

TALLINN UNIVERSITY OF TECHNOLOGY

SCHOOL OF ENGINEERING

Department of Electrical Power Engineering and Mechatronics

DEVELOPMENT OF A MULTI-PLATFORM,

PRECISION-LANDING SYSTEM FOR

QUADCOPTERS

DROONIDE PLATVORMIÜLESE TÄPPIS-

MAANDUMISSÜSTEEMI ARENDAMINE

MASTER THESIS

Üliõpilane: Nsikak Akpan Iquaibom

 /nimi/

Üliõpilaskood: 184689MAHM

Juhendaja: Mart Tamre, Prof.

 /nimi, amet/

Tallinn 2020

2

AUTHOR’S DECLARATION

Hereby I declare, that I have written this thesis independently.

No academic degree has been applied for based on this material. All works, major

viewpoints and data of the other authors used in this thesis have been referenced.

25th May, 2020

Author: Nsikak Iquaibom,

/signature /

Thesis is in accordance with terms and requirements

“.......” 2020

Supervisor: ….........................

/signature/

Accepted for defence

“.......”....................2020 .

Chairman of theses defence commission: ...

 /name and signature/

3

Non-exclusive Licence for Publication and Reproduction of

GraduationTthesis¹

I, Nsikak Akpan Iquaibom (date of birth: 24/12/1993) hereby

1. grant Tallinn University of Technology (TalTech) a non-exclusive license for my thesis:

Development of a multi-platform precision-landing system,

 (title of the graduation thesis)

supervised by:

Prof. Mart Tamre,

 (Supervisor’s name)

1.1 reproduced for the purposes of preservation and electronic publication, incl. to be

entered in the digital collection of TalTech library until expiry of the term of

copyright;

1.2 published via the web of TalTech, incl. to be entered in the digital collection of

TalTech library until expiry of the term of copyright.

1.3 I am aware that the author also retains the rights specified in clause 1 of this

license.

2. I confirm that granting the non-exclusive license does not infringe third persons'

intellectual property rights, the rights arising from the Personal Data Protection Act or

rights arising from other legislation.

¹ Non-exclusive Licence for Publication and Reproduction of Graduation Thesis is not valid during

the validity period of restriction on access, except the university`s right to reproduce the

thesis only for preservation purposes.

 (signature)

25th May, 2020(date)

Department of Electrical Power Engineering and Mechatronics

THESIS TASK

4

Student: Nsikak Akpan Iquaibom, 184689MAHM (name, student code)

Study programme: MAHM, Mechatronics (code and title)

main speciality: Mechatronics

Supervisor(s): Professor, Mart Tamre, 620 3202 (position, name, phone)

Consultants: ……………………………………………………………..(name, position)

…………………………………………………………………………………… (company, phone, e-mail)

Thesis topic:

(in English) Development of a multi-platform precision-landing system

(in Estonian) Droonide platvormiülese täppis-maandumissüsteemi arendamine

Thesis main objectives:

1. Research available Precision landing technics and understand their limitations.

2. Implement a functional Precision-landing Algorithm.

3. Increase the reusability and scalability of the Precision-Landing Algorithm by

using FlytOS.

Thesis tasks and time schedule:

No Task description Deadline

1. Review of Related Papers 03/12/2019

2. Study of Precision-Landing Algorithms 29/02/2020

3. Study of foundational Drone programming 14/03/2020

4. Study and implementation of Image-processing based landing 31/03/2020

5. Integrating FlytOS and Image-processing control with life

Demonstration
31/04/2020

6. Compilation of Thesis Report 20/05/2020

Language: English Deadline for submission of thesis: 22nd May, 2020

Student: Nsikak Iquaibom 25th May, 2020

 /signature/

Supervisor: ………………… …………………….. “.......”......................201….a

 /signature/

Consultant: ………………… …....................... “.......”......................201….a

 /signature/

Head of study programme: …………… “.......”......................201.a

 /signature/

5

CONTENTS

PREFACE ... 7

List of abbreviations and symbols .. 8

1 INTRODUCTION ... 9

1.1 Thesis Focus and Expected Outcomes .. 10

1.2 Thesis Structure .. 10

2 LITERATURE REVIEW AND BACKGROUND .. 12

2.1 Current understanding of the problem ... 12

2.2 Existing solutions .. 12

2.3 Review of Pertinent Literature ... 14

2.4 Research Problem Formulation .. 18

2.5 Justification of Chosen Approaches and summary 18

2.6 Overview of Software and Hardware Used ... 20

2.6.1 Overview of FlytOS ... 20

2.6.2 Overview of Raspberry Pi .. 22

2.6.3 Overview of the Raspberry Pi-Camera (RPi Cam) Used 23

2.6.4 Overview of the Drone Used... 24

2.6.5 Overview of the Voltage Regulator Used ... 25

3 HARDWARE SET-UP ... 27

4 SOFTWARE SET-UP .. 31

4.1 Setting up FlytOS with DJI M210.. 31

4.1.1 Register, Download and Setup FlytOS with Raspberry Pi 3 32

4.1.2 Set-up FlytOS for a DJI-M200 Series Drone .. 34

4.1.3 Troubleshooting the Video-streaming Functionality 36

4.2 Setting up ROS for this Study .. 37

4.2.1 ROS-Package Creation .. 37

4.2.2 Updating ROS environmental variables ... 39

5 PROGRAM DEVELOPMENT AND CODING ... 41

5.1 Receiving and Processing Video Streams .. 41

5.1.1 Camera Calibration ... 41

5.1.2 Pre-Processing Images ... 44

6

5.1.3 Main Image-processing .. 45

5.1.4 Publishing Processed Images and data .. 54

5.2 Actuating the Drone based on image-data ... 57

6 EXECUTION OF PRECISION-LANDING ALGORITHM 62

6.1 The Test-setup ... 62

6.2 Remote connection to Rpi .. 63

6.3 Monitoring and Troubleshooting ... 65

7 ANALYSIS OF RESULTS .. 67

7.1 Accuracy and Speed of Landings .. 67

7.2 Results Comparism... 68

8 CONCLUSIONS ... 70

9 JÄRELDUSED ... 71

REFERENCES ... 72

APPENDICES ... 77

7

PREFACE

This Thesis work was initiated by Tallinn University of Technology (TalTech’s)

department of Electrical Power Engineering and Mechatronics lead by Professor Mart

Tamre. The author carried out all research and studies in the laboratories and external

facilities of the TalTech campus.

The author wishes to express gratitude to Prof. Tamre for emphasizing a practical-based

learning in this Master’s program, this hands-on approach has really boosted the

authors’ confidence towards career success.

This thesis seeks to address two primary issues, related to the autonomous control of

UAV (Unmanned Aerial Vehicles) and Quadrotors in particular;

- It aims to make create and implement a generic precision-landing algorithm.

- It aims to increase the reusability and scalability of this algorithm by using multi-

platform API (Application Programming Interface) developed by FlytOS [1].

It is expected that a ready-to use precision-landing system will be developed and

implemented in TalTech campus as an output of this Master Thesis.

8

List of abbreviations and symbols

1. API- Application Programming Interface

2. GCP- Ground Control Point

3. GNSS- Global Navigation Satellite system

4. GPS- Global Positioning System

5. MPC – Model Predictive Control

6. PPK- Post-Processed Kinematics

7. PPP- Precise-Point Positioning

8. RTK- Real-Time Kinematics

9. UAV – Unmanned Aerial Vehicle

10. URI – Uniform Resource Identifier

9

1 INTRODUCTION

Over the past decade, research into the application of UAVs (popularly called drones)

technologies have witnessed an exponential increase, this is because Drones have huge

potential to increase productivity both at a consumer level and in key industrial

applications.

At the consumer level, parcel delivery for ‘last-mile’ of goods delivery is a key

application area, however the highest commercial value of drone applications are in

industrial and enterprise settings. Drones are widely used in the civil industry to inspect

infrastructure such as Bridges, roads, windmills and so on. They are also used by

architects as well as artists for building 3D visual maps of large areas. There is a growing

trend for warehouse logistics firms to employ drones for automated inventory

management. Government and security agencies use UAVs for surveillance of territories

and hazardous zones.

The list of applications could proceed infinitely but drones presently are not as

ubiquitous as would be hoped, considering their potential. This is because of many

technical, social and legal issues. In this study, focus is made on the technical issues

that limit the application of drones, chief of which is precision-landing.

For instance, for parcel delivery to be practical as well as safe, it must be guaranteed

that the drone will land on its designated landing pad 100 percent of the time within a

small tolerance, and it must be able to do so in varying environmental situations

including rain, snow, dust, mud and even smoke, achieving this level of performance

technically can become quite challenging.

In particular, for this study, an application of UAVs for parcel deliveries is the focus.

TalTech desires a drone parcel delivery infrastructure that involves the use of one or

more of her available drones to deliver parcels from building to building within the

campus. The environmental conditions vary from cold and snowy winters, rainy seasons

and fair summers. It is necessary that a precision-landing solution targeted at parcel

delivery within the Campus must be able to operate in these wide variety of

environmental situations, if possible, and must also be safe and convenient for public

use.

Thus, it is the Author’s desire to actualize a low-cost, low-maintenance, and open-

source, precise-landing system which is critical to accomplishing inter-campus

deliveries. This, the Author believes, will improve the quality of life of its users and as

well inspire creativity in the general public.

10

1.1 Thesis Focus and Expected Outcomes

As mentioned previously, much work has been done in the field of Autonomous control

of UAVs, this Study however, will focus on two key issues that the Author wishes to

investigate;

- Create a generic precision-landing Algorithm: Many researchers have achieved

precision-landings using various techniques, one of the most impressive [2] achieved

landing accuracies of ca. 10 cm using a custom control algorithm. The Author aims to

create a generic algorithm based on visual-servoing that will be easily adapted on many

multi-rotors.

- Make the developed algorithm executable on the widest range of Multi-rotor

platforms using FlytOS: As will be later seen in the literature review section, many

good solutions have been implemented for precision-landing. The problem with these

highly specialized solutions that have unique hardware and software is that, they are

difficult to maintain from a practical point-of-view.

The Author will make use of the recently developed FlytOS, which is a ROS [3] (Robot

Operating System)-based Operating System (OS), to develop a precision-landing

application because FlytOS has the widest compatibility with commercial autopilots. The

intention is to make it easier to scale the developed precision-landing algorithm across

different drones, and since it will be open-source the algorithm can be developed further

instead of new researchers having to start from the beginning every time. The Author

believes this will help improve the quality and speed of research in this field.

Thus, in summary, the expected outcomes of this Study are;

- Have landing tolerance (ca. ±20 cm).

- Be consistently accurate.

- Have low infrastructural set-up cost.

- Be easily scalable even on different Drone platforms.

- Be able to operate in a wide variety of environmental conditions.

- Land in ca. 46 seconds.

1.2 Thesis Structure

Here, is an overview of the present Study;

- Chapter 1 talks broadly about the potential of Drones and how this potential can

be unlocked by easily-applicable precision-landing technology.

11

- Chapter 2 discusses the state-of-the-art of precision landing technologies for

UAVs, and then discusses key features that an implemented solution should

achieve.

- Chapter 3 will discuss details of how the solution is intended to be executed.

- Chapter 4 goes into details as to how the methology operates, the hardware and

software employed, the infrastructure it relies on and how environmental factors

affect results.

- Chapter 5 then presents an analysis of the study. It discusses the goal and

compares it with actual outcomes. The performance of the implemented

precision-landing technology is also discussed and compared with existing

solutions, then conclusions are made. The chapter then closes by discussing

further directions that this study can evolve into.

12

2 LITERATURE REVIEW AND BACKGROUND

This chapter discusses the problem of precision landing in more detail, then a review is

made of the state-of-the-art in terms of the implemented solutions for this problem,

their limitations are discussed, then some approaches are considered for

implementation in this study.

2.1 Current understanding of the problem

Precise Landing is fundamental to many applications such as parcel delivery, automatic

charging of UAVs and thus is of interest to many stakeholders. Many companies

including Amazon, Google and UPS already have implemented landing solutions, in

various contexts.

The main challenge is that landing solutions are very context-sensitive, for instance,

landing in fair weather, with sunlight and mild wind, would require different approach

when landing in night conditions or snowy conditions. Also, the type of UAV being used

will affect the quality of the landing, generally, larger UAVs have better performance.

For this study however, the focus will be on the use of quadrotors, and the target is to

develop a robust precise-landing system that can work in windy, snowy, night and day

conditions, to be used for parcel delivery.

2.2 Existing solutions

- Use of GNSS (Global Navigation Satellite System) derived solutions: Precise

landing has been attempted by applying RTK (Real-Time Kinematics) [4], PPK (Post-

Processed Kinematic) [5], PPP (Precise Point Positioning) [6] and GCP (Ground Control

Points) [7] to conventional GNSSs. With these technologies, accuracy of landing can be

brought to about 20cm tolerances.

