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Annotatsioon

Soodne pind küberrünneteks merenduse valdkonnas on kiirelt kasvamas. Navigeerimise
parendamiseks ning käitluskulude vähendamiseks kasutatakse nii reisi- kui ka kaubal-
aevadel üha enam infotehnoloogilisi abisüsteeme. Käesoleva lõputöö eesmärk on tu-
vastada sobiv monitooringusüsteem merenduses kasutatavate infosüsteemide turvalisuse
tagamiseks.

ii



Abstract

The cyberattack surface in a maritime environment is constantly growing. More modern
information and computer technologies are being used on cargo and passenger ships to
save on operational costs and increase navigational safety. The goal of this thesis is to find
an optimal security monitoring software that could be deployed in such an environment.
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1. Introduction

As technology evolves, so do the threats related to them. For every new solution, there is
going to be a new problem to be solved. The paper aims to lean in on the mostly untouched
world of the maritime cyber environment and find answers to some of the obstacles it
presents. The safe movement of ships greatly depends on their navigational systems and
the integrity of that data, to ensure that, the introduction of intrusion detection systems is
necessary.

1.1 What is an IDS?

An intrusion detection system (IDS) detects and logs predefined activities on a network. It
monitors system and user actions and recognises patterns typical of attacks[1]. If needed
and programmed to, it will notify necessary staff members to check on certain alerts and
take further actions. It is important to mention intrusion prevention systems (IPS). The
goal of IPSs is similar to what IDSs do however, it is also permitted to take such predefined
actions as blocking or altering the given traffic[2]. From here forward, the term IDS will
also include functionalities of IPS without explicitly mentioning it.

1.2 The background and purpose of IDSs

The background will be introduced by the following scenario, a ship is cruising, it is the
middle of the night, no land in sight, no light sources or anything that would help determine
the position and all of a sudden every navigational device goes dark. This is a dangerous
situation for multiple reasons: 1) The ship has no way of determining directions so it does
not know where to go. 2) It has no way of telling if where it is heading is safe or not.
3) The crew may not be able to call for help. What could have been done to avoid this
situation assuming we are dealing with a cyberattack? This is where the use of an IDS and
its purpose comes into play.

An IDS monitors and logs the network traffic for signs of malicious activity and generates
an alert upon discovery of a suspicious event[3]. Although it means we are not preventing
but catching the act, this could help to avoid such disasters from happening. If appropriate
personnel is notified in time, the mischievous action could potentially be stopped and
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identified before major damage is done to the ship or anyone aboard. So it could be stated
that the purpose of the IDSs is to record specified traffic on a given network and, when
needed, alert professionals to overview it.

1.3 Main working principles

The IDSs can be differentiated based on their main working principles.

The network-based IDS analyse and detects malicious activity on the network, while the
host-based solutions analyse the different resources of the host computer (memory content
and usage, CPU load, network traffic, processes, etc.) to identify hostile activity. To
achieve this goal the anomaly-based systems detect the deviation of the aforementioned
parameters to the state that is considered normal. The signature-based solutions look for
signatures 1 in the network traffic or in different data that can be the sign of the presence of
malicious software. The application-based IDSs analyse the application-related network
data and find different types of protocol abuses.

1.4 History of IDSs

The goal of intrusion detection is to detect unauthorised activities on a given host or
network. The concept of IDS was introduced in the 1980s[4]. The task seems simple but
in reality, it is much more complicated than it first meets the eye. One could argue that
true intrusion detection does not exist since it only identifies evidence of intrusion when
ongoing or after[5]. As Jeffrey R. Yost said in an article published about the early intrusion
detection systems "James P. Anderson alone recognised and pioneered the articulation of

an early vision for intrusion-detection systems", meaning this area of computer science
was neglected for a long time[6]. This comes as no surprise since previously computer-
and computer network security was based on locked doors and guards. In 1983 SRI
International and Dorothy Denning started working on a project about intrusion detection
systems[4]. She was one of the first computer scientists to focus on computer security[6].
The very first version of the intrusion detection system that could evaluate audit data in
real-time was introduced in the early 1990s[5]. This shows us that the earliest IDSs were
host-based (HIDS) but more on that later.

As time passed, more and more features were introduced to the world of IDSs, and their
versions and capabilities started to vary. As of today, there are a relatively high number of
them available and also a huge amount of studies, papers, reviews etc. The manner of these

1Pre-programmed list of known threats and their indicators of compromise (IOCs).
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studies is very specific like this paper from Garand Vira Yudha and Rini Wisnu Wardhani
Design of a Snort-based IDS on the Raspberry Pi 3 Model B+ Applying TaZmen Sniffer

Protocol and Log Alert Integrity Assurance with SHA-3[7]. This research focuses on a
subset of IDSs and their deployments. Papers like these help a great deal in determining
what had and had not been covered in this field. Every researcher can use relevant parts
and avoid doing work that has already been done. There are publications that focus on
optimisation such as An IDS Rule Redundancy Verification[8] by Piyawat Noiprasong
and Assadarat Khurat. As more and more IDSs were released there was a need for rule
conversion. A fairly up to date paper that analyses the before mentioned topic was released
in 2020 [9]. The list could go on about the articles these days.
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2. Various IDS types

We can sort IDSs into multiple categories, based on different characteristics. First and
foremost, we should take a look at where the IDS is deployed. According to the place of
deployment, we can divide the types of software into three main groups:

■ Application-based IDSs;
■ Network-based IDSs;
■ Host-based IDSs.

These classes cover every place an IDS can be deployed. The other major category is
how is it deployed or the main working principle of an IDS. We can divide them into two
subcategories:

■ Signature-based;
■ Anomaly-based.

Last, but not least the before mentioned IDSs could be sorted into two main groups:

■ Open-source;
■ Commercial.

In this section, the meaning of these properties going to be explained along with their
introduction, main features, how they work, what are their strengths and what are their
disadvantages.

2.1 Place of deployment

From the perspective of where an IDS is used three groups were determined: host-based
intrusion detection system (HIDS), network-based intrusion detection system (NIDS) and
application-based intrusion detection system (AIDS). Although they are all IDSs their
working principles are different.
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2.1.1 Application-based IDSs

An AIDS is deployed on layer 7 of the OSI model, the application layer[10]. The OSI
model defines the application layer as the interface responsible for communicating with
host-based and user-facing applications. Attacks against OSI layer 7 are including finding
weaknesses on a web server, not sanitising user input etc[10]. One could argue that this
should be considered a NIDS but there are some key differences in their main features.

As for most of the IDSs, the main features are data collection, feature selection, analysis
and action[4]. These four main characteristics are going to be referred to as core features
and will not be defined later in the document. The core features of an IDS:

Data collection: the IDS captures data that is analysed. Feature selection: basically rule
or rule set selection, deciding how to deal with the data. Analysis: data is compared to a
predefined signature or pattern. Action: based on the result of the analysis, the IDS decides
on appropriate actions, that do not include countermeasures and altering the web traffic.[4]

The unique key feature of an AIDS is that, although it is deployed on a network, it does not
actually analyse network traffic but instead the misuse of protocol and service ports[10].

The main working principles of an AIDS are including, but are not limited to:

■ Misuse of protocol and service ports: an attacker could modify these to tunnel
through firewalls and to make network traffic appear as normal traffic.[10]

■ Denial of service (DoS) based on crafted payload: when an intruder creates an
attack with crafted internet protocol (IP) packets, the DoS can appear as overuse of
computational resources.[10]

■ DoS based on volume: in this case, the anomaly is detected because the network
overflowed with a large volume of traffic. It is relevant because based on packet
content the traffic might not look malicious but the volume is.[10]

■ Buffer overflow: this is one is a commonly exploited vulnerability. In certain cases,
it can result in the execution of malicious software on the victim system.[10]

By detecting these types of network application-layer attacks the AIDS is able to prevent
a great variety of malicious activity either signature or anomaly-based. To stop certain
types of attacks a specific version of IDS must be selected. In larger organisations ADISs
are usually deployed as an application-layer proxy, that can analyse all incoming and
outgoing web requests. One company that provides such appliances is Blue Coat Systems,
a company focused on cyber security and network management software and hardware.
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Some advantages include but are not limited to detecting attacks that would potentially slip
through NIDSs or would not be analysed by HIDS. When placed correctly it can analyse a
great amount of network traffic. Can be signature or anomaly-based and is able to detect a
significant amount of attacks (Misuse of protocol, DoS etc.). Like every software, AIDS
also have drawbacks that include among others that malicious traffic might slip through
if the network traffic is encrypted. It may not get all network traffic to analyse when the
volume of traffic is overwhelming. To detect application-based attacks it needs a huge
number of rules or training sets and that can lead to a large number of false positives before
rules and training sets are refined.[10],[4]

2.1.2 Network-based and Network Node IDSs

As for our second category based on deployment, NIDSs are fairly similar to AIDSs
however, there are major differences, but more on the working principles later. Another
variation of NIDS is the network node intrusion detection system (NNIDS). The difference
between a NIDS and a NNIDS is instead of being placed anywhere on the network they
are placed on the hosts of the protected network, or in other words, they are placed on the
nodes (vertices)[4] as shown in Figure1. Their purpose is to monitor the incoming and
outgoing network traffic of the given node.

