

Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Maksim Nessin 179589IADB

Creation of a Test Environment for the Fintech

Application Developed by Polybius Tech OÜ

Bachelor’s thesis

Supervisors: Nadežda Furs-Nižnikova

 MBA

 Vadim Gerassimov

 MSc

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Maksim Nessin 179589IADB

Testkeskkonna loomine Polybius Tech OÜ poolt

loodud fintech rakenduse jaoks

Bakalaureusetöö

Juhendajad: Nadežda Furs-Nižnikova

 MBA

 Vadim Gerassimov

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Maksim Nessin

21.11.2020

4

Abstract

The aim of this thesis is to implement a test environment for the fintech application

developed by Polybius Tech OÜ. The solution is made for the developers and testers of

the company to increase the quality of the product and optimize resources invested in

testing.

The solution is divided into two parts: virtualization of third-party services and data

generator. Virtualization helps to avoid interacting with other services by emulating of

their behaviour. The aim of the data generator is to save time and money while developing

or testing the application.

The project has drastically minified the resources of the company required for testing and

it has become a helpful solution among the developers.

This thesis is written in English and is 59 pages long, including 7 chapters, 14 figures and

5 tables.

5

Annotatsioon

Testkeskkonna loomine Polybius Tech OÜ poolt loodud fintech rakenduse

jaoks

Käesoleva bakalaureusetöö eesmärk on luua testkeskkond Polybius Tech OÜ poolt

loodud fintech rakenduse jaoks. See lahendus on valmistatud firma arendajatele ja

testijatele rakenduse kvaliteedi tõstmiseks ja testimise jaoks mõeldud ressursside

optimeerimiseks.

Lahendus koosneb kahest osast: kolmandate osapoolte teenuste virtualiseerija ja andmete

generaator. Virtualiseerimise abil saab vältida suhtlust kolmandate osapooltega,

emuleerides nende funktsioone. Andmete generaatori eesmärgiks on raha ja aja säästmine

rakenduse testimisel või arendamisel.

Projekt on märgatavalt vähendanud testimiseks kasutatud ressursse ja on saanud

kasulikuks lahenduseks firma arendajatele.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 59 leheküljel, 7 peatükki, 14

joonist, 5 tabelit.

6

List of abbreviations and terms

AI Artificial Intelligence

API Application Programming Interface

Bitcoin The first cryptocurrency based on the blockchain technology

Blockchain Series of immutable data validated by a cluster of computers

BSON Binary JavaScript Object Notation

Crypto asset Digital analogue of traditional money

Crypto Autopilot The name of the product developed in Polybius Tech OÜ that

uses a third-party trading algorithm

Cryptocurrency Digital analogue of traditional money

DTO Data Transfer Object

ERD Entity-Relationship diagram

Ethereum The competitor of Bitcoin that includes a network of other

crypto assets

Fiat Traditional currency

Fintech Financial technology – a new vision of traditional finances

HTTP HyperText Transfer Protocol

JDBC Java DataBase Connectivity

JSON JavaScript Object Notation

KYC Know Your Customer – user’s verification procedure

Liquidity provider Service that can store and exchange crypto or fiat assets

NPM Node.js package manager

PSD2 Revised Payment Service Directive

REST Representational State Transfer – the architecture of

communication between web services

RTS Regulatory Technical Standards

SQL Structured Query Language

UI User Interface

VPN Virtual Private Network

XML eXtensible Markup Language

7

Table of contents

1 Introduction ... 11

1.1 Background ... 11

1.2 Problem ... 11

1.3 Goal .. 12

1.4 Methodology ... 12

2 Problem overview .. 14

2.1 The current process of development and testing .. 14

2.1.1 Cryptocurrency wallets and blockchain transactions 14

2.1.2 Fiat and cryptocurrency exchange ... 15

2.1.3 Banking services .. 16

2.1.4 Services that use AI trading algorithm .. 17

2.2 Reasons for the poor quality of the application .. 18

2.3 Possible solutions from third parties .. 19

2.3.1 Traffic parrot.. 19

2.3.2 MockLab .. 19

2.3.3 API Simulator .. 20

2.3.4 Summary of third party solutions .. 20

2.4 Scope .. 20

2.5 Role of the author ... 21

3 Solution analysis .. 22

3.1 Requirements .. 22

3.1.1 Common requirements .. 22

3.1.2 Requirements for data generation functionality .. 23

3.1.3 Requirements for virtualization of third-party services 23

3.1.4 Requirements for virtualization of banking services 25

3.2 Choice of a framework and building tool ... 25

3.2.1 ASP.NET and NuGet ... 25

3.2.2 Spring framework and Gradle ... 26

3.2.3 Node.js and NPM .. 27

8

3.2.4 Summary of frameworks and building tools ... 27

3.3 Choice of database .. 27

3.4 Design of the solution ... 29

3.4.1 Application architecture .. 29

3.4.2 Database ERD scheme... 30

3.5 Analysis summary .. 31

4 Implementation .. 32

4.1 Preparation .. 32

4.1.1 Creation of the Spring Boot project ... 32

4.1.2 Gradle configuration .. 33

4.1.3 Project structure ... 34

4.2 Data generation ... 36

4.2.1 Setting up data sources .. 36

4.2.2 Insertion of test data .. 37

4.2.3 Swagger configuration ... 37

4.3 Virtualization of third-party services .. 38

4.3.1 Emulation of cryptocurrency address creation .. 38

4.3.2 Emulation of cryptocurrency blockchain transactions 39

4.3.3 Emulation of cryptocurrency exchange rates .. 39

4.3.4 Emulation of banking services .. 40

4.3.5 Emulation of trading algorithm and liquidity provider 40

4.4 Testing .. 41

5 Assessment of the created solution .. 43

5.1 Comparison with the testing process before and after .. 43

6 Possible future improvements ... 45

7 Summary .. 46

References .. 47

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 50

Appendix 2 – Cryptocurrency rates endpoint ... 51

Appendix 3 – Interaction with liquidity provider ... 52

Appendix 4 – Example of tests ... 54

Appendix 5 – Usage of the test environment ... 55

Appendix 6 – API endpoints documentation .. 57

9

List of figures

Figure 1. Scheme of the microservice architecture of the company. 22

Figure 2. Testing using service virtualization. [17, p. 12] .. 24

Figure 3. Service virtualization makes unavailable available. [18, p. 6] 24

Figure 4. The application’s architecture pattern. [34, p. 25] .. 29

Figure 5. ERD scheme. ... 30

Figure 6. Initial configuration of the solution... 33

Figure 7. Dependencies section of the Gradle configuration. .. 34

Figure 8. Project structure. ... 35

Figure 9. Identity microservice data source configuration example. 36

Figure 10. Example of Spring configuration file with data source bean of identity

microservice.. 37

Figure 11. Swagger configuration. ... 38

Figure 12. Method for generation of a random string with a specified length. 39

Figure 13. SQL query for retrieving the bank account balance...................................... 40

Figure 14. Communication of the company’s microservice with third-party services. . 41

10

List of tables

Table 1. The full procedure of testing of crypto wallet functionality............................. 15

Table 2. The full procedure of testing of fiat and cryptocurrency exchange. 16

Table 3. The full procedure of testing Crypto Autopilot. ... 18

Table 4. Backend frameworks comparison. ... 27

Table 5. The current expenses after introducing the test environment. 44

11

1 Introduction

1.1 Background

“The banking industry is ripe for change with the rise of fintech startups, the growing

popularity of blockchain technology, and the dominance of millennials.” [1]

The Fintech industry shows new ways of improving traditional finances, banking, stocks

and other financial services. This is a new ideology in the financial world that brings

people Internet banking, expense managers, blockchain technologies, cryptocurrencies,

trading algorithms, stock markets and many more. The traditional financial services are

becoming old and weak allowing new projects to turn up on the scene. Information

technology and mobile connectivity open the road for different applications that are going

to reinvent the finances, making them easier to use, fast and understandable for everyone.

Contactless payments, face-to-face transactions, digital cards, E-commerce - these are

functions that we use today and there is no doubt that many more are on the way. Smart

devices can be integrated into the so-called Internet of Things, a network of devices and

services to communicate through. [2, p. 2]

However, the services must have proper security. A growing number of start-ups increase

the attempts of breaking the system. A solid and secure service should be created to be

commercially viable and ready for the real market that includes hackers and fraud. [2, p.

3]

This approach requires thorough tests before opening the project to the world. Mistakes

can be very costly, as fintech deals with real money and the reputation of one company is

easy to lose but hard to rebuild.

