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Abstract 

Weighted voting system is adopted by many organizations, both in public and private 

sectors, as the main decision making procedure. Its main advantage is an opportunity to 

recognize a difference between voters, by assigning the appropriate weights to them. 

Because of this nature, weighted voting becomes a subject to specific dishonorable 

behaviour that can be conducted by voters. Even though this system has been in use 

since the ancient Rome a question of the effects that different factors have on these 

manipulations haven’t been fully addressed. 

The main focus of this work lies within study of the effects that a quota have on 

manipulations’ payoff in weighted voting games of different sizes, using experimental 

analysis for Shapley-Shubik index. The authors also show a connection between payoff 

bounds of merging and splitting manipulations, that makes it possible to find some of 

the maximal and minimal bounds of manipulation by merging that weren’t proven in 

previous studies. The work is concluded with a manipulation analysis of voting system 

in Council of the European Union under the Treaty of Lisbon and Treaty of Nice. 

The results of the work have shown that it is possible to control manipulation 

vulnerability of the system to some extend by choosing the right quota, but also that 

there are many different factors that affect it. 

This thesis is written in English and is 94 pages long, including 8 chapters, 35 figures 

and 2 tables. 
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Annotatsioon 

Eksperimentaalne analüüs - kvoodi mõju manipulatsiooni 

efektiivsusele kaalutud hääletustega mängudes. 

Kaalutud hääletussüsteemi kasutatakse paljudes era kui avalikus sektori 

organisatsioonides peamise otsustustamise protseduurina. Sellise süsteemi peamine eelis 

on võimalus tuvastada erinevusi hääletajates, määrates neile kindlaid osakaale. 

Osakaalud aga võimaldavad teatud juhtudel ebaausat käitumist. Sõltumata sellest, et 

sellist hääletussüsteemi on kasutatud vana rooma aegadest alates, ei ole erinevate 

tegurite mõju manipulatiivsele tegevusele hääletustes põhjalikult uuritud. 

Selle töö peamine eesmärk on uurida kvootide mõju manipulatsiooni tulemuslikkusele 

erineva suurusega kaalutud hääletustega mängudes. Uuringus kasutatakse 

ekperimentaalanalüüsi Shapley-Shubik indeksi põhjal. Sealhulgas autorid näitavad 

seoseid, kus mõjutades resultaadi piire manipulatsioonides läbi ühinemise ja jagunemise 

on võimalik leida maksimaalseid ja minimaalseid piire manipulatsiooniks läbi 

ühinemise - mis ei leidnud kinnitust eelnevates uuringutes. Töö epiiriline osa keskendub 

Euroopa Liidu Lissabony ja Nice Ministrite Nõukogu manipulatsiooni analüüsile. 

Selle töö tulemused võtavad kokku, et hääletussüsteem on võimalik mõjutatada läbi 

manipulatsiooni valides õigeid kvoote, kuid esineb ka muid tegureid mis võivad 

tulemust mõjutada. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 94 leheküljel, 8 peatükki, 35 

joonist, 2 tabelit. 
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1 Introduction 

1.1 Overview 

A weighted voting is one of the ways to make a group decision that found an application 

in politics, international relations, business, finance, computer systems and other areas. 

Shareholders meetings in corporations, Council of the European Union (Council of the 

European Union, 2015), U.S. Electoral College (U.S. Electoral College, 2016), etc. 

adopted weighted voting as a decision making model. Main difference from a simple 

majority voting is that one voter doesn’t equal to one vote, instead each voter is 

assigned with a number of votes (weight). For a bill or decision to be adopted the sum 

of weights of voters who voted in favor of it must be higher than an established number, 

known as quota, whereas quota can represent a particular number of votes or percentage 

of the total weight all voters possess. Weighted voting is used when differences between 

voters have to be recognized, for example, when a voter represents interests of a group 

of people, the size of the group can be used as a weight. Furthermore, parties in 

parliament can be seen as single voters with weight equal to a number of seats party 

holds.  

Considering such a wide use of the system, it is important that the weighted voting 

system is well studied from all perspectives. One of the side of the problem is 

mathematical justification of the system, as behind any voting algorithm lies 

mathematics. Well design mathematical model for voting can improve decision making, 

ensuring systems’ consistency, predictability and stability. In this work weighed voting 

would be studied from the mathematical perspective.  

In mathematics weighted voting systems are abstracted into the Weighted Voting 

Games (here and after WVG), which is a part of a Game Theory. WVGs received close 

attention and was being developed primarily between the middle and the end of the 20th 

century (Felsenthal & Machover, 2004) with the introduction of indexes that measure 

power of voters, as it was shown that weight doesn’t exactly represent power (influence 
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over the result of voting) of voter. Several power indexes were introduced and the most 

significant among them - Banzhaf and Shapley-Shubik priori power indexes (Felsenthal 

& Machover, 2004). Term priori means that indexes don’t account for any voter’s 

preferences and other voter-specific or system-specific properties. Today these two 

indexes are widely used for analysis of real-life voting systems and WVGs in general. 

The work of Banzhaf (1964), for example, helped to find flaws in voting system of 

Nassau County board, showing that three of the voters have actually no power and 

couldn’t affect the outcome of an election.  

Power indexes opened many possibilities for analysis of WVGs from different 

perspectives, but the contribution is not limited to analysis alone. For example, they can 

be used as an instrument of precise design of WVGs with desired powers of voters in 

mind (Aziz, Paterson, & Leech, 2007). Power indexes also proved to be useful for 

analysis of dishonest behavior of involved parties – voters, election authorities or third 

parties. Voting algorithms are very sensitive, even a slight change of rules or voters’ 

behavior may lead to a shift of powers and ultimately to a completely different outcome, 

which is an important issue, considering a wide use of weighted voting in politics and 

business.  

Dishonest behaviors in WVGs can be divided into 3 categories (Zuckerman, 

Faliszewski, Bachrach, & Elkind, 2008): manipulation (dishonest behavior by voters), 

control (dishonest behavior by the election authorities), and bribery (dishonest behavior 

by a third party). In this work we are focusing on manipulations. 

There are three types of manipulations (Aziz & Paterson, 2009): manipulation by 

splitting, merging and annexation. Study of manipulations is in a very active stage, as 

there are a big number of recent works, which are addressing different sides of this 

issue. For examples works by Lasisi and Allan (2014), Aziz and Paterson (2009), R. O. 

Lasisi and A. A. Lasisi (2016), Bachrach and Elkind (2008) and others. This indicates 

that there are still major uncovered areas in analysis of manipulations in WVGs. 

Power indexes give a possibility to numerically evaluate results of dishonest behavior. 

In regards to manipulations, the ratio between player power after and before 

manipulation is called a manipulation payoff and is used to examine the success of 

https://en.wikipedia.org/wiki/Nassau_County,_New_York
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manipulation. Most of manipulation studies are centered around this concept, as there 

are many factors that influence payoff behavior. 

In this work the effects that changes of a quota have on properties of manipulation by 

splitting and merging would be shown through an analysis of a payoff behavior. The 

work also addresses gaps in the literature and research of the subject by proving bounds 

for minimal and maximal values of payoff for merging manipulation (Section 5.4). 

Furthermore, in this work authors discuss the effects that number of voters in WVG has 

on manipulations and apply manipulation analysis in a simulation of a voting in Council 

of the European Union under the recently abolished Treaty of Nice and its successor 

Treaty of Lisbon, to find whether the transition to a new voting system has improved its 

manipulation resistance measured with Shapley-Shubik index. 

1.2 Used Methods 

In this paper three hypotheses on effects of payoff to quota and reverse properties of 

manipulation by splitting and merging are tested. We used experimental analysis, with 

application of game theory, mathematical analysis and probability theory. Sufficient 

simulation environments were developed using MatLab for creation of random samples 

of WVGs, random manipulations in them and calculation of manipulation payoff 

(simulation environment described in chapter 4.5.1). Results achieved by the simulation 

were analyzed using mathematical analysis and probability theory to find proof for 

proposed hypotheses. We also have achieved some theoretical results for connection 

between manipulations by splitting and merging in scope of the game theory. 

1.3 Structure of the Thesis 

In this work the effects that changes of a quota have on manipulation behavior measured 

with Shapley-Shubik index are analyzed. 

In Chapter 2 the necessary background for understanding of weighted voting games, 

priori power indexes and manipulations is provided. 

Chapter 3 is aimed to familiarize a reader with the discussion around relevancy of a 

priori power indexes, as they are the main measure used in this work. Also the state of 
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manipulation study is presented to clearly identify gap in existing knowledge and 

formulate thesis hypotheses. 

In Chapter 4 the analysis of manipulation by splitting is presented, Chapter 5 has the 

same structure and is dedicated to merging manipulation. In Chapter 5.4 the new bounds 

for maximal and minimal payoff for merging manipulation are proved. 

Chapter 6 gives an overview of manipulation by annexation and explains reasoning for 

avoiding its analysis. This chapter also provides a conclusion on effects of quota 

merging and splitting manipulation. 

In Chapter 7, we make a suggestion on the effectiveness of manipulation for real life 

weighted voting system and then apply experiential analysis to compare results. Also 

this chapter touches upon finding the influence that multi-majority systems have on 

behavior of manipulation indexes. 
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2 Preliminaries 

2.1 Definitions and Notations 

Weighted voting system is an electoral system in which voters are not necessarily 

having the same influence on the outcomes of elections. There could be different rules 

and weight assignment procedures. In general terms, voting systems where one voter 

equals to one vote, also can be considered as a weighted voting systems with equal 

weights of votes. 

Notations and definitions that would be used in this work are described below. 

Weighted voting is a well-known concept in Game Theory (Felsenthal & Machover, 

1998). In mathematical terms it is referred to as a Weighted Voting Game.  

Definition 2.1 Weighted Voting Game and Coalition:  

Let P = { 1p ,…, np }, n ℕ be a set of all players (voters) in WVG G and { 1w ,…, nw } 

their corresponding weights. Then WVG G with Quota q ℝ can be denoted as: 

[q; 1w ,…, nw ] 

A non-empty sub-set PC  is called Coalition. w(C) is a total weight of Coalition C 

equal to the sum of all players weights in it   



Cj

jwCw . Coalition C is winning if 

qCw )( and losing otherwise. While a single voting is held, there could be only one 

winning coalitions, which is achieved by choice of   5.0*Pwq  . Coalition has a veto 

power if   qCwPw  )( , which means that any combination of players left out of C is 

a losing coalition. Any winning coalition has a veto power, but losing coalition can also 

have it. 

Coalition C is a Minimal Winning Coalition if every subset of it is a losing coalition

qCw )(  and .)(; qSwCS   
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Coalitions that consist of all players C = P is called a grand coalition. 

Definition 2.2 Critical, Dummy and Dictator player: 

Player ip  is critical in a coalition C if qCw )(  and .)\( qpCw i   

Dummy player is a player which is not critical in any coalition. 

Player ip  is a dictator if qwi  . Dictator can pass or fail voting by casting his vote no 

matter what are the votes of other players. 

Definition 2.3 Unanimity and Non-Unanimity WVGs: 

A game G is unanimity WVG if the only winning coalition is a grand coalition. 

Otherwise game G is non-unanimity WVG. 

2.2 Power Indexes 

The concept of power was introduced in 1787 by Luther Martin for the first time, but it 

didn’t receive much attention until the middle of 20 century (Felsenthal and Machover, 

2004), when the works of Penrose (1946), Shapley and Shubik (1954) and Banzhaf 

(1965) were published. This work is based on the concept of player’s power and 

extensively uses Banzhaf (Normalized Penrose index) and Shapley-Shubik power 

indexes.  

Definition 2.4 Power vector: 

Power vector of WVG G is a n-dimensional vector with powers of players: 

       n
n GG 1,0,,1   ,  Gi ℝ. 

It may seem obvious that player power should be equal to percentage of his weight of 

total weights of players, but consider the following example of WVG G with 3 players 

with weights equal to 50, 45, 5 and quota equals to 51. 
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Example 2.1: 

G = [51; 50, 45, 5], W = 100, Q = 51. 

Player 1p  has weight 10 times greater than 3p  and 2p  has weight 9 times greater. 