The limitations of using GNSS based technologies are:

(i) They are quite expensive,

(ii) Since it relies on radio waves, it can easily be jammed or be interfered with,

13

(iii) It is largely dependent on the drone platform and cannot be easily scaled.

- Use of Infra-red (IR) Sensors: IR transmitters and receivers installed on the landing

platform and the drone respectively, have been proven to be quite effective for precise-

landing applications (More details concerning IR technics are explained in the next

secion).

The limitations of IR-based solutions are:

(i) It requires a power-source on the landing platform, which implies greater

infrastructural cost.

(ii) It can be affected by ambient sunlight.

(iii) Cannot be easily applied to many drone platforms

- Use of Image Processing: This method uses a camera mounted on the drone to

read ArUco markers (ArUco Marker - ArUco markers are a series of coded grey images

deployed in a two-dimensional area [8]), and then uses this feedback to accurately

guide the drone till it lands. It has the lowest infrastructural costs, it can work in the

widest varieties of environmental conditions (assuming appropriate apparatus are

used), and be scaled on all major drone platforms. This holds the greatest promise for

this project.

Some limitations of this system however are:

(i) Demands very good-level of technical know-how to implement- Unlike GNSS and IR

implementation, using image-processing is not a ‘plug-and-play’ solution and demands

a lot of software development.

(ii) Image processing become affected by precipitation and when the landing platform

is covered by dust, mud, snow, leaves or any kind of obstacle that can obstruct the view

of the Drone camera.

14

2.3 Review of Pertinent Literature

Prominent literature that covers this area of research are highlighted and discussed in

this section, all references can be accessed below.

Alvika Gautam, et al. [9], provided a broad perspective on the status of the landing

control problem. This literature pointed out that technics for tackling the landing

problem for UAVs can be classified broadly thus:

- GPS-based Landing: involves the use of control systems to modify the motion

of UAVs based on GPS data.

- Vision-based Landing (Infra-Red (IR) and image processing technics):

involves the use of a camera to scan a reference point (IR beacon or Image) and use

the information acquired to trigger a landing sequence.

- Guidance-based Landing (Proportional and Pursuit Guidance): Alvika

Gautam, et al. also explained that; Guidance refers to the determination of desired

trajectory from vehicle's current location to a target, as well as direction, rotation and

acceleration for following that trajectory.

The absence of literature that shows how precision landing can be achieved by GNSS

systems alone, further buttress the fact that GNSS-based solutions are in most cases,

not practical or reliable, however, A. Cesetti, et al. [10] showed that, in the case of

unmanned helicopters GPS and INS (Inertial Navigation Sensors) systems are suitable

for long range and low precision flights but fall short for precise and close proximity

flights.

Guidance-based Landing also relies often on vision-based sensors, H. Bang, et al. [11]

designed a guidance law for automatic landing of UAV using vision sensors for both fixed

wing and rotary wing UAV. The method iteratively estimated a time-to-go until target

intercept and modified the acceleration command based upon the revised time-to-go

estimate. Thus, it is obvious at this point that Vision-based technics must be applied to

achieved precise, reliable and consistent landings.

Jiri Janousek and Petr Marcon [12] compared GPS based landing with IR and Lidar

assisted landing, and observed that IR and Lidar sensors provided consistent high

accuracy and high precision landing, while GPS landing accuracy varied significantly.

Ephraim Nowak, et al. [13] executed an indoor IR-based precise landing system using

a larger IR-beacon, to eliminate the need for an external Lidar to estimate the precise

15

height of the UAV. This consisted their ‘plug-and-play’ solution for precise landing in

GPS-denied environments, but this solution is highly platform dependent and was not

exposed to external wind and ambient lighting conditions. Most other literature

reviewed, show that the application of image processing to the problem of precise

landing is the key to the solution, as discussed in the following paragraphs;

Mohammad Fattahi SANI, et al. [14] used an AR.Drone 2.0 to also execute precise

landing in a GPS-denied environment. Their solution involved using a Kalman Filter to

fuse the Inertial Sensor data of the Drone with the Vision data acquired from an onboard

monocular camera and thus controlling and landing the drone smoothly and quickly with

a landing accuracy of 3 cm. Another key component of their control algorithm is its

ability to overcome the oscillation of the drone when it is above the landing target. This,

they accomplished by their ‘movement-slicing’ method, which partitioned the moving

time around the target into ‘moving’ and ‘halting’ time, by controlling the drone for this

specific time-bursts, stability of the drone was achieved with significant landing speeds.

Phong Ha Nguyen, et al. [15] accomplished remote tracking and control of a multi-rotor

also in GPS-denied environments. However, rather than using conventional landing

Markers, such as ArUco, they developed a unique marker. This unique marker, they

showed in their report, significantly out-performs state-of-the art object trackers in

terms of both accuracy and processing time [15]. This method however requires

undisclosed specifications needed for printing this marker properly.

Further work was done by Mohammad Fattahi Sani, et al. [16], where they used two

cameras (one, forward facing, and one downward facing) and fused the visual data with

the drone’s inertial data, similar to the trend followed by most researchers investigating

this problem. This solution however achieved a low-cost solution that is effective over a

broad range from a landing target, in an indoor-environment.

Most research work up to this point, highlight the use of fiducial markers such as ArUCo

markers, vision sensors, control algorithms and filters to localize and control mobile

robots. Ho Chuen Kam, et al. [17], however focused on improving the marker-method

of localization of mobile robots using a linear Kalman Filter to compensate for real-world

conditions when the marker is sometimes briefly obstructed, thus improving the

robustness (noise insensitivity) of the control system.

A similar technique has also been applied to a fixed-wing UAV to smoothen the landing

of the UAV [18]. It was shown that by lining-up ArUco markers on a landing strip and

using a long-range camera, the UAV could derive its height and pose gradually and thus

land in a generally smooth gradient.

16

Nuno Pessanha Santos, et al. [19] used ground-based control system instead of the

onboard system used by most other researchers to guide a fixed-wing UAV to land on a

moving ship. The advantage of this method is lower payload for the UAV, also, since

GPS signals are vulnerable to jamming, a camera is installed on the ship to visually

track the UAV. This research used a Particle Filter (PF) for pose estimation of the UAV

and used an Unscented Kalman Filter (UKF) for temporal filtering, the results of this

research proved precision levels that were considered appropriate for Automated

landing.

Popular infrastructure such as autopilot and on-board computer as well as open-source

software used for drone application development are highlighted by Hyunwoong Choi

[20] and he describes how they were successfully employed to develop a vision-based

guidance system using an RGB camera. In his guidance system, a way-point was defined

at which the drone was to execute a given motion.

Jesse and Timothy [2] achieved landing precision of less than 10 cm using what they

call Variable Degree of Freedom, Image-based visual servoing (VBOF IBVS). They

employed a nested Aruco Marker, which was also back-lit with IR LEDs, and maintained

said landing accuracies in both day and night conditions, with a landing speed of about

26 seconds.

The concept of automatic landing of Fixed-wing UAVs using a Stereo-camera and an

orientation sensor was explored by Montika Sereewattana, et al. [21]. The focus of their

work was to use the stereo-camera to create depth-map of four detachable markers on

a landing strip and thus estimate the pose as well as other data required for proper

landing of the UAV.

V. F. Vidal, et al. [22] were able to successfully land an EMI-resistant Quadrotor quite

precisely on a 1.4 m square area of a simple landmark, using relatively simple control

methods such as PID relatively quickly too (about 15 seconds). A Go-pro camera was

used in this research, but the image had to be processed using standard python libraries

in order to be useful for actuating the drone.

Also, M. F. Silva, et al. [23] proved that low-cost equipment and fundamental control

algorithms such as PID where sufficient to control the angular dynamics of a UAV. The

‘Saturation Constraints and Performance Technique (SCPT)’ tuning method was used for

this study.

A fundamentally different approach to precision landing of UAV’s was proposed by E. I.

Shirokova, et al. [24]. A system consisting of a light-weight microwave reader, attached

17

to a drone and an array of microwave transponders on the landing platform (which also

serves as a charging station) was studied and simulated. The Flight controller adjusted

the pose of the Drone based on feedback from the transponders. This study suggested

that such a system would have an accuracy of about 1 mm, however this has not been

tested on hardware in real-life conditions.

Thien Hoang Nguyen, et al. [25] gave more insight about the retrieval process of a UAV

after it has completed its autonomous mission, suggesting that even though vision-

based navigation technologies are mature, a UAV may fail to target its landing pad if

GPS error limits its field-of-view (FOV) from seeing the target. To overcome this, an

Ultra-wide band (UWB) system was installed on the drone to ensure that it is led towards

the target landing pad, within the FOV of the drone, then visual navigation takes over

and concludes the process. The solution worked out quite effectively, however, it

demanded the use of 2 on-board computers, 1 mini-lidar sensor and a RealSense

Camera, to name just a few, which demand a significant amount of power, hence in-

practice, this may not be a feasible solution.

An application of a UAV and UGV (Unmanned Ground Vehicle) was made by Ivan

Kalinov, et al. [26]. The study involved the UAV making precision landings on the moving

UGV. The UAV was equipped with a couple of sensors including a 2D-Lidar sensor as

well as an Ultrasonic sensor and the data was fused together. The study was targeted

towards automated inventory management in a warehouse.

Liu Shungui, et al. [27] proposed a precision landing concept for UAVs to be used for

powerline inspection. This paper emphasized the use of an iterative algorithm to know

the best pose estimation for the Drone as it approaches the powerline, and then, the

use of virtual control points to improve the accuracy of this pose estimation. This concept

was proven in simulation environments.

Siri Holthe Mathisen, et al. [28] used a model to achieve precision landing of a fixed-

wing UAV when it was undergoing ‘Deep-Stall Landing’- very steep descent. This type

of landing is necessary for operational flexibility in areas without sufficient landing strip,

and is quite difficult for a human pilot to execute appropriately. A non-linear model

predictive control was used to accurately control the deep stall by first controlling the

UAV altitude, then significantly lowering its speed, before finally controlling its path

angle.

18

2.4 Research Problem Formulation

Based on the review of the literature above, the research problem for this thesis is sub-

divided into two key components:

- Creation of a generic Precision-landing Algorithm: Timothy and Jesse [2]

showed very impressive results for precision-landing in both day and night conditions,

with tolerances of ca. 20 cm. The Author has observed that the problem with such

algorithm as well as similar algorithms developed by many researchers is that those

algorithms are highly context sensitive. This means that:

- small changes in the infrastructure or model of the UAV will significantly affect

the precision algorithm in the long-run.

In order to overcome this problem, the Author aims to develop a precision-algorithm

which is less dependent on the type of Drone being used or a highly specialized model.

This will allow the algorithm to be easily adopted on multiple Drone platforms.

- Enabling the developed algorithm to easily replicated and scaled on

Multiple Drone platforms by using FlytOS: All the papers evaluated all developed

their own custom solutions for the problem. However, for a pragmatic application of

precision-landing, the Author believes that it is important that the developed algorithm

should be able to scale on other drones, with few modifications.

FlytOS provides one such platform to develop custom applications for UAVs and it has

the widest compatibility with commercial flight controllers.

These are two key issues that the Author seeks to address via this Master Thesis.

2.5 Justification of Chosen Approaches and summary

In this section, comparative analysis of some competitive methods related to this Study

are made. First, the control methodology for the proposed precision-landing algorithm

is discussed. Secondly, the use of Aruco markers for the development of the landing

platform is discussed. Lastly, further reasons why the Author has chosen to develop this

precision-landing application based on the API developed by FlytOS are discussed.

Majority of studies done with respect to Precision-landing as seen in section 2.3 showed

the following key features:

- Model-dependent Algorithms: High-precision algorithms such as those in

[14], [15], [16], [17], [18] and [19] used a specialized model of the multirotor

UAV to accomplish their algorithms.

19

- Drone-dependent Algorithms: Most of the studies where either built on a

custom drone with unique features such as IR and GNSS modules or they used

the popular AR Drone which comes with a unique API for just that Drone.

These features while highly specialized and where able to achieve quite impressive

results will be diffucult to use in a commercial setting because it will demand the use of

exactly those Drones or the recreation of models for each specific Drone.

This kind of approach will create a huge maintainance overhead if the precision-

algorithm is to be used in commercially.

In order to overcome the above context-based challenges, the Author proposes the use

of the following simple guidance algorithm, briefly illustrated below;

- Locate landing marker; else remain hovering

- Move only in x-axis until error is minimum then,

- Move only in y-axis until error is minimum

- When x and y axes errors are minimum, Land.

The details of these steps are illustrated and elaborated upon in Chapter 5. The Author

estimates that this algorithm while simple, will still bring the Drone to within 10 cm

tolerances within 1 minute landing time.

The advantage will be the ease of application of the algorithm on the widest variety of

platforms and thus it can be quickly developed upon.

The use of fiducial markers is a common practice for robot visual-servoing, the major

fiducial markers used in Robotics are;

- Aruco Markers

- April Tags

- AR Tags

Aruco Markers were chosen for this study, the main reason being that it is readily

supported on major Robotics development resources such as opencv and ROS by well

developed libraries and many tutorials.

