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PREFACE 

This Thesis work was initiated by Tallinn University of Technology (TalTech’s) 

department of Electrical Power Engineering and Mechatronics lead by Professor Mart 

Tamre. The author carried out all research and studies in the laboratories and external 

facilities of the TalTech campus. 

 

The author wishes to express gratitude to Prof. Tamre for emphasizing a practical-based 

learning in this Master’s program, this hands-on approach has really boosted the 

authors’ confidence towards career success. 

 

This thesis seeks to address two primary issues, related to the autonomous control of 

UAV (Unmanned Aerial Vehicles) and Quadrotors in particular; 

- It aims to make create and implement a generic precision-landing algorithm. 

- It aims to increase the reusability and scalability of this algorithm by using multi-

platform API (Application Programming Interface) developed by FlytOS [1]. 

 

It is expected that a ready-to use precision-landing system will be developed and 

implemented in TalTech campus as an output of this Master Thesis. 
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List of abbreviations and symbols 

 

1. API- Application Programming Interface 

2. GCP- Ground Control Point 

3. GNSS- Global Navigation Satellite system 

4. GPS- Global Positioning System 

5. MPC – Model Predictive Control 

6. PPK- Post-Processed Kinematics 

7. PPP- Precise-Point Positioning 

8. RTK- Real-Time Kinematics 

9. UAV – Unmanned Aerial Vehicle 

10. URI – Uniform Resource Identifier 
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1 INTRODUCTION 

Over the past decade, research into the application of UAVs (popularly called drones) 

technologies have witnessed an exponential increase, this is because Drones have huge 

potential to increase productivity both at a consumer level and in key industrial 

applications. 

At the consumer level, parcel delivery for ‘last-mile’ of goods delivery is a key 

application area, however the highest commercial value of drone applications are in 

industrial and enterprise settings. Drones are widely used in the civil industry to inspect 

infrastructure such as Bridges, roads, windmills and so on. They are also used by 

architects as well as artists for building 3D visual maps of large areas. There is a growing 

trend for warehouse logistics firms to employ drones for automated inventory 

management. Government and security agencies use UAVs for surveillance of territories 

and hazardous zones.  

The list of applications could proceed infinitely but drones presently are not as 

ubiquitous as would be hoped, considering their potential. This is because of many 

technical, social and legal issues. In this study, focus is made on the technical issues 

that limit the application of drones, chief of which is precision-landing. 

For instance, for parcel delivery to be practical as well as safe, it must be guaranteed 

that the drone will land on its designated landing pad 100 percent of the time within a 

small tolerance, and it must be able to do so in varying environmental situations 

including rain, snow, dust, mud and even smoke, achieving this level of performance 

technically can become quite challenging. 

In particular, for this study, an application of UAVs for parcel deliveries is the focus. 

TalTech desires a drone parcel delivery infrastructure that involves the use of one or 

more of her available drones to deliver parcels from building to building within the 

campus.  The environmental conditions vary from cold and snowy winters, rainy seasons 

and fair summers. It is necessary that a precision-landing solution targeted at parcel 

delivery within the Campus must be able to operate in these wide variety of 

environmental situations, if possible, and must also be safe and convenient for public 

use. 

Thus, it is the Author’s desire to actualize a low-cost, low-maintenance, and open-

source, precise-landing system which is critical to accomplishing inter-campus 

deliveries. This, the Author believes, will improve the quality of life of its users and as 

well inspire creativity in the general public. 
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1.1 Thesis Focus and Expected Outcomes 

As mentioned previously, much work has been done in the field of Autonomous control 

of UAVs, this Study however, will focus on two key issues that the Author wishes to 

investigate; 

- Create a generic precision-landing Algorithm: Many researchers have achieved 

precision-landings using various techniques, one of the most impressive [2] achieved 

landing accuracies of ca. 10 cm using a custom control algorithm. The Author aims to 

create a generic algorithm based on visual-servoing that will be easily adapted on many 

multi-rotors. 

- Make the developed algorithm executable on the widest range of Multi-rotor 

platforms using FlytOS: As will be later seen in the literature review section, many 

good solutions have been implemented for precision-landing. The problem with these 

highly specialized solutions that have unique hardware and software is that, they are 

difficult to maintain from a practical point-of-view. 

The Author will make use of the recently developed FlytOS, which is a ROS [3] (Robot 

Operating System)-based Operating System (OS), to develop a precision-landing 

application because FlytOS has the widest compatibility with commercial autopilots. The 

intention is to make it easier to scale the developed precision-landing algorithm across 

different drones, and since it will be open-source the algorithm can be developed further 

instead of new researchers having to start from the beginning every time. The Author 

believes this will help improve the quality and speed of research in this field. 

 

Thus, in summary, the expected outcomes of this Study are; 

- Have landing tolerance (ca. ±20 cm). 

- Be consistently accurate. 

- Have low infrastructural set-up cost. 

- Be easily scalable even on different Drone platforms. 

- Be able to operate in a wide variety of environmental conditions. 

- Land in ca. 46 seconds. 

 

 

1.2 Thesis Structure 

Here, is an overview of the present Study;  

- Chapter 1 talks broadly about the potential of Drones and how this potential can 

be unlocked by easily-applicable precision-landing technology.  



11 

- Chapter 2 discusses the state-of-the-art of precision landing technologies for 

UAVs, and then discusses key features that an implemented solution should 

achieve. 

- Chapter 3 will discuss details of how the solution is intended to be executed. 

- Chapter 4 goes into details as to how the methology operates, the hardware and 

software employed, the infrastructure it relies on and how environmental factors 

affect results. 

- Chapter 5 then presents an analysis of the study. It discusses the goal and 

compares it with actual outcomes. The performance of the implemented 

precision-landing technology is also discussed and compared with existing 

solutions, then conclusions are made. The chapter then closes by discussing 

further directions that this study can evolve into. 
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2 LITERATURE REVIEW AND BACKGROUND 

This chapter discusses the problem of precision landing in more detail, then a review is 

made of the state-of-the-art in terms of the implemented solutions for this problem, 

their limitations are discussed, then some approaches are considered for 

implementation in this study. 

2.1 Current understanding of the problem 

Precise Landing is fundamental to many applications such as parcel delivery, automatic 

charging of UAVs and thus is of interest to many stakeholders. Many companies 

including Amazon, Google and UPS already have implemented landing solutions, in 

various contexts. 

The main challenge is that landing solutions are very context-sensitive, for instance, 

landing in fair weather, with sunlight and mild wind, would require different approach 

when landing in night conditions or snowy conditions. Also, the type of UAV being used 

will affect the quality of the landing, generally, larger UAVs have better performance. 

For this study however, the focus will be on the use of quadrotors, and the target is to 

develop a robust precise-landing system that can work in windy, snowy, night and day 

conditions, to be used for parcel delivery. 

 

 

2.2 Existing solutions 

- Use of GNSS (Global Navigation Satellite System) derived solutions: Precise 

landing has been attempted by applying RTK (Real-Time Kinematics) [4], PPK (Post-

Processed Kinematic) [5], PPP (Precise Point Positioning) [6] and GCP (Ground Control 

Points) [7] to conventional GNSSs. With these technologies, accuracy of landing can be 

brought to about 20cm tolerances. 

The limitations of using GNSS based technologies are:  

(i) They are quite expensive, 

(ii) Since it relies on radio waves, it can easily be jammed or be interfered with,  
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(iii) It is largely dependent on the drone platform and cannot be easily scaled. 

- Use of Infra-red (IR) Sensors: IR transmitters and receivers installed on the landing 

platform and the drone respectively, have been proven to be quite effective for precise-

landing applications (More details concerning IR technics are explained in the next 

secion). 

The limitations of IR-based solutions are: 

(i)  It requires a power-source on the landing platform, which implies greater 

infrastructural cost. 

(ii) It can be affected by ambient sunlight. 

(iii) Cannot be easily applied to many drone platforms 

- Use of Image Processing: This method uses a camera mounted on the drone to 

read ArUco markers (ArUco Marker - ArUco markers are a series of coded grey images 

deployed in a two-dimensional area [8]), and then uses this feedback to accurately 

guide the drone till it lands. It has the lowest infrastructural costs, it can work in the 

widest varieties of environmental conditions (assuming appropriate apparatus are 

used), and be scaled on all major drone platforms. This holds the greatest promise for 

this project. 

Some limitations of this system however are: 

(i) Demands very good-level of technical know-how to implement- Unlike GNSS and IR 

implementation, using image-processing is not a ‘plug-and-play’ solution and demands 

a lot of software development. 

(ii) Image processing become affected by precipitation and when the landing platform 

is covered by dust, mud, snow, leaves or any kind of obstacle that can obstruct the view 

of the Drone camera. 
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2.3 Review of Pertinent Literature 

Prominent literature that covers this area of research are highlighted and discussed in 

this section, all references can be accessed below. 

Alvika Gautam, et al. [9], provided a broad perspective on the status of the landing 

control problem. This literature pointed out that technics for tackling the landing 

problem for UAVs can be classified broadly thus: 

- GPS-based Landing: involves the use of control systems to modify the motion 

of UAVs based on GPS data. 

- Vision-based Landing (Infra-Red (IR) and image processing technics): 

involves the use of a camera to scan a reference point (IR beacon or Image) and use 

the information acquired to trigger a landing sequence. 

- Guidance-based Landing (Proportional and Pursuit Guidance): Alvika 

Gautam, et al. also explained that; Guidance refers to the determination of desired 

trajectory from vehicle's current location to a target, as well as direction, rotation and 

acceleration for following that trajectory. 

The absence of literature that shows how precision landing can be achieved by GNSS 

systems alone, further buttress the fact that GNSS-based solutions are in most cases, 

not practical or reliable, however, A. Cesetti, et al. [10]  showed that, in the case of 

unmanned helicopters GPS and INS (Inertial Navigation Sensors) systems are suitable 

for long range and low precision flights but fall short for precise and close proximity 

flights.  

Guidance-based Landing also relies often on vision-based sensors, H. Bang, et al. [11] 

designed a guidance law for automatic landing of UAV using vision sensors for both fixed 

wing and rotary wing UAV. The method iteratively estimated a time-to-go until target 

intercept and modified the acceleration command based upon the revised time-to-go 

estimate. Thus, it is obvious at this point that Vision-based technics must be applied to 

achieved precise, reliable and consistent landings.  

Jiri Janousek and Petr Marcon [12] compared GPS based landing with IR and Lidar 

assisted landing, and observed that IR and Lidar sensors provided consistent high 

accuracy and high precision landing, while GPS landing accuracy varied significantly. 