NNIDSNIDS

Figure 1. Placement of NIDS and NNIDS

A NIDS could be placed anywhere on the network, it all depends on what we want to
monitor and how we want to do it. It can be next to the firewall however that is not an
optimal solution since it would be monitoring packets the firewall might block anyway[3].
Another way of deployment is after the firewall. If it is there, the NIDS monitors all
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network traffic passed the firewall[11]. A common practice is to have a NIDS in front of
the firewall, to gain an understanding of all the incoming attacks against the organisation,
and one behind the firewall to gain knowledge of attacks that the firewall was unable to
filter. One other common way of placement is on a specific segment of the network, yet not
in a way that all network communication flows through it, but in a way that the network
traffic is mirrored and forwarded to the NIDS[3]. Figure 2 is an example of the before
mentioned positioning of a NIDS. NIDSs are deployed on the network with an aim to
protect all devices and monitor traffic before that could reach the hosts[11]. NIDSs audit
network traffic as it flows on the network and evaluates the content based on predefined
rules[4]. These predefined rules or rule sets can be modified by users if they wish to take
care of problems the NIDS was not programmed to deal with. It can detect an ongoing or
failed attack against the network as well as log them and alert appropriate users to deal
with the problem[4].

Figure 2. Placement of NIDS on a network

Some advantages of a NIDS include that a single node may cover a whole network or a
network segment. Cheaper to deploy and provides real-time monitoring. Fast response,
ongoing network operations will not be disrupted when installing nodes. It is possible that
attackers cannot find it on the network. If there is a device on the network that requires
extra network traffic monitored, NNIDS could be deployed. On the contrary, with huge
network traffic, nodes might start dropping packages. Typically cannot analyse the content
of encrypted packages. Attacks including legitimately looking traffic may not be detected.
Since some switches do not support port monitoring some networks cannot provide all the
required data for NIDSs to analyse. Cannot react to malicious uniform resource locator
(URL) requests.[10],[4]
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2.1.3 Host-based IDSs

The last category based on where an IDS is deployed is HIDSs. Unlike NIDSs, NNIDSs
and AIDSs, HIDSs are placed on a single host to monitor. Why they are necessary is, if the
monitoring of a whole network or a network segment is not possible, or there is no need to
monitor a network, just some hosts on it, HIDS are the best solution?

One could ask the question, why is there a need for a HIDS when there are anti-virus
systems? The answer for that is an anti-virus monitors all activities inside a system but
that it is not sufficient enough to analyse memory attacks, function calls inside the system,
system-specific files, problems with operating system (OS) processes and many more[12].
This is where HIDSs come into play.

HIDS are monitoring the local file system for signs of intrusions or irregularities. They take
great advantage of host-side logging such as system logs and other predefined recording
mechanisms on the host’s side. HIDS can very precisely report what the security breach
was, even the details of what the intruder did and how it was done. They are also very
efficient in analysing network attacks in the same way, the only drawback is that the attack
must reach the host where the HIDS is located. HIDS can also detect improper use of
computational resources, this is especially useful for companies to monitor violations of
user privileges.

HIDS can also do a detailed analysis of an attack, precisely pinpoint what and how an
attack was done, monitor system activities, report attacks against the network originating
from the host machine or read data that was encrypted since the host decrypts it. On the
other hand, a HIDS require an agent on every monitored host which leads to being more
expensive on a relatively large amount of hosts. Host audit logs may occupy a large amount
of disk space and it takes more effort to maintain multiple HIDS.[4],[10],[12]

2.2 Intrusion detection methods

As stated earlier, IDSs could be placed into groups based on how they detect an intrusion.
It includes two main groups: signature-based and anomaly-based IDSs. They are funda-
mentally different and have little to nothing in common. One of them is analysing attacks
based on predefined rules and rule sets, the other one using "default behaviour" samples to
determine if there is something unauthorised going on[13]. Both of them can be any IDSs
from the previously mentioned categories.
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2.2.1 Signature-based IDSs

One of the two major categories based on how an IDS detects intrusion is signature-based
or misuse detection. Most of the attacks have unique signatures based on which they can
be identified and this type of IDS uses this to its advantage. They are easy to understand
and use since the only thing needed is to learn how to specify a pattern and to decide what
types of patterns we want the IDS to trigger.

Signature-based IDSs are using rule sets, which are files or a file, containing a defined
traffic pattern that will trigger a reaction that is specified. These rules can contain previous
attack patterns, known malicious intrusion sequences, system vulnerabilities etc.

Each intrusion triggers unique reactions like denied access to a file or directory, failed
login attempt, failed attempt to run an application etc. These unique patterns are then
used to detect and alert when a similar attack is happening in the future. Data is collected
from different places such as network traffic, particular resource usage, number of requests
from the same IP, etc. After this data is collected and analysed, it could be added to the
knowledge base for future uses.

Some advantages of such an IDS include easier detection of attacks if the signatures are
well known. In modern systems, pattern matching is optimised thus making it effective
and quick. Such systems are versatile and rules might be easier to understand compared
to anomaly baselines. On the other hand, the collection of signatures must be constantly
updated. It is possible that a signature-based IDS fails to identify unique attacks. Rules
may be redundant and use up computational resources to calculate an already evaluated
result in a different way.[12],[13]

2.2.2 Anomaly-based IDSs

The other section of IDSs based on how they detect intrusions are the anomaly-based IDSs.
Their techniques are fundamentally different from signature-based IDSs so their usage
differs greatly. Their perspective is opposite to the signature-based variants, they do not
monitor the individual packets one by one, but instead, they are comparing their behaviour
to a standard pattern, and if that differs it gets classified as an anomaly.

They cannot rely on rule sets like signature-based versions. They must use a behaviour
profile of the system, that defines normal activities and anything that greatly varies from
this pattern triggers the countermeasures.
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The IDS refers to a behaviour profile that defines the normal behaviour of the system. Any
variation from the normal will trigger alarms. This version can detect zero-day exploits.
Anomaly detection can be done during run time or later down the line. Just like AIDSs,
anomaly-based IDSs are great against protocol or port missuses, detecting DoS attacks
with crafted IP packets and other network or resource failures[10]. Attacks that do not
have known signatures are also detectable, like new worms or viruses.

Advantages of anomaly-based IDSs include detecting new versions of attacks with no
known fingerprints. Behaviour profiles can get more advanced as time passes on. Cus-
tomised profiles for different networks and applications can be created to detect attacks
that are unique to a system. However, it might be hard to understand and make a profile. It
is challenging to find the boundary between normal and abnormal behaviour. All proto-
cols analysed must be well defined and tested for accuracy, otherwise, it might associate
malicious behaviour as normal.[10],[12],[13]

2.3 Marketing model

Some of the important properties of software were discussed but a key property is still
unspoken, the marketing model. As in every field, there are commercial and open-source
versions of IDSs. Which one is better greatly depends on factors like, what is it going to
be used for? Or who is going to use it?

2.3.1 Commercial and open-source IDSs

The main difference between these two types is that most of the time the source code of a
commercial IDS is not bought with the product and an open-source IDS is free. There are
of course exceptions. An open-source model usually means that the source code is open to
the public, so anyone can download and modify it to their liking. It is also commonly true
that the development of this software is community-driven. Some well known open-source
licenses are GNU general public license and Apache License. More about these licenses
can be found on their official website at [14] and at [15].

Most of the time commercial software is developed by a given company, they do not sell
the source code, they sell the software. As mentioned previously, there are exceptions,
there is open-source software that is monetised and there is commercial software that is
highly modifiable and arrives with source code. Open-source software is usually highly
customisable, free and has good community support. However, problems might not
have solutions documented. Finding the correct version for an individual task might be
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challenging. Might require a lot of extra research to make such software work properly.

