results have to beused as the ground truth instead. To achieve this, the converted network’s output hasto be compared to the original output, not to the ground truth provided by the COCOdataset. For this comparison, the same metric can be used as internally utilized by mAPanalysis: IOU.Figure 25 illustrates the meaning of IOU: IOU of two prediction boxes A and B is theratio of areas where the boxes intersect, the area surrounded by the green line, and thecombination, the union, of those two predictions, the red line surrounded area. The IOUfor two perfectly aligned boxes is 1, and the value decreases to zero if the boxes do not
57

intersect.

A
B

Figure 25 – IOU of two rectangles, A and B, is defined by the ratio of intersection, the double hatched
area surrounded by the red line, and union, surrounded by the green line.

Algorithm 2 presents the functionality of the IOU calculation. The algorithm iteratesover all the prediction boxes in the ground truth array, the boxes the network predicted us-ing the FP datatype. Then, every ground truth prediction is paired with the best matchingcounterpart in the test array, the boxes the network predicted using the new replacementdatatype. The IOU is calculated and averaged for all these pairs.
Algorithm 2: Average IOU calculation function
/* ground truth to be used, FP predictions */
Input: truth[N]
/* predictions with the new datatype */
Input: test
Result: IOUIOU = 0
/* Loop over ground truth predictions */
for gd← 1 to N do

/* Loop over test boxes matching the ground truth box image and
category */subTest = test.select(img == truth(gd).img && category == truth(gd).category)maxIOU = 0

for bx← 1 to subTest.elements() dotmp = calcIOU(truth(gd), subTest(bx)) // IOU of two boxes
if tmp > maxIOU thenmaxIOU = tmp
end

endIOU = IOU + maxIOU
endIOU = IOU / N
Figure 26 presents the analysis results using the proposedmetrics. The ordinate showsthe IOU of FP versus TFxP over the COCO evaluation dataset, and abscissa sweeps themiddle range fractional length b1 of presented TFxP formats.The results show that the middle range of TFxP format brings the network predictionscloser to the output generated using the FP format. Also, these results support the graph

58

presented in figure 24: mAP results converge if the new datatype matches the originaldata better. The effect that the TFxP middle range reduced the mAP results resulted fromnetwork training deficiencies and should not be overlooked. Instead, IOU analysis usingthe FP output as the ground truth describes better the replacement datatype suitability.

5 6 7 8 9 10 11 12
b1

0.93

0.94

0.95

0.96

0.97

0.98

0.99

IO
U

TFxP_15_12_b1_5
TFxP_16_13_b1_4
TFxP_16_13_b1_5
TFxP_16_13_b1_6

Figure 26 – IOU calculated for FP compared to the TFxP formats n_b0_b1_b2, where b_1 is swept.

3.5 HDL design
This section presents the HW design of the TFxP MAC unit. The presented design targetsXilinx FPGAs devices, Xilinx Zynq SoC family, more specifically. Zynq-7000 series Z-7020and Zynq UltraScale+ ZU9EG were used as the test platforms.Among other features, Xilinx Zynq devices have DSP slices available in HW. DSP48E1is used in the Zynq-7000 series, while Zynq UltraScale uses the newer DSP48E2 DSP slice.The core functionality is the same for these two flavors; differences are mentioned in thefollowing text if relevant.The DSP slices can perform several operations on their inputs, including multiplicationand accumulation, and are highly efficient. Therefore, to target power and performanceefficiency, the proposed TFxP MAC unit wraps the existing DSP slices.The Xilinx DSP48E1/2 slices can perform MAC operation using fixed-point numbers orintegers. However, the output radix point of a fixed-point result has to be corrected afterthe multiplication, which is not a problem from the HW point of view: shift operation isenough.In the case of TFxP, the necessary output correction depends on the ranges of theinput operands: multiplying two TFxP numbers, xt and xu produces output where theradix point location depends on the modes of input operands (equation (45)).

dmult = (xt ·2−bt) · (xu ·2−bu) = xt · xu ·2−bt−bu (45)
Both of the inputs have three possible fractional lengths. Therefore, the total num-ber of different fractional lengths for output equals combinations with repetition. Equa-tion (46) presents the formula to calculate the number of different radix point locations

co for TFxP MAC output, where n is the number of things to choose from, and r is thenumber of chosen items. As both of the inputs have three possible radix point locations,
59

we can choose between three different options, and this selection has to be done for twooperands. Therefore, n = 3, and r = 2.
co =

(r+n−1)!
r!(n−1)!

=
(2+3−1)!
2!(3−1)!

= 6 (46)
Figure 27 presents the Xilinx DSP48E1 HW DSP slice data path, where the abstractionlevel has been chosen to reflect the MAC operation the best. It can multiply inputs A andB and use an internal data path for accumulating multiplication results or add input C.However, according to equations (45) and (46), the multiplication output of two TFxPnumbers, registerRm, can have six different radix point locations after everymultiplicationcycle, depending on inputs A and B. Further, the register Rm is input to the accumulator,where the second input comes internally from the output register Ro during the MAC op-eration. However, these registers, Rm and Ro, can have different radix point locations and,therefore, can not be directly accumulated. This means that the DSP internal accumula-tion path can not be used and must be built externally to match the radix points.

A

B
∗

+

DSP48E1
25

18

4848
48

P
C

Rm

Ro

RA

RB

RC

Figure 27 – High level data-path of the Xilinx DSP48E1 HW slice. DSP48E2 has 27-bit A input, com-
pared to 25-bit in the case of DSP48E1.

Building the external DSP accumulation path has an area, speed penalty, or both.Therefore, a different approach was taken to use the internal accumulation possibility:the multiplication output is always guaranteed to have the same radix point even thoughoperands are TFxP numbers.The output’s exponent term −bt − bu (equation (45)) has to be fixed to a constantvalue to achieve that. Naturally, both inputs have their fixed fractional lengths, but we canstill add the term bx to the existing exponents and force the final result to be a constant:equation (47).
bt +bu +bx = bp = const. (47)

Adding the term bx calls an additional shift of one or both of the inputs. This shift canbe implemented by a full-featured HW shifter. Alternatively, as the number of possibleinput combinations is limited (equation (46)), the required set of additional shifts can beimplemented by using input multiplexers. Depending on the required fixed shift value ofthe multiplication output, bp, an additional shift of bx bits has to be applied to the input:equation (48).
bx = bp−bt −bu (48)

60

Multiplying two TFxP numbers produces themost extended fractional length in outputif both operands belong to the range b0: the rangewith themost fractional bits. Therefore,the target output’s constant radix point location should be fixed to 2b0.However, there is a maximum for the additional possible shift bx, and analysis of theDSP inputs and the exact TFxP type defines that. The maximum output shift produced bymultiplying two TFxP_16_13_9_5 numbers is 2b0 = 26. Similarly, multiplying two range b2numbers of the same format produces the shortest fractional length 2b2 = 10. All the restof the input combinations produce the fractional length between these limits. Therefore,the maximum required additional input shift to guarantee the fixed output shift is thedifference between these two extremes: 2b0−2b2 = 16.On the other hand, the TFxP_16_13_9_5 format occupies 14 bits in the DSP input: atotal of 13 bits plus the sign bit. This means that the DSP A input can be left-shifted bya maximum of 25− 14 = 11 bits, and B input can be shifted by 18− 14 = 4 bits, andthe maximum possible additional shift is 15 bits, 1 bit less than the required maximum.However, this limitation holds for DSP48E1; the E2 version has 27-bitwideA input, allowing
27−14 = 13 bits shift in A input and 17 bits total maximum additional left shift in input.To implement TFxP_16_13_9_5 MAC using DSP48E1, the maximum shift can be set to1 bit less than the theoretical limit. Only one input combination out of 6 produces thelongest fractional length in output. Furthermore, the chances are that one of the inputshas zero as the least significant bit: losing this last zero does not cause a loss of precision.Table 12 presents a set of pre-shifts bx for the TFxP_16_13_9_5 to guarantee the multi-plication result with the fixed shift bp = 25. The target output fractional length is bp = 25bits; therefore, the additional input shift bx equals the required target minus the existingshifts due to the input modes (equation (48)). The first two columns, Mt and Mu, specifythe TFxP ranges for the inputs.
Table 12 – Pre-shift values bx for TFxP_16_13_9_5 to guarantee the fixed output shift bp = 25 of the
multiplication output.

Mt Mu bt bu bt +bu bp bx

0 0 13 13 26 25 -10 1 13 9 22 25 30 2 13 5 18 25 71 0 9 13 22 25 31 1 9 9 18 25 71 2 9 5 14 25 112 0 5 13 18 25 72 1 5 9 14 25 112 2 5 5 10 25 15
Dividing the total required pre-shift bx between the DSP inputs can be done in variousways. The exact numbers do not matter; the sum of these values is essential. However,the total amount of required different pre-shifts per input specifies the inputmultiplexers:more unique values require more input channels.Table 13 presents possible combinations of pre-shifts for MAC inputs to achieve therequired bx: bxt is applied to the MAC input A, and bxu to the input B. The negative pre-shift value−1 results from DSP48E1 input limitations. It is mitigated by right-shifting oneof the inputs, depending on the least significant bit of the input xt .Figure 28 presents the TFxP MAC unit: Xilinx DSP48E1 slice wrapped by additionalinput and output logic. The input logic selects additional pre-shift bx, and the output

61

Table 13 – Required pre-shift values bx for TFxP_16_13_9_5 MAC, divided between two inputs.

bx bxt bxu

-1 0/-1 a 0/-1 b

3 3 07 3 411 11 015 11 4
a−1 if xt [0] = 0, 0 otherwise.
b−1 if xt [0] = 1, 0 otherwise.

logic converts the result back to TFxP format.The C input of the MAC should also have the same shift as the multiplication output:
bp = 25. Therefore, the value xv connected to the C input should have an additional shift
bxv = 25−bv, where bv depends on the selected TFxP range.Internally, the MAC operation utilizes the full width of the DSP data-path: 48 bits.This feature allows intermediate calculations to overflow; the final MAC result must fitthe selected TFxP format. E.g., if bx is set to 25 bits as for the shift values presented intable 12, the intermediate calculations can use integer portion up to 48−25 = 23 bits.

xt

xt >> 1

xt << 3

xt << 11

xu

xu >> 1

xu << 4

xv << 12

xv << 16

xv << 20

OUTPUT
FORMATION

DSP48E125

18

48

48 16
D

FIXED RADIXbx
xt
xu
xv

A

B

C

P

Figure 28 – Xilinx DSP48E1 slice and the wrapper logic to form TFxP_16_13_9_5 MAC unit. Input
multiplexers assure the fixed output shift bp.

3.5.1 Input Multiplexer SelectionThe additional required pre-shift bx can be divided between the DSP inputs: two lastcolumns in table 13 present the values. However, the exact shift applied to an input chan-nel does not matter, but the total amount must match the required value bx, and multiplecombinations can achieve that.The amount of required different shifts per input defines the input multiplexer: moredistinct shifts yield more HW resources. Additionally, the configurable logic blocks inFPGAs are best utilized for specific multiplexer configurations: the possible number of
62

5:1 multiplexers is the same as 8:1 multiplexers using the same amount of HW, for exam-ple. Some of the HW remains unused, wasted if the configuration does not match the HWoptimum.
Naturally, the total amount of combinations to consider is limited (equation (46)),but automatic code generation is not possible if manual multiplexer tuning is required,i.e., it would be cumbersome to integrate the proposed MAC unit to a more extensiveframework without full automation possibilities.
Therefore, this subsection proposes an algorithm to generate input multiplexers withthe fewest channels while addressing the multiplexer balancing between MAC inputs.
First, the algorithm generates the possible shift value pairs for all input combinations.E.g., if the total additional shift bx = 3, the shift can be assigned to one of the inputs only orsplit between the inputs. All the possible combinations are registered for the next steps.
Further, the algorithm identifies unique shift values that must be included in the finalconfiguration. In table 13, the last row presents precisely this situation: the total addi-tional shift bx equals the maximum value possible for the underlying DSP slice. Therefore,both inputs use the maximum shift, and these values must be present in the final HW.Otherwise, the first possible shift values from the set with the least possible combina-tions available are selected if none of the shift value pairs is the only option for a specificinput combination.
The filtering of the possible input shift pairs is performedmultiple times. The first tworounds favor either one or another input for unique value selection. Then, the combi-nations list is traveled in the opposite direction again, setting the priority to one of theinputs.
Finally, the set with the least possible combinations is selected. The final selection isalso biased towards more balanced multiplexers.
Figure 29 presents the required number of input multiplexer channels for theTFxP_16_13_r1_5 MAC unit. The DSP48E2 DSP slice has wider A input; therefore, themaximum additional shift bx can also be larger, allowing more freedom in selectingthe possible shift combinations. As a result, the MAC unit wrapping the DSP48E2 slicerequires fewer multiplexer channels.

6 7 8 9 10 11 12

r1

0

1

2

3

4

5

6

7

8

9

10

11

m
u
lt
ip

le
x
e
r

in
p
u
ts

DSP48E1: TFxP_16_13_r1_5

A MUX

B MUX

TOTAL

(a) DSP48E1

6 7 8 9 10 11 12

r1

0

1

2

3

4

5

6

7

8

9

10

11

m
u
lt
ip

le
x
e
r

in
p
u
ts

DSP48E2: TFxP_16_13_r1_5

A MUX

B MUX

TOTAL

(b) DSP48E2

Figure 29 – Number of input multiplexer channels for TFxP_16_13_r1_5 MAC unit. DSP48E2 has 27
bit wide A input and therefore, requires less channels.

63

3.5.2 MAC Output FormationInternally, the DSP slice uses 48-bit registers for multiplication results (figure 27). Thismeans that the intermediate MAC calculations can overflow; only the final results haveto fit the target TFxP format. In the case of the convolutional layer, this corresponds tomultiplying and accumulating one convolution kernel with the layer input in one position,and table 9 records maximum, minimum, and mean of these values for YOLOv2 CNN.The common fractional point location bx is the synthesis parameter for the system anddoes not depend on MAC inputs, but the selected TFxP format defines it.Figure 30 presents the 48-bit output of the TFxP_16_13_9_5 MAC unit: the one pre-sented in figure 28. The common shift bx equals 25, the maximum possible for DSP48E1 incase of TFxP_16_13_9_5 format, i.e., the least 25 bits form the fractional portion of the re-sult. The values of fields R0, R1, and R2 define the final TFxP range, and the field G servesas the over- or underflow guard region.Also, the Rx fields form the integer portion of the final value. Equation (49) definesthe corresponding lengths rx of these fields, plus the length of the G field, g.
r0 = a0

r1 = a1−a0

r2 = a2−a1

g = 48−1−a2−bx

(49)

GS R2 R1 FRACTIONAL
g = 14 r2 = 4 r1 = 4 b0 = 13 12

48 bits
R0

r0 = 0

Figure 30 – DSP slice output for TFxP_16_13_9_5 MAC unit. Fields R0, R1, and R2 determine the
range. 14-bit G field is used to check the over- and underflows.

The range selection logic uses the R fields, sign bit S, and the guard field G to determinethemagnitude of the value: figure 31 presents the high-level schematic diagram. All thesefields are tested to be all-ones or all-zeros, and in combination with the sign bit S, theoutput range is selected: the output multiplexer selects the correct data from the DSPslice output bus P. Also, figure 31 defines the actual signals fed to the output multiplexerusing Verilog HDL syntax.The blockRANGE in figure 31 is a combinatorial circuit that uses its input signals to drivethe output multiplexer, and table 14 presents the truth table of it. The table columns arethe following: sign bit S from the DSP output, G1 and G0, which indicate if the guard field
G is all ones or all zeros, and similar fields for R2 and R1. The last two columns presentthe outputmultiplexer channel number and the TFxP range number for that channel. OFVand UFW stand for overflow and underflow, respectively.Figure 32 presents a logic diagram for the output range selection. And due to theautomatic adjustment of input operands of the MAC unit, the selected output value candirectly be fed to the MAC unit in the following layer. The signal names correspond to thecolumns in table 14. And the output signals M0...M2 correspond to the table columnMux.
3.5.3 Usage of HW ResourcesThis subsection presents the synthesis results of the TFxP based MAC unit presented inthe previous chapters; the Vivado design suite from Xilinx was used to acquire the results.