Ephraim Nowak, et al. [13] executed an indoor IR-based precise landing system using 

a larger IR-beacon, to eliminate the need for an external Lidar to estimate the precise 
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height of the UAV. This consisted their ‘plug-and-play’ solution for precise landing in 

GPS-denied environments, but this solution is highly platform dependent and was not 

exposed to external wind and ambient lighting conditions. Most other literature 

reviewed, show that the application of image processing to the problem of precise 

landing is the key to the solution, as discussed in the following paragraphs; 

Mohammad Fattahi SANI, et al. [14] used an AR.Drone 2.0 to also execute precise 

landing in a GPS-denied environment. Their solution involved using a Kalman Filter to 

fuse the Inertial Sensor data of the Drone with the Vision data acquired from an onboard 

monocular camera and thus controlling and landing the drone smoothly and quickly with 

a landing accuracy of 3 cm. Another key component of their control algorithm is its 

ability to overcome the oscillation of the drone when it is above the landing target. This, 

they accomplished by their ‘movement-slicing’ method, which partitioned the moving 

time around the target into ‘moving’ and ‘halting’ time, by controlling the drone for this 

specific time-bursts, stability of the drone was achieved with significant landing speeds. 

Phong Ha Nguyen, et al. [15] accomplished remote tracking and control of a multi-rotor 

also in GPS-denied environments. However, rather than using conventional landing 

Markers, such as ArUco, they developed a unique marker. This unique marker, they 

showed in their report, significantly out-performs state-of-the art object trackers in 

terms of both accuracy and processing time [15]. This method however requires 

undisclosed specifications needed for printing this marker properly. 

Further work was done by Mohammad Fattahi Sani, et al. [16], where they used two 

cameras (one, forward facing, and one downward facing) and fused the visual data with 

the drone’s inertial data, similar to the trend followed by most researchers investigating 

this problem. This solution however achieved a low-cost solution that is effective over a 

broad range from a landing target, in an indoor-environment. 

Most research work up to this point, highlight the use of fiducial markers such as ArUCo 

markers, vision sensors, control algorithms and filters to localize and control mobile 

robots. Ho Chuen Kam, et al. [17], however focused on improving the marker-method 

of localization of mobile robots using a linear Kalman Filter to compensate for real-world 

conditions when the marker is sometimes briefly obstructed, thus improving the 

robustness (noise insensitivity) of the control system. 

A similar technique has also been applied to a fixed-wing UAV to smoothen the landing 

of the UAV [18]. It was shown that by lining-up ArUco markers on a landing strip and 

using a long-range camera, the UAV could derive its height and pose gradually and thus 

land in a generally smooth gradient. 



16 

Nuno Pessanha Santos, et al. [19] used ground-based control system instead of the 

onboard system used by most other researchers to guide a fixed-wing UAV to land on a 

moving ship. The advantage of this method is lower payload for the UAV, also, since 

GPS signals are vulnerable to jamming, a camera is installed on the ship to visually 

track the UAV. This research used a Particle Filter (PF) for pose estimation of the UAV 

and used an Unscented Kalman Filter (UKF) for temporal filtering, the results of this 

research proved precision levels that were considered appropriate for Automated 

landing. 

Popular infrastructure such as autopilot and on-board computer as well as open-source 

software used for drone application development are highlighted by Hyunwoong Choi 

[20] and he describes how they were successfully employed to develop a vision-based 

guidance system using an RGB camera. In his guidance system, a way-point was defined 

at which the drone was to execute a given motion. 

Jesse and Timothy [2] achieved landing precision of less than 10 cm using what they 

call Variable Degree of Freedom, Image-based visual servoing (VBOF IBVS). They 

employed a nested Aruco Marker, which was also back-lit with IR LEDs, and maintained 

said landing accuracies in both day and night conditions, with a landing speed of about 

26 seconds. 

The concept of automatic landing of Fixed-wing UAVs using a Stereo-camera and an 

orientation sensor was explored by Montika Sereewattana, et al. [21]. The focus of their 

work was to use the stereo-camera to create depth-map of four detachable markers on 

a landing strip and thus estimate the pose as well as other data required for proper 

landing of the UAV. 

V. F. Vidal, et al. [22] were able to successfully land an EMI-resistant Quadrotor quite 

precisely on a 1.4 m square area of a simple landmark, using relatively simple control 

methods such as PID relatively quickly too (about 15 seconds). A Go-pro camera was 

used in this research, but the image had to be processed using standard python libraries 

in order to be useful for actuating the drone. 

Also, M. F. Silva, et al. [23] proved that low-cost equipment and fundamental control 

algorithms such as PID where sufficient to control the angular dynamics of a UAV. The 

‘Saturation Constraints and Performance Technique (SCPT)’ tuning method was used for 

this study. 

A fundamentally different approach to precision landing of UAV’s was proposed by E. I. 

Shirokova, et al. [24]. A system consisting of a light-weight microwave reader, attached 
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to a drone and an array of microwave transponders on the landing platform (which also 

serves as a charging station) was studied and simulated. The Flight controller adjusted 

the pose of the Drone based on feedback from the transponders. This study suggested 

that such a system would have an accuracy of about 1 mm, however this has not been 

tested on hardware in real-life conditions. 

Thien Hoang Nguyen, et al. [25] gave more insight about the retrieval process of a UAV 

after it has completed its autonomous mission, suggesting that even though vision-

based navigation technologies are mature, a UAV may fail to target its landing pad if 

GPS error limits its field-of-view (FOV) from seeing the target. To overcome this, an 

Ultra-wide band (UWB) system was installed on the drone to ensure that it is led towards 

the target landing pad, within the FOV of the drone, then visual navigation takes over 

and concludes the process. The solution worked out quite effectively, however, it 

demanded the use of 2 on-board computers, 1 mini-lidar sensor and a RealSense 

Camera, to name just a few, which demand a significant amount of power, hence in-

practice, this may not be a feasible solution. 

An application of a UAV and UGV (Unmanned Ground Vehicle) was made by Ivan 

Kalinov, et al. [26]. The study involved the UAV making precision landings on the moving 

UGV. The UAV was equipped with a couple of sensors including a 2D-Lidar sensor as 

well as an Ultrasonic sensor and the data was fused together. The study was targeted 

towards automated inventory management in a warehouse. 

Liu Shungui, et al. [27] proposed a precision landing concept for UAVs to be used for 

powerline inspection. This paper emphasized the use of an iterative algorithm to know 

the best pose estimation for the Drone as it approaches the powerline, and then, the 

use of virtual control points to improve the accuracy of this pose estimation. This concept 

was proven in simulation environments. 

Siri Holthe Mathisen, et al. [28] used a model to achieve precision landing of a fixed-

wing UAV when it was undergoing ‘Deep-Stall Landing’- very steep descent. This type 

of landing is necessary for operational flexibility in areas without sufficient landing strip, 

and is quite difficult for a human pilot to execute appropriately. A non-linear model 

predictive control was used to accurately control the deep stall by first controlling the 

UAV altitude, then significantly lowering its speed, before finally controlling its path 

angle. 
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2.4 Research Problem Formulation 

Based on the review of the literature above, the research problem for this thesis is sub-

divided into two key components: 

- Creation of a generic Precision-landing Algorithm: Timothy and Jesse [2] 

showed very impressive results for precision-landing in both day and night conditions, 

with tolerances of ca. 20 cm. The Author has observed that the problem with such 

algorithm as well as similar algorithms developed by many researchers is that those 

algorithms are highly context sensitive. This means that: 

- small changes in the infrastructure or model of the UAV will significantly affect 

the precision algorithm in the long-run. 

In order to overcome this problem, the Author aims to develop a precision-algorithm 

which is less dependent on the type of Drone being used or a highly specialized model. 

This will allow the algorithm to be easily adopted on multiple Drone platforms. 

- Enabling the developed algorithm to easily replicated and scaled on 

Multiple Drone platforms by using FlytOS: All the papers evaluated all developed 

their own custom solutions for the problem. However, for a pragmatic application of 

precision-landing, the Author believes that it is important that the developed algorithm 

should be able to scale on other drones, with few modifications. 

FlytOS provides one such platform to develop custom applications for UAVs and it has 

the widest compatibility with commercial flight controllers. 

These are two key issues that the Author seeks to address via this Master Thesis. 

 

 

2.5 Justification of Chosen Approaches and summary 

In this section, comparative analysis of some competitive methods related to this Study 

are made. First, the control methodology for the proposed precision-landing algorithm 

is discussed. Secondly, the use of Aruco markers for the development of the landing 

platform is discussed. Lastly, further reasons why the Author has chosen to develop this 

precision-landing application based on the API developed by FlytOS are discussed. 

 

Majority of studies done with respect to Precision-landing as seen in section 2.3 showed 

the following key features: 

- Model-dependent Algorithms: High-precision algorithms such as those in 

[14], [15], [16], [17], [18] and [19] used a specialized model of the multirotor 

UAV to accomplish their algorithms. 
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- Drone-dependent Algorithms: Most of the studies where either built on a 

custom drone with unique features such as IR and GNSS modules or they used 

the popular AR Drone which comes with a unique API for just that Drone. 

These features while highly specialized and where able to achieve quite impressive 

results will be diffucult to use in a commercial setting because it will demand the use of 

exactly those Drones or the recreation of models for each specific Drone. 

This kind of approach will create a huge maintainance overhead if the precision-

algorithm is to be used in commercially. 

In order to overcome the above context-based challenges, the Author proposes the use 

of the following simple guidance algorithm, briefly illustrated below; 

- Locate landing marker; else remain hovering 

- Move only in x-axis until error is minimum then, 

- Move only in y-axis until error is minimum 

- When x and y axes errors are minimum, Land. 

The details of these steps are illustrated and elaborated upon in Chapter 5. The Author 

estimates that this algorithm while simple, will still bring the Drone to within 10 cm 

tolerances within 1 minute landing time. 

The advantage will be the ease of application of the algorithm on the widest variety of 

platforms and thus it can be quickly developed upon. 

 

The use of fiducial markers is a common practice for robot visual-servoing, the major 

fiducial markers used in Robotics are; 

- Aruco Markers 

- April Tags 

- AR Tags 

Aruco Markers were chosen for this study, the main reason being that it is readily 

supported on major Robotics development resources such as opencv and ROS by well 

developed libraries and many tutorials.  

The Author aims to use just one Aruco Marker as a landing reference, this is sufficient 

to provide the pose and attitude of the UAV. This data can then be used as a reference 

to actuate the Drone. The Author choses to adopt this method, since it has been proven 

to work really well, and is easily applicable. 

 

Finally, concerning the use of FlytOS, it must be noted that FlytOS is owned by Flytbase, 

which also produces FlytDock (their precision-landing solution) based on FlytOS. 

FlytDock however is quite expensive and thus inaccessible to the Author, thus the 
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Author decided to create an open-source application based on FlytOS that can be 

accessible to anyone who would want to investigate this problem in future. 

The application of these key features should aid the Author to accomplish the afore-

mentioned objectives;  

- UAV landing-accuracies should be better than already implemented precision-

landings (i.e. should be less than 20 cm tolerances) 

- UAV landings should be consistently accurate within desired precision levels. 

- The landing set-up should have low infrastructural cost. 

- The developed control system should be easily scalable even on different Drone 

platforms. 

- The precision-landing system should able to operate in a wide variety of 

environmental conditions, including day, night, rain, and smoke. 

- UAV should land in at least as fast as already implemented precision-landings 

(i.e. should land in <= 2 minutes). 

 

2.6 Overview of Software and Hardware Used 

In this section, the Author elaborates on principle software and hardware used for this 

Study.  