Commercial license software usually has strong support from the entity that developed
it. They are mostly well documented and contain quality guarantee, on the other hand,
commercially licensed software might be expensive. It might not contain options to
customise the product.

A common practice is to use an open-source IDS with commercial signature packs. Signa-
ture packs are significantly cheaper than purchasing a commercial IDS so this combination
would result in an optimal cost-benefit ratio.
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3. Latest and Top IDS Software

The paper covered various types of IDSs based on deployment, working principle and
marketing model. In the next section, the focus is shifted toward specific IDSs. Some
commercial and open-source IDSs are going to be reviewed focusing on their main features,
strengths, disadvantages and where they belong on the spectrum discussed so far.

3.1 Common commercial IDSs

Most of the commercial IDSs are not transparent, meaning there is not much information
about what principles they use and there are not many studies on them since they are
expensive. They are hard to categorise because they are made for multiple purposes and
IDS functionalities are just one part of them. Most of the information about them is only
on their websites.

3.1.1 Security Event Manager

SolarWinds’ security event manager (SEM) is a commercial IDS. Because of how com-
mercial products work, it is very hard to find research related to them but fortunately, the
company’s official documentation is available to the public. SolarWinds is a software
company that mainly develops system management, monitoring and other technical tools.
Their product, the SEM, is a versatile application for a lot more than just being an IDS, but
it is part of its main features.

It can collect logs from the system to monitor and analyse them as well as application or
security logs. It can also log network devices like firewalls, routers, switches etc. SEM
can monitor events in real-time and also safely transfer data. It is not stated specifically
what type of IDS is the SEM, but according to the documentation, it seems close to a
signature-based NIDS or NNIDS.

The document mentions the biggest advantages of the software include capturing events in
real-time, buffering the events locally if network connectivity is lost to SEM and encrypting
and compressing the data for efficient and secure transmission to SEM. However, these
might come at a cost, for example, encryption and compression take time and computational
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resources. The installation documentation is vague, and the SEM reports application is
Windows only. [16]

3.1.2 Cisco Firepower NGIPS

Cisco Firepower NGIPS is also a very versatile software. The name NGIPS stands for new
generation intrusion prevention system. An IPS differ from an IDS but to no great extent,
the main difference is that an IPS does an active countermeasure, beside making a log or
sending an alert, it may drop a package or do something else that is specified as action.

Cisco Firepower NGIPS can be bought as an individual software or with hardware as well.
It monitors the target in real-time and automates security. Cisco Firepower NGIPS could
be deployed as HIDS or as a NIDS as well. The software’s base is Snort, one of the most
popular IDS. Cisco Firepower NGIPS can be configured as signature or anomaly-based
making it a very flexible application. It automatically upgrades the rule sets and the
behavioural profile, by constantly monitoring the traffic, discovering information about the
network, the OS, devices etc.

Cisco Firepower NGIPS has constant upgrades, protects against advanced threats, is versa-
tile and could be deployed almost anywhere in any way according to the documentation.
However it has little to no documentation on operation, it is heavy on the budget, and
creating accurate behavioural profiles for a new network is time-consuming. [17]

3.1.3 Snort rule subscription

Snort rule subscription (SRS) is the commercial version of snort. Since in the next chapter
one of the IDSs in focus going to be snort, this section will not contain specific information
about it, just the things included in the subscription. SRS provides the user with three
subscription options: personal, business, and integrator.

A personal subscription provides the user with a time advantage because new rules will be
available immediately, not thirty days after release. The users can submit if a rule provides
false positives or negatives and help improve the rule sets.

The business version offers instant rule set usage from a higher-level group. They also
receive priority customer support status when reporting false positives or negatives.

Integrator’s subscription is for those who would like to integrate snort into their application
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or server and release it for commercial use. It enables them to integrate official rule sets
and distribute them. [18]

3.2 Open-source IDSs

They are more transparent, a lot of communities use them, and there are a greater number
of studies conducted using these. They are mostly free and highly customisable. Use
these to solve problems that commercial versions are not fit for, because the source code is
modifiable to a great extent. Exact solutions to problems might not be available, yet due to
the high community support solving those should be easier.

3.2.1 Snort

Snort is one of the most popular open-source IDSs available. It was originally created by a
company named Sourcefire that now belongs to Cisco. As it is stated in the official Snort
documentation, the software is a NIDS that uses signature-based detection to alert in case
of malicious activities. Snort has versions 2 and 3 with the latter being the more advanced,
including features like multithreading[19].

It has five main components: packet capture, packet decoder, preprocessor, detection
engine, and output. First Snort will collect all network traffic, analyse the type of packets
then forward it to the processor. The processor will reassemble the packets and if any of
them triggered a rule, appropriate actions will be taken[19]. Snort can also run on Linux,
BSD, macOS X and Windows[20].

Snort has good documentation online that is easily accessible and describes most features
in detail. On the other hand, created rules might be redundant and contain no HIDS and
anomaly-based capabilities.

3.2.2 Suricata

In Suricata’s official documentation, it is stated that it also is a signature-based NIDS. It
is being developed by the Open Information Security Foundation (OISF). Actually, it is
very similar to Snort in a lot of senses for example it is also licensed under version 2 of
the GNU general public licence. Suricata runs on Linux, BSD, macOS X and Windows
platforms. Suricata uses a packet decoder and detection engine[19].

Since Suricata and Snort are similar there is a study on how to convert rules between the
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two IDSs called "Rule conversion mechanism between NIDPS engines"[9]. IDS Suricata
uses af_packets to improve performance[19]. In Suricata’s packet decoder, every packet is
converted to a data structure supported by Suricata. Rules used by the IDS support layer 3,
layer 4 and layer 7 of the OSI model[19]. Suricata can keep up with dense network traffic.
It has a multi-threading feature and good documentation with video guides by the OISF.
Something that might be inconvenient is that it generates big log files by default but it has
good documentation that describes configurations thoroughly.

3.2.3 Zeek

Zeek has a very long history as an IDS. The very first version dates back to the 1990s.
It was designed and developed by Vern Paxson. The original name of the software was
called Bro but its name was later changed to Zeek. The success and popularity of Zeek
reside in top tear academic studies as well as in the fact that they try to connect academic
knowledge with everyday problems and solutions.

Zeek is a NIDS that uses anomaly-based detection and can run on UNIX based OSs[21].
Zeek is designed to analyse live network traffic although it can process captured network
traffic. Zeek is a great tool to use in an industrial environment since it can be deployed
using the Modbus protocol[22]. Zeek uses its own scripting language.

Monitoring is highly customisable and it is possible to detect attacks without known
signatures. Zeek has good official documentation. However, it needs a lot of storage space
and takes more effort to install. It can only run on UNIX based OSs.

As we can see every one of these studies are focusing on one very specific argument and
that is why this paper is created, to summarise, cover the research gaps and update the
information regarding its topic.
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4. Limitations

In this research, three NIDSs will be analysed: Snort version 3, Zeek and Suricata. The
reason why this software was chosen is that all of them are open-source and highly
customisable. There are a lot of aspects that must be considered when executing a project
and among those are the limitations. There are additional reasons why only NIDSs were
selected for testing, like the environment of deployment and the main characteristics of the
system, in which the IDS will be deployed.

4.1 Environment of deployment

On larger networks, for example on an autonomous vehicle, there are a lot of nodes, so
inspecting every single one of them requires a large number of HIDSs or NNIDSs. This
would require a lot of time to set up and maintain. Besides time, it would increase the cost
to monitor such a network since an IDS should be deployed on or in front of every node.

There are other circumstances that must be taken into consideration. In safety-critical
industries, head organisations may require special specifications to be met. For example in
off-shore transportation International Maritime Organisation (IMO) require ship producers
to install certified components on the ships, meaning that for every node where a HIDS
would be installed, negotiations should be done with the manufacturers so their product is
certified with the HIDS installed. This process would be too complicated to carry out. An
AIDS would be impractical because the content of the network traffic must be analysed.
AIDS solutions exist for common networking protocols, such as hypertext transfer protocol
(HTTP), while the internal network of a ship uses less common, specialized solutions to
which, there is no AIDS solution. This leaves the NIDSs as the only viable option.