The Author aims to use just one Aruco Marker as a landing reference, this is sufficient

to provide the pose and attitude of the UAV. This data can then be used as a reference

to actuate the Drone. The Author choses to adopt this method, since it has been proven

to work really well, and is easily applicable.

Finally, concerning the use of FlytOS, it must be noted that FlytOS is owned by Flytbase,

which also produces FlytDock (their precision-landing solution) based on FlytOS.

FlytDock however is quite expensive and thus inaccessible to the Author, thus the

20

Author decided to create an open-source application based on FlytOS that can be

accessible to anyone who would want to investigate this problem in future.

The application of these key features should aid the Author to accomplish the afore-

mentioned objectives;

- UAV landing-accuracies should be better than already implemented precision-

landings (i.e. should be less than 20 cm tolerances)

- UAV landings should be consistently accurate within desired precision levels.

- The landing set-up should have low infrastructural cost.

- The developed control system should be easily scalable even on different Drone

platforms.

- The precision-landing system should able to operate in a wide variety of

environmental conditions, including day, night, rain, and smoke.

- UAV should land in at least as fast as already implemented precision-landings

(i.e. should land in <= 2 minutes).

2.6 Overview of Software and Hardware Used

In this section, the Author elaborates on principle software and hardware used for this

Study.

The following software was used;

- FlytOS

- ROS

The following are physical apparati used;

- Aruco-Marker based landing platform; This platform was also back-lit with LEDs.

- On-board flight controller; Raspberry pi 3 [29] computer

- Voltage-Regulator; DC-DC voltage converter to draw power from the on-board battery.

2.6.1 Overview of FlytOS

After going through the large amount of research work done as well as commercial

deployments of Drone-deliveries and precision-landing, it is demonstratively obvious

that precision-landing is not a new concept or mystery any more.

21

What is a challenge however, is deploying precision-landing algorithms in such a way

that they can be applied on a wide variety of Drones without much hassles of fine-tuning

technical parameters or recreating sophisticated mathematical models of the system for

each Drone.

FlytOS provides an answer to this problem. FlytOS has a vision to become a standard

language with which Drone Developers use to talk to each other. FlytOS provides APIs

(FlytAPIs) through which communication can be made with the widest variety of Drones

and Autopilots- i.e. ArduPilot, PX4, and DJI Drones and Autopilots

The FlytOS Architecture is illustrated below:

Figure 1: FlytOS Architecture Diagram [1]

Figure 1 captures the main features of FlytOS. At a glance we can observe key

features which make it such a powerful development tool for Enterprise focused

Drone-application developers, including the following;

22

- Onboard APIs- this provides an interface for Developers to create applications

written in Python, C++, and with ROS which will run on an Onboard Computer

carried along with the UAV in flight.

- Web Application APIs- FlytOS also provides RESTful and Web Socket APIs

which are used in conjunction with Onboard applications as well as stand-alone

applications (especially with smaller Drones).

Most importantly, high-level functionality can be supervised from the

FlytConsole, and useful troubleshooting data are stored in the Data Logger and

can be downloaded when needed.

- Peripheral Modules- These include; Offboard User Apps and ROS/Linux

Modules integration. These Modules enable Web/Mobile Apps to be created

easily and expose advanced functionalities of ROS/Linux respectively.

Figure 1 also shows that FlytOS is built on ROS (Robot Operating System) and Linux

[1]. ROS and Linux are both widely used for both Commercial and Research purposes,

and thus form a proper foundation on which relevant applications can be built and

maintained.

The Linux and ROS versions used together with FlytOS for this Study are:

- ROS Version: ROS-Kinetic 16.04, this is not the latest version of ROS but is

still used widely in the robotics community because of its stability and support

for many robotic tools libraries. ROS-Kinetic has long-term support until 2023

and thus is a robust development environment for future use.

- Linux Version: Ubuntu-MATE, this version is similar to the popular Desktop

Ubuntu OS, but Ubuntu-MATE has a modified interface which makes it more

suitable for operation on lower-capacity computers such as Raspberry Pi, (with

less working-memory space) which are usually used as Onboard-computers to

control a Drone.

In the remaining sections of this chapter, an overview will be given of all the hardware

used for this Study.

2.6.2 Overview of Raspberry Pi

Raspberry Pi computers are widely popular because of their relatively large processing

power, small size and affordability. More importantly, for this Study Raspberry Pi 3,

23

Model B was chosen because of its ready support for FlytOS and also a large online

support community.

A detailed diagram showing major features of this controller can be seen in Figure 2, in

the Appendices section.

Key features that make Raspberry Pi 3 Model B suitable for this Study are:

- Easily accessible GPIO pinouts- 6,8 and 10 (Ground, Transmitter pin and

Receiver Pin, respectively) which are necessary for establishing UART (Universal

Asynchronous Receiver-Transmitter) communication between the Drone and the

Raspberry Pi.

- CSI Camera Connector- The Camera Serial Interface (CSI) provides a faster

transmission rate for video data coming from a camera module attached to this

interface, compared to the USB interfaces.

- Ethernet Port- This enables the board to be connected to LAN (Local Area

Network) and achieve large data rates while FlytOS is being setup and updated

on the Raspberry Pi.

- Onboard BCM43438 wireless LAN and Bluetooth Low Energy (BLE)- This

enables the board to broadcast a wifi signal once it is powered on. A Computer

can then connect to this Wifi signal and remotely connect to this Raspberry Pi

conviently without an external module.

Peripheral Ports- These include the HDMI and USB 2.0 ports which make it easy to

physically connect a Monitor, Keyboard and Mouse to the board and access the GUI

(Graphics User Interface) of Ubuntu-MATE, which makes program development easier

and faster.

2.6.3 Overview of the Raspberry Pi-Camera (RPi Cam) Used

In order to enable the Drone to cover the largest expanse of space at a given time, a

wide-angle Raspberry-Pi Camera was used- RPi Camera Fisheye Lens.

Diagram, illustrating how the RPi-cam was connected to the RPi is shown in Figure 3 in

the Appendices section.

Key parameters that make this Camera suitable for this Study are:

24

- 160-degree angle of View- This is more than double the size of regular RPi

Cameras (about 72 degrees), thus giving the Drone a very wide field of view.

- 5 megapixel OV5647 sensor- This makes the images appear sharper. Thus

the image processing algorithm has better data to work with.

2.6.4 Overview of the Drone Used

For this Study, it was important to the Author to test out the precision-landing Algorithm

in real-world conditions rather than in only simulation environments or indoor

environments.

The DJI Matrice 210 Drone was used for this Study. Key features of this Drone that

were utilized in this Study are:

- FlytOS support for this Model of Drone: FlytOS officially supports DJI Matrice

200 series Drones from their 1.5-6 FlytOS release and upward. Documentation

was provided by FlytOS on the procedures for setting up the Drone with FlytOS

which will be explained in Chapter 5.

- Easily accessible UART Port: This easily accessible UART/Serial port makes

data exchange between the Drone and the Onboard Computer (RPi) fast and

easy to wire-up, as shown below:

Figure 4: DJI M210 Expansion-Port, highlighting the OSDK (Onboard Software

Development Kit) port. [30]

In Figure 4, the highlighted region, from top-to-bottom represents the

Transmitter, Receiver and Ground for the UART connection.

- Gimbal-Mounting Mechanism: M210 has a quick release mechanism for

Camera gimbals to be mounted and unmounted to the Drone, as shown below:

25

Figure 5: M210 Gimbal-mounting mechanism [30]

This mounting mechanism was adopted by the Author to create a create a

quick-release mechanism for the Onboard computer and Camera which enable

the precision-landing algorithm, as will be illustrated in Chapter 4.

- Extended Power Port: This port is used by the Drone to supply power to

external devices, it outputs voltage in the range of 18 V to 26 V with a current

of 2 A [30].

2.6.5 Overview of the Voltage Regulator Used

In order to power-up the RPi from the Drone, it was necessary to step-down the Voltage

coming from the Drone to values which are suitable for the RPi. The 18 V to 26 V signal

coming from the Drone was stepped-down and regulated at 5 V with a current of 2.5 A

using the XL6009E1 voltage-regulator module.

Pictures, which illustrate this voltage regulator are displayed in Figure 6, in the

Appendices section.

From Figure 6, we can observe that this module simply receives an input signal and

the regulator is used to adjust the voltage-level until the desired output voltage is

achieved. The input wires are soldered on the input terminal and the output wires are

soldered at the output terminals. Details of how this module was used are documented

in Chapter 3.

Key features of this Module include:

- Input Voltage range: 3.5 V – 32 V DC,

26

- Output Voltage range: 5 V – 35 V DC,

- Maximum Current Output: 2.5 A [31]

27

3 HARDWARE SET-UP

In this Chapter, the hardware setup for this Study are discussed in detail. As discussed

in Chapter 3, the hardware used are:

- One RaspberryPi Computer,

- One Fisheye lens RaspberryPi Camera,

- One Voltage regulator, and

- One DJI M210 Drone

The hardware components were setup according to the following flowchart:

Figure 7: Flowchart showing the Hardware set-up sequence

From Figure 7, the hardware set-up sequence was actualized in the following way:

- Step 1 and Step 2:

Step 1: Connect RPi-cam to RPi

Step 2: Attach RPi and RPi-cam set-up to
Mounting Mechanism

Step 3: Attach Mounting Mechanism to Drone

Step 4: Connect RPi to Drone through UART port

Step 5: Power-up the RPi from the Drone’s
external power terminal

28

Figure 8: RPi and Camera set-up attached to Mounting Mechanism (Top and

Bottom-View)

Figure 8 shows how the RPi and Camera were connected together (check

Figure 3) and then attached (taped) to a Mounting mechanism made of carbon-

fiber sheets.

- Step 3: Here the Mounting mechanism was attached to the Drone as shown

below:

Figure 9: Attachment of Mounting Mechanism to Drone. (Before and After)

Figure 9 shows how the Mounting mechanism to attached to the Drone using the 2

slots which were meant to hold camera gimbals (see Figure 5).

29

- Step 4: Here the RPi is connected to the OSDK/UART port that enables the

Onboard computer (RPi) to communicate with the Drone. The wiring for this is

illustrated below:

Figure 10: Connecting the RPi to the M210 Drone (Schematic [32] and Actual)

Figure 10 shows how the Onboard computer was connected to the OSDK port of the

Drone. The following UART connections were made:

- The ground (GND) of the RPi was connected to the GND of the M210

- The transmitter (Tx) [GPIO14] of the RPi was connected to the Rx of the M210.

- The receiver (Rx) [GPIO15] of the RPi was connected to the Tx of the M210.

This is also illustrated above.

- Step 5: Finally, the RPi was powered-up from the Drone’s external power-

terminal through a DC-to-DC converter (see the schematic in Figure 10), as

shown below:

30

Figure 11: RPi Power Connections

In Figure 12, we observe how the RPi was connected to the Drone power outlet

through a DC-to-DC converter. In order to achieve this set-up successfully, the

following was done to ensure that the proper electric signal-values were attained:

- The polarity of the Drones’ external power-port were confirmed using a

voltmeter.

- Wires were soldered to both terminals of the voltage regulator and it was

connected to the Drone.

- The input to the voltage-regulator was measured and confirmed to be ca. 26 V.

- The output of the voltage-regulator was measured with the voltmeter and

adjusted with the voltage-regulating knob highlighted above.

- The previous step was repeated continuously until the desired output voltage of

ca 5.2 V was attained. This setting also enabled the RPi to draw it rated current

2.5 A properly.

In the next chapter, details will be given on how the respective software modules were

set-up in order to successfully carry-out this study.

31

4 SOFTWARE SET-UP

In this Chapter, the Author goes into details to explain how FlytOS was set-up for this

Study and also explains how ROS was used to organize the modules of this Precision-

landing Application.

The following key-points will be elaborated upon in this Chapter:

- Setting-up FlytOS with DJI M210

- Setting-up ROS for this Study

4.1 Setting up FlytOS with DJI M210

As mentioned previously, FlytOS started officially supporting DJI M200 series Drones

from their 1.5-6 release and upward. In this section, the Author explain all the details

necessary to set-up FlytOS with the Drone.

There is an official documentation on how to do this, but from experience, the Author

has discovered that there are some extra steps that may need to be executed in order

to achieve a successful set-up. Hence a holistic set-up procedure for installing FlytOS

on a Raspberry Pi will be elaborated upon, highlighting the discrepancies in the

procedure which are not covered in the official documentation. This is procedure is

illustrated in the flow-chart below:

32

Figure 12: Flowchart showing holistic FlytOS and Drone set-up procedures.

This procedure is exactly the same for both the Personal Edition (PE) or the Commercial

Edition (CE).

4.1.1 Register, Download and Setup FlytOS with Raspberry Pi 3

There are a few methods for accomplishing this step, but from experience, the Author

recommends the following steps (also the official recommendation).

Step 1: Register, Download and Setup FlytOS

Step 2: Set-up FlytOS with DJI Drone

Does

Video-

streaming
Work?