The following software was used; 

- FlytOS 

- ROS 

The following are physical apparati used; 

- Aruco-Marker based landing platform; This platform was also back-lit with LEDs. 

- On-board flight controller; Raspberry pi 3 [29] computer 

- Voltage-Regulator; DC-DC voltage converter to draw power from the on-board battery. 

2.6.1 Overview of FlytOS 

After going through the large amount of research work done as well as commercial 

deployments of Drone-deliveries and precision-landing, it is demonstratively obvious 

that precision-landing is not a new concept or mystery any more.  
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What is a challenge however, is deploying precision-landing algorithms in such a way 

that they can be applied on a wide variety of Drones without much hassles of fine-tuning 

technical parameters or recreating sophisticated mathematical models of the system for 

each Drone. 

FlytOS provides an answer to this problem. FlytOS has a vision to become a standard 

language with which Drone Developers use to talk to each other. FlytOS provides APIs 

(FlytAPIs) through which communication can be made with the widest variety of Drones 

and Autopilots- i.e. ArduPilot, PX4, and DJI Drones and Autopilots 

The FlytOS Architecture is illustrated below: 

 

Figure 1: FlytOS Architecture Diagram [1] 

Figure 1 captures the main features of FlytOS. At a glance we can observe key 

features which make it such a powerful development tool for Enterprise focused 

Drone-application developers, including the following; 
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- Onboard APIs- this provides an interface for Developers to create applications 

written in Python, C++, and with ROS which will run on an Onboard Computer 

carried along with the UAV in flight. 

- Web Application APIs- FlytOS also provides RESTful and Web Socket APIs 

which are used in conjunction with Onboard applications as well as stand-alone 

applications (especially with smaller Drones). 

Most importantly, high-level functionality can be supervised from the 

FlytConsole, and useful troubleshooting data are stored in the Data Logger and 

can be downloaded when needed. 

- Peripheral Modules- These include; Offboard User Apps and ROS/Linux 

Modules integration. These Modules enable Web/Mobile Apps to be created 

easily and expose advanced functionalities of ROS/Linux respectively. 

Figure 1 also shows that FlytOS is built on ROS (Robot Operating System) and Linux 

[1]. ROS and Linux are both widely used for both Commercial and Research purposes, 

and thus form a proper foundation on which relevant applications can be built and 

maintained. 

The Linux and ROS versions used together with FlytOS for this Study are: 

- ROS Version: ROS-Kinetic 16.04, this is not the latest version of ROS but is 

still used widely in the robotics community because of its stability and support 

for many robotic tools libraries. ROS-Kinetic has long-term support until 2023 

and thus is a robust development environment for future use. 

- Linux Version: Ubuntu-MATE, this version is similar to the popular Desktop 

Ubuntu OS, but Ubuntu-MATE has a modified interface which makes it more 

suitable for operation on lower-capacity computers such as Raspberry Pi, (with 

less working-memory space) which are usually used as Onboard-computers to 

control a Drone. 

In the remaining sections of this chapter, an overview will be given of all the hardware 

used for this Study. 

2.6.2 Overview of Raspberry Pi 

Raspberry Pi computers are widely popular because of their relatively large processing 

power, small size and affordability. More importantly, for this Study Raspberry Pi 3, 
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Model B was chosen because of its ready support for FlytOS and also a large online 

support community. 

A detailed diagram showing major features of this controller can be seen in Figure 2, in 

the Appendices section. 

Key features that make Raspberry Pi 3 Model B suitable for this Study are: 

- Easily accessible GPIO pinouts- 6,8 and 10 (Ground, Transmitter pin and 

Receiver Pin, respectively) which are necessary for establishing UART (Universal 

Asynchronous Receiver-Transmitter) communication between the Drone and the 

Raspberry Pi. 

- CSI Camera Connector- The Camera Serial Interface (CSI) provides a faster 

transmission rate for video data coming from a camera module attached to this 

interface, compared to the USB interfaces. 

- Ethernet Port- This enables the board to be connected to LAN (Local Area 

Network) and achieve large data rates while FlytOS is being setup and updated 

on the Raspberry Pi. 

- Onboard BCM43438 wireless LAN and Bluetooth Low Energy (BLE)- This 

enables the board to broadcast a wifi signal once it is powered on. A Computer 

can then connect to this Wifi signal and remotely connect to this Raspberry Pi 

conviently without an external module. 

Peripheral Ports- These include the HDMI and USB 2.0 ports which make it easy to 

physically connect a Monitor, Keyboard and Mouse to the board and access the GUI 

(Graphics User Interface) of Ubuntu-MATE, which makes program development easier 

and faster. 

2.6.3 Overview of the Raspberry Pi-Camera (RPi Cam) Used 

In order to enable the Drone to cover the largest expanse of space at a given time, a 

wide-angle Raspberry-Pi Camera was used- RPi Camera Fisheye Lens. 

Diagram, illustrating how the RPi-cam was connected to the RPi is shown in Figure 3 in 

the Appendices section. 

Key parameters that make this Camera suitable for this Study are: 



24 

- 160-degree angle of View- This is more than double the size of regular RPi 

Cameras (about 72 degrees), thus giving the Drone a very wide field of view. 

- 5 megapixel OV5647 sensor- This makes the images appear sharper. Thus 

the image processing algorithm has better data to work with. 

2.6.4 Overview of the Drone Used 

For this Study, it was important to the Author to test out the precision-landing Algorithm 

in real-world conditions rather than in only simulation environments or indoor 

environments. 

The DJI Matrice 210 Drone was used for this Study. Key features of this Drone that 

were utilized in this Study are: 

- FlytOS support for this Model of Drone: FlytOS officially supports DJI Matrice 

200 series Drones from their 1.5-6 FlytOS release and upward. Documentation 

was provided by FlytOS on the procedures for setting up the Drone with FlytOS 

which will be explained in Chapter 5. 

- Easily accessible UART Port: This easily accessible UART/Serial port makes 

data exchange between the Drone and the Onboard Computer (RPi) fast and 

easy to wire-up, as shown below: 

 

Figure 4: DJI M210 Expansion-Port, highlighting the OSDK (Onboard Software 

Development Kit) port. [30] 

In Figure 4, the highlighted region, from top-to-bottom represents the 

Transmitter, Receiver and Ground for the UART connection. 

- Gimbal-Mounting Mechanism: M210 has a quick release mechanism for 

Camera gimbals to be mounted and unmounted to the Drone, as shown below: 
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Figure 5: M210 Gimbal-mounting mechanism [30] 

This mounting mechanism was adopted by the Author to create a create a 

quick-release mechanism for the Onboard computer and Camera which enable 

the precision-landing algorithm, as will be illustrated in Chapter 4. 

- Extended Power Port: This port is used by the Drone to supply power to 

external devices, it outputs voltage in the range of 18 V to 26 V with a current 

of 2 A [30]. 

2.6.5 Overview of the Voltage Regulator Used 

In order to power-up the RPi from the Drone, it was necessary to step-down the Voltage 

coming from the Drone to values which are suitable for the RPi. The 18 V to 26 V signal 

coming from the Drone was stepped-down and regulated at 5 V with a current of 2.5 A 

using the XL6009E1 voltage-regulator module. 

Pictures, which illustrate this voltage regulator are displayed in Figure 6, in the 

Appendices section. 

From Figure 6, we can observe that this module simply receives an input signal and 

the regulator is used to adjust the voltage-level until the desired output voltage is 

achieved. The input wires are soldered on the input terminal and the output wires are 

soldered at the output terminals. Details of how this module was used are documented 

in Chapter 3. 

Key features of this Module include: 

- Input Voltage range: 3.5 V – 32 V DC, 
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- Output Voltage range: 5 V – 35 V DC, 

- Maximum Current Output: 2.5 A [31] 
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3 HARDWARE SET-UP 

In this Chapter, the hardware setup for this Study are discussed in detail. As discussed 

in Chapter 3, the hardware used are: 

 

- One RaspberryPi Computer, 

- One Fisheye lens RaspberryPi Camera, 

- One Voltage regulator, and 

- One DJI M210 Drone 

 

The hardware components were setup according to the following flowchart: 

 
 

Figure 7: Flowchart showing the Hardware set-up sequence 

 

From Figure 7, the hardware set-up sequence was actualized in the following way: 

-  Step 1 and Step 2: 

 

 

Step 1: Connect RPi-cam to RPi 

Step 2: Attach RPi and RPi-cam set-up to 
Mounting Mechanism 

Step 3: Attach Mounting Mechanism to Drone 

Step 4: Connect RPi to Drone through UART port 

Step 5: Power-up the RPi from the Drone’s 
external power terminal 
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Figure 8: RPi and Camera set-up attached to Mounting Mechanism (Top and 

Bottom-View) 

 

Figure 8 shows how the RPi and Camera were connected together (check 

Figure 3) and then attached (taped) to a Mounting mechanism made of carbon-

fiber sheets. 

 

-  Step 3: Here the Mounting mechanism was attached to the Drone as shown 

below: 

 

      
 

Figure 9: Attachment of Mounting Mechanism to Drone. (Before and After) 

 

Figure 9 shows how the Mounting mechanism to attached to the Drone using the 2 

slots which were meant to hold camera gimbals (see Figure 5). 
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- Step 4: Here the RPi is connected to the OSDK/UART port that enables the 

Onboard computer (RPi) to communicate with the Drone. The wiring for this is 

illustrated below: 

    
 

Figure 10: Connecting the RPi to the M210 Drone (Schematic [32] and Actual) 

 

Figure 10 shows how the Onboard computer was connected to the OSDK port of the 

Drone. The following UART connections were made: 

- The ground (GND) of the RPi was connected to the GND of the M210 

- The transmitter (Tx) [GPIO14] of the RPi was connected to the Rx of the M210. 

- The receiver (Rx) [GPIO15] of the RPi was connected to the Tx of the M210. 

This is also illustrated above. 

 
 

 

- Step 5: Finally, the RPi was powered-up from the Drone’s external power-

terminal through a DC-to-DC converter (see the schematic in Figure 10), as 

shown below: 
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Figure 11: RPi Power Connections 

 

In Figure 12, we observe how the RPi was connected to the Drone power outlet 

through a DC-to-DC converter. In order to achieve this set-up successfully, the 

following was done to ensure that the proper electric signal-values were attained: 

- The polarity of the Drones’ external power-port were confirmed using a 

voltmeter. 

- Wires were soldered to both terminals of the voltage regulator and it was 

connected to the Drone. 

- The input to the voltage-regulator was measured and confirmed to be ca. 26 V. 

- The output of the voltage-regulator was measured with the voltmeter and 

adjusted with the voltage-regulating knob highlighted above. 

- The previous step was repeated continuously until the desired output voltage of 

ca 5.2 V was attained. This setting also enabled the RPi to draw it rated current 

2.5 A properly. 

In the next chapter, details will be given on how the respective software modules were 

set-up in order to successfully carry-out this study. 
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4 SOFTWARE SET-UP  

In this Chapter, the Author goes into details to explain how FlytOS was set-up for this 

Study and also explains how ROS was used to organize the modules of this Precision-

landing Application. 