4.2 Intended task

Current research will focus only on the speed of the IDSs, along with their resource usage
and not their performance from the perspective of intrusion detection, meaning that the
detection and false-positive rates are not tested. This is due to the fact that the final product
will use a custom function to evaluate the data passing through it, so the effectiveness of
the base IDS is not in the first place to be analysed. However, if an IDS cannot keep up
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with the traffic due to speed limitations, some important data may not be evaluated and
attacks could slip through.
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5. Method

The method was designed to align with other research conducted at the NATO Cooperative
Cyber Defence Centre of Excellence (NATO CCD COE). The research environment was
realised as a virtual environment first, to allow the method testing, while the components
of the physical environment were procured.

The virtual environment is based on VMware player and the installed OS is an Ubuntu
server. The physical environment contains Raspberry Pis (RPI) and the installed OS is
Raspbian Lite (Legacy) which is a Debian version 10 (buster) based OS. The equipment
to create both the virtual and the physical environment was provided by NATO CCD
COE as well as the source traffic used to simulate a live network in the form of packet
capture (PCAP) files. These PCAPs were recorded in a live network of Crossed Swords
Cyber Exercise. To test the behaviour of the system with malicious packets Secure Water
Treatment (SWaT) dataset was used[23].

5.1 Process of experiments

According to [24], traditionally networks have been analysed in two ways. One of them
is using software tools, running on off-the-shelf workstations and network cards. This
approach is easy on the budget but usually not considered a good approach on high-speed
networks due to hardware limitations. The other is using custom hardware which is suitable
to use on high-speed networks but considered expensive. To measure the performance of
such tools on a network, a utility must be selected, that is able to perform calculations
necessary for the experiment. An example of such a tool is PFCount1.[25].

To measure speed and hardware usage, the GNU time tool was selected. Since every NIDS
is on a different VM, and later on a different physical computer, the measurements can be
conducted parallel because it does not affect the data. For every different setup, an average
is calculated at the end of their testing phases.

The GNU time tool runs another program and then displays information about the resources
used by that command, and the execution time[26].

1PFCount is a command used to return the number of unique entries from a HyperLogLog data structure.
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A detailed description of how the measurements were conducted, including script templates
and the log files, can be found in the public GitHub repository of the project at [27].

5.2 Monitored resources

In the case of this research, the measurements contain the following values: total time
elapsed (real-time), the total number of central processing unit (CPU) seconds that the
process spent in user mode, the total number of CPU seconds that the process spent in
kernel mode, average CPU used in percentage, maximum resident set the size of the
process during its lifetime (maximum memory used). These monitored resources cover the
critical parts which could be bottlenecks of the hardware in live deployment.

To gain accurate results, the tests are automated. They are started with a cron job2 and
stopped automatically when the given script finished execution. The GNU time utility
has a built-in option to save measurements to a file and to append further data without
overwriting the previous ones. These logs contain all the data collected during the testing
phase.

In every software, there are going to be bottlenecks. Identifying them is crucial if speed and
performance should be increased. One way of doing that is altering the source code and
finding optimal algorithms instead of those in use[28]. Another way is omitting unnecessary
actions during execution. In the case of this research, these could be unnecessary rules
which are included as a basic but not useful in the case of a special-purpose network.

2A job scheduler on Unix-like operating systems
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6. Research Environment

In the early parts of testing, a virtual environment is used. All of the NIDSs are installed
on a different virtual machine (VM) and they are placed on the same network. All VMs
have the same specifications, 4GB random access memory (RAM), CPU with 4 cores and
30GB storage space.

After finishing the tests in the virtual environment the experiment will be transported to
a physical environment. This physical environment contains three RPI4s and a desktop
personal computer (PC). The network traffic is simulated with the PC and the IDSs are
installed on the RPI4s which are placed on the same network, connected with a switch.

The results of these test runs are recorded, evaluated and used to select the final software
that will be used to develop the final product as part of another research.

6.1 Virtual environment

The virtual environment, as can be seen in Figure 3, consists of three guest OSs. All of
them have an IDS installed along with the traffic generator. All three of these VMs are
placed on the same network. The OS of the VMs is a Debian based Linux distribution. It
was chosen this way because in the physical testing environment the IDSs are installed on
RPIs and their OS the Raspbian is also Debian based. In the virtual environment, there is
no need for any extra equipment, tests could be conducted once everything is set up.

6.2 Physical environment

The physical testing environment is more complex. There is no virtual network that
connects every host so the IDSs must be connected using a switch, as shown in Figure
4 and as it can be seen in Figure 5.Figure 4 shows the implementation of the testing
environment.

After the RPIs are ready to be deployed with all the necessary software and IDSs installed,
they are plugged into three different ports of the used switch. All those ports are getting
the same traffic from the traffic generator, which is connected to another port of the device.
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Virtual environment

Traffic generator Traffic generator

Traffic generator

SuricataSnort

Zeek

Figure 3. Virtual testing environment.

That one port to which the traffic generator is connected is then mirrored to all three ports
used by the RPIs.

Figure 4. The physical testing environment in practice.
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Snort Traffic generator

Suricata

Zeek

Figure 5. Physical testing environment.
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7. Results

All the results are calculated based on the custom logs that were created during the
measurements in the physical and virtual environments. These logs were separated into
multiple files using unique python scripts that were created to sort the values of individual
resources to separate files and calculate the mean value of the given resource. This method
allows to minimise the possibility of human error during calculations and also speeds up
the process to analyse logs.

The IDSs were deployed with their default configurations along with some minor changes
to what logs they generate and changes so they could use all of their included default
signatures. In the case of Snort version 3, there were no default signatures included, so the
snort3-community-rules.tar.gz packet was used[29].

7.1 Results in the virtual environment

The first result from the virtual testing environment is the total time elapsed. These numbers
are the real-time needed for the IDSs to finish their runs. Since the terminating processes
were controlled by the traffic generators, a longer run time means heavier system resource
usage by the IDS. In the log files these numbers are represented in humanly readable format
hh:mm:ss and also as seconds to two decimal places. On the graphs, to represent the most
accurate results, the time is represented as the later. According to the maximum values,
Snort version 3 had the longest run time of all the IDSs with (tmaxSnort

= 12, 197.93s) with
Suricata was the second (tmaxSuricata

= 10, 561.78s) and Zeek (tmaxZeek
= 9, 431.78s) in

the third place with the shortest runtime as shown in Figure 6 (a).

However, calculating the average total time elapsed from all the measured data reveals,
that Snort is not much slower than the other IDSs. If we take a look at Figure 6 (b) it
clearly shows that the difference between Snort (tSnort = 9, 941.17s, σ = 345.49)1 and
Suricata (tSuricata = 9, 937.27s, σ = 171.82) is just tdiff = 3.9s, while Zeek (tZeek =

9, 002.84s, σ = 150.47) has a shorter runtime ∆tSnort,Zeek = 938, 33s on the same PCAP
file.

1σ (sigma), standard deviation
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Figure 6. Total time elapsed

With the help of GNU time, overall CPU usage was also measured. This data is an average
on its own, the time utility records what percentage of the CPU is in use during the runtime
of the command and at the end calculates the average. Out of these measurements, the
maximum values are also represented, for all the IDSs. As it can be seen in Figure 7 (a), the
maximum CPU usage of the different software as follows: Snort CPUmaxSnort

= 21.12%,
Suricata CPUmaxSuricata

= 23.23%, Zeek CPUmaxZeek
= 8.08%. The comparison of the

values shows the considerable differences for Zeek, but Snort and Suricata brought similar
results.
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Figure 7. CPU usage

Just as in every other case, from all the logged data, an average was calculated for every
IDS in use. With the average calculated it can be observed that Suricata (CPUSuricata =

20.89%, σ = 0.79) has fallen behind Snort (CPUSnort = 12.06%, σ = 1.58) compared
to the maximum values however, Zeek (CPUZeek = 6.94%, σ = 0.5) still had the best
numbers out of the three. These values are represented too in Figure 7 (b). In some cases,
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it would be possible to have CPU usage above 100%, for example, if the monitored process
is multithreaded, but this phenomenon did not appear during the virtual testing phase.