Take Corrective Measures

Check Image-Message
Broadcasts

Set-up

finished

No

Yes

33

Figure 13: Flowchart for setting up FlytOS with Raspberry Pi 3

In this stage, the user accomplishes the following:

- Creates a FlytBase account in order to access FlytOS.

- Downloads the FlytOS image from his/her account.

- Verifies the integrity of the image using a checksum provided from his/her

account.

- Writes the verified FlytOS image to an SD card: The author recommends using

a high quality SD card, with high data transfer rates, because this will

significantly affect the speed of the setup procedure, as well as the overall

performance of FlytOS.

The Author used ‘SanDisk 32GB Extreme UHS-I microSDHC’ Memory Card, for

this Study.

- Extends the partitioning of FlytOS to cover the entire SD card.

- Acquires login-access to FlytConsole and the FlytOS terminal.

The fine-details of these processes can be seen in the official documentation [28].

Create FlytBase Account

Download and Verify FlytOS
Image

Burn FlytOS image to SD

card

Extend FlytOS partition on

SD card

Test FlytConsole and

Terminal Access

34

4.1.2 Set-up FlytOS for a DJI-M200 Series Drone

As mentioned in the introductory chapter, the Vision of FlytOS is to be a common

language upon which Drone-application developers execute their code. To this effect,

FlytOS is compatible with the most popular Drones and Auto-Pilots- DJI Drones,

ArduPilot and PX4.

For this Study, the Author used a DJI-M210 Drone provided by Tallinn University of

Technology. The set-up procedure for this Drone are summarized in the flowchart below:

Figure 14: Flowchart for setting-up FlytOS for a DJI M210 Drone

The user executes the following at this phase:

- Installation of ‘DJI Assistant’: DJI Assistant (or DJI Assistant 2) is the primary

software for configuring, troubleshooting and simulating DJI drones.

Download and Install ’DJI Assistant’

Create DJI Developer Account

Create an Onboard-SDK App and take note of
its App-ID and Encryption Key

Configure the M210 Drone

Configure FlytConsole Parameters

Test the Set-up

35

- Creation of DJI Developer Account: This is needed in order to have access to

DJI’s SDKs

- Creation of an Onboard-SDK App: Here, the user registers an Application on

DJI’s website which is intended to make use of their Onboard SDK. Special note

must be taken of the App-ID and its Encryption Key, as it will be used later.

- DJI M210 Configuration- The following are done here:

o key parameters of M210 are set in the DJI Assistant App to control the

behaviour of the Drone while been used with FlytOS.

o Drone firmware is updated to the latest and then restarted.

o UART Connection is made between the RPi and the OSDK port of the

Drone.

- Configuring FlytConsole Parameters: FlytConsole serves as a supervisory

and control centre for FlytOS-controlled Drones/Autopilots, the following are

done here:

o FlytConsole is opened in a browser. (details in [34])

o The App ID and Encryption key are populated into FlytOS settings field.

- Testing the Set-up: To confirm that everything has been done properly, the

following should be done:

o Start and Stop FlytOS from the terminal using the given commands,

(details in [34]).

o Make sure to remove the propellers from the Drone.

o Ensure that there GPS signals available.

o Start the simulator in DJI Assistant.

o Set M210 to P-mode using the flip-switch on the controller.

o Use the Joystick App in FlytConsole control the Drone in the simulator.

The official documentation for this procedure are available [34], but some points have

not been updated by FlytBase, hence from experience the Author has modified the

sequence so that it is easier for a novice to follow.

36

After the above steps, it is necessary to confirm if the images coming from a camera

connected to the RPi are visible from FlytConsole, (the Author encountered a challenge

with the video-streaming). If it is not, troubleshooting steps are elaborated in the next

section.

4.1.3 Troubleshooting the Video-streaming Functionality

As this is an image-based precision-landing algorithm, it was necessary to ensure that

video data from RPi were visible on to FlytOS and could be used for developing the

algorithm. The following should be done if Video Streaming data is not visible on

FlytConsole:

Figure 15: Flowchart depicting how to troubleshoot Video-Streaming error in FlytOS

The details of this sequence are explained below:

Confirm Cable Connections

Does Video-

Streaming

error
Persist?

Get Public Key

Update and Upgrade all dependencies

Finish- Error

Corrected.

Yes

No

37

- Confirm if the RPi-cam is well inserted into the CSI slot: Turn-off the RPi,

remove and reconnect the RPi-cam.

- If the problem still persists then the following should be done in the FlytOS

terminal:

o Get Public-Key: Get a public key by executing this command in the

terminal-

sudo apt-key adv –keyserver ‘hkp://keyserver.ubuntu.com:80’ –recv-key

C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654

This is necessary in order to have the authority to execute the next

command.

o Update and Upgrade all dependencies: run the following command to

update and upgrade all FlytOS dependencies (including opencv which is

usually the problem)-

sudo apt update && sudo apt upgrade –y

After these steps, the video-streaming error will be eliminated. In the next section, the

development of the precision-landing algorithm is discussed.

4.2 Setting up ROS for this Study

As mentioned in the Software overview chapter. FlytOS is based on ROS and Linux,

hence using FlytOS for this Study will demand utilizing basic ROS functionalities and

Linux terminal commands. The following were done, in order to set up ROS for this

Study:

- Creating a ROS Package

- Updating ROS environmental variables

4.2.1 ROS-Package Creation

A ROS package is the main unit that is used to keep software in ROS organized. The

ROS package may contain various program units including nodes, libraries,

configuration files and so on. In general, all dependencies needed for a program to run

are indicated in its ROS package. A ROS-package named marker_detector was created

for this Study in the following way:

38

Figure 16: Flowchart showing the creation of the ‘marker_detector’ package

Details for the sequence above are explained thus:

- Create a catkin workspace: A catkin workspace (catkin_ws) can be

understood as the highest directory in a ROS user workspace. A catkin workspace

can contain several packages which are each dedicated to unique applications.

A catkin_ws is fundamental to most ROS projects and details on how to create

one in a Linux terminal are available [35]. A catkin_ws consists of 3 basic folders,

namely;

o Source folder (src)

o Development folder (devel)

o Install folder (install)

For this Study our focus is on the src folder.

- Navigate to the src folder: It is in the source folder of the catkin workspace

that a package is created. We navigate to this folder using the following Linux

command:

cd catkin_ws/src

- Create “marker_detector” Package: Once in the catkin_ws/src folder we can

now begin creating packages. The process of creating packages have been

automated in the ROS ecosystem. It has the following syntax:

Create a catkin workspace

Navigate to the source folder in the catkin
workspace

Create the ’marker_detector’ package

39

catkin_create_pkg <name_of_package_to_be_created> <dependency1> <dependency2>

<dependency3>

For this Study, the marker_detector package was created with a dependency on

only ‘rospy’. ‘rospy’ is the main python library built for ROS, hence the package

is created as follows:

catkin_create_pkg marker_detector rospy

Then finally, the path to ROS package must be indicated in the ROS_PACKAGE_PATH

environmental variable, in order for it to be used. Thus marker_detector package path

has to be updated into this variable as will be explained in the next sub-section.

4.2.2 Updating ROS environmental variables

ROS environmental variables can be thought of as parameters that affect how a ROS

installation performs. There are many environmental variables, but only the

ROS_PACKAGE_PATH variable needs to be updated. For this Study, it is required to

update the aforementioned variable in every new Linux terminal that is opened,

otherwise the marker_detector package will not be found by ROS. The process for doing

so is summarized thus:

Figure 17: Flowchart describing how to update the ROS_PACKAGE_PATH

Details for this sequence are explained below:

- View the default ROS_PACKAGE_PATH values: The default values of

ROS_PACKAGE_PATH can be viewed on any Linux terminal by using the

following command:

echo $ROS_PACKAGE_PATH

View the default ROS_PACKAGE_PATH values

Update the ROS_PACKAGE_PATH values

Test if the Update was successful

40

After the values of this variable have been displayed, it should be highlighted

and copied (ctrl+shift+c)

- Update the ROS_PACKAGE_PATH variable: In order to update a ROS

environmental variable, the ’export’ command is used. The

ROS_PACKAGE_PATH variable should updated with the file path for the

’marker_detector’ package created in the previous sub-section using the

following command:

export ROS_PACKAGE_PATH=<the values copied from the previous

step>:~/catkin_ws/src/marker_detector

It must be confirmed if the values actually changed.

- Testing the Update: to test if the value of the ROS_PACKAGE_PATH has

actually been updated and that there are no error, it is necessary to view the

value of the variable again according to first step above. It should then be

observed that the value of this variable has been updated according to the

previous step.

41

5 PROGRAM DEVELOPMENT AND CODING

In this chapter, the Author describes the main algorithm and programming techniques

underlying this precision-landing application. The main aspects of this program are:

- Receiving and Processing Video Streams

- Actuating the Drone based on image-data

5.1 Receiving and Processing Video Streams

As a vision-based precision-landing algorithm, the first-step of the program

development is to acquire the video data at a reasonable rate. In this section, the Author

will discuss how an Image stream was acquired and processed. The general sequence

for this is illustrated below:

Figure 18: Flowchart showing the general process of reading and processing image

data

This module of the precision-landing algorithm is the primary module for this study,

and it is based on Python scripts developed by Tiziano Fiorenzani [36]. The Author

adapted this code in order for it to work with FlytOS. The details of the sequence in

Figure 17 will be explained in the following sub-sections.

5.1.1 Camera Calibration

Camera calibration is the process of estimating the parameters that define a camera’s

focal length, optical sensor and lens-distortion. Camera calibration is important because,

Camera Calibration

Pre-Process Images

Main Image-processing

Publish Processed Images

42

just like finger prints, every single camera is different, and thus the mathematical model

representing a camera must capture these values, in order to improve performance of

the precision-landing algorithm.

Opencv is the most popular library used for robotics research, and as briefly mentioned

in section 5.1.3, is one of the dependencies in FlytOS. Opencv uses a pin-hole camera

model in order to estimate a camera matrix:

Figure 19: Opencv pinhole camera model [38]

Figure 19 shows that when an object in the real-world (point P) is projected unto a 2D

space, it loses its depth perception. In order to compensate for this change, the

Opencv pinhole model estimates the intrinsic camera parameters from the following

formula [33]:

[
𝑢
𝑣
1

] = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] [
𝑋
𝑌
𝑍

]

(1.0)

Where:

(X,Y,Z) are the coordinates of a 3D point in the world coordinate space, [38]

(u,v) are the coordinates of the projection point in pixels, [38]

(cx,cy) is a principal point that is usually at the image center (the optical sensor), [38]

43

(fx,fy) are the focal lengths expressed in pixel units. [38]

In addition to these, lens distortion of the camera must also be accounted for. Opencv,

models this distortion by the following formula [37]:

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑐 = [𝑘1, 𝑘2, 𝑝1, 𝑝2, 𝑘3]

(2.0)

Where:

k1,k2,and k3 are radial distortion coefficients, and [37]

p1, and p2 are tangential distortion coefficients. [37]

In order to estimate all these 9 parameters, the Author used the camera-calibration

method described in [37].

For the fisheye camera (see section 3.3) used for this Study, the camera matrix and

Distortion coefficients are shown below:

[
𝑢
𝑣
1

] = [
3.04079𝑒 + 02 0.00000𝑒 + 00 3.13905𝑒 + 02
0.00000𝑒 + 00 3.03399𝑒 + 02 2.26608𝑒 + 02
0.00000𝑒 + 00 0.00000𝑒 + 00 1.00000𝑒 + 00

] [
𝑋
𝑌
𝑍

]

(3.0)

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑐 = [−3.52291𝑒 − 01, 1.74888𝑒 − 01, −2.49997𝑒 − 03, −9.60937𝑒 − 05, −5.16956𝑒 − 02]

(4.0)

These calibration parameters were stored in individual text files and were called in the

program as follows:

Get camera calibration parameters

calib_path = “”

camera_matrix = np.loadtxt(calib_path+’cameraMatric_webcam.txt’,delimiter=’,’) #get camera matrix file.

camera_distortion = np.loadtxt(calib_path+’cameraDistortion_webcam.txt’,delimiter=’,’)#get distortion coeff

44

5.1.2 Pre-Processing Images

In order to ensure that the data received from the camera were properly processed,

some settings needed to be made and the reference frame of the camera needed to be

adjusted in the code. The following were done in this sub-section:

Figure 20: Flowchart showing pre-processing stages

The details of these stages are elaborated below:

- Flipping the Reference frames: It is important to flip the reference frame of

the camera with respect to the Aruco marker. The reason for this illustrated

below:

Figure 21: Comparison of the camera and marker reference frames

Figure 20 shows that the camera reference frame has to be flipped by 180

degrees for the 2 reference frames to be equitable. This was executed in code

as follows:

Here we create a 180-degree rotation matrix around the x-axis

Flip Reference Frame

Define Aruco Dictionary

Camera Reference Frame Aruco Marker Reference Frame

x x

z

z
y

y

Aruco Marker

45

R_flip = np.zeros((3,3), dtype=np.float32) # Create a 3x3 zero-matrix

R_flip[0,0] = 1.0 # Leave the x-axis constant

R_flip[1,1] = -1.0 # Invert the y-axis

R_flip[2,2] = -1.0 # Invert the z-axis

This flipped rotation matrix will be used in the next sub-section.