The following key-points will be elaborated upon in this Chapter: 

- Setting-up FlytOS with DJI M210 

- Setting-up ROS for this Study 

4.1 Setting up FlytOS with DJI M210 

As mentioned previously, FlytOS started officially supporting DJI M200 series Drones 

from their 1.5-6 release and upward. In this section, the Author explain all the details 

necessary to set-up FlytOS with the Drone. 

There is an official documentation on how to do this, but from experience, the Author 

has discovered that there are some extra steps that may need to be executed in order 

to achieve a successful set-up. Hence a holistic set-up procedure for installing FlytOS 

on a Raspberry Pi will be elaborated upon, highlighting the discrepancies in the 

procedure which are not covered in the official documentation. This is procedure is 

illustrated in the flow-chart below: 
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Figure 12: Flowchart showing holistic FlytOS and Drone set-up procedures. 

This procedure is exactly the same for both the Personal Edition (PE) or the Commercial 

Edition (CE). 

4.1.1 Register, Download and Setup FlytOS with Raspberry Pi 3 

There are a few methods for accomplishing this step, but from experience, the Author 

recommends the following steps (also the official recommendation).  

Step 1: Register, Download and Setup FlytOS 

Step 2: Set-up FlytOS with DJI Drone 

Does 

Video-

streaming 
Work? 

Take Corrective Measures 

Check Image-Message 
Broadcasts 

Set-up 

finished 

No 

Yes 
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Figure 13: Flowchart for setting up FlytOS with Raspberry Pi 3 

In this stage, the user accomplishes the following: 

- Creates a FlytBase account in order to access FlytOS. 

- Downloads the FlytOS image from his/her account. 

- Verifies the integrity of the image using a checksum provided from his/her 

account. 

- Writes the verified FlytOS image to an SD card: The author recommends using 

a high quality SD card, with high data transfer rates, because this will 

significantly affect the speed of the setup procedure, as well as the overall 

performance of FlytOS. 

The Author used ‘SanDisk 32GB Extreme UHS-I microSDHC’ Memory Card, for 

this Study. 

- Extends the partitioning of FlytOS to cover the entire SD card. 

- Acquires login-access to FlytConsole and the FlytOS terminal. 

The fine-details of these processes can be seen in the official documentation [28]. 

Create FlytBase Account 

Download and Verify FlytOS 
Image 

Burn FlytOS image to SD 

card 

Extend FlytOS partition on 

SD card 

Test FlytConsole and 

Terminal Access 



34 

4.1.2 Set-up FlytOS for a DJI-M200 Series Drone 

As mentioned in the introductory chapter, the Vision of FlytOS is to be a common 

language upon which Drone-application developers execute their code. To this effect, 

FlytOS is compatible with the most popular Drones and Auto-Pilots- DJI Drones, 

ArduPilot and PX4. 

For this Study, the Author used a DJI-M210 Drone provided by Tallinn University of 

Technology. The set-up procedure for this Drone are summarized in the flowchart below: 

 

Figure 14: Flowchart for setting-up FlytOS for a DJI M210 Drone 

The user executes the following at this phase: 

- Installation of ‘DJI Assistant’: DJI Assistant (or DJI Assistant 2) is the primary 

software for configuring, troubleshooting and simulating DJI drones. 

Download and Install ’DJI Assistant’ 

Create DJI Developer Account 

Create an Onboard-SDK App and take note of 
its App-ID and Encryption Key 

Configure the M210 Drone 

Configure FlytConsole Parameters 

Test the Set-up 
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- Creation of DJI Developer Account: This is needed in order to have access to 

DJI’s SDKs 

- Creation of an Onboard-SDK App: Here, the user registers an Application on 

DJI’s website which is intended to make use of their Onboard SDK. Special note 

must be taken of the App-ID and its Encryption Key, as it will be used later. 

- DJI M210 Configuration- The following are done here: 

o key parameters of M210 are set in the DJI Assistant App to control the   

behaviour of the Drone while been used with FlytOS. 

o Drone firmware is updated to the latest and then restarted. 

o UART Connection is made between the RPi and the OSDK port of the 

Drone. 

- Configuring FlytConsole Parameters: FlytConsole serves as a supervisory 

and control centre for FlytOS-controlled Drones/Autopilots, the following are 

done here: 

o FlytConsole is opened in a browser. (details in [34]) 

o The App ID and Encryption key are populated into FlytOS settings field. 

- Testing the Set-up: To confirm that everything has been done properly, the 

following should be done: 

o Start and Stop FlytOS from the terminal using the given commands, 

(details in [34]). 

o Make sure to remove the propellers from the Drone. 

o Ensure that there GPS signals available. 

o Start the simulator in DJI Assistant. 

o Set M210 to P-mode using the flip-switch on the controller. 

o Use the Joystick App in FlytConsole control the Drone in the simulator. 

The official documentation for this procedure are available [34], but some points have 

not been updated by FlytBase, hence from experience the Author has modified the 

sequence so that it is easier for a novice to follow. 
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After the above steps, it is necessary to confirm if the images coming from a camera 

connected to the RPi are visible from FlytConsole, (the Author encountered a challenge 

with the video-streaming). If it is not, troubleshooting steps are elaborated in the next 

section. 

4.1.3 Troubleshooting the Video-streaming Functionality 

As this is an image-based precision-landing algorithm, it was necessary to ensure that 

video data from RPi were visible on to FlytOS and could be used for developing the 

algorithm. The following should be done if Video Streaming data is not visible on 

FlytConsole: 

 

Figure 15: Flowchart depicting how to troubleshoot Video-Streaming error in FlytOS 

The details of this sequence are explained below: 

Confirm Cable Connections 

Does Video-

Streaming 

error 
Persist? 

Get Public Key 

Update and Upgrade all dependencies 

Finish- Error 

Corrected. 

Yes 

No 
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- Confirm if the RPi-cam is well inserted into the CSI slot: Turn-off the RPi, 

remove and reconnect the RPi-cam. 

- If the problem still persists then the following should be done in the FlytOS 

terminal: 

o Get Public-Key: Get a public key by executing this command in the 

terminal- 

sudo apt-key adv –keyserver ‘hkp://keyserver.ubuntu.com:80’ –recv-key 

C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654 

This is necessary in order to have the authority to execute the next 

command. 

o Update and Upgrade all dependencies: run the following command to 

update and upgrade all FlytOS dependencies (including opencv which is 

usually the problem)- 

sudo apt update && sudo apt upgrade –y 

After these steps, the video-streaming error will be eliminated. In the next section, the 

development of the precision-landing algorithm is discussed. 

4.2 Setting up ROS for this Study 

As mentioned in the Software overview chapter. FlytOS is based on ROS and Linux, 

hence using FlytOS for this Study will demand utilizing basic ROS functionalities and 

Linux terminal commands. The following were done, in order to set up ROS for this 

Study: 

- Creating a ROS Package 

- Updating ROS environmental variables 

4.2.1 ROS-Package Creation 

A ROS package is the main unit that is used to keep software in ROS organized. The 

ROS package may contain various program units including nodes, libraries, 

configuration files and so on. In general, all dependencies needed for a program to run 

are indicated in its ROS package. A ROS-package named marker_detector was created 

for this Study in the following way: 
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Figure 16: Flowchart showing the creation of the ‘marker_detector’ package 

Details for the sequence above are explained thus: 

- Create a catkin workspace: A catkin workspace (catkin_ws) can be 

understood as the highest directory in a ROS user workspace. A catkin workspace 

can contain several packages which are each dedicated to unique applications. 

A catkin_ws is fundamental to most ROS projects and details on how to create 

one in a Linux terminal are available [35]. A catkin_ws consists of 3 basic folders, 

namely; 

o Source folder (src) 

o Development folder (devel) 

o Install folder (install) 

For this Study our focus is on the src folder. 

- Navigate to the src folder: It is in the source folder of the catkin workspace 

that a package is created. We navigate to this folder using the following Linux 

command: 

cd catkin_ws/src 

- Create “marker_detector” Package: Once in the catkin_ws/src folder we can 

now begin creating packages. The process of creating packages have been 

automated in the ROS ecosystem. It has the following syntax: 

Create a catkin workspace 

Navigate to the source folder in the catkin 
workspace 

Create the ’marker_detector’ package 
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catkin_create_pkg <name_of_package_to_be_created> <dependency1> <dependency2> 

<dependency3> 

For this Study, the marker_detector package was created with a dependency on 

only ‘rospy’. ‘rospy’ is the main python library built for ROS, hence the package 

is created as follows: 

catkin_create_pkg marker_detector rospy 

Then finally, the path to ROS package must be indicated in the ROS_PACKAGE_PATH 

environmental variable, in order for it to be used. Thus marker_detector package path 

has to be updated into this variable as will be explained in the next sub-section. 

4.2.2 Updating ROS environmental variables 

ROS environmental variables can be thought of as parameters that affect how a ROS 

installation performs. There are many environmental variables, but only the 

ROS_PACKAGE_PATH variable needs to be updated. For this Study, it is required to 

update the aforementioned variable in every new Linux terminal that is opened, 

otherwise the marker_detector package will not be found by ROS. The process for doing 

so is summarized thus: 

  

Figure 17: Flowchart describing how to update the ROS_PACKAGE_PATH 

Details for this sequence are explained below: 

- View the default ROS_PACKAGE_PATH values: The default values of 

ROS_PACKAGE_PATH can be viewed on any Linux terminal by using the 

following command: 

echo $ROS_PACKAGE_PATH 

View the default ROS_PACKAGE_PATH values 

Update the ROS_PACKAGE_PATH values 

Test if the Update was successful 
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After the values of this variable have been displayed, it should be highlighted 

and copied (ctrl+shift+c) 

- Update the ROS_PACKAGE_PATH variable: In order to update a ROS 

environmental variable, the ’export’ command is used. The 

ROS_PACKAGE_PATH variable should updated with the file path for the 

’marker_detector’ package created in the previous sub-section using the 

following command: 

export ROS_PACKAGE_PATH=<the values copied from the previous 

step>:~/catkin_ws/src/marker_detector 

It must be confirmed if the values actually changed. 

- Testing the Update: to test if the value of the ROS_PACKAGE_PATH has 

actually been updated and that there are no error, it is necessary to view the 

value of the variable again according to first step above. It should then be 

observed that the value of this variable has been updated according to the 

previous step. 
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5 PROGRAM DEVELOPMENT AND CODING 

In this chapter, the Author describes the main algorithm and programming techniques 

underlying this precision-landing application. The main aspects of this program are: 

- Receiving and Processing Video Streams 

- Actuating the Drone based on image-data 

5.1 Receiving and Processing Video Streams 

As a vision-based precision-landing algorithm, the first-step of the program 

development is to acquire the video data at a reasonable rate. In this section, the Author 

will discuss how an Image stream was acquired and processed. The general sequence 

for this is illustrated below: 

 

Figure 18: Flowchart showing the general process of reading and processing image 

data 

This module of the precision-landing algorithm is the primary module for this study, 

and it is based on Python scripts developed by Tiziano Fiorenzani [36]. The Author 

adapted this code in order for it to work with FlytOS. The details of the sequence in 

Figure 17 will be explained in the following sub-sections. 