1.2 Problem

Polybius Tech OÜ specializes in creating a service for cryptocurrency and fiat

management. The application works with third-party services and provides its own

12

features in the fintech sphere as well. The current development and testing processes of

the company are complicated, take much time for preparation and require using real

money for testing the application. It leads to slow delivery, loss of company money and

poor quality of the product. The developers and testers need a solution that will help them

to test, observe and fix issues before delivering features to the live environment.

1.3 Goal

The main purpose of the thesis is to create a test environment for the fintech application

developed by Polybius Tech OÜ that will emulate the behaviour of the third-party

services used by this application. Additionally, this environment will allow inserting

different data presets to improve the testing of scenarios.

The advantages of using a separate development environment are the following:

• The environment serves as a platform for testing new code, functions and different

scenarios. [3, p. 3]

• It closely represents the production environment which in turn allows performing

regression testing, patch verification and problem determination before delivering

new features. [3, p. 3]

1.4 Methodology

In order to solve the problem, it was decided to analyse the most time and money

consuming steps of development and testing of the application. It is dedicated to

understanding the correlation between those steps and the quality of the application. The

solution should simplify these processes to increase the speed of development and raise

the involvement in testing among the developers and testers.

Third-party solutions for similar problems are reviewed and compared. The benefits of

those solutions are taken into account while creating a test environment for the fintech

application of Polybius Tech OÜ.

As this solution is going to be used by the developers and testers, it is planned to create

documentation containing database ERD-scheme and API documentation. The following

13

step is to choose a suitable framework based on the requirements and implement the

solution. The final step is to access the solution, describe how the development process

has changed and suggest possible future improvements for the test environment.

14

2 Problem overview

2.1 The current process of development and testing

The most time and money consuming parts of the development and testing of the fintech

application are analyzed in the following chapters.

2.1.1 Cryptocurrency wallets and blockchain transactions

Currently, the application supports the creation of personal Bitcoin or Ethereum wallets.

Each wallet has a public address (or hash) and a private key that is used to sign

transactions made from this public address. A transaction is written into a blockchain and

verified by other computers connected to the blockchain network. In case the signature

for the transaction is incorrect or the cryptocurrency wallet does not have enough coins,

the transaction is dropped out of the block [4, p. 53]. For Bitcoin network, six

confirmations are widely considered to be safe and secure enough to prove your

transaction will be valid and permanent [5]. Ethereum will likely require ten

confirmations (~three minutes) to achieve a similar degree of security [6]. The average

time spent to confirm a block in a Bitcoin network is 10 minutes [2, p. 150]. Ethereum

block confirmation time depends on the chosen fee for the transaction but the average

transaction confirmation time is 17 seconds [6].

The fintech application stores private keys and signs transactions on a different platform.

The microservices do not have direct access to those keys, however, they request the

third-party service for creating new cryptocurrency wallets and signing the transactions.

The problem is that every time the functionality requires testing, new cryptocurrency

wallets should be created and stored on the third-party service. Testing of transactions

requires having actual cryptocurrency coins on a wallet and transaction fee to perform the

transaction. Each transaction needs to be confirmed to ensure its authenticity and

irreversibleness which takes time depending on the cryptocurrency type. Only users with

verified identity can have crypto wallets in the application, so a KYC procedure should

15

be passed when a new test user is created. The full procedure of testing of the crypto

wallet can be seen in Table 1.

Table 1. The full procedure of testing of crypto wallet functionality.

Action Time expenses Money expenses Notes

User verification

(KYC)

15 minutes 3.19$ [7] Requires real

documents (passport,

driver’s license).

Provided by Veriff

OÜ. The price is for

the minimal plan if

monthly verifications

exceeded.

Crypto wallet

creation

 Stored on Microsoft

Azure server.

Bitcoin transaction 60 minutes 5€ [8] Transaction fee is

approximate and may

change.

Ethereum transaction 3 minutes 2€ [9] Transaction fee is

approximate and may

change.

As a result, an integration test of the crypto wallet will require 78 minutes and nearly

10€ taken from the company’s account.

2.1.2 Fiat and cryptocurrency exchange

The application provides functionality for exchanging fiat currencies to cryptocurrencies

and vice versa. The current system supports Euro, Bitcoin and Ethereum to be exchanged.

There is a fee of 1.5% for every exchange operation. The problem is that there's no option

to avoid this fee as every financial operation should be reflected in the company's annual

reports. Certainly, these operations may be overwritten as test operations by separating

true and test data and manually changing financial reports, however, it is not considered

as a long-term solution as it takes accountants' time. The full procedure of testing of

exchange functionality for a new user can last up to 1 day and can be seen in Table 2.

16

Table 2. The full procedure of testing of fiat and cryptocurrency exchange.

Action Time expenses Money expenses Notes

User verification

(KYC)

15 minutes 3.19$ [7] Requires real

documents (passport,

driver’s license).

Provided by Veriff

OÜ. The price is for

the minimal plan if

monthly verifications

exceeded.

Initiating a deposit

via bank

Up to 1 day 0.38€ [10] A real bank

transaction is

executed.

Exchange operation 1.5% fee

Blockchain

transaction

3-60 minutes 2-5€ [8] Fee and time

estimation depends

on the chosen

cryptocurrency.

An average test of fiat and cryptocurrency exchange can take more than 1 full day and

approximately 10€. The money expenses can be higher as they depend on the chosen

cryptocurrency and the amount to be exchanged.

2.1.3 Banking services

On 25 November 2015, the European Parliament and the council of the European Union

issued a directive 2015/2366/ЕС (PSD2) on payment services in the internal market. [11]

This directive is dedicated to make the European payments market more integrated and

efficient, simplify business for new payment service providers and make payments safe

and secure. This directive also enforces EU banks to provide some of the functionality

via API. It creates an opportunity to use banking functionality in different fintech

applications. [12]

At this time, Polybius Tech OÜ and its affiliates are not licensed to operate with the

European banks. However, to continue the development process of banking functionality

it is required to create a system that will emulate API responses from banks. This solution

will help to implement the functionality of adding a new bank account, transferring

money and viewing transaction history. Unless the company is licensed to operate with

17

the European banks, the test environment will be used instead. In case the company

becomes licensed, the emulated bank services will be used in the development and testing

stages, while the actual integration with banks will be implemented in the production

environment. Using the test environment while developing the banking functionality will

allow switching to the real bank API implementation faster as most of the logic will have

been already implemented.

2.1.4 Services that use AI trading algorithm

In the fintech industry, the AI algorithm is also called Robo advisor, but it does not always

give advice or may not be robotic. It executes automated portfolio rebalancing based on

passive investments and diversification strategies. Individuals with crypto assets find it

useful as it can be used as a passive investment tool. [13, p. 152]

The fintech application uses an AI trading algorithm provided by a third-party. It makes

decisions about exchanging Bitcoin to other cryptocurrencies and tries to increase the

user's holdings. Despite its core and the algorithm are not described in this thesis, it is still

possible to describe the emulated version of it for operating in the test environment. In

this thesis, the term ‘liquidity provider’ is used for the service that performs trades with

cryptocurrencies. The name of the product that uses this algorithm is Crypto Autopilot.

The functionality of the product is based on cryptocurrency transactions and exchange. It

means that the testing process of Crypto Autopilot takes similar time and money expenses

as the previously described features. The full process of testing of this product can be

seen in Table 3.

18

Table 3. The full procedure of testing Crypto Autopilot.

Action Time expenses Money expenses Notes

User verification

(KYC)

15 minutes 3.19$ [7] Requires real

documents (passport,

driver’s license).

Provided by Veriff

OÜ. The price is for

the minimal plan if

monthly verifications

exceeded.

Initiating a deposit

via bank

Up to 1 day 0.38€ [10] A real bank

transaction is

executed.

Exchange operation 1.5% fee

Bitcoin transaction 60 minutes 5€ [8] Transaction fee is

approximate and may

change.

Trading operation 0.2% fee Executed on the

liquidity provider

side.

Bitcoin transaction 60 minutes 5€ [8] Transaction fee is

approximate and may

change.

A procedure of testing the functionality of Crypto Autopilot can last for more than one

full day and require more than 13€. The final expenses depend on the amounts to be

exchanged and traded.