- Defining an Aruco Dictionary: As mentioned in section 2.5, Aruco markers

are very prominent in robotics research, especially due to the fact that there

are ready-libraries already implemented in Opencv that make it easy to use.

The Aruco library chosen for this study is the original Aruco dictionary-

DICT_ARUCO_ORIGINAL, developed by the university of Maryland. The main

reason for this choice was the authors experience with this library and also this

library has an easy-to-use online marker generator [39].

The definition of the Aruco dictionary was executed in code as shown below:

Define the Aruco Dictionary to be used

aruco_dict = aruco.getPredefinedDictionary(aruco.DICT_ARUCO_ORIGINAL) #get original dictionary

parameters = aruco.DetectorParameters_create() # define handler for Aruco parameters.

5.1.3 Main Image-processing

In this sub-section, the main procedure that converts the Aruco marker image into

parameters that can be used by the drone will be explained. The main procedure is as

follows:

46

Figure 22: Flowchart depicting the main image-processing algorithm

Subscribe to Image data

Convert Image to gray-scale

Find Aruco Markers

Aruco Marker
found?

Estimate Poses and Attitudes based on marker data

Draw corners and axis of marker on image frame

Print marker and camera poses and attitudes on image
frame

Shut-down

initiated?

Yes

No

Yes

No

Stop main-process

47

The details of the procedure in Figure 21 are elaborated below:

- Subscribing to Image data: As elaborated in section 5.2, FlytOS is built upon

ROS. ROS allows nodes (data-processing units) to communicate among each

other primarily by allowing nodes to publish to each other and also allowing

nodes to subscribe to messages being published.

FlytOS automatically publishes the images from a RPi-cam connected to the

CSI port of the RPi to a ROS-message topic named- /image_capture. Thus,

this /image_capture topic must be subscribed to in order to get the video

stream coming from the RPi-cam, so that it can be processed by Opencv.

Unfortunately, ROS and Opencv have different message formats and hence

ROS-image messages cannot be processed by Opencv by default, thus an extra

library was utilized to solve this problem.

Cv_bridge() is a library that is used to interface ROS messages with Opencv

messages. It allows messages coming from ROS to be formatted in a way that

Opencv can interpret them and vice-versa. Thus, in order to subscribe to the

/image_capture topic, the key points were executed in code:

Subcribe to /image_capture topic

…

From cv_bridge import CvBridge, CvBridgeError

…

subcribe to /image_capture topic and send data to the camera_callback function within the class.

Self.image_sub = rospy.Subscriber(“/flytos/flytcam/image_capture”, Image, self.camera_callback)

Self.bridge_object = CvBridge() # create a handler for the cv_bridge function.

…

The above code snippet, derives the image-data and sends it to the

camera_callback function within the Python class created for this study. It is in

this camera_callback function that the main image-processing is carried out, as

is explained next.

48

- Converting Images to grayscale: It is helpful to convert images to

grayscale, in order to aid the processing efficiency of this algorithm. As the

target of this algorithm is to process Aruco markers, which are black and white

in colour, then it is helpful if we ignore every other colour to reduce the data-

overhead of the images that we receive from the RPi-cam.

Opencv provides a method for converting color-images to grayscale, called

‘cvtColor’. This was executed in code in the following way:

Here we convert the received images to grayscale within the camera_callback function of the class

Def camera_callack(self,data):

…

convert colored-images to OpenCv format and store them in a variable called ‘cv_image’

cv_image = self.bridge_object.imgmsg_to_cv2(data, desired_encoding=”bgr8”)

change the colored OpenCv image to grayscale, and store in a variable named ‘gray’.

gray = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)

…

After this, the next step of the algorithm is to find Aruco markers in the video-

stream. This will be explained next.

- Finding Aruco Markers: Opencv is able to detect Aruco markers in an image

using the ‘detectMarkers’ method within the Aruco class which was imported

into the program. This function was executed in code by the following excerpt:

Here we find Aruco Markers in an image and output 3 parameters.

corners, ids, rejected = aruco.detectMarkers(image = gray, dictionary=aruco_dict,

parameters=parameters, cameraMatrix=camera_matrix, distCoeff=camera_distortion)

…

In the code snippet above, we see that the ‘detectMarkers’ function takes the

grayscale image, developed from the previous step, as well as the Aruco

dictionary and camera calibration parameters as inputs and returns 3 variables:

o Corners: the identified corners of the Aruco marker.

49

o Ids: The identified id of the marker (Each Aruco marker has a unique id

which is chosen by the application developer)

o Rejected: This is used to indicate image points that could not be

recognized by the Aruco dictionary in use.

The next step is a conditional statement to check if a marker was found.

- Checking if an Aruco Marker was found: Here, a simple conditional

statement was used to check if any Aruco markers have been identified in the

image frame. Several Aruco markers can be identified, but for this study, the

Author is only interested in finding one Aruco marker which was indicated at

the beginning of the program. This process was indicated in code by the

following snippet:

Here we check if the Aruco Marker of interest was found.

…

Id_to_find = 25 # The Author is interested in finding marker-25.

Marker_size = 10 # This is the size in which the marker was printed (units in cm).

…

 If ids is not None and ids [0] == id_to_find:

 …

…

Once a marker is found, we continue the image processing as explained next.

- Estimating Poses and Attitudes: At this stage, the most important data is

acquired from the Aruco marker. One of the advantages of Aruco markers is

that, even with just a single marker, the pose and attitude of a vehicle can be

derived.

o Pose: is basically the x, y and z coordinate of an object with respect to

another. This is useful for making translational motions. While,

o Attitude: is basically the roll, pitch and yaw values of an object with

respect to another. This is useful for making rotational motions.

50

The details of executing this process are summarized in the following flowchart:

Figure 23: Flowchart showing the process of deriving poses and attitudes.

The procedures for actualizing this process in code are detailed in the following

code snippet:

Declare functions to convert rotation matrices to Euler
angles

Use ’estimatePoseSingleMarkers’ function

Unpack the output of ’estimatePoseSingleMarkers’ function

Obtain the rotation matrix of the marker with respect to

the Camera.

Convert the rotation matrix to Euler angles.

Obtain the position of the camera with respect to the
marker.

Obtain the position of the camera with respect to the
marker.

51

…

Here, the functions that handle rotation matrices are declared. They were copied from here [40].

def isRotationMatrix(R): # This function checks if a Matrix is a valid rotation matrix. [40]

 Rt = np.transpose(R) [40]

 shouldBeIdentity = np.dot(Rt, R) [40]

 I = np.identity(3, dtype=R.dtype) [40]

 n = np.linalg.norm(I - shouldBeIdentity) [40]

 return n < 1e-6 [40]

def rotationMatrixToEulerAngles(R): # This function converts rotation matrices to Euler angles. [40]

 assert (isRotationMatrix(R)) [40]

 sy = math.sqrt(R[0, 0] * R[0, 0] + R[1, 0] * R[1, 0]) [40]

 singular = sy < 1e-6 [40]

 if not singular: [40]

 x = math.atan2(R[2, 1], R[2, 2]) [40]

 y = math.atan2(-R[2, 0], sy) [40]

 z = math.atan2(R[1, 0], R[0, 0]) [40]

 else: [40]

 x = math.atan2(-R[1, 2], R[1, 1]) [40]

 y = math.atan2(-R[2, 0], sy) [40]

 z = 0 [40]

 return np.array([x, y, z]) [40]

…

52

Here, a function is used to estimate a single marker pose. This function takes the ‘corners’,

#marker_size, camera_matrix and camera_distortion parameters derived in previous stages to

#create a new variable ‘ret’.

ret = aruco.estimatePoseSingleMarkers(corners, marker_size, camera_matrix, camera_distortion)

Next, the ‘ret’ variable is unpacked to acquire the pose and attitude of the marker with respect to

#the RPi-cam.

rvec, tvec = ret[0][0,0,:], ret[1][0,0,:] # get the variables for only one marker.

Next, the rotation matrix of the marker with respect to (wrt) the camera is obtained.

R_ct = np.matrix(cv2.Rodrigues(rvec)[0]) # rotation matrix of camera wrt marker.

R_tc = R_ct.T # rotation matrix of marker wrt camera.

Here, the rotation matrix is converted to Euler angles, by using a function declared above.

roll_marker, pitch_marker, yaw_marker = rotationMatrixToEulerAngles(R_flip*R_tc)

Next, the pose of the camera wrt the marker is obtained.

Pos_camera = -R_tc*np.matrix(tvec).T

Then the attitude of the camera wrt the marker is also obtained.

roll_camera, pitch_camera, yaw_camera = rotationMatrixToEulerAngles(R_flip*R_tc)

…

The next stage of this image-processing procedure is to draw visual markers on

our image. This is useful, especially for the purpose of troubleshooting errors in

the program.

- Drawing on the image of the marker: It is helpful to draw the corners and

the axis representation of the marker on its image frame for troubleshooting

purposes. Once again, the Opencv library provides methods for accomplishing

these. This process is executed in code by the following code excerpt:

aruco.drawDetectedMarkers(cv_image, corners) # draw the corners on the detected image.

aruco.drawAxis(cv_image, camera_matrix, camera_distortion, rvec, tvec, 10) # draw an axis on the

#detected marker.

53

In the next stage, the poses and attitudes derived a few stages above will be

printed on the marker camera frame as well for troubleshooting purposes.

- Printing Poses and Attitudes on Marker-Image: In this stage, a string is

created to hold the desired values, then the ‘putText’ method provided by

Opencv is used to print the the generated string on the image. The following

code excerpt details this process:

…

Font = cv2.FONT_HERSHEY_PLAIN # font to be used for printing texts.

…

Here, the marker position wrt the camera is printed on an image.

str_position = “MARKER Position x=%4.0f y=%4.0f z=%4.0f”%(tvec[0], tvec[1], tvec[2])

cv2.putText(cv_image, str_position, (0, 100), font, 1, (0, 255, 0), 2, cv2.LINE_AA) # print green text.

Here, the marker attitude wrt the camera is printed on an image.

str_attitude = “MARKER Attitude r=%4.0f p=%4.0f

y=%4.0f”%(math.degrees(roll_marker),math.degrees(pitch_marker),math.degrees(yaw_marker))

cv2.putText(cv_image, str_attitude, (0, 150), font, 1, (0, 255, 0), 2, cv2.LINE_AA) # print green text.

Here, the camera position wrt the marker is printed on an image.

str_position = “CAMERA Position x=%4.0f y=%4.0f z=%4.0f”%(pos_camera[0], pos_camera[1],

pos_camera[2])

cv2.putText(cv_image, str_position, (0, 200), font, 1, (0, 255, 0), 2, cv2.LINE_AA) # print green text.

Here, the camera attitude wrt the marker is printed on an image.

str_attitude = “CAMERA Attitude r=%4.0f p=%4.0f

y=%4.0f”%(math.degrees(roll_camera),math.degrees(roll_camera),math.degrees(roll_camera))

cv2.putText(cv_image, str_attitude, (0, 250), font, 1, (0, 255, 0), 2, cv2.LINE_AA) # print green text.

…

54

The processes described in the previous stages will keep on running until the

main process is stopped as described in the next stage.

- Stopping the main-process: The above stages in which, the poses and

attitudes of the marker and camera are derived will keep on running in an

infinite loop until the process is stopped when there is a keyboard interrupt. In

ROS and the Linux terminal in general, a keyboard interrupt is initiated from

the keyboard using ‘Ctrl + c’ command. This exception is captured within the

class created for this image-processor in the following way:

Here the ‘MarkerDetector()’ class created for this study is called and looped continuously except

#there is a keyboard interrupt.

…

def main(): # create main function.

 rospy.init_node(‘marker_detecting_node’, anonymous=True) # Initialize ROS node.

 marker_detector_object = MarkerDetector()

 try:

 rospy.spin() # loop infinitely

 except KeyboardInterrupt:

 print(“Shutting down”)

if __name == ‘__main__’:

 main() # call the main function

In the next section, the process of publishing the processed image and required

poses and attitudes will be explained.

5.1.4 Publishing Processed Images and data

The outputs of the previous sub-section are processed images and various data

representing the relative poses and attitudes of the marker and the camera. In order to

make all these data available to other modules of programs, as well as in order to display

the processed images via FlytOS, it is necessary to publish them.

55

ROS has standard procedures for publishing topics in python environment [41], by using

the ‘rospy’ class. For this Study, different message-types are involved, thus their

publication procedures are slightly different, the topic published are:

- /processed_image: This topic has an ‘Image’ message format.

- /pose_data: This topic has a ‘Float32MultiArray’ message format.