5.1.1 Camera Calibration 

Camera calibration is the process of estimating the parameters that define a camera’s 

focal length, optical sensor and lens-distortion. Camera calibration is important because, 

Camera Calibration 

Pre-Process Images 

Main Image-processing 

Publish Processed Images 
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just like finger prints, every single camera is different, and thus the mathematical model 

representing a camera must capture these values, in order to improve performance of 

the precision-landing algorithm. 

Opencv is the most popular library used for robotics research, and as briefly mentioned 

in section 5.1.3, is one of the dependencies in FlytOS. Opencv uses a pin-hole camera 

model in order to estimate a camera matrix: 

 

Figure 19: Opencv pinhole camera model [38] 

Figure 19 shows that when an object in the real-world (point P) is projected unto a 2D 

space, it loses its depth perception. In order to compensate for this change, the 

Opencv pinhole model estimates the intrinsic camera parameters from the following 

formula [33]: 

[
𝑢
𝑣
1

] = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] [
𝑋
𝑌
𝑍

] 

(1.0) 

Where: 

(X,Y,Z) are the coordinates of a 3D point in the world coordinate space, [38] 

(u,v) are the coordinates of the projection point in pixels, [38] 

(cx,cy)  is a principal point that is usually at the image center (the optical sensor), [38] 
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(fx,fy) are the focal lengths expressed in pixel units. [38] 

In addition to these, lens distortion of the camera must also be accounted for. Opencv, 

models this distortion by the following formula [37]: 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑐 = [𝑘1, 𝑘2, 𝑝1, 𝑝2, 𝑘3] 

(2.0) 

Where: 

k1,k2,and k3 are radial distortion coefficients, and [37] 

p1, and p2 are tangential distortion coefficients. [37] 

In order to estimate all these 9 parameters, the Author used the camera-calibration 

method described in [37]. 

For the fisheye camera (see section 3.3) used for this Study, the camera matrix and 

Distortion coefficients are shown below: 

[
𝑢
𝑣
1

] =  [
3.04079𝑒 + 02 0.00000𝑒 + 00 3.13905𝑒 + 02
0.00000𝑒 + 00 3.03399𝑒 + 02 2.26608𝑒 + 02
0.00000𝑒 + 00 0.00000𝑒 + 00 1.00000𝑒 + 00

] [
𝑋
𝑌
𝑍

] 

(3.0) 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑐 = [−3.52291𝑒 − 01, 1.74888𝑒 − 01, −2.49997𝑒 − 03, −9.60937𝑒 − 05, −5.16956𝑒 − 02] 

(4.0) 

These calibration parameters were stored in individual text files and were called in the 

program as follows: 

# Get camera calibration parameters 

calib_path = “” 

camera_matrix  = np.loadtxt(calib_path+’cameraMatric_webcam.txt’,delimiter=’,’) #get camera matrix file. 

camera_distortion = np.loadtxt(calib_path+’cameraDistortion_webcam.txt’,delimiter=’,’)#get distortion coeff 
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5.1.2 Pre-Processing Images 

In order to ensure that the data received from the camera were properly processed, 

some settings needed to be made and the reference frame of the camera needed to be 

adjusted in the code. The following were done in this sub-section: 

 

Figure 20: Flowchart showing pre-processing stages 

 

The details of these stages are elaborated below: 

- Flipping the Reference frames: It is important to flip the reference frame of 

the camera with respect to the Aruco marker. The reason for this illustrated 

below: 

 

Figure 21: Comparison of the camera and marker reference frames 

Figure 20 shows that the camera reference frame has to be flipped by 180 

degrees for the 2 reference frames to be equitable. This was executed in code 

as follows: 

# Here we create a 180-degree rotation matrix around the x-axis 

Flip Reference Frame 

Define Aruco Dictionary 

Camera Reference Frame Aruco Marker Reference Frame 

x x 

z 

z 
y 

y 

Aruco Marker 
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R_flip = np.zeros((3,3), dtype=np.float32) #  Create a 3x3 zero-matrix 

R_flip[0,0] = 1.0 # Leave the x-axis constant 

R_flip[1,1] = -1.0 # Invert the y-axis 

R_flip[2,2] = -1.0 # Invert the z-axis 

This flipped rotation matrix will be used in the next sub-section. 

- Defining an Aruco Dictionary: As mentioned in section 2.5, Aruco markers 

are very prominent in robotics research, especially due to the fact that there 

are ready-libraries already implemented in Opencv that make it easy to use. 

The Aruco library chosen for this study is the original Aruco dictionary- 

DICT_ARUCO_ORIGINAL, developed by the university of Maryland. The main 

reason for this choice was the authors experience with this library and also this 

library has an easy-to-use online marker generator [39]. 

The definition of the Aruco dictionary was executed in code as shown below: 

# Define the Aruco Dictionary to be used 

aruco_dict = aruco.getPredefinedDictionary(aruco.DICT_ARUCO_ORIGINAL) #get original dictionary 

parameters = aruco.DetectorParameters_create() # define handler for Aruco parameters. 

5.1.3 Main Image-processing 

In this sub-section, the main procedure that converts the Aruco marker image into 

parameters that can be used by the drone will be explained. The main procedure is as 

follows: 
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Figure 22: Flowchart depicting the main image-processing algorithm 

Subscribe to Image data 

Convert Image to gray-scale 

Find Aruco Markers 

Aruco Marker 
found? 

Estimate Poses and Attitudes based on marker data 

Draw corners and axis of marker on image frame 

Print marker and camera poses and attitudes on image 
frame 

Shut-down 

initiated? 

Yes 

No 

Yes 

No 

Stop main-process 
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The details of the procedure in Figure 21 are elaborated below: 

- Subscribing to Image data: As elaborated in section 5.2, FlytOS is built upon 

ROS. ROS allows nodes (data-processing units) to communicate among each 

other primarily by allowing nodes to publish to each other and also allowing 

nodes to subscribe to messages being published. 

FlytOS automatically publishes the images from a RPi-cam connected to the 

CSI port of the RPi to a ROS-message topic named- /image_capture. Thus, 

this /image_capture topic must be subscribed to in order to get the video 

stream coming from the RPi-cam, so that it can be processed by Opencv. 

Unfortunately, ROS and Opencv have different message formats and hence 

ROS-image messages cannot be processed by Opencv by default, thus an extra 

library was utilized to solve this problem. 

Cv_bridge() is a library that is used to interface ROS messages with Opencv 

messages. It allows messages coming from ROS to be formatted in a way that 

Opencv can interpret them and vice-versa. Thus, in order to subscribe to the 

/image_capture topic, the key points were executed in code: 

# Subcribe to /image_capture topic 

… 

From cv_bridge import CvBridge, CvBridgeError 

… 

# subcribe to /image_capture topic and send data to the camera_callback function within the class. 

Self.image_sub = rospy.Subscriber(“/flytos/flytcam/image_capture”, Image, self.camera_callback) 

Self.bridge_object = CvBridge() # create a handler for the cv_bridge function. 

… 

The above code snippet, derives the image-data and sends it to the 

camera_callback function within the Python class created for this study. It is in 

this camera_callback function that the main image-processing is carried out, as 

is explained next. 
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- Converting Images to grayscale: It is helpful to convert images to 

grayscale, in order to aid the processing efficiency of this algorithm. As the 

target of this algorithm is to process Aruco markers, which are black and white 

in colour, then it is helpful if we ignore every other colour to reduce the data-

overhead of the images that we receive from the RPi-cam.  

Opencv provides a method for converting color-images to grayscale, called 

‘cvtColor’. This was executed in code in the following way: 

# Here we convert the received images to grayscale within the camera_callback function of the class 

Def camera_callack(self,data): 

… 

# convert colored-images to OpenCv format and store them in a variable called ‘cv_image’ 

cv_image = self.bridge_object.imgmsg_to_cv2(data, desired_encoding=”bgr8”) 

# change the colored OpenCv image to grayscale, and store in a variable named ‘gray’. 

gray = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY) 

… 

After this, the next step of the algorithm is to find Aruco markers in the video-

stream. This will be explained next. 

- Finding Aruco Markers: Opencv is able to detect Aruco markers in an image 

using the ‘detectMarkers’ method within the Aruco class which was imported 

into the program. This function was executed in code by the following excerpt: 

# Here we find Aruco Markers in an image and output 3 parameters. 

corners, ids, rejected = aruco.detectMarkers(image = gray, dictionary=aruco_dict, 

parameters=parameters, cameraMatrix=camera_matrix, distCoeff=camera_distortion) 

… 

In the code snippet above, we see that the ‘detectMarkers’ function takes the 

grayscale image, developed from the previous step, as well as the Aruco 

dictionary and camera calibration parameters as inputs and returns 3 variables: 

o Corners: the identified corners of the Aruco marker. 
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o Ids: The identified id of the marker (Each Aruco marker has a unique id 

which is chosen by the application developer) 

o Rejected: This is used to indicate image points that could not be 

recognized by the Aruco dictionary in use. 

The next step is a conditional statement to check if a marker was found. 

- Checking if an Aruco Marker was found: Here, a simple conditional 

statement was used to check if any Aruco markers have been identified in the 

image frame. Several Aruco markers can be identified, but for this study, the 

Author is only interested in finding one Aruco marker which was indicated at 

the beginning of the program. This process was indicated in code by the 

following snippet: 

# Here we check if the Aruco Marker of interest was found. 

… 

Id_to_find  = 25 # The Author is interested in finding marker-25. 

Marker_size = 10 # This is the size in which the marker was printed (units in cm). 

… 

 If ids is not None and ids [0] == id_to_find: 

 … 

… 

Once a marker is found, we continue the image processing as explained next. 

- Estimating Poses and Attitudes: At this stage, the most important data is 

acquired from the Aruco marker. One of the advantages of Aruco markers is 

that, even with just a single marker, the pose and attitude of a vehicle can be 

derived. 

o Pose: is basically the x, y and z coordinate of an object with respect to 

another. This is useful for making translational motions. While, 

o Attitude: is basically the roll, pitch and yaw values of an object with 

respect to another. This is useful for making rotational motions.  
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The details of executing this process are summarized in the following flowchart: 

 

Figure 23: Flowchart showing the process of deriving poses and attitudes. 

The procedures for actualizing this process in code are detailed in the following 

code snippet: 

 

Declare functions to convert rotation matrices to Euler 
angles 

Use ’estimatePoseSingleMarkers’ function 

Unpack the output of ’estimatePoseSingleMarkers’ function 

Obtain the rotation matrix of the marker with respect to 

the Camera. 

Convert the rotation matrix to Euler angles. 

Obtain the position of the camera with respect to the 
marker. 