64

P

R1[0]

R1[r1−1] ..
.

R2[0]

R2[r2−1] ..
.

G[0]

G[g−1] ..
.

OFV
UFV

RANGE

S

R10

R11

R20

R21

G0

G1

{S,P[bx +a0−1 : bx−b0],2′b00}
{S,P[bx +a1−1 : bx−b1],2′b01}
{S,P[bx +a2−1 : bx−b2],2′b10}

{S,{n{1′b1}},2′b11}
{S,{n{1′b0}},2′b11}

1
0
2
3
4

D

M

Figure 31 – Formation of theMAC output: fields R1, R2, S, andG define the range of the TFxP output.

Table 14 – Truth table of the RANGE selection block presented in figure 31.

S G1 G0 R21 R20 R11 R10 Mux Range
0 x 0 x x x x 3 OFV0 x 1 x 0 x x 2 20 x 1 x 1 x 0 1 10 x 1 x 1 x 1 0 01 0 x x x x x 4 UFV1 1 x 0 x x x 2 21 1 x 1 x 0 x 1 11 1 x 1 x 1 x 0 0

65

M2

M1

M0R10

R11

R20

R21

G0

G1
S

Figure 32 – Logic diagram of the range selections logic block. The output signal M selects the proper
range for the output using the multiplexer shown in figure 31. The schematic corresponds to the
truth table in table 14.

The synthesis results are summarized in table 15, and the results are presented for themost precise formats found from figure 26. The first three rows present the results forformats where the third TFxP range is changed by a single step. The fourth row presentsthe results for TFxP format, which is one bit shorter compared to the first three, and thelast two rows present the results for the DFxP format for comparison.The most important comparison is between the DFxP and TFxP formats; it can beconcluded that the TFxP does not bring additional resources. The fact that the resultsshow a slight growth of resources for DFxP can be explained by the fact that most of theoptimization effort in this thesis addressed TFxP MAC version and the DFxP was designedand synthesized for comparison reasons only. If correctly optimized, the DFxP versionwould infer the same amount or less HW compared to the TFxP. However, the conclusionholds that the TFxP version is not HW heavy but more precise compared to the DFxP.Also, the power consumption and maximum clock frequency are the same for all fla-vors. The maximum clock frequency is restricted by the maximum operating frequency ofthe DSP slice, i.e., the added wrapper, actual MAC unit design, does not pose any restric-tions.
3.6 Conclusions
This section presents the conclusions of the MAC unit proposed in chapter 3.First, MAC operations form the basis of calculations present in DL networks, reachingover 90% of the entire operations. Therefore, the unit’s throughput has to be high toavoid becoming the bottleneck. Also, the HW resources consumed by a single MAC unithave to be carefully considered: more units fit to the target HW enable more concurrent

66

Table 15 – Inferred HW of DFxP and TFxP formats.

Format LUTs Regs Slices Power WNS clk
(W) (ns) (MHz)

TFxP_16_13_9_4 70 20 22 0.142 0.839 393TFxP_16_13_9_5 69 20 25 0.142 0.837 393TFxP_16_13_9_6 70 20 26 0.142 0.679 393TFxP_15_12_9_5 66 19 22 0.140 0.949 393DFxP_13_12_5 72 18 29 0.133 0.680 393

calculations, i.e., a higher level of parallelism.Bringing the DL to resource-constraint targets is an active research target nowadays,mainly because there is no doubt about the usefulness of these algorithms. However,the HW execution platforms are mostly restricted to GPUs, and this has been the naturalchoice for such algorithms requiring massive parallelism. Moreover, due to the exten-sive usage of GPUs, the floating point is the prevalent data type, but it is unsuitable forresource-constraint targets.Reducing the precision of the DL network parameters has shown promising results.This has been taken to the extreme: literature has proposals for networks using onlysingle-bit values ([82]), resulting in binarized networks or ternary networks with two-bitdata representation ([81]). While these approaches yield effective MAC units, and therecall precision of such networks is undoubtedly acceptable, the entire network has tobe retrained: it is impossible to select a well-trained network from the set available forexecuting on GPUs and seamlessly adapt it for such a deeply quantized target.The main contribution of chapter 3 is to propose the MAC unit that can be used todirectly substitute the floating point-based calculations in DL networks without retraining.The network can be deployed after converting the hyperparameters, like weight valuesand biases, using the MAC unit and TFxP format proposed in this thesis.Another important contribution is the proposal to change the evaluation criteria forreplacement data type suitability. It has been shown that the network inference precisioncan increase if the numerical precision is reduced. Therefore, this thesis proposes to useIOU to compare outputs of the converted and original network based on the floating pointcalculations.Overall, the analysis and HW design presented in chapter 3 show that the TFxP formatcan be used as the direct replacement of FP data representation without retraining thenetwork: the novelty presented in this thesis.

67

4 Conclusions and future work
DL has gained much popularity and can be found in various applications nowadays. Itsdeployment is so ubiquitous that the application user might not even be aware of thepresence of such an algorithm in a system anymore.It has helped to improve the quality of services in different domains, like analyzingdata gathered by medical systems and driver assistance solutions in cars, or has enabledthe development of self-driving cars, to mention a few.The main driver of the growth of popularity of DL algorithms has been the advancesin computational power the computers can offer, especially the performance growth ofthe GPUs. In addition, cloud-based services are also available; there is no need to have apersonal computing system available to enjoy the benefits DL has to provide.As there is no doubt about the usefulness of such algorithms, contemporary researchalso addresses resource-constrained execution platforms. Also, GPUs are power hungry;executing the algorithm on more conservative targets also has economic benefits.All this paves the road for FPGAs as the execution platform for the DL. FPGAs consumeless power and are suitable for parallel execution just like GPUs but are more suitable forexecuting fixed-point-based algorithms.This thesis first introduces and proposes an FPGA based accelerator for CAE networkand also includes HW support for the learning phase. CAE is a flavor of an AE and canbe used as a self-learning feature extractor or noise filter. Therefore, as CAE is an unsu-pervised network, continuous learning can be beneficial and help the system cope withenvironmental drifts during its deployment. To enable this, all three proposed CAE archi-tectures involve HW based learning.The study results show that the target Xilinx Zynq 7020 SoC can fit 200 PEs in itsprogrammable logic. Also, the performance has been analyzed, and it has been shownthat the proposal reaches the theoretical limit derived from analyzing the equations. Thefield test was performed using the MNIST database of handwritten digits.Further, the thesis provides a TFxP based MAC unit, aiming not only AEs but variousDL networks. There are positive results available in the literature to use the BFP for theDL networks. However, TFxP type carries the information about the radix point location,or the selected range, with it.First, the thesis analyzed the YOLOv2 network using the proposed TFxP data type. Theresults suggested that the corresponding TFxP counterparts can directly replace the float-ing point values. Also, the thesis proposed not to use the converted network’s inferenceprecision to assess the conversion’s suitability but to compare the output of the convertednetwork to the original one based on floating point calculations. Otherwise, as it has beenshown, approximation caused by the data conversion of the network parameters can evenimprove the inference accuracy. Therefore, comparing the accuracy of the networks is notthe best metric to assess the suitability of replacement data type. The network has to be-have the same as the original one.Further, the proposal of the TFxPMAC unit suitable for various DL networks follows. Asthe range selection setting is embedded into the TFxP type, numbers with different radixpoint positions, i.e., numbers with different ranges, can simultaneously be loaded into theproposed unit. Properly shifting the input operands still allows using DSP slice internaldatapath for accumulation. Also, the thesis implements balancing the input multiplexers,resulting in less inferred HW.Considering future work, the proposals presented in this thesis can be extended. TheproposedMAC unit can be used to build various networks, but the suitable architecture isstill to be studied. However, as the MAC unit is conservative with the HW, more of those

68

can be inferred in the target architecture, enabling more parallel operations. The mostintriguing study direction would be incorporating the MAC unit into architecture usingdedicated programmable controllers to define the exact behavior. This way, various DLnetworks can be executed depending on the instructions loaded into the network con-trollers.Regarding the proposed CAE, future work should address using the features extractedby the network while allowing it to train itself constantly. For example, these auto-tuningfeatures enable the system to adapt to the installation environment.

69

List of Figures

1 Architecture of the CNN like network, published in 1979 ([8]). The layeredstructure and feature extraction scheme are similar to what is used incontemporary algorithms. 102 An example of a separable problem in a 2-dimensional space, [11]. 113 Architecture of the AE. Middle layer Y is the compressed representationof input X , and Z is the reconstruction of X . The rest of the figures andtables use the same color scheme: blue denotes the external nodes, whilegreen identifies the middle layer.. 154 Example of the overfit AE network: a specific middle layer node haslearned to represent a single input. 165 Cascaded DL network presented in [34]. The features extracted by theAE are used as the input to the software based CNN to complement thebinary fault detection output upon request. 206 ReLU and LeakyReLU activation functions.. 237 Illustration for equation (11): calculation path for ∂d2/∂w11, u = 1 and
v = 1. The decoder portion has to select the path through the weightvalue w21, where i(d) = 2. Here, i(d) 6= u. 258 Illustration for equation (11): calculation path for ∂d2/∂w21, u = 2 and
v = 1. The decoder portion has to select the path through the weightvalue w21, where i(d) = 2. Here, i(d) = u. 269 Assigning block RAMs to external layer nodes requires more, but smallerRAMs, compared to when assigned to the internal layer. 3010 Data-path of the CAE external layer PE. 3111 Data-path of the CAE middle layer PE. 3112 Layout of the butterfly cross-bar switch. Layers of the CAE connect to thedifferent sides. CTRL ports are used by the ARM processing unit for flowcontrol and data transfer. 3213 Carousel like communication channel. Data advances in every clock cycle.The node CTRL is connected to the controlling ARM processing unit. 3314 Data-path of the CCom network node. All the nodes share the same design. 3515 Data present on carousel nodes after completion of the middle layer val-ues calculations in case of CCom architecture. 3616 Data-path of the CCom-RO architecture full PE. This PE can act as it be-longs to both internal- or external layers. 3717 Data-path of the CCom-RO architecture reduced PE. The reduced versioncan operate only as an external layer PE. 3818 Data present on carousel nodes after completion of the middle layer val-ues calculations in case of CCom-RO architecture. 3919 Operation example of the trained 3-layer 196-10-196 nodes CAE using 16.12fixed-point representations. 4220 DFxP representation adds an additional, less precise range to extend theFxP. 5021 Structure of the YOLOv2 DL networks: there are total of 23 convolutionallayers. 5122 TFxP representation. Ranges 1 and 2 increase the range while sacrificingthe precision. 5323 3-D layer activation input is flattened to 2-D in memory to guarantee se-quential memory access during the MAC operation.. 56

70

24 mAP@[0.5,0.95] of YOLOv2 network with weights and calculations con-verted to TFxP format n_b0_b1_b2, where b_1 is swept for the simulatedranges. 5725 IOU of two rectangles, A and B, is defined by the ratio of intersection, thedouble hatched area surrounded by the red line, and union, surroundedby the green line. 5826 IOU calculated for FP compared to the TFxP formats n_b0_b1_b2, where
b_1 is swept.. 5927 High level data-path of the Xilinx DSP48E1 HW slice. DSP48E2 has 27-bit Ainput, compared to 25-bit in the case of DSP48E1. 6028 Xilinx DSP48E1 slice and the wrapper logic to form TFxP_16_13_9_5 MACunit. Input multiplexers assure the fixed output shift bp. 6229 Number of input multiplexer channels for TFxP_16_13_r1_5 MAC unit.DSP48E2 has 27 bit wide A input and therefore, requires less channels.. 6330 DSP slice output for TFxP_16_13_9_5 MAC unit. Fields R0, R1, and R2 de-termine the range. 14-bit G field is used to check the over- and underflows. 6431 Formation of the MAC output: fields R1, R2, S, and G define the range ofthe TFxP output.. 6532 Logic diagram of the range selections logic block. The output signal Mselects the proper range for the output using the multiplexer shown infigure 31. The schematic corresponds to the truth table in table 14. 66

71

List of Tables

2 Calculations of the CAE forward pass . 323 Calculations of the CAE gradient descent . 344 Performance biased calculation scheme of CCom architecture. Multiplesets of values are calculated to speed up the following execution steps. 365 Resource optimised calculation scheme for CCom-RO architecture. Onlyone set of internal layer values are calculated. Network nodesN6 . . .N7 donot implement all the features required to act as the internal layer node. . . 386 Maximum network sizes and hardware usage for CAE synthesis targetingZynq7020 SoC; the size is expressed in FPGA slices. 397 Execution time of the CAE with 200 external- and 30 middle layer nodes.The clock speed of the designs was set to 100MHz.. 408 Analysis of the weights values of YOLOv2. 529 Analysis of the layer activation values of YOLOv2. 5210 TFxP format 16_13_9_5. 5311 mAP of YOLOv2 using FP and DFxP_13_12_5 datatypes . 5612 Pre-shift values bx for TFxP_16_13_9_5 to guarantee the fixed output shift
bp = 25 of the multiplication output. 6113 Required pre-shift values bx for TFxP_16_13_9_5 MAC, divided betweentwo inputs. 6214 Truth table of the RANGE selection block presented in figure 31. 6515 Inferred HW of DFxP and TFxP formats.. 67

72

References
[1] Q. Rao and J. Frtunikj, “Deep Learning for Self-Driving Cars: Chances and Chal-lenges,” in 2018 IEEE/ACM 1st International Workshop on Software Engineering for

AI in Autonomous Systems (SEFAIAS), pp. 35–38, IEEE Computer Society, 5 2018.
[2] A. N. Aneesh, L. Shine, R. Pradeep, and V. Sajith, “Real-time Traffic Light Detectionand Recognition based on Deep RetinaNet for Self Driving Cars,” in 2019 2nd Inter-

national Conference on Intelligent Computing, Instrumentation and Control Tech-
nologies (ICICICT), pp. 1554–1557, IEEE, 2019.

[3] A. Gogna, A. Majumdar, and R. Ward, “Semi-supervised Stacked Label ConsistentAutoencoder for Reconstruction and Analysis of Biomedical Signals,” IEEE Transac-
tions on Biomedical Engineering, vol. 64, no. 9, pp. 2196–2205, 2017.

[4] M. A. Alsheikh, A. Selim, D. Niyato, L. Doyle, S. Lin, and H.-p. Tan, “Deep ActivityRecognitionModelswith Triaxial Accelerometers,” inAAAIWorkshop, pp. 1–8, 2016.
[5] T. Kautz, B. H. Groh, J. Hannink, U. Jensen, H. Strubberg, and B. M. Eskofier, “Ac-tivity recognition in beach volleyball using a Deep Convolutional Neural Network:Leveraging the potential of Deep Learning in sports,” Data Mining and Knowledge

Discovery, vol. 31, no. 6, pp. 1678–1705, 2017.
[6] T. Zabinski, Z. Hajduk, J. Kluska, and L. Gniewek, “FPGA-Embedded Anomaly Detec-tion System for Milling Process,” IEEE Access, vol. 9, pp. 124059–124069, 2021.
[7] A. G. Ivakhnenko and V. G. Lapa, Cybernetic Predicting Devices. CCM InformationCorporation, 1965.
[8] K. Fukushima, “Neocognitron: A Self-Organizing Neural NetworkModel for aMech-anism of Pattern Recognition Unaffected by Shift in Position,” Biological Cybernet-

ics, vol. 36, pp. 193–202, 1980.
[9] S. Linnainmaa, The representation of the cumulative rounding error of an algorithm

as a Taylor expansion of the local rounding errors. Master’s Thesis (in Finnish), Univ.Helsinki, 1970.
[10] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard, andL. D. Jackel, “Handwritten Digit Recognition with a Back-Propagation Network,” in

Advances in Neural Information Processing Systems 2 (D. S. Touretzky, ed.), pp. 396–404, Morgan-Kaufmann, 1990.
[11] C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine Learning, vol. 20,pp. 273–297, 9 1995.
[12] J. Kan, Y. Shen, J. Xu, E. Chen, J. Zhu, and V. Chen, “RF Analog Hardware TrojanDetection Through Electromagnetic Side-channel,” IEEE Open Journal of Circuits

and Systems, pp. 1–1, 9 2022.
[13] E.Wang, J. J. Davis, R. Zhao, H. C. Ng, X. Niu, W. Luk, P. Y. Cheung, and G. A. Constan-tinides, “Deep neural network approximation for custom hardware: Where We’veBeen, Where We’re going,” ACM Computing Surveys, vol. 52, no. May, pp. 1–39,2019.