Presumably power of both 1p  and 2p  has to be much greater too. But if we write down 

all possible winning coalitions, we see that there is an equal amount of winning 

coalitions for each player, so in fact, player 3p  has the same amount of influence over 

the results of voting as players 1p  and 2p . All winning coalitions: 

[ 1p , 2p ] = 95, [ 1p , 3p ] = 55, [ 2p , 3p ] = 54, [ 1p , 2p , 3p ] = 100; 

If we will count number of times each player is critical in a coalition it will also be 

equal for each player. This idea the main idea behind the Banzhaf power index (here 

and after BZ) (Banzhaf, 1965). He proposed to evaluate voting power of a player by 

dividing the number of times he is critical in a coalition by a total number of times any 

player is critical. 

Definition 2.5 Banzhaf power index:  

The Banzhaf index for player ip  in WVG G is noted as  Gi  and is given by: 

 
 
 





Ij
j

i
i G

GG





 

    (2.1) 

where  Gi  is a number of times player ip  is critical. 

Let’s mark critical players in each coalition: 

[ 1p , 2p ], [ 1p , 3p ], [ 2p , 3p ], [ 1p , 2p , 3p ]; 

For the given example Banzhaf powers of players will be equal: 

      333.0
6
2

321  GGG   



20 

The power vector of the game G is [0.333, 0.333, 0.333], which shows that even though 

the difference in weights is very significant; the powers of players are actually equal 

according to Banzhaf index. 

Banzhaf index alongside Shapley-Shubik index (here and after S-S) are the most 

studied and used in researches of power of players in WVGs. In a contrast to Banzhaf 

index, Shapley-Shubik index (Shapley & Shubik 1954) takes into account the order in 

which players are joining coalitions. 

Coalition in which order of players is important is called sequential coalition. 

Player p is pivotal, if in sequential coalition C, players before p don’t form a winning 

coalition, but with an addition of player p a winning coalition is formed. Unlike critical 

player, there can be only one pivotal player per coalition.  

For player p Shapley-Shubik index is equal to a ratio between number of coalitions in 

which the player is pivotal to number of all possible grand coalitions.  

Definition 2.6 Shapley-Shubik power index:  

Denote n  as set of all possible permutations of players, then n   is a permutation 

of players, so    nn ,,1,,1:   . Denote by  iS  the set of predecessors of 

player ip  in π, i.e.,       ijjiS   | . Then Shapley-Shubik index  Gi  for each 

player ip  in a WVG G is given by: 

         





 iSviiSv
n

Gi 
!

1 ,  (2.2) 

where  













qCw
qCw

Cv
)(,0
)(,1

; 

Number of all permutations of all players in G equals to n! 

For the example 2.1 given above all permutations of players are: 

3! = 6. 

[ 1p , 2p , 3p ], 
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[ 1p , 3p , 2p ], 

[ 2p , 1p , 3p ], 

[ 2p , 3p , 1p ], 

[ 3p , 1p , 2p ], 

[ 3p , 2p , 1p ]; 

Every second player in order in each coalition is pivotal, which gives us equal Shapley-

Shubik indexes for each player: 

      333.0
6
2

321  GGG   

As mentioned above, Shapley-Shubik and Banzhaf indexes are the most studied and 

used, one of the reasons for that is, that they have several important properties: 

symmetry property, normalization property and dummy player property.  

Symmetry property means that indexes of players, who make same contributions to all 

coalitions, have equal values of indexes. As the sum of indexes of all players equal to 1 

for both indexes, they have the normalization property. Another property is that dummy 

players always have a power of 0. These properties make Banzhaf and Shapley-Shubik 

indexes very convenient measures of power (Felsenthal and Machover, 1998). 

Interestingly power indexes are not limited to WVGs, as they can be applied for other 

voting systems, where players are unequal. In voting systems without weights there are 

other rules, which create inequality. For example, UN Security Council consists of 5 

permanent and 10 non-permanent members. To pass a motion all 5 permanent and 4 

non-permanent members have to make a “yes” vote. 

In other words, all permanent members have veto power; any of the winning coalitions 

have to contain all 5 of them. For this system we can easily calculate S-S and BZ power 

indexes. 
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Banzhaf index calculation: 

)!(!
!

knk
nC k

n


  - number of combinations of k players from a set of n players. 

First we should find number of winning coalitions, coalition is winning only if it 

consists of 5 permanent and at least 4 non-permanent members => there are 102  – 3
10C  – 

2
10C  – 1

10C  – 0
10C  = 848 of them (all possible combinations of 10 non-permanent 

members minus all combinations with less than 4 members, as coalition is winning only 

if there are >= 4 of them), of which 4
10C  = 210 consists of 9 players (minimal winning 

coalition). 

In each coalition all permanent players are critical, and a non-permanent member is 

critical only in minimal winning coalitions so the total number of critical players in all 

coalitions equals to = 848 * 5 + 4 * 210 = 5080. For permanent members Banzhaf 

power index = 
5080
848

 = 16,69%, and for non-permanent members = 
5080*10

4*210
 = 1,65%. 

Roughly, power that permanent member possess is 10 times greater than a non-

permanent.  

Shapley-Shubik index calculation: 

There are 15! = 1307674368000 possible grand coalitions.  

Non-permanent member ip  can be pivotal only when he follows all 5 permanent 

members and 3 other non-permanent, so we should multiply all possible permutations 

between 8 players before and 6 players after the ip  member. Also we should account 

for that all non-permanent members are equal therefore the 3 of them that have to be in 

winning coalition other than tested member are interchangeable. 

Then there are 8! * 6! * 3
9C  = 2438553600 of such coalitions. Shapley-Shubik index for 

non-permanent would be 
0001307674368

 2438553600
 = 0.187%. All non-permanent players 

combined hold power of 0.187 * 10 = 1.87%, which leaves 98.13% for permanent 
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members, the power of single one of them = 
5

98.13
 
= 19,63%, which is more than 100 

times more than non-permanent member power. 

So such voting system is unequal even without weights assignation. This example is 

important as it helps to understand the nature of Shaplay-Shubik and Banzhaf indexes, 

which would be used in chapter 4.3 and 5.3 for identifying hypotheses. 

2.3 A Formal Problem 

This work is mostly focusing on manipulation by splitting and merging, but also 

includes a discussion around annexation manipulation - formal definitions for all types 

of manipulations are presented below. 

Players who are involved in manipulation are called manipulators. We assume that the 

single goal of manipulators is to improve their power by engaging in manipulation.  

Definition 2.7 Manipulation payoff: 

To calculate the success of manipulation we use a ratio r between a power of player 

before and after manipulation - it is called payoff. For each type of manipulation this 

value is calculated with different formula. In general payoff for player is ip : 

 
 G
Gr

i

i
i



 '
      (2.3) 

Definition 2.8 Advantageous and disadvantageous manipulation: 

If ir >1 then manipulation is advantageous, otherwise disadvantageous or non-

beneficial (r = 1). 

2.3.1 Manipulation by Splitting 

Manipulation by splitting is a form of manipulation where ip  - manipulator in WVG 

G splits into k false-players },...,{
1 kk iii ppP   with weights kjwww

jk iii ,..,1,0},,...,{
1

  

and i

k

j
i ww

j


1
. He alters game G with WVG G’, which has same quota q, but larger 



24 

number of players 
kii PpPP  )\('  with length 1'  knn . Then payoff for splitting 

manipulation: 

 

 G

G
r

i

k

j
i

i

j







1

'
     (2.4) 

2.3.2 Manipulation by Merging 

Manipulation by splitting is a form of manipulation where k > 2 players, which form a 

coalition C in WVG G, agreed to create a bloc (merge) that we denote as a new player 

Cp  in WVG G’ (game, altered by manipulation) with players CpCPP  )\(' and 

length 1'  knn . Weight of a bloc 



Ci

iC ww . In this work we will limit coalition C 

to a losing coalition, so Cp  wouldn’t be a dictator in G’. Then payoff for merging 

manipulation is: 

 
 





Ci
i

C
C G

Gr


 '      (2.5)

 

2.3.3 Manipulation by Annexation 

Manipulation by annexation is a form of manipulation where a manipulator player ip  
in WVG G annexes coalition C )( Cpi   of length k>0 to create a bloc )( ipC  . An 

altered by annexation game G’ has players )())(\('
ipCi ppCPP   and length 

knn ' . Weight of a bloc i
Cj

jpC www
i




 )( . In this work we will limit coalition 

)( ipC   to be losing, so )( ipCp   would be a dictator in G’. Then a payoff for 

annexation manipulation is: 

 

 G
G

r
i

pC
pC

i

i 

 ')(
)(



      (2.6) 
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3 State of the Art 

3.1 Relevancy of Power Indexes 

Power indexes since their invention were regularly criticized, as many researchers 

believe that they are oversimplified and don’t account for vital properties of real-life 

voting systems. As this work is based around the concept of priori power indexes, we 

provide an overview of works on relevancy of power indexes to identify their place in 

weighted voting analysis.  

Banzhaf and Shapley-Shubik are the two most prominent priori power indexes, but 

there are several others, which Felsenthal and Machover (1998) proposed to divide into 

two categories – I-Power and P–Power indexes. I-Power stands for Power as Influence, 

and Banzhaf index is in this category, P-Power stands for Power as a Prize and Shapley-

Shubik index falls into that category. The difference is in what index measures, I-Power 

indexes measure ability of a player to influence results of a voting, and P-Power 

measures expected prize a player gets from participating in voting. In a case of WVG a 

prize is either 1 or 0. The theory of I- and P-powers found support even between critics 

of power indexes; in particular Geoffrey Garrett and George Tsebelis (2001) agreed that 

difference between indexes have to be recognized, as some of the criticism isn’t 

applicable for both types of power indexes. And while in real life they are used 

interchangeably because in many cases the numerical difference is insignificant, still 

there are reasons (Felsenthal, Leech, List, & Machover, 2003) to differentiate them and 

use for appropriate measurement. In general Felsenthal and Machover (1998) propose to 

use Shapley-Shubik or Banzhaf indexes as they don’t suffer from number of paradoxes 

which affect other indexes behaviors and are the most studied. 

As was said earlier, power analysis of real case voting systems is under a strong 

criticism, Garrett and Tsebelis (1999) on an example of Council of the European Union, 

arguing that assumptions made for indexes calculation doesn’t account policy positions 

of EU countries governments and their strategic voting behavior which contradicts the 
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assumption of equal probability for coalitions to form. In their work they showed the 

power analysis may produce inaccurate and inconsistent results when applied to a real 

world WVGs. They even made a statement that attempt of improvement of power 

indexes in response to criticism is similar to “epicycles generated by Ptolemaic 

astronomers in response to anomalies in their charts.”(Garrett & Tsebelis, 1999, p306). 

Garrett and Tsebelis see the main problem of power indexes in their simplicity as they 

represent dynamic voting environment and voters behavior as a simple probability 

distribution. Similar opinions were presented by Albert (2003) and Gelman. Katz and 

Bafumi (2004) who also highlighted similar issues of power indexes. The more 

philosophic approach to the critic was presented by Albert (2003) in work ‘The Voting 

Power Approach: Measurement without Theory’.  

The counter-arguments were put forward by Felsenthal, Leech, List and Machover 

(2003) as they pointed out that term “priori” means that these indexes are abstracted 

from political or other reasons that may affect the voting behavior and should be used to 

study voting rules and voting system itself. They showed several examples of power 

indexes application on real-life voting systems that lead to some important results;in 

particular - a powerless Luxemburg under the Treaty of Rome, directors elections in 

IMF constituencies in 2002 where Estonia belongs to Nordic/Baltic constituency and 

had a zero power in it. We also can remember Banzhaf (1964) work Nassau County 

board. Power analysis has brought up a political discussion about the weighted voting 

systems not once and as mentioned above even lead to changes in them. Also worth 

mentioning that with each enlargement of EU, the question of how it will affect decision 

making is raising and power analysis is a tool that can, at least partially, answer that 

question. Antonakakis, Badinger and Reuter (2014) tracked the whole history of voting 

in Council of the European Union (here and after CEU) showing the changes in power 

of participants with each enlargement. 

While the negotiations in EU on new voting system, Poland proposed to use Penrose 

square root rule (“Germany gives ear to Poland in Reform of Treaty talks”, Goldirova, 

2007) as an alternative way of weight distribution. Other example of political debate 

started from power theory is the question of underrepresentation of countries with a 

large population such as Germany in EU Council (Felsenthal and Moshé Machover, 

1998, p156) (Le Breton, Montero, & Zaporozhets, 2012). Also interesting results were 

achieved by Kauppi and Widgren (2007), who showed that 90% of EU budgeting 

https://en.wikipedia.org/wiki/Nassau_County,_New_York
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division is corresponded to power distribution among countries measured with Shapley-

Shubik index. 