Obtain the position of the camera with respect to the 
marker. 
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… 

# Here, the functions that handle rotation matrices are declared. They were copied from here [40]. 

def isRotationMatrix(R): # This function checks if a Matrix is a valid rotation matrix. [40] 

 Rt = np.transpose(R) [40] 

 shouldBeIdentity = np.dot(Rt, R) [40] 

 I = np.identity(3, dtype=R.dtype) [40] 

 n = np.linalg.norm(I - shouldBeIdentity) [40] 

 return n < 1e-6 [40] 

def rotationMatrixToEulerAngles(R): # This function converts rotation matrices to Euler angles. [40] 

 assert (isRotationMatrix(R)) [40] 

 sy = math.sqrt(R[0, 0] * R[0, 0] + R[1, 0] * R[1, 0]) [40] 

 singular = sy < 1e-6 [40] 

 if not singular: [40] 

  x = math.atan2(R[2, 1], R[2, 2]) [40] 

  y = math.atan2(-R[2, 0], sy) [40] 

  z = math.atan2(R[1, 0], R[0, 0]) [40] 

 else: [40] 

  x = math.atan2(-R[1, 2], R[1, 1]) [40] 

  y = math.atan2(-R[2, 0], sy) [40] 

  z = 0 [40] 

 return np.array([x, y, z])  [40] 

… 



52 

# Here, a function is used to estimate a single marker pose. This function takes the ‘corners’, 

#marker_size, camera_matrix and camera_distortion parameters derived in previous stages to 

#create a new variable ‘ret’. 

ret = aruco.estimatePoseSingleMarkers(corners, marker_size, camera_matrix, camera_distortion) 

# Next, the ‘ret’ variable is unpacked to acquire the pose and attitude of the marker with respect to 

#the RPi-cam. 

rvec, tvec = ret[0][0,0,:], ret[1][0,0,:]  # get the variables for only one marker. 

# Next, the rotation matrix of the marker with respect to (wrt) the camera is obtained. 

R_ct = np.matrix(cv2.Rodrigues(rvec)[0]) # rotation matrix of camera wrt marker. 

R_tc = R_ct.T # rotation matrix of marker wrt camera. 

# Here, the rotation matrix is converted to Euler angles, by using a function declared above. 

roll_marker, pitch_marker, yaw_marker = rotationMatrixToEulerAngles(R_flip*R_tc) 

# Next, the pose of the camera wrt the marker is obtained. 

Pos_camera = -R_tc*np.matrix(tvec).T 

# Then the attitude of the camera wrt the marker is also obtained. 

roll_camera, pitch_camera, yaw_camera = rotationMatrixToEulerAngles(R_flip*R_tc) 

… 

The next stage of this image-processing procedure is to draw visual markers on 

our image. This is useful, especially for the purpose of troubleshooting errors in 

the program. 

- Drawing on the image of the marker: It is helpful to draw the corners and 

the axis representation of the marker on its image frame for troubleshooting 

purposes. Once again, the Opencv library provides methods for accomplishing 

these. This process is executed in code by the following code excerpt: 

aruco.drawDetectedMarkers(cv_image, corners) # draw the corners on the detected image. 

aruco.drawAxis(cv_image, camera_matrix, camera_distortion, rvec, tvec, 10) # draw an axis on the 

#detected marker. 
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In the next stage, the poses and attitudes derived a few stages above will be 

printed on the marker camera frame as well for troubleshooting purposes. 

- Printing Poses and Attitudes on Marker-Image: In this stage, a string is 

created to hold the desired values, then the ‘putText’ method provided by 

Opencv is used to print the the generated string on the image. The following 

code excerpt details this process: 

… 

Font = cv2.FONT_HERSHEY_PLAIN # font to be used for printing texts. 

… 

# Here, the marker position wrt the camera is printed on an image. 

str_position = “MARKER Position x=%4.0f y=%4.0f z=%4.0f”%(tvec[0], tvec[1], tvec[2]) 

cv2.putText(cv_image, str_position, (0, 100), font, 1, (0, 255, 0), 2, cv2.LINE_AA) # print green text. 

# Here, the marker attitude wrt the camera is printed on an image. 

str_attitude = “MARKER Attitude r=%4.0f p=%4.0f 

y=%4.0f”%(math.degrees(roll_marker),math.degrees(pitch_marker),math.degrees(yaw_marker)) 

cv2.putText(cv_image, str_attitude, (0, 150), font, 1, (0, 255, 0), 2, cv2.LINE_AA) # print green text. 

 

# Here, the camera position wrt the marker is printed on an image. 

str_position = “CAMERA Position x=%4.0f y=%4.0f z=%4.0f”%(pos_camera[0], pos_camera[1], 

pos_camera[2]) 

cv2.putText(cv_image, str_position, (0, 200), font, 1, (0, 255, 0), 2, cv2.LINE_AA) # print green text. 

# Here, the camera attitude wrt the marker is printed on an image. 

str_attitude = “CAMERA Attitude r=%4.0f p=%4.0f 

y=%4.0f”%(math.degrees(roll_camera),math.degrees(roll_camera),math.degrees(roll_camera)) 

cv2.putText(cv_image, str_attitude, (0, 250), font, 1, (0, 255, 0), 2, cv2.LINE_AA) # print green text. 

… 



54 

The processes described in the previous stages will keep on running until the 

main process is stopped as described in the next stage. 

- Stopping the main-process: The above stages in which, the poses and 

attitudes of the marker and camera are derived will keep on running in an 

infinite loop until the process is stopped when there is a keyboard interrupt. In 

ROS and the Linux terminal in general, a keyboard interrupt is initiated from 

the keyboard using ‘Ctrl + c’ command. This exception is captured within the 

class created for this image-processor in the following way: 

# Here the ‘MarkerDetector()’ class created for this study is called and looped continuously except 

#there is a keyboard interrupt. 

… 

def main(): # create main function. 

 rospy.init_node(‘marker_detecting_node’, anonymous=True) # Initialize ROS node. 

 marker_detector_object = MarkerDetector() 

 try: 

  rospy.spin() # loop infinitely 

 except KeyboardInterrupt: 

  print(“Shutting down”) 

if __name == ‘__main__’: 

 main() # call the main function 

In the next section, the process of publishing the processed image and required 

poses and attitudes will be explained. 

 

5.1.4 Publishing Processed Images and data 

The outputs of the previous sub-section are processed images and various data 

representing the relative poses and attitudes of the marker and the camera. In order to 

make all these data available to other modules of programs, as well as in order to display 

the processed images via FlytOS, it is necessary to publish them. 
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ROS has standard procedures for publishing topics in python environment [41], by using 

the ‘rospy’ class. For this Study, different message-types are involved, thus their 

publication procedures are slightly different, the topic published are: 

- /processed_image: This topic has an ‘Image’ message format. 

- /pose_data: This topic has a ‘Float32MultiArray’ message format. 

Publishing the /processed_image topic: A topic named ‘/processed_image’ was 

created and published by the following sequence summarized thus: 

 

Figure 22: Flowchart showing the process of publishing ‘/processed_image’ 

The process was executed in code by the following excerpt: 

… 

# Here, we create the Image-Publisher Instance inside the MarkerDetector class 

self.image_pub = rospy.Publisher(“/processed_image”, Image, queue_size=10) 

… 

# Here, the OpenCv image is converted back to a ROS Image-message format 

msg = self.bridge_object.cv2_to_imgmsg(cv_image, “bgr8”) 

# Finally, we publish the topic. 

self.image_pub.publish(msg) 

Convert OpenCv image to ROS Image-message format 

Publish the converted images. 

Create Image-publisher instance 
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… 

In the code snippet above, it is import to emphasize that the image-message format 

(in this case “bgr8”) must be specified for the proper functioning of the program. Next 

the /pose_data publication process is explained. 

Publishing the /pose_data topic: The contents of /pose_data is an array of data 

values that represent the various poses and attitudes that are required to actuate the 

Drone for this precision-landing algorithm. The use of the ‘Float32MultiArray’ message 

type for this topic requires, the following processes illustrated below: 

 

Figure 23: Flowchart showing the procedure for publishing the /pose_data topic. 

The execution of these procedures in code are described in the following code snippet: 

… 

# Here the Float32MultiArray-Message Publisher instance is created 

Self.pose_pub = rospy.Publisher(“/pose_data”, Float32MultiArray, queue_size=10) 

# Next, an array is created to hold the variables that are important for this study. 

array = [pos_camera[0], pos_camera[1], pos_camera[2],tvec[0], tvec[1], tvec[2]] 

# Here the Float32MultiArray instance is formatted 

Create Float32MultiArray-Message Publisher Instance 

Create an array of all required variables 

Format the Float32MultiArray Instance with the created 
array 

Publish the data 
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Position = Float32MultiArray(data=array) 

# Finally, the data are published. 

self.pose_pub.publish(position) 

… 

In the next section, a different Python script will be developed, which will actually 

actuate the Drone based on data received from this topic. 

5.2 Actuating the Drone based on image-data 

In this section, the following procedures will be followed in order to actuate the drone. 

- Setup 

- Actuate 

- Shutdown 

The Setup processes include the following: 

- Import necessary libraries and classes 

- Initialize the FlytOS API 

- Subscribe to /pose_data 

The Actuate processes include the following: 

- Take-off 

- Acquire translation parameters 

- Translate Drone translate Drone until desired tolerance is achieved 

Finally, the Shutdown sequence is: 

- Hold position, 

- Delay, and 

- Land 
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In addition to these, it was also important to understand by how much the Drone 

deviated from its desired position, in order know the range in which to set the Drone’s 

tolerance values to minimize oscillations. To this effect, the Author applied a 

proportional control to the z-axis and allowed the Drone to hover, and then the values 

where plotted in order to see how much the Drone deflected by. These were the results: 

For the z-axis: 

 

Figure 24: z-axis deflection while hovering 

Figure 25 above, shows that the Drone tries to maintain a set-point at 100cm but it 

deflects upward by about 10 cm and downward by about 15 cm. The average value of 

its oscillations was about 98cm, thus 98 was used as the reference point in the 

algorithm. 

For the x-axis: 
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Figure 25: x-axis deflection while hovering 

Figure 26, above shows that while the Drone tried to hold its position under the 

influence of various gusts of wind, it held an average value of -8 during the period of 

this oscillation and deflected by about 20 cm in either direction. 

For the y-axis: 

 

Figure 26: y-axis deflection while hovering 

Figure 27 above shows how the Drone deflected on its y-axis while trying to hold its 

position. It held an average postion of -6 and deflected by about 9 cm in either 

direction. 
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These sequence is elaborated in Figure 28, below: 

 

Subscribe to /pose_data 

Import 

necessary 
Libraries 

Initialize FlytOS API  

Extract translation parameters 
from /pose_data 

Take-off  

Marker 

found? 

Actuate Drone until it is within 
desired landing precision  

Break-out from loop 
 

Hold position 

Delay  

Land  

End 

Hover 

Interru

pt? 
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Figure 27: Flowchart showing the Actuation procedures 

 

The coding of the processes in Figure 28 is detailed in ’PrecisionLandingTest.py’ in the 

Appendices section. 

