

TALLINN UNIVERSITY OF TECHNOLOGY

SCHOOL OF ENGINEERING

Department of Electrical Power Engineering and Mechatronics

EMBEDDED SOFTWARE FOR SMART HYDROGEN

FUEL CELL GENERATORS

ARUKA VESINIK-KÜTUSEELEMENDI MANUSTARKVARA

MASTER THESIS

Student: Mohammad Mokhalled

Student code: 195454MAHM

Supervisor: Professor Mart Tamre

Co-supervisor: Ivar Kruusenberg, PhD

Tallinn 2021

2

AUTHOR’S DECLARATION

Hereby I declare, that I have written this thesis independently.

No academic degree has been applied for based on this material. All works, major

viewpoints and data of the other authors used in this thesis have been referenced.

Date: 10/06/2021

Author: Mohammad Mokhalled

/signature /

Thesis is in accordance with terms and requirements

“.......” 20….

Supervisor: ….........................

/signature/

Accepted for defence

“.......”....................20… .

Chairman of theses defence commission: ...

 /name and signature/

3

1. grant Tallinn University of Technology (TalTech) a non-exclusive license for my thesis

EMBEDDED SOFTWARE FOR SMART HYDROGEN FUEL CELL GENERATORS (in Estonian

ARUKA VESINIK-KÜTUSEELEMENDI MANUSTARKVARA)

supervised by Professor Mart Tamre and Dr. Ivar Kruusenberg,

1.1 reproduced for the purposes of preservation and electronic publication, incl. to be

entered in the digital collection of TalTech library until expiry of the term of

copyright;

1.2 published via the web of TalTech, incl. to be entered in the digital collection of TalTech

library until expiry of the term of copyright.

1.3 I am aware that the author also retains the rights specified in clause 1 of this license.

2. I confirm that granting the non-exclusive license does not infringe third persons’

intellectual property rights, the rights arising from the Personal Data Protection Act or

rights arising from other legislation.

¹ Non-exclusive Licence for Publication and Reproduction of Graduation Thesis is not valid during

the validity period of restriction on access, except the university`s right to reproduce the thesis

only for preservation purposes.

______________ (signature)

10/06/2021

Non-exclusive Licence for Publication and Reproduction of GraduationTthesis¹

I, Mohammad Mokhalled (date of birth: 16/09/1995) hereby

4

Department of Electrical Power Engineering and Mechatronics

THESIS TASK

Student: Mohammad Mokhalled, 195454MAHM

Study programme: Mechatronics (MAHM)

Supervisor: Professor Mart Tamre, +3726203202

Co-supervisor: Dr. Ivar Kruusenberg, +3725036963

Thesis topic:

(in English) EMBEDDED SOFTWARE FOR SMART HYDROGEN FUEL CELL GENERATORS

(in Estonian) ARUKA VESINIK-KÜTUSEELEMENDI MANUSTARKVARA

Thesis main objectives:

1. Efficient and reliable software to control a fuel cell stack and its output

2. Increasing the fuel cell stack’s life by keeping the conditions as ideally as possible

using the embedded software

3. Keeping the source code reusable to use in different generators with different

hardware

Thesis tasks and time schedule:

No Task description Deadline

1. Designing the software architecture 31/01/2021

2. Impelementing the program 15/04/2021

3. Testing all software modules on the hardware 31/04/2021

4. Writing the thesis 08/06/2021

Language: English Deadline for submission of thesis: 10/06/2021

Student: Mohammad Mokhalled 10/06/2021

 /signature/

5

Supervisor: Professor Mart Tamre …………………….. “.......”......................20….a

 /signature/

Co-supervisor: Dr. Ivar Kruusenberg …........…….. “.......”......................20….a

 /signature/

Head of study programme: Mart Tamre “.......”......................20….a

 /signature/

6

CONTENTS

LIST OF FIGURES .. 10

LIST OF TABLES .. 13

LIST OF ABBREVIATIONS ... 14

1 INTRODUCTION .. 16

2 BACKGROUND RESEARCH .. 17

2.1 Hydrogen as fuel .. 17

2.2 Types of hydrogen fuel cells ... 18

2.2.1 Alkaline fuel cell .. 18

2.2.2 Molten carbonate fuel cell ... 19

2.2.3 Phosphoric acid fuel cell ... 20

2.2.4 Proton exchange membrane fuel cell ... 21

2.2.5 Solid oxide fuel cell .. 22

2.3 Hydrogen fuel cell applications ... 23

2.3.1 Transport ... 23

2.3.2 Stationary .. 23

2.3.3 Portable ... 23

2.4 Similar products ... 24

2.4.1 H2SYS BOXHY 1 .. 24

2.4.2 GreenBox 2 200 .. 25

2.4.3 300W Portable Fuel Cell HyMo... 25

2.5 Conclusion ... 26

3 PEM HYDROGEN FUEL CELL STACK ... 28

3.1 Hydrogen fuel cell stack setup .. 28

3.2 Hydrogen fuel cell stack operations ... 29

3.2.1 Standby ... 29

3.2.2 Start-up ... 30

7

3.2.3 Warmup ... 31

3.2.4 Run ... 33

3.2.5 Shutdown ... 34

3.3 Stack alarms and error states ... 34

3.3.1 Stack temperature .. 34

3.3.2 Stack current .. 35

3.3.3 Stack Voltage ... 35

4 HARDWARE LAYOUT ... 36

4.1 UP1K ... 36

4.1.1 General Structure .. 37

4.1.2 Front Panel Board .. 40

4.1.3 Controlling Board .. 42

4.1.4 DC-DC Conveter (Buck-Boost Converter) ... 42

4.1.5 Fan and valve driver board ... 44

4.2 UP200 ... 47

4.2.1 General Structure .. 48

4.2.2 MCU .. 48

4.2.3 Display .. 49

4.2.4 Bluetooth and GSM Module ... 49

4.2.5 Power Switches ... 50

4.2.6 Warmup ... 50

4.2.7 Low Power Stage ... 52

4.2.8 Power Stage ... 52

4.2.9 Stack and Load Sensing ... 53

4.2.10 Internal Battery Charger .. 54

4.2.11 Fan Driver .. 54

5 Software Modules ... 55

5.1 Errors .. 55

8

5.2 Config ... 56

5.3 PID ... 56

5.4 PTimer .. 58

5.5 ADC Conversion .. 59

5.6 EMC2305 ... 62

5.7 Fan Controller .. 65

5.8 SSD1322 ... 68

5.9 LTC2944 .. 71

5.10 Shared Memory .. 74

5.11 COMMUNICATION PACKETS ... 75

5.12 UART COMMUNICATION .. 77

5.13 BUCK-BOOST ... 80

5.14 MC60 .. 83

5.15 STACK-CONTROL .. 85

6 CONTROL SOFTWARE .. 89

6.1 Development Toolchain ... 89

6.2 Modules ... 90

6.3 Middleware .. 90

6.3.1 FreeRTOS ... 90

6.3.2 FATFS .. 91

6.3.3 TouchGFX ... 92

6.4 UP1K Software ... 95

6.4.1 Directory Structure .. 95

6.4.2 Modules and dependencies ... 98

6.4.3 Software layer chart .. 99

6.5 UP200 Software .. 99

6.5.1 Directory structure .. 99

6.5.2 Modules and dependencies .. 101

9

6.5.3 Software layer chart ... 101

SUMMARY .. 103

LIST OF REFERENCES ... 105

10

LIST OF FIGURES

Figure 2.1 The mechanism of an alkaline fuel cell[15]. .. 18

Figure 2.2 Scheme of a molten carbonate fuel cell with chemical reaction [20] 19

Figure 2.3 Schematic figure of a phosphoric acid fuel cell [25] 20

Figure 2.4 Schematic representation of Proton Exchange Membrane fuel cell [29] 21

Figure 2.5 Schematic representation of a solid oxide fuel cell [36] 22

Figure 2.6 H2SYS Generator (5 kW) [41] ... 24

Figure 2.7 GreenBox 2 200 generator [42] .. 25

Figure 2.8 300W Portable Fuel Cell HyMo [43] .. 26

Figure 3.1 The fuel cell stack setup ... 28

Figure 3.2 stack operation states .. 29

Figure 3.3 Power and Voltage of a cell according to the stack’s current chart [44] 32

Figure 3.4 fan speed according to the stack temperature in run state [44] 33

Figure 4.1. UP1K general structure version 0.1 diagram .. 38

Figure 4.2. UP1K general structure version 0,2 diagram .. 39

Figure 4.3. UP1K general structure version 0,3 diagram .. 40

Figure 4.4. A demo picture on the U1K LCD ... 41

Figure 4.5 UP1K Controlling board picture and pinout .. 42

Figure 4.6. UP1K Buck-Boost Converter diagram version 0.1 43

Figure 4.7. Sync PWM signal sample for controlling Buck-Boost Board 43

Figure 4.8. U1K Buck-Boost Boards version 0.1 .. 44

Figure 4.9. UP1K fan drivers connection diagram .. 45

Figure 4.10. UP1K valve driver diagram ... 46

Figure 4.11. UP1K fan and valve driver board ... 46

Figure 4.12. UP200 general structure .. 48

Figure 4.13. UP200 OLED screen .. 49

Figure 4.14. UP200 Power Switch diagram ... 50

11

Figure 4.15. UP200 Warmup circuit diagram .. 51

Figure 4.16. UP200 Warmup load chart ... 51

Figure 4.17. UP200 Low power stage diagram .. 52

Figure 4.18. UP200 power stage diagram .. 53

Figure 4.19. UP200 current and voltage sensing circuit diagram 53

Figure 5.1 PID Controller diagram ... 56

Figure 5.2 ADC activation .. 60

Figure 5.3 ADC DMA Configurations .. 60

Figure 5.4 Memory layout for ADC buffer of 3 ADC channels and 4 oversamples 61

Figure 5.5 Sequence of values in a circular buffer ... 61

Figure 5.6 EMC2305 read byte function flowchart ... 63

Figure 5.7 Fan controller module position in the software layers 65

Figure 5.8 fan controller state chart .. 66

Figure 5.9 “A” character pixels in SSD1322 module .. 69

Figure 5.10 SSD1322 module flowchart ... 70

Figure 5.11 LTC2944 module state chart ... 71

Figure 5.12 LTC2944 module read state chart .. 73

Figure 5.13 UART Communication module sequence diagram 77

Figure 5.14 UART Communication transmission flowchart 78

Figure 5.15 UART Communication receiving flowchart ... 79

Figure 5.16 Buck-Boost converter control system diagram 80

Figure 5.17 HRTIM outputs configuration in STM32Cube .. 81

Figure 5.18 HRTIM dead-time configurations in STM32Cube 81

Figure 5.19 HRTIM General configuration in STM32Cube .. 82

Figure 5.20 Buck-Boost module flowchart .. 83

Figure 5.21 MC60 module flowchart .. 84

Figure 5.22 stack-control module state diagram ... 86

Figure 5.23 stack control module flowchart .. 87

12

Figure 6.1 STM32Cube sample screenshot, a view of UP200’s microcontroller 90

Figure 6.2 FATFS Software layer diagram [65] ... 92

Figure 6.3 Splash screen created by TouchGFX ... 93

Figure 6.4 Main screen created by TouchGFX ... 94

Figure 6.5 Info screen 1 created by TouchGFX.. 94

Figure 6.6 Info screen 2 created by TouchGFX.. 95

Figure 6.7 UP1K project directory structure map ... 97

Figure 6.8 UP1K projects dependency diagram for both Cortex M7 (left) and Cortex M4

(right) projects ... 98

Figure 6.9 UP1K software layers diagram ... 99

Figure 6.10 UP200 directory map diagram ... 100

Figure 6.11 UP200 project dependency diagram ... 101

Figure 6.12 UP200 software layers diagram ... 102

13

LIST OF TABLES

Table 3.1 Stack’s standby actuators status [44] ... 30

Table 3.2 Stack’s standby actuators status and its different steps [44] 31

Table 3.3 Stack’s warmup actuators status [44] ... 31

Table 3.4 Stack’s actuators status in run state [44] .. 33

Table 3.5 Stack’s actuators status in shutdown state [44] 34

Table 4.1. UP1K generator specifications [45] .. 36

Table 4.2. The UP1K Front Panel components ... 40

Table 4.3. Truth table for activation of SMBUS alert of fan driver 45

Table 4.4. UP200 specifications [55] ... 47

Table 5.1 Structure of a communication packet with N+1 bytes length 75

Table 5.2 Special states of the stack control module and the responses to them 88

14

LIST OF ABBREVIATIONS

ADC Analog-to-Digital Converter

API Application Programming Interface

ASCII American Standard Code for Information Interchange

CPU Central Processing Unit

DAC Digital-to-Analog Converter

DMA Direct Memory Access

FMC Flexible Memory Controller

GCC GNU Compiler Collection

GPIO General Purpose Input/Output

GPS Global Positioning System

GSM Global System for Mobile communications

HAL Hardware Abstraction Layer

HRTIM High-Resolution Timer

I2C Inter-Integrated Circuit

LCD Liquid-Crystal Display

LTDC LCD-TFT display controller

MCU Microcontroller Unit

MISO Master-In Slave-Out

MOSFET Metal–Oxide–Semiconductor Field-Effect Transistor

OLED Organic Light-Emitting Diode

PC Personal Computer

PEKE polümeerelektrolüüt-kütuseelement

PEM Proton Exchange Membrane

PID Proportional–Integral–Derivative

PWM Pulse Width Modulation

15

QSPI Quad SPI

RAM Random Access Memory

RGB Red, Green, Blue

RPM Revolutions per minute

RTOS Real-Time Operating System

SMBUS System Management Bus

SMS Short Message Service

SPI Serial Peripheral Interface

SRAM Static Random-Access Memory

TFT Thin Film Transistor

UART Universal Asynchronous Receiver Transmitter

16

1 INTRODUCTION

Increasing the demand for energy leads to an increase in using fossil fuels which causes

global warming and climate change. Because of the effects of global warming on the

earth, the energy industry is ready to use clean, renewable, and sustainable energies.

Since Hydrogen is a sustainable and zero-emission fuel, it is getting more and more

popular as a fuel. Between the different functionalities that a Hydrogen fuel cell

generator can have, the portable fuel cells have the least share of the market that shows

a great opportunity to work in this field. Moreover, there is modest research and product

in the field of portable generators, which can be worthwhile for all the situations that

there is no access to the electricity grid. For this purpose, a type of fuel cell should be

chosen that is lightweight and does not need a very high temperature for starting up.

The thesis discusses two different portable fuel cell generators with different

specifications. Also, as the software for embedded systems of a generator can be so

critical in safety and there is no research about it, this thesis covers the software

implementation of these products. Since the embedded software is completely

dependent on hardware, the hardware is described and shown in the thesis. The project

has several challenges. The main challenge for the software is to have software that

can be used as the main platform for different generators with different components by

the least possible changes. Moreover, the challenge of working with a dual-core CPU

and synchronising all the different parts is another challenge.

In general, this document aims to show an efficient, reusable, and modular

implementation of firmware for a hydrogen fuel cell generator. On the other hand, the

safety of the consumer devices and users is one of the most critical parts that must be

achieved by this software. The software should recognise the possible errors and critical

situation as soon as possible which makes which means no part of the program must

not block the CPU processes or the MCU peripherals.