73

[14] S. Mittal, “A survey of FPGA-based accelerators for convolutional neural networks,”
Neural Computing and Applications, vol. 32, no. 4, pp. 1109–1139, 2020.

[15] M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “An Efficient FPGA-based Ar-chitecture for Contractive Autoencoders,” in 2020 IEEE 28th Annual International
Symposiumon Field-Programmable CustomComputingMachines (FCCM), pp. 230–230, Institute of Electrical and Electronics Engineers Inc., 5 2020.

[16] M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “Novel Architectures for Contrac-tive Autoencoders with Embedded Learning,” in 2020 17th Biennial Baltic Electron-
ics Conference (BEC), vol. 2020-October, pp. 1–6, IEEE Computer Society, 10 2020.

[17] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[18] M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “Triple Fixed-Point MAC Unit forDeep Learning,” in 2021 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), vol. 2021-February, pp. 1404–1407, Institute of Electrical and ElectronicsEngineers Inc., 2 2021.

[19] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444,5 2015.
[20] J. Schmidhuber, “Deep Learning in neural networks: An overview,” Neural Net-

works, vol. 61, pp. 85–117, 2015.
[21] T. Plotz and Y. Guan, “Deep Learning for Human Activity Recognition inMobile Com-puting,” Computer, vol. 51, no. 5, pp. 50–59, 2018.
[22] H. F. Nweke, Y. W. Teh, M. A. Al-garadi, and U. R. Alo, “Deep learning algorithmsfor human activity recognition using mobile and wearable sensor networks: Stateof the art and research challenges,” Expert Systems with Applications, vol. 105,pp. 233–261, 9 2018.
[23] J.Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for sensor-based activityrecognition: A Survey,” Pattern Recognition Letters, vol. 119, pp. 3–11, 2 2018.
[24] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of Data withNeural Networks,” Science (New York, N.Y.), vol. 313, no. July, pp. 504–507, 2006.
[25] C. Zhou andR. C. Paffenroth, “Anomaly Detectionwith Robust DeepAutoencoders,”in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining - KDD ’17, 2017.
[26] T. Kieu, B. Yang, and C. S. Jensen, “Outlier Detection for Multidimensional TimeSeries Using Deep Neural Networks,” in 2018 19th IEEE International Conference on

Mobile Data Management (MDM), vol. 2018-June, pp. 125–134, IEEE, 6 2018.
[27] O. K. Oyedotun and D. Aouada, “A Closer Look at Autoencoders for UnsupervisedAnomaly Detection,” in ICASSP, IEEE International Conference on Acoustics, Speech

and Signal Processing - Proceedings, vol. 2022-May, pp. 3793–3797, Institute of Elec-trical and Electronics Engineers Inc., 2022.
74

[28] D. Del Testa andM. Rossi, “Lightweight Lossy Compression of Biometric Patterns viaDenoising Autoencoders,” IEEE Signal Processing Letters, vol. 22, no. 12, pp. 2304–2308, 2015.
[29] E. Q. Wu, X. Y. Peng, C. Z. Zhang, J. X. Lin, and R. S. Sheng, “Pilots’ fatigue statusrecognition using deep contractive autoencoder network,” IEEE Transactions on

Instrumentation and Measurement, vol. 68, pp. 3907–3919, 10 2019.
[30] X. Zhou, J. Guo, and S.Wang, “Motion Recognition by Using a Stacked Autoencoder-Based Deep Learning Algorithm with Smart Phones,” in Wireless Algorithms, Sys-

tems, and Applications (H. Xu, KuaiZhu, ed.), vol. 9204 of Lecture Notes in Computer
Science, (Cham), pp. 778–787, Springer International Publishing, 2015.

[31] S. S. Khan and B. Taati, “Detecting unseen falls from wearable devices usingchannel-wise ensemble of autoencoders,” Expert Systemswith Applications, vol. 87,pp. 280–290, 2017.
[32] L. Wang, “Recognition of human activities using continuous autoencoders withwearable sensors,” Sensors (Switzerland), vol. 16, no. 2, 2016.
[33] P. K. Gopalakrishnan, B. Kar, S. K. Bose, M. Roy, and A. Basu, “Live Demonstration:Autoencoder-based Predictive Maintenance for IoT,” 2019.
[34] P. Vitolo, G. D. Licciardo, L. Di Benedetto, R. Liguori, A. Rubino, and D. Pau, “Low-Power Anomaly Detection and Classification System based on a Partially BinarizedAutoencoder for In-Sensor Computing,” in 2021 28th IEEE International Conference

on Electronics, Circuits, and Systems, ICECS 2021 - Proceedings, Institute of Electricaland Electronics Engineers Inc., 2021.
[35] P. Vitolo, A. De Vita, L. D. Benedetto, D. Pau, and G. D. Licciardo, “Low-Power De-tection and Classification for In-Sensor Predictive Maintenance Based on VibrationMonitoring,” IEEE Sensors Journal, vol. 22, pp. 6942–6951, 4 2022.
[36] D. Kim, H. Yang, M. Chung, S. Cho, H. Kim, M. Kim, K. Kim, and E. Kim, “SqueezedConvolutional Variational AutoEncoder for unsupervised anomaly detection in edgedevice industrial Internet of Things,” in 2018 International Conference on Informa-

tion and Computer Technologies (ICICT), pp. 67–71, IEEE, 3 2018.
[37] C. Liu, C. Wang, and J. Luo, “Large-Scale Deep Learning Framework on FPGA forFingerprint-Based Indoor Localization,” IEEE Access, vol. 8, pp. 65609–65617, 2020.
[38] N. A. Mohamed and J. R. Cavallaro, “Real-time FPGA-Based Outlier Detection usingAutoencoder and LSTM,” in Conference Record - Asilomar Conference on Signals,

Systems and Computers, vol. 2021-October, pp. 1195–1199, IEEE Computer Society,2021.
[39] M. G. Coutinho, M. F. Torquato, and M. A. Fernandes, “Deep neural network hard-ware implementation based on stacked sparse autoencoder,” IEEE Access, vol. 7,pp. 40674–40694, 2019.
[40] L. D. Medus, T. Iakymchuk, J. V. Frances-Villora, M. Bataller-Mompean, andA. Rosado-Munoz, “ANovel Systolic Parallel HardwareArchitecture for the FPGAAc-celeration of Feedforward Neural Networks,” IEEE Access, vol. 7, pp. 76084–76103,2019.

75

[41] Z. Li, M. Zhu, Y. Zhu, S. Yang, H. Shi, J. Jiang, Q. Wang, and Z. Xing, “FPGA Realizationof Stacked Auto-encoder with Three Fully Connected Layers,” in 2021 IEEE Interna-
tional Conference on Advances in Electrical Engineering and Computer Applications,
AEECA 2021, pp. 997–1001, Institute of Electrical and Electronics Engineers Inc., 82021.

[42] J.Maria, J. Amaro, G. Falcao, and L. A. Alexandre, “StackedAutoencodersUsing Low-Power Accelerated Architectures for Object Recognition in Autonomous Systems,”
Neural Processing Letters, vol. 43, no. 05, pp. 445–458, 2016.

[43] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive auto-encoders:explicit invariance during feature extraction,” in Proceedings of The 28th Interna-
tional Conference on Machine Learning (ICML-11), pp. 833–840, 2011.

[44] A. Suzuki, T. Morie, and H. Tamukoh, “FPGA implementation of autoencoders hav-ing shared synapse architecture,” in Neural Information Processing, pp. 231–239,2016.
[45] J. Jiang, R. Hu, D. Wang, J. Xu, and Y. Dou, “Performance of the fixed-point autoen-coder,” Tehnicki vjesnik - Technical Gazette, vol. 23, no. 02, pp. 77–82, 2016.
[46] V. Nair and G. Hinton, “Rectified Linear Units Improve Restricted Boltzmann Ma-chines,” in Proceedings of the 27th International Conference on Machine Learning,pp. 807–814, 2010.
[47] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,” in 2015 IEEE International Confer-

ence on Computer Vision (ICCV), pp. 1026–1034, IEEE, 12 2015.
[48] Y. LeCun, C. Cortes, and C. J. Burges, “MNIST handwritten digit database,” ATT Labs,vol. 2, 2010.
[49] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” Proceedings - 30th

IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 6517–6525, 2017.
[50] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.Zitnick, “Microsoft COCO: Common Objects in Context,” in Computer Vision – ECCV

2014 (D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, eds.), (Cham), pp. 740–755,Springer International Publishing, 2014.
[51] M. Langhammer and B. Pasca, “Design and Implementation of an Embedded FPGAFloating Point DSP Block,” tech. rep., Altera, 2014.
[52] A. Ehliar, “Area efficient floating-point adder and multiplier with IEEE-754 com-patible semantics,” in Proceedings of the 2014 International Conference on Field-

Programmable Technology, FPT 2014, pp. 131–138, Institute of Electrical and Elec-tronics Engineers Inc., 4 2015.
[53] H. Zhang, D. Chen, and S. B. Ko, “Area- and power-efficient iterative single/double-precision merged floating-point multiplier on FPGA,” IET Computers and Digital

Techniques, vol. 11, pp. 149–158, 7 2017.
76

[54] K. V. Gowreesrinivas and P. Samundiswary, “Resource efficient single precision float-ing point multiplier using karatsuba algorithm,” Indonesian Journal of Electrical En-
gineering and Informatics, vol. 6, pp. 333–342, 9 2018.

[55] S. Kim and R. A. Rutenbar, “An area-efficient iterative single-precision floating-pointmultiplier architecture for FPGA,” in Proceedings of the ACM Great Lakes Sympo-
sium on VLSI, GLSVLSI, pp. 87–92, Association for Computing Machinery, 5 2019.

[56] M. F. Hassan, K. F. Hussein, and B. Al-Musawi, “Design and implementation of fastfloating point units for FPGAs,” Indonesian Journal of Electrical Engineering and
Computer Science, vol. 19, pp. 1480–1489, 9 2020.

[57] S. S. Ganesh, J. J. J. Nesam, and U. Subramaniam, “High Speed Half-PrecisionFloating-Point Fused Multiply and Add Unit Using DSP Blocks,” in Proceedings -
2020 1st International Conference of Smart Systems and Emerging Technologies,
SMART-TECH 2020, pp. 227–230, Institute of Electrical and Electronics EngineersInc., 11 2020.

[58] A. Panahi, K. Stokke, and D. Andrews, “A Library of FSM-based Floating-Point Arith-metic Functions on FPGAs,” 2019 International Conference on ReConFigurable Com-
puting and FPGAs (ReConFig), pp. 1–8, 2019.

[59] J. Kralev, “Design of Floating-Point Arithmetic Unit for FPGA with Simulink,” in IEEE
EUROCON 2019 -18th International Conference on Smart Technologies, pp. 1–5,2019.

[60] V. Krishnan, A. Rajiv, and N. Deborah, “A comparative study on the performance ofFPGA implementations of high-speed single-precision binary floating-point multi-pliers,” in 2019 International Conference on Smart Systems and Inventive Technol-
ogy (ICSSIT), pp. 1041–1045, 2019.

[61] G. Jha and E. John, “Performance analysis of single-precision floating-pointMAC fordeep learning,” in Midwest Symposium on Circuits and Systems, vol. 2018-August,pp. 885–888, Institute of Electrical and Electronics Engineers Inc., 1 2019.
[62] H. J. Kang, “Short floating-point representation for convolutional neural networkinference,” IEICE Electronics Express, vol. 16, no. 2, pp. 1–11, 2019.
[63] T. Tamble, E.-Y. Yang, Z. Wan, Y. Deng, V. J. Reddi, A. Rush, D. Brooks, and G.-Y. Wei,“Algorithm-Hardware Co-Design of Adaptive Floating-Point Encodings for ResilientDeep Learning Inference,” in 2020 57th ACM/IEEE Design Automation Conference

(DAC), pp. 1–6, 2020.
[64] A. Sanchez, A. de Castro, M. S. Martínez-García, and J. Garrido, “LOCOFloat: A low-cost floating-point format for FPGAs.: Application to HIL simulators,” Electronics,vol. 9, 1 2020.
[65] L. Lai, N. Suda, and V. Chandra, “Deep Convolutional Neural Network InferencewithFloating-point Weights and Fixed-point Activations,” 3 2017.
[66] X. Wei, W. Liu, L. Chen, L. Ma, H. Chen, and Y. Zhuang, “FPGA-based hybrid-type im-plementation of quantized neural networks for remote sensing applications,” Sen-

sors (Switzerland), vol. 19, 2 2019.
77

[67] X. Chen, J. Li, and Y. Zhao, “Hardware Resource and Computational Density EfficientCNN Accelerator Design Based on FPGA,” in 2021 IEEE International Conference on
Integrated Circuits, Technologies and Applications, ICTA 2021, pp. 204–205, Insti-tute of Electrical and Electronics Engineers Inc., 2021.

[68] H. S. Lee and J. Wook Jeon, “Accelerating Deep Neural Networks Using FPGAs andZYNQ,” TENSYMP 2021 - 2021 IEEE Region 10 Symposium, 8 2021.
[69] V. K. Kodavalla, “Enabling Deep Learning Inferencing in Edge Devices,” in 2022 IEEE

3rd Global Conference for Advancement in Technology, GCAT 2022, Institute of Elec-trical and Electronics Engineers Inc., 2022.
[70] X. Liu, “Hardware-friendly model compression technique of DNN for edge comput-ing,” in Proceedings - 2021 2nd International Conference on Computing and Data

Science, CDS 2021, pp. 344–355, Institute of Electrical and Electronics EngineersInc., 2021.
[71] G. Tatar, S. Bayar, and I. Cicek, “Performance Evaluation of Low-Precision QuantizedLeNet and ConvNet Neural Networks,” 16th International Conference on INnova-

tions in Intelligent SysTems and Applications, INISTA 2022, 2022.
[72] M. Wang, S. Rasoulinezhad, P. H. Leong, and H. K. So, “NITI: Training Integer Neu-ral Networks Using Integer-Only Arithmetic,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 33, pp. 3249–3261, 11 2022.
[73] S. Fox, J. Faraone, D. Boland, K. Vissers, and P. H. Leong, “Training deep neuralnetworks in low-precision with high accuracy using FPGAs,” in Proceedings - 2019

International Conference on Field-Programmable Technology, ICFPT 2019, vol. 2019-December, pp. 1–9, Institute of Electrical and Electronics Engineers Inc., 12 2019.
[74] C. Su, S. Zhou, L. Feng, and W. Zhang, “Towards high performance low bitwidthtraining for deep neural networks,” Journal of Semiconductors, vol. 41, no. 2, 2020.
[75] C. Lammie, W. Xiang, and M. R. Azghadi, “Training Progressively Binarizing DeepNetworks using FPGAs,” in 2020 IEEE International Symposium on Circuits and Sys-

tems (ISCAS), pp. 1–5, 2020.
[76] M. Kiyama, M. Amagasaki, and M. Iida, “Deep learning framework with arbitrarynumerical precision,” Proceedings - 2019 IEEE 13th International Symposium on Em-

bedded Multicore/Many-Core Systems-on-Chip, MCSoC 2019, pp. 81–86, 10 2019.
[77] M. Véstias, R. P. Duarte, J. T. De Sousa, and H. Neto, “Parallel Dot-Products for DeepLearning on FPGA,” in 2017 27th International Conference on Field Programmable

Logic and Applications (FPL), pp. 1–4, 2017.
[78] M. P. Véstias, R. P. Duarte, J. T. de Sousa, andH. C. Neto, “A fast and scalable architec-ture to run convolutional neural networks in low density FPGAs,”Microprocessors

and Microsystems, vol. 77, 2020.
[79] D. Nguyen, D. Kim, and J. Lee, “Double MAC: Doubling the performance of con-volutional neural networks on modern FPGAs,” in Proceedings of the 2017 Design,

Automation and Test in Europe, DATE 2017, pp. 890–893, Institute of Electrical andElectronics Engineers Inc., 5 2017.
78

[80] S. Lee, D. Kim, D. Nguyen, and J. Lee, “Double MAC on a DSP: Boosting theperformance of convolutional neural networks on FPGAs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 38, pp. 888–897,5 2019.