2.2 Reasons for the poor quality of the application

During 2 years of development of the application without a test environment, a lot of bugs

and issues were found. Currently, developers do not have an opportunity to test some of

the functionality without risking their money. Some new features cannot be checked fast

for technical reasons. For instance, processing of card payments or cryptocurrency

transactions are done outside of the company and therefore require more than 1 hour to

be confirmed. If developers do not want to spend their money, the company will provide

the money for testing the application. In this case, every action must be recorded by the

19

developer, increasing the time of development. This is the reason why some of the

integration testing processes are usually ignored by developers.

Quality Assurance specialists also lack a test environment. Plenty of scenarios such as

functionality for different user types, users without KYC, accounts with empty portfolios

require proper testing. Creation or generation of users with different settings is done

manually in the database that in turn takes much time. These actions could have been

automated by using a test environment and the remaining time may be used to cover more

cases with tests.

The Product Department also needs a test environment for viewing new features while

they are being developed. It would be useful for Product Managers to have a picture of

the feature before it is published. In this case, corrections in the user interface, change of

the flow or some other proposals could be done in advance. It will exclude cases when a

feature is published but the quality of it is not appropriate for a Product Manager.

2.3 Possible solutions from third parties

It was decided to look for a possible solution that has the required functionality for a

reasonable price. Fortunately, there are plenty of projects that provide functionality for

emulating API requests available on the Internet.

2.3.1 Traffic parrot

Traffic Parrot Ltd (founded in 2014) provides a solution for API mocking, stubbing and

service virtualization. It supports dynamic responses, Maven and Gradle plugins,

HTTP/2.0 protocol, Docker, Swagger and other modern technologies. However, the price

for it depends on the number of floating licenses and features, protocols and technologies

used. [14]

For this moment, this solution may seem to be too expensive and complicated as it has a

lot more features than our company needs.

2.3.2 MockLab

MockLab solution is a platform for manual and automated testing. It supports Swagger

documentation, the ability to create delays and faults in API responses, recording queries

and playing it back, dynamically templating responses and simulation of system

20

behaviour. According to the pricing, the free plan allows only 5 mock API requests and

1000 requests per month that is not enough for our company. [15]

The most suitable plan is very expensive and therefore the company is not interested in

this solution.

2.3.3 API Simulator

The latest version of API Simulator (1.7) provides mostly all technologies for creating a

solid test environment that can be used by the developers and testers. This solution is free

and is constantly updated. However, it does not support Swagger out-of-the-box. It also

supports dynamic responses configured in YAML programming language. The biggest

disadvantage of this solution is that it requires a lot of manual configuration to set it up.

[16]

2.3.4 Summary of third party solutions

The third-party solutions can solve the problems, but the potential resources invested in

setting them up are not justified. Some of the solutions have paid plans whereas the

suggested free solution is difficult to set up, falls outside the architecture used in the

company and requires constant support. It would be more convenient if the solution would

be closer to the current architecture and be known to the employees.

2.4 Scope

This thesis deals with the creation of a test environment dedicated only to the fintech

application developed by Polybius Tech OÜ. The main purposes of this environment are

assistance with the continuous development of the application and implementation of a

platform for pre-release integration testing. It is based on common practices of creation

of similar environments or service emulators.

The solution is divided into two parts: data generator and service virtualizer.

Data generator provides the functionality of inserting test data, setting up the scenarios

and generating historical data. It replaces the manual insertion of entities to the database.

This data is to be used by other microservices of the fintech application which are not

described in this thesis.

21

Another part, service virtualizer, deals with third-parties' API emulation. The solution

provides dynamic API responses and emulates the logic of other services outside of the

fintech application. Specifically, it emulates the logic of creation of the Bitcoin and

Ethereum wallet and blockchain transactions in these networks. Additionally, it emulates

the logic of connecting a bank account, viewing bank transactions and sending bank

payments in accordance with 2015/2366/ЕС (PSD2) [11] directive. Moreover, a trading

algorithm based on cryptocurrencies provided by third-party service is emulated in this

solution. The algorithm itself remains unrevealed, however, base endpoints and

documentation are provided in this thesis.

2.5 Role of the author

The author of the thesis analyzed the problems that existed in the process of development

and testing of the application. The author gave the exact amount of resources invested in

the testing and calculated approximate company’s losses based on the public resources.

Third-party solutions were analyzed, and it was explained why they are not suitable for

achieving the goal of the thesis.

The author explored scientific resources that describe similar solutions and prepared the

requirements for the test environment based on the common approaches. The framework,

additional software and plugins were chosen according to the author’s skills and the

company’s needs. The author proposed the design of the test environment including the

ERD scheme of the database, projects structure and API documentation.

The implementation of the solution was done in a cooperation work with one senior

developer of the company. The author participated in the development of all the parts of

the test environment described in the scope of the thesis.

22

3 Solution analysis

3.1 Requirements

The requirements are divided into groups. The common requirements are based on the

currently used architecture in the company, convenience of usage and requests from the

developers and testers. The other recommendations are mostly justified by the business

logic of the fintech application.

3.1.1 Common requirements

The solution should have the functionality of data generation and the virtualization of

third-party services. It should be monolithic and runnable with one Docker container

locally on a developer’s machine. Common practices of creating similar solutions should

be taken into account while creating the test environment for the fintech application. One

of the most important requirements is that this solution has to be capable of subsequent

improvements and easily integrable with the current architecture of Polybius Tech OÜ

(see Figure 1).

Figure 1. Scheme of the microservice architecture of the company.

23

The requirements are justified by the fact that the solution should have a solid

architecture and at the same time be produced in the shortest timeframe. Besides, the

code should be understandable for the employees of the company.

3.1.2 Requirements for data generation functionality

Data generation should be done by using a separate database source for each microservice

that is observed within the scope of the thesis. It should be accessible via a browser and

contain proper documentation to be understandable for non-technical users. The

microservices that fall out of the scope or are inessential to the development and testing

processes should not be covered with data generation functionality.

The solution should support the generation of the following data:

• User and KYC

• Cryptocurrency wallets and transactions

• User balance

• Bank accounts and transactions

• Historical data of Crypto Autopilot

3.1.3 Requirements for virtualization of third-party services

The virtualization of third-party services should be based on conventional architecture.

The book “Testing Microservices with Mountebank” describes the basic principles of

service virtualizations (see Figure 2). A system that is being tested uses virtual

dependencies (or third-party services) instead of addressing real services. [17, p. 12]

24

Figure 2. Testing using service virtualization. [17, p. 12]

Another book, “Service virtualization, 2nd IBM Limited Edition”, provides a similar

approach to using service virtualization. From Figure 3, it can be seen that one service is

unavailable due to some reasons. In the observed fintech application, it can be either a

Bitcoin transaction that takes a fee and needs much time for confirmation or a bank

service that is unavailable due to lack of license. This service can be virtualized in the

test environment to save money and time or to make the development process possible

even without real integration with the service.

Figure 3. Service virtualization makes unavailable available. [18, p. 6]

25

This approach should be done by using a separate profile in the application properties of

the microservices. Within this profile, API queries for third-party services have to be

redirected to the test environment. This environment should handle the queries and

return dynamic or static answers depending on the requested action. In case the action

result is mutable, the response should reflect these mutations (e.g. balance change after

a successful bank transaction). If the action result is not necessary or does not affect the

logic of the microservice, the response may be static and have successful HTTP status

(e.g. entity creation response with a static ID that is not used in the business logic).

3.1.4 Requirements for virtualization of banking services

The solution should rely on the Open Banking standard for PSD2 applications. The

Standard is designed to assist any European account providers in meeting their PSD2 and

RTS requirements as well as supporting their application for an exemption from the

contingency mechanism. This market-enabling Standard is built in an optional modular

format to most effectively meet consumer and market needs. [19]

As the directive 2015/2366/ЕС [11] does not specifically describe the technical details

about providing banking services, any European bank has a right to introduce their own

implementation of the directive. However, Open Banking has, to some extent, become an

accepted standard, building the logic based on which will allow integrating with most of

the European banks.

3.2 Choice of a framework and building tool

There are three popular web application frameworks that support REST API: Spring

Framework, ASP.NET and Node.js. The frameworks provide similar functionality, use

OOP programming languages and rely on layered architecture patterns. The main idea is

to select the framework that will be easy to work with as other developers of the company

will also participate in the development and the future improvements of this solution.

3.2.1 ASP.NET and NuGet

ASP.NET is a web application framework marketed by Microsoft that programmers can

use to build dynamic web sites, web applications and XML web services. This is a free

framework that is used in nearly 3% [20] of web applications on the entire web. ASP.NET

26

is supported by a lot of contributors and has plenty of libraries in the NuGet package

manager [21].