17

2 BACKGROUND RESEARCH

2.1 Hydrogen as fuel

Global warming is one of the worldwide concerns that lead to climate change. There are

many suggestions to control global warming; one of these approaches is using hydrogen

fuel cells instead of fossil fuels [1]. Fossil fuels produce greenhouse gasses emissions

that mainly include carbon dioxide (CO2), methane (CH4), and nitrogen oxide (NO2),

which cause global warming; hence, mitigating this problem by applying hydrogen fuel

cell can be an excellent option since they do not have emissions compare with fossil

fuels [2].

Although the structure of hydrogen is the simplest among other molecules, it has the

highest amount of energy content that can be employed as a fuel application [3].

Hydrogen fuel cells can be used for various applications such as transportation, material

handling, backup power application, etc.

Although hydrogen as a fuel has its own drawbacks, still the advantages outweigh the

disadvantages. For example, compared to any other chemical fuel, hydrogen has the

most energy per unit mass [4]. It is environmentally friendly and has low emissions[5];

most carbon-based emissions, nitrogen oxides and other greenhouse gas emissions are

eliminated by using hydrogen as fuel. For more explanation, nitrogen oxides can lead to

other environmental issues like acidification, formation of smog, and ozone layer

depletion [4]; therefore, there would be no nitrogen oxides in the emissions when there

is no nitrogen oxides in the emissions other environmental problems. However, it should

be mentioned that the amount of nitrogen oxides produced during this procedure is not

significant and can be ignored. Adopting hydrogen in a jet can stabilize the fuel price

and because it can be obtained from different sources, it causes a reduction of reliance

on fossil fuel in some region of the world [6]. Another benefit of a hydrogen fuel cell is

it has slight vibration, and it is silent [4]. Other advantages of this fuel include long time

usage, no visual pollution, reduction in carbon footprint [7].

On the other hand there are also some disadvantages of using hydrogen as a fuel. For

instance, it is expensive because it is difficult to separate this element from others. One

difficulty that arises from this fuel is storing and transporting of that, since moving

around this element is so hard. In addition flammability risk of this fuel is high, because

18

it burns in the air very easily [7][8]. It has lower power density and lower power

response in comparison with conventional fuel [9].

2.2 Types of hydrogen fuel cells

In general, fuel cells are devices that generate electricity through a chemical reaction.

Each fuel cell has two electrodes called a cathode and an anode. The reaction that

produces electricity occurs at these electrodes. Each fuel cell has an electrolyte that

carries electrically charged particles from one end of the electrode to the other. Each

electrode also has a catalyst that speeds up the reactions that occur at these electrodes.

By this procedure, Hydrogen fuel cells can produce electricity constantly[10][11]. While

fuel cells generally operate under similar principles, there are differences between

different types of fuel cells. The different types of fuel cells are explaining in this section.

2.2.1 Alkaline fuel cell

This kind of fuel cell operates on compressed hydrogen and oxygen. They typically use

a solution of potassium hydroxide in water as their electrolyte. Efficiency is about 70%,

with operating temperature ranging from 150 to 200°𝑐 [12][13]. Cell output ranges from

300 watts to 5 kilowatts. Alkali cells were used in the Apollo spacecraft to provide

electricity and drinking water to the crew [14]. However, they require pure hydrogen,

and their platinum electrode catalysts are expensive. Since they are a container filled

with liquid, they also run the risk of leaking. Figure 2.1 shows the mechanism of an

alkaline fuel cell membrane.

Figure 2.1 The mechanism of an alkaline fuel cell[15].

19

2.2.2 Molten carbonate fuel cell

Molten carbonate fuel cells use high-temperature compounds of salt carbonate as their

electrolyte. Efficiency ranges from 60 to 80 percent [16]. An operating temperature is

about 650 °𝐶 [17]. Units have been constructed up to two megawatts, and designs for

up to a hundred megawatts exist[18] [19]. The high-temperature limits damage from

carbon monoxide poisoning of the cell, and waste heat can be recycled to make

additional electricity. Nickel electrode catalysts are inexpensive compared with Platinum

used in other cells, but the high temperature limits the materials and safe uses of this

cell type as they would probably be too hot for home use. In addition, carbonate ions

from the electrolyte are used up in the reactions, making it necessary to inject carbon

dioxide to compensate [17]. Figure 2.2 illustrate the mechanism of molten carbonate

fuel cell.

Figure 2.2 Scheme of a molten carbonate fuel cell with chemical reaction [20]

20

2.2.3 Phosphoric acid fuel cell

It uses phosphoric acid as its electrolyte. Efficiency ranges from 40 to 80 percent [21],

and operating temperature is between 170 and 210°𝐶 [22]. Acid fuel cells of up to 200

kilowatts exist and units up to 11 megawatts have been tested [21]. They are able to

tolerate carbon monoxide concentration of about 2 percent [23]. Broadening the choice

of usable fuel cell sources though if gasoline is used, the sulphur must be removed prior

to use. Platinum electrode catalysts are needed, and internal parts must be able to

withstand the corrosive acid [24]. Figure 2.3 represents how a phosphoric acid fuel cell

works.

Figure 2.3 Schematic figure of a phosphoric acid fuel cell [25]

21

2.2.4 Proton exchange membrane fuel cell

Proton exchange membrane fuel cells work with polymer electrolyte in the form of a

permeable sheet. Efficiency is about 40% to 50% [13], and the operating temperature

is around 60 to 80°𝐶 [26]. Cells output available range is from 50 to 250 kilowatts [27].

The solid and flexible electrolyte will not leak or crack. They operate at a low enough

temperature to make them viable for homes and vehicles. However, the fuel cells must

be purified, and platinum catalyst is required on both sides of the membrane, raising

costs [28]. The scheme of one proton exchange membrane fuel cell is shown in Figure

2.4.

Figure 2.4 Schematic representation of Proton Exchange Membrane fuel cell [29]

22

2.2.5 Solid oxide fuel cell

Solid oxide fuel cells use a hard ceramic compound of metal oxides such as calcium or

zirconium as an electrolyte. Efficiency is around 60% [30]. The operating temperature

is around 700 to 1000°𝐶 [31]. This type of fuel cell can output 100 kilowatts [32]. At

the high temperatures produced by this type of fuel cell, a reformer is not required to

extract hydrogen from the fuel, and waste heat can be recycled to make additional

electricity [33]. The high temperature also limits the potential applications of this fuel

cell type [34]. They tend to be fairly large in size. While their solid construction means

that they cannot leak, they are capable of potential cracking [35]. Figure 2.5 Indicates

the process of a solid oxide fuel cell.

Figure 2.5 Schematic representation of a solid oxide fuel cell [36]

23

2.3 Hydrogen fuel cell applications

The Hydrogen fuel cells can be separated into three major groups based on their

application that are transportation, stationary, and portable (Mobile). Each type of fuel

cell that is described can be more suitable for one of these segments. This section

discusses the different applications that fuel cells have.

2.3.1 Transport

Transportation is the most significant application of Hydrogen Fuel Cells, which

consumes the most generated power in the world [37]. Many types of vehicles use

Hydrogen as fuel which needs fuel cell to generate power from it. These vehicles can be

automobiles (passenger cars and buses), motorcycles and industrial trucks, marine

vehicles, aeroplanes, and spacecraft [38] [4]. As the research shows, the demand for

this application is increasing rapidly 300 MW per year in 2016 to around 1000 MW per

year in 2020 [37]. Large companies like Toyota investing in this area which makes a

brighter future for it [39].

2.3.2 Stationary

Stationary hydrogen fuel cell application is usually known as Hydrogen power plants.

These power plants use one or multiple fuel cell stacks in a grid to generate energy for

an area, a building or a specific purpose with or without using it in combination with

another energy resource [40]. This is the second most used application in recent years.

Usually, these fuel cell generators have more efficiency, but they are much heavier than

the other fuel cell applications [37].

2.3.3 Portable

Portable fuel cells are lightweight fuel cells that can move easily. They are usually used

to power outdoor personal uses like battery charging or consumer electronic devices

such as laptops and smartphones. Actually, they produce electricity in places that there

is no access to the electricity grids. Moreover, they can have military applications [40].

This type of generator can be used to supply the power of caravans, yacht, or camping

areas. Also, this the least used application comparing to the other areas of application

24

in recent years [37]. It means there are many opportunities for small companies to work

on it. This is the application group of hydrogen fuel cell that is described in this thesis.

2.4 Similar products

There are different competitors for the Hydrogen generators described in the thesis that

are shown here and discussed their strengths and weaknesses. The UP200 and UP1K

products’ details which this thesis focused on them are described in chapter 4.

2.4.1 H2SYS BOXHY 1

BOXHY 1 product is supposed to generate 1 kW energy. In the datasheet, it produces

maximum 1100 W power at boost mode and 650 W at eco mode. Its weight is 25 kg,

and the working temperature range is from +5°C to 45°C. Moreover, it has two 230

VAC outlets. It has a PEM fuel cell for generating power [41].

Figure 2.6 H2SYS Generator (5 kW) [41]

This generator can be compared with UP1K. The strength of it is the integrated AC

output. However, it does not have any DC output or battery charger, which can be a

weakness. Also, it cannot work in very cold and very hot weather. The other weakness

25

is that it cannot give the nominal output, and it can produce the max power for 20-30

minutes. Moreover, it is heavier compared to UP1K.

2.4.2 GreenBox 2 200

The rated power of this generator is 160 W with both AC and DC outputs. It has 13 kg

weight [42]. It has a PEM fuel cell inside.

Figure 2.7 GreenBox 2 200 generator [42]

This generator can be compared with UP200. Its strength is different outputs that it

supports like AC, DC, and battery charger. About the weaknesses, it does not generate

200 W, and its maximum output power is 160. Although it generates less power than

UP200, its weight is more than it.

2.4.3 300W Portable Fuel Cell HyMo

HyMo generator’s rated power is 300W. It has 220 VAC and 5 VDC outputs. The

generator can work in the temperature from -5°C to 40°C. It is 4 kg (only the fuel cell).

Also, its different parts are separated, and they are not placed in a closed enclosure. It

uses PEM fuel cell.

26

Figure 2.8 300W Portable Fuel Cell HyMo [43]

This generator can be compared with UP200. Although it has a smaller size, it does not

have a solid structure, and each part should be connected to each other, which makes

it difficult to use. Also, it does not have any capability for charging batteries.

2.5 Conclusion

In the fuel cell market, portable generators have the least share of the market compared

to other fuel cell generators for other application types. It means mostly fossil fuels are

used for portable generators, and it makes a neat opportunity to change the future of

portable generators. Also, according to the specifications of different fuel cell types, PEM

fuel cell is the best option for a hydrogen fuel cell portable generator. This fuel cell type

has the least operation temperature and weight compared to the other types. The low

temperature helps to start the generator at a temperature near room temperature safely

and manageable. Also, the weight makes it carriable, which is the most important

requirement as a portable device.

Generally, most hydrogen fuel cell portable generators in the market are heavy to carry

and do not support smart solutions like Bluetooth, SMS, and GPS capabilities. PowerUP

generators solve this problem and use a solid and reliable box.

27

On the other hand, UP200 and UP1K generators have just DC output which might be a

disadvantage for this product. But, a DC to AC converter can be used to generate a 220

or 110 VAC for the general electrical consumers.

28

3 PEM HYDROGEN FUEL CELL STACK

The hydrogen fuel cell stack is the heart of generators that produce electricity by the

chemical process explained in the previous chapter. The stack of the focused products

consists of multiple cells that each cell generates less than 50 W power and a maximum

voltage of 1 V. As the maximum current of each cell is 78 A, which is enough to supply

consumers, the cells place in parallel in the stack.

This chapter explains how the fuel cell stacks should be controlled and what conditions

should be considered in both hardware and software. Since the thesis discusses two

different products, the number of cells in a product is assumed as a variable in this

chapter to cover the calculation and values for both products.

3.1 Hydrogen fuel cell stack setup

The Hydrogen fuel cell stack needs Hydrogen as fuel to generate power and airflow. The

Hydrogen input is controlled by a supply valve which is an electrical valve controlled by

the MCU and electronics board. Before the valve, a pressure regulator must be placed

to prevent damage to both the valve and fuel cell stack. On the other hand, to accelerate

the oxidate reaction, a purge valve must be implemented to release the hydrogen in the

airflow. For producing airflow, there are two fans on the two sides of the fuel cell stack

that leads air from one side to another. Furthermore, the fans help to cool the stack

when its temperature is high. The whole flow is shown in Figure 3.1.

Figure 3.1 The fuel cell stack setup

29

3.2 Hydrogen fuel cell stack operations

Hydrogen fuel cell stacks need some operation for getting ready to work and work safely.

Controlling and monitoring this operation is the main goal of this thesis. This chapter

discusses the conditions that must be met for getting the fuel cell stack safely. Chapter

3 and 4 explain how the hardware and software were designed to make this applicable.

The hydrogen fuel cell stack has five primary operation states, which are described here

briefly.

Standby state is the state that the fuel cell stack does not produce or deliver any power

Start-Up state changes the stack’s state from Standby to a state that stack can give

out current

Warmup state changes the state from Start-Up to the state that stack deliver rated

power safely

Run is the state that the stack delivers rated power

Shutdown is the state that changes the stack’s state from Run state to Standby state

The following figure shows changing the states in order.

Figure 3.2 stack operation states

The following sections describe the states in detail.

3.2.1 Standby

In this mode, the stack does not consume any hydrogen or produce any power. It is the

first state after pressing the power button and the last state before disconnecting the

power and turning the stack off completely. The actuators in this mode are in their safe

state.

30

The minimum ambient temperature that the stack should be in to be able to go to the

run state is -10 ᐤC. Otherwise, the stack does not work and cannot produce power. In

the described products, because of the mechanical structure of the generator, the whole

generator works in the temperature down to -20 ᐤC, which means it keeps the generator

isolated from the outside temperature. Also, the ambient rated humidity should be more

than 2% for going to start-up mode. Otherwise, it needs almost 2.5 times longer time

to reach the run mode and deliver the rated power.

Table 3.1 Stack’s standby actuators status [44]

Actuator Command

Fan 0%

Hydrogen Valve Closed

Purge Valve Closed

Stack Contactor Open

Stack Current 0 A

3.2.2 Start-up

The start-up state is the first step to enable the output current of the stack. It has three

steps inside.

Step 1 purpose is to spool up the fan. It also gives enough airflow for diluting after

opening the purge valve. This step lasts until the fan reaches the desired speed.

Step 2 gives fresh Hydrogen to stack. In this step, the voltage of the stack reverses

because of the exchanging air in the anode with hydrogen gas. The purge valve must

be open at the same time as the hydrogen valve to reduce the performance loss in the

reversing voltage phase. Also, a load applies to the output of the stack to reduce the

start-up corrosion.

Step 3 still applies the load to pull down the average cell voltage to reduce the corrosion.

31

Table 3.2 Stack’s standby actuators status and its different steps [44]

Step Actuator Command

1

Fan 70%

Hydrogen Valve Closed

Purge Valve Closed

Output of Generator Closed

Stack Current 0 A

After the fan reaches the desired speed (Fan spool up time)

2

Fan 70%

Hydrogen Valve Open

Purge Valve Open

Output of Generator Closed

Stack Current Start-Up Current

After 0.2 seconds (Start-up purge duration)

3

Fan 10% (Fan minimum)

Hydrogen Valve Open

Purge Valve Closed

Output of Generator Closed

Stack Current 0 A

3.2.3 Warmup

The warmup state increases the temperature and hydrates enough the membrane to

enable the stack to deliver rated power. In just a few cases, this step happens fastly,

but usually, this step takes more than 1 minute to be finished. The ambient temperature,

humidity, and stack hydration level increase the duration of this step. It leads to taking

more than 5 minutes in the situation, as the first power on after a long while.