[81] Y. Chen, K. Zhang, C. Gong, C. Hao, X. Zhang, T. Li, and D. Chen, “T-DLA: AnOpen-source Deep Learning Accelerator for Ternarized DNNModels on EmbeddedFPGA,” in Proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI,vol. 2019-July, pp. 13–18, IEEE Computer Society, 7 2019.
[82] S. Amiri, M. Hosseinabady, S. McIntosh-Smith, and J. Nunez-Yanez, “Multi-precisionconvolutional neural networks on heterogeneous hardware,” in Proceedings of the

2018 Design, Automation and Test in Europe Conference and Exhibition, DATE 2018,vol. 2018-January, pp. 419–424, Institute of Electrical and Electronics Engineers Inc.,4 2018.
[83] R. Fuchikami and F. Issiki, “Fast and Light-weight Binarized Neural Network Imple-mented in an FPGA using LUT-based Signal Processing and its Time-domain Exten-sion for Multi-bit Processing,” in 2019 IEEE 9th International Conference on Con-

sumer Electronics (ICCE-Berlin), pp. 120–121, 2 2019.
[84] A. M. Abdelsalam, A. Elsheikh, S. Chidambaram, J. P. David, and J. M. Langlois,“POLYBiNN: Binary Inference Engine for Neural Networks using Decision Trees,”

Journal of Signal Processing Systems, vol. 92, pp. 95–107, 1 2020.
[85] Q. H. Vo, N. Linh Le, F. Asim, L.W. Kim, and C. S. Hong, “A Deep Learning AcceleratorBased on a Streaming Architecture for BinaryNeural Networks,” IEEE Access, vol. 10,pp. 21141–21159, 2022.
[86] Y. Wang, Y. Yang, F. Sun, and A. Yao, “Sub-bit Neural Networks: Learning to Com-press and Accelerate Binary Neural Networks,” in Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pp. 5340–5349, Institute of Electrical andElectronics Engineers Inc., 2021.
[87] M. Haselman,M. Beauchamp, A.Wood, S. Hauck, K. Underwood, and K. Scott Hem-mert, “A Comparison of Floating Point and Logarithmic Number Systems for FP-GAs,” in 13th Annual IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM’05), pp. 181–190, 2005.
[88] C. Ni, J. Lu, J. Lin, and Z. Wang, “LBFP: Logarithmic Block Floating Point Arithmeticfor Deep Neural Networks,” Proceedings of 2020 IEEE Asia Pacific Conference on

Circuits and Systems, APCCAS 2020, pp. 201–204, 12 2020.
[89] Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L. Gustafson, and D. Ku-dithipudi, “Deep Positron: A Deep Neural Network Using the Posit Number Sys-tem,” in 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE),pp. 1421–1426, 12 2019.
[90] M. K. Jaiswal andH. K. So, “PACoGen: AHardware Posit Arithmetic Core Generator,”

IEEE Access, vol. 7, pp. 74586–74601, 2019.
[91] Y. Uguen, L. Forget, and F. De Dinechin, “Evaluating the hardware cost of the positnumber system,” in 2019 29th International Conference on Field Programmable

Logic and Applications (FPL), pp. 106–113, 2019.
79

[92] H. Fan, H. C. Ng, S. Liu, Z. Que, X. Niu, and W. Luk, “Reconfigurable acceleration of3D-CNNs for human action recognition with block floating-point representation,”in Proceedings - 2018 International Conference on Field-Programmable Logic and
Applications, FPL 2018, pp. 287–294, Institute of Electrical and Electronics EngineersInc., 11 2018.

[93] H. Fan, G. Wang, M. Ferianc, X. Niu, and W. Luk, “Static Block Floating-Point Quan-tization for Convolutional Neural Networks on FPGA,” in Proceedings - 2019 In-
ternational Conference on Field-Programmable Technology, ICFPT 2019, vol. 2019-December, pp. 28–35, Institute of Electrical and Electronics Engineers Inc., 12 2019.

[94] X. Lian, Z. Liu, Z. Song, J. Dai, W. Zhou, and X. Ji, “High-performance fpga-based cnnaccelerator with block-floating-point arithmetic,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 27, no. 8, pp. 1874–1885, 2019.

[95] P.-Y. Tsai, T.-I. Yang, C.-H. Lee, L.-M. Chen, and S.-Y. Lee, “Design of a Tunable BlockFloating-Point Quantizer with Fractional Exponent,” in 2019 IEEE International Sym-
posium on Circuits and Systems (ISCAS), pp. 1–5, 2019.

[96] P. Y. Tsai, T. I. Yang, C. H. Lee, L. M. Chen, and S. Y. Lee, “Tunable Block Floating-PointQuantizer with Fractional Exponent for Compressing Non-Uniformly DistributedSignals,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67,pp. 1245–1254, 4 2020.
[97] G. Lentaris, G. Chatzitsompanis, V. Leon, K. Pekmestzi, and D. Soudris, “Combiningarithmetic approximation techniques for improved CNN circuit design,” in ICECS

2020 - 27th IEEE International Conference on Electronics, Circuits and Systems, Pro-
ceedings, Institute of Electrical and Electronics Engineers Inc., 11 2020.

[98] H. Zhang, Z. Liu, G. Zhang, J. Dai, X. Lian, W. Zhou, and X. Ji, “A Block-Floating-PointArithmetic Based FPGA Accelerator for Convolutional Neural Networks,” in 2019
IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 1–5,2019.

[99] C. Te Ewe, P. Y. K. Cheung, and G. A. Constantinides, “LNCS 3203 - Dual Fixed-Point:An Efficient Alternative to Floating-Point Computation,” in Field Programmable
Logic and Application, pp. 200–208, Springer Berlin Heidelberg, 2004.

[100] G. A. Vera, M. Pattichis, and J. Lyke, “A dynamic dual fixed-point arithmetic archi-tecture for FPGAs,” International Journal of Reconfigurable Computing, 2011.
[101] A. Jacoby and D. Llamocca, “Dual fixed-point CORDIC processor: Architecture andFPGA implementation,” in 2016 International Conference on ReConFigurable Com-

puting and FPGAs (ReConFig), pp. 1–8, 2016.
[102] A. Jacoby and D. Llamocca, “Dynamic dual fixed-point CORDIC implementation,” in

2017 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 235–240, 2017.

[103] Xilinx, “Performance and Resource Utilization for Floating-point.” https://www.
xilinx.com/support/documentation/ip_documentation/ru/floating-
point.html.

80

[104] D. L. N. Hettiarachchi, V. S. P. Davuluru, and E. J. Balster, “Integer vs. Floating-PointProcessing on Modern FPGA Technology,” in 2020 10th Annual Computing and
Communication Workshop and Conference, CCWC 2020, pp. 606–612, Institute ofElectrical and Electronics Engineers Inc., 2020.

[105] J. Nickolls, I. a. N. Buck, and M. Garland, “Scalable Parallel Programming,” Queue,vol. 6, no. April, pp. 40–53, 2008.

81

Acknowledgements
Firstly, and most importantly, I want to express my gratitude to my supervisors for all thesupport I have received during my Ph.D. studies.Also, I would like to thank my family for allowing me to participate in that journey,indeed, it took me effort and time.

83

Abstract
Novel Neural Network Accelerator Architectures for FPGAs
Artificial intelligence and Deep Learning (DL) networks have gone through a long journeyand proved useful in many application domains: the deployment is so ubiquitous nowa-days that the system users are often unaware of the presence of such algorithms.Although the earliest DL networks date back to 1965, the first proposals did not enjoydirect success: other algorithms, like Support VectorMachines (SVMs), were used instead.Insufficient computational power was the main obstacle for DL, and the problem wassolved by the Graphical Processing Units (GPUs).This thesis focuses on problems and challenges running otherwise proven and ac-ceptedDL algorithms on embedded resource-constraint targets, Field ProgrammableGateArrays (FPGAs). There are two main questions stated and answered in this thesis. First,is it feasible to execute the backpropagation directly in hardware in case of unsupervisednetworks? And second, is it possible to replace the Floating-Point (FP) data in these al-gorithms without retraining the network and construct a hardware-efficient ProcessingElement (PE) for DL algorithms based on the new replacement data type?The thesis proposes three architectures, baseline (BL), CAE with efficient Communica-tion (CCom), and Resource Optimised CAE with efficient Communication (CCom-RO) forContractive Autoencoder (CAE) DL network to answer the first question. CAE is a flavorof Autoencoder (AE) and uses unsupervised training process. Therefore, as CAE does notrequire labeled data, the training process can execute throughout the system’s entire lifes-pan to adapt to environmental drifts.The proposed architectures’ novelty is that the backpropagation training process isincluded in Hardware (HW).These three proposed architectures differ in communication schemeandoptimization.Otherwise, all three architectures include the HW based training and use the node levelparallelism: each network node executes as an individual PE. Furthermore, each PE wrapsa Digital Signal Processing (DSP) slice available in the target platform: Xilinx Zynq-7020System On Chip (SoC), resulting in efficient design.The proper functionality of the architectures is proven using the MNIST digitaldatabase of handwritten digits. Also, synthesis results and performance figures of theproposed architectures are presented.Next, the thesis looks further and searches for data type suitable to replace floatingpoint representations in DL networks. FP data is suitable for GPUs, but realizations onFPGAs infer a lot of resources compared to accelerators for integer-like data arithmetics.In literature, there are proposals to use even binary representations for weight valuesin DL networks, i.e., it can be concluded that the numerical range provided by floatingpoint values is optional for successful deployment. However, the drawback of such deepquantization is that the network has to be retrained.As a result of the analysis of the YOLOv2 Convolutional Neural Network (CNN), thethesis provides a novel Triple Fixed-Point (TFxP) representation. The proposed formatuses two bits to select the radix point location, giving an adjustable dynamic range to aconventional fixed point representation. The simulation results show that the precision ofthe YOLOv2 network did not change after converting floating point weight values to theproposed type. And the precision was preserved without retraining.Also, the thesis proposes not to analyze the inference precision of the network af-ter the data type conversion but rather to compare the converted and original networkoutputs. This is because approximation of the calculations and weight values can evenimprove the precision, as shown in the thesis, and therefore, yield wrong conclusions re-

84

garding the suitability of the conversion. The network has to perform the same after con-version; the precision should not decrease, and at the same time, it should not increaseeither.The simulation results of the converted YOLOv2 network are acquired using MATLAB.However, MATLAB does support calculations using the proposed TFxP values. Therefore,this thesis also implements C and CUDAMATLAB extensions to add the necessary support.Further, the thesis proposes a Multiply-Accumulate (MAC) unit based on the novelTFxP data type. The proposed architecture accepts TFxP inputs with different ranges andinternally adjusts the values to guarantee the exact pre-defined radix point location formultiplication results. This allows the use of the internal accumulation paths of the DSPslice, resulting in fewer additional external HW required to complete the design. Also,synthesis and performance results are presented.The presented architectures can be extended as future work. For example, the pro-posed CAE implementation can be cascaded with another type of DL algorithm and usethe extracted features as the input to the second processing stage. Also, the TFxP basedMAC unit calls for further research: the exact architecture of possible DL execution plat-form has to be designed, using the proposed MAC unit as the building block.

85

Kokkuvõte
Uudsed närvivõrkude kiirendite arhitektuurid FPGAdele
Tehisintellekti ja süvaõppe algoritmid on läbi teinud pika arengu ja tõestanud enda kasu-likkust erinevates valdkondades: tänapäeval leiab nende rakendusi kõikvõimalikest erine-vatest süsteemidest ja süsteemi kasutajad ei ole nende algoritmide kasutamisest enamtihti teadlikud.Süvaõppe algoritmidel on pikk ajalugu, esmased teadustööd on avaldatud juba 1965aastal. Sellele vaatamata ei leidnud algoritmid esmalt kuigivõrd kasutust ja konkureerivadalgoritmid nagu näiteks tugivektor-masinad leidsid ennemini rakendust. Põhiliseks takis-tuseks süvaõppe algoritmide laialdasemaks kasutuseks võib pidada ebapiisavat arvutus-jõudlust. See probleem sai aga lahenduse seoses graafikaprotsessorite kasutusele võtuga.Käesolev doktoritöö keskendub süvaõppe algoritmide rakendamisele piiratud jõudlu-sega seadmetel nagu näiteks väliprogrammeeritav loogika (FPGA). Käesolevas töös püsti-tatakse ja pakutakse vastus kahele küsimusele: kas oleks võimalik ja ka otstarbekas konst-rueerida riistavaline kiirendi süvaõppe algoritmidele, mis tuginevad juhendamata õppi-misele (unsupervised learning) ja kas süvaõppe algoritmides oleks üldisemalt võimalik il-ma algoritmi uuesti õpetamata asendada ujukoma andmedmõne sobivama andmetüübi-ga, mis võimaldaks konstrueerida riistvaraliselt säästlikuma kiirendi.Esiteks pakutakse selles töös välja kolm arhitektuuri "lepingulise autoenkood-ri"(contractive autoencoder) süvaõppe algoritmi realisatsiooniks. See algoritm on omaolemuselt autoenkooder ja võimaldab oma olemuselt juhendamata õpetamise (unsuper-vised leaning) protsessi. Ehk siis teisisõnu see algoritm ei nõua treenimiseks eelnevaltettevalmistatud ja sildistatud andmeid ja seetõttu võib õppe protsess kesta ka kogusüsteemi kasutusaja jooksul. Järjepidev algoritmi treenimine võimaldab süsteemil näitekskohanduda keskkonna muutustega.Väljapakutud arhitektuuride uudsus seisneb just nimelt asjaolus, et ka algoritmi treeni-mise protsess on teostatud täielikult riistvaraliselt, mis siis omakorda võimaldab algoritmiljärjepidevalt õppida nagu see põhimõtteliselt taolise algoritmi puhul võimalik on.Kolme erineva pakutud realisatsiooni erinevus seisneb kommunikatsiooni kanalis jaoptimeerimise meetodites. Muus osas on arhitektuurid samaväärsed. Kõik kolm variantisisaldavad riistvara põhist treenimist ja samuti on kõigi kolme arhitektuuri paralleel tööt-luse põhimõtted samad. Samuti, kõigi kolme arhitektuuri puhul sisaldab iga arvutusüksusühte digitaalset signaaliprotsessorit, mis on töös kasutatud testplatvormil, Xilinx Zynq-7020, realiseeritud riistvaras ja kasutamiseks valmis.Korrektse funktsionaalsuse hindamiseks kasutatakse antud töös MNIST andmebaasikäsikirjalistest numbritest. Lisaks esitatakse töös kõikide arhitektuuride kohta riistvarasünteesi tulemused ja jõudlusnäitajad.Edasi võtab käesolev töö laiema vaate ja analüüsib võimalusi süvaõppe algoritmidesujukoma arvutuste asendamiseks. Kirjandusest leiab edukaid rakendusi, kus ujukoma for-maat on asendatud isegi binaarsete väärtustega, seega võib järeldada, et see on on kind-lasti võimalik ja ujukomaesituste dünaamiline diapasoon ei ole ilmtingimata vajalik. Vaata-mata edukatele kasetustele nõuavad taoliselt konverteeritud algoritmid uuesti õpetamist.Reaalseks analüüsiks kasutatakse selles töös YOLOv2 konvolutsiooni algoritmi, milletulemusena pakutakse välja uudne formaat: kolme erineva täpsusega püsipunkt esitus,kus täpne koma asukohtmääratakse formaadis sisalduvate kahe lisabiti abil. Simulatsioonitulemused näitavad, et taoliselt ümber konverteeritud YOLOv2 algoritm käitub sarnaseltkasutades kas siis ujukoma arvutusi või töös välja pakutud uudset formaati.Lisaks pakub töö olulise kriteeriumi andmetüübi sobivuse analüüsiks. Nimelt, nagu onka töös näidatud, võivad uuest andmetüübist tingitud lähendused kohati isegi originaal