This framework is dedicated to web applications with a huge user base. It can handle

many web queries simultaneously and can be easily scaled if the number of users grows.

Big projects with solid architecture and code structure are often based on this framework.

[22]

As the solution that is proposed in this thesis is a small and independent application to be

used locally, the vast functionality of ASP.NET will remain unused. This framework also

falls outside of the microservice architecture used in the company as there are no

ASP.NET web applications, which in turn will require additional knowledge about it

among other developers. The main programming language of this framework, C#, would

have become the third one used by backend developers. It will lead to inconsistency in

the code of different services. The NuGet package manager contains a vast variety of

libraries but the choice is less dedicated to fintech and cryptocurrencies. For instance,

there is no such library that unifies the most popular cryptocurrency exchanges or banking

providers under one interface.

3.2.2 Spring framework and Gradle

Spring framework provides comprehensive infrastructure support for developing Java

applications. It has a Dependency injection feature and supports other modules and

extensions such as Spring JDBC and Spring Boot [23]. With Spring Boot the test

environment can be set up to use Gradle dependency manager and have a separate profile

to work in test mode. Spring framework is not that popular as ASP.NET [24], but more

open source libraries are written on Java programming language. xChange [25] and

Ibanity [26] libraries unify most popular crypto exchanges and the European banks under

one interface which in turn makes the development process faster. The openness of Java

libraries is one of the reasons why most of the microservices in the Polybius Tech OÜ

company use Spring framework for the application in the rapidly growing fintech

industry.

Usage of Spring framework for implementing the test environment will allow utilizing

the dependencies of other microservices of the company (e.g. database entities, base

classes and interfaces). It will also be easy to update as other developers will be already

27

familiar with this technology. Building a solution based on already used infrastructure

will take less time as well.

3.2.3 Node.js and NPM

Node.js is one of the recent technologies for building backend services. It uses either

JavaScript or TypeScript, uses a non-blocking I/O model, making it efficient and

lightweight [27]. The Express.js extension allows implementing a small web service that

uses REST API. There is a vast majority of extensions and libraries available across NPM

as a lot of developers contribute into modern libraries for the fintech industry.

As Node.js is lightweight and suitable for small projects, it could be used for the proposed

solution. However, the base classes and interfaces need to be rewritten. JavaScript and

TypeScript are not primary programming languages in the Polybius Tech OÜ company,

therefore it will create inconsistency in the code.

3.2.4 Summary of frameworks and building tools

The selected framework should correspond to the current architecture and be capable of

improvements in a short period of time. The frameworks potentially suitable for the

solution are compared in Table 4.

Table 4. Backend frameworks comparison.

Framework Author’s experience Share in the project

architecture

Learning complexity

ASP.NET Good - Middle [28]

Spring framework Very good High High [29]

Node.js Middle Low Low [30]

Referring the provided analysis, the best choice of framework is Spring framework as it

can be easily integrated into the current architecture, is known by the author and other

developers of the company and has a variety of libraries dedicated for the fintech industry.

3.3 Choice of database

There are different types of databases such as centralized, distributed, graph, relational,

Non-SQL and others. For projects where there are lots of unstructured data, graph and

28

Non-SQL types of databases may be applied for increasing the performance of search and

insertion. Another example, MongoDb, is a document-oriented type of databases that

allows storing as many JSON, BSON or XML formatted documents in one record as

possible. [31]

However, the solution neither has to deal with big data nor store unstructured data.

Relational databases are popular among developers, easy to build and use. This type of

database will be used in the solution. Relational databases require an ERD-diagram that

reflects the structure of data stored and used in the solution.

Oracle database is mostly dedicated to huge enterprises where speeds and security are the

main priority [32]. The prices for the database are high and therefore it is not rational to

use it in the solution.

MySQL is an open-source relational database which provides free plans for non-

commercial use. It is free and widely used. Although price list for enterprises is applied

with ranges of 2000-10000$. [33]

PostgreSQL is a free and open-source solution for web applications. It was one of the first

database management systems to be developed, and it allows users to manage both

structured and unstructured JSON data [32]. It can handle large data structures and at the

same time be useful for small applications as well. PostgreSQL is used in every

microservice of the Polybius Tech OÜ company.

SQLite is a compact serverless solution for small applications. It behaves as a plain

relational database, supports SQL language, and can store a large amount of data in a file

on a disk drive. This database is free to use and easy to build in into nearly any system.

Summing up, PostgreSQL and SQLite are both suitable for the solution. SQLite would

have been given an advantage if the test environment was a finalized program that is run

only locally. The solution will be improved in the future, allowing testing of the fintech

application not only locally but in a pre-production environment. It will require a server-

side database that can be based on PostgreSQL. Furthermore, this database technology is

already used across all the microservices in the company.

29

3.4 Design of the solution

The chapter covers the patterns used for the development of the solution. The application

architecture is based on the division of application layers. The database is used as data

storage and created in accordance with the ERD scheme.

3.4.1 Application architecture

The solution uses three application layers: presentation, business and data layer. This

approach is described in the book ‘Learn Microservices with Spring Boot: A Practical

Approach to RESTful Services using RabbitMQ, Eureka, Ribbon, Zuul and Cucumber’.

The main application layers proposed in the book can be seen in Figure 4.

Figure 4. The application’s architecture pattern. [34, p. 25]

The architecture pattern consists of 3 layers:

• Presentation layer is responsible for REST API and mapping business objects to

Data-Transfer-Objects. In Spring Boot it is represented with @Controller

annotated classes. [34, p. 24]

30

• Business layer contains the actual logic of the application. It uses domain entities

and services. The services are represented with @Service annotation. [34, p. 24]

• Data layer is responsible for persisting entities in a database. It translates domain

objects to the database entities and performs actions on the database side. Its

classes are represented with @Repository annotation. [34, p. 24]

3.4.2 Database ERD scheme

The database scheme describes only the structure and entities required for the test

environment. Other microservices used by the fintech application are based on different

database structures and fall out of the scope. The database should store information that

is needed to emulate Bitcoin and Ethereum network wallet balances, blockchain

transactions, banking functionality, and liquidity provider’s behaviour. The ERD scheme

is presented in Figure 5.

Figure 5. ERD scheme.

The ERD scheme consists of 8 entities. Bank and cryptocurrency transactions are

unified under one interface by having different account types. The solution will have

different types of liquidity providers with their balances. The entity of liquidity provider

does not have properties, however, it was decided to include it in the scheme in order to

31

provide a possibility to improve the solution in the future releases. Trading will be

emulated by changing the balances of a specified liquidity provider.

3.5 Analysis summary

The analysis has covered the requirements for the test environment and frameworks that

can be used for implementing it. It has also specified the database that will be used for

the implementation of the solution.

Spring framework has been chosen as the main framework of the solution. A common

practice of building Spring applications has been presented in this analysis. The analysis

has brought out the ERD scheme which the chosen PostgreSQL database will be based

on. The application is ready for further improvements as it is based on modern

technologies that the developers of the Polybius Tech OÜ company are familiar with.

32

4 Implementation

The solution implementation is divided into three parts: development of the service,

configuring the microservices and testing. The solution does not have UI except for the

auto-generated Swagger page.

4.1 Preparation

The service is based on Spring Framework architecture and uses Java as the main

programming language. The solution consists of two main blocks: data generator and

third-party services virtualizer. It uses PostgreSQL database for storing entities that are

necessary for the virtualizer to emulate the behaviour of third-party services (e.g. by

storing cryptocurrency transactions).

4.1.1 Creation of the Spring Boot project

The official Spring framework page provides a tool Spring Initializr for creating a base

Spring Boot project (see Figure 6). Spring Boot is an extension of the Spring framework

which eliminated the boilerplate configurations required for setting up a Spring

application [23].

33

Figure 6. Initial configuration of the solution.

Java 11 was chosen to match the version with other projects of the company. The group

of artifacts starts with io.polybius as this solution belongs to the group of applications

developed by Polybius Tech OÜ.

4.1.2 Gradle configuration

The configuration file build.gradle stored in the root directory contains information about

plugins, repositories and dependencies used in the project. The configuration file is

generated by default, however, more dependencies are added to the dependencies section

(see Figure 7).