The criticism of priori power index, lead to introduction of posteriori power indexes, in 

particular several probabilistic interpretations of Shapley-Shubik and Banzhaf were 

created by Staffin (1978), Paterson (2005) and Garrett and George (1996). Probabilistic 

indexes can give more accurate measurements, but they still can’t account for every 

detail, as any mathematical model is a simplification. It also needs data to calculate 

probabilities or some kind of estimation and are very sensitive for its change.  

Another way for application of power indexes is the inverse problem of finding the 

weights of players from the given powers. The most research in this subject was done 

for weights approximation from Banzhaf index values. Several algorithms were 

proposed de Keijzer, Klos and Zhang (2010), Aziz, Paterson and Leech (2007), Kurz 

(2012). This reverse approach gives a possibility to precisely design WVGs and achieve 

desired powers of players, overall stability and predictability of a voting system. In 

particular this approach can be applied to help solve a problem of expansion of a voting 

system, which EU and other intergovernmental bodies are facing regularly. 

Power analysis proved itself to be a useful tool, even though it does in some cases give 

empirically wrong results but when appropriately analyzed they lead to important 

findings. They proved to be particularly useful for finding edge case, like Felsenthal, 

Leech, List and Machover (2003) showed on several examples; power indexes can serve 

well for finding powerless (dummy) players in complex systems, where it isn’t obvious 

from their weights. Kauppi and Widgren (2007) have gone further with their research 

and presented testable results on EU budgeting, which shows actually how powerful this 

tool can be if applied correctly. Indexes are numerical values that can help participants 

of a voting to better understand their possibilities and adjust voting behavior 

accordingly. The choice of power index between I-Power and P-Power as well as 

posteriori and priori is also important as it measures power from different perspectives. 

Priori power indexes are undeniable useful on the stage of designing of WVG model 

when there is no data of voters behavior as Roth (1998) stated, priori analysis give a 

possibility to study rules of the voting themselves, and not be deviated by dynamical 

political environment. 
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3.2 Manipulation Study 

Manipulations in different domains received a wide attention especially in the end of 20 

– beginning of 21st century. In 2004 manipulation by splitting were studied for 

combinatorial auctions by Yokoo, Sakurai and Matsubara, (2004). Later in 2005 the 

results were expanded for coalitional games (Yokoo, Conitzer, Sandholm, Ohta, & 

Iwasaki, 2005). Felsenthal and Machover (1998) in their work described several 

paradoxes of power indexes, which are related to manipulations, for example bloc 

paradox (    GG ipC i
  ')( ) and described situations when annexation and merging 

manipulations are advantageous a priori (Felsenthal & Machover, 2002). Specifics of 

manipulations in weighted voting games can be found in the works of Aziz, Paterson, 

(2007) and its more recent development in 2009 (Aziz & Paterson, 2009). These works 

describe behavior of manipulations for different classes of WVGs, and study a question 

of finding an advantageous manipulation. The bounds for maximal and minimal payoff 

of manipulation by splitting were extensively researched as well and were proven in 

several works by Lasisi and Alan (2014) and Bachrach and Elkind (2008), while the 

bounds for merging manipulation are still not fully justified, latest work on this topic by 

R. O. Lasisi and A. A. Lasisi (2016) is missing both upper and lower bounds for 

Shapley-Shubik and Banzhaf indexes for merge of k > 2 fake-players. Zuckerman, 

Faliszewski, Bachrach and Elkind (2008) studied how one can influence power of 

players by changing the quota.  

Lasisi (2013) in his work experimentally studied behavior of 3 most prominent indexes 

- Shapley-Shubik, Banzhaf and Deegan-Packel, under manipulations. One of the results 

of the work showed how a voting system designer can affect a probability of an 

advantageous merge manipulation by choice of a quota. Then the results on the effects 

of a quota were extended with probabilities of advantageous manipulation and expected 

values of payoff in works of Lasisi and Alan (2011). In these works authors limited the 

number of players in WVGs to set from 5 to 20 players because of calculation 

complexity of Deegan-Packel index. 

This work will extend these results with study of maximal, minimal, expected values 

and standard payoff for manipulation by splitting and merging, which gives a more 

comprehensive understanding of effects of a quota on manipulations in WVGs. In this 

work we prove minimal and maximal bounds for merging manipulation, which were 
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missing before. We also will touch upon how the number of players in WVGs influence 

manipulation payoff and extend studies of effects of quota for length of WVGs to 

maximum of 50 players. 

3.3 The Purpose of the Thesis 

The main focus of this work is to study the effects that quota have on payoff of 

manipulation. The work is extending the results of previous works on this topic by 

Lasisi and Alan (2011), Lasisi (2013), Bachrach and Elkind (2008), R.O. Lasisi and 

A.A. Lasisi (2016) described in Chapter 3.2, where only the expected values were 

analyzed, with other correlations for payoff of manipulation.  

In particular the authors analyze trends for maximal, minimal values and standard 

deviation of payoff and a probability of advantageous manipulation. The authors also 

derive how trends and values are changing for WVGs with different number of players 

(more about simulation environment in section 4.5.1).  

Most of the results are achieved for Shapley-Shubik values, as they have a number of 

important properties also discussed in Chapter 2.2, and resistance to a bloc paradox 

(Felsenthal & Machover, 1998), which makes it a convenient tool for WVG analysis.  

An important part of the work is a proof of connections between maximal and minimal 

bounds of manipulation by merging with minimal and maximal bounds of manipulation 

by splitting respectively. These analyses give an opportunity to fill the gap in research 

(R. O. Lasisi and A. A. Lasisi, 2016) of bounds for k > 2 for Banzhaf and Shapley-

Shubik indexes for merging manipulation addressed in Chapter 3.2 

In this work we propose three hypotheses: 

Hypothesis 1: Manipulation by splitting has higher probability of being advantageous 

and reaches maximum values of expected payoff for WVGs with high quotas, for 

Shapley-Shubik index.  

To prove hypothesis we answer following questions: 

 What is the effect of a quota on the expected values of payoff? 
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 What is the effect of a quota on the standard deviation of payoff? 

 What is the effect of a quota on probability of advantageous manipulation? 

 How players number affect trends of expected values and probability of 

advantageous manipulation for changing quota? 

Substantiation of the hypothesis can be found in Chapter 4.3. Related finding and 

conclusion are located in Chapter 4.5. 

Hypothesis 2: Bounds for maximal and minimal possible manipulation by merging are 

the reversed bounds for manipulation by splitting and vice versa for all power indexes. 

To prove hypothesis we answer following questions: 

 What is the connection between manipulation by splitting and merging? 

 How to find maximal/minimal bounds for merging manipulation from 

minimal/maximal bounds of splitting manipulation? 

Substantiation of the hypothesis can be found in chapter 5.3. Related finding and 

conclusion are located in 5.4. 

Hypothesis 3: Manipulation by merging has higher probability of being advantageous 

and reaches its maximum values of expected payoff for WVGs with low quotas, for 

Shapley-Shubik index. 

To prove hypothesis we answer following questions: 

 What is the effect of quota on the expected values of payoff? 

 What is the effect of quota on the standard deviation of payoff? 

 What is the effect of quota on probability of advantageous manipulation? 

 How players number affect trends of expected values and probability of 

advantageous manipulation for changing quota? 

Substantiation of the hypothesis can be found in chapter 5.3. Related finding and 

conclusion are located in 5.5.  
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4 Effects of a Quota on Manipulation by Splitting 

4.1 An Overview and Examples 

Manipulation by Splitting:  

As was shown in works of Lasisi (2013), Bachrach and Elkind (2008) and others 

Banzhaf and Shapley-Shubik indexes are sensitive to the manipulation by splitting, 

suggesting that it could be beneficial for a player ip  to split into k false-players 

},...,{
1 kk iii ppP  , dividing his weights between them kjwww

jk iii ,..,1,0},,...,{
1

 . 

Consider the example from work of Lasisi (2013):  

G = [12; 6, 5, 4, 4, 3] is a WVG of 5 players, the power of last 35 w ; 

Banzhaf index for 5p :  G5  = 0.172 

Shapley-Shubik index for 5p :  G5 = 0.167 

Suppose player 5p  split into 3 false-players with weights equal 1, then the altered by 

this action game G would be G’: 

G’= [12; 6,5,4,4,1,1,1] 

The powers of false-players would be: 

Banzhaf index:       059.0
321 555  GGG  , 

Combined Banzhaf index    GG
k

j
j 5

1
5 177.0'  



, 

Shapley-Shubik index:       057.0
321 555  GGG  , 
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Their combined power    GG
k

j
j 5

1
5 171.0'  



. 

Based on this result we can say that 5p  have benefited from the split manipulation. 

Therefore manipulation was advantageous. 

4.2 Unanimity Weighted Voting Games 

For unanimity games it is proven that split is always advantageous. We provide the 

proof as helps further understand the nature of used power indexes. 

Theorem 4.1: In Unanimity WVGs with n>1 players manipulation by splitting is always 

advantageous for Banzhaf, Shapley-Shubik power indexes. 

Proof: 

1. For Unanimity WVG G Banzhaf index for each player is equal to 

ni
n

Gi ,...,1,1)(   as there is only one winning coalition (grand coalition), each 

player of which is critical. 

If player ip  in G splits into k > 1 false-players, the power of each player in altered 

WVG G’ would be 1,...,1,
1

1)'( 


 kni
kn

Gi , and the combined power of 

false-players 
1

)'(
1 


 kn

kG
k

j
i j

 . 

Now subtract power of initial player ip  in G from combined power of false-players in 

G’: 

,
)1(
)1)(1(

)1(
)1()1(

)1(
11

1
)()'(

1 

















 knn
kn

knn
kkn

knn
knnk

nkn
kGG i

k

j
i j



 
as 

k and n are greater than 1 => 0
)1(
)1)(1(






knn
kn

 
=> )()'(

1
GG i

k

j
i j

 


 => split was 

advantageous for Banzhaf index. 
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2. For Shapley-Shubik index: In Unanimity WVG with n players, any player is pivotal 

only if he is the last one in a permutation, then Shapley-Shubik index for player ip , 

 
nn

nGi
1

!
)!1(



 . 

Then in G’ power of each player 1,...,1,
1

1)'( 


 kni
kn

Gi , as it was shown 

above the value of 
1 kn

k  is greater than 
n
1 => split was advantageous for Shapley-

Shubik index, theorem 4.1 proven. 

4.3 Non-unanimity Weighted Voting Games 

It is obvious that any winning coalition with fake-players will be winning if they are 

replaced with initial player. In this sense, we can say that manipulation by splitting 

doesn’t bring new winning coalitions to the game, and the increase in their number is 

done due to the increased number of combination with fake-players. 

 

Figure 4.1. Sequential coalition where player ip  is pivotal. 

If a player ip  is pivotal in a grand coalition (Figure 4.1), it doesn’t matter in which 

order players to the left from him and to the right come, as long as they don’t switch 

from left to right. So there is no need to check every possible coalition, just those with 

unique set of players to the left of the analyzed player and calculate all combinations of 

players from the left and right which is equal to: 

)!()!1( mnm  , where m is a number of players in winning coalition. 

This observation is lying behind the direct enumeration method of calculation of 

Shapley-Shubik index and can be applied to evaluate effects of splitting on it. 
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When we split ip  into k fake-players one winning coalition for ip  in G produces several 

winning coalitions in G’ due to increased number of players. Following this line of 

thought, we can try to estimate number of produced winning coalitions. 

)!()!1( lkmnlm  , where l is a number of fake-players in the winning coalition, 

it is also possible that fake-players are interchangeable, for example if they have equal 

weights, then number of coalitions = hlkmnlm )!*()!1(  , where h is a number 

of permutations between fake-players in which one of them has to be pivotal. This 

number is obviously maximal with maximal number of interchangeable fake-players in 

coalition, this is most likely when weights of fake-players are equal and have minimal 

possible weight. Let’s investigate two other arguments of multiplication: 

max)!()!1(  lkmnlm     (4.1) 

as )1( lm  and )( lkmn   are connected (with increase of one of them other one 

is decreasing) the maximum value of (4.1), because of the nature of factorial, (4.1) will 

be achieved l = k and )()1( mnm   or when l = 0 and )()1( mnm  . 