86

algoritmi täpsust parandada, millest võib teha uue andmetüübi sobivuse kohta valesidjäreldusi. Seetõttu antud töös võrreldakse teisendatud algoritmi väljundit originaalrea-lisatsiooniga: sama sisendi korral peavad väljundid olema võimalikult sarnased ja kogualgoritmi täpsus ei tohiks ei suureneda ega kahaneda.Algoritmide simulatsioonid on antud töös läbi viidud MATLAB tarkvaraga. Kuivõrd agaMATLAB ei toeta arvutusi kasutades töös välja pakutud uudset formaati, siis on antuddoktoritöö raames ka välja töötatud C ja CUDA programmeerimiskeeltel baseeruv täien-dusmoodul MATLAB-ile.Lõpetuseks pakutakse käesolevas doktoritöös välja uudsel andmetüübil baseeruvkorrutamis-liitmis seade (MAC). Esitatud realisatsioon aktsepteerib sisenditena väärtusi,mis võivad kasutada erinevaid täpsusi ehk siis väärtusi, milledes koma koht on erinevalpositsioonil nagu välja pakutud formaat võimaldab. Tagamaks, et korrutamise tulemustesoleks koma koht eelnevalt määratud positsioonil mistahes sisendite kombinatsiooni pu-hul, nihutatakse sisendväärtuseid vastavalt. Taoline optimeerimine võimaldab kasutadariistvaras juba leiduva konventsionaalse korrutus-liitmis seadme sisemisi struktuure javältida lisatava riistvara hulka. Samuti esitatakse uudse korrutus-liitmis seadme riistvarasünteesi- ja jõudlusnäitajad.Antud doktoritöös välja pakutud lahendusi saab ja tuleks järgnevates töödes edasiarendada. Esiteks, pakutud autoenkooderit saab kasutada sisend andmetest oluliste tun-nuste eraldamiseks ja saadud andmeid omakorda kasutada sisendina järgnevale süvaõppealgoritmile. Samuti tuleb edasi arendada pakutud korrutamis-liitmis seadme kasutusvõi-malusi, uurides erinevaid võimalikke arhitektuure, mis kasutaks välja pakutud seadet jaandmetüüpi.

87

Appendix 1

I

M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “An Efficient FPGA-basedArchitecture for Contractive Autoencoders,” in 2020 IEEE 28th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 230–230, Institute of Electrical and ElectronicsEngineers Inc., 5 2020

89

An Efficient FPGA-based Architecture for
Contractive Autoencoders

Madis Kerner∗, Kalle Tammemäe∗, Jaan Raik∗, Thomas Hollstein∗†
∗Tallinn University of Technology, Tallinn, Estonia

†Frankfurt University of Applied Sciences, Frankfurt, Germany
Email: madis.kerner@taltech.ee, kalle.tammemae@taltech.ee, jaan.raik@taltech.ee, hollstein@fb2.fra-uas.de

Abstract—Deep learning neural networks have gained much
attention in recent research. Excellent results in various domains
have proved the usefulness of such algorithms. However, training
a deep learning network requires substantial computational
effort; therefore, resource-constrained systems like edge devices
in the IoT domain still lack full implementations, and training
of the network is offloaded to the cloud. Online or unsupervised
training of the network, on the other hand, is often a must if
the system has to adjust to possible drift of the environment
parameters or there is not enough data available initially. This
paper proposes the first Xilinx Zynq FPGA (Field Programmable
Gate Array) based implementation of the contractive autoencoder
(CAE), including training of the network.

I. INTRODUCTION

Deep learning (DL) algorithms have been proved to be
useful in various domains: image recognition, natural language
translation, human activity recognition, and anomaly detection
[1], [2], [3]. However, the current state-of-the-art solutions
rely on graphical processing units and other general-purpose
hardware accelerators.

The DL algorithms extract the essential features of the
input signal automatically; this enables automatic learning and
increases the DL modeling capabilities [4].

Before the deployment, DL algorithms need training, which
requires substantial computational power. Therefore, the net-
work is either trained offline, or using the cloud [5].

The broader focus of this work is related to the unsu-
pervised DL algorithms and implementations on resource-
constrained systems. One class of this kind of methods are
autoencoders, which reproduce the input signal to its output.
The middle layer of an autoencoder contains compressed
features [6], which can be used for different purposes, like
data-compression [7].

[8] describes the framework for FPGA based forward pass
execution of various DL networks but does not include the
training, which has to be carried out separately.

Considering autoencoders, [9] provides the study of an
FPGA based sparse stacked autoencoder, but again, it does
lack the training.

Using high-level synthesis is another approach found in
the literature; [10] provides the solution to train stacked au-
toencoders. However, the proposed solution lacks the training
speed and the contraction term.

The main contribution of this work is to provide the first
hardware-based implementation of the Contractive Autoen-

coder (CAE) [11]. Also, this paper follows proposals to use
shared weights on the input and output layers [12] and fixed-
point representations for weights and biases [13].

The proposed architecture uses node-level parallelism. For
back-propagation, additional parallelism was achieved by max-
imally reusing the computational results.

The functionality of the solution was verified using the
downscaled MNIST dataset [14]. The 38µs total execution
time for a forward pass and training yields to a maximum of
26KS input rate.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, 5 2015.

[2] J. Schmidhuber, “Deep Learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[3] T. Plotz and Y. Guan, “Deep Learning for Human Activity Recognition
in Mobile Computing,” Computer, vol. 51, no. 5, pp. 50–59, 2018.

[4] H. F. Nweke, Y. W. Teh, M. A. Al-garadi, and U. R. Alo, “Deep
learning algorithms for human activity recognition using mobile and
wearable sensor networks: State of the art and research challenges,”
Expert Systems with Applications, vol. 105, pp. 233–261, 9 2018.

[5] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for sensor-
based activity recognition: A Survey,” Pattern Recognition Letters, vol.
119, pp. 3–11, 2 2018.

[6] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality
of Data with Neural Networks,” Science (New York, N.Y.), vol. 313, no.
July, pp. 504–507, 2006.

[7] O. Yildirim, R. S. Tan, and U. R. Acharya, “An efficient compression of
ECG signals using deep convolutional autoencoders,” Cognitive Systems
Research, vol. 52, pp. 198–211, 2018.

[8] L. D. Medus, T. Iakymchuk, J. V. Frances-Villora, M. Bataller-
Mompean, and A. Rosado-Munoz, “A Novel Systolic Parallel Hard-
ware Architecture for the FPGA Acceleration of Feedforward Neural
Networks,” IEEE Access, vol. 7, pp. 76 084–76 103, 2019.

[9] M. G. Coutinho, M. F. Torquato, and M. A. Fernandes, “Deep neural
network hardware implementation based on stacked sparse autoencoder,”
IEEE Access, vol. 7, pp. 40 674–40 694, 2019.

[10] J. Maria, J. Amaro, G. Falcao, and L. A. Alexandre, “Stacked Autoen-
coders Using Low-Power Accelerated Architectures for Object Recogni-
tion in Autonomous Systems,” Neural Processing Letters, vol. 43, no. 05,
pp. 445–458, 2016.

[11] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive
auto-encoders: explicit invariance during feature extraction,” in Proceed-
ings of The 28th International Conference on Machine Learning (ICML-
11), no. 1, 2011, pp. 833–840.

[12] A. Suzuki, T. Morie, and H. Tamukoh, “FPGA implementation of
autoencoders having shared synapse architecture,” in PLoS One, vol. 13,
no. 03, 2018, pp. 1–22.

[13] J. Jiang, R. Hu, D. Wang, J. Xu, and Y. Dou, “Performance of the fixed-
point autoencoder,” Tehnicki vjesnik - Technical Gazette, vol. 23, no. 02,
pp. 77–82, 2016.

[14] Y. LeCun, C. Cortes, and C. J. Burges, “MNIST handwritten
digit database,” ATT Labs, vol. 2, 2010. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

Appendix 2

II

M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “Novel Architectures forContractive Autoencoders with Embedded Learning,” in 2020 17th Biennial
Baltic Electronics Conference (BEC), vol. 2020-October, pp. 1–6, IEEE Com-puter Society, 10 2020

93

Novel Architectures for Contractive Autoencoders
with Embedded Learning

Madis Kerner∗, Kalle Tammemäe∗, Jaan Raik∗, Thomas Hollstein∗†
∗Tallinn University of Technology, Tallinn, Estonia

†Frankfurt University of Applied Sciences, Frankfurt, Germany
email: madis.kerner@taltech.ee, kalle.tammemae@taltech.ee, jaan.raik@taltech.ee, hollstein@fb2.fra-uas.de

Abstract—A Contractive Autoencoder (CAE) is an unsuper-
vised Artificial Neural Network (ANN) with a regularization term
controlling the internal representations. During its operation,
the autoencoder extracts dominant features of the input, which
can be either used for communication bandwidth reduction
or as an input to another neural network. While hardware
implementations for the forward pass of various ANNs can
be found in literature, this paper proposes three novel archi-
tectures for Field Programmable Gate Array (FPGA) based
implementations of CAE, for the first time with embedded
learning: (i) topography-affine inter-layer communication via
crossbar; (ii) efficient carousel-type communication scheme; (iii)
optimized carousel-type architecture. All architectures use node-
level parallel calculation scheme and have been implemented on
a Xilinx Zynq 7020 System On Chip (SoC).

I. INTRODUCTION

Successful applications of Deep Learning (DL) algorithms
include image recognition, natural language translation, hu-
man activity recognition, and anomaly detection [1], [2], [3].
Different implementation will and have moved the boundaries
of contemporary life in various ways.

The appealing benefit of DL is its ability to extract the
essential features of the input signal automatically; these
algorithms do not rely on domain expert knowledge and
manual pre-processing of the input. Automatic feature extrac-
tion increases the modeling capabilities of DL [4].

Before the deployment, DL algorithms need training. This
procedure adjusts the internal weights and biases of the
network to ensure the desired behavior. However, training a
DL network requires substantial computational power, and
therefore, current implementations on resource-constrained
systems do not include it. Instead, the model is trained offline,
or the task is offloaded to the cloud [5].

This work focuses on unsupervised DL algorithms and im-
plementations on resource-constrained systems; unsupervised
behavior enables autonomous operation. One class of this
kind of methods are Autoencoders (AEs), which reproduce
the input signal to its output, while internal weight values are
updated to minimize the difference. The middle layer(s) of an
AE contain compressed features [6], which can be used for
different purposes, like data-compression [7] or as input to
DL network to follow.

While the state-of-the-art addresses FPGA based ANN
accelerators ([8], [9]), CAE with embedded learning is missing
from the literature. [10] provides an FPGA based implemen-
tation of the sparse stacked autoencoder. However, the work
does not implement hardware-based training of the network,
only forward pass.

[11] provides a framework for the forward pass calculations
for various architectures, with no training included. However,
several applications may require embedded training.

[12] uses high-level synthesis to train stacked autoencoders.
While autoencoders are all inherently related, the solution
lacks the contraction term and training speed.

The main contribution of this work is to provide the
first full hardware-based implementation of the CAE [13],
comprising hardware-implemented learning. In addition, this
paper follows proposals to use shared weights on the input and
output layers [14] and fixed point representations for weights
and biases [15].

The rest of the paper is organized as follows: Section II pro-
vides the necessary background information about CAE and
the equations for the forward path and training of the network,
Section III presents and analyzes the proposed architectures of
the Xilinx Zynq based implementation of CAE, Section IV
explains the functioning of the proposed architectures and
presents timing and hardware utilization figures, and Section V
provides the conclusions.

II. CONTRACTIVE AUTOENCODER

An AE is a type of ANN that tries to reproduce the input
signal to its output while reducing the data dimensionality [6].
Fig. 1 presents the architecture of an AE network, consisting
of encoding and decoding parts.

The internal representation, however, does not necessarily
converge to a useful generalization of the input unless some
quality measure, known as regularization, is explicitly set. One
type of an AE which does this is the Contractive Autoencoder
(CAE) [13]; regularization is to ensure that small changes in
the input yield to the same internal representation, effectively
driving the middle layer towards more general features.

A. Forward Pass

This section presents the equations for CAE forward pass
calculations, where n is the number of inputs and outputs, and
m is the count of middle layer nodes.978-1-7281-9444-8/20/$31.00 c©2020 IEEE

z1 z2 . . . zn

d1 d2 . . . dn

y1 . . . ym

c1 . . . cm

x1 x2 . . . xn

w11
w21 wn1

w1m

w2m

wnm

w11 w21

wn1
w1m

w2m

wnm

de
co

di
ng

en
co

di
ng

Figure 1: Architecture of the AE. Middle layer Y is the com-
pressed representation of input X , and Z is the reconstruction
of X . The rest of the figures and tables use the same coloring
scheme: blue color denotes the external nodes, while green
color identifies the middle layer.

The forward pass starts with the calculation of hidden
representation Y corresponding to the input X (Eq. (1)). The
activation function g(x) used in the current proposal is the
Rectified Linear Unit (ReLU), first proposed in [16].

yj = g
n∑

i=1

wijxi + b
(c)
j

)
(1)

Next, using Eq. (2), the internal representation Y is used to
calculate Z, the output.

zi = g

m∑

j=1

wijyj + b
(d)
i

 (2)

Eqs. (1) and (2) complete the forward pass calculation.
However, this paper addresses the training of the CAE as well.

B. Loss Function

Training of a ANN is about minimizing the loss function,
which describes the difference between the actual and de-
sired output. We have selected computationally efficient Mean
Squared Error (MSE) for that (Eq. (3)).

L(X,Z) =
1

n

n∑

i=1

(zi − xi)2 (3)

In the case of CAE, the loss function includes a regulariza-
tion term to force the internal representation to be less sensitive
to the input, yielding to more robust features. Mathematically
this term translates to the Frobenius norm of the Jacobian
matrix (Eq. (4)).

‖Jf (x)‖2F =

n∑

i=1

m∑

j=1

(
∂yj
∂xi

)2

(4)

The total loss of the CAE is the sum of Eqs. (3) and (4):
Eq. (5), where θ = W,B(c), B(d) is the collection of all the
parameters, weights and biases, present in the network and λ

is the coefficient to limit the amount of the contraction term
in the total loss.

JCAE(θ) = L(x, g(f(x))) + λ‖Jf (x)‖2F (5)

C. Gradient Descent

Training of the CAE is about minimizing the loss function,
ideally to zero. Gradient descent is the standard algorithm for
finding such adjustments.

To simplify the notations to follow, we first mark the
squared error term in Eq. (3) as li = (zi − xi)2. After this
substitution, we can calculate the derivative of the MSE loss
w.r.t. every weight value wuv using the chain rule: Eq. (6).

∂L

∂wuv
=

1

n

n∑

i=1

(
∂li
∂zi

∂zi
∂di

∂di
∂wuv

)
(6)

The terms ∂li/∂zi and ∂zi/∂di in the Eq. (6) are computa-
tionally light, while the calculation of ∂di/∂wuv follows the
chain rule, again. It is important to note the impact of sharing
the weights in input and output layers: if i = u in Eq. (6) then
du = wuv ∗ yv ,where yv = f(wuv) and the derivative w.r.t
wuv has to follow the product rule. Equation (7) presents the
derivative of the decoding value.

∂di
∂wuv

=

{
∂di
∂yv

∂yv
∂cv

∂cv
∂wuv

, if i(d) 6= u

yv + wuv
∂yv
∂cv

∂cv
∂wuv

, if i(d) = u
(7)

Contraction term adds additional member to the final weight
update, Eq. (8) presents the formula for calculating the deriva-
tive of the contraction term w.r.t. wuv

∂rij
∂wij

= 2wij

(
∂yj
∂cj

)2

(8)

D. Weight and bias update values

The negative value of the gradient specifies the direction of
change for a parameter to minimize the loss function (Eq. (5)).