34

dependencies {
 implementation 'org.springframework.boot:spring-boot-starter-web'
 implementation 'org.springframework.boot:spring-boot-starter-
webflux'
 implementation 'org.springframework.boot:spring-boot-starter-jdbc'
 implementation 'org.springframework.boot:spring-boot-starter-jdbc'

 implementation 'org.springframework.boot:spring-boot-starter-
data-jpa'

 implementation 'io.springfox:springfox-swagger2'
 implementation 'io.springfox:springfox-spring-web'

 implementation 'io.springfox:springfox-swagger-ui'

 implementation 'org.postgresql:postgresql:42.2.5'
 implementation 'org.liquibase:liquibase-core:3.8.8'

 testImplementation('org.springframework.boot:spring-boot-
starter-test') {
 exclude group: 'org.junit.vintage', module: 'junit-
vintage-engine'
 }
}

Figure 7. Dependencies section of the Gradle configuration.

The dependencies will allow handling API requests, performing prepared SQL statements

and creating database migrations. Tests are handled by a default Spring testing library.

4.1.3 Project structure

By default, Spring application projects start with 2 folders: project folder and resources.

The inner folders may vary depending on the project needs. The chosen approach

containing 3 application layers should be reflected in the structure as well. The structure

of the solution can be seen in Figure 8.

35

Figure 8. Project structure.

Resources of this solution contain a database migration file, application properties for

different Spring profiles and static responses in JSON format. The static response files

are used for virtualized services’ API queries, the responses of which do not change (e.g.

the ID of trade is static as it is not used in the business logic).

The controllers package consists of two types of controllers. Swagger controllers are used

for data generation via the user interface. Virtualization controllers are used for accepting

third-party requests, handling them and responding with dynamic or static answers.

Common package contains base classes, interfaces and converters that are used in the

business logic.

Spring annotated @Configuration files are stored in the config package. These files

introduce Spring beans and values. In Spring, a bean is an object that is instantiated,

assembled, and managed by a Spring IoC container [35]. Whereas @Value annotated

object can be instantiated from the application configuration file [35].

Util package consists of helper classes that simplify code.

36

Each domain in the domain package contains Data-Transfer objects (DTO), model,

repository and service packages:

1. DTO – In this solution: classes that are mapped from the request body or to

response body.

2. Model – represent database entities.

3. Repository – classes that are responsible for data access. Annotated with

@Repository.

4. Service – classes that are responsible for business logic. Annotated with

@Service.

4.2 Data generation

The following chapters will cover setting up data sources, insertion of test data and UI

for the simplification of the process.

4.2.1 Setting up data sources

Coming from the requirements, the solution should be able to insert database entities to

the databases used by other microservices of the company. It is done by using separate

data sources in the application.properties file. An example of overriding the data source

for the identity microservice can be seen in Figure 9.

databases.identity.datasource.dbName=identity

databases.identity.datasource.jdbcUrl=${postgres.basePath}/${databases
.identity.datasource.dbName}
databases.identity.datasource.driverClassName=org.postgresql.Driver
databases.identity.datasource.username=${postgres.user}
databases.identity.datasource.password=${postgres.password}

Figure 9. Identity microservice data source configuration example.

The configuration file contains beans of the data source. It can be used by the base

repository of each microservice to insert data into a specified database. The example of

data source instantiation is shown in Figure 10.

37

@Configuration
public class DatasourcesConfig {
 @Bean(name = "identityDb")
 @ConfigurationProperties(prefix="databases.identity.datasource")

 public DataSource identity() {

 return DataSourceBuilder.create().build();
 }
}

Figure 10. Example of Spring configuration file with data source bean of identity microservice.

As the fintech application uses different microservices, the prefix is used to distinguish

the properties of the specified microservice. The test environment connects to all

databases of the microservices and manipulates their data. To avoid conflicts with the live

environment data, a separate schema is built on the actual database structure.

4.2.2 Insertion of test data

Database entities of each microservice are moved to private packages and downloaded

via Gradle from the private repository. Base repository class can be inherited only for

those entities which implement the interface. The base repository supports insertion,

update, deletion and querying for the database entity specified in the generic clause.

Each database entity has its own repository which extends the base repository. This

repository is used in services to perform manipulations with data. The simplest example

of data generation can be the following:

1) An API endpoint accepts parameters of a test user to be inserted into the

database.

2) The API controller transfers the parameters to the service. The parameters can

be either registration date, verification status etc.

3) The service creates a database user entity with the specified fields and inserts it

using the repository of the microservice the entity belongs to.

4.2.3 Swagger configuration

The solution uses Swagger to simplify the communication between a developer and the

solution. It is configured in a separate class by using @Configuration and

@EnableSwagger2 annotations (see Figure 11).

38

@Configuration
@EnableSwagger2
public class SwaggerConfig {
 @Bean

 public Docket api(TypeResolver resolver) {
 Pattern publicApiPattern = Pattern.compile("/dev-api/.*");

 return new Docket(DocumentationType.SWAGGER_2)
 .select()
 .paths(path -> publicApiPattern.matcher(path).matches())
 .build()

 }

Figure 11. Swagger configuration.

This approach will allow generating test data with the user interface. To distinguish data

generation endpoints (see Appendix 6) from service virtualization endpoints, the

pattern is used in the Swagger configuration

4.3 Virtualization of third-party services

The following chapters will describe the emulation of the third-party services within the

scope of the thesis. The implementations are described in the text, however, the examples

of source code can be found in the appendices as well.

4.3.1 Emulation of cryptocurrency address creation

The Bitcoin and Ethereum network addresses in the test environment are saved as a

random sequence of numbers and letters. These addresses may not be valid for the

actual blockchain networks, however, they are unique and usable in the test

environment. A Bitcoin address contains 34 symbols (example:

3LoJFcGiBgCzy235poxmq8uZGFGSK3ZbJN [36]). An Ethereum address starts

with 0x and the remaining part contains 40 symbols (example:

0x501906Ce564be7bA80Eb55A29EE31ECfaE41b6f2 [36]). The addresses can be

generated using a simple random string generator (see Figure 12) and saved to the

database.

39

public String generateString(int length) {
 String symbols =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789abcdefghijklmnopqrstuvxyz";
 StringBuilder stringBuilder = new StringBuilder();
 IntStream.range(0, length).forEach(s ->

stringBuilder.append(symbols.charAt(randomService.nextInt(symbols.l
ength() - 1))));

 return stringBuilder.toString();
}

Figure 12. Method for generation of a random string with a specified length.

The method takes a random character from the permitted character sequence and

appends it to the string builder. This action is repeated the number of times specified in

the argument of the method.

4.3.2 Emulation of cryptocurrency blockchain transactions

When a cryptocurrency transaction is created in the test environment, the random

transaction identifier is generated with the above method (see Figure 12). In the live

environment, blockchain transactions are confirmed during a certain period. In the test

environment, it can be emulated using Spring @Scheduled annotation. The delay for the

endpoint is set to 10 seconds to reflect blockchain confirmation procedures. When the

scheduled method is called, it updates the statuses of all the current cryptocurrency

transactions in the database. The current database entity structure allows making transfers

to another cryptocurrency address within the system. It can be used for transferring crypto

assets to different test users.

4.3.3 Emulation of cryptocurrency exchange rates

The emulation of currency exchange rates is described in the book “Spring Boot

Messaging”. A similar approach is used in the solution for streaming dynamic

cryptocurrency rates for Bitcoin and Ethereum. It was decided to take the base price of

Bitcoin as 10000 EUR and Ethereum 200 EUR. The solution uses Reactor from the Spring

Framework to handle streaming API queries. Reactor is a fully mature and non-blocking

reactive programming foundation for the JVM that implements the Reactive Extension

specifications and Java 8 functional APIs [37, p. 170].

The implementation of the query can be found in Appendix 2.

40

4.3.4 Emulation of banking services

Coming from the requirements for the solution, banking services should be emulated in

accordance with the Open Banking standard [38]. However, it was decided to simplify

requests as some of the parameters are not required in the test environment (see endpoints

of the banking service in Appendix 6). Furthermore, any client is considered

authenticated and Euro is chosen as the default currency.

A bank account balance is calculated by summing up all incoming transactions and

subtracting all outcoming transactions. It is implemented in SQL and done on the database

side (see Figure 13).

select sum(case when recipient_account_id = :account_id then

amount else -amount end) as balance from transactions t join

transaction_statuses ts on t.transaction_status_id = ts.id where

ts.name = 'DONE'

Figure 13. SQL query for retrieving the bank account balance.

Payments are initiated by inserting a transaction entity with pending status to the

database. The same approach of changing transaction status is used as with the

cryptocurrency blockchain transactions. @Scheduled annotated method changes the

status of a transaction. After the transaction is considered fulfilled, the account balance

will change. A test user can see the changes by requesting balances or transactions via

corresponding endpoints.