If the Drone does not find the marker, it continues hovering in its takeoff position until 

the keyboard interrupt (ctrl + c) is initiated. When the keyboard interrupt is initiated, 

the shutdown sequence commences and the drone lands as required. 
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6 EXECUTION OF PRECISION-LANDING 

ALGORITHM 

In this chapter, the Author discusses how the precision-landing algorithm was tested 

in real-life conditions. The execution procedure will be divided into 3 sections: 

 

- The Test-setup 

- Remote Connection to RPi 

- Monitoring and Troubleshooting 

6.1 The Test-setup 

The test setup is shown below: 

 

 

 
 

Figure 28: Test Setup 
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Figure 26 shows that the Drone (coupled with the Onboard computer and camera) was 

placed a few centimeters away from the Aruco marker. After this setup, the Author kept 

a considerable distance away from the setup (for safety) and then initiated the precision 

landing remotely using a computer wirelessly connected to the Rpi, as explained in the 

next chapter. 

6.2 Remote connection to Rpi 

FlytOS comes enabled with wifi, which broadcasts a signal whenever the Rpi is turned 

on. This wifi was connected-to on different computer (Windows OS), through which a 

remote connection (ssh) was made to the Rpi. The process for doing so through the 

’Putty’ Windows application is summarised below: 

- Start the Putty Application 

- Fill-in the IP address of Rpi 

- Ensure that the ’connection-type’ is SSH 

- Login to FlytOS 

Starting the Putty Appication: This is a trivial matter of doubl-clicking the Putty 

desktop icon. 

Inputing the Rpi IP address: By default it is 10.42.0.1, but it is helpful to confirm 

this by initially doing the following: 

- Connect a monitor and keyboard the Rpi 

- Start the Linux terminal (ctrl+alt+t) 

- In the Linux terminal, enter the ’ifconfig’ command. 

- Then take note of the ’inet addr’ in the ’wlan0’ section. 

This value can then be input into the Host Name (or IP address) field of Putty, as 

shown below: 



64 

 

Figure 29: Remote connection through Putty. 

From Figure 27, it is also shown the SSH option is chosen. 

After the ’open’ option is clicked, a Linux terminal opens-up in Windows and askes for 

the login details. The FlytOS login details are: 

- Username: flytos 

- Password: flytos 

After this process, the setup proceedures discussed in section 5.2.2 are performed. 

Then, the precision algorithm is initiated with the following commands, performed in 

different Putty windows: 

- Starting the Aruco marker detector program is done with the following 

command:  

Rosrun markerdetector arucoTest.py 

- Starting the Precision-landing program is done with the following 

command: 

Rosrun markerdetector PrecisionlandingTest.py 

After running those commands the Drone should take-off and land over the Aruco 

marker. In the next section, the Author explains monitoring and troubleshooting steps. 
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6.3 Monitoring and Troubleshooting 

In order to observe what the algorithm is actually doing, it is helpful to be able to see 

the video stream that contains the processed images. This is enabled through FlytOS 

and can be accessed by doing the following: 

- View the list of FlytOS image topics: This can be done in any web-browser 

on the windows computer, using the following URI (Uniform Resource Identifier): 

10.42.0.1:8080 

- Open the /processed_image topic: From the list of ’Available ROS Image 

Topics:’ click on the /processed_image topic. After doing so, a user will be able 

to see the marker and its parameters if the Drone is hovering over it as shown 

below: 

 

Figure 30: Monitoring the processed images. 

Finally, the Author discusses troubleshooting steps that were taken to fine-tune the 

algorithm, in order to get suitable landing accuracies. These steps are summarized as 

follows: 

- Ensure proper camera settings are used: The Rpi-cam used for this Study 

can be adjusted via FlytOS. The parameters to be adjusted are: 
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o Sharpness – sets the image sharpness 

o Contrast – sets the contrast (the more contrast, the better) 

o Brightness – sets the brightness of the images 

o Saturation – sets the image colour saturation 

o Vstab- turns Video stabilisation on or off 

The settings of the these parameters can significantly affect how the camera 

sees the Aruco-Marker in different ambient lighting conditions. 

- Ensure camera is well calibrated: Camera calibration is perhaps the most 

important factor to be considered for this study. This is because the relative 

distances which are calculated by the rotation matrices are dependent on the 

pin-hole camera model used by Opencv. Thus, if the camera-matrix and 

distortion-coefficients for the camera are inaccurate, then the relative distances 

calculated will also be innaccurate. 

- Adjust actuation algorithm: Finally, after each landing, the distance away 

from the desired position was measured and used to offset the translation 

command in the algorithm. This was necessary because the camera is not 

mounted at the center of mass of the Drone. 
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7 ANALYSIS OF RESULTS 

In this Chapter, the Author considers the following points: 

- Accuracy and Speed of Landings 

- How the Algorithm compares with another one. 

This analyses are detailed in the following sections. 

7.1 Accuracy and Speed of Landings 

Here, the Author summarizes the results of the precision-landing test. Key parameters 

for this study were: 

- Accuracy of the Landings. 

- Time taken to Land. 

The results are summarized in the table below: 

Test Number (#) Landing Error (cm) Time Taken to Land (s) 

1 25 65 

2 7 60 

3 10 120 

4 15 35 

5 20 37 

6 11 48 

7 23 70 

8 16 105 

9 20 45 

10 15 112 
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Table 1: Landing Accuracies and time-taken 

In the next section, comparism will be made with how well these results compare with 

those of Timothy and Jesse [2].  

7.2 Results Comparism  

Timothy and Jesse [2] achieved very good results using a drone that they developed 

themselves which included an off-the-shelf auto-pilot. Then they used this drone to 

implement their ’varying-degree of freedom, image-based visual servoing’ (VDOF IBVS) 

[2] algorithm, thus it will help put this study in context by comparing the results of this 

relatively simple algorithm with those achieved with a much more complex algorithm.  

Test(#) This Study Timothy and Jesse [2] 

 Landing Error 

(cm) 

Landing Time 

(s) 

Landing Error 

(cm) 

Landing Time 

(s) 

1 25 65 6 26.1 

2 7 60 5 26.3 

3 10 120 9 25.5 

4 15 35 6 24.8 

5 20 37 10 28.1 

6 11 48 8 23.4 

7 23 70 8 22.5 

8 16 105 9 25.6 

9 20 45 4 26.1 

10 15 112 5 35.4 

 

Table 2: Comparison of Results 
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A study of Table 2 above shows that Timothy and Jesse’s algorithm cleary performed 

better in real-world situations, achieving greater landing precision in a shorter time. 

They accomplished this by using a more complex algorithm, and nested Aruco markers 

(One small Aruco Marker, inside one large one). This study however used only 

translation commands to acuate the Drone and one 10 cm-sized Aruco marker, hence 

it was not as accurate. 

It is important to emphasize once again, that the primary purpose of this Study is to 

develop a multi-platform precision-landing system for quadrotors using FlytOS, to 

enhance the reusablilty of Drone algorithms. The accuracy and speed of the landings 

were secondary objectives. The main focus of the study was to consolidate a system 

which can be easily reused for the widest variety of Drones. 
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8 CONCLUSIONS 

The purpose of this study is to develop a precision-landing system which can be used 

on the widest variety of Drone platforms by using FlytOS. The Author intended to 

solve the problem of the reusability of code among different Drone platforms. 

Based on the bulky amount of research articles related to precision-land it was clear 

that precision-landing has already been solved. What was difficult however was the 

process of testing-out the algorithms developed by the said publications. If the 

hardware used by a study were not available to an individual, then it would be difficult 

to reuse the codes. 

 

In this Study the Author achieved the following: 

- Developed a precision-landing system based on FlytOS that achieved 

reasonable landing tolerances: The main advantage is that this algorithm is 

that it, can be reused on PX4, ArduPilot and DJI drones. These Drone platforms 

are the most popular at the time of this writing. 

- Developed a plug-and-play hardware to carry the RPi and RPi-cam to attach to 

DJI M210 drone. 

Strategies for further development 

The Author considers the following paths for development of this Study: 

- Use of Cascaded Aruco Markers; the use of various markers embedded 

within each other, rather than just one marker will allow the drone to spot the 

marker from greater altitudes. This, will increase landing accuracy and speed. 

- Addition of a self-setup and calibration module to this algorithm; A 

significant amount of time was spent finding a proper landing-pose and 

calibrating the camera used for this Study. These procedures can be 

programmed into a module that will initially run automatically whenever it is 

being used on a Drone for the first time or when the camera has been changed. 

This will make the user experience much more satisfying. 

- Rewriting the program in C; from this study, it was observed that there was 

significant delay in the rate at which the camera image streams were updated. 

This is probably because the program and all the libraries used for the study 

were developed in Python. Python, is an interpreted language and thus in 

general is not as fast as compiled languages such as C. A faster processing 

time will improve the consistency of the results of the precision-landing 

algorithm. 
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9 JÄRELDUSED 

Selle uuringu eesmärk on välja töötada täpsusmaandumissüsteem, mida saab FlytOSi 

abil kasutada võimalikult erinevatel drooniplatvormidel. Autor kavatses lahendada 

koodi korduvkasutatavuse probleemi erinevate drooniplatvormide vahel. 

Täppismaad käsitlevate mahukate teadusartiklite põhjal oli selge, et 

täpsusmaandumine on juba lahendatud. Raske oli aga nimetatud väljaannetes välja 

töötatud algoritmide testimine. Kui uuringus kasutatud riistvara pole üksikisikule 

kättesaadav, on koodide taaskasutamine keeruline. 

 

Selles uuringus saavutas autor järgmise: 

- Töötas välja FlytOSil põhineva täppismaandumissüsteemi, mis saavutas 

mõistlikud maandumiste tolerantsid: Peamine eelis on see, et see algoritm 

seisneb selles, et seda saab PX4, ArduPiloti ja DJI droonides uuesti kasutada. 

Need drooniplatvormid on selle kirjutamise ajal kõige populaarsemad. 

- Töötas välja plug-and-play riistvara RPi ja RPi-cam kandmiseks, et kinnituda 

DJI M210 droonile. 

Edasise arengu strateegiad 

Autor kaalub uuringu arendamiseks järgmisi teid: 

- Kaskaaditud Aruco markerite kasutamine; erinevate markerite 

kasutamine, mis on põimitud üksteise sisse, mitte ainult ühe markeriga, 

võimaldab droonil märgata markerit suuremal kõrgusel. See suurendab 

maandumise täpsust ja kiirust. 

- Sellele algoritmile on lisatud isehäälestamise ja kalibreerimise moodul; 

Märkimisväärne aeg kulus õige maandumisposti leidmiseks ja selles uuringus 

kasutatud kaamera kalibreerimiseks. Neid protseduure saab programmeerida 

mooduliks, mis käivitub automaatselt automaatselt, kui seda esimest korda 

droonil kasutatakse või kui kaamerat vahetatakse. See muudab 

kasutajakogemuse palju rahuldavamaks. 

- Programmi ümberkirjutamine C-vormingus; selle uuringu põhjal täheldati, 

et kaamera pildivoogude värskendamise kiirus oli märkimisväärselt hilinenud.  

Tõenäoliselt on see sellepärast, et programm ja kõik uuringus kasutatud 

raamatukogud töötati välja Pythonis. Python on tõlgendatav keel ja seega ei 

ole see üldiselt nii kiire kui koostatud keeltes nagu C.  