Eqs. (9) and (10) presents the update calculation for the
weight and bias values, where α amd β stand for the learning
rate.

wij = wij − α
(
∂L

∂wij
+ λ

∂rij
∂wij

)
(9)

bi = bi − β
∂L

∂bi
(10)

III. PROPOSED ARCHITECTURES

CAE forward pass, and backpropagation calculations in-
volve many loops: all the nodes in a layer need to multiply
the previous layer inputs by the corresponding weights and
accumulate the results. Unrolling the loops provides excellent
possibilities for hardware accelerators.

All three following architecture proposals make use of the
digital signal processing (DSP) slices for Multiply-Accumulate
(MAC) operations, and therefore, the maximum number of
possible parallel calculations is equal to the amount of avail-
able DSP based Processing Elements (PEs). I.e., keeping all

the DSP slices busy at all times gives the best performing
accelerator. However, to maximize the use of DSP slices, the
hardware utilization per PE has to be small to accommodate
the design in the target hardware. Also, the communication
channel should use the minimum amount of hardware while
providing a reasonable bandwidth to feed the PEs with data.

The following proposals use the node-level parallelism:
all the network nodes in CAE make use of one PE. The
differences involve communication channel selection and node
pruning. All the weight values and intermediate calculations
are stored in distributed block RAMs associated with PEs.

The target hardware for this research is Xilinx Zynq-
7020 SoC, it incorporates dual-core ARM Cortex-A9 plus
Programmable Logic (PL). The PL section contains 85K
logic cells, 53200 LUTs, 106400 flip-flops, 140 36Kbit block
RAMs, and 220 DSP slices. The ARM cores are responsible
for configuring the PL based CAE network and feeding it with
the input data.

A. Timing Estimations

This section presents the timing estimations for CAE using
the node-level parallelism.

During the forward pass, it takes the number of equal to the
previous layer size MAC operations for a node to complete
its output. Adding the bias and applying the computationally
inexpensive ReLU activation add another two cycles per layer
(Eqs. (1) and (2)). Eq. (11) presents the generalized formula
for calculating the required cycles to complete the forward
pass, where l stands for the number of layers and ni is the
i-th layer input size.

Cfwd =
l∑

i=1

(ni + 2) (11)

In total, it takes n+m+ 4 cycles to complete the forward
pass for a network presented in Fig. 1.

Analysis of the Eq. (9) gives the required cycle count to
update a single weight value: 7n + 10. Therefore, the total
cycle count to update all the weights equals to m(7n + 10),
where m is the number of weights assigned to a node.

To accelerate the backpropagation, we have determined the
common parts present in calculations to maximize the data
reuse: Eqs. (12) and (13).

Ki =
1

n

∂li
∂zi

∂zi
∂di

(12)

Sj =
∂yj
∂cj

n∑

i=1

Kiwij (13)

Eq. (14) presents the weight update formula after extracting
and substituting the common parts.

wij = wij − α(xiSj +Kiyj)− αλ
∂rij
∂wij

(14)

After the substitutions, the total cycle count to update a
single weight value is reduced to 11 cycles. Calculation of Sj

−α−β ∂y
∂c

−αλ

RAMzbT

∂z
∂d

y

Cxx

x

−β

Figure 2: Data-path of the middle and IO layer PE. Blue color
designates the items only present in the external layer, while
the green color marks middle layer only elements. Items with
no background color are present in every PE

and Ki values takes n+1 and 5 cycles, respectively. Eq. (15)
defines the cycle count required to update all the weights
in the network presented in Fig. 1 in the case of node-level
parallelism.

Cbp = 11m+ n+ 6 (15)

B. Architecture 1: Baseline (BL)

The BL architecture follows the logical structure of the
CAE (Fig. 1); every node is a separate PE, and the ordering
of calculations follows the layered structure. Forward pass
calculations start by propagating the input values to the middle
layer nodes where MAC operations take place (Eq. (1)),
followed by similar operations in the output layer (Eq. (2)).
Training of the network follows similar layer-to-layer flow but
in the opposite direction, from the output to the input.

This scheme means that while the internal and external
nodes are well separated and more straightforward controlling
Finite State Machines (FSMs) can be used, only one layer is
executing at a time; the resources associated with the other
layers are staying idle.

Figure 2 presents the data-path of the PEs, and the coloring
scheme follows the rules presented in Fig. 1.

The central part of the PE is the DSP slice, which carries
out the calculations. The output of the DSP can be stored to
one of the registers, to the block RAM holding the weight
values wij , or transmitted to another node via the cross-
bar connection point Cxx, and the inputs use multiplexers to
connect to the data sources. DSP can execute a set of pre-
defined instructions; the instruction selection and switching
of the input multiplexers are under control of the FSM. This
setup is sufficient for the forward pass and backpropagation
calculations.

Network nodes in CAE need to communicate with each
other as the output calculation and updating the weight values
are performed in collaboration. BL architecture uses the cross-
bar switch (Fig. 3) as the communication channel to achieve
that. Both sides of the cross-bar have controlling ports CTRL
for reading and writing the input and output data and for
network configuration purposes, and dummy loads DLd to

S00

S01

N1

N2

N3

N4
S02

S03

N5

N6

N7

CTRL
S10

S11

S12

S13

S20

S21

S22

S23

N1

N2

N3

N4

N5

DLd

DLd

CTRL

Figure 3: Layout of the butterfly cross-bar switch. Layers of
the CAE connect to the different sides. CTRL ports are used
by the ARM processing unit for flow control and data transfer.

balance the cross-bar and assist synthesizer in pruning the
redundant hardware.

C. Architecture 2: Efficient Communication (CCom)

The second proposal combines the network layers to over-
come the phenomenon of the idling layers present in BL
architecture. Further, it replaces the crossbar switch by the
simple carousel-like communication (CCom) channel (Fig. 4).

This kind of architecture reaches the maximum performance
while executing the layers with the size equal to the count
of available PEs, or if the network layer node count is the
multiple of PE count: it takes the number of equal to layers
input size cycles for a layer to complete the forward pass. Node
Nn in Fig. 4 can proceed with the next layer after receiving the
last input value without waiting for the node N1 to complete.

The same does not hold for smaller layers: n − m PEs
are not needed and stay idle. While the CCom architecture
can not avoid that problem entirely, it tries to mitigate the
consequences by calculating multiple sets of outputs for a
smaller layer. In the case of CAE, an output layer node has
to receive all the middle layer outputs to complete its forward
pass calculation, for example. It takes m cycles if multiple sets
of interleaved middle layer outputs are available, compared
to n cycles required otherwise. I.e., performing redundant
calculations speeds up the start of the next layer calculations.
The same holds for the S (Eq. (13)) calculations in case of
backpropagation.

Table I presents an example of the described scheme for the
middle layer representation in the network with n = 7 external

CTRL N1N2N3Nn

C1C2C3CnCn+1

Figure 4: Carousel like communication channel. Data advances
in every clock cycle. The node CTRL is connected to the
controlling ARM processing unit.

layer and m = 5 internal layer nodes. Every node adds wijxi
to the data present in the carousel and forwards it, completing
the Eq. (1).

However, this scheme requires the total amount of nodes
to be equal to multiple of the internal layer units m; the
following calculations require the set of internal layer values
to arrive in the correct sequence. Therefore, the network must
include dummy nodes D1 . . . D3. These dummy nodes act as
a network node with all weight values set to zero and forward
the data.

Table I: Performance biased calculation scheme of CCom
architecture. Multiple sets of values are calculated to speed
up the execution steps to follow.

D3 D2 D1 N7 N6 N5 N4 N3 N2 N1

Y
(1)
1 Y

(2)
5 Y

(2)
4 Y

(2)
3 Y

(2)
2 Y

(2)
1 Y

(1)
5 Y

(1)
4 Y

(1)
3 Y

(1)
2

Y
(1)
2 Y

(1)
1 Y

(2)
5 Y

(2)
4 Y

(2)
3 Y

(2)
2 Y

(2)
1 Y

(1)
5 Y

(1)
4 Y

(1)
3

Y
(1)
3 Y

(1)
2 Y

(1)
1 Y

(2)
5 Y

(2)
4 Y

(2)
3 Y

(2)
2 Y

(2)
1 Y

(1)
5 Y

(1)
4

Y
(1)
4 Y

(1)
3 Y

(1)
2 Y

(1)
1 Y

(2)
5 Y

(2)
4 Y

(2)
3 Y

(2)
2 Y

(2)
1 Y

(1)
5

Y
(1)
5 Y

(1)
4 Y

(1)
3 Y

(1)
2 Y

(1)
1 Y

(2)
5 Y

(2)
4 Y

(2)
3 Y

(2)
2 Y

(2)
1

Y
(2)
1 Y

(1)
5 Y

(1)
4 Y

(1)
3 Y

(1)
2 Y

(1)
1 Y

(2)
5 Y

(2)
4 Y

(2)
3 Y

(2)
2

Y
(2)
2 Y

(2)
1 Y

(1)
5 Y

(1)
4 Y

(1)
3 Y

(1)
2 Y

(1)
1 Y

(2)
5 Y

(2)
4 Y

(2)
3

Y
(2)
3 Y

(2)
2 Y

(2)
1 Y

(1)
5 Y

(1)
4 Y

(1)
3 Y

(1)
2 Y

(1)
1 Y

(2)
5 Y

(2)
4

Y
(2)
4 Y

(2)
3 Y

(2)
2 Y

(2)
1 Y

(1)
5 Y

(1)
4 Y

(1)
3 Y

(1)
2 Y

(1)
1 Y

(2)
5

Y
(2)
5 Y

(2)
4 Y

(2)
3 Y

(2)
2 Y

(2)
1 Y

(1)
5 Y

(1)
4 Y

(1)
3 Y

(1)
2 Y

(1)
1

Figure 5 presents the data-path of the CCom PE, where
all the PEs implement all the features. This design choice
increases the throughput of the network at the cost of the
hardware resources.

D. Architecture 3: Resource-Optimized (CCom-RO)
Architecture CCom-RO shares the carousel-like communi-

cation channel (Fig. 4) design with CCom but is resource
optimized version of it.

While the PEs in CCom-RO are still combined, only m
nodes have the full functionality. The rest n−m nodes include
the necessary hardware to support the middle layer related
calculations only. Naturally, this design choice reduces the
throughput: the network calculates only one set of middle layer
features, causing maximum of n−m clock cycles delay for a
PE to receive data for further operations.

Table II presents an example of CCom-RO network with
n = 7 external layer- and m = 5 internal layer nodes. Only the
first m nodes, N1 . . . N5, hold the yj values upon completion
of the middle-layer calculation, the remaining n − m nodes
have simplified structure.

Figure 5 presents the data-path of the CCom-RO architec-
ture PE. As stated, this architecture has a different design for
the PEs: green color indicates the additional paths and registers
included in the first m PEs, while the reduced PEs comprise
the uncolored part only.

IV. RESULTS AND ANALYSIS

First of all, an FPGA based architecture needs to be syn-
thesizable and provide a feasible amount of functionality. As

Table II: Resource optimised calculation scheme for CCom-
RO architecture. Only one set of internal layer values are
calculated.

N7 N6 N5 N4 N3 N2 N1

Y1 - - Y5 Y4 Y3 Y2
Y2 Y1 - - Y5 Y4 Y3
Y3 Y2 Y1 - - Y5 Y4
Y4 Y3 Y2 Y1 - - Y5
Y5 Y4 Y3 Y2 Y1 - -
- Y5 Y4 Y3 Y2 Y1 -
- - Y5 Y4 Y3 Y2 Y1

−α
∂y
∂c λ

∂z
∂d

Cxx

−β

z

RAM

x

y

K

S

b(d)b(c)

Figure 5: Data-path of the CCom and CCom-RO PEs. In case
of CCom, every PE implements all the elements. For CCom-
RO, reduced PEs do not incoroprate the green colored features.

all the proposed architectures use one DSP slice per PE, the
maximum number of parallel PEs equals to the number of
available slices. Selected target platform Xilinx Zynq 7020
has 220 DSP slices.

Table III provides the synthesis results. All the architectures
were synthesized using 30 internal layer nodes, 100MHz clock
speed, and the external layer size was increased to fill the
target hardware. The unit for the size value is hardware
slices. The column Chnl Size provides the resource usage for
communication channel: cross-bar for the BL and carousel-
like channel for the CCom and CCom-RO architectures, and
the columns DSP and bRAM hold the total amount of DSP
slices and block RAMs used, respectively.

The BL allows the maximum network with fewest nodes to
be synthesized to the target hardware. Although the PEs use
fewer resources than in the case of the other two architectures,
the size of the cross-bar switch is the bottleneck; the carousel-
like chain is more straightforward and not as resource hungry.

CCom results in a higher node count compared to the BL.
While combining the layers functionality results in a higher
amount of resources required by a single PE, the communica-
tion channel is lighter, boosting the maximum network size by
50 additional nodes. It has to be noted that CCom synthesis
has 150 external- and 30 middle layer nodes, merged into the
combined count.

The largest CAE can be synthesized using the CCom-RO
architecture; again, it has to be noted that the total size for
the external layer is 170 + 30 = 200, the sum of full and

Table III: Maximum network sizes and hardware usage for
CAE synthesis targeting Zynq7020 SoC; the size is expressed
in FPGA slices.

ExtNode MidNode Chnl DSP bRAM
Arch Count Size Count Size Size Count Count
BL 100 65 30 90 7500 130 15

ExtNode Mid+ExtNode Chnl DSP bRAM
CCom N/A N/A 150 105 4377 150 75

CCom-RO 170 75 30 105 1678 200 100

reduced PEs. The largest possible network was expectable as
the resources allocated for the performance boost included in
the CCom were skipped. The decrease in the communication
channel size is expected as well; only the nodes with full mid-
dle layer functionality use an additional pipeline to transmit
more data at once.

Table IV provides the forward pass and training execution
times for the described architectures and the theoretical max-
imum (Eqs. (11) and (15)). The timing results were acquired
using the HDL simulator, and the size of the network was the
maximum achieved during the synthesis: 200 external- and 30
middle layer nodes.

The fastest architecture is CCom, and it is about four times
faster compared to the BL. The usage of the cross-bar switch
can explain the reduced execution time of the BL: a node
has to wait until the channel becomes available to be able
to transmit the data. Similarly, if data from another node is
required for calculations, the node has to wait for it. Further,
many calculation results have to be broadcasted to every PE
in the following layer; only one broadcast can complete in
every clock cycle, the rest of the PEs have to wait for the
communication resources become available. In conclusion,
synchronization by the communication channel yields to more
straightforward design and lower usage of hardware per PE
but slows down the execution.

CCom and CCom-RO use synchronous PEs; the state of
other PEs is known in every time step, and there is no
competition for the communication channel. The availability
of resources is guaranteed by design, ensuring the optimal
execution flow and faster execution times. Also, the commu-
nication channel does not have to implement any handshake
signals.

The fact that CCom-RO is slower compared to the CCom
is expected. However, CCom-RO is still about 1.6 times faster
compared to BL.

Another important observation is that only the CCom archi-
tectures almost reached the theoretical maximum performance.
CCom-RO does not optimize the calculations for the smaller
middle layer, and therefore, the execution speed suffers.

Further, data from the MNIST database of handwritten
digits [17] was used to prove the functionality of the design.
However, this paper does not aim to outperform state-of-the-art
classifiers but uses the MNIST database to prove the operation
of the HW based implementation.

While the database contains 28x28 pixel images, the format
was reduced to 14x14 pixels, resulting in 196 node input

Table IV: Execution time of the CAE with 200 external- and
30 middle layer nodes. The clock speed of the designs was
set to 100MHz.

Arch Forward Pass (µs) Training (µs)
Theoretical 2.3 5.4

BL 13.4 25.7
CCom 2.8 5.9

CCom-RO 6.1 9.5

layer, which was possible to synthesize using CCom-RO
architecture. During the experiment, the CAE was trained
using the first 20 images from the MNIST database, and
every digit was input to the network 200 times. The network
converged using 16 bit long fixed-point implementation with
12 fractional bits. In parallel to the hardware execution, Matlab
functional model was used to ensure proper execution.