Publishing the /processed_image topic: A topic named ‘/processed_image’ was

created and published by the following sequence summarized thus:

Figure 22: Flowchart showing the process of publishing ‘/processed_image’

The process was executed in code by the following excerpt:

…

Here, we create the Image-Publisher Instance inside the MarkerDetector class

self.image_pub = rospy.Publisher(“/processed_image”, Image, queue_size=10)

…

Here, the OpenCv image is converted back to a ROS Image-message format

msg = self.bridge_object.cv2_to_imgmsg(cv_image, “bgr8”)

Finally, we publish the topic.

self.image_pub.publish(msg)

Convert OpenCv image to ROS Image-message format

Publish the converted images.

Create Image-publisher instance

56

…

In the code snippet above, it is import to emphasize that the image-message format

(in this case “bgr8”) must be specified for the proper functioning of the program. Next

the /pose_data publication process is explained.

Publishing the /pose_data topic: The contents of /pose_data is an array of data

values that represent the various poses and attitudes that are required to actuate the

Drone for this precision-landing algorithm. The use of the ‘Float32MultiArray’ message

type for this topic requires, the following processes illustrated below:

Figure 23: Flowchart showing the procedure for publishing the /pose_data topic.

The execution of these procedures in code are described in the following code snippet:

…

Here the Float32MultiArray-Message Publisher instance is created

Self.pose_pub = rospy.Publisher(“/pose_data”, Float32MultiArray, queue_size=10)

Next, an array is created to hold the variables that are important for this study.

array = [pos_camera[0], pos_camera[1], pos_camera[2],tvec[0], tvec[1], tvec[2]]

Here the Float32MultiArray instance is formatted

Create Float32MultiArray-Message Publisher Instance

Create an array of all required variables

Format the Float32MultiArray Instance with the created
array

Publish the data

57

Position = Float32MultiArray(data=array)

Finally, the data are published.

self.pose_pub.publish(position)

…

In the next section, a different Python script will be developed, which will actually

actuate the Drone based on data received from this topic.

5.2 Actuating the Drone based on image-data

In this section, the following procedures will be followed in order to actuate the drone.

- Setup

- Actuate

- Shutdown

The Setup processes include the following:

- Import necessary libraries and classes

- Initialize the FlytOS API

- Subscribe to /pose_data

The Actuate processes include the following:

- Take-off

- Acquire translation parameters

- Translate Drone translate Drone until desired tolerance is achieved

Finally, the Shutdown sequence is:

- Hold position,

- Delay, and

- Land

58

In addition to these, it was also important to understand by how much the Drone

deviated from its desired position, in order know the range in which to set the Drone’s

tolerance values to minimize oscillations. To this effect, the Author applied a

proportional control to the z-axis and allowed the Drone to hover, and then the values

where plotted in order to see how much the Drone deflected by. These were the results:

For the z-axis:

Figure 24: z-axis deflection while hovering

Figure 25 above, shows that the Drone tries to maintain a set-point at 100cm but it

deflects upward by about 10 cm and downward by about 15 cm. The average value of

its oscillations was about 98cm, thus 98 was used as the reference point in the

algorithm.

For the x-axis:

80

85

90

95

100

105

110

115

0

2
5

5
0

7
5

1
0

0

1
2

5

1
5

0

1
7

5

2
0

0

2
2

5

2
5

0

2
7

5

3
0

0

3
2

5

3
5

0

3
7

5

4
0

0

4
2

5

4
5

0

4
7

5

5
0

0

5
2

5

5
5

0

5
7

5

6
0

0

6
2

5

6
5

0

D
is

ta
n

ce
 (

cm
)

Time (s)

z-axis deflections

z

59

Figure 25: x-axis deflection while hovering

Figure 26, above shows that while the Drone tried to hold its position under the

influence of various gusts of wind, it held an average value of -8 during the period of

this oscillation and deflected by about 20 cm in either direction.

For the y-axis:

Figure 26: y-axis deflection while hovering

Figure 27 above shows how the Drone deflected on its y-axis while trying to hold its

position. It held an average postion of -6 and deflected by about 9 cm in either

direction.

23.0907135

-50

-30

-10

10

30

50

70

D
is

ta
n

ce
 (

cm
)

X-axis deflections

x xMin xMax

-20

-15

-10

-5

0

5

10

D
is

ta
n

ce
 (

cm
)

Y-axis deflections

y yMax

60

These sequence is elaborated in Figure 28, below:

Subscribe to /pose_data

Import

necessary
Libraries

Initialize FlytOS API

Extract translation parameters
from /pose_data

Take-off

Marker

found?

Actuate Drone until it is within
desired landing precision

Break-out from loop

Hold position

Delay

Land

End

Hover

Interru

pt?

61

Figure 27: Flowchart showing the Actuation procedures

The coding of the processes in Figure 28 is detailed in ’PrecisionLandingTest.py’ in the

Appendices section.

If the Drone does not find the marker, it continues hovering in its takeoff position until

the keyboard interrupt (ctrl + c) is initiated. When the keyboard interrupt is initiated,

the shutdown sequence commences and the drone lands as required.

62

6 EXECUTION OF PRECISION-LANDING

ALGORITHM

In this chapter, the Author discusses how the precision-landing algorithm was tested

in real-life conditions. The execution procedure will be divided into 3 sections:

- The Test-setup

- Remote Connection to RPi

- Monitoring and Troubleshooting

6.1 The Test-setup

The test setup is shown below:

Figure 28: Test Setup

63

Figure 26 shows that the Drone (coupled with the Onboard computer and camera) was

placed a few centimeters away from the Aruco marker. After this setup, the Author kept

a considerable distance away from the setup (for safety) and then initiated the precision

landing remotely using a computer wirelessly connected to the Rpi, as explained in the

next chapter.

6.2 Remote connection to Rpi

FlytOS comes enabled with wifi, which broadcasts a signal whenever the Rpi is turned

on. This wifi was connected-to on different computer (Windows OS), through which a

remote connection (ssh) was made to the Rpi. The process for doing so through the

’Putty’ Windows application is summarised below:

- Start the Putty Application

- Fill-in the IP address of Rpi

- Ensure that the ’connection-type’ is SSH

- Login to FlytOS

Starting the Putty Appication: This is a trivial matter of doubl-clicking the Putty

desktop icon.

Inputing the Rpi IP address: By default it is 10.42.0.1, but it is helpful to confirm

this by initially doing the following:

- Connect a monitor and keyboard the Rpi

- Start the Linux terminal (ctrl+alt+t)

- In the Linux terminal, enter the ’ifconfig’ command.

- Then take note of the ’inet addr’ in the ’wlan0’ section.

This value can then be input into the Host Name (or IP address) field of Putty, as

shown below:

64

Figure 29: Remote connection through Putty.

From Figure 27, it is also shown the SSH option is chosen.

After the ’open’ option is clicked, a Linux terminal opens-up in Windows and askes for

the login details. The FlytOS login details are:

- Username: flytos

- Password: flytos

After this process, the setup proceedures discussed in section 5.2.2 are performed.

Then, the precision algorithm is initiated with the following commands, performed in

different Putty windows:

- Starting the Aruco marker detector program is done with the following

command:

Rosrun markerdetector arucoTest.py

- Starting the Precision-landing program is done with the following

command:

Rosrun markerdetector PrecisionlandingTest.py

After running those commands the Drone should take-off and land over the Aruco

marker. In the next section, the Author explains monitoring and troubleshooting steps.

65

6.3 Monitoring and Troubleshooting

In order to observe what the algorithm is actually doing, it is helpful to be able to see

the video stream that contains the processed images. This is enabled through FlytOS

and can be accessed by doing the following:

- View the list of FlytOS image topics: This can be done in any web-browser

on the windows computer, using the following URI (Uniform Resource Identifier):

10.42.0.1:8080

- Open the /processed_image topic: From the list of ’Available ROS Image

Topics:’ click on the /processed_image topic. After doing so, a user will be able

to see the marker and its parameters if the Drone is hovering over it as shown

below:

Figure 30: Monitoring the processed images.

Finally, the Author discusses troubleshooting steps that were taken to fine-tune the

algorithm, in order to get suitable landing accuracies. These steps are summarized as

follows:

- Ensure proper camera settings are used: The Rpi-cam used for this Study

can be adjusted via FlytOS. The parameters to be adjusted are:

66

o Sharpness – sets the image sharpness

o Contrast – sets the contrast (the more contrast, the better)

o Brightness – sets the brightness of the images

o Saturation – sets the image colour saturation

o Vstab- turns Video stabilisation on or off

The settings of the these parameters can significantly affect how the camera

sees the Aruco-Marker in different ambient lighting conditions.

- Ensure camera is well calibrated: Camera calibration is perhaps the most

important factor to be considered for this study. This is because the relative

distances which are calculated by the rotation matrices are dependent on the

pin-hole camera model used by Opencv. Thus, if the camera-matrix and

distortion-coefficients for the camera are inaccurate, then the relative distances

calculated will also be innaccurate.

- Adjust actuation algorithm: Finally, after each landing, the distance away

from the desired position was measured and used to offset the translation

command in the algorithm. This was necessary because the camera is not

mounted at the center of mass of the Drone.

67

7 ANALYSIS OF RESULTS

In this Chapter, the Author considers the following points:

- Accuracy and Speed of Landings

- How the Algorithm compares with another one.

This analyses are detailed in the following sections.

7.1 Accuracy and Speed of Landings

Here, the Author summarizes the results of the precision-landing test. Key parameters

for this study were:

- Accuracy of the Landings.

- Time taken to Land.

The results are summarized in the table below:

Test Number (#) Landing Error (cm) Time Taken to Land (s)

1 25 65

2 7 60

3 10 120

4 15 35

5 20 37

6 11 48

7 23 70

8 16 105

9 20 45

10 15 112

68

Table 1: Landing Accuracies and time-taken

In the next section, comparism will be made with how well these results compare with

those of Timothy and Jesse [2].

7.2 Results Comparism

Timothy and Jesse [2] achieved very good results using a drone that they developed

themselves which included an off-the-shelf auto-pilot. Then they used this drone to

implement their ’varying-degree of freedom, image-based visual servoing’ (VDOF IBVS)

[2] algorithm, thus it will help put this study in context by comparing the results of this

relatively simple algorithm with those achieved with a much more complex algorithm.

Test(#) This Study Timothy and Jesse [2]

 Landing Error

(cm)

Landing Time

(s)

Landing Error

(cm)

Landing Time

(s)

1 25 65 6 26.1

2 7 60 5 26.3

3 10 120 9 25.5

4 15 35 6 24.8

5 20 37 10 28.1

6 11 48 8 23.4

7 23 70 8 22.5

8 16 105 9 25.6

9 20 45 4 26.1

10 15 112 5 35.4

Table 2: Comparison of Results

69

A study of Table 2 above shows that Timothy and Jesse’s algorithm cleary performed

better in real-world situations, achieving greater landing precision in a shorter time.

They accomplished this by using a more complex algorithm, and nested Aruco markers

(One small Aruco Marker, inside one large one). This study however used only

translation commands to acuate the Drone and one 10 cm-sized Aruco marker, hence

it was not as accurate.

It is important to emphasize once again, that the primary purpose of this Study is to

develop a multi-platform precision-landing system for quadrotors using FlytOS, to

enhance the reusablilty of Drone algorithms. The accuracy and speed of the landings

were secondary objectives. The main focus of the study was to consolidate a system

which can be easily reused for the widest variety of Drones.

70

8 CONCLUSIONS

The purpose of this study is to develop a precision-landing system which can be used

on the widest variety of Drone platforms by using FlytOS. The Author intended to

solve the problem of the reusability of code among different Drone platforms.

Based on the bulky amount of research articles related to precision-land it was clear

that precision-landing has already been solved. What was difficult however was the

process of testing-out the algorithms developed by the said publications. If the

hardware used by a study were not available to an individual, then it would be difficult

to reuse the codes.

In this Study the Author achieved the following:

- Developed a precision-landing system based on FlytOS that achieved

reasonable landing tolerances: The main advantage is that this algorithm is

that it, can be reused on PX4, ArduPilot and DJI drones. These Drone platforms

are the most popular at the time of this writing.

- Developed a plug-and-play hardware to carry the RPi and RPi-cam to attach to

DJI M210 drone.

Strategies for further development

The Author considers the following paths for development of this Study:

- Use of Cascaded Aruco Markers; the use of various markers embedded

within each other, rather than just one marker will allow the drone to spot the

marker from greater altitudes. This, will increase landing accuracy and speed.

- Addition of a self-setup and calibration module to this algorithm; A

significant amount of time was spent finding a proper landing-pose and

calibrating the camera used for this Study. These procedures can be

programmed into a module that will initially run automatically whenever it is

being used on a Drone for the first time or when the camera has been changed.

This will make the user experience much more satisfying.

- Rewriting the program in C; from this study, it was observed that there was

significant delay in the rate at which the camera image streams were updated.

This is probably because the program and all the libraries used for the study

were developed in Python. Python, is an interpreted language and thus in

general is not as fast as compiled languages such as C. A faster processing

time will improve the consistency of the results of the precision-landing

algorithm.