Kiirem töötlemisaeg parandab täpsusmaandumise algoritmi tulemuste 

järjepidevust. 
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APPENDICES 

Below are the two main program modules developed for this study: 

-  The image-processing module – ‘arucoTest.py’ 

- The Drone-actuating module – ‘PrecisionLandingTest.py’ 

‘arucoTest.py’: 

#!/usr/bin/env python 

 

import rospy 

from sensor_msgs.msg import Image 

from cv_bridge import CvBridge, CvBridgeError 

import cv2 

import numpy as np 

import cv2.aruco as aruco 

import sys, time, math 

import os 

 

id_to_find  = 25 

marker_size  = 10 #- [cm] 

 

def isRotationMatrix(R): 

    Rt = np.transpose(R) 

    shouldBeIdentity = np.dot(Rt, R) 

    I = np.identity(3, dtype=R.dtype) 
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    n = np.linalg.norm(I - shouldBeIdentity) 

    return n < 1e-6 

 

 

# Calculates rotation matrix to euler angles 

# The result is the same as MATLAB except the order 

# of the euler angles ( x and z are swapped ). 

def rotationMatrixToEulerAngles(R): 

    assert (isRotationMatrix(R)) 

 

    sy = math.sqrt(R[0, 0] * R[0, 0] + R[1, 0] * R[1, 0]) 

 

    singular = sy < 1e-6 

 

    if not singular: 

        x = math.atan2(R[2, 1], R[2, 2]) 

        y = math.atan2(-R[2, 0], sy) 

        z = math.atan2(R[1, 0], R[0, 0]) 

    else: 

        x = math.atan2(-R[1, 2], R[1, 1]) 

        y = math.atan2(-R[2, 0], sy) 

        z = 0 
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    return np.array([x, y, z]) 

 

 

#--- Get the camera calibration path 

calib_path  = "" 

camera_matrix   = np.loadtxt(calib_path+'cameraMatrix_webcam.txt', delimiter=',') 

camera_distortion   = np.loadtxt(calib_path+'cameraDistortion_webcam.txt', 

delimiter=',') 

 

#--- 180 deg rotation matrix around the x axis 

R_flip  = np.zeros((3,3), dtype=np.float32) 

R_flip[0,0] = 1.0 

R_flip[1,1] =-1.0 

R_flip[2,2] =-1.0 

 

#--- Define the aruco dictionary 

aruco_dict  = aruco.getPredefinedDictionary(aruco.DICT_ARUCO_ORIGINAL) 

parameters  = aruco.DetectorParameters_create() 

 

font = cv2.FONT_HERSHEY_PLAIN 

 

class MarkerDetector(object): 

# while(True): 

 def __init__(self): 
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  self.image_sub = rospy.Subscriber("/flytos/flytcam/image_capture", 

Image, self.camera_callback) 

  self.bridge_object = CvBridge() 

  self.image_pub = rospy.Publisher("/processed_image", Image, 

queue_size=1) 

 

 def camera_callback(self,data): 

  try: 

#   cv_image = self.bridge_object.imgmsg_to_cv2(data, 

desired_encoding="bgr8") 

#   cap = cv_image 

 

#   while(True): 

   # We select bgr8 because its the OpenCV encoding by default 

   cv_image = self.bridge_object.imgmsg_to_cv2(data, 

desired_encoding="bgr8") 

 

   corners, ids, rejected = aruco.detectMarkers(image=cv_image, 

dictionary=aruco_dict, parameters=parameters, 

                              cameraMatrix=camera_matrix, distCoeff=camera_distortion) 

 

   if ids is not None and ids[0] == id_to_find: 

 

    ret = aruco.estimatePoseSingleMarkers(corners, 

marker_size, camera_matrix, camera_distortion) 
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    rvec, tvec = ret[0][0,0,:], ret[1][0,0,:] 

 

    aruco.drawDetectedMarkers(cv_image, corners) 

 

    aruco.drawAxis(cv_image, camera_matrix, 

camera_distortion, rvec, tvec, 10) 

 

    str_position = "MARKER Position x=%4.0f  y=%4.0f  

z=%4.0f"%(tvec[0], tvec[1], tvec[2]) 

 

    cv2.putText(cv_image, str_position, (0, 100), font, 1, (0, 

255, 0), 2, cv2.LINE_AA) 

 

    R_ct=np.matrix(cv2.Rodrigues(rvec)[0]) 

    R_tc=R_ct.T 

 

   

 roll_marker,pitch_marker,yaw_marker=rotationMatrixToEulerAngles(R_flip*R_t

c) 

 

    str_attitude = "MARKER Attitude r=%4.0f  p=%4.0f  

y=%4.0f"%(math.degrees(roll_marker),math.degrees(pitch_marker),math.degrees(y

aw_marker)) 
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    cv2.putText(cv_image, str_attitude, (0, 150), font, 1, (0, 

255, 0), 2, cv2.LINE_AA) 

 

    pos_camera = -R_tc*np.matrix(tvec).T 

 

    str_position = "CAMERA Position x=%4.0f  y=%4.0f  

z=%4.0f"%(pos_camera[0], pos_camera[1], pos_camera[2]) 

 

    cv2.putText(cv_image, str_position, (0, 200), font, 1, (0, 

255, 0), 2, cv2.LINE_AA) 

 

    roll_camera, pitch_camera, yaw_camera = 

rotationMatrixToEulerAngles(R_flip*R_tc) 

 

    str_attitude = "CAMERA Attitude r=%4.0f  p=%4.0f  

y=%4.0f"%(math.degrees(roll_camera),math.degrees(pitch_camera), 

                            math.degrees(yaw_camera)) 

 

    cv2.putText(cv_image, str_attitude, (0, 250), font, 1, (0, 

255, 0), 2, cv2.LINE_AA) 

     

   #cv2.imshow('Frame_1',cv_image) 

 

   #-- Create Image to Publish # 

   msg = self.bridge_object.cv2_to_imgmsg(cv_image, "bgr8") 
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   self.image_pub.publish(msg) 

   #rate.sleep() 

 

   if cv2.waitKey(1) & 0xFF == ord('q'): 

#    break 

    cv2.destroyAllWindows() 

 

  except CvBridgeError as e: 

    print(e) 

 

#-- Here we crop the received image 

#  height, width, channels = cv_image.shape 

#  descentre = 160 

#  rows_to_watch = 60 

#  crop_img = 

cv_image[(height)/2+descentre:(height)/2+(descentre+rows_to_watch)][1:width] 

#  hsv = cv2.cvtColor(crop_img, cv2.COLOR_BGR2HSV) 

 

def main(): 

 

 rospy.init_node('marker_detecting_node', anonymous=True) 

 marker_detector_object = MarkerDetector() 

  

 try: 



84 

  rospy.spin() 

 except KeyboardInterrupt: 

  print("Shutting down") 

 

if __name__ == '__main__': 

 main() 
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‘PrecisionLandingTest.py’: 

#!/usr/bin/env python 

import time 

from flyt_python import api 

import rospy 

from sensor_msgs.msg import Image 

from std_msgs.msg import Float32,Float32MultiArray 

from rospy.numpy_msg import numpy_msg 

from cv_bridge import CvBridge, CvBridgeError 

import cv2 

import numpy as np 

import cv2.aruco as aruco 

import sys, time, math 

import os 

import arucoTest  

from simple_pid import PID 

 

drone = api.navigation(timeout=120000)  # instance of flyt droneigation class 

 

# at least 3sec sleep time for the drone interface to initialize properly 

time.sleep(3) 

 

drone.take_off(5.0) 

#print data 

drone.position_hold() 

time.sleep(10) 

 

 

 

class Controller(object): 

 def __init__(self): 

 

  self.pose_data_sub = rospy.Subscriber("/pose_data", Float32MultiArray, 

self.control_callback) 

 

 def control_callback(self,data): 

 

#  for i in range (10): 

#  pass    

  x_translation = data.data[3] 

  print "x_translation = ", x_translation 

  y_translation = data.data[4] 

  print "y_translation = ", y_translation 

  z_translation = data.data[5] 

  print "z_translation = ", z_translation 

 

  #-- PID parameters 

  p = 0.0020  #0.0005, 0.0010 

  i = 0.000003  #0.0, 0.000001 

  d = 0.0   #0.0 

 

   

 

  #-- Z control parameters 

  z_setpoint = 100 

  z_range = 9 
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  z_upperpoint = z_setpoint + z_range 

  z_lowerpoint = z_setpoint - z_range 

   

  pid1 = PID(-p, i, d, setpoint=z_setpoint)  

  

  z_error = z_setpoint - z_translation   

#  z_actuation = -z_error * p 

  z_actuation     = pid1(z_translation)  

 

  #-- X control parameters 

  x_setpoint = -8 

  x_range = 9 

  x_upperpoint = x_setpoint + x_range 

  x_lowerpoint = x_setpoint - x_range 

 

  pid2 = PID(-p, i, d, setpoint=x_setpoint)  

  

  x_error = x_setpoint - x_translation   

#  x_actuation = -x_error * p 

  x_actuation     = pid2(x_translation)  

 

  #-- Y control parameter 

  y_setpoint = -6 

  y_range = 9 

  y_upperpoint = y_setpoint + y_range 

  y_lowerpoint = y_setpoint - y_range 

 

  pid3 = PID(p, i, d, setpoint=y_setpoint)  

  

  y_error = y_setpoint - y_translation   

#  y_actuation = y_error * p 

  y_actuation     = pid3(y_translation)  

 

 

  if z_translation > z_lowerpoint and z_translation < z_upperpoint: 

#   drone.position_hold() 

   if x_translation > x_lowerpoint and x_translation < 

x_upperpoint: 

#    drone.position_hold() 

    if y_translation > y_lowerpoint and y_translation < 

y_upperpoint: 

     print "y is within range." 

#     drone.position_hold() 

     rospy.signal_shutdown("Finished!") 

    else: 

     drone.velocity_set(y_actuation, 0, 0, 

body_frame=True) 

   else: 

    drone.velocity_set(0, x_actuation, 0, body_frame=True) 

  else: 

   drone.velocity_set(0, 0, z_actuation, body_frame=True) 

 

 

 

def stop_function(): 

 print "\n\nThis happens when I shut the program down.\n" 
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 drone.position_hold() 

 time.sleep(3) 

 

 print 'Landing...' 

 

 drone.land(async=False) 

 drone.disconnect() # shutdown the instance 

 

def check(x_error): 

 print "Checking..." 

 print x_error 

 

 

 

def main(): 

 

 rospy.init_node('controller_node', anonymous=True) 

 controller_object = Controller() 

  

  

 try: 

  rospy.spin() 

#  time.sleep(1) 

  stop_function()   

 

 except KeyboardInterrupt: 

  print("Shutting down") 

 

if __name__ == '__main__': 

 main() 
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Figures: 

 

 

Figure 2: Labelled Raspberry Pi Model 3B board with GPIO pinouts [37] 

 

Figure 3: RPi Fisheye Lens Camera attached to a RPi CSI-interface [38] 
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Figure 6: Voltage-regulator Module (top-view and bottom-view) [39] 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 