Table 3.3 Stack’s warmup actuators status [44]

Actuator Command

Fan 10% (Fan minimum)

Hydrogen Valve Open

Purge Valve Opens each 30 seconds for 400 ms

Output of Generator Closed

Stack Current Described below

Current, in warmup state, must be controlled by an internal load. The goal is to keep

the voltage on minimum and the current high which makes the the stack warm faster.

For this purpose the voltage relation to each current value is calculated frome the

following chart.

32

Figure 3.3 Power and Voltage of a cell according to the stack’s current chart [44]

According to Figure 3.3, there are the following equations for the relation between stack

current and voltage.

𝑖𝑓 𝑣𝑆𝑡𝑎𝑐𝑘 ≤ 7,0 𝐴:

𝑣𝑆𝑡𝑎𝑐𝑘 = 𝐶𝑒𝑙𝑙𝑠 × (−0.0178 × 𝐼𝑠𝑡𝑎𝑐𝑘 + 0.93 𝑉)
[44] (3.1)

𝑒𝑙𝑠𝑒:

𝑣𝑆𝑡𝑎𝑐𝑘 = 𝐶𝑒𝑙𝑙𝑠 × (−0.0031 × 𝐼𝑠𝑡𝑎𝑐𝑘 + 0.823 𝑉)
[44] (3.2)

Where Vstack - output voltage of stack, V,

 Cells - number of cells in the stack,

 Istack – output current of stack

In this stage by increasing the load, the system waits for the stack to ptovide the

calculated voltage. Then the system increases the load and waits for the voltage until

the stack can provide 75% of the rated power. After this, the stack is ready to deliver

rated output power safely, and it can change the state to the run state.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 10 20 30 40 50 60 70 80 90 100

C
el

l p
o

w
er

 (
W

/c
el

l)

C
el

l v
o

lt
ag

e
(V

/c
el

l)

Stack current (A)

Stack Performance Chart

Cell Voltage Max Current Cell power

33

3.2.4 Run

This state is the normal working state of the stack that delivers power to the consumer.

Most of the time that stack is on, is spent in this state.

Table 3.4 Stack’s actuators status in run state [44]

Actuator Command

Fan Described below

Hydrogen Valve Open

Purge Valve Described below

Output of Generator Open

Stack Current 0 to 75 A

Fan, in this state, works to keep the stack temperature (Tstack) near the optimal

temperature (Topt) as well as keeping enough flow to provide oxidant for the fuel cell

reaction. For this purpose, a linear PID control can be used. The following graph shows

how the control should be.

Figure 3.4 fan speed according to the stack temperature in run state [44]

Purge valve should be open for less than 500 ms every 2300 A.s. The following

equation shows the condition that it should happen. It means when the consumption is

higher, the purge valve will be opened more frequent.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

0.00 20.00 40.00 60.00 80.00 100.00

Fa
n

 s
p

ee
d

 (
%

)

Stack Temerature (ᐤC)

Fan speed controlling in run state

Topt Tcritical

34

∑ 𝐼𝑠 × 𝑡𝑠

𝑛𝑜𝑤

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑝𝑢𝑟𝑔𝑒

 > 2300 𝐴. 𝑠 [44] (3.3)

Where Is - last measurement of stack current, A,

 ts – current measurement sampling interval, s

For example, when the current value is 65.3 A, almost every 35 s, the purge valve

opens. Moreover, when the current value is 7.3 A, almost every 315 s, the purge valve

is opened.

3.2.5 Shutdown

It changes the stack from any state (usually run) to the standby state, where the

connections to the stack can be released safely. The goal of this state is to cool down

and dehydrate the stack. For this purpose, the fans must be on their maximum speed

until the stack temperature reaches 20 ᐤC or the ambient temperature if it is higher than

20 ᐤC.

Table 3.5 Stack’s actuators status in shutdown state [44]

Actuator Command

Fan Maximum

Hydrogen Valve Closed

Purge Valve Closed

Output of Generator Closed

Stack Current 0 A

3.3 Stack alarms and error states

There are several alarm and error states that should be considered in the system. These

errors take the stack into a critical state that might be dangerous for the user and also

the stack itself. This section describes these situations and conditions in brief.

3.3.1 Stack temperature

However, the stack highest temperature is 75 ᐤC; for more safety, if the temperature

goes higher than 65 ᐤC, the output should be disconnected because consumption of

power makes the stack warmer. Moreover, a cool-down process should start with fans.

The fans must work at the maximum speed until the temperature comes back to the

35

normal value. As mentioned, the fans start working with the maximum speed as soon

as the temperature reaches 60 ᐤC. The linear control usually does not let the stack reach

the highest temperature except in the very high ambient temperature.

3.3.2 Stack current

If the stack current exceeds 78 A, it must disable the output. This reaction must happen

in less than 2 s to prevent damaging the stack. There can be a refreshing mechanism

to enable the output once a while for some milliseconds and check if the load is

decreased to reenable the output or not.

3.3.3 Stack Voltage

If the stack voltage is more than 1.05 V/cell or 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 × 1.05 𝑉, then again, the

output must be disabled and go to the normal mode. It rarely happens for the stack.

36

4 HARDWARE LAYOUT

This thesis discusses two different hydrogen fuel cell generators with different output

powers. As the products’ name defines, UP1K produces 1 KW output energy, and UP200

produces 200 W output. This difference caused many changes in the Hardware and

Electronics design. This chapter reviews the hardware for each product.

It is important to mention that the thesis writer was not involved in designing and

producing any of the hardware, except for checking the possibility of integration with

software and participating in the main concepts before designing and just for planning.

All the hardware are outsourced or designed and produced by PowerUP Energy

Technologies Company.

4.1 UP1K

The following table shows the product specifications.

Table 4.1. UP1K generator specifications [45]

Output voltage
24 V DC | (48, 72 V DC)*

* by using a converter

Max charging current at 24 V 42 A

Max continuous power output 1000 W

Max charging power per day 1008 Ah

Electricity source PEM fuel cell

Fuel Compressed Hydrogen

Fuel consumption (at 1000 W) 13 l/min

Size (L × W × H) 600 × 170 × 421 mm

Weight 20 kg

Operating temperature −20 °C to +50 °C

User interface On unit via Bluetooth to mobile or PC

Outlet and inlet ports

Main outlet port Max 21 A

External outlet port options USB, high current port

Inlet port for external charging Max 10 A

37

As this product’s hardware should handle more than 42A current, which is a pretty high

current, this product is more difficult to control. Because of that, more advanced

microcontrollers are used to control the different parts of this generator. Also, since the

product is in the development and test stages, its hardware is designed modular. As it

is discussed later, it helped us to change some approaches separately and with fewer

expenses.

On the other hand, whereas this generator can handle more power consumption for

internal hardware, a TFT LCD is used as a user interface to configure and monitor the

generator’s status.

4.1.1 General Structure

In the development process, different iterations of hardware are tested. This section

shows the different versions that were developed and explains the reasons for changing

and using them. These changes affect the software structure and functions a lot.

Version 0.1 is developed to have a Front Panel Board for the interfaces (LCD, Buttons,

GSM, Bluetooth, and upgrading process) and a Controlling MCU board to control the Fuel

Cell Stack processes, Fans, and DC-DC Buck-Boost Converter.

After software testing, it shows that the DC-DC converter needs much more monitoring

and real-time feedback than was expected. This problem was the reason for moving to

the version 0,2 approach.

38

Figure 4.1. UP1K general structure version 0.1 diagram

Version 0,2 uses the same hardware modules as the previous version, but some

connections and the software tasks for each MCU board are different.

As the front panel board’s MCU has two cores, it is possible to split the processes on the

cores. For this purpose, the Cortex M7 core handles the graphics, LCD, and other

interfaces. The Cortex M4 core controls the fuel cell stack process and communications

with controlling MCU. It could increase the performance of the whole system and

especially the DC-DC converter.

However, the performance and efficiency increased, there was still some delay in

controlling the DC-DC converter. It happened because of the UART communication

between the front panel and controlling MCU boards.

39

Figure 4.2. UP1K general structure version 0,2 diagram

Version 0,3 removes the controlling MCU and uses an external DAC to control the DC-

DC converter. In this version, there is no need to control the DC-DC converter using

PWM signals, and it should be controlled by a DAC connected to the MCU via SPI. In this

case, the performance and safety become maximum because the interface processes

are done on the separate processor’s core, and in the case of a problem on the other

core, it cannot stop the stack controlling process. The following figure shows the final

layout of the hardware till writing the thesis.

40

Figure 4.3. UP1K general structure version 0,3 diagram

4.1.2 Front Panel Board

The following table shows the components which are included in the front panel board.

Table 4.2. The UP1K Front Panel components

 Part Number Features

Microcontroller STM32H745XIH6

Arm® Cortex® core-based microcontroller with 2 Mbytes

(STM32H745XIH6) or 128 Kbytes (STM32H750XBH6) of

Flash memory and 1 Mbyte of RAM, in TFBGA240+25

package [46]

GSM and Bluetooth

Module
Quectel MC60

Quad-band GSM/GPRS/GNSS module

Bluetooth 3.0 [47]

External Flash

Memory
MT25QL512 2 x 512 Gbit (128MB) Quad-SPI NOR Flash memory [48]

External SRAM MT48LC4M32B2B5 128 Mbit SDRAM (32 x 4 Banks of 1 Mbit) [49]

TFT LCD SC7283
720x544 System-On-Chip Driver for 480RGBx272 TFT

LCD [50]

This board is designed by the inspiration of the STM32H745I-DISCO [51] development

board. All the software test and development is done on the mentioned board.

41

Microcontroller of this board is a dual-core Arm Cortex family. It helps to separate the

more challenging to be run on Cortex M7, like graphics processing and driving LCD, to

make a higher performance for controlling the fuel cell stack on the same chip. In

general, the Cortex M7 core is responsible for the interface like GSM, Bluetooth, and

driving LCD, while the Cortex M4 Core is responsible for monitoring and controlling the

internal hardware like fuel cell stack, DC-DC Converter, fan drivers. Another task that

the Cortex M7 core is supposed to do is keep the bootloader and update the firmware

using UART and Bluetooth.

GSM and Bluetooth are used in this board to communicate and alert the user in critical

situations. Also, Bluetooth is used for updating the firmware. The other feature of this

module is GNSS which can help to locate the product which is portable. This module is

connected to Microcontroller by UART with Rx, Tx, RTS and CTS pins. The handshake

pins (RTS and CTS) are used for more reliability in the transmission of data.

TFT LCD is used for a better user experience. As with the other products, just a one-

colour OLED is used to display the data; the feedbacks showed it is better to use a

colourful display as the user interface. This device is connected to the MCU using an

LTDC port which can manage a much higher datarate than SPI. The LCD resolution is

480 × 270 which can show enough details in images.

Figure 4.4. A demo picture on the U1K LCD

External memories (SRAM and NOR FLASH) are used in this project as a resource

to save and render images and graphics. The first software tests showed that the

internal memories of the MCU are not enough to load two pages and the firmware of

Cortex M7 (not the bootloader) moved to the external Flash. For the connection of Flash

memory, Quad SPI protocol, and for the SRAM connection, an FMC port is used.

42

4.1.3 Controlling Board

It is a board with an STM32F334 Microcontroller and customisation of output pins related

to our application. As mentioned in item 4.2.1, in the first version, it was connected to

the fuel cell stack, fan driver, and DC-DC converter. In the second try, it was controlling

just the DC-DC converter. In the final version, this board is not included in UP1K. The

software and its details are described in the next chapter.

This board has five pairs of HRTIM output to control Buck-Boost Converters in the sync

topology. Moreover, it has RS-485 and UART outputs for communicating with the Front

Panel MCU. As it is a demo board, a programming socket is also placed on the board,

supporting Serial Wire Debug (SWD). It also has an ADC input for reading the

temperature of the stack. The rest of the pins are ground, 12, 5, and 3.3 V.

Figure 4.5 UP1K Controlling board picture and pinout

4.1.4 DC-DC Conveter (Buck-Boost Converter)

Since the desired output voltage for this product is 24 V, and the fuel cell stack’s output

voltage fluctuates in the range of 18 to 36, we need a converter that can step down

(buck) and step up (boost) the voltage. Managing both functionalities for 1000 W is one

of the most challenging parts of this project. Any unpredictable change of output voltage

might damage the device that uses this generator as a power supply. This section

discusses different solutions that are used to manage this problem.

43

Version 0.1 of Buck-Boost Converter must be controlled by an MCU to set a specific

voltage regarding the input (fuel cell stack) voltage. The MCU could read the input and

output voltage by a voltage divider that changes the whole voltage range with 0 to 3.3V

to be readable by MCU. This version includes two separate boards for Buck and Boost.

The following diagram shows how these board should have been connected to the

controller MCU.

Figure 4.6. UP1K Buck-Boost Converter diagram version 0.1

These converters use sync topology, which means two 100 kHz PWMs with the same

duty cycles and the reverse polarity are needed to control the value output voltage.

Also, the secondary PWM should have dead-time for turning high to prevent any conflicts

in turning on the transistors on the board and burning them. This kind of signal is shown

in the following figure.

Figure 4.7. Sync PWM signal sample for controlling Buck-Boost Board

The buck and boost boards are quite similar in this project because they used the same

topology and structure. The following picture shows these devices.

44

Figure 4.8. U1K Buck-Boost Boards version 0.1

4.1.5 Fan and valve driver board

There are two types of fan in this project. A group of fans is used to cool the hydrogen

fuel cell stack, and the other group of fans is used to cool the Electronics board. The

flow rate and speed of these fans are different, which cause to use of a fan driver that

can drive different fans with different specifications. The fan driver used in this project

is EMC2305 [52], which can drive up to 5 fans, and each fan’s configuration can be

different from the others. The communication protocol for commanding this board from

a microcontroller is SMBUS. Due to the fact that SMBUS protocol operates based on I2C

[53], the default configuration of this board is set on I2C, but for more reliability at the

first stage of the program, it sets the communication protocol on SMBUS to use the alert

pin and timeout features. As 6 fans are used in this product (3 fans for cooling stack

and 3 fans for cooling the electronics boards), two of these boards are used. These

boards are connected on the same communication bus with different slave addresses.

Furthermore, because the alert pin is active low, it is connected to the alert pin by an

AND gate. The And gate makes the alert pin of MCU active if any of the drivers alert

pins become active.

45

Figure 4.9. UP1K fan drivers connection diagram

The following table is the truth table of this connection. It shows that the MCU recognises

the alert even if one of the devices enables the alert pin.

Table 4.3. Truth table for activation of SMBUS alert of fan driver

Alert 1 Alert 2 MCU Alert Status

0 0 0 Error Alert

0 1 0 Error Alert

1 0 0 Error Alert

1 1 1 Normal

This board can also control the valve using DRV8876RGTR [54] chip. Because of the

high current needed, the valves cannot be controlled by MCU GPIOs directly. The

mentioned chip is just a bridge between the MCU GPIO with a small current and the

valves that need more current. It also has feedback to check if the valve is open

regarding the controlling signal.

46

Figure 4.10. UP1K valve driver diagram

Figure 4.11. UP1K fan and valve driver board

47

4.2 UP200

The following table shows the specification of UP200 fuel cell generator.