4.3.5 Emulation of trading algorithm and liquidity provider

The application uses a third-party algorithm that provides information about

recommended trades to be performed. When the response is received, the orders are sent

to the liquidity provider that buys or sells the recommended assets. As a result, a user’s

portfolio is changed. The communication between the services can be seen in Figure 14.

41

Figure 14. Communication of the company’s microservice with third-party services.

In the test environment, the trading algorithm is simplified in a way that it responds

with only one recommendation per request. It chooses a random amount of Bitcoin or

Ethereum to be sold or bought. As cryptocurrency rates are constantly changed, this will

imitate portfolio changes.

The liquidity provider accepts trade requests and changes the balance of it in the

database. The exchange rate is taken from the rating service described above. The

response is not used in the business logic, however, the library for communication with

the liquidity provider requires a response. In the test environment, it was decided to use

a static response. The liquidity provider uses x-www-form-urlencoded content type. In

order to get the parameters, it was decided to use ServerWebExchange interface of the

Spring Web-Flux library.

The code for interaction with the liquidity providers can be found in Appendix 3.

4.4 Testing

With the @SpringBootTest annotation, Spring Boot provides a convenient way to start

up an application context to be used in a test [39]. It allows overriding Spring beans,

accepting test configurations and connecting to a test database. Within the thesis, a

separate database for tests is used to avoid mixing of data. The database source is

configured in the application-integration-test.properties file and the base test class is

annotated with @ActiveProfiles("integration-test") annotation.

The data generator provides only insertion functionality and can be tested trivially. Every

endpoint of the data generator is called with specific GET parameters. After that, a

42

database request is made to get the actual data inserted to the database. All the fields are

compared to the ones that were initially provided.

Crypto address generation is made with randomness which will lead to unpredictable test

results. However, it can be solved by replacing the service with function for generating

random value to the mocked bean analogue. In Spring framework there is a @MockBean

annotation that creates a mocked instance of the service that can be configured to return

specified values when a method of the service is called. The example of the test can be

found in Appendix 4.

Cryptocurrency exchange rates are provided with the asynchronous method which is hard

to test. Nevertheless, Reactor Test library can be used for testing the reactive streams. Its

component, StepVerifier, provides a declarative way of creating verifiable steps for async

publisher sequence by expressing expectations about the set of events that will eventually

happen upon subscription [40]. The test also requires @MockBean annotation for the

service that returns random numbers. The example of the test is provided in Appendix 4.

Third-party services used in the solution can be mocked and set up to respond with pre-

defined answers. This will guarantee that the test result is always the same. For instance,

when a third-party is asked to provide a recommended trade, a static response is returned.

Then, the response is redirected to the liquidity provider side, that in turn handles it and

responds with the pre-defined answer. In the last part of the test, all parameters sent to the

third parties are verified.

43

5 Assessment of the created solution

The solution has been made in accordance with all the requirements. It provides a full test

environment for the fintech application developed by Polybius Tech OÜ and can be used

by the developers and testers inside the company. The most valuable functions of it

simplify the process of development, emulation of services and test data generation. This

project has become a very helpful solution for saving time and money invested in the

testing.

5.1 Comparison with the testing process before and after

With the creation of the test environment, all resources invested in testing were incredibly

optimized. The current approach drastically decreases the time of development and

testing of the application (see Table 5). The remaining resources can be directed to

improving the quality of the fintech application, code refactoring and implementation of

new features.

44

Table 5. The current expenses after introducing the test environment.

Action New approach Time expenses Money

expenses

Notes

User

verification

(KYC)

Verification

status can be set

via Swagger UI

- - Does not require

real documents

Crypto wallet

creation

Created via

Swagger UI

- - No third-party

services needed

Bitcoin

transaction

Emulated 10 seconds -

Ethereum

transaction

Emulated 10 seconds -

Initiating a

deposit via bank

EUR amount

can be set via

Swagger UI

- - No interaction

with real banks

Exchange

operation

Emulated - -

Trading

operation

Emulated - Liquidity

provider’s

behaviour is

emulated

Withdrawal Emulated (same

as Bitcoin

transaction)

10 seconds - No fees are paid

to third parties

The processes that required time and money expenses are simplified by using the test

environment. This solution introduces test money that can be added, transferred and

invested into the trading algorithm without the need for using real bank accounts and

credit cards. With the current approach, identity verification and transaction

confirmations can be shortened to seconds. Moreover, there is no need for actual

interaction with third-party services which may take fees.

The example of usage of the test environment can be found in Appendix 5.

45

6 Possible future improvements

The current version of the solution solves the problems of development and testing

processes, however, it can have even more features. One of the most helpful features

could be deploying the test environment to Google Cloud and serving it on a separate

domain. The access could be restricted to the employees of the company only by using

VPN.

As the test environment emulates the state of the production environment, it will allow

the testers performing more advanced test scenarios. For instance, employees of the

company could create test users and transfer test money or crypto assets between them.

This improvement will also be useful for those employees who do not participate in the

development process and therefore lack computer skills, but still want to test the

functionality. For example, Product Manager can test the flow of unreleased features in

advance. This environment could be possibly used for presentations of the product as

well.

The fintech application is continuously updated having more and more services to be

integrated with. This test environment will allow implementing emulations of credit/debit

card payment processors, stock trading services and more. Any new service appearing in

the fintech world can be integrated into the solution.

46

7 Summary

The thesis has surveyed the problems that occurred during the development of the fintech

application and described the way of testing the application before the solution was found.

The problems that significantly made the development process difficult were: time

expenses for user verification and cryptocurrency transactions, impossible

implementation of banking services due to the lack of license, money expenses on fees to

third-party services and bank transactions. The unoptimized way of development caused

meaningful drawdown in the quality of the application.

The thesis has introduced a test environment for the fintech application developed by

Polybius Tech OÜ that minimized the resources invested in the development and testing

of the application. It has been designed in accordance with the scientific resources and

the current back-end architecture of the company. The main prerequisite for developing

the solution was a lack of suitable third-party solutions that would be free and

maintainable. The solution is scalable and can be improved in the future.

The introduced test environment has drastically decreased the time expenses for testing

and developing the application. As it was based on the emulation principle, all processes

that needed additional fees and time expenses are currently emulated and require no

expenses. This solution has become a very useful tool among the employees.

47

References

[1] F. Sorrentino, “Forbes,” Forbes, 20 11 2015. [Online]. Available:

https://www.forbes.com/sites/franksorrentino/2015/11/20/heard-at-the-2015-aba-

national-convention/. [Accessed 21 11 2020].

[2] D. K. C. Lee and R. H. Deng, Handbook of blockchain, digital finance, and

inclusion, London: Academic Press, 2018.

[3] R. Tretau, WebSphere Application Server: Test Environment Guide, IBM

Redbooks, 2002.

[4] J. Hill, Fintech and the Remaking of Financial Institutions, San Diego: Elsevier

Science & Technology, 2018.

[5] “Bitcoins.net,” [Online]. Available: http://bitcoins.net/guides/bitcoin-

confirmations. [Accessed 21 11 2020].

[6] V. Buterin, “Ethereum Blog,” Ethereum, 14 9 2015. [Online]. Available:

https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/. [Accessed

21 11 2020].

[7] “Pricing,” Veriff OÜ, [Online]. Available: https://www.veriff.com/pricing.

[Accessed 30 12 2020].

[8] “YCharts,” 21 11 2020. [Online]. Available:

https://ycharts.com/indicators/bitcoin_average_transaction_fee. [Accessed 21 11

2020].

[9] “YCharts,” 21 11 2020. [Online]. Available:

https://ycharts.com/indicators/ethereum_average_transaction_fee. [Accessed 21

11 2020].

[10] Swedbank, “Hinnakiri,” Swedbank, 21 11 2020. [Online]. Available:

https://www.swedbank.ee/private/home/more/pricesrates. [Accessed 21 11 2020].

[11] E. Parliament, “EUR-Lex,” 25 11 2015. [Online]. Available: https://eur-

lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32015L2366. [Accessed 21

11 2020].

[12] “PSD2 and strong customer authentication,” Ravelin Insights, [Online]. Available:

https://www.ravelin.com/insights/ultimate-guide-psd2-strong-customer-

authentication. [Accessed 21 11 2020].

[13] S. Chishti and J. Barberis, The FinTech Book, 2016.

[14] Traffic Parrot Ltd, [Online]. Available: https://trafficparrot.com/. [Accessed 21 11

2020].