)1( m  is maximal when m = n => max )1( m  = )1( n ; 

)( mn   is maximal when m = 2 => max )( mn   = )2( n ; 

)1( n > )2( n  => maximum is achieved when m = n, which means that the player is 

pivotal in a grand coalition. These results support previously gained results in theorem 

4.1 and also shows manipulation by splitting is not only always beneficial for a 

manipulator in unanimity but also reaches its greatest values for WVGs in which 

winning coalitions consist of most possible number of the players, which in most cases 

means that WVG is close to unanimity (q is close to W ).  

Therefore, from these observations we can formulate Hypothesis 1: 

Manipulation by splitting has higher probability of being advantageous and reaches 

maximum values of payoff for WVGs with high quotas, for Shapley-Shubik index. 
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4.4 Bounds 

In the work by Bachrach, and Elkind (2008) were proven the theoretical bounds of 

manipulation by splitting for k = 2 fake-players for Shapley-Shubik and Banzhaf 

indexes, this result was expanded for k > 2 by Lasisi (2013). 

Table 4.1. Bounds of splitting manipulation. 

Bounds Shapley-Shubik index Banzhaf index 
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Where  Gx  - number of winning coalitions for player x. 

As it is evident from the table 4.1, the upper bounds for Shapley-Shubik and Banzhaf 

indexes are getting higher with increase of n and k, which suggests that for higher 

number of players and weight of player ip  (manipulator) the maximal possible payoff is 

also higher. 

4.5 Simulation 

In this section we would make a computer simulation to provide experimental results to 

empirically support theoretical results achieved above (section 4.3) and test hypothesis 

1 for manipulation by splitting, as well as find other properties and correlations. 
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The main objectives of the simulation are:  

1. Find an evidence to prove that maximal payoffs for manipulation by splitting are 

achieved for high quotas. 

2. Find an evidence to prove that chance of finding a beneficial split is higher for a 

higher quota. 

3. Find effects of quota on standard deviation of payoff. 

4. Find effects of number of players in WVGs on payoff properties. 

For these purposes the authors developed a set of MatLab programs that could be found 

in Appendix A. Similar simulations have been done previously by Lasisi (2013) and our 

results are comparable, however this work offers an extension to previous research as 

well as specific observations that were not addressed in the previous studies highlighted 

in chapter 3.3.  

For a payoff measurement we have chosen Shapley-Shubik index, but as it is also 

evident from the results from Lasisi (2013) and Lasisi and Alan (2011) payoffs 

measured with Banzhaf and Shapley-Shubik indexes react similarly to changes in 

WVGs, therefore we can suggest that trends and hypotheses 1 and 2 are also applicable 

for Banzhaf index. Testing of these hypotheses for Banzhaf index can be a field for 

future research. 

4.5.1 Simulation Environment 

We have developed several functions that create random non-unanimity weighted 

voting games, and measure ratio between S-S index of a player before manipulation and 

sum of S-S indexes of created by split fake-players. For each WVG a quota was 

described as a percentage from a total weight of players. Each WVG was tested for 

quotas from 0.5 to 0.95 (1 wasn’t included, because as was proven above, split in 

unanimity games is always advantageous) with increments of 0.025. To create split 

simple uniformly distributed pseudorandom was used, while in work of Lasisi and Alan 

(2011) random distributions and specific algorithms for splits were used, the trends of 

measured properties proven to be very similar, so the choice towards uniform 

distribution was done to save computational time. Because maximal and minimal 
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bounds of payoff (section 5.4) for splitting manipulation are dependent on number of 

fake-players manipulator splits into, for single test we used same number of fake-

players (usually k = 2) for each random WVG for each quota, to avoid inconsistency in 

results and separate the effects of quota from other factors. 

For WVGs creation two different algorithms were used, first uses independent 

uniformly distributed pseudorandom for generating a weight for each player; second 

algorithm assigns weights with a regression uniformly distributed pseudorandom to 

avoid big gaps between closest weights in small WVGs (n < 10). But results proved to 

be almost identical, so most of WVGs from the presented in this section results were 

created using first algorithm, as it works slightly faster and creates wider range of 

different WVGs. 

Two algorithms were used to calculate Shapley-Shubik index two: simple algorithm of 

direct enumeration, which is slow but gives the most accurate results and it can be easily 

modified to take into account more complex voting systems with, for example, double 

majority system or other additional rules. It also works quickly enough for smaller 

WVGs (n < 16), but as its complexity )2( nO  growing exponentially it is almost 

impossible to use it for WVGs with n > 25. Second algorithm that was used is based on 

generated functions proposed by Mann and Shapley (1962) specifically designed to 

calculate powers for large WVGs. We use interpretation given by Lambert presented in 

work of Leech (2002). This algorithm is much faster than the first one for WVGs with 

16n . Complexity of algorithm )( 2qnO  which makes it possible to calculate indexes 

for WVGs with even n > 100 players. 

Nevertheless, even if using generated functions, big number of tests for large WVGs 

takes a very substantial time, that’s why we have limited number of tested samples of 

WVGs to no more than 1000 and number of players n = from 5 to 50. 

4.5.2 Simulation Results and Analysis 

The results are presented in graphs with analysis trends rather than specific values, 

because of a random nature of tests, values are not representable as such. For the same 

reason and because of the limits of test samples the variance results, especially of 

extreme (max and min) values between different tests are quite noticeable, but general 
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trends and average values are much closer between tests. Although we can’t make 

conclusions on monotonicity (only suggestions) and exact values trends can be analyzed 

as they differ slightly from test to test, but are never contradictory. 

 

Figure 4.2. Minimal (red), Maximal (green) and Expected (blue) payoff for each quota for WVGs with 5 
to 20 players.  

 
Average values (Expected Values) of split are relatively steady (slightly lower than 1), 

with noticeable increase for close to 1 quotas, which means that expected payoff of a 

split for close to unanimity games is advantageous, which supports hypothesis 1.  

According to the results of the test, which is represented on the Figure 4.2, a 

manipulator can achieve the highest payoff when quota is high, while lowest values are 

reached for low quota. For any quota value the advantageous manipulation was found 

with at least ~1.4 payoff. The result differs for the games with high number of players, 

where even maximum values are lower than 1 until the very high quotas, which is 

shown on Figure 4.7. 

Maximal disadvantage from split increasing with growth of quota (as can be seen on 

Figure 4.2), trend is opposite to maximal advantage, which shows instability of WVGs 

with high quotas, as splitting manipulation with high probability will have great effect 

on power distribution among the players. 



39 

 

Figure 4.3. Standard deviation of expected payoff of a manipulation by splitting for WVGs with 5 to 20. 

 
In Figure 4.2 minimal and maximal values represent maximal deviation from the 

expected value, Figure 4.3 shows standard deviation which is almost monotonically 

increasing. Payoffs for splits differ more from average value for high quotas; actually 

based on Figure 4.2 it visible that they tend to polarize to extreme values. Standard 

deviation is correlating with number of players and fake-players, which is evident from 

the upper and lower bound. Because of that for this test we limited number of fake-

players to 2, to create equal environment for advantageous and disadvantageous splits 

(as in tests with random split greater instability of the results may happen). For large 

WVGs standard deviation tend to be equally small for low and medium quota and 

rapidly grow for high quotas. 
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Figure 4.4. Probability of an advantageous split manipulation for WVGs with 5 to 20 players. 

 
Figure 4.4 shows that probability for advantageous split has similar trend and is also 

growing with the quota. It has very low values (under 0.2) for small quotas, while for 

the highest quotas probability was higher than 0.5, so most of splits were advantageous, 

which supports hypothesis 1. Thus high quotas are a great target for manipulation by 

splitting, as most of the splits were advantageous. 

 

Figure 4.5. Expected value of payoff for splitting manipulation for quotas from 0.5 to 0.95 and number of 
players from 5 to 20. 50 tests for each number of players and quota value. Axis y (number of players) is 
reversed for presentation purposes. 
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Average payoff of manipulation also depends on a number of players in WVG, as 

shown on Figure 4.5. Games with higher number of players show the highest expected 

values for high quotas, but trend isn’t so clear, as for all tested number of players there 

is a dent, which gets closer to quota value of 1 with growth of number of players. On 

other hand, standard deviation and extreme values show the same trends (Appendix B.1) 

for any number of players, with the difference that maximal probability for larger game 

happens for values of quota around 0.9. 

 

Figure 4.6. Probability of advantageous split for manipulation by merging for quotas for different number 
of players in WVGs. WVGs with 5 to 20 players. 50. Take a notice that axis x (quota) is reversed for 
presentation purposes. 

 
Similarly to Figure 4.4, Figure 4.6 is very nonmonotonic with local extremes almost for 

each value of quota, but the trend is still visible. Overall, for any number of players 

(from 5 to 20) the trend of probability is growing, for WVGs with high number of 

players it is more smooth but is also more curved, as the values for small quotas are 

close to zero (on a contrary from small WVGs) and the maximal values are almost the 

same. 
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Figure 4.7. Minimal, maximal and expected values of payoff for each quota in WVGs with 50 players for 
split manipulation. 

 
The difference for WVGs with 50 players (Figure 4.7) to, where WVGs with 5 to 20 

players (Figure 4.2) is quite significant. We see that, even though trends are similar, the 

results for small, medium and even high quotas (q < 0.9) are very steady, with maximal, 

minimal and expected values all lower than 1. Still the highest values of payoff and 

probability of advantageous (Appendix B.2 and B.3) split are found for high quota, 

which supports hypothesis 1. From this we can conclude that for large WVGs the 

splitting manipulation is very likely to be disadvantageous with expected payoff little 

lower than 1 for almost any quota except very high values > 0.9. 

Power indexes are quite sensitive to number of players, but as most of the real life 

WVGs are in bounds from 5 to 50, (with few exceptions), in this work, for the most 

part, WVGs with n = [5,20] are evaluated, some results are separately achieved for 

WVGs with 50 players. The problem of larger WVGs can be seen as an area of future 

research, as there are only few works, which study their specifics even outside of 

manipulation context, for example work of Lindner (2004). This is especially true for 

experimental studies, because of high computational complexity and memory 

requirements of algorithms. 
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4.6 Conclusion 

Results from the tests support theoretical results - best possible splitting manipulations 

happen with high quotas, as well as the probability of advantageous split. In other 

words, high quotas are good target for manipulation by splitting, while for smaller 

quotas advantageous splitting is less probable and less effective, also overall results of 

manipulations are more predictable for them. Manipulation by splitting in games with 

high quota will likely to change power distribution of players’ significantly. And these 

results fully reflect hypothesis 1. We also found that WVGs from small to high number 

of players (5 – 50) behave slightly different, but don’t contradict the hypothesis 1. In 

general strong correlation of extreme values, standard deviation and probability of 

advantageous split to quota is evident; expected values are slightly less affected 

(Correlation coefficients can be found in Appendix C.1). 

This result can be applicable in real life, even though it is unlikely that, for example, 

splitting may happen in Council of the European Union because of nature of players, 

but it may happen in national parliaments, so the relevance of manipulation analysis 

should be tied with realistic possibilities of such action. In some cases danger from 

splitting manipulation can be neglected.  
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5 Effects of a Quota on Manipulation by Merging 

5.1 An Overview and Examples 

Next possible manipulation is manipulation by merging, on a contrary to splitting 

manipulation it actually can happen quite easily, as it does require only an agreement 

between players involved in a manipulation, which in most cases isn’t forbidden. If 

several players who can’t create winning coalition agreed to act identically they form a 

bloc, they can be seen as a single player with a weight equal to the sum of weights of 

players in bloc. It may seem that the bloc power would be equal or greater than a sum of 

the players in it, but actually it can differ quite significantly. If bloc power is greater 

than cumulative power of its players before merge => r > 1 then the merge manipulation 

is advantageous (beneficial), if lesser - then disadvantageous. 

Consider the slightly modified example of advantageous manipulation by merging in 

WVGs, from Lasisi (2013):  

Example 5.1: 

G = [18; 8, 7, 4, 4, 2, 1, 1] in which players from coalition C = [ 2p , 3p , 6p ], form a bloc 

with cumulative weight equal to w(C) = 7 + 4 + 2 = 13 in a G’ = [18; 13, 8, 4, 1, 1] 

Combined S-S index of 2p , 3p , 6p in G:       492.0632  GGG  ; 

Combined BZ index of 2p , 3p , 6p in G:       495.0632  GGG  ; 

S-S index for Cp  in G’:   617.0' GC ; 

BZ index for Cp  in G’:   524.0' GC . 