Table 4.4. UP200 specifications [55]

Output voltage 12 V DC

Max continuous charging

current at 12 V
17 A

Max continuous power output 200 W

Max charging power per day 400 A h

Electricity source PEM fuel cell

Fuel Compressed Hydrogen

Fuel consumption (at 200 W) 2.8 l/min

Batteries 13.2 V | 2.5 A h | LiFePO4

Size (L × W × H) 525 × 153 × 256 mm

Weight 8 kg

Operating temperature −20 °C to +50 °C

User interface On unit via Bluetooth to mobile or PC

Outlet and inlet ports

Main outlet port Max 17 A

External outlet port options USB, high current port

The UP200 version, which is described in this thesis, is the second version of this

product. Due to fixing errors and bugs on the previous version, the electronics of this

version is designed the electronics boards as a single board. The electronics of this board

is redesigned to fix the previous errors and improving the performance. Furthermore, in

this version, the Bluetooth and GSM interfaces are added, and an RS-485

communication port is added for communicating and connecting multiple generators.

This section describes the different hardware parts and components of this product. It

also shows the connections between different parts of the circuit.

48

4.2.1 General Structure

UP200 board consists of an ARM Cortex M4 MCU which controls Bluetooth and Display

interfaces, fan driver and stack processes, and Power output and controlling the source

of power. The mentioned parts are the most general classification of functionalities that

the MCU must handle. This section explains the different hardware parts of UP200

thoroughly.

Figure 4.12. UP200 general structure

4.2.2 MCU

An STM32F427VIT6 [56] is used as the processor of this board. This microcontroller is

an ARM microcontroller with a Cortex M4 core. It has 100 pins, 2 MB of flash memory

and 260 KB of RAM. This microcontroller supports has 180 MHz of clock [56].

Although it does not have high processing and resource, it was manageable to

implement all features by high-performance software. Also, as the pins are so limited in

49

this microcontroller, we tried to use all of them in the best way. The next chapter

discusses the software and the management of outputs and inputs in detail.

4.2.3 Display

The display for this project is a one-colour OLED. It has 128×64 pixels resolution and

also uses SSD1322 [57] IC as the driver. Due to the low power consumption of OLED

screens Comparing to TFT LCD and Color OLEDs, it is a decent choice to place a one-

colour OLED on a 200 W generator, which produces limited power and cannot handle

high power for internal structure and hardware. It is connected to MCU using an SPI line

as a slave. Also, as the driver does not transmit any data to the master, the slave to

master or Master-IN Slave-Out (MISO) communication pin is disabled to have more

place for the other functions of MCU.

The display shows the needed voltage, current and temperature values. It also should

show errors in case of error happening. In chapter 6 explains what and how it shows

the data on the screen.

Figure 4.13. UP200 OLED screen

4.2.4 Bluetooth and GSM Module

The same as UP1K, it uses MC60 as the module for Bluetooth and GSM communications.

This module is connected to MCU using UART. It also uses CTS and RTS pins for more

reliability of UART communication. It also uses Ring pin to determine when GSM is

ringing. This ringing can be an option for diagnosing and restarting the generator in

some cases.

50

4.2.5 Power Switches

It changes the power source of electronics boards and outlet from the internal battery

to the stack’s output. This part includes an LTC1473 with multiple MOSFETs that connect

the battery and DC input to the output. It manages the input source like the following

diagram.

Figure 4.14. UP200 Power Switch diagram

The outputs are controlled by GPIOs. They also have a feedback pin to check the

functionality of the switch. The power switch, by default, is connected to the internal

battery. After stabilising the stack’s output, the program changes the source of the

electronics board and enables the output of the generator.

4.2.6 Warmup

The warmup circuit includes two lines of load that are resistors. The MCU controls the

output of the stack to be connected to each of them or both of them. As described in

chapter 3, the stack uses these loads to warm up and normalise the process and output.

The resistance of the branches is 0.94 Ω and 1.47 Ω. The following diagram illustrates

an overview of this circuit.

51

Figure 4.15. UP200 Warmup circuit diagram

For the warmup process, firstly, the larger resistor becomes enabled as a load and then

the smaller branch, and after all, both of them becomes active, which means the load

and current increase. All of the steps lasts until the voltage reaches more than 13, which

means the stack power is stable respectively to that amount of load. The following chart

shows the amount of load’s resistance regarding time. The time of 1, 2, 3 are the number

of times the stack voltage reaches 13 V, which leads to a change in the value of load by

a control signal of MCU. The detailed process and experiments are described in the next

chapter.

Figure 4.16. UP200 Warmup load chart

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5 3

R
es

is
ta

n
ce

 in
 O

h
m

s

Smple Time

Resistance of load in warmup process

52

4.2.7 Low Power Stage

This part is a Buck-Boost DC-DC converter that regulates the voltage and supplies the

power of internal hardware. In both cases of getting the power from the battery and or

the stack, it sets the voltage to 12 V. The maximum output current of this DC-DC

converter is 12 A, which is enough for managing the electronics structure and fans. This

converter supports an input voltage range of 4 V to 36 V that covers the stack output

voltage range. The following diagram shows which parts of the board are supplied by

the low power stage circuit. Note that the lines in the diagram show the supply source

of the electronic components and ICs, and it is not about output power to the outlet.

Figure 4.17. UP200 Low power stage diagram

4.2.8 Power Stage

This circuit is a DC-DC converter with 12 V and a maximum 19.36 A output. As the

desired maximum output power of this product is 200 W, the maximum needed current

is 16.7, which is less than the maximum current of this converter, and it can support it.

It is used to regulate the voltage of the power outlet, which is the primary output port

of the whole generator. It can support an input voltage range of 9 to 36 V, covering the

53

whole range of the stack voltage. For turning it on and off, the MCU uses a digital output

pin. The MCU also has a digital input for checking the fault that happens on this circuit.

Figure 4.18. UP200 power stage diagram

4.2.9 Stack and Load Sensing

For monitoring the input and output power, there are two circuits to measure the voltage

and current of each. These circuits use ACS770LCB, a Hall-effect-based current sensor

[58]. It gives the output as an analogue voltage which measurable by ADC of MCU.

Furthermore, both of them use a voltage divider by two resistors to reduce the voltage

to be measurable by the MCU. The following sample circuit shows how this circuit works.

The value of resistors is selected in relation to the range of input voltage and the voltage

that MCU can measure.

Figure 4.19. UP200 current and voltage sensing circuit diagram

54

4.2.10 Internal Battery Charger

The Hardware of UP200 needs power for booting up and starting the process of

generating electricity from Hydrogen. As this battery must always be full-charged in

order to start the operation of the stack, we need a charger that charges the battery

while the fuel cell stack is in normal and generating mode. The charger is also designed

to get input from an external charger in the cases that the battery is completely empty.

This part uses an LTC4020 [59] battery charger IC. It is controlled by a digital output

pin to enable and disable the charging process. It has two direct digital output pins,

which are enabled, in order, when the battery is charged more than 10% and is charged

utterly. Also, another current sensor is used in connection with this charger to get more

detailed value about the charging process and battery status. This IC is LTC2499 [60]

that communicates with the MCU via I2C. It can measure the voltage, current, and

temperature in one place. By accumulated charge value, it can also show the percentage

of battery charge.

4.2.11 Fan Driver

The fan driver in this project is the same as the fan driver in UP1K product. It uses

EMC2305 to drive the fans, with a difference that each of the two fan drivers drives four

fans. It means there are four fans for cooling the stack and four fans for cooling the

electronics. Both fan drivers are connected to the MCU using the same SMBUS but with

different addresses. Item Fan and valve driver board in the previous section and Figure

4.9. UP1K fan drivers connection diagram show this driver in more detail.

55

5 Software Modules

For different components and parts used in the UP200 and UP1K projects, a new

software module is created which can be used on different projects. This program design

helps increasing portability, bug fixing and refactoring. This section explains all the

modules that are used in the UP200 and UP1K projects.

5.1 Errors

Errors module is a file that defines an enumeration as a type for the result of other

functions in the program. It leads to getting the same error and status types from all

functions, which increase the readability of the code. All the statuses in this enumeration

are started with POWERUP_, and all the letters are capital. The following part of code

shows the existing type of errors. Each naming shows the application of the error or

status value. For example, POWERUP_OK is always used when all the tasks in functions

is done correctly and it returns this value to show it. As another instance,

POWERUP_ERROR_CONNECTION occurs when the connection between MCU and

another external component is lost (e.g. I2C connections).

enum powerup_error_e

{

 POWERUP_OK = 0,

 POWERUP_ERROR_UNKNOWN = 1,

 POWERUP_ERROR_VALUE = 2, // may be redundant

 POWERUP_ERROR_RANGE = 3,

 POWERUP_ERROR_SEND = 4,

 POWERUP_ERROR_READ = 5,

 POWERUP_ERROR_BUSY = 6,

 POWERUP_ERROR_CONNECTION = 7,

 POWERUP_ERROR_PACKETLEN = 8,

 POWERUP_ERROR_CHECKSUM = 9,

 POWERUP_ERROR_PACKET = 10,

 POWERUP_ERROR_PACKETTYPE = 11,

 POWERUP_ERROR_PACKETHEADER = 12,

 POWERUP_ERROR_CONFIG = 13,

 POWERUP_ERROR_TIMEOUT = 14

};

typedef uint8_t powerup_error_t;

56

5.2 Config

The config module contains a header file with many definitions for different projects.

These are the values needed in the program and depend mostly on hardware or the

configurations needed to be done before compile. As a styling rule, again, all the letters

of these constants are capital. For example, the following line of code shows the value

of the resistor used on the board as the balance resistor of the fuel cell stack thermistor.

#define RESISTOR_THERMISTOR_BALANCE 100000.0f

As this module can be used in any other modules or programs, it must not include any

other header file from the project.

5.3 PID

PID module includes a program that works as a single input single output PID controller

system. PID is a closed-loop controller that calculates the input that must be set, which

leads output to reach the desired value. It works based on proportional, integral, and

derivative terms. It shows that it has three controllers included.

Figure 5.1 PID Controller diagram

In general, the following equation shows PID controller works.

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑

𝑑𝑒

𝑑𝑡
 5.1)

Where u(t) is PID control variable

Kp is proportional gain

57

e(t) is error value

Ki is integral gain

Kd is derivative gain

de is change in error value

dt is change in time

For implementing this controller in the code, a struct is defined as a handle that includes

the PID controller data. It helps to simulate object-oriented programming in C, which

leads to the use of the same functions for different controllers. It means by defining

different pid_handles; there will be different individual PID controllers with different

characteristics. This struct contains kp, ki, and kd, which are gains of proportional,

integral, and derivative terms. The variables output_min and output_max that shows

the output range of the controller. The output range is set 0 to 1 by default. The

last_input, last_output and integral values are used to calculate the output for integral

and derivative values. Moreover, in the end, iteration_time and last time values are used

to fix the time between each calculation. The interval time between calculations must

be a fixed value because the value of the derivative term is calculated based on the

previous input value in a specific value of time.

typedef struct {

 float kp;

 float ki;

 float kd;

 float output_min;

 float output_max;

 float last_output;

 float last_input;

 float integral;

 int iteration_time;

 int last_time;

} pid_handle;

This module has an initialise function that sets all variables in the pid_handle. It just

gets a pointer to pid_handle and the gain constants, first input, and at the end, the

interval time in millisecond and put them in the pid_handle.

58

After all, the pid_calculate function should be called in a loop. The loop must repeat the

function in a frequency more than the frequency of interval_time for PID. This function

has a float output. As input, it gets the pid_handle, input value, and a target (set-point)

value. In the beginning, this function checks if it is the time to calculate the output or

the interval time is not passed yet. If the time is not expired yet, then it returns the

previous output value. Then it calculates the error value in proportional value. Then

integral value, and the differential value. After all, it generates the final output by adding

the product of proportional and its gain and integral value subtracted by differential

value. Then it sets the last_time, last_input, and last_output values. In the end, it

returns the output.

float pid_calculate(pid_handle *pid, float input, float target) {

 if (HAL_GetTick() < pid->last_time + pid->iteration_time)

 return pid->last_output;

 float proportional = target - input;

 pid->integral += proportional * pid->ki;

 if (pid->integral > pid->output_max) pid->integral = pid->output_max;

 if (pid->integral < pid->output_min) pid->integral = pid->output_min;

 float differential = (input-pid->last_input) * pid->kd;

 float output = pid->kp * proportional + pid->integral - differential;

 if (output > pid->output_max) output = pid->output_max;

 if (output < pid->output_min) output = pid->output_min;

 pid->last_input = input;

 pid->last_output = output;

 pid->last_time = HAL_GetTick();

 return output;

}

5.4 PTimer

As in many cases, the program needs a delay or needs to measure the time, and the

general delay functions block the program, a module like ptimer is required. This

program uses SysTick of the STM32 microcontroller, which is an interrupt and can be

configured to happen once after a specific time. Then in this interrupt, a uint32_t can

be increased by 1. In this case, the SysTick timer is set on 1 ms, which leads to having

the number of ticks variable as the time the generator started working in milliseconds.

This module stores the time when the timer is started and the amount of time that it

59

should wait. Then this module, by comparing the difference of current time and start

time with the timeout value, shows if timeout happened.

This module has a handler to store the starting time and the timeout value. It is called

ptimer_t. The ptimer_set starts the timer. It gets a pointer to the handler of ptimer, and

the duration of that timer is valid in milliseconds.

The other function is ptimer_timeout that checks if the timer is expired and if the time

that was set is passed. The only challenge in this part is that the tick counter variable is

a 32-bit unsigned int, and it overflows after almost 50 days or 4294967295 ms. If a

timer starts some milliseconds before the overflow, the now time value will be less than

the start time value, and the difference will be a negative value. To prevent any

malfunctioning, it checks if the current time is larger than the start time value or not.

In each case, it uses the corresponding equation to calculate it.

 /* checks if the overflow of the system tick */

 if (current_time >= timer->start_time)
 {
 /* checks timeout */

 if (current_time - timer->start_time >= timer->duration)
 {
 return 1;
 }
 }
 else
 {
 /* checks timeout */

 if (((UINT32_MAX - current_time) + timer->start_time)
 >= timer->duration)
 {
 return 1;
 }
 }
 return 0;

5.5 ADC Conversion

In the projects, DMA is used for ADC conversion. It converts analogue to digital as a

non-blocking program that does not block the CPU’s main task for this purpose. This

module helps to start DMA for this purpose, convert values to voltage, and oversample

60

the values. This module also has a struct that is defined as a type for that handle of

ADC. This is an implementation near to object-orient, which allows using this module

for different instances of ADC and various channels. To use this module, firstly, the ADC

channels must be activated on one of the device ADCs and add each of them to a rank

in STM32Cube.

Figure 5.2 ADC activation

Moreover, the configuration for DMA and continuous conversion must be set in

STM32Cube.

Figure 5.3 ADC DMA Configurations

Because we want to oversample the sampled data, multiple values of each channel are

needed to calculate the average of them to decrease the noise values. For this purpose,

the type of DMA is set on circular. It buffers each sample circularly in a part of the

memory. It means if the buffer size is a product of the sample’s number, active channel

61

number and size of each sample, each index plus the number of active channels will be

the next sample of the same channel. The following Figure shows which index of the

buffer is related to the value of which channel.

0 1 2 3 4 5 6 7 8 9 10 11

CH 0 CH 1 CH2 CH 0 CH 1 CH2 CH 0 CH 1 CH2 CH 0 CH 1 CH2

Figure 5.4 Memory layout for ADC buffer of 3 ADC channels and 4 oversamples

Also, as it is a circular buffer, it always can calculate a moving average of the values.

The following figure shows how the circular buffer will be full. Each cell is a memory

place, and the numbers in it show the order of income values to the buffer.