It is possible to dissect the overall CPU usage into smaller categories. A process can run
in two ways on a system and these are user mode and kernel mode. With their names
respectively a user process runs in user mode and a kernel process runs in kernel mode.
The fundamental difference between the two is that a process running in kernel mode has
unrestricted access to the processor and to the main memory. This is a very useful privilege
because a process running in kernel mode can make system calls which are necessary to
access system resources, for example read from and write to files. It could also crash the
system if not configured correctly, but such unstable kernels are not used in production
under normal circumstances. The user mode on the other hand has limited access to system
resources that results in a safer execution since if a user process crashes the damage done
can be cleaned up by the kernel.[30]

As mentioned above time spent in kernel and user mode was also measured during the
testing phases. Figure 8 (a) shows the maximum time spent in kernel mode in seconds.
As we can see the kernel-mode graph is proportional to the overall CPU usage. Snort
(tmaxkernelSnort

= 1, 284.92s) and Suricata (tmaxkernelSuricata
= 1, 299.96s) once again are

very close to one another with maximum values and Zeek (tmaxkernelZeek
= 251.09s) spends

the least amount of time in the kernel space.

The graph representing the average values also fits the pattern mentioned in7 (b). Snort on
average spends less time in kernel mode than Suricata with Zeek spending less amount of
seconds there.

(tkernelSnort
= 612.78, σ = 102.47) with Suricata (tkernelSuricata

= 981.26, σ = 67.64)
being a few seconds behind while Zeek (tkernelZeek

= 197.53, σ = 40.20).

In case of user mode, it can be observed in Figure 9 (a) that Snort spent the longest
time in the user space (tmaxuserSnort

= 1, 290.49), Suricata was the next (tmaxuserSuricata
=

1, 253.45), and Zeek (tmaxuserZeek
= 578.62) spent the least time there.

However, if we compare the graphs of time spent in kernel mode and time spent in user
mode, the results show that, while Snort and Suricata spent nearly identical amounts of
time in both spaces Zeek spent significantly more in user mode than in kernel mode.

The average graph in Figure 9 (b) follows the pattern of the average graph in kernel
mode with Suricata spending the most time there (tuserSuricata

= 1, 146.1, σ = 67.64) ,
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Figure 9. Time the CPU spent in user mode

Snort having a much better result (tuserSnort
= 646.28, σ = 102.47) then Zeek comes

(tuserZeek
= 471.77, σ = 40.20).

By monitoring these resources we can get a deeper understanding of how the process
operates in the kernel and what risks they carry. If a process spends relatively a lot of time
in kernel mode that could mean that there is a bigger chance of some operations failing
and crashing the system. However, if the opposite is true then the process might not get
access to resources that would be needed for optimal operation.

Only one monitored resource is left in the virtual environment and that is the memory
consumption of the IDSs. The memory could also be a bottleneck when doing a huge
number of calculations therefore it was also added to the list of things to be logged during
the research. If the given IDS consumes a large amount of memory it slows down the
system it is running on. This could potentially make the system vulnerable since if the
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system cannot operate properly the IDS’s efficiency will also decrease. This could lead to
undetected activities on the network that could come with critical consequences.
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Figure 10. Memory used

In the Figure 10 the recorded data shows that not relying on the processor that heavily did
have some drawbacks. As is shown in the graph of the maximum memory consumption (a),
Snort (MemorymaxSnort

= 104, 524kB) and Suricata (MemorymaxSuricata
= 98, 6321kB)

are again produced very similar values, Suricata is a bit behind Snort. The same graph
also shows that Zeek (MemorymaxZeek

= 240, 376kB) used, by far, the most amount
of memory during the run. The calculated average introduced in the graph (b) shows
similar results. The values of Snort (MemorySnort = 102, 801.73kB, σ = 426.44) and
Suricata (MemorySuricata = 96, 731.87kB, σ = 359.42) got closer to each other with the
memory consumed by Snort and Suricata lowering to some extent. The average of Zeek
(MemoryZeek = 238, 902.75kB, σ = 561.17) changed also just a minor amount thus
keeping the proportions as they were in the maximal values graph with Suricata needing
the less amount of memory, Snort needing slightly more and a huge difference with Zeek
needs the most out of all the IDSs.
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7.2 Results in the physical environment

Results in the physical testing environment can be divided into two subcategories:

■ Without attacks
■ With attacks

During the physical testing phase, to stress test the IDSs, some simulations were done
using PCAP files that contained malicious activity. The main goal of using maliciously
crafted packets was to record how the IDSs process the packets and if they start to drop
some of them. The resource consumption is not important in this case, since the end result
of the parent research is going to be an IDS with a custom function that will evaluate
data. However, to demonstrate the performance in a real-world-like environment, the same
system resources will be analysed with the addition of the number of dropped packets.

The reason why stress testing is only applied in the physical environment is that the goal of
the research is to determine the performance of the IDSs in limited hardware environments.
Tests conducted in the virtual environment give an opportunity to compare the performance
of the IDSs in both environments however, stress tests are not necessary since, with the
understanding of the base performance, conclusions can be drawn about how the attacks
affect the given IDS.

The total time elapsed is omitted in this part of the research since now there was only one
traffic generator and when it finished the simulation of a given PCAP it stopped all the
IDSs at the same time.

7.2.1 Without attacks

The PCAPs’ sizes used to simulate the network traffic without attacks were significantly
bigger than the ones that contained malicious crafted packets. In these tests, the first prere-
corded network traffic (PCAP 1) is the same file that was used in the virtual environment.
This way it can give a comprehensive result of how a given IDS can perform with limited
hardware resources.

The CPU percentage used by the IDSs is as follows, Suricata used a slightly greater portion
of the CPU with Snort being second and Zeek using the least when the maximum values
are taken into consideration. When it comes to averages Suricata (CPU = 32.5%, σ =

17.83) outperformed all the IDSs, even Zeek (CPU = 39.20%, σ = 0.40), while Snort
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(CPU = 43.01%, σ = 0.09) used the most CPU percentage. The simulation with PCAP
2 has a very similar result, with only some minor deviation from the previous ones in
Suricata (CPU = 31.91%, σ = 18.00), Snort (CPU = 43.02%, σ = 0.16) and Zeek
(CPU = 39.60%, σ = 0.49).

The proportions of the maximum and average time spent in the kernel space with PCAP 1
being played as traffic are Snort (t = 870.87s, σ = 5.47) spending the most and Suricata
(t = 496.02s, σ = 293.21) the least amount of time there while Zeek (t = 760.64s, σ =

7.18) being in between. Results of the time spent in kernel mode while PCAP 2 was played
on the network are very similar, the difference is minimal (tkernelSnort

= 874.37s, σSnort =

4.63, tkernelSuricata
= 489.50s, σSuricata = 295.34, tkernelZeek

= 768.67s, σZeek = 7.84).

Suricata spent the most time in user space by far, if maximum values are analysed, with
Snort being second and Zeek being third with a few hundreds of milliseconds behind.
Upon inspecting the averages the results show that the three IDS spent almost the same
amount of time in user space with a few seconds difference (tuserSnort

= 537.34s, σSnort =

5.08, tuserSuricata
= 569.31s, σ = 276.06, tuserZeek

= 525.27s, σ = 5.45). When PCAP 2
was used to simulate the network traffic the results were very similar with every value being
slightly less than in the case of PCAP 1 (tuserSnort

= 536.68s, σSnort = 5.55, tuserSuricata
=

557.31s, σSuricata = 278.51, tuserZeek
= 524.43s, σZeek = 5.66).

The last hardware resource that was analysed without attacks in the simulation is memory
consumption. Zeek (Memory = 212, 634.69kB, σ = 61.53) uses the most memory
both when checking absolute maximum values and when comparing averages. Suricata
(Memory = 66, 522.72kB, σ = 354.19) consumed the least while Snort (Memory =

85, 655.53kB, σ = 131.29) used more than Suricata but significantly less than Zeek when
deployed on the network traffic simulated by using PCAP 1. When PCAP 2 was used
to simulate a live network the memory usage of Zeek (Memory = 215, 095.07kB, σ =

659.28) increased further along with Suricata (Memory = 67, 444.83kB, σ = 387.67)
and Snort (Memory = 89, 055.65kB, σ = 136.83).

Observing the data recorded during the simulation of PCAP 1 in Figure 11 it is clear that
the results are in fact very different to those containing malicious activities. Suricata still
did not drop any packets contrary Snort dropped 22-214 packets. This amount can still
be considered minor but it is more than we experienced under the pressure tests when
all the packets were processed. Although the graph of Zeek looks similar to the one that
represents the results of pressure tests, however, the amount decreased significantly to
1990-1995 packets. Results representing when PCAP 2 was played on the network could
be found in Figure 12. Here Suricata also drops 0 packets while Snort 39-208 and Zeek
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7.2.2 Results with attacks

In this section, the two PCAP files that were used to simulate network traffic contained
maliciously crafted packets. These PCAPs were used to test real industrial networks for
vulnerabilities thus their content is fit to simulate authentic attacks. The length and size of
these files are less than those that did not contain malicious traffic.