Payoff of manipulation for S-S index = 254.1
492.0
617.0

 ; 
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Payoff of manipulation for BZ index = 05.1
495.0
524.0

 . 

=> For S-S and BZ indexes merging manipulation was advantageous. 

5.2 Unanimity Weighted Voting Games 

Similarly as for splitting manipulation, it is possible to evaluate merge manipulation 

theoretically for unanimity WVGs. 

Theorem 5.1: In unanimity WVGs manipulation by merging of nk 2  players is 

always disadvantageous for to BZ and S-S indexes. 

Proof of this theorem is almost identical to proof of theorem 4.1 

Proof:  

As was shown in proof of theorem 4.1, for unanimity WVG G BZ index of a player 

equals to his S-S index    
n

GG ii
1

  , i = 1,…,n where n is a number of players 

before merging. 

Players ],...,[ 1 kC ppP   are involved in manipulation by merging. After merging 

number of players in altered from G WVG G’: n’ = )1(  kn ; 

Cumulative power of manipulators before manipulation for both indexes 

n
kGG

Ci Ci
ii  

 

)()(  , and after 
1

1)'()'(



kn

GG CC  . 

Payoff of this manipulation: 
 

)1(
))(1(

)1(1
1)'()()'()(

2












 

 knn
knk

knn
nkkkn

knn
kGGGG C

Ci
iC

Ci
i  , 

because 1 < k < n, (k – 1), (n – k) and (n – k + 1) are positive => total power of 

manipulators was higher before manipulation than power of a bloc after it => 

manipulation was disadvantageous, theorem 5.1 is proven. 
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5.3 Non-unanimity Weighted Voting Games 

Manipulation by merging can be looked at as a reversed procedure to manipulation by 

splitting, as it is obvious that if split in G into several fake-players in G’ was 

disadvantageous, the reverse merge of fake-players in G’ to original player in G will be 

advantageous. This observation will be further developed in the next section 5.4. 

Based on this observation we propose Hypothesis 2:  

Bounds for maximal and minimal possible manipulation by merging are the reversed 

bounds for manipulation by splitting and vice versa for all power indexes. 

Because of that we can find properties of a payoff of merge using intermediate results 

and similar reasoning used for manipulation by splitting. Based on this line of thought, 

manipulation by merging is most likely to be advantageous (4.1) -> min, where k – 

number of players forming a bloc, which can be achieved, as it was shown above, when

)()1( lkmnlm  . 

lknm 212  , n and k here are constants, then the greater m is, the lesser l should 

be; the more players are there in a winning coalition, the lesser number of manipulators 

have to be in it. This situation is more likely to happen to a lot of coalitions when quota 

is small. It should be pointed out, that for small non-unanimity WVGs this situation is 

also likely to happen for any quota values. 

Therefore, we can formulate Hypothesis 3:  

Manipulation by merging has higher probability of being advantageous and reaches its 

maximum values of expected payoff for WVGs with low quota, for Shapley-Shubik index. 

5.4 Bounds 

Boundaries for manipulation by splitting are well studied, when boundaries for merging 

manipulations are still a question. The problem of complexity of finding a beneficial 

merge received the most of an attention. Only in recent years R. O. Lasisi and A. A. 

Lasisi (2016) proved upper and lower boundaries for 2 players merge. Here we propose 

a method of finding bounds for merging using bounds for splitting manipulation, we 
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proof that bounds of merging manipulation are, in fact, reverse bounds for splitting 

manipulation for all of power indexes. 

Based on this we can formulate theorem: 

Theorem 5.2 If r is maximal/minimal possible payoff of a split manipulation for k false-

players in WVG G with n players that altered game G to G’ with n’ = (n + k – 1) 

players. Then payoff of a merge in WVG G’ of false-players would be 

minimal/maximal possible for k players in WVG of (n + k -1) players and vice versa.  

Proof:  

Let player ip  be a manipulator in WVG )1(G  with n players, who involved in the most 

advantageous split possible with k false-players to },...,{
1 kiik ppP   alter )1(G  with 

WVG )2(G  with n’ = (n + k – 1) players. 
 

)( )1(
1

)2(

)1(

G

G
r

i

k

j
i j






  is maximal possible 

(reached the upper bound). For simplicity we denote use )( )1()1( Gi   and 

 



k

j
i G

j
1

)2()2(   then )1(

)2(
)1(




r . 

Assumption: There exist merge manipulation for WVG )3(G  with n’ players for k 

manipulators that form coalition C , with the minimal possible payoff )1()3(

)4(
)2( 1

r
r 



 . 

)3(  - cumulative power of manipulators before manipulation, )4(  is a power of a bloc 

CP  after manipulation. 

Manipulation alters game )3(G  is alternated with WVG )4(G  with (n’ – k + 1) = n 

players. => )1(
)2( 1

r
r  . 

Let’s consider a split manipulation in game )4(G  of a player CP  into fake-players with 

equal weights to weights of players of C in )3(G , then payoff of this splitting 

manipulation is )2()4(

)3(
)3( 1

r
r 



 . 
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Let’s consider a split manipulation in game )4(G  of a player CP  into fake-players with 

equal weights to weights of players of C in )3(G , then payoff of this splitting 

manipulation is )2()4(

)3(
)3( 1

r
r 



 . 

We have two options: 

1) If )1(
)2( 1

r
r  : 

=> )2(
)1( 1

r
r   => )3()1( rr   which contradicts to the conditions that )1(r  is maximal 

possible payoff of splitting in WVG of n players into k false-players. 

2) If )1(
)2( 1

r
r  : 

Let’s consider a merge manipulation in )2(G  of players kP  to create a WVG equal to 

)1(G , as a )()( ik pwPw   and all other players are the same. Payoff of this manipulation 

would be equal to )1()2(

)1(
)4( 1

r
r 



  => )4()2( rr   => minimal possible payoff for 

merging manipulation of k manipulators in WVG of n’ players, which contradicts the 

assumption. 

From 1) and 2) => )1(
)2( 1

r
r  , which means that the most advantageous split in WVG of 

n players to k false-players is reversed to a most disadvantageous merge of k players in 

WVG of (n + k – 1) players. 

Proof on reversed properties of upper bounds of merge manipulation with lower bounds 

of splitting manipulation is analogous. => Theorem 5.2 proven. 

Theorem 5.2 proves that hypothesis 2 is justified. 

Using Theorem 5.2 we can write full bounds of manipulation by merging reversing 

bounds for splitting manipulation:  
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Lower Shapley-Shubik index bound for merge from Upper Boundary for splitting 

manipulation: 

   G
kn

nkG i
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j
i j
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k = number of fake-players in G’, then for reverse merge manipulation k = to number of 

manipulators. n = number of players in G, n’ = n + k - 1, then n = n’ - k + 1, then (1): 
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(2)  

After switching notations between G and G’, n and n’ we can rewrite (2) to achieve 

lower bound of merging manipulation for S-S index for k > 2 manipulators. 

Lower bound =  
 

 



k

i
mm G

kkn
nG

i
12
 ; 

Using analogous transformation, we can achieve Upper and Lower bounds for both 

Shapley-Shubik and Banzhaf indexes from table 5.1. 

Table 5.1. Bounds of merging manipulation. 

Bounds Shapley-Shubik index Banzhaf index 

Upper 

 2k  
      GGknG mmm 212

2
 


          GGnG mmm 21

1    

Lower 

 2k  
 

 
    GG
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knG mmm 2112

2
 




        GGG mmm 212

1
   
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Where  'Gx  - number of winning coalitions for player x in G’.  

5.5 Simulation 

This section provides experimental results to empirically support achieved theoretical 

result for manipulation by merging, as well as shows other properties and correlations. 

Main objectives were:  

Main objectives of simulation:  

1. Find an evidence to prove that chance of finding a beneficial merge is higher for 

lower quotas. 

2. Find effects of quota on standard deviation. 

3. Find effects of number of players in WVGs on payoff properties. 

5.5.1 Simulation Environment 

To test results for manipulation by merging the same simulation environment was used 

as for manipulation by splitting, as well as the same set of programs, which were 

modified to create a random bloc (of random length) that is not a dictator. Lasisi (2013) 

used both random and specific algorithm for creation of a bloc, and the results are 

similar to our findings with a random split based on uniformly distributed 

pseudorandom. Because maximal and minimal bounds of payoff (section 5.4) for 

merging manipulation are dependent on number of manipulators conducting a merge, 

for single test we used same number of manipulators or small range ([2,4]) in each 

game, to avoid inconsistency in results and separate the effects of a quota from other 

factors. 
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5.5.2 Simulation Results and Analysis 

 

Figure 5.1. Maximal (green), Minimal (red), Expected (blue) payoff for Merge manipulation for WVGs 
with 5 to 20 players. 

 

Figure 5.2. Maximal (green), Minimal (red), Expected (blue) payoff for Merge manipulation for WVGs 
with 5 to 20 players, clamp Figure 5.1 to clearly see trend for expected values. 

 
Results of the tests can be seen on a Figure 5.1 and 5.2 - one can notice several 

interesting trends. Expected payoff is decreasing with growth of a quota, which supports 

the theoretical findings, as the probability of right conditions for advantageous split are 

decreasing. High payoffs are also achieved for high quotas which proves the reverse to 

manipulation by splitting properties, as the most disadvantageous split would be a most 

advantageous merge. And the highest value achieved through all handled tests = 8.74, it 
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was achieved in a WVG G = [136; 48, 45, 39, 13, 12, 7, 5] (quota ratio = 0.8) where 

7654 ,,, pppp  form bloc to create new WVG G’ = [136; 48, 45, 39, 37].  

The cumulative Shapley-Shubik index before merge = 0.0286; 

After Merge = 0.25; 

Accordingly to formulas for payoff bounds of merge, which were derived in the 

previous section, for WVGs with 8 players with 4 manipulators, upper bound is 8.75, so 

in this case maximum was almost reached. 

It is easy to notice that G’ is, in fact, a unanimity game, as only a grand coalition is 

winning, which can be considered as a border case. This is an example of gaining of 

extreme payoff, which shows that small weighted players can greatly improve their 

power if they form a bloc, which would transform WVG to unanimity. 

 

Figure 5.3. Probability of advantageous merge manipulation for WVGs with 5 to 20 players. 

 
The influence on probability of advantageous merge, which can be seen on Figure 5.3, 

was expected from theoretical findings, and is decreasing with a growth of a quota after 

a certain point (around 0.725) and with a very high rate, to the values close to 0, as a 

chance of coalitions that consists of half of all players is very low. For quotas from 0.5 

to 0.725 the probability is close to 1, which means that almost every merge is 
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advantageous, which makes this values of quota a good target for manipulation by 

merging. This result supports hypothesis 3. 

 

Figure 5.4. Standard deviation of expected payoff for manipulation by merging for WVGs with 5 to 20 
players. 

 
In contrast to manipulation by splitting, standard deviation for merging doesn’t have 

predictable pattern for standard deviation (Figure 5.4) and results for different tests vary 

significantly, so from empirical results there isn’t strong correlation between quota and  

standard deviation. But it is immediately visible that maximal value of standard 

deviation for merge is less than maximal value for split, which means that possible 

payoff has a better predictability.  
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Figure 5.5. Expected value of payoff for merging manipulation for quotas from 0.5 to 0.95 and number of 
players from 5 to 20. Take a notice that axis x (quota) and axis y (number of players) are reversed for 
presentation purpose. 

 
In the Figure 5.5 one can see that for small number of players expected payoff is quite 

steady, and is very slightly influenced by quota with a trend to slow and non-monotony 

decrease with increase of a quota. While for WVG with high number of players - 

expected value drops significantly with increase of a quota. 

For small quotas decreasing number of players will result in decreasing expected 

payoff, and for high quotas it will lead to increase in expected payoff. Based on these 

observations, we can conclude that quota and number of players in WVG affects 

expected payoff of manipulation by merging oppositely. 
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Figure 5.6. Probability of advantageous merge manipulation for quotas for different number of players in 
WVG. WVG from 5 to 20. Take a notice that axis x (quota) is reversed for presentation purposes. 

 
The same as expected value, the probability of advantageous merge is getting more 

sensitive to a change of quota with increase in number of players and very rapidly 

(Figure 5.6). After number of players n > 10 probabilities react on changes of quota 

almost identically, very similar to results of simulation in Figure 5.3. The overall trend 

for any tested number of players is similar, and it is decreasing with increase of quota, 

which supports hypothesis 3. 