1 1 2 3

2 4 2 3

3 4 5 3

Figure 5.5 Sequence of values in a circular buffer

In the first place, the HAL ADC handler, number of active channels, number of

oversamples, the maximum possible value of ADC should be set in the struct type of

the ADC defined in this module. Then ADC_Init function allocates enough memory for

the sample values and starts the DMA for storing values in the allocated memory.

adc_var->adc_values = malloc(adc_var->number_of_channels * adc_var->

 oversamples * sizeof(uint16_t))

if (HAL_ADC_Start_DMA(adc_var->adc_instance, adc_var-> adc_values, adc_var-

>number_of_channels * adc_var-> oversamples) == HAL_OK)

 {

 return 1;

 }

ADC_GetValue function returns an average of all oversamples.

uint32_t ADC_GetValue(adc_t *adc_var, uint8_t channel)

62

{

 uint32_t value_sum = 0;

 for (int i = 0; i < adc_var->oversamples; i++)

 {

 value_sum += adc_var->adc_values[channel + (i * adc_var-

>number_of_channels)];

 }

 return value_sum / adc_var->oversamples;

}

Also, another function is ADC_GetVoltageDiv that gives the value of a resistor voltage

divider. It is used for reading the voltage and current in different parts of the projects.

 float adc_val = ADC_GetValue(adc_var, channel);

 float result = (((adc_val * 3.3f) / adc_var->

 max_value) * (r1 + r2) / r2);

5.6 EMC2305

This module drives EMC2305 fan driver that is described in chapter 4. It supports two

different types of communication, I2C and SMBUS. It can be selected by defining

EMC2305_USING_SMBUS or EMC2305_USING_I2C. To have both options,

preprocessing macros such as #ifdef, #ifndef, and #if are used. It leads to having just

the related on the MCU instead of compiling both options.

It uses a struct to store the data of each instance. It includes a pointer to handle of the

communication protocol, device address, and errors of the device.

The program uses interrupt for communication with the device. It helps to communicate

with a non-blocking method. For sending, emc2305_writebyte function is used in which

the program does not check if the message is sent entirely or not. It leads to the

necessity to check the availability of the communication peripheral before the

subsequent use of that peripheral. This function writes a byte value in an 8-bit register

in the EMC2305 device. For this purpose, it gets a pointer to the emc2305_t handle,

the register that must be filled with the new values and also the value that must be

written in the register. Moreover, emc230x_readbyte function gets reads a value from

the This is a static function used just in this module and cannot be used outside of the

emc2305.c file.

63

Figure 5.6 EMC2305 read byte function flowchart

There are several functions that just use transmitting. Most of them are used to

configure the device and set the fans’ specifications.

The emc230x_enablesmbus function enables the SMBUS protocol instead of I2C by

setting a bit in CONF register.

The emc230x_enablewatchdog function enables the internal watchdog in the fan

driver device. This again by enabling a bit in CONF register.

The emc230x_config1 function configures the CONFIG1 register of EMC2305 for each

fan. It contains updating interval time, the number of edges for the fan tachometer, the

controlling algorithm, which can be automatic with internal PID or setting the

tachometer value, and minimum tachometer range. In addition to a pointer to the

emc230x_t value, this function gets the index number of the fan.

The emc230x_setminspeed function sets the minimum speed that driver sets. It can

be from 0 to 255, which can be mapped from 0% to 100%. This function also sets this

value for one fan as 0. It means the function gets the pointer to the handle and the fan

index number.

64

The emc230x_setvalidtach sets the maximum valid value of the tachometer for each

fan. It is the maximum value of the tachometer that can be read at full speed. This value

can be calculated using the following equation. To calculate the value, the specifications

of the fan must be known.

𝑅𝑃𝑀𝑚𝑎𝑥 =
(𝑛 − 1)

𝑝𝑜𝑙𝑒𝑠
×

1

𝐶𝑂𝑈𝑁𝑇𝑚𝑎𝑥 ×
1
𝑚

× 𝑓𝑇𝐴𝐶𝐻 × 60 [52](5.2)

Where poles is number of poles of the fan (typically 2)

fTACH is The frequency of the clock (default = 32.768kHz)

i is number of edges measured (typically 5 for a 2 pole

fan)

m is the multiplier defined by the RANGE bits (It is set in

CONF1 register)

COUNTmax is TACH maximum value (that is unknown here)

RPMmax is the maximum fan speed

The emc230x_setspeed sets the speed of a fan. It just sets the tachometer target

high byte because we always need a minimum speed to be run and provide enough air

for the stack. Also, in many cases, the driver ignores the low byte value. This function

gets a pointer to EMC2305 handle, fan index, and speed rate from 0 to 1 float value as

input. Moreover, this function should be called whenever the speed needs to be changed

or for more reliability, frequently in the main loop with a delay in between.

 Some functions use the receive function to get the status of the driver and fans. The

most important function that does this is emc230x_getstatus that gets the current

status of the driver. It shows if there is an error in driving the fans. It shows watchdog

error and stall and drive error. If the error is related to drive or stall, this function calls

emc230x_getstallerror or emc230x_getdriveerror to recognise which fan has the

mentioned error exactly.

65

5.7 Fan Controller

This module is a higher level module to control the fans. It uses EMC2305 module to

control the fans. This module uses a state machine pattern, and it has different states

and sub-states for different situations. The following figure shows how it is located in

the software layers.

Figure 5.7 Fan controller module position in the software layers

This module has different states and sub-states, showing what the program should do

and what task should be done to control the fan. It helps to use this program as a non-

blocking software with using all features of the EMC2305. The following figure shows

the states and sub-states of the module.

66

Figure 5.8 fan controller state chart

It has a struct as a handle variable with the name of the fc_handle_t that contains the

pointer to pointers of communication peripherals, and EMC2305 handles, a timer for idle

times, number of devices that are connected, the device addresses, application type of

each fan, state, sub-state, current device index, and current fan index. The application

of each fan can be not connected, stack, or electronics. It shows the fan is connected to

which part of the generator.

To use this module, firstly, fc_create should be called to initialise a new fc_handle_t. It

gets the number of devices that should be controlled then allocates enough memory for

inner variables in the struct. After that, each communication protocol handle, device

address, and then each fan application map should be set using the fc_sethandle,

fc_setaddress and fc_setmap. After that, it goes to init state.

In the loop of the program, fc_checkstate function should be called. It checks the

program is in which state and then calls its related function. The states and the related

functions are described here.

FC_STATE_INIT initialises the handle of fan control. It sets the initial values of the

variables in the handle struct. It has just one sub-state, FC_SUBSTATE_INIT, which

means it can pass the fc_init function by the first call. In the end, it sets the state and

sub-state of the handle on FC_STATE_CONFIG and FC_SUBSTATE_CONF_SMBUS to

change the state and continue the procedure.

FC_STATE_CONFIG has 5 sub-states. It passes one sub-state by one time call of the

fc_config function if it is possible. First of all, it checks if the communication peripheral

is available and free to use, then it goes to check the sub-states; otherwise, it returns

POWERUP_ERROR_BUSY value. The first sub-state, FC_SUBSTATE_CONF_SMBUS,

changes the communication protocol of the first EMC2305 device from I2C to SMBUS,

then it changes the current device value in the fc_handle_t to the next device. It checks

if the current device index is 0 again, which means all the devices are configured for

this purpose, and it can go to the next sub-state. Each device is configured at a time of

calling the function. Then it happens for FC_SUBSTATE_CONF_WATCHDOG sub-state

and emc230x_enablewatchdog function, which enables the watchdog time of all devices

one by one. The next configuration and sub-state is FC_SUBSTATE_CONF_CONFIG1,

which uses emc230x_config1 function but for each fan. It means it goes to the next fan

index, and if the fan numbers are finished in a device, it goes to the next device. After

all, it comes back to fan 0 and device 0. By checking both current fan and device indexes,

it is possible to determine that the configuration CONFIG1 register is finished for all fans,

and then it can go to the next sub-state. The sub-states

FC_SUBSTATE_CONF_VALIDTACH and FC_SUBSTATE_CONF_MINSPEED call

68

emc230x_setvalidtach and emc230x_setminspeed functions to for each fan separately.

Then it sets the current state and sub-state values on FC_STATE_RUN and

FC_SUBSTATE_RUN_SETSPEED to change the functionality in the next call of

fc_checkstate.

FC_STATE_RUN state has 3 substates. The fc_checkstate function calls fc_run when

the program is in this state. This state should happen in the main loop of the program.

The first sub-state of this state is FC_SUBSTATE_RUN_SETSPEED which set one of the

fans’ speed by emc230x_setspeed each time and then changes the current_fan index

value to the next fan. It happens until all the fan speeds are set. In the next step, it

goes to the next sub-state, which is FC_SUBSTATE_RUN_GETSTATUS. In this sub-state,

the status and error values. It happens for one device at a time, and then the next

device is chosen. After that, the devices send back the values; it sets the idle timer of

the devices with idle timeout value and the sub-state on FC_SUBSTATE_RUN_IDLE. In

this sub-state, the function checks if the timer is expired or not. If the timer is not

expired, it is not time to change the state, and the function returns POWERUP_OK. On

the other hand, if the timer expires, it changes the sub-state to

FC_SUBSTATE_RUN_SETSPEED again. It leads to create a loop of changing the sub-

states in a non-blocking manner.

5.8 SSD1322

As mentioned in chapter 4, SSD1322 is the driver for OLED used as a display for UP200.

This module is a software driver for controlling this hardware. It handles an SPI

peripheral to write data on the screen. Also, it has to control a digital output pin to

determine that the transmitted bytes are data or command. Data is the values that are

set on the pixels of the OLED or the settings values. Command is the value that shows

where the data goes and which setting or pixel is changed by the data. It works in

blocking mode, but as the MCU works as a master, it does not stop the MCU for a long

time and sends the data anyways. Having no feedback from the display leads to the

issue of recognising a problem in the communication with the display, or the display is

not initialised and needs a reset. To reduce these problems effects, the reset pin is also

connected to the MCU, and it resets the driver every 1 minute to make sure that the

display is initialised correctly.

This module includes one more header file in addition to its core files. This file stores all

ASCII characters as 8x8 pixels area values. It means each character on display needs

8x8 pixels space. These values, later on, are used in the functions for writing a text on

69

the OLED display. As each pixel is a binary value, a bit can be shown as a pixel, and a

byte can show a row of pixels value. Because of this, each character is saved as an array

of 8 bytes. For example, the following figure shows the “A” character pixels. The code

for storing this value is shown here.

{ 0x0C, 0x1E, 0x33, 0x33, 0x3F, 0x33, 0x33, 0x00}

Figure 5.9 “A” character pixels in SSD1322 module

The module is created to work in a separate task of RTOS. However, the internal

functions can be used in a program without RTOS. Also, the program uses DMA for SPI

communication to make sure that it does not block the CPU process for sending the

values to the driver. This module creates an array of bytes which saves the data of all

frame pixels or, in other words, a frame to display. Every time this frame data changes

in the memory, then it goes to the driver to be shown on the OLED.

All the writing happens by ssd1322_puts function that gets the start position of the text

and the text itself as a string. Then it gets the values of pixels for that character of the

string according to the mentioned table and updates the frame in the memory.

To use this function, firstly ssd1322_control_start function must be called as the RTOS

task function. In the beginning, it sets two timers of ssd1322_launch_timer and

ssd1322_frame_update_timer. The first one is to make sure that there is enough time

without resetting the device, and the second one is for the interval between updating

70

the frames on the screen. Then it calls ssd1322_init function to initialise the module

variables. It gets the pointer to the stack current, output current, stack voltage, output

voltage, stack temperature, state, sub-state, special state values and set them in the

current module variables and show them on the OLED. It also configures the registers

of the device. After initialising, the control function checks if the pointers are valid.

Otherwise, it shows that the display is offline on display. If it passes this step, it goes

to a forever loop that decides what function should be done in the coming up situations.

If initialising timer expired, it resets and initialises the display again. If the stack goes

to a special state (like the overload for a long time), a message regarding that will be

shown on the screen. If the timer of frame update is expired, it writes all the values and

refreshes to display the texts on the screen and resets the update frame timer.

Figure 5.10 SSD1322 module flowchart

71

5.9 LTC2944

As is mentioned in section 4.2, LTC2844 is a battery gas gauge that measures voltage,

current and temperature. It needs to monitor the battery charging circuit in UP200. This

module uses the state machine pattern for controlling the device without blocking the

CPU for a long time.

Figure 5.11 LTC2944 module state chart

72

The program also has another state for reading the values. It is tried to keep the

program as non-blocking as possible. For this purpose, it uses DMA for I2C to

communicate with the device. In this case, it uses a state machine for reading the data

from the device. It has 4 states.

enum ltc2944_receiving_state_e

{

 LTC2944_RSTATE_IDLE,

 LTC2944_RSTATE_TRANSMIT,

 LTC2944_RSTATE_RECEIVE,

 LTC2944_RSTATE_FINISHED

};

Using this method, by calling ltc2944_readbyte function, it checks the current state of

reading. If it is not in LTC2944_RSTATE_IDLE, it returns POWERUP_OK. Otherwise, it

sends the register value using DMA and changes the state to

LTC2944_RSTATE_TRANSMIT. Every time this function is called and the program does

not complete the transmit, it returns POWERUP_ERROR_BUSY. After that, it starts

receiving the data using DMA and changes the state to LTC2944_RSTATE_RECEIVE.

Again returning POWERUP_ERROR_BUSY happens while it is in this state and the

receiving is not completed. After all, when the receive buffer is filled with the received

data, it goes to LTC2944_RSTATE_FINISHED. In this case, the reading is finished, and

the higher-level program should use the received value and reset the reading state to

LTC2944_RSTATE_IDLE to be available for the later receivings. All of the methods are

described to show that the reading function should be called repeatedly in the loop of

the program, and by one time calling this function, the functionality might not be

completed.

73

Figure 5.12 LTC2944 module read state chart

In general, the module has defined a struct, ltc2944_t, as a type to save all data of each

instance of this type of device. This struct includes a pointer to the I2C handle for

communication, the device address, a buffer for the received values, state, sub-state

and receiving state values. Moreover, it stores some other values to give them to the

other parts of the program. The values are status, charge value, voltage, current, and

temperature values. To use this module, it is required to create a new ltc2944_t and set

the pointer to I2C and the device address of it correctly. Afterwards, calling

ltc2944_update function in a loop will organise everything like Figure 5.11. if the

program is in the state of LTC2944_STATE_INIT, this function calls ltc2944_init, which

initialises the values inside the ltc2944_t and sets the state and sub-state on

LTC2944_STATE_CONFIG and LTC2944_SUBSTATE_CONFIG_CONTROLREG. The config

function sets all the required registers and the limits for critical situations in the device.

After finishing configuration, it sets the state value on LTC2944_STATE_RUN and sub-

state on LTC2944_SUBSTATE_RUN_STATUS. In the LTC2944_STATE_RUN, just sub-

states changes, and it works like a loop. It gets the status, charge value, voltage, current

74

and temperature data one by one. Then it goes to the idle sub-state

(LTC2944_SUBSTATE_RUN_IDLE), which keeps the module inactive while it is time for

the next reading of data. This helps not to use and block resources like DMA for a long

time.

5.10 Shared Memory

As it is shown in section 4.1, the microcontroller for the UP1K product has two cores.