The results of the simulation with the first PCAP (PCAP 1) file, Snort (CPU = 29.0%, σ =

0.0) used the most amount of CPU percentage, Suricata (CPU = 15.0%, σ = 0.0) was
the next in line and Zeek (CPU = 8.35%, σ = 0.48) used the least. The results of the
second PCAP (PCAP 2) are nearly identical to the graph of PCAP 1. Suricata performed
(CPU = 15.0%, σ = 0.0) the same but there were differences in the values of Snort
(CPU = 28.0%, σ = 0.0) and Zeek (CPU = 8.14%, σ = 0.47), however, these are not
significant, 1% or less (∆Snort = 1.0%, ∆Suricata = 0.0%, ∆Zeek = 0.21%).

Snort (tkernel = 272.41s, σ = 1.37) spent the most time in kernel mode while Suricata
(tkernel = 117.08s, σ = 1.66) the second most and Zeek (tkernel = 86.64s, σ = 1.4) the
least. With PCAP 2, the extracted data from the measurements are fairly similar to what is
presented in the diagram with PCAP 1. The difference between the average of the tests of
the two PCAPs are ∆Snort = 11.6s, ∆Suricata = 4.07s, ∆Zeek = 0.11s.
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The time the CPU spent in user mode when the network traffic was simulated with PCAP 1
was Snort (tuser = 183.04s, σ = 1.54) spending the most, Zeek (tuser = 52.58s, σ = 1.93)
spending the least time in user mode and Suricata (tuser = 127.49s, σ = 0.97) being in
between. The simulation done with PCAP 2 resulted in similar data (∆Snort = 6.81s,
∆Suricata = 4.24s, ∆Zeek = 4.45s). With PCAP 2 Snort (tuser = 176.23s, σ = 2.18) spent
the most time in user mode by average followed by Suricata (tuser = 123.25s, σ = 1.10)
then Zeek (tuser = 48.13s, σ = 1.09).

The maximum memory consumption with the network simulated using PCAP 1 clearly
indicates that Zeek uses the most amount of memory of all the IDSs. Zeek used the least
CPU and it used the most amount of memory (MemoryZeek = 209, 412.6kB, σZeek =

87.41) as well yet Suricata consumed less CPU overall than Snort and also used
less memory (MemorySuricata = 54, 150.8kB, σSuricata = 215.80, MemorySnort =

83, 729.8kB, σSnort = 1138.53). The difference of this data with PCAP 2 is ∆Snort =

7.279MB, ∆Suricata = 0.027MB, ∆Zeek = 3.185MB.

As the Figure 13 clearly indicates Snort and Suricata performed outstandingly when the
network simulation used PCAP 1, they did not drop a single packet. When it comes to
Zeek the graph shows that it did drop packets during the runtime, and while more than
eight thousand dropped, or not processed packets are greater than 0, the default logs that
are printed to the terminal by Zeek, the software calculated that it is 0.07% of the total
packets that the IDS dealt with. The simulation that used PCAP 2 provided results where
Snort and Suricata dropped or not processed 0 packets and Zeek (∆Zeek = 216.69packets)
performed around the same level with just a few more processed packets than with the use
of PCAP 1. These results are recorded in the Figure 14.

This concludes the individual analysis of the gathered data during the research. In the
following sections, this data is going to be evaluated further, compared to each other where
applicable and based on those results a final conclusion is going to be drawn.

32



0 5 10 15
−1

−0.5

0

0.5

1

Number of runs

D
ro

pp
ed

pa
ck

et
s

0 5 10 15
−1

−0.5

0

0.5

1

Number of runs

D
ro

pp
ed

pa
ck

et
s

0 5 10 15

8,760

8,770

8,780

8,790

8,800

Number of runs

D
ro

pp
ed

pa
ck

et
s

Snort Suricata

Zeek

Figure 13. Number of dropped packets per run with PCAP 1 with attacks

7.3 Result comparison between environments

During the experiments, two prerecorded network traffic files were used. The PCAP 1,
without additional malicious packets, was used both in the virtual and in the physical
environment, providing a baseline for comparison of the different environments. In
the physical environment, the test was conducted with two PCAPs. To gain inputs for
comparative analysis the systems were tested with both PCAPs as well as with and without
additional malicious content. Table 1 gives an overview of the results.

The difference between the physical and the virtual environment may be due to the differ-
ence in available hardware resources. The architecture of the CPUs also differs because
the virtual environment is based on regular PCs with Advanced Micro Devices (AMD)
architecture while the RPI4s have advanced RISC2 machines (ARM) CPU architecture.

During the tests on the VMs Snort used 12.06% of the CPU, Suricata 20.89% and Zeek
6.94% on average. When compared to the physical environment without attacks the CPU
consumption was 43.01% for Snort, 32.5% for Suricata and 39.2% for Zeek. These results
have ∆Snort = 30.95%,∆Suricata = 11.61%,∆Zeek = 32.26% difference.

2Reduced Instruction Set Computer
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Figure 14. Number of dropped packets per run with PCAP2 with attacks

This CPU consumption can be broken down into two subsections, operating in kernel
mode and in user mode. When the IDSs were tested in the virtual environment, Snort
spent 48.67% of the time operating in kernel mode while Suricata spent 46.13% and Zeek
29.51%. In the physical environment, Snort spent 61.84% of the time working in the
kernel space, Suricata 46.56% and Zeek 59.15%. This means that on average Snort spent
∆Snort = 13.17% more time in the kernel space in the physical environment, Suricata
spent ∆Suricata = 0.43% less time in kernel mode in the real environment and Zeek spent
∆Zeek = 29.64% more time in the kernel space in the physical environment. When the
IDSs were tested in the virtual environment Snort spent 51.33%, Suricata 53.87% and
Zeek 70.49% of the time operating in user mode. In the physical testing, environment
Snort spent 38.16%, Suricata 53.44% and Zeek 40.85% of the time working in the user
space. So in total Snort spent ∆Snort = 13.17%, Suricata ∆Suricata = 0.43% and Zeek
∆Zeek=29.64% less time in user mode in the physical environment.

The average memory used in the virtual environment by Snort was 1.03*106kB while
Suricata used 0.9863*106kB and Zeek 2.39*106. In the physical environment, Snort
used 0.657*106kB, Suricata consumed 0.666*106kB and Zeek occupied 2.13*106kB
memory of the system. On average Snort needed ∆Snort = 0.373*106kB, Suricata
∆Suricata = 0.32*106kB and Zeek ∆Zeek = 0.26*106kB less memory to operate in
the real environment.
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In the physical environment, there were two kinds of tests, one with malicious packets
and one without. In the tests where the traffic simulated did not contain malicious activity
on the network, with PCAP 1 Snort used 43.01%, Suricata 32.5% and Zeek 39.2% of
the CPU, while with PCAP 2 Snort consumed 43.02%, Suricata 31.91% and Zeek 39.6%
on average. This gives a difference of ∆Snort = 0.01%,∆Suricata = 0.59%,∆Zeek =

0.4%. In the physical environment with malicious packets with PCAP 1 Snort needed
29.00%, Suricata 15.00% and Zeek 8.35% of the CPU while with PCAP 2 Snort used
28.00%, Suricata 15.00% and Zeek 8.14% of the CPU. This gives a difference of ∆Snort =

1.00%,∆Suricata = 0.00%,∆Zeek = 0.21%.