Also it is important to notice that for WVGs with n > 10 the chance for advantageous 

merge for low quotas is 1, which means that all randomly generated merges were 

advantageous. Based on this observation we can assume that in large WVGs for small 

quotas it is always advantageous to merge. Finding a theoretical proof for this 

assumption may be seen as a field of future work. 



56 

 

Figure 5.7. Minimal, maximal and expected values of payoff for each quota in WVGs with 50 players for 
merge manipulation. 

 
Results presented n Figure 5.7 support the trend found in Figure 5.5 - for WVGs with 

higher number of players the difference between maximal value of expected value and 

minimal is growing. The trend for expected values is much more rapid, but has same 

direction – decreasing with increase of quota. We also can notice that maximal values of 

payoff tend to behave much more predictable, on contrary to Figure 5.5, which can be 

explained by rarity of extreme advantageous merges in WVGs with high number of 

players. It is evident that probability of advantageous merge (probability Figure can be 

found in Appendix B.5) is highest for small quotas, which supports hypothesis 3. 

5.6 Conclusions 

Results achieved for manipulation by merging are showing that in overall high quotas 

ensure smaller expected payoff and low chance of advantageous manipulation. It is 

especially true for large WVGs, while small have more stable expected payoff. Also for 

large WVGs the maximum values of payoff were achieved for the smallest quota, while 

for games with small number of players there is no such correlation (Appendix B.4). For 

small WVGs probability of advantageous split is also more stable and in overall has a 

lower value.  
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Based on these observations we can suggest to use high quotas for WVGs with medium 

and high number of players, while for small WVGs (n around 5) the choice of quota has 

much smaller effect. In general strong correlation of extreme values, standard deviation 

and probability of advantageous merge to quota is evident; expected values are slightly 

less affected (Correlation coefficients can be found in Appendix C.2). 

Creation of blocs, in most of the real life voting systems are not forbidden, and 

considered a normal player behavior so in such cases analysis of voting system on 

possibility for manipulation by merging is serving for informational purposes rather 

than for measurement of vulnerability. The results shown above shows that in most 

cases it is if players, who can’t create a winning coalition, form a bloc with high 

probability it will be advantageous for low and disadvantageous for high quotas. 

The results achieved in Chapter 5 support hypotheses 2 and 3.  
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6 Conclusion on Manipulations 

6.1 Overview of Manipulation by Annexation 

In a scientific literature manipulation by annexation very often comes together with 

merging and splitting manipulation, and although it is important to understand its 

nature, we have decided not to conduct analysis similar to other manipulations 

described , because of the below reasons. 

The nature of annexation is similar to manipulation by merging, as in both cases several 

players are combined into one, but calculation of payoff is done differently. The power 

of a bloc created by annexation is divided by power of manipulator before manipulation. 

What may come as a surprise is that annexation can be disadvantageous in some cases 

for some of the power indexes; this situation is called bloc paradox and was defined by 

Felsenthal and Machover (1998). They also proved that for Shapley-Shubik index 

manipulation by annexation is always advantageous (satisfies bloc postulate 

   GG ipC i
  ')( ). But for other P-Power indexes and Banzhaf index in some cases 

annexation can be disadvantageous. This result furthermore developed and supported by 

Aziz, Bachrach, Elkind, & Paterson (2011) and Lasisi (2013) with simulation results. 

To conclude on manipulation by annexation consider the example from Felsenthal and 

Machover (1998) which shows different behavior of S-S and BZ indexes. 

WVG G = [11; 6, 5, 1, 1, 1, 1, 1]; 

 G1  = 0.47826; 

 G1  = 0.47826; 

1p  annexes 3p  to create new WVG G’ = [11; 7, 5, 1, 1, 1, 1], in which weight of 

311  pp  = 7. 
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 '1 G = 0.53; 

 '1 G  = 0.47222; 

 '1 G  >  G1  => manipulation by annexation is advantageous for Shapley-Shubik 

index. 

 '1 G  <  G1 => manipulation by annexation is disadvantageous for Banzhaf index. 

For analysis of payoff we ue Shapley-Shubik index, for which annexation manipulation 

is alwas advantageous => whenever chosen quota, manipulation would be 

advantageous. Because of this, used analysis methods are not applicable for it. 

6.2 Conclusions on Manipulation by Splitting and Merging 

In Chapter 4 and 5 we were able to prove all three proposed hypotheses. We found that 

splitting manipulation reaches its maximal values for high quotas, as well as probability 

of advantageous split, which supports hypothesis 1. We proved that bounds for merging 

manipulation are reversed to bounds of splitting manipulation, which supports 

hypothesis 2. And finally, showed that merging manipulation reaches greatest values of 

payoff and probability of being advantageous for small quotas, which supports 

hypothesis 3. 
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Figure 6.1. Probabilities of advantageous split and merge manipulations for WVGs with from 5 to 20. 

 
To better summarize the results on Manipulation by merging and splitting we show 

results in a graphical form outlining both probabilities of advantageous manipulations 

on it (Figure 5.6). Our findings prove that he affects that quota has on probabilities of 

manipulation should be considered when designing a weighted voting system. In 

different voting systems certain actions by voters can be undesirable, but very hard to 

forbid by limiting possible behaviors. For example, for manipulation by merging voters 

doesn’t have to officially create a bloc, they can reach an agreement to vote the same 

way. As can be seen from Figure 6.1 and Figure 5.3 the probability of such action is 

getting smaller with increase of a quota, but on the other hand probability of 

advantageous manipulation by splitting and maximal payoffs from both reviewed 

manipulations are increasing. The meeting point of these probabilities falls on the 

values around 0.75 to 0.8 but their average probability reaches its lowest values closer 

to quota that equals to 0.95. However, because standard deviation of splitting and 

maximal payoffs of both manipulations for such quotas are high (Figure 4.3), these 

values cannot be considered as a “safe choice”. Our empirical results suggest that the 

most stable quotas are between 0.7 and 0.75. These results may differ for WVGs with 

different number of players, that's why it cannot be used as a measurement but rather 

they have value as guide for voting system designers and players. It may also be a signal 

to conduct a comprehensive analysis of a WVG. From the point of a manipulator, who 

is seeking to achieve highest possible payoff, the high quotas are good for both 
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manipulations, while it is easier to find an advantageous merge for low quotas, 

maximum values are achieved for high quotas. The number of players also affects 

probabilities and expected values, as our experiments have shown, higher number of 

players will greatly decrease overall effectiveness of a splitting manipulation and 

improve predictability, while for merging manipulation lower number of players means 

lower probability of advantageous manipulation and more stable trend of expected 

values. 
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7 Evaluation 

The analysis conducted in Chapter 3 could be applied to any existing weighted voting 

systems, to test its manipulation resistance. In this Chapter we will answer the question, 

how well a weighted voting system in Council of the European Union under the Treaty 

of Nice, which was in effect until March 2017, was designed, from a point of 

manipulation analysis. Sequentially the same analysis would be carried out for a 

weighted voting system of CEU under the Treaty of Lisbon, which substituted the 

Treaty of Nice. The results would be compared to find out if a change of the system 

brought a better stability and resistance to manipulations by splitting and merging. In 

addition, since both of these systems aren’t simple WVGs, we can unveil how 

manipulations are affected by multi-majority systems. In 2003 the problem of 

computation of power indexes in multiple-majority systems was researched by Algaba, 

Bilbao, Garcıa and López, and we apply their findings in next setction to present CEU 

case-study. 

7.1 Case Study 

7.1.1 Weighted Voting System in Council of the European Union under the Treaty 

of Nice 

CEU under Treaty of Nice was in use from 2003 to 2017. It is based on a triple majority 

system: majority of weights (>74%), majority of population (>62%), that also can be 

seen as a rule with weights, and majority of countries (>50% + 1) which is a simple 

majority rule. The WVG for this system can be noted as follows: 

WVG = [256; 29, 29, 29, 29, 27, 27, 14, 13, 12, 12, 12, 12, 12, 10, 10, 10, 7, 7, 7, 7, 7, 

4, 4, 4, 4, 4, 3]; 
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Based on the theoretical results and simulations in Chapter 3 we can suggest that 

because of a medium quota (0.74) and a large number of players, this WVG has a 

balanced resistance, even though it is a good target for manipulation by merging, it is 

resistant to splitting manipulation. It is also interesting to notice how a simple majority 

rule for a number of countries affects the payoffs of manipulations. 

We have used the same simulation environment described in Chapter 3 with several 

modifications that allowed us to evaluate single simple WVG and WVG with addition 

of simple majority rule. 

Even though, the nature of players in EU Council makes manipulation by splitting very 

unlikely, we are presenting the results below to show what affect multiple-majority rule 

has on manipulation by splitting. To clearly see the difference tests were done in 2 

variance - first only for the first rule of Nice Treaty (weights > 74%, Figure 7.1) and 

second for all of the rules (Figure 7.2). 

 

Figure 7.1. Manipulation by splitting in Council of the European Union considering only the first rule 
(weight > 0.74*W). 
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Figure 7.2. Manipulation by splitting in Council of the European Union. 

 
As it follows from the Figure 7.2, trend of expected values is similar to the one in 

Figure 7.1 and Figure 4.5 with an exception for low quotas, as both the highest values 

for payoff and expected payoff are achieved. With growth of the quota, Figures 7.1 and 

4.5 are becoming almost identical, so from manipulation analysis point, adding a simple 

majority rule to a weighted voting system will increase expected value of splitting 

manipulations for low quotas. 

Under the Treaty of Nice the quota = 0.74 was used, according to a Figure 7.2 it is a 

quite stable value with expected value around 1 and small standard deviation (Figure 

7.3). 
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Figure 7.3. Standard deviation of manipulation by splitting in Council of the European Union. 

 
Hereby we can conclude that quota for voting in Council of the European Union is 

chosen optimally for ensuring stability and resistance of a system to manipulation by 

splitting. 

In contrast to splitting, merging manipulation is quite likely to happen in Council of the 

European Union, so the appropriate analysis isn’t only interesting for the purposes of 

identifying how multiple-majority system affects manipulation, but also can be used to 

achieve some practical results, which we will do in the next section about Treaty of 

Lisbon, for the voting system that is currently in use in EU Council. 
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Results of simulation: 

 

Figure 7.4. Manipulation by merging in Council of the European Union considering only the first rule 
(weight > 0.74*W). 

 

Figure 7.5. Manipulation by merging in Council of the European Union. 

 
When adding the simple majority rule to WVG, same as for splitting manipulation, the 

main difference in tendency of expected value happens for low quotas, which can be 

seen from Figure 7.4 and Figure 7.5. Also maximum values for multiple-majority 

system for low quotas are noticeably higher. Based on this observations, we can 

conclude that simple majority rule (in this case >50% of players), when added to WVG 

affects the behavior of manipulation by merging significantly. The question on 
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correlation between changes of simple majority rule and its effects on WVG 

manipulations could be a field of further research. 

 

Figure 7.6. Standard deviation of manipulation by splitting in Council of the European Union considering 
only the first rule (weight > 0.74*W). 

 

Figure 7.7. Standard deviation of manipulation by splitting in Council of the European Union. 

 
The picture for standard deviation is quite similar, except that WVG with simple 

majority rule seems to be more stable for changes of quotas between average values 

(Figures 7.6 and 7.7).  

In general, chosen value of quota = 0.74 seems to be a balanced choice between the 

values of expected payoff and its standard deviation. Even though, for this quota the 
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expected payoff >1, the standard deviation is quite small, which shows a good 

predictability and stability of the system 

Conclusion on weighted voting system of decision making in Council of the 

European Union under the treaty of Nice:  

 

Figure 7.8. Probability of advantageous manipulation by splitting in Council of the European Union. 

 

Figure 7.9. Probability of advantageous manipulation by merging in Council of the European Union. 

 
As it follows from the analysis the chosen value of quota for number of voters in the EU 

Council provides the system with a good stability and predictability for manipulation by 

splitting and merging. Players can expect slight benefits from merging while splitting 

expected to be disadvantageous, both have moderate extreme values. Probability of 

advantageous merge for chosen quota is slightly higher than 0.5, which means that more 

than a half of randomly created blocs were advantageous. Split on the other hand almost 
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doesn’t have chances to be advantageous (Figure 7.8 and 7.9). Addition of a simple 

majority rule affects the payoff behavior for both manipulations quite significantly for 

lower quotas. 