These cores need to communicate with each other. As they use the same RAM, the best

way is to share a part of the memory in a managed way. In this case, a part of the

memory is removed to be used as RAM for both cores. Then a struct with all needed

variables is defined in this module.

struct sharedmemory_s

{

 /* The data from Cortex-M4 to Cortex-M7 */

 float stack_voltage;

 float output_voltage;

 float stack_current;

 float output_current;

 float stack_temprature;

 float battery_voltage;

 uint8_t state;

 uint8_t substate;

 uint8_t special_state;

 uint8_t supply_valve;

 uint8_t purge_valve;

 float fan;

 uint8_t converter_Mode;

 /* The data from Cortex-M4 to Cortex-M7 */

};

In the next step, the address of reserved memory is set to an instance of this struct that

is available globally. It helps to use this header file anywhere and access the same part

of memory.

static volatile struct sharedmemory_s *const sharedmemory_instance =

 (struct sharedmemory_s*) SHAREDMEMORY_ADDRESS;

75

The important point in using this module is to update each variable of the struct in only

one part of the program. Otherwise, the access to the data by different parts of the

program might cause a crash in the program.

5.11 COMMUNICATION PACKETS

This module generates packets of data efficiently and reliably to transmit. It can also

parse the received data and retrieve the values inside. All the variable, function, and

type names in this module start with cp_, an abbreviation for Communication Packet.

Each packet in this program is an array of uint8_t. The following table shows the

structure of packets in this module and the values inside the array.

Table 5.1 Structure of a communication packet with N+1 bytes length

Type Header
Packet

length
Content type data Checksum

Value 0xAA N cp_contentType Values
XOR of all bytes

including Header

Byte

number
0 1 2 3 … (N-1) N

Header is a value that shows the beginning of a packet. The value of it is AA in

hexadecimal space. This value in binary is 10101010, which is the most difficult

challenge for different communication protocols as it changes the level from 1 to 0 and

reverses in each bit.

Packet length is just one byte in this module. It means the maximum size of the packet

can be 256 bytes.

Content type byte shows the type of data that is in the packet. The different content

types are defined in the enumeration that is named cp_contentType. It contains the

types such as stack temperature, DC-DC, setting voltage, etc. A demo of it is shown

below, but the types can be more than this.

enum cp_contentTypes

{

 cp_data_stackTemp = 0x10,

 cp_data_dcdc = 0x11,

 cp_data_setVoltage = 0x12,

76

 cp_data_setLoad = 0x13,

 cp_data_setDcdcStatus = 0x14

};

Data in a packet is being located directly, byte by byte. For example, a float type data

in STM32 and GCC compiler has 4 bytes length. Also, a float variable can be accessed

byte by byte if the address of the float value be defined as uint8_t pointer. The following

code shows how this conversion between an array of bytes and float happens.

float floatVlue = 10.0f;

uint8_t *byteValue = malloc(4);

// first way of float to byte array conversion

byteValue[0] = ((uint8_t*)(&floatVlue))[0];

byteValue[1] = ((uint8_t*)(&floatVlue))[1];

byteValue[2] = ((uint8_t*)(&floatVlue))[2];

byteValue[3] = ((uint8_t*)(&floatVlue))[3];

// second way of float to byte array conversion

byteValue = (uint8_t*)(&floatVlue);

// conversion of byte arrat to float value

floatValue = *((float*)(byteValue))

The above method is applicable for all the value types that have more than one byte

size. The one-byte values can be placed directly in one byte of the packet. For the

packets that contain more than one value (e.g. two different floats), the values are set

one after another. Also, as the STM32 microcontrollers’ CPU works as little-endian, all

the values stores as little-endian, and this program does not work on big-endian devices.

Checksum is a byte that shows if the combination of data in the packet is correct. For

this purpose, a simple error checking is used, which uses XOR between all the bytes of

the packet. It helps to check the packet’s content with this value in a received packet

and check if there is any data loss or communication problem. This must be keep in

mind that it is the simplest error checking method, and it cannot consider the problem

in disorder locations of bytes. It just checks the value of the bytes, not their positions.

After all, the module has several functions to create different packets. It has also

powerup_error_t cp_process(uint8_t *packet) function which checks if the checksum is

is correct and then assign each value in the packet to its respective variable. It happens

by reviewing the content type byte in a switch-case statement and extracting the values

according to each type.

77

5.12 UART COMMUNICATION

UART Communication module is a layer that controls the UART in a non-blocking method

reliably. It uses both DMA and interrupts to control the transmission and to receive

without missing values or announcement to the CPU. In an OSI model [61],it places in

the third layer (Network), which collect and sends the data bytes. This module also

solved the problem of receiving the values with unknown size. The following figure

illustrates the sequence diagram of this module.

Figure 5.13 UART Communication module sequence diagram

As Figure 5.13 shows, two different microcontrollers are Transmitter, and another one

is Receiver. The dotted lines in the diagram show the events that happen in the MCU

automatically. These have two different flowcharts that are shown, and the functionality

is described below.

78

Figure 5.14 UART Communication transmission flowchart

By default, the program enables receiving, which leads to being ready for receiving data

all the time. If uc_transmit_start function is called, it checks if another transmission is

not happening. Then it copies all the data to be sent in a buffer, sets the transmission

flag, and calls DMA transmit function to start transmission from buffer to UART by the

DMA. At the same time, when the DMA enables transmission complete, interrupt when

the transmission is finished. The callback function sets flag_dma_transmitCompelete

variable to show the transmission from the memory buffer to the UART is completed. It

does not indicate that the transmission by UART is also finished. For that purpose, a

UART transmits complete is needed, which in the callback function of this interrupt

flag_transmit_finished is set. After all of these events and changes, uc_update function,

which is called repeatedly in the main loop of the program, recognises that the MCU

sent data successfully and resets all the flags by calling uc_postTransmit function. In

Figure 5.14, the DMA and interrupt callback functions are shown concurrently because

the other parts of the microcontroller check them and do not block the CPU process.

Moreover, two interrupts are used to check the completion of the task for more reliability

and preventing malfunctionality, especially in communication with UART to RS485

converter.

79

Figure 5.15 UART Communication receiving flowchart

As it is mentioned in the previous part, receiving starts before the main loop by the

data_process function. In the process, it first checks if the flag is set, and if it is correct,

then it goes to process the received data and set the process flag. The data_process

function also calls uc_receive function to start receiving again at the end of the part.

Like the previous process, uc_update function must be called in the main loop and

checked frequently. The uc_update function checks if the received data is processed,

and if it is true, it calls uc_postReceive function, which reset all the flags related to

receiving data and resumes the data DMA for UART. The DMA process shown in this flow

chart is an internal procedure that checks if there is any data from UART to copy them

to the buffer in the memory. In receiving, the DMA transmit complete interrupt is not

used because it works reliable enough with just one interrupt. The interrupt used in this

procedure is the UART interrupt. For this purpose, a callback function called

uc_receive_callback must be called in the interrupt handler.

80

In general, this module is used in all the cases that UART is needed. For example, the

MC60 module uses this function to send and receive the data.

5.13 BUCK-BOOST

The buck-boost converter is one of the most critical parts of the program in all

generators. Any fault in this module might damage the consumer device. This module

controls the output voltage by the feedback of output voltage and setting voltage using

a PID controller. The following diagram shows the system model of this module.

Figure 5.16 Buck-Boost converter control system diagram

In this system, the input voltage is used as input of the system, and the output voltage

is the output and feedback of the system. Both of them are decoded by ADC to be

readable by the MCU. The ADC conversion and PID modules are used in the module.

According to 4, this module is needed just in UP1K because it has adjustable voltage

output. This part’s hardware had two versions until the day of writing the thesis. The

principal difference between the versions is the method of controlling the output voltage.

In the first version, the output could be controlled by two pairs of PWM channels, and

in the second version, it can be controlled by DAC and analogue voltage. Since the

control algorithm is almost the same for both controlling signals, both functionality is

supported in this module.

To create a PWM signal, it uses High-Resolution Timers (HRTIM). As these timers have

advanced configurations like dead-time and event config and the synchronisation

between different channels, it generates highly accurate signals that are synchronised

in time and reverse in voltage level. Also, the dead-time configuration prevents the

conflict of having two high signals at the same time. Different events can trigger HRTIM

outputs. For this purpose, the “Set Sources” and “Reset Sources” of an output must be

81

defined. Each HRTIM channel has two outputs. As a pair of sync PWMs is needed in this

project, both channel’s outputs are used. The following pictures show the configuration

of both outputs for a channel that are used in this module. In this case, the timer period

sets the output1, and the compare value resets it. The dead-time value sets the output2,

which means it is set in a little while after setting output1, it will be set. And again, the

timer compare value resets it, and it happens as much as dead time value sooner. In

this program, the timer’s compare 1 value is the value that should be changed to change

the duty cycle of the signal.

Figure 5.17 HRTIM outputs configuration in STM32Cube

Furthermore, the dead-time setting is shown below, which is possible to be set for rising

and/or falling edges. In this program, both of them are set to have a centre-aligned

signal.

Figure 5.18 HRTIM dead-time configurations in STM32Cube

82

The fundamental and frequency of all of these signals are configured in the general

configuration of HRTIM. For example, in this case, the frequency is set to be 100 kHz.

In this case, the period will be 2000, which means the duty cycle can be controlled by

the precision of
1

2000
 of

1

200 0000
 second.

Figure 5.19 HRTIM General configuration in STM32Cube

The final signal output is shown in Figure 4.7.

According to the description of this item, in the new version, a digital to analogue

converter is used to control the output voltage. For this purpose, an external DAC is

used that is controlled by SPI. For changing the value of the analogue signal for

controlling this converter, an SPI packet is sent in a non-blocking mode.

As the standard modules in the projects, it has a defined struct as a handle of buck-

boost converter that stores the internal needed values like the input and output voltage

values and a PID module handler. In general, the flowchart of this program is shown

below. In the beginning, the Converter_Init function must be called. This function

initialises all the variables and also the peripherals that are needed to be controlled.

Then in the main loop of the program, the Converter_Update function must be called.

In this case, firstly, the values are read and updated. In the next step, it checks if the

output is on calculates and sets the value of DAC or HRTIM in the different versions of

the hardware. It happens as fast as possible to correct the output voltage as soon as

possible, which helps to prevent damaging the consumer value.

83

Figure 5.20 Buck-Boost module flowchart

5.14 MC60

The MC60 module communicates with the MC60 hardware that provides Bluetooth and

GSM communication. The module supports SMS and Bluetooth data communication. It

helps alert the critical situations to the user. For communication with the hardware,

UART protocol with CTS and RTS control pins is used. To send and receive commands,

a set of rules is generated by the manufacturer called AT Commands. All the

communications use ASCII characters, and all the commands and responses have “AT+”

characters at the beginning.

This module runs the UART Communication module for receiving the data. It sets the

Bluetooth with a unique name to be visible for the devices. Whenever a device is

connected, the data like a serial data packet is sent to the device. Sending data packets

happens while the generator is working as a debugging method. Moreover, the

connected device can send a command to the generator and configure it. All of the data

transmissions are under the Communication Packet rules and methods.

84

Figure 5.21 MC60 module flowchart

This module, first of all, initialises the buffer and empty it for receiving. Then in a loop,

it checks if there is no connection, resets the hardware by a GPIO pin. Otherwise, it

checks if any data is received by the UART. In that case, it removes the extra parts and

gets just content in it. Then it processes the command and data by the Communication

Packet module.

Furthermore, for sending the data, in any part of the program, mc60_bt_send function

can be used, and it generates the packet and command, then transmit the data using

UART Communication module.

85

5.15 STACK-CONTROL

Stack control module most of the other modules and controls the input, output and the

fans. It monitors all the functionality of the stack and generator and executes commands

according to the situation. This module uses a state machine pattern to handle different

modes and conditions, and also each state has multiple sub-states. The name of states

comes from the states that the hydrogen fuel cell stack has. These states are described

in chapter 3 in details.

Standby state is the state that the generators start and end in. In this state, the

generator does not have any production or consumption. The task in this state is to

manage to close the valves and disable outputs.

Startup state initialises all the components and starts the fan with the maximum speed.

Then it opens the purge valve on time for 400 ms and then goes to warmup state.

Warmup state increases the load that is connected to the stack slightly and waits for

the corresponding voltage. Every 53 seconds, also it opens the purge valve. It is the

state that ensures the stack is ready to give enough output current. It changes the state

to Running state.

Running state enables the output and gives the output and at the same time measures

the voltage and current and monitors them. In this state, the fan speed and purge values

are set according to the input values like temperature, current, voltage. This state is

like a loop, and while the generator does not have any problem or the user does not

want to turn the generator off, it stays in this state.

Shutdown state is the state that the user commands to happen, and it can turns of

the generator. It disables the output and waits to ensure that the stack’s temperature

is less than 30ᐤC, which is the safe value for the stack. Then it disconnects all the power

paths and keep the generator off.

86

Figure 5.22 stack-control module state diagram

87

This module first initialises all the state variables, PID, timers, and needed modules to

control the stack and outputs. Then it disables the outputs. In the loop, it checks if the

conditions suppose to change the state of the program. In that case, it changes the

program state of the program. After checking the need to change the state and setting

the configuration if it is needed, it sets the output value using the PID calculation. This

should happen all the time that the generator is working.

Figure 5.23 stack control module flowchart

88

This module also considers several special states that define the critical or error

situation. These states are so essential to work on time for the safety of users and

generators. The following table describes these situations and their conditions.

Table 5.2 Special states of the stack control module and the responses to them

State Condition Response

High temperature
The temperature of the stack

be more than 65°C

1. Disabling output

2. Closing hydrogen valve

3. Set fan speed to

maximum

4. Wait until the

temperature drops to

50°C

5. Coming back to normal

state

High Load

The consumer load needs more

than 200 (for UP200) or 1k (for

UP1K) watts of power

1. Disabling output

2. Enabling and checking if

it happens after a 10s

3. Repeating step 2 for

three times and if the

problem still persists,

keep the generator

suspended until a

restart

No Hydrogen

When there is no hydrogen in

the tank connected to the stack

and the voltage of the stack

drops below a minimum value

1. Disable output

2. Wait for Hydrogen

3. Set the state of the stack

control module on

warmup to warmup the

generator again

Low Battery Charge
When the battery charge value

reaches less than 10%

1. Disabling output

2. Waiting for the battery

to be charged up to 40%

using the stack

generated power

3. Come back to the

normal state

89

6 CONTROL SOFTWARE

The main purpose of this thesis is to show how to implement the software, which is

described in this chapter.

6.1 Development Toolchain

All the software is written in C/C++ language as most of the embedded systems

software. The code is compiled using GCC for ARM targets or, in another word GNU ARM

Embedded Toolchain. As the MCUs used in these projects are different types of STM32,

STM32CubeIDE is used as the free and recommended IDE by the manufacturer.

STM32CubeIDE [62].is built based on Eclipse IDE [63].

Also, as the first reversion, the low-level drivers are generated by STM32Cube and HAL

drivers.

HAL driver is an abstraction layer that has APIs to control the peripherals of STM32

microcontrollers. It is free and open-source software that ST provides [64]. It helps to

increase the development speed as there is no need to write code and test the low-level

software and drivers. The disadvantage of this library is its low performance. As STM32

HAL driver is built to be portable and work with a wide range of microcontrollers and

features, it does not work as efficiently as possible, but it is a good and fast option for

the first iteration.

STM32Cube is a software tool that provides a graphical user interface for configuring

and adding necessary HAL drivers, middlewares, and structure to the C/C++ project for

STM32. It helps to configure and change the configuration easily and without conflict.

90

Figure 6.1 STM32Cube sample screenshot, a view of UP200’s microcontroller

Middlewares that are added to the projects by STM32CubeIDE includes FreeRTOS,

FATFS. The FreeRTOS that is used in the projects is described in the following sections.