While the network had no malicious activity simulated, with the use of PCAP 1 Snort spent
61.84% of the time in kernel mode, while Suricata 46.56% and Zeek 59.15%. In the case
of PCAP 2 Snort was operating in kernel mode 61.97% of the time, Suricata 46.76% and
Zeek 59.44%. The differences between the two tests are ∆Snort = 0.13%,∆Suricata =

0.2%,∆Zeek = 0.29%. With the attacks, Snort spent 59.81%, Suricata 47.87% and
Zeek 62.23% of the time operating in the kernel space when PCAP 1 was simulated.
With PCAP 2 being used to simulate the network attacks Snort needed 59.68%, Suricata
47.83% and Zeek 64.26% of the time to work in kernel mode. The difference between the
results of the two PCAPs containing malicious activity are ∆Snort = 0.13%,∆Suricata =

0.04%,∆Zeek = 2.03%. Without attacks with PCAP 1 Snort spent 38.16% of the time,
Suricata 53.44% and Zeek 40.85% in user mode, while with PCAP 2 Snort 38.03%,
Suricata 53.24% and Zeek 40.56% of the total time. The difference of the two simulations
are ∆Snort = 0.13%,∆Suricata = 0.2%,∆Zeek = 0.29%. In the same resource category,
when the network contained simulated attacks, with the use of PCAP 1, Snort occupied
40.19%, Suricata 52.13% and Zeek 33.77% of the time the user space. With the traffic of
PCAP 2 Snort used 40.32%, Suricata 52.17% and Zeek 35.74% of their time operating in
the CPU in user mode. The difference of the averages in the network under attack were
∆Snort = 0.13%,∆Suricata = 0.04%,∆Zeek = 1.7%.

The last category of comparing the physical environment with attacks and without them
is memory consumption. As long as the network did not contain attacks Snort needed
0.857*106kB, Suricata 0.666*106kB and Zeek 2.13*106kB of memory with PCAP 1
while with PCAP 2 Snort consumed 0.8906*106kB, Suricata 0.7644*106kB and Zeek
2.15*106kB of memory. This results in the following differences, ∆Snort = 0.033kB*106,
∆Suricata = 0.098kB*106, ∆Zeek = 0.02kB*106.

Unfortunately, the exact content of the PCAPs including attacks is unknown so the IDSs
can only be compared based on their resource usage while they had to analyse packets
with malicious content. With PCAP 1 Snort used 29.00% of the CPU while Suricata
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used 15.00% and Zeek 8.35%. With PCAP 2 Snort needed 29.00%, Suricata 15.00%
and Zeek 8.14% of the CPU. The difference between the two measurements are minimal
(∆Snort = 1.00%,∆Suricata = 0.00%,∆Zeek = 0.21%).

The percentage of how much time a CPU spent in kernel mode are as follows, Snort
59.81%, Suricata 47.87% and Zeek 62.23% with PCAP 1, while with PCAP 2 Snort
59.68%, Suricata 47.83 and Zeek 64.26%. These results yield the following differences,
∆Snort = 0.13%,∆Suricata = 0.04%,∆Zeek = 2.03%. In user mode with PCAP 1, Snort
spends 40.19% of the time, Suricata 52.13% and Zeek 37.77% while with PCAP 2 Snort
spends 40.32% of the total time, Suricata 52.17% and Zeek 35.74%. This results in the
following differences, ∆Snort = 0.13%,∆Suricata = 0.04%,∆Zeek = 1.7%.

The last part of the comparison is the memory consumption of the IDSs. When the
simulations were done using PCAP 1 Snort needed 0.837*106kB of memory while Suri-
cata 0.541*106kB and Zeek 2.09*106kB. The differences with PCAP 2 are ∆Snort =

0.033kB*106, ∆Suricata = 0.098kB*106, ∆Zeek = 0.02kB*106. The results of the
data collection with PCAP 2 are Snort 0.756*106kB, Suricata 0.5412*106kB and Zeek
2.06*106kB.
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8. Applicability

In this section the applicability of the three observed IDSs going to be analysed. This
analysis is based on the official documentation of Snort, Suricata and Zeek.

Zeek needs Spicy, a parser generator that makes it easy to create robust C++ parsers for
network protocols, file formats, and more. Spicy parsers expose a C++ API that any
application can leverage to send them data for processing. It has its own compiler that
can compile and run protocol parser modules. These modules’ complexity may vary from
very simple to the extent of creating custom parser algorithms for existing protocols. It
uses so-called unit hooks, conceptually, unit hooks are somewhat similar to methods, they
have bodies that execute when triggered, and these bodies may receive a set of parameters
as input. Units can provide metadata about their semantics through properties that both
Spicy itself and host applications can access. It supports attaching filters to units that get
to preprocess and transform a unit’s input before its parser gets to see it. Spicy source code
is structured around modules, which introduce namespaces around other elements defined
inside. While Spicy itself remains application-independent, transparent integration into
Zeek has been a primary goal for its development. In Zeek, the term “analyser” refers
generally to a component that processes a particular protocol, file format, or low-level
packet structure. The Spicy plugin makes it possible to provide the remaining pieces to
Zeek, turning a Spicy parser into a full Zeek analyser.[31],[32]

Through Berkeley packet filters (BPF) it is possible to configure what traffic Suricata
receives. The traffic not seen by Suricata is not inspected, logged or otherwise recorded.
Suricata has its own solution to implement application-layer parsers and it makes it
available to its users. Suricata is able to parse a good number of protocols such as HTTP,
transport layer security (TLS), Modbus, simple network management protocol (SNMP)
and many more[33]. LibHTP is one of the libraries being developed for Suricata, it is a
security-aware parser for the HTTP protocol and the related bits and pieces. There are
four basic principles LibHTP wants to achieve: it must be able to parse virtually all traffic
that is found in practice, it must never fail to parse a stream that would be parsed by
some other web server, it must be able to detect and effectively deal with various evasion
techniques and the performance must be adequate for the desired tasks. It uses a standard
notation structure named abstract syntax one (ANS1) to describe data. The parser uses
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pattern-based protocol detection that is port independent. According to the official GitHub
repository, LibHTP is not yet considered stable and should not be used in production.
There is also little to no documentation, as the developers stated "The best documentation

at this time is the code itself...". [34],[35]

In the case of Snort, the official documentation provides a very detailed description of how
to create preprocessors. They allow the functionality of Snort to be extended. The Session
preprocessor is a global stream session management module. Since Session implements
part of the functionality and API that was previously in Stream5 it cannot be used with
Stream5 but must be used with the new Stream1 preprocessor. It enables the creation of
the session control block. Stream supports the modified Stream API that is focused on
functions specific to reassembly operations. Stream TCP provides means on an IP address
target to configure TCP policy. This can have multiple occurrences. One default policy
must be specified. [36]

1A target-based transmission control protocol (TCP) reassembly module for Snort, it replaces the Stream5
preprocessor.
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9. Discussion

In this section, a more in-depth analysis of the results is going to be conducted to point out
the reasons and significance of the results.

The first experiment was conducted in the virtual environment, where the prerecorded
network traffic captures (without additional malicious packets) were replayed for the
different IDSs on similar virtual machines with identical resources.

The IDS’s resource consumption limited the speed of the replaying, and consequently the
execution itself as well. During the tests, the average CPU consumption of Zeek was 6.94%,
while Snort used 12.06%, and Suricata 20.89% of the CPU. Snort and Suricata performed
around the same execution time while Zeek delivered better results. The average execution
times of Snort (9,941.17s) and Suricata (9,937.27s) are similar, while Zeek (9,002.84s)
finished the task in a shorter time. Aligning with that, Suricata spent the most time in kernel
space with 46.13% followed by Snort with 48.61% and Zeek with 29.51% on average.
Compared to these results the time difference spent in kernel mode is significant, therefore
there is a greater chance of a critical system failure when using Suricata.

As Zeek used the least amount of CPU, it makes sense that it spent the least time in the
kernel space. The ratio of the times that the processes spent in user mode are similar to the
kernel mode, Suricata takes the lead with 1146.1s, Snort is the second with 646.28s and
Zeek with 471.77s. It could be clearly seen that although the execution times are almost
identical Suricata spends a lot more time using the processor than Snort and Zeek.

When observing the maximum memory used by the IDSs it is obvious that Zeek does have
some drawbacks. It is easier on the CPU but much heavier on the memory than Suricata
and Snort. Suricata used on average 96,731.87kB (96.73MB) memory, while Snort used
102801.73kB (12.85MB) and Zeek used 238902.75kB (238.90MB).

The rest of the experiments were conducted in the physical environment, with two prere-
corded network traffic files, that were replayed by an independent computer. This solution
ensured the more precise IDS-related results since the resource consumption of the differ-
ent IDSs neither influenced each other nor the traffic generation. Both three IDSs were
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tested with two PCAPs, with and without malicious packets.

In the results of the physical environment when malicious packets were added to the PCAP
files, in terms of average CPU consumption Zeek (8.25%) outperformed both Suricata
(15%) and Snort (28.5%), while in the virtual environment, where the network traffic was
greater none of the results went above 25%.