71

9 JÄRELDUSED

Selle uuringu eesmärk on välja töötada täpsusmaandumissüsteem, mida saab FlytOSi

abil kasutada võimalikult erinevatel drooniplatvormidel. Autor kavatses lahendada

koodi korduvkasutatavuse probleemi erinevate drooniplatvormide vahel.

Täppismaad käsitlevate mahukate teadusartiklite põhjal oli selge, et

täpsusmaandumine on juba lahendatud. Raske oli aga nimetatud väljaannetes välja

töötatud algoritmide testimine. Kui uuringus kasutatud riistvara pole üksikisikule

kättesaadav, on koodide taaskasutamine keeruline.

Selles uuringus saavutas autor järgmise:

- Töötas välja FlytOSil põhineva täppismaandumissüsteemi, mis saavutas

mõistlikud maandumiste tolerantsid: Peamine eelis on see, et see algoritm

seisneb selles, et seda saab PX4, ArduPiloti ja DJI droonides uuesti kasutada.

Need drooniplatvormid on selle kirjutamise ajal kõige populaarsemad.

- Töötas välja plug-and-play riistvara RPi ja RPi-cam kandmiseks, et kinnituda

DJI M210 droonile.

Edasise arengu strateegiad

Autor kaalub uuringu arendamiseks järgmisi teid:

- Kaskaaditud Aruco markerite kasutamine; erinevate markerite

kasutamine, mis on põimitud üksteise sisse, mitte ainult ühe markeriga,

võimaldab droonil märgata markerit suuremal kõrgusel. See suurendab

maandumise täpsust ja kiirust.

- Sellele algoritmile on lisatud isehäälestamise ja kalibreerimise moodul;

Märkimisväärne aeg kulus õige maandumisposti leidmiseks ja selles uuringus

kasutatud kaamera kalibreerimiseks. Neid protseduure saab programmeerida

mooduliks, mis käivitub automaatselt automaatselt, kui seda esimest korda

droonil kasutatakse või kui kaamerat vahetatakse. See muudab

kasutajakogemuse palju rahuldavamaks.

- Programmi ümberkirjutamine C-vormingus; selle uuringu põhjal täheldati,

et kaamera pildivoogude värskendamise kiirus oli märkimisväärselt hilinenud.

Tõenäoliselt on see sellepärast, et programm ja kõik uuringus kasutatud

raamatukogud töötati välja Pythonis. Python on tõlgendatav keel ja seega ei

ole see üldiselt nii kiire kui koostatud keeltes nagu C.

Kiirem töötlemisaeg parandab täpsusmaandumise algoritmi tulemuste

järjepidevust.

72

REFERENCES

[1] "FlytOS Architecture Diagram". Accessed on: May 18, 2020. [Online]. Available:

http://docs.flytbase.com/docs/FlytOS/Developers/Introduction.html

[2] J. S. Wynn and T. W. McLain, “Visual servoing for multirotor precision landing in

daylight and after-dark conditions,” 2019 Int. Conf. Unmanned Aircr. Syst.

ICUAS 2019, pp. 1242–1248, 2019.

[3] "ROS/Introduction". Accessed on: May 6, 2020. [Online]. Available:

http://wiki.ros.org/ROS/Introduction

[4] M. Rieke, T. Foerster, J. Geipel, and T. Prinz, “High-Precision Positioning and

Real-Time Data Processing of Uav-Systems,” ISPRS - Int. Arch. Photogramm.

Remote Sens. Spat. Inf. Sci., vol. XXXVIII-1/, no. September, pp. 119–124,

2012.

[5] R. A. Oliveira, E. Khoramshahi, J. Suomalainen, T. Hakala, N. Viljanen, and E.

Honkavaara, “Real-time and post-processed georeferencing for hyperpspectral

drone remote sensing,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. -

ISPRS Arch., vol. 42, no. 2, pp. 789–795, 2018.

[6] J. N. Gross, R. M. Watson, S. D’urso, and Y. Gu, “Flight-Test Evaluation of

Kinematic Precise Point Positioning of Small UAVs,” Int. J. Aerosp. Eng., vol.

2016, 2016.

[7] K. N. Tahar, “An evaluation on different number of ground control points in

unmanned aerial vehicle photogrammetric block,” Int. Arch. Photogramm.

Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. XL-2/W2, no. November, pp.

93–98, 2013.

[8] "Detection of ArUco Markers". Accessed on: May 6, 2020. [Online]. Available:

https://docs.opencv.org/trunk/d5/dae/tutorial_aruco_detection.html

[9] A. Gautam, P. B. Sujit, and S. Saripalli, “A survey of autonomous landing

techniques for UAVs,” 2014 Int. Conf. Unmanned Aircr. Syst. ICUAS 2014 -

Conf. Proc., pp. 1210–1218, 2014.

[10] A. Cesetti, E. Frontoni, A. Mancini, P. Zingaretti, and S. Longhi, “A Vision-based

guidance system for UAV navigation and safe landing using natural landmarks,”

J. Intell. Robot. Syst. Theory Appl., vol. 57, no. 1–4, pp. 233–257, 2010.

http://docs.flytbase.com/docs/FlytOS/Developers/Introduction.html
https://docs.opencv.org/trunk/d5/dae/tutorial_aruco_detection.html

73

[11] B.-M. Min, M.-J. Tahk, H.-C. D. Shim, and H.-C. Bang, “Guidance Law for Vision-

Based Automatic Landing of UAV,” International Journal of Aeronautical and

Space Sciences, vol. 8, no. 1. pp. 46–53, 2007.

[12] J. Janousek and P. Marcon, “Precision landing options in unmanned aerial

vehicles,” 2018 Int. Interdiscip. PhD Work. IIPhDW 2018, pp. 58–60, 2018.

[13] E. Nowak, K. Gupta, and H. Najjaran, “Development of a Plug-and-Play Infrared

Landing System for Multirotor Unmanned Aerial Vehicles,” Proc. - 2017 14th

Conf. Comput. Robot Vision, CRV 2017, vol. 2018-Janua, pp. 256–260, 2018.

[14] M. F. Sani, M. Shoaran, and G. Karimian, “Automatic landing of a low-cost

quadrotor using monocular vision and Kalman filter in GPS-denied

environments,” Turkish J. Electr. Eng. Comput. Sci., vol. 27, no. 3, pp. 1821–

1838, 2019.

[15] P. H. Nguyen, K. W. Kim, Y. W. Lee, and K. R. Park, “Remote marker-based

tracking for uav landing using visible-light camera sensor,” Sensors

(Switzerland), vol. 17, no. 9, pp. 1–38, 2017.

[16] M. F. Sani and G. Karimian, “Automatic navigation and landing of an indoor AR.

Drone quadrotor using ArUco marker and inertial sensors,” 1st Int. Conf.

Comput. Drone Appl. Ethical Integr. Comput. Drone Technol. Humanit. Sustain.

IConDA 2017, vol. 2018-Janua, pp. 102–107, 2017.

[17] H. C. Kam, Y. K. Yu, and K. H. Wong, “An improvement on ArUco marker for

pose tracking using kalman filter,” Proc. - 2018 IEEE/ACIS 19th Int. Conf.

Softw. Eng. Artif. Intell. Netw. Parallel/Distributed Comput. SNPD 2018, pp. 65–

69, 2018.

[18] A. Marut, K. Wojtowicz, and K. Falkowski, “ArUco markers pose estimation in

UAV landing aid system,” 2019 IEEE Int. Work. Metrol. AeroSpace, Metroaerosp.

2019 - Proc., pp. 261–266, 2019.

[19] N. P. Santos, V. Lobo, and A. Bernardino, “A ground-based vision system for

UAV tracking,” MTS/IEEE Ocean. 2015 - Genova Discov. Sustain. Ocean Energy

a New World, pp. 1–9, 2015.

[20] H. Choi, M. Geeves, B. Alsalam, and F. Gonzalez, “Open source computer-vision

based guidance system for UAVs on-board decision making,” IEEE Aerosp. Conf.

Proc., vol. 2016-June, pp. 1–5, 2016.

74

 [21] M. Sereewattana, M. Ruchanurucks, P. Rakprayoon, S. Siddhichai, and S.

Hasegawa, “Automatic landing for fixed-wing UAV using stereo vision with a

single camera and an orientation sensor: A concept,” IEEE/ASME Int. Conf. Adv.

Intell. Mechatronics, AIM, vol. 2015-Augus, pp. 29–34, 2015.

[22] V. F. Vidal, L. M. Honório, M. F. Santos, M. F. Silva, A. S. Cerqueira, and E. J.

Oliveira, “UAV vision aided positioning system for location and landing,” 2017

18th Int. Carpathian Control Conf. ICCC 2017, pp. 228–233, 2017.

[23] M. F. Silva, A. C. Ribeiro, M. F. Santos, M. J. Carmo, and L. M. Honório, “Design

of Angular PID Controllers for Quadcopters Built with Low Cost Equipment,”

2016 20th Int. Conf. Syst. Theory, Control Comput., pp. 216–221, 2016.

[24] E. I. Shirokova, A. A. Azarov, N. G. Wilson, and I. B. Shirokov, “Precision

positioning of unmanned aerial vehicle at automatic landing,” Proc. 2019 IEEE

Conf. Russ. Young Res. Electr. Electron. Eng. ElConRus 2019, pp. 1065–1069,

2019.

[25] T. H. Nguyen, M. Cao, T. M. Nguyen, and L. Xie, “Post-Mission Autonomous

Return and Precision Landing of UAV,” 2018 15th Int. Conf. Control. Autom.

Robot. Vision, ICARCV 2018, pp. 1747–1752, 2018.

[26] I. Kalinov, E. Safronov, R. Agishev, M. Kurenkov, and D. Tsetserukou, “High-

precision UAV localization system for landing on a mobile collaborative robot

based on an ir marker pattern recognition,” IEEE Veh. Technol. Conf., vol. 2019-

April, pp. 1–6, 2019.

[27] L. Shungui, T. Bo, Z. Weicai, Z. Xin, and H. Hongtai, “An UAV precision landing

method based on virtual control point on the high voltage transmission line,”

Proc. 2017 9th Int. Conf. Model. Identif. Control. ICMIC 2017, vol. 2018-March,

no. Icmic, pp. 693–698, 2018.

[28] S. H. Mathisen, T. I. Fossen, and T. A. Johansen, “Non-linear model predictive

control for guidance of a fixed-wing UAV in precision deep stall landing,” 2015

Int. Conf. Unmanned Aircr. Syst. ICUAS 2015, pp. 356–365, 2015.

[29] "Raspberry Pi Pinout Diagram | Circuit Notes". Accessed on: May 18, 2020.

[Online]. Available:

https://www.jameco.com/Jameco/workshop/circuitnotes/raspberry-pi-circuit-

note.html

https://www.jameco.com/Jameco/workshop/circuitnotes/raspberry-pi-circuit-note.html
https://www.jameco.com/Jameco/workshop/circuitnotes/raspberry-pi-circuit-note.html

75

[30] Matrice 200 Series M210/M210 RTK User Manual, V1.0, DJI, 2017.08. Accessed

on May. 4, 2020. [Online]. Available:

https://dl.djicdn.com/downloads/M200/20170821/Matrice_210_210RTK_User_

Manual_EN_V1.01.pdf

[31] 400KHz 60V 4A Switching Current Boost/Buck-Boost/Inverting DC/DC

Converter, XLSEMI. Accessed on May. 4, 2020. [Online]. Available:

https://pdf1.alldatasheet.com/datasheet-

pdf/view/1132229/XLSEMI/XL6009E1.html

[32] "M210 + PC/Linux machine with Advanced Sensing". Accessed on: May 18,

2020. [Online]. Available: https://developer.dji.com/onboard-

sdk/documentation/

33] "Flashing FlytOS Linux Image (RPi3)". Accessed on: May 5, 2020. [Online].

Available:

http://docs.flytbase.com/docs/FlytOS/GettingStarted/FlashingImgRpi.html#flas

hing-img-rpi

[34] "Guide for A3/N3/M100/M600/M210 integration with FlytOS". Accessed on: May

5, 2020. [Online]. Available:

https://docs.google.com/document/d/1Q6vTM6LQ1jh-

kpcCmUbdifHaNtjmWGDCPsxUa10ay3o/edit

[35] "Creating a workspace for catkin". Accessed on: May 5, 2020. [Online].

Available: http://wiki.ros.org/catkin/Tutorials/create_a_workspace

[36] Tiziano Fiorenzani, How do Drones Work, Github. Accessed on: May 5, 2020.

[Online]. Available: https://github.com/tizianofiorenzani/how_do_drones_work

[37] Tiziano Fiorenzani, OpenCv and Camera Calibration on a Raspberry Pi 3, Jan.

20, 2018. Accessed on: Jan. 25, 2017. [Video file]. Available:

https://www.youtube.com/watch?v=QV1a1G4lL3U

[38] "Camera Calibration and 3D Reconstruction". Accessed on: May 6, 2020.