FATFS is software to support FAT16/32 file systems. It is also described in detail in the

following sections.

6.2 Modules

The modules are the different components of the software that are created by the author

to control different parts of the program or to work as a driver for a device. It is

described in the previous chapter in detail.

6.3 Middleware

In this chapter, the middleware is used as software that cannot be categorised as

modules because they are not written, especially for this project, and they are located

in the middle layers of software. The middle layer here means the layers of software

that are not directly communicating and control hardware and not in the application

layer. In these projects, three middlewares are used, which are described in detail in

this section.

6.3.1 FreeRTOS

Although it is tried to implement the software modules as non-block as possible, a Real-

Time Operating System (RTOS) is used to ensure that all functionalities can work

simultaneously. For this purpose, FreeRTOS is used. FreeRTOS is an open-source, free,

and also efficient choice RTOS.

This RTOS is used for two different cases. The first case is using TouchGFX as the

graphics library for UP1K, which is explained in details in this chapter. The other

application of this operating system is to manage the stack controlling software. The

stack controlling software for UP200 is implemented on its single Cortex M4 core. There

are different tasks for different functionalities of the controlling stack. It is tried to use

as few tasks as possible to increase the efficiency of the program. Also, some of the

other libraries that are managed on the Cortex M7 core of UP1K use different tasks

besides the TouchGFX library tasks.

91

UP200 tasks are wrapped up in three. The main task is the stack-control task. It

includes the stack control, SSD1322, and fan controller modules. It is basically all the

functions that directly affect the stack and output. This task’s priority might increase in

critical situations to ensure it finishes all the functionalities. The next task is called

MicroSD-Logging. It ensures that it logs all the changes and concerns on the MicroSD

memory card. It uses FATFS middleware that is defined later. Debugging-UART is the

next task that sends the generator’s status once in a while through UART and RS-485

converter and communicates with the user. It also helps in calibration and monitoring

the situation. Moreover, this task handles the MC60 module to communicate through

Bluetooth and SMS. It repeatedly checks to receive and transmit buffers and for all kind

of UART that there is in the program and process them as soon as possible.

UP1K tasks are three again, and it is implemented just on the Cortex M7. Moreover,

ss it has a dual-core CPU, stack controlling related modules and libraries like stack

control, buck-boost, fan control modules work on the Cortex M4 core, which can be

considered a software thread without an RTOS. The most frequent task on Cortex M7

core is GUI task which handles the graphics processing and loading the frames on the

LCD, which happens in the TouchGFX library. The other task runs MC60 and debugging

UART port programs. The last task controls the synchronisation between the different

generators. In that case, with one UART debug port or a Bluetooth connection, all the

connected generators can be monitored and controlled.

The configuration of the FreeRTOS library is tried to be as efficient as possible. For

this purpose, the type of tasks is static because there is no need to remove and create

tasks dynamically. Furthermore, the tick rate is set at 1000 Hz, an efficient value for

the scheduler. Finally, some of the features, like Semaphores, Mutexes, and queues,

are enabled to be used for communication between different tasks without blocking the

other tasks. For example, to show the values on the screen, the values are sent by

queues to the graphics task. All the tasks are created initially, and no new task will be

created while running the program.

6.3.2 FATFS

FATFS is an open-source and free library that supports FAT/exFAT File Systems. In other

words, it can create and edit files in a way that regular operating systems such as

Windows 10 can read the file. Therefore, it is very useful for logging data of UP200 on

an SD Card. In UP200, all the data are written in a text file in a FAT32 volume.

92

Figure 6.2 FATFS Software layer diagram [65]

In this case, the peripheral that manages the communication with the SD card is SDIO.

It is set on 1-bit bandwidth. Also, it communicates by DMA, which decreases the load of

the CPU significantly. Like previous parts of the program, it is tried to keep the program

as less size and efficient as possible. The encoding of this middleware is set on UTF-8

as all the characters that are used are supported by it, and it has the least size.

6.3.3 TouchGFX

TouchGFX includes an optimised and hardware-accelerated graphics library for

embedded systems called TouchGFX Engine, as well as a designer and a project

generator PC software. TouchGFX Engine is created in C++, and it is the only part of

the program that is in C++. It is used in UP1K and Cortex M7 core program to drive the

LCD and generates the UI.

The colour format used in this project is RGB565 which is 16-bit depth for non-opaque

images, and ARGB8888, with 32-bit depth for opaque images. It helps to reduce the

size of frames by reducing the size of the background and many other non-transparent

images.

The Frame buffer is so large compared to the other parts of the program. Moreover,

using multiple frame buffers to achieve a higher frame rate and smooth animation

makes the required buffer size multiple times larger[66]. For this purpose, an external

RAM is used to provide enough memory. In this case, although access to the external

memory is slower than the internal memory, there is much more place to put the file.

Also, using an FMC peripheral as a communication method with external RAM and

enabling CPU cache increase the speed of communication as much as possible. The FMC

93

peripheral and diagram of its connection to UP1K is described in chapter 4. In the Cortex

M7 microcontrollers, two different caches are available, DCache and ICache. For this

purpose, DCache, which fetch data from RAM, helps to increase the frame rate and

speed of updating the frames.

The screens that are created for this project is shown here. The splash screen is a

screen that shows the logo of the PowerUp technologies company and changes

automatically to the main screen after 3 seconds.

Figure 6.3 Splash screen created by TouchGFX

The main screen shows the status of the generator in brief. It shows the time since the

generator is started, the generator’s state, its sub-state, special state, stack voltage,

and temperature. These values are updated using different queues from a task to the

GUI task.

94

Figure 6.4 Main screen created by TouchGFX

The next two screens are created to show more information in detail. Changing the

previous screens to these screens happens by pressing the physical buttons placed on

the right side of the display. The info screen 1 shows the battery voltage, temperature,

currents of input and output, the voltage of input and output, and converter mode.

Furthermore, the info screen 2 shows the speed of fans and valves status.

Figure 6.5 Info screen 1 created by TouchGFX

95

Figure 6.6 Info screen 2 created by TouchGFX

6.4 UP1K Software

UP1K contains two different projects for different cores. Each project should be uploaded

separately to the board. STM32CubeIDE supports multiple nested projects. It means

both of them are created and configured by one STM32Cube (.ioc) file.

6.4.1 Directory Structure

In the main directory of UP1K project, there are the .project and .ioc files and some

sub-directories. In the Common directory, there is an initialisation file for both Cortex

M4 and Cortex M7 projects which is generated by STM32Cube. Drivers directory contains

the CMSIS and HAL driver directories. Then there is the Modules directory which contains

the modules that are described before. The modules are added to the project as a git

submodule. In this case, it is possible to update the module independently. Then there

are the nested projects. The first nested project is located in CM4 directory which

includes the Cortex M4 project. It contains the Core directory, which includes the project

C files like main.c, main.h, uart.h, etc. Moreover, CM4 directory consists of a Debug

directory that stores the binary files of compiled files. As well as this, the linker file for

the Cortex M4 project is placed in this directory. As well as CM4 directory, there is CM7

directory which includes the same files as CM4 and some additional directory and files.

Another Drivers directory contains the additional libraries that are mostly needed for the

graphics library and driving the LCD. An external memory bootloader program is also

96

located in this project with a program inside that loads the external Flash memory and

RAM. Then jumps to the program stored there, which is the main program for Cortex

M7 and contains the program for the graphics library. Middleware directory contains

TouchGFX and FreeRTOS files. In the end, there is a TouchGFX folder that consists of

the generated files by the TouchGFX designer. The directory map is shown in the

following figure.

Figure 6.7 UP1K project directory structure map

6.4.2 Modules and dependencies

The modules that are used in UP1K projects are connected as a dependency. The

following diagrams show these dependencies. As it is shown, the Cortex M7 project uses

fewer modules comparing the Cortex M4 project that handles the stack and output.

Moreover, many modules depend on the config and ptimer modules. The most important

point about this diagram is that since all modules depend on the errors module, this

module is not shown in the diagram to increase readability. If we do not consider config

and ptimer modules, in the Cortex M7 project, mc60 depends on the communication-

packet module, and it depends on the uart-communication module. Also, the shared-

memory module does not have any dependency as it has just some defined variables in

a specific place. In Cortex M4 project, the fan-controller module depends on the

emc2305 module while the stack-control module depends on buck-boost and thermistor

modules, and they both rely on the adc-conversion module. Also, buck-boost needs the

pid module for its calculations. Like the Coretx M7 project, shared-memory works

independently.

Figure 6.8 UP1K projects dependency diagram for both Cortex M7 (left) and Cortex M4 (right)

projects

99

6.4.3 Software layer chart

The embedded software can be demonstrated as layered architecture software by

ignoring some parts of the program (e.g. RTOS and pid module). In this case, Figure

6.9 illustrates the layers. Each part that is on top of some other sections shows that it

is using all the below programs. For instance, the fan-controller module in the Cortex

M4 program is created based on the emc2305 module, which is based on the HAL driver.

Also, they use an SMBUS peripheral of the MCU.

Figure 6.9 UP1K software layers diagram

6.5 UP200 Software

6.5.1 Directory structure

The UP200 project directory includes 5 sub-directories.

Drivers folder includes CMSIS and HAL drivers. These are the important libraries to

communicate with the peripherals and control hardware.

Middleware directory includes FreeRTOS and FATFS as Third-Party middlewares.

Modules contains the modules that are needed in the UP200 Software. It is explained

in more details in the next item.

Core directory consists of the source and header files of the project. The source files

are located in the Src folder, and the header files are placed in the Inc folder. It also

includes a Startup directory which provides for the startup file configurations.

Debug folder is the last directory that the compiler stores the binary output files in it.

100

Figure 6.10 UP200 directory map diagram

101

6.5.2 Modules and dependencies

The modules in UP200 project use each other for their functionality. Figure 6.11 shows

the dependencies. If the config and ptimer, which are used in many other modules, be

ignored, they can be explained with no complexity. The mc60 module includes the

communication packet, and it includes uart-communication module. The fan-controller

is on top of emc2305. The stack-control uses thermistor, adc-conversion, and ltc2944

modules. Also, thermistor module uses adc-conversion module. In the end, ssd1322

module is used in the program for showing the values on the screen. Furthermore, it

should be mentioned as the errors module is used in all the modules, it is removed from

the diagram to ease understanding.

Figure 6.11 UP200 project dependency diagram

6.5.3 Software layer chart

Figure 6.12 illustrates a simplified software layers diagram of the UP200 software

project. In this figure, each module is shown on top of other modules, drivers, and

peripherals. In each column, it can be checked that how each module is created based

on another one. For example, debug and mc60 modules are based on communication-

102

packet module which is created on top of uart-communication module and it uses HAL

driver to control UART.

Figure 6.12 UP200 software layers diagram

103

SUMMARY

In conclusion, for using Hydrogen as fuel, there are several types of fuel cell and

applications. The thesis goal is developing a portable Hydrogen fuel cell generator

product. For Hydrogen fuel cell products, the PEM fuel cell is the most proper type of

generator with low weight and low operation temperature.

The thesis covered a comparison between different types of fuel cells. The connections,

specifications, and configurations of the chosen PEM fuel cell are explained in details.

Moreover, it includes the operation modes, process conditions and controlling methods

of the fuel cell. For this purpose, the hardware that controls the fuel cell is shown. Also,

the different versions of the hardware and the reasons for substitution with the new

versions are described. It shows how the hardware increases the performance and

features of the generator.

The outcome of the thesis is an embedded software architecture and implementation

that can control a hydrogen fuel cell stack and its output power. As the firmware is

implemented in a modular method, each part of the program is tested module by

module. The lab test showed acceptable performance while running the program. These

modules are architected and/or written by the author and described in details. The

modular design of software caused to use of each part of the software separately in

different generators. It can be used as a software platform, even for future fuel cell

generators. The thesis also covered the software configuration in the toolchain for all

the modules that were needed. On the other hand, it shows the third-party middlewares

that helped to increase the speed of development. All the diagrams and flow charts that

show how the software works are added to the thesis for more readability.

Although it is tried to have the most efficient software, there are many ways to increase

its performance in future. The most important part that helps this performance growth

is creating a customized HAL driver with the least overhead in the process. Furthermore,

as an external communication module is used in the products, many features are

possible to add by changing the module to a 4G module in the future. The IoT

implementation of this product can be one of the best options. On the other hand, some

development is still in progress on the generator. One of them is the implementation of

Modbus communication for syncing the generators together and also to PLC. It will be

implemented over RS-485, which is one of the standard communication protocols for

Modbus. The other important development is a secure bootloader for the user to update

the firmware by UART and also Bluetooth. In that case, the user can upgrade to the new

firmware without any technical knowledge.

104

Selleks, et kasutada vesinikku kütusena, on olemas erinevaid kütuseelementide tüüpe

ja rakendusi. Selle lõputöö eesmärk on arendada välja kaasaskantav vesiniku

kütuseelementidel põhinev generaator. Vesiniku kütuseelementide seast on kõige

kasulikum kasutada polümeerelektrolüüt-kütuseelemente (PEKE), kuna seda tüüpi

kütuseelemendid on kõige kergemad ja töötavad madalal temperatuuril.

Käesolevas lõputöös on käsitletud erinevate kütuseelementide võrdlus. Samuti on

lõputöös täiendavalt selgitatud valitud PEKE ühendused, tehnilised andmed ja erinevad

konfiguratsioonid. Kütuseelemendi töörežiimide, protsessi tingimuste ja

juhtimismeetodite selgitamiseks on välja toodud selle juhtimiseks tarviliku riistvara

disain. Illustreerimaks riistvaralahenduste mõju generaatori efektiivsusele, on lõputöös

välja toodud ja täpsemalt lahatud ajas tehtud muutused riistvara versioonides.

Lõputöö väljund on generaatori vesinikkütuseelemendite ja nende väljundvõimsuse

juhtimiseks mõeldud sardsüsteemi tarkvara ja selle arhitektuuri arendamine ja

rakendamine. Tänu sardvara modulaarsusele, on võimalik programmi erinevaid osasid

teineteisest sõltumatult testida. Laborikatsetused näitasid programmi rahuldavat

võimekust. Sardvara moodulite arhitektuur on loodud ja sardvara on kirjutatud lõputöö

autori poolt ja on lõputöös täpsemalt kirjeldatud. Samuti võimaldab selle modulaarne

disain kasutada sardvara osasid eraldiseisvatena teistes generaatorites – seda saab

kasutada tarkvaraplatvormina. Lõputöös on kirjeldatud tarkvara konfigureerimist

tööriistaahelas. Samuti on välja toodud kõik kolmandate osapoolte kirjutatud

vahetarkvarad, mille aitasid tarkvara kirjutamist kiirendada. Lõputöö sisu paremaks

selgitamiseks on lisatud ka diagramme ja vooskeeme.

Kuigi lõputöös kirjeldatud sardvara on üritatud arendada nii efektiivseks kui võimalik,

on siiski veel võimalusi selle võimekuse parandamiseks. Kõige suuremat mõju

efektiivsuse parandamisel annaks riistvara abstraktsioonikihi draiveri muutmine nõnda,

et lisakulud arvutusvõimekusele oleksid minimaalsed. Tänu asjaolule, et

kommunikatsiooniks kasutatakse eraldiseisvat moodulit, saab tulevikus vajaduse korral

see moodul vahetada välja 4G võrku kasutava mooduli vastu. Generaatori ühendamine

asjade internetti on üks paremaid võimalusi selle kasutusvaldkonda laiendada

olukordadesse, kus kasutaja igapäevaselt generaatoriga kokku ei puutu. Üks võimalus

selleks oleks rakendada Modbus suhtlust generaatorite omavaheliseks

sünkroniseerimiseks ja programmeeritava loogikakontrolleriga (PLC) ühendamiseks.