7.1.2 Weighted Voting System in Council of the European Union under the Treaty 

of Lisbon 

Treaty of Lisbon was adopted in 2014, and took full effect in 2017. It uses a double 

majority system, majority of population (>65%) which can be seen as rule with weights 

and majority of countries (>55%) which is a simple majority rule. Because of a 

complexity of an algorithm and the fact that it is sensitive to the cumulative weight of 

players, it is not possible to calculate Shapley-Shubik indexes in a reasonable amount of 

time if exact population figures were used. To solve this problem we approximated 

states populations with weights, using a rounding formula round (population/100). Then 

WVG can be noted as follows: 

WVG = [3317; 87, 113, 71, 42, 9, 106, 57, 13, 55, 667, 822, 108, 98, 47, 607, 20, 29, 6, 

4, 170, 380, 103, 198, 54, 21, 464, 99, 653]; 
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Under the Treaty of Lisbon, the quota equals to 0.65, which is lower than under the 

Treaty of Nice, based on the results from chapter 3 we can suggest that it may lead to 

increase chance of advantageous merge manipulations and its expected payoff. For 

simple WVG with small quota splitting manipulation is less likely to be advantageous 

with an expected payoff little under 1, but because of a double-majority system with a 

simple majority rule, as we saw from the previous example, the results for small quotas 

is curved compared to simple WVG. Therefore we can predict that for weighted voting 

system in CEU under the Treaty of Lisbon both manipulation by splitting and merging 

would have an expected payoff > 1 and with high chance (>0.5) of advantageous split. 
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Results of simulation: 

 

Figure 7.10. Manipulation by splitting in Council of the European Union under Treaty of Lisbon. 

 

Figure 7.11. Manipulation by merging in Council of the European Union under Treaty of Lisbon. 

 
For the splitting manipulation, the picture for expected payoff (Figure 7.10) is similar to 

the voting under the Treaty of Nice (Figure 7.2), but noticeably more smooth for high 

quotas and the deviation for low quotas as well as expected payoff are much lower. 

Quite opposite happened to a merging manipulation, as can be seen on Figure 7.11, it is 

more similar to the Figure 5.1 than to the Figure 7.5. Expected value at first is growing 

and after a value of quota ratio around 0.8 it starting to decrease to the lowest point, 
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which is achieved for the highest quota. Chosen for CEU voting quota of 0.65 gives a 

value of expected payoff for splitting and merging manipulation slightly higher than 1, 

which shows that a manipulator can expect a gain in power for both analyzed 

manipulations. 

 

Figure 7.12. Standard deviation of expected value of manipulation by splitting in Council of the European 
Union under Treaty of Lisbon. 

 

Figure 7.13. Standard deviation of expected value of manipulation by merging in Council of the European 
Union under Treaty of Lisbon. 

 
Interestingly in contrast to voting under the Nice Treaty, simple majority rule hasn’t 

affected standard deviation (Figure 7.12) for splitting manipulation, and it is very 

similar to the result from chapter 4 (which is a little bit flatter, because of the 
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differences in number of players of tested samples). Standard deviation for merging has 

a noticeable difference for low quotas, where its values are much lower, but for medium 

and high quotas trend is identical. Chosen value of quota = 0.65 ensures low standard 

deviation, therefore high predictability of effects of manipulation by splitting and 

merging on the voting system. 

 

Figure 7.14. Probability of advantageous manipulation by splitting in Council of the European Union 
under Treaty of Lisbon. 

 

Figure 7.15. Probability of advantageous manipulation by merging in Council of the European Union 
under Treaty of Lisbon. 

 
On a contrary to voting under the Treaty of Nice, where only merging manipulation is 

more likely to be advantageous, both manipulations in voting under the Treaty of 
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Lisbon have high probability of being advantageous >50%. This probability for splitting 

manipulation is almost 80% and for merging around 60%, these are very high values, 

which show that it is easy to find an advantageous manipulation in this voting system. 

7.2 Conclusions on the Case Study 

From the presented analysis it is evident that transition of voting rules of Treaty of Nice 

to Treaty of Lisbon has negatively affected the manipulation stability of a system. 

Splitting manipulation has become much more likely to be advantageous with higher 

expected payoff and standard deviation. But as was discussed before, splitting is 

unlikely to happen in Council of the European Union, therefore the results on splitting 

manipulation have rather theoretical value on influence of multi-majority system of 

payoff behavior. From the practical point - it is expedient to evaluate results of merging 

manipulation. The change in resistance of a system for merging manipulation isn’t so 

clear, the expected payoff has slightly decreased, but the probability of advantageous 

merge has noticeably increased. Standard deviation for both voting systems is quite low. 

Using the study from chapters 4 and 5, we were able to roughly predict the results of 

manipulation analysis for both examined WVGs. 

The results on the effects of multiple-majority systems on a payoff behavior for changes 

of quota, turned out to be heterogeneous, because of that it is hard to make precise 

conclusions, what is evident is that addition of simple majority rule to WVG influence 

correlation of payoff to quota quite significantly. This area can be seen as a field of 

future work as more advanced study techniques can be applied to test the systems, such 

as multiple-majority system in CEU. 

7.3 Discussion of the Results 

In this thesis an effect of a size of a quota on a payoff in the conditions of manipulation 

by merging and splitting was studied using experimental analysis. A specific simulation 

environment was created with the set of programs for creation of different random 

WVGs, simulation of manipulations and calculation of payoffs for Shapley-Shubik 

index. We found that expected values for manipulation by splitting are growing with 

increase of a quota as well as extreme values of payoff, standard deviation and 

probability of advantageous split (Chapter 4). For manipulation by merging, on the 
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other hand, expected payoff and probability of advantageous merge is decreasing with a 

growth of a quota (Chapter 5), while there is no strong link between standard deviation 

of payoff and value of quota. These results supported hypotheses 1 and (see section 

3.3.). In section 5.3 we have proved a theorem 5.2 that satisfies conditions of hypothesis 

2, and we have used these results to find new bounds for merging manipulation. 

In addition, the effects of a quota for different sizes of WVGs were studied, and we 

have found that depending on a number of players in the game the trends for expected 

and extreme values, standard deviation of payoff and probability of advantageous 

manipulation may significantly differ. Nevertheless, achieved results don’t conflict with 

any of the hypotheses. 

Finally, we applied methods used in the simulation to a real world WVGs on the 

example of voting system in Council of the European Union under the Treaty of Nice 

(active 2003 – 2014/2017) and the Treaty of Lisbon (took full effect in March of 2017). 

We found that transition to the new system decreased overall manipulation resistance of 

the voting system. 

The results of the work fill the gap in previous research of manipulation payoff 

properties, such as correlation with a value of a quota, number of players, minimal and 

maximal bounds for merging manipulation for k > 2. 

7.4 Limitations of the Thesis 

To achieve reliable results, we have limited the number of fake-players for splitting 

manipulation and number of manipulators for merging manipulation, but as it is evident 

from the maximal and minimal bounds of manipulations, these factors can significantly 

affect the payoff. In future studies the effects of these factors can be studied to extend 

presented analysis. 

Number of test WVGs samples was limited for the sake of saving computational time, 

as indexes calculation for large WVGs takes significant amount of time. For WVGs 

with more than 30 players number of test samples was set to 100 for each quota value. 

The smallest number of test samples was 50 when payoffs for WVGs with number of 

players from 5 to 20 for each value of quota were calculated (Figures 4.5, 4.6, 5.5 and 
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5.6). However it lead to some limitations, in particular some level of inconsistency of 

results, especially for extreme values of payoff. In future works may be used faster 

algorithms to allow for higher number of tests. 

In this work we focused on the Shapley-Shubik power index and have presented some 

additional results on Banzhaf index, but chosen indexes have limitations, for example 

they doesn’t give an opportunity to study annexation manipulation for the reasons 

described in section 6.1. 

For the efficiency of the simulations we used simple algorithms for creation of WVGs 

and manipulations, for that reason created WVGs are likely to have similar properties: 

average weigh values, average gap between weights and other properties - as a 

continuation of this research it is possible to replicate similar test using more advance 

algorithms. Also in this work only unanimity and non-unanimity WVGs were studied, 

while there are several more classes of WVGs, like excess unanimity (w(P) > q). This 

area can be a field of future studies. 
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8 Thesis Summary and Future Work 

In this work were experimentally investigated the effects a quota has on manipulations 

by splitting and merging. To measure results we have used Shapley-Shubik value, 

which the most prominent P-Power index. This work aimed to expand results that were 

found by Lasisi (2013), Aziz and Paterson (2009) and Lasisi and Allan (2011). on 

effects of manipulations on power indexes. The main objectives were to find correlation 

between value of quota and effectiveness, predictability of weighted voting systems. 

We presented theoretical observations based on a nature of a Shapley-Shubik index for 

both considered manipulations to formulate three hypotheses and found evidential proof 

for them through the experiments with large number of samples. The results showed 

that expected value, probability and standard deviation of payoff of manipulations is 

dependent on choice of a quota. While splitting manipulation is less likely to be 

advantageous and less effective for WVGs with low quota, manipulation by merging 

behaves oppositely, and has the lowest probability of being advantageous and lowest 

expected payoff for high quotas. These results show that it is possible for voting system 

designer to decrease likelihood and average payoff by choosing appropriate quota.  

Based on observation of nature of splitting and merging manipulation we proposed 

hypothesis 2 and were able to prove it and apply findings to discover full bounds for 

maximal and minimal possible payoff for manipulation by merging, which were not 

seized before. 

Along with the main objectives of the work, we have found several other interesting 

results and correlations. Most importantly, the correlation between manipulations 

effectiveness and number of players in WVGs were found, showing how trends for 

expected payoff and probability of advantageous manipulation are changing for number 

of players from 5 to 20 for both examined manipulations. 

We concluded the work with an application of manipulation analysis to a real world 

weighted voting system. The voting in Council of the European Union under the Treaty 
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of Nice and Treaty of Lisbon were analyzed and we have find that the change of voting 

system from triple-majority to double-majority has negatively affected the manipulation 

resistance of a system. We also discovered some additional results on effects of simple 

majority rule to WVG on the manipulations based on these specific examples. 

Several areas of future research were highlighted in this work. In particular, emerging 

from results for hypotheses 1 and 3, the question of manipulations in large WVGs can 

be investigated; as it is evident from the results in chapter 4 and 5 that number of 

players has a great effect of manipulation payoff values. The relevancy of hypotheses 1 

and 3 for Banzhaf index can also be researched, as well as extend the results on the 

manipulation by annexation. Furthermore, manipulations study in multiple-majority 

systems can show some unpredictable results, as there is a significant difference in 

effects of manipulation for different voting systems. 
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Appendix A – Source Code of Used Programs 

Source code for MatLab 7.9.0(R2009b). 