[15] MockLab, “Getting Started,” [Online]. Available:

https://www.mocklab.io/docs/getting-started/. [Accessed 21 11 2020].

[16] A. Simulator, “Features,” [Online]. Available: https://apisimulator.io/api-

simulator-features/. [Accessed 21 11 2020].

[17] B. Byars, Testing Microservices with Mountebank, Manning Publications, 2019.

48

[18] J. Hurwitz, Service Virtualization For Dummies, 2nd IBM Limited Edition,

Hoboken: John Wiley & Sons, Inc., 2017.

[19] “Welcome to the Open Banking Standard,” Open Banking Limited, 2020.

[Online]. Available: https://standards.openbanking.org.uk/. [Accessed 22 11

2020].

[20] “Asp .Net VS NodeJs,” Similar Tech, 2020. [Online]. Available:

https://www.similartech.com/compare/asp-net-vs-nodejs. [Accessed 22 11 2020].

[21] “An introduction to NuGet,” Microsoft, 24 5 2019. [Online]. Available:

https://docs.microsoft.com/en-us/nuget/what-is-nuget. [Accessed 16 12 2020].

[22] M. t. Wierik, “Building Horizontal Scalable Stateful Applications With ASP.NET

Core,” 21 9 2020. [Online]. Available: https://medium.com/swlh/building-

horizontal-scalable-stateful-applications-with-asp-net-core-1db270d24646.

[Accessed 16 12 2020].

[23] Baeldung, “A Comparison Between Spring and Spring Boot,” 10 10 2020.

[Online]. Available: https://www.baeldung.com/spring-vs-spring-boot. [Accessed

21 11 2020].

[24] “Asp .Net VS Spring,” SimilarTech, 16 12 2020. [Online]. Available:

https://www.similartech.com/compare/asp-net-vs-spring. [Accessed 16 12 2020].

[25] knowm, “xChange,” 2020. [Online]. Available:

https://github.com/knowm/XChange. [Accessed 21 11 2020].

[26] “Meet Ibanity,” Isabel Group, 2020. [Online]. Available:

https://documentation.ibanity.com/. [Accessed 22 11 2020].

[27] R. Gleason, “Node.js vs. Spring Boot — Which Should You Choose?,” 8 1 2020.

[Online]. Available: https://medium.com/better-programming/node-js-vs-spring-

boot-which-should-you-choose-2366c2f76587. [Accessed 21 11 2020].

[28] S. B. Meher, “Is .NET easy to learn?,” 13 2 2017. [Online]. Available:

https://medium.com/@sambhajimeher/is-net-easy-to-learn-74b13987dc23.

[Accessed 16 12 2020].

[29] T. Watson, “Java Spring framework – pros, cons, common mistakes,” Skywell

software, 11 1 2019. [Online]. Available: https://skywell.software/blog/java-

spring-framework-pros-cons-mistakes/. [Accessed 16 12 2020].

[30] “How long does it take to learn Node.js?,” BetterStack, 8 7 2019. [Online].

Available: https://betterstack.dev/blog/how-long-does-it-take-to-learn-nodejs/.

[Accessed 16 12 2020].

[31] “Различные типы баз данных, что вы должны знать,” Best Programmer,

[Online]. Available: https://bestprogrammer.ru/baza-dannyh/razlichnye-tipy-baz-

dannyh. [Accessed 22 11 2020].

[32] C. Arsenault, “The Pros and Cons of 8 Popular Databases,” Keycdn, 20 4 2017.

[Online]. Available: https://www.keycdn.com/blog/popular-databases. [Accessed

22 11 2020].

[33] “MySQL Products,” MySQL, [Online]. Available:

https://www.mysql.com/products/. [Accessed 22 11 2020].

[34] M. Macero, Learn Microservices with Spring Boot: A Practical Approach to

RESTful Services using RabbitMQ, Eureka, Ribbon, Zuul and Cucumber, Apress,

2017.

49

[35] “Introduction to the Spring IoC Container and Beans,” Spring, 18 11 2020.

[Online]. Available: https://docs.spring.io/spring-

framework/docs/current/reference/html/core.html#beans-introduction. [Accessed

23 11 2020].

[36] “What cryptocurrency address formats are used on Bitpanda?,” Bitpanda Support,

23 11 2020. [Online]. Available: https://support.bitpanda.com/hc/en-

us/articles/360001657820-What-cryptocurrency-address-formats-are-used-on-

Bitpanda. [Accessed 23 11 2020].

[37] F. Gutierrez, Spring Boot Messaging, New Mexico: Apress, 2017.

[38] “Open Banking Read-Write API Profile - v3.1.6,” [Online]. Available:

https://openbankinguk.github.io/read-write-api-site3/v3.1.6/profiles/read-write-

data-api-profile.html. [Accessed 23 11 2020].

[39] T. Hombergs, “Integration Tests with Spring Boot and @SpringBootTest,”

[Online]. Available: https://reflectoring.io/spring-boot-test/. [Accessed 23 11

2020].

[40] A. Nandan, “Testing Reactive Microservice in Spring Boot — Unit Testing,” 3 7

2020. [Online]. Available: https://medium.com/@nandan.abhi10/testing-reactive-

microservice-in-spring-boot-unit-testing-fe453887ffa1. [Accessed 23 11 2020].

50

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Maksim Nessin

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Creation of a Test Environment for the Fintech Application Developed by

Polybius Tech OÜ”, supervised by Nadežda Furs-Nižnikova and Vadim Gerassimov

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

23.11.2020

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

51

Appendix 2 – Cryptocurrency rates endpoint

@RestController
public class RateController {
 private final ExchangeService exchangeService;

 public RateController(ExchangeService exchangeService) {
 this.exchangeService = exchangeService;
 }

 @GetMapping(value = "/exchange/rates", produces = TEXT_EVENT_STREAM_VALUE)
 public Flux<String> rates(@RequestParam String currencyPair) {
 return exchangeService.rate(currencyPair);
 }
}

@Service
public class ExchangeService {
 private final RandomService randomService;
 private Map<String, Double> rates = Map.of("BTC/EUR", 10000D, "ETH/EUR", 200D);

 public ExchangeService(RandomService randomService) {
 this.randomService = randomService;
 }

 public Flux<String> rate(String currencyPair) {
 return Flux.interval(Duration.ofSeconds(1))
 .map(s -> String.valueOf(randomRate(currencyPair)));
 }

 public Double randomRate(String currencyPair) {
 Double factor = (randomService.nextDouble() * 2 - 1) / 1000D + 1;
 return rates.get(currencyPair) * factor;
 }
}

52

Appendix 3 – Interaction with liquidity provider

@Configuration
public class LiquidityProviderConfiguration {
 public final String assetDetails;
 public final String exchangeInfo;
 public final String time;
 public final String order;
 public final String subAccountTransfer;

 public LiquidityProviderConfiguration(@Value("classpath:liq/asset-details.json") Resource
assetDetails,
 @Value("classpath:liq/exchange-info.json") Resource exchangeInfo,
 @Value("classpath:liq/time.json") Resource time,
 @Value("classpath:liq/order-response.json") Resource order,
 @Value("classpath:liq/sub-account-transfer.json") Resource
subAccountTransfer) {
 this.assetDetails = asString(assetDetails);
 this.exchangeInfo = asString(exchangeInfo);
 this.time = asString(time);
 this.order = asString(order);
 this.subAccountTransfer = asString(subAccountTransfer);
 }
}

@RestController
public class LiquidityProviderApiController {
 private final LiquidityProviderService liquidityProviderService;
 private final LiquidityProviderConfiguration liquidityProviderConfiguration;

 public LiquidityProviderApiController(LiquidityProviderService liquidityProviderService,
 LiquidityProviderConfiguration liquidityProviderConfiguration) {
 this.liquidityProviderService = liquidityProviderService;
 this.liquidityProviderConfiguration = liquidityProviderConfiguration;
 }

 @PostMapping(value = "/liquidity-provider/order")
 public Mono<String> handleOrder(ServerWebExchange exchange) {
 return exchange.getFormData().flatMap(a -> {
 Map<String, String> params = a.toSingleValueMap();
 String symbol = params.get("symbol");
 String baseCurrency = symbol.replace("EUR", "");
 String side = params.get("side");
 BigDecimal amount = new BigDecimal(params.get("quantity"));
 liquidityProviderService.trade(baseCurrency, side, amount);
 return just(liquidityProviderConfiguration.order);
 });
 }
}