Figure 6 shows the results of the conducted test: the output
of the 3-layer 196-10-196 nodes CAE (Figure 6b) correlate to
the down-scaled 14x14 MNIST database images (Figure 6a).

(a) Input to the CAE, down-
scaled 14x14 MNIST images.

(b) Output of the CAE, using
16.12 fixed-point representation
and 10 internal layer nodes.

Figure 6: Operation example of the trained 3-layer 196-10-196
nodes CAE using 16.12 fixed-point representations.

V. CONCLUSIONS

The novel contribution of this work is to provide entirely
FPGA-based implementations of a CAE, including embedded
learning. The three presented approaches follow proposals to
use shared weights in the input and output layers [14] and
fixed-point representations for weights and biases [15].

The synthesize results and execution speed propose that
mimicking the theoretical architecture of the network (BL)
in hardware is not feasible; resources used by the cross-bar
switch are high compared to the network itself. Also, using
the same set of PEs for all layers (CCom and CCom-RO) prune
the idling nodes and improve the computation efficiency.

A carousel-like communication scheme resulted in faster
execution speed and lower hardware resources used. Whereas
the choice between the architectures CCom and CCom-RO
is the matter of resources to execution speed tradeoff, while
CCom proves that simple communication channel is sufficient
to feed the PEs with data in case of node-level parallelism.

Also, Section III-A proves that extracting the common terms
from backpropagation algorithms can further improve the
node-level parallelism. Rearranging the computational loops

resulted in m(7n + 10)/(11m + n + 6) = 42300/536 ≈ 79
times fewer cycles to update all the weights in the test network.

The functionality of the network was proved using 20
downscaled images from the MNIST database. Every digit was
applied to the network 200 times, and the network converged
using 16 bit fixed-point implementation with 12 fractional bits.

CCom-RO architecture resulted in the network with the
most nodes in the target hardware platform: Xilinx Zynq 7020
can accommodate CAE with 200 external- and 30 middle layer
nodes. While CCom architecture provides the fastest execution
time, it takes 2.8 + 5.9 = 8.7(µs) to execute forward pass
and backpropagation in 200-30-200 node CAE, running at
100MHz clock speed.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, 5 2015.

[2] J. Schmidhuber, “Deep Learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[3] T. Plotz and Y. Guan, “Deep Learning for Human Activity Recognition
in Mobile Computing,” Computer, vol. 51, no. 5, pp. 50–59, 2018.

[4] H. F. Nweke, Y. W. Teh, M. A. Al-garadi, and U. R. Alo, “Deep
learning algorithms for human activity recognition using mobile and
wearable sensor networks: State of the art and research challenges,”
Expert Systems with Applications, vol. 105, pp. 233–261, 9 2018.

[5] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for sensor-
based activity recognition: A Survey,” Pattern Recognition Letters, vol.
119, pp. 3–11, 2 2018.

[6] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality
of Data with Neural Networks,” Science (New York, N.Y.), vol. 313, no.
July, pp. 504–507, 2006.

[7] O. Yildirim, R. S. Tan, and U. R. Acharya, “An efficient compression of
ECG signals using deep convolutional autoencoders,” Cognitive Systems
Research, vol. 52, pp. 198–211, 2018.

[8] E. Wang, J. J. Davis, R. Zhao, H. C. Ng, X. Niu, W. Luk, P. Y.
Cheung, and G. A. Constantinides, “Deep neural network approximation
for custom hardware: Where We’ve Been, Where We’re going,” ACM
Computing Surveys, vol. 52, no. May, pp. 1–39, 2019.

[9] S. Mittal, “A survey of FPGA-based accelerators for convolutional
neural networks,” pp. 1109–1139, 2020.

[10] M. G. Coutinho, M. F. Torquato, and M. A. Fernandes, “Deep neural
network hardware implementation based on stacked sparse autoencoder,”
IEEE Access, vol. 7, pp. 40 674–40 694, 2019.

[11] L. D. Medus, T. Iakymchuk, J. V. Frances-Villora, M. Bataller-
Mompean, and A. Rosado-Munoz, “A Novel Systolic Parallel Hard-
ware Architecture for the FPGA Acceleration of Feedforward Neural
Networks,” IEEE Access, vol. 7, pp. 76 084–76 103, 2019.

[12] J. Maria, J. Amaro, G. Falcao, and L. A. Alexandre, “Stacked Autoen-
coders Using Low-Power Accelerated Architectures for Object Recogni-
tion in Autonomous Systems,” Neural Processing Letters, vol. 43, no. 05,
pp. 445–458, 2016.

[13] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive
auto-encoders: explicit invariance during feature extraction,” in Proceed-
ings of The 28th International Conference on Machine Learning (ICML-
11), no. 1, 2011, pp. 833–840.

[14] A. Suzuki, T. Morie, and H. Tamukoh, “FPGA implementation of
autoencoders having shared synapse architecture,” in PLoS One, vol. 13,
no. 03, 2018, pp. 1–22.

[15] J. Jiang, R. Hu, D. Wang, J. Xu, and Y. Dou, “Performance of the fixed-
point autoencoder,” Tehnicki vjesnik - Technical Gazette, vol. 23, no. 02,
pp. 77–82, 2016.

[16] V. Nair and G. Hinton, “Rectified Linear Units Improve Restricted Boltz-
mann Machines,” in Proceedings of the 27th International Conference
on Machine Learning, 2010, pp. 807–814.

[17] Y. LeCun, C. Cortes, and C. J. Burges, “MNIST handwritten
digit database,” ATT Labs, vol. 2, 2010. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

Appendix 3

III

M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “Triple Fixed-Point MACUnit for Deep Learning,” in 2021 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), vol. 2021-February, pp. 1404–1407, Institute ofElectrical and Electronics Engineers Inc., 2 2021

101

Triple Fixed-Point MAC Unit for Deep Learning
Madis Kerner∗, Kalle Tammemäe∗, Jaan Raik∗, Thomas Hollstein∗†

∗Tallinn University of Technology, Tallinn, Estonia
†Frankfurt University of Applied Sciences, Frankfurt, Germany

email: madis.kerner@taltech.ee, kalle.tammemae@taltech.ee, jaan.raik@taltech.ee, hollstein@fb2.fra-uas.de

Abstract—Deep Learning (DL) algorithms have proved to be
successful in various domains. Typically, the models use Floating
Point (FP) numeric formats and are executed on Graphical
Processing Units (GPUs). However, Field Programmable Gate
Arrays (FPGAs) are more energy-efficient and, therefore, a better
platform for resource-constrained devices. As the FP design
infers many FPGA resources, it is replaced with quantized fixed-
point implementations in state-of-the-art. The loss of precision is
mitigated by dynamically adjusting the radix point on network
layers, reconfiguration, and re-training. In this paper, we present
the first Triple Fixed-Point (TFxP) architecture, which provides
the computational precision of FP while using significantly fewer
hardware resources and does not need network re-training.
Based on a comparison of FP and existing Fixed-Point (FxP)
implementations in combination with a detailed precision analysis
of YOLOv2 weights and activation values, the novel TFxP format
is introduced.

I. INTRODUCTION

Deep Learning (DL) algorithms have been successfully
deployed in various domains, including image recognition,
natural language detection, among others [1], [2]. These
algorithms automatically extract the input signal’s essential
features and do not rely on domain expert knowledge and
manual pre-processing.

A DL algorithm has a layered structure and comprises var-
ious types of layers. Each layer includes neurons that receive
and process data from the previous layer and feeds the next
layer. This kind of build-up provides excellent possibilities for
acceleration: all the neurons can execute in parallel. Therefore,
typical platform for running DL is PC based, using Graphical
Processing Unit (GPU).

Due to the success of DL, contemporary research explores
the possibilities to execute these algorithms in resource con-
strained devices as well: Field Programmable Gate Arrays
(FPGAs) form an excellent platform for this. While FPGAs
are power efficient compared to GPUs, the DL algorithms rely
on Floating Point (FP) representations of parameters, which
infer a lot of Hardware (HW) resources. Despite the search for
efficient FP support in FPGAs [3], the available Digital Signal
Processing (DSP) slices are still more suitable for fixed-point
operations.

Although it is undoubtedly possible to perform FP cal-
culations on FPGAs, the inferred HW resources are high:
constructing a half-precision multiply-accumulator, which is
a typical computational unit in Artificial Neural Networks
(ANNs), requires three DSPs and several hundred LUTs and
registers [4].

Contemporary research tries to overcome this obstacle and
explores different approximation techniques to get rid of FP
representations. Typically, it means quantizing the network
parameters to fixed-point numbers of some sort, or binary
values in extreme cases [5]. Many works have achieved reason-
able inference accuracy using quantized networks, suggesting
that the precision of FP is not required. However, there are
proposals that better precision than the deep-quantization is
necessary [6].

In this paper, we propose a novel Triple Fixed-Point (TFxP)
based Multiply-Accumulate (MAC) unit for ANNs. TFxP
extends the Dual Fixed-Point (DFxP) format [7] by introducing
one additional range. This extra middle range allows extending
the usable dynamic range of the format, while the added HW
cost is small.

We show that TFxP can be used as the drop-in replacement
for FP. To justify the proposal, we first analyzed the required
representation range of the YOLOv2 network [8]. This net-
work comprises 23 convolutional layers, which all make heavy
use of MAC operations. Further, as our simulations show, the
YOLOv2 network achieves the same inference precision with
TFxP format as with FP and does not require retraining to
accomplish that.

The rest of the paper is organized as follows: Section II
performs the design space exploration by analysing the weight
and activation values of YOLOv2 network, Section III presents
the TFxP format, Section IV analysis and compares the
average precision of converted network, Section V presents
the XILINX DSP48E1 based TFxP MAC unit and synthesis
results, and Section VI provides the conclusions.

II. DESIGN SPACE EXPLORATION

This section provides an analysis of a Deep Neural Network
(DNN) to determine the numeric type requirements. The DNN
of our choice was YOLOv2; it is a well-known Convolutional
Neural Network (CNN) and comprises 23 convolutional layers,
among others.

Convolutional layers make heavy use of MAC operations:
kernels move across the input feature map, and input values
multiplied by the corresponding weight values are accumulated
to form the output. Fig. 1 illustrates this operation.

In a typical CNN, 90% of the execution time goes to
the convolutional layers during the inference phase [9]. I.e.,
the MAC unit has to be efficient; it should execute fast and
not infer too much of HW to allow the maximum amount of
parallelism.

1404978-3-9819263-5-4/DATE21/ c©2021 EDAA

20
21

 D
es

ig
n,

 A
ut

om
at

io
n

&
 T

es
t i

n
Eu

ro
pe

 C
on

fe
re

nc
e

&
 E

xh
ib

iti
on

 (D
AT

E)
 |

 9
78

-3
-9

81
92

63
-5

-4
/2

1/
$3

1.
00

 ©
20

21
10

.2
39

19
/D

AT
E5

13
98

.2
02

1.
94

74
02

0

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on December 07,2021 at 21:06:20 UTC from IEEE Xplore. Restrictions apply.

x0,0

x1,0

x2,0

w0,0

w1,0

w2,0

xm,0

x0,1

x1,1

x2,1

xm,1

x0,2

x1,2

x2,2

xm,2

x0,n

x1,n

x2,n

xm,n

y0,0

y1,0

y2,0

ym,0

y0,1

y1,1

y2,1

ym,1

y0,2

y1,2

x2,2

ym,2

y0,n

y1,n

y2,n

ym,n

∗ ∑
+b =

w0,1

w1,1

w2,1

w0,2

w1,2

w2,2

...

...

...

...

...

...

...

...

...

............

u, 0

0, v

u, v

0, 0

Figure 1. Convolution: m*n input features X are convolved with u*v weight
matrixes to form the output Y.

To analyze the required range of the network parameters,
we first performed a statical analysis and determined the
minimum, maximum, and median of all the network’s weight
values. After this, we run the inference using a realistic photo,
white image, and black image while recording all the layer
outputs’ extreme and median values. Table I presents the
analyses results.

Table I
ANALYSIS OF THE WEIGHTS AND ACTIVATION VALUES OF YOLOV2.

Minimum Maximum Median
Weights -18.6 99.5 13.7
Photo -113.9 106.3 0.7

All white -57.9 31.6 1.4
All black -23.1 28.6 1.2

As the analysis shows, most activation and weight values
are low in magnitude. However, there are larger values present
as well. The candidate drop-in replacement for FP should
cope with the range and keep the maximum precision for
median values. Additionally, the chosen data type has to use
a minimum amount of bits to cope with memory bandwidth’s
limitations.

According to Table I, a numeric type with an 8-bit integer
part can fit all the extreme values without over- or underflow.
However, median values suggest that this range is not required
for most of the calculations. While FP representations inher-
ently solve this problem, fixed-point numbers have to use other
means to overcome this.

A typical approach found in literature either makes use of
dynamically adjusting the radix point in fixed-point numbers
[10], or uses FPGA re-configuration to change the numeric
format [11]. Both of these approaches have drawbacks: dy-
namically adjusting the radix point requires arbitrary shifters
in Processing Elements (PEs), while re-configuration slows
down the algorithm’s execution.

This paper proposes the drop-in replacement for FP repre-
sentations, which does not require re-configuration or dynamic
adjustments: Triple Fixed-Point (TFxP).

III. TRIPLE FIXED-POINT

In search of a numeric format that does not sacrifice small
numbers’ precision to the range as much as the fixed-point
representation does, the authors in [7] propose DFxP. DFxP
makes use of a single exponent bit to select the radix point
location. Authors in [12] use the format to replace the FP for

CORDIC calculations and extend the work to use dynamic
DFxP in [13].

Dynamic DFxPs undoubtedly improve the accuracy of com-
putations as it takes a step towards FP representations. While
the format is more HW friendly, the dynamic nature calls for
arbitrary shifters.

Reserving one extra bit for exponent extends the DFxP
to Triple Fixed-Point (TFxP). It bears the same objective as
dynamic DFxP: develop the precision for a specific numeric
range, but infers less FPGA resources.

Fig. 2 presents the proposed TFxP format, where ax and bx
are the bit length of integer and fractional parts respectively.
Depending on the range, (1) defines the numeric value D the
representation is holding, where X is the significand, and E
denotes the value of the exponent field.

RANGE 0
RANGE 1
RANGE 2

Fixed-Point

DFP

TFP

−2a0 2a0 − 2−b0−2a1−2a2 2a1 − 2−b1 2a2 − 2−b2

Figure 2. Triple Fixed-Point (TFxP) representation. Ranges 1 and 2 increase
the range while sacrificing the precision.

D =

⎧
⎪⎨
⎪⎩

X · 2−b0 if E = 0

X · 2−b1 if E = 1

X · 2−b2 if E = 2

(1)

In order to convert FP to TFxP, a suitable target range
has to be selected. Equation (2) defines the range selection:
the first range capable of accomodating the value without the
over- or underflow is chosen, and the exponent field E is set
accordingly. The value 3 indicates over- or underflow, based
on the sign bit S.

E =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if − 2a0 < D < 2a0 − 2−b0 else
1 if − 2a1 < D < 2a1 − 2−b1 else
2 if − 2a2 < D < 2a2 − 2−b2 else
3 overflow

(2)

Table II shows the bit fields of the TFxP format 16 13 9 5,
where the notion of format is n b0 b1 b2 and n is the total
number of bits the representation uses.

Table II
TRIPLE FIXED-POINT (TFXP) FORMAT 16 13 9 5.

Mode Signed significand
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 S fraction
0 1 S integer fraction
1 0 S integer fraction

A numeric format’s critical property is the dynamic range:
the ratio of the absolute values of the largest and smallest
numbers the format can accommodate (3).

Design, Automation and Test in Europe Conference (DATE 2021) 1405

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on December 07,2021 at 21:06:20 UTC from IEEE Xplore. Restrictions apply.