Program to create a random WVG. 

function [ result_output ] = RandomWVG( num_of_players, maximal_weight ) 

i = 0; 

result(1)=1; 

r(1)=0; 

maximal_weight = maximal_weight; 

j=0; 

minR = 0; 

j1=0; 

minR1 = 0; 

s=1; 

result(1:num_of_players)=1; 

while(0.95*sum(result)>sum(r)+minR || 0.95*sum(result)>sum(r)+minR1 || s == 
1)%unanimity check 

    for i = 1:num_of_players 

        result(i) = randi([1, maximal_weight]); 

    end 

    r=result; 

    [minR,j] = min(r); 

    r(j)=[]; 

    [minR1,j1] = min(r); 

    r(j1)=[]; 

    s=0; 

    for l=1:length(result) 

        if(result(l)>=round(0.5*sum(result))+1) 

            s=1; 

        end 

    end 

end  

result_output = result; 

end 
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Program to create a random split of the player. 

function [ v, j ] = SplitElem( w, i ) 

%v - result vector 

%j - number of fake-players 

v=w; 

v(i)=[]; 

splittingWeight=w(i); 

j=0; 

while(splittingWeight>1) 

    j=j+1; 

    newWeight = randi([1,splittingWeight-1]);   

    splittingWeight = splittingWeight-newWeight; 

    v(length(v)+1)=newWeight; 

end 

r = randi([1,j+1]); 

if(length(w)-1+r>length(v) || j<2) 

   v(length(v)+1)=1; 

   j=j+1;% 

else 

   v(length(w)-1+r)= v(length(w)-1+r)+1; 

end 

  

  

end 
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Program to create random merge of players. 

function [ resultV, mergedElems ] = MergeElem( v ) 

numOfMerge = min(randi([2,4]),length(v)-2); 

result = v; 

j = 0; 

tryCount=0; 

mergedElems=19999; 

while(j==0 || (sum(v(mergedElems))>0.5*sum(v))) 

    h = 1:length(v); 

    mergedElems(1:length(mergedElems))=[]; 

    for i = 1:numOfMerge 

        j = randi([1,length(h)]); 

        mergedElems(i) = h(j); 

        h(j)=[]; 

    end 

    tryCount=tryCount+1; 

    if(tryCount>10)%if too many tries 

        numOfMerge = max(numOfMerge-1,2); 

        tryCount=0; 

    end 

end 

  

resultV(mergedElems) = []; 

resultV(length(result)+1)=sum(v(mergedElems)); 

  

end 
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Program to calculate S-S index of player using direct enumeration method. 

function [ result ] = ShapleyShubik( w, q, i ) 

v = w; 

v(i) = []; 

result = 0; 

wLength = length(w); 

for j = 1:(wLength-1) 

    comb = combnk(v, j); 

    combsum = sum(comb, 2); 

     

    for k = 1:length(combsum) 

        elem = combsum(k);      

          if(elem<q) 

             if(elem+d>=q) 

                 l = length(comb(k,:)); 

                 result = result + factorial(l)*factorial(wLength-1-l); 

             end 

          end 

    end 

end 

result = result/factorial(wLength); 

end 
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Program to calculate C matrix for Generating functions Method (Leech, 2002). 

function [ c ] = SSGen( v ) 

vLength = length(v); 

J=0:sum(v); 

K = 1:(vLength+1); 

R = 1:vLength; 

d(1:length(J),1:(vLength+1),1:vLength+1) = 0; 

d(1,1,1)=1; 

p=0; 

for j = 1:length(J) 

    for r = 2:vLength+1 

        for k = 1:(vLength+1) 

            d2=0; 

            if(r-1<1) 

                d(j,k,r)=0; 

            else 

                if(j-v(r-1)<1 || k-1<1) 

                    d2=0; 

                else 

                    d2=d(j-v(r-1),k-1,r-1); 

                end 

                d(j,k,r) = d(j,k,r-1)+d2; 

            end 

        end 

    end 

end 

c(1:length(J),1:(vLength+1),1:length(v))=0; 

for r=1:vLength 

    for j=1:length(J) 

        for k=1:(vLength+1) 

            if(j-v(r)<1 || k-1<1) 

                c2=0; 

            else 

                c2=c(j-v(r),k-1,r); 

            end 

                c(j,k,r) = max(d(j,k,vLength+1)-c2,0); 

        end 

    end 

end 

end 
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Program to calculate Indexes of players from matrix C (Leech, 2002). 

function [ result ] = CalcGenIndex( v, c, q ) 

vLength=length(v); 

majority = round(vLength*0.55)+1; 

index(1:vLength)=0; 

for r = 1:vLength 

    for k = 1:vLength      

        sumC=0;    

        for j=(q-v(r)+1):(q) 

            if(j<1) 

                q 

                v 

                v(r) 

            end 

            %if(k>=majority) %for multiple-majority voting 

                sumC = sumC + c(j,k,r); 

            %end 

        end 

        index(r)=index(r)+sumC*factorial(k-1)*factorial(vLength -1-(k-
1))/factorial(vLength); 

    end 

end 

result = index; 

end 
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Program to evaluate effects of quota on manipulation by merging. 

function [ result ] = AssertMerge( iterations ) 

q=[0.5, 0.525, 0.55, 0.575, 0.6, 0.625, 0.65, 0.675, 0.7, 0.725, 0.75, 
0.775, 0.8, 0.825, 0.85, 0.875, 0.9, 0.925, 0.95]; 

  

%%%%%%%%%%%% TREATY OF LISBON %%%%%%%%%%%% 

%v = 
[29,29,29,29,27,27,14,13,12,12,12,12,12,10,10,10,7,7,7,7,7,4,4,4,4,4,3,]; 

%%%%%%%%%%%% TREATY OF NICE %%%%%%%%%%%% 

%v = 
[87,113,71,42,9,106,57,13,55,667,822,108,98,47,607,20,29,6,4,170,380,103,1
98,54,21,464,99,653]; 

%c = SSGen(v); 

  

maxI = 0; 

vmax = [0,0]; 

jmax = [0,0]; 

%%%%%%%%%%%% FOR 3D FIGURES %%%%%%%%%%%% 

%s = 5:20; 

%for k = 1:length(s) 

 %   s(k) 

for i = 1:iterations 

    i 

    v = RandomWVG(randi([5,20]), randi([50,150]));%s(k), randi([50, 
100+100*(s(k)/20)]));%% FOR 3D FIGURES %%%%%%%%%%%% 

    c = SSGen(v); 

    for j = 1:length(q) 

        mergedElemsValues = 0; 

        before = 0; 

        after=0; 

        q(j) 

        quota=min(round(q(j)*sum(v)) + 1, sum(v)); 

        [v2, mergedElems] = MergeElem(v); 

        vInd = CalcGenIndex(v,c,quota); 

        for p=1:length(mergedElems) 

            before = before + vInd(mergedElems(p)); 

        end 

        afterC = SSGen(v2); 

        v2Index = CalcGenIndex(v2,afterC,quota); 

        after = v2Index(length(v2)); 

        if(before==0) 

            payoff(i,j) = 1; 

        else 

            payoff(i,j) = after/before; 

        end 

        if(payoff(i,j)>1) 

            isBeneficial(i,j) = 1; 

        else 

            isBeneficial(i,j) = 0;             

        end 
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    end     

     

end 

  

for j = 1:length(q); 

    p(j)=max(payoff(:,j));%-
min(payoff(:,j));%sum(payoff(:,j))/length(payoff(:,j));%%;%; 

    h(j) = sum(payoff(:,j))/length(payoff(:,j)); 

    z(j) = min(payoff(:,j)); 

    beneficialChance(j) = 
sum(isBeneficial(:,j))/length(isBeneficial(:,j)); 

end 

%%%%%%%%%%%% FOR 3D FIGURES %%%%%%%%%%%% 

 %   r(k,:)=beneficialChance; 

  %  r1(k,:)=h; 

   % r2(k,:)=p; 

    %r3(k,:) = std(payoff); 

%end 

  

result = payoff; 

standartDeviation = std(payoff); 

figure('Name','Chance of Advantageous Merge','NumberTitle','off');  

plot(q, beneficialChance); 

figure('Name','Standard Deviation Merge','NumberTitle','off');  

plot(q,standartDeviation); 

figure('Name','MinMaxExpected Merge','NumberTitle','off');  

plot(q,payoff,'b.','MarkerSize',5); hold on;  

plot(q,h,q,p,q,z); 

  

%%%%%%%%%%%% FOR 3D FIGURES %%%%%%%%%%%% 

%figure('Name','Chance','NumberTitle','off'); 

%surf(q,s,r); 

%figure('Name','Expected Payoff','NumberTitle','off'); 

%surf(q,s,r1); 

%figure('Name','Maximum','NumberTitle','off'); 

%surf(q,s,r2); 

%figure('Name','Std','NumberTitle','off'); 

%surf(q,s,r3); 

  

end 
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Program to evaluate effects of quota on manipulation by splitting. 

function [ result ] = AssertSplit( iterations ) 

q=[0.5, 0.525, 0.55, 0.575, 0.6, 0.625, 0.65, 0.675, 0.7,  

0.725, 0.75, 0.775, 0.8, 0.825, 0.85, 0.875, 0.9, 0.925, 0.95]; 

  

%%%%%%%%%%%% TREATY OF LISBON %%%%%%%%%%%% 

%v = [29, 29, 29, 29, 27, 27, 14, 13, 12, 12, 12, 12, 12,10,10,10, 
7,7,7,7,7,4,4,4,4,4,3,]; 

%%%%%%%%%%%% TREATY OF NICE %%%%%%%%%%%% 

%v = [87,113,71,42,9,106,57,13,55,667,822,108,98,47,607,20,29,6,4,170,380, 

103,198,54,21,464,99,653]; 

%c = SSGen(v); 

%%%%%%%%%%%% FOR 3D FIGURES %%%%%%%%%%%% 

%s = 5:20; 

%for k = 1:length(s) 

 %   s(k) 

for i = 1:iterations 

    i 

    v = RandomWVG(randi([5,20]), randi([20,100])); 

%s(k), randi([50, 100+100*(s(k)/20)]));%% FOR 3D FIGURES %%%%%%%%%%%% 

    c = SSGen(v); 

    for j = 1:length(q) 

        before = 0; 

        after=0; 

        splittedElemsNum = 0; 

        quota=min(round(q(j)*sum(v)) + 1, sum(v)); 

        q(j) 

        splitIndex=randi([1,length(v)]); 

        vInd = CalcGenIndex(v,c,quota); 

        before = vInd(splitIndex); 

         

        [v2, splittedElemsNum] = SplitElem(v, splitIndex);         

        afterC = SSGen(v2); 

        v2Ind = CalcGenIndex(v2,afterC,quota); 

        for p=1:splittedElemsNum 

            after = after + v2Ind(p+length(v)-1); 

        end 

         

        if(before==0) 

            ratio(i,j) = 1; 

        else 

            ratio(i,j) = after/before; 

        end 

        if(ratio(i,j)>1) 

            isBeneficial(i,j) = 1; 

        else 

            isBeneficial(i,j) = 0;             

        end 

    end     
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end 

  

for j = 1:length(q); 

    p(j)=max(ratio(:,j)); 

    h(j) = sum(ratio(:,j))/length(ratio(:,j)); 

    z(j) = min(ratio(:,j)); 

    beneficialChance(j) = 
sum(isBeneficial(:,j))/length(isBeneficial(:,j)); 

end 

%%%%%%%%%%%% FOR 3D FIGURES %%%%%%%%%%%% 

%    r(k,:)=beneficialChance; 

 %   r1(k,:)=h; 

  %  r2(k,:)=p; 

%end 

result = ratio; 

standartDeviation = std(ratio); 

figure('Name','Chance of Advantageous Split','NumberTitle','off');  

plot(q, beneficialChance); 

figure('Name','Stanard Deviation Split','NumberTitle','off');  

plot(q,standartDeviation); 

figure('Name','MinMaxExpected Split','NumberTitle','off');  

plot(q,ratio,'b.','MarkerSize',5); hold on;  

plot(q,h,q,p,q,z); 

  

  

%%%%%%%%%%%% FOR 3D FIGURES %%%%%%%%%%%% 

%figure('Name','Chance','NumberTitle','off'); 

%surf(q,s,r); 

%figure('Name','Expected Payoff','NumberTitle','off'); 

%surf(q,s,r1); 

%figure('Name','Maximum','NumberTitle','off'); 

%surf(q,s,r2); 

  

end 
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Appendix B – Additional Results 

 

Figure B.1. Maximal values of payoff for manipulation by splitting for WVGs with 5 to 20 players. 

 

 

Figure B.2. Probability of advantageous split for WVGs with 50 players. 
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Figure B.3. Standard deviation of payoff for splitting manipulation for WVGs with 50 players. 

 

 

Figure B.4. Payoff values for merging manipulation for WVGs with 5 players. 
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Figure B.5. Probability of advantegeous merge in WVGs with 50 players. 

  



94 

Appendix C – Correlation Analysis Results 

C.1. Correlation Coefficient for split manipulation for WVGs with 5 to 20 players. 

C.1.1. Correlation Coefficient for Maximal payoff values. 

8414.0),( qMaxPayoffsp ; 

C.1.2. Correlation Coefficient for Expected payoff values. 

5216.0),( qyoffsExpectedPap ; 

C.1.3. Correlation Coefficient for Probability of advantageous split. 

8165.0),(Pr qobabilityp ; 

C.1.4. Correlation Coefficient for Standard Deviation of payoff. 

9121.0),(Pr qobabilityp ; 

C.2. Correlation Coefficient for merge manipulation for WVGs with 5 to 20 players.. 

C.2.1. Correlation Coefficient for Maximal payoff values. 

8223.0),( qMaxPayoffsp ; 

C.2.2. Correlation Coefficient for Expected payoff values. 

5534.0),( qyoffsExpectedPap ; 

C.2.3. Correlation Coefficient for Probability of advantageous merge. 

8672.0),(Pr qobabilityp ; 

C.2.4. Correlation Coefficient for Standard Deviation of payoff. 

7982.0),(Pr qobabilityp . 
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