53

@Service
public class LiquidityProviderService {
 private final LiquidityProviderRepository liquidityProviderRepository;
 private final ExchangeService exchangeService;

 public LiquidityProviderService(LiquidityProviderRepository liquidityProviderRepository,
 ExchangeService exchangeService) {
 this.liquidityProviderRepository = liquidityProviderRepository;
 this.exchangeService = exchangeService;
 }

 public void trade(String baseCurrency, String side, BigDecimal amount) {
 BigDecimal price = new BigDecimal(exchangeService.randomRate(baseCurrency + "/EUR"));
 boolean isBuyTrade = side.equals("BUY");

 BigDecimal baseCurrencyAmountAfterTrade = isBuyTrade ? amount : amount.negate();
 BigDecimal eurAmountAfterTrade = isBuyTrade ? amount.multiply(price).negate() :
amount.multiply(price);

 subAccountTransfer("EUR", eurAmountAfterTrade);
 subAccountTransfer(baseCurrency, baseCurrencyAmountAfterTrade);
 }

 private void subAccountTransfer(String asset, BigDecimal amount) {
 liquidityProviderRepository.provider(Type.TRADING).ifPresent(provider -> {
 BigDecimal currentAccountBalance = provider.balances.getOrDefault(asset, ZERO);
 BigDecimal newBalance = currentAccountBalance.add(amount);
 provider.balances.put(asset, newBalance);

 liquidityProviderRepository.save(provider);
 });
 }

54

Appendix 4 – Example of tests

@SpringBootTest
class MockedDevApplicationTests {
 @MockBean
 private RandomService randomService;
 @Autowired
 private Controller controller;

 @Test
 void rates() {
 when(randomService.nextDouble()).thenReturn(0.432D).thenReturn(0.124D);

 Flux<String> flux = controller.rates("BTC/EUR");

 // factor = (X * 2 - 1) / 1000 + 1;
 // BTC/EUR price is 10000
 // ((0.432 * 2 - 1)/1000 + 1) * 10000 = 9998.64
 StepVerifier.create(flux)
 .expectNext("9998.64")
 .expectNext("9992.48")
 .thenCancel()
 .verify();
 }

 @Test
 void generateAddress() {
 when(randomService.nextInt(anyInt())).thenReturn(5, 9, 3, 10);

 String actual = controller.generateAddress(4);

 // 1 2 3 4 5 6 7 8 9 10
 // A B C D E F G H I J KLMN...
 assertThat(actual).isEqualTo("FJDK");
 }
}

55

Appendix 5 – Usage of the test environment

1) Adding verification status

56

2) Adding test money to the user

57

Appendix 6 – API endpoints documentation

API endpoints of the data generator

Base URL is /dev-api followed by the name of microservice. Optional parameters are

written in italics.

Request Parameters Description

POST /identity/users authenticationType,

email, referralCode,

password

Creates an unverified test user with specified

email, authentication type and optional parameters.

Referral code is not set by default. Password is set

to “password” by default.

POST

/identity/users/kycs

email, dateOfBirth,

firstName, lastName,

verificationStatus,

randomizeName

Initiates a KYC for the specified user with identity

data. Name can be randomized to avoid the

system’s check for similar names of different

users.

POST /wallet/crypto-

addresses

email, currencyCode Creates a fake cryptocurrency address for the

specified cryptocurrency and assigns it to the user

with the email. The address is randomized and

valid only within the test environment.

POST /wallet/crypto-

addresses/{address}/bala

nce

address, amount Adds the amount of crypto asset to the specified

crypto address.

POST /wallet/crypto-

addresses/transactions

fromAddress,

toAddress, amount,

status,

transactionHash

Creates a transaction with the specified sender’s

and recipient’s addresses. Depending on the status

the transaction may or may not be confirmed.

Transaction hash is randomized if not set.

POST

/exchange/deposits

email, amount, date Adds a deposit to be used for cryptocurrency

exchange.

POST /bank/accounts email, currencyCode,

iban

Creates a fake bank account with the specified

currency and assings it to the user. IBAN is

generated if not set.

58

POST

/bank/accounts/{iban}/ba

lance

iban, amount Adds the amount of money to the specified bank

amount.

POST

/bank/accounts/transactio

ns

fromIban, toIban,

amount, status,

transactionHash

Creates a fake bank transaction with the specified

sender’s and recipient’s IBANs. Depending on the

status the transaction may or may not be

confirmed. Transaction hash is randomized if not

set.

POST /autopilot/deposits email, amount, date Creates a deposit in the Crypto Autopilot service.

The deposit can be created in the past to emulate

historical data and charts in the UI.

POST

/autopilot/withdrawals

email, amount, date Creates a withdrawal in the Crypto Autopilot

service. The withdrawal can be created in the past

to emulate historical data and charts in the UI.

POST /liquidity-

provider/history

 Randomize a history of crypto asset movements

and trades on the liquidity provider side.

API endpoints of the service virtualizer

Request parameters can be presented in JSON or HTTP parameters depending on each

endpoint. For simplicity of the table, JSON parameters are put into brackets.

Request Request

parameters

Response body Description

GET

/banking/accounts/{acc

ountId}/balances

 [amount,

currency]

Returns a list of balances with

currencies for the requested bank

account.

GET

/banking/accounts/{acc

ountId}/transactions

 [transactionId,

transactionRefere

nce, status,

amount, currency]

Returns a list of bank transactions for

the requested bank account.

POST /domestic-

payments

{amount,

currency,

creditorAccou

nt}

[domesticPaymen

tId, status,

creationDateTime

]

Initiates a fake domestic (local) bank

payment.

59

Scheduled: 10 seconds

POST

/scheduler/update-

transaction-statuses

 Emulates the process of confirming

cryptocurrency and bank transactions.

Periodically updates the current

transaction statuses in the database of

the test environment.

GET /exchange/rates currencyPair text-event-stream-

data:string

Periodically returns a randomized rate

for the specitifed currency pair. The

HTTP request is formed within the

Server-sent events (SSE)

specification.

POST /liquidity-

provider/order

symbol, side,

quantity

{symbol, orderId,

timestamp, status}

Initiates an exchange on the liquidity

provider side.

GET /trading-

algorithm/request

 [symbol, side,

quantity]

Responds with randomized

cryptocurrencies and recommended

amounts to be exchanged. Emulates a

real tranding algorithm.

	1 Introduction
	1.1 Background
	1.2 Problem
	1.3 Goal
	1.4 Methodology

	2 Problem overview
	2.1 The current process of development and testing
	2.1.1 Cryptocurrency wallets and blockchain transactions
	2.1.2 Fiat and cryptocurrency exchange
	2.1.3 Banking services
	2.1.4 Services that use AI trading algorithm

	2.2 Reasons for the poor quality of the application
	2.3 Possible solutions from third parties
	2.3.1 Traffic parrot
	2.3.2 MockLab
	2.3.3 API Simulator
	2.3.4 Summary of third party solutions

	2.4 Scope
	2.5 Role of the author

	3 Solution analysis
	3.1 Requirements
	3.1.1 Common requirements
	3.1.2 Requirements for data generation functionality
	3.1.3 Requirements for virtualization of third-party services
	3.1.4 Requirements for virtualization of banking services

	3.2 Choice of a framework and building tool
	3.2.1 ASP.NET and NuGet
	3.2.2 Spring framework and Gradle
	3.2.3 Node.js and NPM
	3.2.4 Summary of frameworks and building tools

	3.3 Choice of database
	3.4 Design of the solution
	3.4.1 Application architecture
	3.4.2 Database ERD scheme

	3.5 Analysis summary

	4 Implementation
	4.1 Preparation
	4.1.1 Creation of the Spring Boot project
	4.1.2 Gradle configuration
	4.1.3 Project structure

	4.2 Data generation
	4.2.1 Setting up data sources
	4.2.2 Insertion of test data
	4.2.3 Swagger configuration

	4.3 Virtualization of third-party services
	4.3.1 Emulation of cryptocurrency address creation
	4.3.2 Emulation of cryptocurrency blockchain transactions
	4.3.3 Emulation of cryptocurrency exchange rates
	4.3.4 Emulation of banking services
	4.3.5 Emulation of trading algorithm and liquidity provider

	4.4 Testing

	5 Assessment of the created solution
	5.1 Comparison with the testing process before and after

	6 Possible future improvements
	7 Summary
	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix 2 – Cryptocurrency rates endpoint
	Appendix 3 – Interaction with liquidity provider
	Appendix 4 – Example of tests
	Appendix 5 – Usage of the test environment
	Appendix 6 – API endpoints documentation