[Online]. Available:

https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_r

econstruction.html

 [39] "ArUco markers generator!". Accessed on: May 6, 2020. [Online]. Available:

http://chev.me/arucogen/

https://dl.djicdn.com/downloads/M200/20170821/Matrice_210_210RTK_User_Manual_EN_V1.01.pdf
https://dl.djicdn.com/downloads/M200/20170821/Matrice_210_210RTK_User_Manual_EN_V1.01.pdf
https://pdf1.alldatasheet.com/datasheet-pdf/view/1132229/XLSEMI/XL6009E1.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/1132229/XLSEMI/XL6009E1.html
https://developer.dji.com/onboard-sdk/documentation/
https://developer.dji.com/onboard-sdk/documentation/
http://docs.flytbase.com/docs/FlytOS/GettingStarted/FlashingImgRpi.html#flashing-img-rpi
http://docs.flytbase.com/docs/FlytOS/GettingStarted/FlashingImgRpi.html#flashing-img-rpi
https://docs.google.com/document/d/1Q6vTM6LQ1jh-kpcCmUbdifHaNtjmWGDCPsxUa10ay3o/edit
https://docs.google.com/document/d/1Q6vTM6LQ1jh-kpcCmUbdifHaNtjmWGDCPsxUa10ay3o/edit
http://wiki.ros.org/catkin/Tutorials/create_a_workspace
https://github.com/tizianofiorenzani/how_do_drones_work
https://www.youtube.com/watch?v=QV1a1G4lL3U
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://chev.me/arucogen/

76

[40] Satya Mallick "Rotation Matrix To Euler Angles". Accessed on: May 7, 2020.

[Online]. Available: https://www.learnopencv.com/rotation-matrix-to-euler-

angles/

[41] "Writing a Simple Publisher and Subscriber (Python)". Accessed on: May 7,

2020. [Online]. Available:

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29

 [42] "Waveshare Raspberry Pi Camera Module Kit 1080p Fisheye Lens Wider Field of

View for Any Version of Raspberry-pi". Accessed on: May 18, 2020. [Online].

Available: https://www.amazon.co.uk/Waveshare-Raspberry-Camera-Fisheye-

Raspberry-pi/dp/B00RMV53Z2?th=1

[43] "XL6009E1 DC-DC Adjustable Step-up Boost Power Converter Module Replace".

Accessed on: May 18, 2020. [Online]. Available:

https://www.amazon.co.uk/XL6009E1-Adjustable-Step-up-Converter-

Replace/dp/B0194QK3F2

https://www.learnopencv.com/rotation-matrix-to-euler-angles/
https://www.learnopencv.com/rotation-matrix-to-euler-angles/
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29
https://www.amazon.co.uk/Waveshare-Raspberry-Camera-Fisheye-Raspberry-pi/dp/B00RMV53Z2?th=1
https://www.amazon.co.uk/Waveshare-Raspberry-Camera-Fisheye-Raspberry-pi/dp/B00RMV53Z2?th=1
https://www.amazon.co.uk/XL6009E1-Adjustable-Step-up-Converter-Replace/dp/B0194QK3F2
https://www.amazon.co.uk/XL6009E1-Adjustable-Step-up-Converter-Replace/dp/B0194QK3F2

77

APPENDICES

Below are the two main program modules developed for this study:

- The image-processing module – ‘arucoTest.py’

- The Drone-actuating module – ‘PrecisionLandingTest.py’

‘arucoTest.py’:

#!/usr/bin/env python

import rospy

from sensor_msgs.msg import Image

from cv_bridge import CvBridge, CvBridgeError

import cv2

import numpy as np

import cv2.aruco as aruco

import sys, time, math

import os

id_to_find = 25

marker_size = 10 #- [cm]

def isRotationMatrix(R):

 Rt = np.transpose(R)

 shouldBeIdentity = np.dot(Rt, R)

 I = np.identity(3, dtype=R.dtype)

78

 n = np.linalg.norm(I - shouldBeIdentity)

 return n < 1e-6

Calculates rotation matrix to euler angles

The result is the same as MATLAB except the order

of the euler angles (x and z are swapped).

def rotationMatrixToEulerAngles(R):

 assert (isRotationMatrix(R))

 sy = math.sqrt(R[0, 0] * R[0, 0] + R[1, 0] * R[1, 0])

 singular = sy < 1e-6

 if not singular:

 x = math.atan2(R[2, 1], R[2, 2])

 y = math.atan2(-R[2, 0], sy)

 z = math.atan2(R[1, 0], R[0, 0])

 else:

 x = math.atan2(-R[1, 2], R[1, 1])

 y = math.atan2(-R[2, 0], sy)

 z = 0

79

 return np.array([x, y, z])

#--- Get the camera calibration path

calib_path = ""

camera_matrix = np.loadtxt(calib_path+'cameraMatrix_webcam.txt', delimiter=',')

camera_distortion = np.loadtxt(calib_path+'cameraDistortion_webcam.txt',

delimiter=',')

#--- 180 deg rotation matrix around the x axis

R_flip = np.zeros((3,3), dtype=np.float32)

R_flip[0,0] = 1.0

R_flip[1,1] =-1.0

R_flip[2,2] =-1.0

#--- Define the aruco dictionary

aruco_dict = aruco.getPredefinedDictionary(aruco.DICT_ARUCO_ORIGINAL)

parameters = aruco.DetectorParameters_create()

font = cv2.FONT_HERSHEY_PLAIN

class MarkerDetector(object):

while(True):

 def __init__(self):

80

 self.image_sub = rospy.Subscriber("/flytos/flytcam/image_capture",

Image, self.camera_callback)

 self.bridge_object = CvBridge()

 self.image_pub = rospy.Publisher("/processed_image", Image,

queue_size=1)

 def camera_callback(self,data):

 try:

cv_image = self.bridge_object.imgmsg_to_cv2(data,

desired_encoding="bgr8")

cap = cv_image

while(True):

 # We select bgr8 because its the OpenCV encoding by default

 cv_image = self.bridge_object.imgmsg_to_cv2(data,

desired_encoding="bgr8")

 corners, ids, rejected = aruco.detectMarkers(image=cv_image,

dictionary=aruco_dict, parameters=parameters,

 cameraMatrix=camera_matrix, distCoeff=camera_distortion)

 if ids is not None and ids[0] == id_to_find:

 ret = aruco.estimatePoseSingleMarkers(corners,

marker_size, camera_matrix, camera_distortion)

81

 rvec, tvec = ret[0][0,0,:], ret[1][0,0,:]

 aruco.drawDetectedMarkers(cv_image, corners)

 aruco.drawAxis(cv_image, camera_matrix,

camera_distortion, rvec, tvec, 10)

 str_position = "MARKER Position x=%4.0f y=%4.0f

z=%4.0f"%(tvec[0], tvec[1], tvec[2])

 cv2.putText(cv_image, str_position, (0, 100), font, 1, (0,

255, 0), 2, cv2.LINE_AA)

 R_ct=np.matrix(cv2.Rodrigues(rvec)[0])

 R_tc=R_ct.T

 roll_marker,pitch_marker,yaw_marker=rotationMatrixToEulerAngles(R_flip*R_t

c)

 str_attitude = "MARKER Attitude r=%4.0f p=%4.0f

y=%4.0f"%(math.degrees(roll_marker),math.degrees(pitch_marker),math.degrees(y

aw_marker))

82

 cv2.putText(cv_image, str_attitude, (0, 150), font, 1, (0,

255, 0), 2, cv2.LINE_AA)

 pos_camera = -R_tc*np.matrix(tvec).T

 str_position = "CAMERA Position x=%4.0f y=%4.0f

z=%4.0f"%(pos_camera[0], pos_camera[1], pos_camera[2])

 cv2.putText(cv_image, str_position, (0, 200), font, 1, (0,

255, 0), 2, cv2.LINE_AA)

 roll_camera, pitch_camera, yaw_camera =

rotationMatrixToEulerAngles(R_flip*R_tc)

 str_attitude = "CAMERA Attitude r=%4.0f p=%4.0f

y=%4.0f"%(math.degrees(roll_camera),math.degrees(pitch_camera),

 math.degrees(yaw_camera))

 cv2.putText(cv_image, str_attitude, (0, 250), font, 1, (0,

255, 0), 2, cv2.LINE_AA)

 #cv2.imshow('Frame_1',cv_image)

 #-- Create Image to Publish #

 msg = self.bridge_object.cv2_to_imgmsg(cv_image, "bgr8")

83

 self.image_pub.publish(msg)

 #rate.sleep()

 if cv2.waitKey(1) & 0xFF == ord('q'):

break

 cv2.destroyAllWindows()

 except CvBridgeError as e:

 print(e)

#-- Here we crop the received image

height, width, channels = cv_image.shape

descentre = 160

rows_to_watch = 60

crop_img =

cv_image[(height)/2+descentre:(height)/2+(descentre+rows_to_watch)][1:width]

hsv = cv2.cvtColor(crop_img, cv2.COLOR_BGR2HSV)

def main():

 rospy.init_node('marker_detecting_node', anonymous=True)

 marker_detector_object = MarkerDetector()

 try:

84

 rospy.spin()

 except KeyboardInterrupt:

 print("Shutting down")

if __name__ == '__main__':

 main()

85

‘PrecisionLandingTest.py’:

#!/usr/bin/env python

import time

from flyt_python import api

import rospy

from sensor_msgs.msg import Image

from std_msgs.msg import Float32,Float32MultiArray

from rospy.numpy_msg import numpy_msg

from cv_bridge import CvBridge, CvBridgeError

import cv2

import numpy as np

import cv2.aruco as aruco

import sys, time, math

import os

import arucoTest

from simple_pid import PID

drone = api.navigation(timeout=120000) # instance of flyt droneigation class

at least 3sec sleep time for the drone interface to initialize properly

time.sleep(3)

drone.take_off(5.0)

#print data

drone.position_hold()

time.sleep(10)

class Controller(object):

 def __init__(self):

 self.pose_data_sub = rospy.Subscriber("/pose_data", Float32MultiArray,

self.control_callback)

 def control_callback(self,data):

for i in range (10):

pass

 x_translation = data.data[3]

 print "x_translation = ", x_translation

 y_translation = data.data[4]

 print "y_translation = ", y_translation

 z_translation = data.data[5]

 print "z_translation = ", z_translation

 #-- PID parameters

 p = 0.0020 #0.0005, 0.0010

 i = 0.000003 #0.0, 0.000001

 d = 0.0 #0.0

 #-- Z control parameters

 z_setpoint = 100

 z_range = 9

86

 z_upperpoint = z_setpoint + z_range

 z_lowerpoint = z_setpoint - z_range

 pid1 = PID(-p, i, d, setpoint=z_setpoint)

 z_error = z_setpoint - z_translation

z_actuation = -z_error * p

 z_actuation = pid1(z_translation)

 #-- X control parameters

 x_setpoint = -8

 x_range = 9

 x_upperpoint = x_setpoint + x_range

 x_lowerpoint = x_setpoint - x_range

 pid2 = PID(-p, i, d, setpoint=x_setpoint)

 x_error = x_setpoint - x_translation

x_actuation = -x_error * p

 x_actuation = pid2(x_translation)

 #-- Y control parameter

 y_setpoint = -6

 y_range = 9

 y_upperpoint = y_setpoint + y_range

 y_lowerpoint = y_setpoint - y_range

 pid3 = PID(p, i, d, setpoint=y_setpoint)

 y_error = y_setpoint - y_translation

y_actuation = y_error * p

 y_actuation = pid3(y_translation)

 if z_translation > z_lowerpoint and z_translation < z_upperpoint:

drone.position_hold()

 if x_translation > x_lowerpoint and x_translation <

x_upperpoint:

drone.position_hold()

 if y_translation > y_lowerpoint and y_translation <

y_upperpoint:

 print "y is within range."

drone.position_hold()

 rospy.signal_shutdown("Finished!")

 else:

 drone.velocity_set(y_actuation, 0, 0,

body_frame=True)

 else:

 drone.velocity_set(0, x_actuation, 0, body_frame=True)

 else:

 drone.velocity_set(0, 0, z_actuation, body_frame=True)

def stop_function():

 print "\n\nThis happens when I shut the program down.\n"

87

 drone.position_hold()

 time.sleep(3)

 print 'Landing...'

 drone.land(async=False)

 drone.disconnect() # shutdown the instance

def check(x_error):

 print "Checking..."

 print x_error

def main():

 rospy.init_node('controller_node', anonymous=True)

 controller_object = Controller()

 try:

 rospy.spin()

time.sleep(1)

 stop_function()

 except KeyboardInterrupt:

 print("Shutting down")

if __name__ == '__main__':

 main()

88

Figures:

Figure 2: Labelled Raspberry Pi Model 3B board with GPIO pinouts [37]

Figure 3: RPi Fisheye Lens Camera attached to a RPi CSI-interface [38]

89

Figure 6: Voltage-regulator Module (top-view and bottom-view) [39]