Suricata performed worse on a busier network than on one with malicious packets, however,
Snort could handle more traffic with less CPU usage than it could deal with a packet
containing attacks. The CPU consumption of Zeek increased slightly compared to a busier
network. It is safe to assume that, in regards to CPU usage, Snort can deal with heavier
normal traffic better than Suricata, however when it comes to analysing packets Suricata
outperforms Snort while attacks also take a toll on Zeek but not to great extents.

The time spent in kernel mode corresponds to the CPU usage by the IDSs. Snort spent
the most average time in Kernel mode (266.41s) while Suricata spent 115.05s and Zeek
spent 88.08s in the kernel space. The difference between the CPU usage of Snort and
Suricata is greater than it was in the virtual environment however the ratio between the
time spent in kernel mode is not as great as it was in the virtual testing environment. It is
safe to assume that, even though Snort uses more of the CPU it does not have to run as
many kernel processes as Suricata. The graphs of average time spent in user mode look
fairly similar to the kernel graphs of the kernel mode. Snort spent 183.04s and 176.23s on
average in user mode, Suricata spent 127.49s and 123.25s while Zeek spent 52.58s and
48.13s in the user space. As was the case with kernel mode, the proportions between Snort
and Suricata are much smaller than they were on a network with heavier traffic.

As it was the case in the virtual environment too, Zeek used the most amount of memory
during the deployment with 209412.6kB (209.41MB) and 206226.66kB (206.22MB).
Snort used 83729.8kB (83.72MB) and 76450.09kB (76.45MB) of memory while Suricata
consumed 54150.8kB (54.15MB) and 54123.42kB (54.12MB). The overall amount of
memory used by the IDSs decreased compared to the virtual environment. In proportion,
Suricata decreased more compared to Snort. By this data, it is definable that heavier
network traffic makes the IDSs consume more memory than the analysing packets do.

During the stress tests, Snort and Suricata did not drop any packets while Zeek did. As
explained earlier the dropped packages are only around 0.07% of the whole traffic analysed,
however, compared to the other IDSs, Zeek lost between 8760 and 8780 packets with
PCAP 1 and between 8540 and 8560 with PCAP 2.
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The results of the tests on the physical environment, where the PCAPs did not contain
malicious packets shows, that on average, Snort used 43.01% of the CPU and Suricata
used 32.5%. Not following the pattern of the previous tests, Zeek used 39.2% of the CPU,
more than Suricata and not much less than snort. With the second PCAP file the results are
similar, Snort utilised 43.02%, Zeek 39.6% and Suricata 31.91% of the CPU on average.
The average time spent in kernel mode shows similarities to the percentage of the CPU and
IDS used, Snort operated for 870.87s and 874.37s in kernel mode, and Zeek spent 760.64s
and 768.67s in the kernel space while Suricata spent only 496.02s and 489.5s operating
kernel processes. When it comes to user mode, Suricata took the lead with 569.31s and
557.31s. This value is very close to the time Snort and Zeek spent in the user space. Snort
spent 537.34s and 536.68s running user processes while Zeek did it in 525.27s and 524.43s.
The huge difference between the values disappeared compared to how much CPU an IDS
used.

On average, the graph of the maximum memory that was used by a given IDS is very similar
to the previous test runs. Zeek once again consumed the most memory with 212634.69kB
(212.63MB) and 215095.07kB (215.09MB). Snort used 85655.53kB (85.65MB) and
89055.65kB (89.05MB) and Suricata, as before, needed the least amount of memory with
66522.72kB (66.52MB) and 67444.83kB (67.44MB). Considering how much more CPU
Zeek utilised during these test runs the memory usage not only not decreased, it increased,
compared to the runs where there were malicious packets on the network.

With heavier network traffic Suricata still managed to process all the packets passing
through it. Snort started to drop some packets, between 20-200 were not processed
according to the default data provided by the IDS, in later runs, this amount decreased to 0.
Zeek did not process significantly fewer packets, around 1980-1996 packets. This number
is still much greater than what other IDSs dropped or could not process.
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10. Further works

The early stages of the research was focusing on the performance of the IDSs in virtual
environments. This provided up-to-date data on how these systems perform in virtualised
environments. This data gives ground for further research based on VMs or on regular
hardware. Customisation has not been explored in virtual environments in this thesis,
expanding on the idea of virtualisation may be one of the various topics that the gathered
data could be used for.

The research contains data on the limited hardware performance of the IDSs. This perfor-
mance is based on the basic settings of the software, meaning they are true if the IDSs are
not modified. Further research that includes developing different parsers, preprocessors etc.
could bring different results that could potentially change how an IDS works in limited
hardware environments. As described earlier with certain IDSs it is possible to change
the way a protocol is processed during deployment, this gives the opportunity to develop
optimal ways of processing data in special-purpose environments such as industrial or
maritime areas.
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11. Conclusion

Before arriving at a conclusion, there were some phenomena, that are not related to the
data collected but are worth mentioning. The installation of the IDSs are well documented
on their official websites and could be followed to do so in a normal environment. When
the IDSs needed to be installed on the RPI4s there were a couple of setbacks. The most
up-to-date Raspbian OS could not be used, thus the legacy version was installed, because
Snort could not be installed on a device running that OS. The problem was, that the
Atomic operations library could not execute correctly on such a device and prevented the
installation of Snort version 3 from the source code.

The Suricata IDS, by default, creates logs. One of the default logs is eve.json. This file
contains detailed information about every packet the IDS analysed. The only problem is
that under two weeks of operation this file reached the size of over 42GB. The recording
of such logs can be turned on or off in the configuration file of Suricata.

Zeek, compared to the other IDSs, needs a lot of storage space. While testing virtual
environments, Snort and Suricata could be installed on VMs that had 8GB of storage
capacity while Zeek needs more than 10GB of free space for installation. The installation
time of Zeek is also the longest, on the VMs it was about one hour while on the RPI4s it
took more than two hours to install.

RPi4s also had some disadvantages. While it is easy to build, install and configure a device
to work with the basic settings, microSD cards are unfit to be the storage for a device
that completes read and write operations constantly for weeks. The devices had to be
reinstalled because a huge number of files got corrupted and they could not execute basic
functionalities anymore.

In a virtual environment, where the hardware is not limited as much as a RPi4 is, Suricata is
the heaviest on the CPU while Zeek is more demanding with memory. Snort is an optimal
solution as it uses significantly less CPU than Suricata and requires much less memory to
operate than Zeek.

When it comes to the physical, very limited environment, Suricata outperformed both
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Zeek and Snort when malicious packets were sent to the network. It used less CPU
and less memory than snort and significantly less memory than Zeek. However, Zeek
outperformed bot IDSs in terms of CPU usage. Despite the fact that Zeek used much fewer
CPU resources, it did not perform that well because Snort and Suricata did not drop a
single packet, while Zeek did. In conclusion, on a network where the traffic is not that
heavy and is targeted by attacks, Suricata performed the best when installed on a RPI4.

In the other tests, where the network of the physical testing environment was not targeted
by attacks but the network traffic was much heavier Zeek started to use significantly more
of the CPU. While Snort still used more of the CPU than Suricata the gap was not as great
as before. In the tests with attacks, the differences between the two IDSs CPU resource
usage were 14% and 13%. In a busier network, this decreased to 11% and 12%, meaning
that the heavier the network traffic, the more CPU resource Suricata will require. Zeek did
not use less memory than in any of the previous tests, on the contrary, it used even more.
With the CPU resource usage being also significantly high it puts it as the heaviest IDS in
terms of hardware requirements. It also drops the most packets out of all the IDSs tested
during the research. Suricata did outperform Snort version 3 in memory consumption too
with about 22MB. Snort also started to drop packets in a few runs, when the network traffic
increased.

Overall, Suricata performed better on the RPI4s than the other IDSs with the executed
simulations, however, the documentation to develop new modules for the software is vague
and, as stated earlier, should not be used in production in its current state. This leaves
Snort and Zeek. Although Zeek performed worse, if the basic IDS functionalities are
not needed and the goal is the development of a new method to process data, it could be
considered since the documentation is very detailed. Snort performed better than Zeek and
has great documentation on how to create certain types of preprocessors. Based on the
data collected, Snort is the optimal solution if the IDS should be extended for deployment.

It can be concluded, that the thesis achieved its described objective.
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