Dynamic Range = 20 log10(2
a2+b0) (dB) (3)

The maximum dynamic range for the TFxP is the same as
for DFxP. However, constructing such a range with DFxP loses
the precision in the middle range entirely. TFxP mitigates this
problem by using the middle range, and therefore, ensures a
more comprehensive usable dynamic range.

IV. TFXP YOLOV2 INFERENCE PRECISION

This section provides the results of YOLOv2 inference
precision using the TFxP and DFxP and FP formats. The
analysis was performed using MATLAB, while mex functions
were used to add support for DFxP and TFxP.

Before the experiment, all the network’s weight values were
converted to the data type under test, and the AP@[.5:.95] on
COCO 2014 validation dataset [14] was used for comparison.
Table III presents the network accuracy for different formats,
including the FP. The length of bitfields is marked using the
same notation as for TFxP (Table II).

Table III
PRECISION OF THE YOLOV2 NETWORK USING FIXED-POINT (FXP),

DFXP, TFXP, AND FP FORMATS.

FxP DFxP DFxP TFxP FP
16 13 16 13 9 16 13 5 16 13 9 5

AP@[.5:.95] 0.45 0.47 0.49 0.52 0.52

The first format presented in Table III, FxP 16 13, has only
three bits for the signed integer part. However, range analysis
in Table I suggests that seven bits plus the sign bit are required.
Therefore, FxP 16 13 can not reach the precision of FP.

The second format, DFxP 16 13 9, extends the maximum
integer part to five bits while preserving the lower range accu-
racy. The precision increases, but as there are still overflows
present, it can not reach the level of FP either.

The DFxP 16 13 5 format sets the upper range to nine bits,
ensuring no overflows. The precision increases but does not
reach the level of FP. Here, there is a more significant gap
between upper and lower ranges than DFxP 16 13 9. TFxP
addresses that issue by introducing one additional range.

As the results show, TFxP is the only format that reaches
the precision of FP. Compared to DFxP 6 13 5, which can
avoid overflows as well, the TFxP extends the precision of
middle range values.

V. MAC UNIT

This section presents the TFxP MAC unit. It has been
synthesized to XILINX System On Chip (SoC) device Z-7020
and makes use of HW DSP48E1 slices.

The DSP48E1 has four inputs and can natively perform
various operations on them using integers, including MAC.
However, using the FxP format requires additional considera-
tions like radix point alignment.

Multiplication of two TFxP numbers produces the output O
with shifted radix point, (4).

O = D0 · 2b0 · D1 · 2b1 = D0 · D1 · 2b0+b1 (4)

In the case of FxP multiplications, both operands have the
same radix point location. Therefore, the result always has
the same shift, and the internal accumulator can directly be
used. The same does not hold for TFxP format: the radix point
location of the multiplication output is the sum b0 + b1 (4).
The total number of possibilities equals the combinations with
repetitions: there are six different shifts possible.

Operands with different radix point locations cannot directly
be summed; correction logic is required in the accumulator
loop. This either reduces the maximum operating frequency
of the MAC unit or increases the latency if a pipeline is used.

The proposed MAC unit (Fig. 3) ensures the fixed shift in
multiplication output, independent of the input operands. The
maximum possible shift in the multiplication output equals
2b0: double the shift of the lowest range. In case one of the
inputs does not belong to the lowest range, an additional pre-
shift has to be applied: the proposed MAC unit uses input
multiplexers to achieve that. Compared to FP, the TFxP MAC
does not require full-featured shifters as the total amount of
possible input combinations is limited.

A
A>>1
A<<3

A<<11

B
B>>1
B<<4

C<<12
C<<16
C<<20

∗

+

OFLW
UFLW
MODE

DSP48E1

25

18

4848

48 16
P

MODE0
MODE1
MODE2
OFLW
UFLW

FIXED RADIX

MODE
A
B
C

Figure 3. TFxP MAC. The design wrapes XILINX DSP48E1 HW slices.
Blue arrows mark the locations where the radix point positions are matched.

The DSP48E1 slice has an additional input C, which can
be added to the multiplication result instead of the internal
accumulation. This input’s radix point is set to the same
position as the multiplication output.

The maximum pre-shift is limited to the DSP slice capa-
bilities. Given that the width of the input A is 25 bits, the
maximum possible left-shift for that input is 25 − 14 = 11.
For input B, the maximum shift is 18 − 14 = 4, yielding
11 + 4 = 15 bits total.

The maximum shift for the format presented in Table II
is 2b0 = 26 bits. Similarly, the shortest fractional part in
multiplication output is 2b2 = 10. Therefore, the total required
pre-shift is 26− 10 = 16, one bit more than the maximum of
15. The proposed MAC unit mitigates this problem by setting
the common fixed shift to 25, and performs the 1-bit right shift
to one of the operands if both multiplication inputs belong to
the lowest range.

Table IV presents the required pre-shifts to fix the multi-
plication output radix point. The least significant bit of input
A selects the behavior if both of the operands are from the

1406 Design, Automation and Test in Europe Conference (DATE 2021)

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on December 07,2021 at 21:06:20 UTC from IEEE Xplore. Restrictions apply.

lowest range: if A0 = 0, input A is right-shifted; otherwise,
the input B is right-shifted, and one or zero bits of data is lost.

Table IV
RANGES OF THE TFXP MULTIPLICATION INPUTS AND REQUIRED

PRE-SHIFTS FOR THE FIXED RADIX POINT LOCATION IN THE OUTPUT.

A Range B Range
∑

Shift A Pre-Shift B Pre-Shift
0 0 26 0/-1 a 0/-1 b

0 1 22 3 0
0 2 18 3 4
1 0 22 3 0
1 1 18 3 4
1 2 14 11 0
2 0 18 3 4
2 1 14 11 0
2 2 10 11 4

a−1 if A0 = 0, 0 otherwise.
b−1 if A0 = 1, 0 otherwise.

Figure 4 presents the DSP slice’s output: signed fixed-point
number with 25 fractional bits. The bits in the OF GUARD
field have to match the sign bit; over or underflow has occurred
otherwise. The range selection logic is similar to overflow
check: if all the bits in field R2 equal to the sign bit, the
highest range is not needed. The same holds for the field R1.

OF GUARDS R2 R1 FRACTIONAL

14 4 4 13 12

48 bits

Figure 4. DSP slice output. Fields R1 and R2 determine the range. 14-bit
OF GUARD is used to check the over- and underflows.

Table V presents the synthesis results of the MAC unit.
Additionally, all the formats infer a single DSP slice.

The first format, 16 14 9 5, uses a maximum 14-bit frac-
tional part: restricting the exponent field to 1 bit for the range 0
allows it. The maximum output radix point is 28 in that case,
which yields to 18 bits pre-shift, 3 bits more than allowed.
Additional logic to analyze and loose three least significant
bits from the input if both operands belong to the lowest range
infers a lot of additional HW compared to 16 13 9 5 format.
Therefore, the proposed MAC unit uses the latter.

Table V
INFERRED HW OF DFXP AND TFXP FORMATS.

Format LUTs Regs Slices Power WNS clk
(W) (ns) (MHz)

TFxP 16 14 9 5 124 23 35 0.148 0.834 393
TFxP 16 13 9 5 80 22 23 0.147 0.909 393
DFxP 16 13 5 72 18 29 0.133 0.680 393

Comparing the TFxP 16 13 9 5 and DFxP 16 13 5 for-
mats reveals that additional middle range has mild impact
on iferred HW. As an interesting observation, the synthesizer
managed to combine the TFxP MAC to fewer HW slices
compared to the DFxP.

Despite the positive Worst Negative Slack (WNS), the
maximum operating frequency is limited by the DSP slice.
All the designs can execute at 393 MHz.

VI. CONCLUSIONS

The novel contribution of this work is to provide the
Triple Fixed-Point (TFxP) format for Deep Neural Networks
(DNNs); it can directly replace the Floating Point (FP) format
without the network re-training. The format is proposed based
on analyzing the YOLOv2 network parameters and activation
values during the inference phase, followed by the converted
network’s precision analysis. From the application point of
view, direct conversion of FP to TFxP allows training the
network using a Graphical Processing Unit (GPU), and de-
ployment on Field Programmable Gate Array (FPGA), for
example.

In addition to the format proposal, TFxP based Multiply-
Accumulate (MAC) unit has been presented. The proposed
MAC unit wraps the XILINX DSP48E1 slice to achieve
the best performance and power efficiency. Compared to the
FP, TFxP MAC infers much less HW resources, while the
inference precision of the network is retained without the re-
training.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, 5 2015.

[2] J. Schmidhuber, “Deep Learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[3] M. Langhammer and B. Pasca, “Design and Implementation of an
Embedded FPGA Floating Point DSP Block,” Altera, Tech. Rep., 2014.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-01089172

[4] Xilinx, “Performance and Resource Utilization for Floating-point.”
[Online]. Available: https://www.xilinx.com/support/documentation/ip
documentation/ru/floating-point.html

[5] E. Wang, J. J. Davis, R. Zhao, H. C. Ng, X. Niu, W. Luk, P. Y.
Cheung, and G. A. Constantinides, “Deep neural network approximation
for custom hardware: Where We’ve Been, Where We’re going,” ACM
Computing Surveys, vol. 52, no. May, pp. 1–39, 2019.

[6] S. Mittal, “A survey of FPGA-based accelerators for convolutional
neural networks,” Neural Computing and Applications, vol. 32, no. 4,
pp. 1109–1139, 2020.

[7] C. Te Ewe, P. Y. K. Cheung, and G. A. Constantinides, “LNCS
3203 - Dual Fixed-Point: An Efficient Alternative to Floating-Point
Computation,” in Field Programmable Logic and Application. Springer
Berlin Heidelberg, 2004, pp. 200–208.

[8] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[9] M. P. Véstias, R. P. Duarte, J. T. de Sousa, and H. C. Neto, “A fast
and scalable architecture to run convolutional neural networks in low
density FPGAs,” Microprocessors and Microsystems, vol. 77, 2020.

[10] C. Su, S. Zhou, L. Feng, and W. Zhang, “Towards high performance low
bitwidth training for deep neural networks,” Journal of Semiconductors,
vol. 41, no. 2, 2020.

[11] G. A. Vera, M. Pattichis, and J. Lyke, “A dynamic dual fixed-point arith-
metic architecture for FPGAs,” International Journal of Reconfigurable
Computing, vol. 2011, 2011.

[12] A. Jacoby and D. Llamocca, “Dual fixed-point CORDIC processor: Ar-
chitecture and FPGA implementation,” in 2016 International Conference
on ReConFigurable Computing and FPGAs (ReConFig), 2016, pp. 1–8.

[13] ——, “Dynamic dual fixed-point CORDIC implementation,” in 2017
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2017, pp. 235–240.

[14] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common Objects
in Context,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla,
B. Schiele, and T. Tuytelaars, Eds. Cham: Springer International
Publishing, 2014, pp. 740–755.

Design, Automation and Test in Europe Conference (DATE 2021) 1407

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on December 07,2021 at 21:06:20 UTC from IEEE Xplore. Restrictions apply.

Curriculum Vitae
1. Personal data

Name Madis KernerDate and place of birth 18 December 1977 Tallinn, EstoniaNationality Estonian
2. Contact information

Address Tallinn University of Technology, School of Information Technologies,Department of Computer Systems, ICT-509,Ehitajate tee 15A, 12618 Tallinn, EstoniaPhone +372 620 2267E-mail madis.kerner@ttu.ee
3. Education

2017–2023 Tallinn University of Technology, School of Information Technologies,Computer Systems, PhD studies2015–2017 Tallinn University of Technology, School of Information Technologies,Computer Systems, MSc cum laude1996–2001 Tallinn University of Technology, Institute of Computing,Computer Systems, BSc
4. Language competence

Estonian nativeEnglish fluentFinnish fluent
5. Professional employment

2022– . . . Liewenthal Electronics Ltd., Senior embedded software/FPGA engineer2010–2022 Teleplan Estonia OÜ, Embedded design Engineer2008–2010 IPTE Estonia OÜ, Embedded design Engineer2005–2008 JOT Automation, Embedded design Engineer2003–2005 Orbis Estonia OÜ, Electronics design Engineer2001–2003 PMJ-Orbis Hong Kong Ltd., Electronics design Engineer2000–2001 Orbis Estonia OÜ, Electronics design Engineer
6. Computer skills

• Operating systems: Window, Linux, macOS
• Document preparation: vim, LATEX
• Programming languages: C, C++, C#, ARM assembler
• Hardware description languages: VHDL, Verilog, System Verilog
• Scientific packages: MATLAB

107

7. Honours and awards

• 2020, HiPEAC award for:M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “An Efficient FPGA-based Archi-tecture for Contractive Autoencoders,” in 2020 IEEE 28th Annual International Sym-
posiumon Field-Programmable CustomComputingMachines (FCCM), pp. 230–230,Institute of Electrical and Electronics Engineers Inc., 5 2020

9. Scientific work
Papers

1. M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “An Efficient FPGA-based Archi-tecture for Contractive Autoencoders,” in 2020 IEEE 28th Annual International Sym-
posiumon Field-Programmable CustomComputingMachines (FCCM), pp. 230–230,Institute of Electrical and Electronics Engineers Inc., 5 2020

2. M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “Novel Architectures for Contrac-tive Autoencoders with Embedded Learning,” in 2020 17th Biennial Baltic Electron-
ics Conference (BEC), vol. 2020-October, pp. 1–6, IEEE Computer Society, 10 2020

3. M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “Triple Fixed-Point MAC Unit forDeep Learning,” in 2021 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), vol. 2021-February, pp. 1404–1407, Institute of Electrical and ElectronicsEngineers Inc., 2 2021

108

Elulookirjeldus
1. Isikuandmed

Nimi Madis KernerSünniaeg ja -koht 18.12.1977, Tallinn, EestiKodakondsus Eesti
2. Kontaktandmed

Aadress Tallinna Tehnikaülikool, Usaldusväärsete arvutisüsteemide keskus,Arvutisüsteemide instituutEhitajate tee 15A, 12618 Tallinn, EstoniaTelefon +372 620 2267E-port madis.kerner@ttu.ee
3. Haridus

2013–. . . Tallinna Tehnikaülikool, Informaatika teaduskond,Arvutisüsteemide instituud, doktoriõpe2011–2013 Tallinna Tehnikaülikool, Informaatika teaduskond,Arvutisüsteemide instituud, MSc cum laude2008–2011 Tallinna Tehnikaülikool, Informaatika teaduskond,Arvutisüsteemide instituud, BSc
4. Keelteoskus

eesti keel emakeelinglise keel kõrgtasesoome keel kõrgtase
5. Teenistuskäik

2022– . . . Liewenthal Electronics Ltd., sardsüsteemide tarkvara ja FPGA insener2010–2022 Teleplan Estonia OÜ, sardsüsteemide insener2008–2010 IPTE Estonia OÜ, sardsüsteemide insener2005–2008 JOT Automation, sardsüsteemide insener2003–2005 Orbis Estonia OÜ, elektroonika insener2001–2003 PMJ-Orbis Hong Kong Ltd., elektroonika insener2000–2001 Orbis Estonia OÜ, elektroonika insener
6. Arvutialased oskused

• Operatsioonisüsteemid: Window, Linux, macOS
• Kontoritarkvara: vim, LATEX
• Programmeerimiskeeled: C, C++, C#, ARM assembler
• Riistvarakirjelduskeeled: VHDL, Verilog, System Verilog
• Teadustarkvara paketid: MATLAB

109

7. Tunnustused ja autasud

• 2020, HiPEAK tunnustus artiklile:M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “An Efficient FPGA-based Archi-tecture for Contractive Autoencoders,” in 2020 IEEE 28th Annual International Sym-
posiumon Field-Programmable CustomComputingMachines (FCCM), pp. 230–230,Institute of Electrical and Electronics Engineers Inc., 5 2020

8. TeadustegevusTeadusartiklite, konverentsiteeside ja konverentsiettekannete loetelu on toodudingliskeelse elulookirjelduse juures.

110

ISSN 2585-6901 (PDF)
ISBN 978-9916-80-131-4 (PDF)