Seda lahendust saaks kasutusse võtta RS-485 abil, mis on üks standardne

suhtlusprotokoll Modbusile. Generaatori kasutusmugavust suurendaks turvaline

alglaadur, mis võimaldaks kasutajal uuendada sardvara üle UARTi või Bluetoothi. See

võimaldaks kasutajal muuta tarkvara ilma tehnilisi teadmisi omamata.

105

LIST OF REFERENCES

[1] “Analysis of the control strategies for fuel saving in the hydrogen fuel cell vehicles

| Elsevier Enhanced Reader.”

https://reader.elsevier.com/reader/sd/pii/S0360319917348711?token=52CF25

5135293DD474A45191186F0653571279E051235DD080D26FD5517BF3BF462C

4900938238D0C25B7F10F38FE7AF&originRegion=eu-west-

1&originCreation=20210606193557 (accessed Jun. 06, 2021).

[2] M. Ball and M. Weeda, “The hydrogen economy - Vision or reality?,” Int. J.

Hydrogen Energy, vol. 40, no. 25, pp. 7903–7919, Jul. 2015, doi:

10.1016/j.ijhydene.2015.04.032.

[3] Y. Manoharan et al., “Hydrogen Fuel Cell Vehicles; Current Status and Future

Prospect,” doi: 10.3390/app9112296.

[4] A. Baroutaji, T. Wilberforce, M. Ramadan, and A. G. Olabi, “Comprehensive

investigation on hydrogen and fuel cell technology in the aviation and aerospace

sectors,” Renew. Sustain. Energy Rev., vol. 106, pp. 31–40, May 2019, doi:

10.1016/j.rser.2019.02.022.

[5] A. Ajanovic and R. Haas, “Prospects and impediments for hydrogen and fuel cell

vehicles in the transport sector,” Int. J. Hydrogen Energy, vol. 46, no. 16, pp.

10049–10058, Mar. 2021, doi: 10.1016/j.ijhydene.2020.03.122.

[6] P. D. Thesis, “Dries Verstraete The Potential of Liquid Hydrogen for long range

aircraft propulsion SCHOOL OF ENGINEERING,” Cranfield University, 2009.

Accessed: Jun. 08, 2021. [Online]. Available:

http://dspace.lib.cranfield.ac.uk/handle/1826/4089.

[7] “What are the Pros and Cons of Hydrogen Fuel Cells? - TWI.” https://www.twi-

global.com/technical-knowledge/faqs/what-are-the-pros-and-cons-of-hydrogen-

fuel-cells (accessed Jun. 08, 2021).

[8] “11 Big Advantages and Disadvantages of Hydrogen Fuel Cells – Green Garage.”

https://greengarageblog.org/11-big-advantages-and-disadvantages-of-

hydrogen-fuel-cells (accessed Jun. 08, 2021).

[9] “Control strategies for high-power electric vehicles powered by hydrogen fuel cell,

battery and supercapacitor | Elsevier Enhanced Reader.”

https://reader.elsevier.com/reader/sd/pii/S0957417413001449?token=908C09

106

3BE4FF084CD3F72D498BB45B2EA579FE1B9E9DC185125C94F225EE76E99CCC

209A7DC23F15C67E2C1B86568933&originRegion=eu-west-

1&originCreation=20210606205520 (accessed Jun. 06, 2021).

[10] Y. Haseli, “Maximum conversion efficiency of hydrogen fuel cells,” Int. J. Hydrogen

Energy, vol. 43, no. 18, pp. 9015–9021, May 2018, doi:

10.1016/j.ijhydene.2018.03.076.

[11] “A Basic Overview of Fuel Cell Technology.”

https://americanhistory.si.edu/fuelcells/basics.htm (accessed Jun. 08, 2021).

[12] G. F. McLean, T. Niet, S. Prince-Richard, and N. Djilali, “An assessment of alkaline

fuel cell technology,” Int. J. Hydrogen Energy, vol. 27, no. 5, pp. 507–526, May

2002, doi: 10.1016/S0360-3199(01)00181-1.

[13] “Fuel Cell Systems - Google Books.”

https://books.google.ee/books?hl=en&lr=&id=s9QFCAAAQBAJ&oi=fnd&pg=PA1

&dq=alkaline+fuel+cell+efficiency&ots=q11HfO6AZQ&sig=g7qtDtycNj6gCPNWR

49jm2oWieg&redir_esc=y#v=onepage&q=alkaline fuel cell efficiency&f=false

(accessed Jun. 08, 2021).

[14] D. DeFelice, “NASA - Fuel Cells: A Better Energy Source for Earth and Space.”

[15] “ProQuest Ebook Central - Reader.”

https://ebookcentral.proquest.com/lib/tuee/reader.action?docID=1044921

(accessed Jun. 08, 2021).

[16] B. Ghorbani, M. Mehrpooya, and S. A. Mousavi, “Hybrid molten carbonate fuel cell

power plant and multiple-effect desalination system,” J. Clean. Prod., vol. 220,

pp. 1039–1051, May 2019, doi: 10.1016/j.jclepro.2019.02.215.

[17] A. Lanzini et al., “Dealing with fuel contaminants in biogas-fed solid oxide fuel cell

(SOFC) and molten carbonate fuel cell (MCFC) plants: Degradation of catalytic

and electro-catalytic active surfaces and related gas purification methods,”

Progress in Energy and Combustion Science, vol. 61. Elsevier Ltd, pp. 150–188,

Jul. 01, 2017, doi: 10.1016/j.pecs.2017.04.002.

[18] M. Mehrpooya, S. Sayyad, and M. J. Zonouz, “Energy, exergy and sensitivity

analyses of a hybrid combined cooling, heating and power (CCHP) plant with

molten carbonate fuel cell (MCFC) and Stirling engine,” J. Clean. Prod., vol. 148,

pp. 283–294, Apr. 2017, doi: 10.1016/j.jclepro.2017.01.157.

107

[19] M. Marefati, M. Mehrpooya, and M. B. Shafii, “A hybrid molten carbonate fuel cell

and parabolic trough solar collector, combined heating and power plant with

carbon dioxide capturing process,” Energy Convers. Manag., vol. 183, pp. 193–

209, Mar. 2019, doi: 10.1016/j.enconman.2019.01.002.

[20] A. Mehmeti, F. Santoni, M. Della Pietra, and S. J. McPhail, “Life cycle assessment

of molten carbonate fuel cells: State of the art and strategies for the future,” J.

Power Sources, vol. 308, pp. 97–108, 2016.

[21] S. V. M. Guaitolini, I. Yahyaoui, J. F. Fardin, L. F. Encarnacao, and F. Tadeo, “A

review of fuel cell and energy cogeneration technologies,” in 2018 9th

International Renewable Energy Congress, IREC 2018, May 2018, pp. 1–6, doi:

10.1109/IREC.2018.8362573.

[22] S. Wilailak et al., “Thermo-economic analysis of Phosphoric Acid Fuel-Cell (PAFC)

integrated with Organic Ranking Cycle (ORC),” Energy, vol. 220, p. 119744, Apr.

2021, doi: 10.1016/j.energy.2020.119744.

[23] “Phosphoric Acid Fuel Cells - an overview | ScienceDirect Topics.”

https://www.sciencedirect.com/topics/chemical-engineering/phosphoric-acid-

fuel-cells (accessed Jun. 09, 2021).

[24] “Platinum Electrocatalysts for Phosphoric Acid Fuel Cells | Johnson Matthey

Technology Review.” https://www.technology.matthey.com/article/26/3/118-

120/ (accessed Jun. 09, 2021).

[25] H. Vaghari, H. Jafarizadeh-Malmiri, A. Berenjian, and N. Anarjan, “Recent

advances in application of chitosan in fuel cells,” Sustain. Chem. Process., vol. 1,

no. 1, p. 16, 2013, doi: 10.1186/2043-7129-1-16.

[26] R. E. Rosli et al., “A review of high-temperature proton exchange membrane fuel

cell (HT-PEMFC) system,” Int. J. Hydrogen Energy, vol. 42, no. 14, pp. 9293–

9314, Apr. 2017, doi: 10.1016/j.ijhydene.2016.06.211.

[27] T. Zhang, P. Wang, H. Chen, and P. Pei, “A review of automotive proton exchange

membrane fuel cell degradation under start-stop operating condition,” Applied

Energy, vol. 223. Elsevier Ltd, pp. 249–262, Aug. 01, 2018, doi:

10.1016/j.apenergy.2018.04.049.

[28] D. Banham et al., “Ultralow platinum loading proton exchange membrane fuel

cells: Performance losses and solutions,” J. Power Sources, vol. 490, p. 229515,

108

Apr. 2021, doi: 10.1016/j.jpowsour.2021.229515.

[29] A. C. Fărcaş and P. Dobra, “Adaptive Control of Membrane Conductivity of PEM

Fuel Cell,” Procedia Technol., vol. 12, pp. 42–49, 2014, doi:

10.1016/j.protcy.2013.12.454.

[30] S. Hussain and L. Yangping, “Review of solid oxide fuel cell materials: cathode,

anode, and electrolyte,” Energy Transitions, vol. 4, no. 2, pp. 113–126, Dec.

2020, doi: 10.1007/s41825-020-00029-8.

[31] L. Fan, B. Zhu, P. C. Su, and C. He, “Nanomaterials and technologies for low

temperature solid oxide fuel cells: Recent advances, challenges and

opportunities,” Nano Energy, vol. 45. Elsevier Ltd, pp. 148–176, Mar. 01, 2018,

doi: 10.1016/j.nanoen.2017.12.044.

[32] R. M. Ormerod, “Solid oxide fuel cells,” Chemical Society Reviews, vol. 32, no. 1.

Royal Society of Chemistry, pp. 17–28, Dec. 18, 2003, doi: 10.1039/b105764m.

[33] E. D. Wachsman and K. T. Lee, “Lowering the temperature of solid oxide fuel

cells,” Science, vol. 334, no. 6058. American Association for the Advancement of

Science, pp. 935–939, Nov. 18, 2011, doi: 10.1126/science.1204090.

[34] K. Kendall and M. Kendall, High-Temperature Solid Oxide Fuel Cells for the 21st

Century: Fundamentals, Design and Applications: Second Edition. Elsevier Inc.,

2015.

[35] S. A. Saadabadi, A. Thallam Thattai, L. Fan, R. E. F. Lindeboom, H. Spanjers, and

P. V. Aravind, “Solid Oxide Fuel Cells fuelled with biogas: Potential and

constraints,” Renewable Energy, vol. 134. Elsevier Ltd, pp. 194–214, Apr. 01,

2019, doi: 10.1016/j.renene.2018.11.028.

[36] P. Arunkumar, M. Meena, and K. S. Babu, “A review on cerium oxide-based

electrolytes for ITSOFC,” Nanomater. Energy, vol. 1, no. 5, pp. 288–305, Sep.

2012, doi: 10.1680/nme.12.00015.

[37] D. Hart, S. Jones, and J. Lewis, “The Fuel Cell Industry Review 2020.”

[38] “OpenPose - Installation.” https://github.com/CMU-Perceptual-Computing-

Lab/openpose/blob/master/doc/installation/README.md#compiling-and-

running-openpose-from-source (accessed Jan. 06, 2021).

[39] X. Liu, K. Reddi, A. Elgowainy, H. Lohse-Busch, M. Wang, and N. Rustagi,

109

“Comparison of well-to-wheels energy use and emissions of a hydrogen fuel cell

electric vehicle relative to a conventional gasoline-powered internal combustion

engine vehicle,” Int. J. Hydrogen Energy, vol. 45, no. 1, pp. 972–983, Jan. 2020,

doi: 10.1016/j.ijhydene.2019.10.192.

[40] T. Wilberforce, A. Alaswad, A. Palumbo, M. Dassisti, and A. G. Olabi, “Advances

in stationary and portable fuel cell applications,” Int. J. Hydrogen Energy, vol. 41,

no. 37, pp. 16509–16522, Oct. 2016, doi: 10.1016/j.ijhydene.2016.02.057.

[41] “Electric generator - H2sys.” https://www.h2sys.fr/en/electric-generator/

(accessed Jun. 08, 2021).

[42] “GreenBox 2 | H2Planet - Re-evolution started - Hydrogen & fuel-cell experience.”

https://www.h2planet.eu/en/landing_page/greenbox_1 (accessed Jun. 08,

2021).

[43] “Product Center-Jiangsu Yanchang Sunlaite News Energy Co.,Ltd.”

http://en.sunlaite.com/product_show.php?id=35 (accessed Jun. 08, 2021).

[44] “Internal PowerUP Energy Technologies document,” Tallinn.

[45] “UP1K | PowerUP Energy Technologies.” https://www.powerup-

tech.com/products/up1k (accessed Jun. 09, 2021).

[46] “STM32H745xI/G Datasheet - production data,” no. STM32H745XI. 2019,

[Online]. Available:

https://www.st.com/resource/en/datasheet/stm32h745xi.pdf.

[47] “MC60&M66&M66 R2.0&M66-DSBT Application Note,” no. MC60. 2021, [Online].

Available: https://www.quectel.com/download/quectel_mc60m66m66-r2-0m66-

ds_bt_application_note_v1-3/.

[48] “Micron Serial NOR Flash Memory 3V, Multiple I/O, 4KB, 32KB, 64KB, Sector

Erase,” no. MT25QL512ABB. 2019, [Online]. Available: https://media-

www.micron.com/-/media/client/global/documents/products/data-sheet/nor-

flash/serial-nor/mt25q/die-rev-

b/mt25q_qlkt_l_512_abb_0.pdf?rev=0ef0faa5f7b645d7bc11c30bfd27505b.

[49] “SDR SDRAM MT48LC4M32B2 – 1 Meg x 32 x 4 Banks,” no. MT48LC4M32B2.

2016, [Online]. Available: https://media-www.micron.com/-

/media/client/global/documents/products/data-

sheet/dram/128mb_x32_sdram.pdf?rev=a4b9962d86784413b3cfa348b78a1360

110

.

[50] “SC7283 720x544 System-On-Chip Driver for 480RGBx272 TFT LCD | Datasheet,”

no. SC7283. 2018, [Online]. Available:

https://www.orientdisplay.com/pdf/SC7283.pdf.

[51] “STM32H745I-DISCO STM32H750B-DK Data brief,” no. STM32H745I-DISCO.

2019, [Online]. Available:

https://www.st.com/resource/en/data_brief/stm32h745i-disco.pdf.

[52] “EMC2301/2/3/5 datasheet.” Microchip, 2021.

[53] R. Fan, “SMBus Quick Start Guide,” 2012.

[54] “DRV8876 H-Bridge Motor Driver With Integrated Current Senseand Regulation.”

Texas Instrument, 2021.

[55] “UP200 | PowerUP Energy Technologies.” https://www.powerup-

tech.com/products/up200 (accessed Jun. 09, 2021).

[56] “STM32F427xx STM32F429xx datasheet.” ST, 2018.

[57] “SSD1322 Advance Information.” Solomon Systech Limited, 2010.

[58] “ACS770xCB.” ALLEGRO microsystems, 2019.

[59] “LTC4020.” LINEAR TECHNOLOGY, 2016.

[60] “LTC2944.” LINEAR TECHNOLOGY, 2017.

[61] E. White, Making Embedded Systems, First Edit. O’Reilly Media, Inc., 2011.

[62] “STM32CubeIDE - Integrated Development Environment for STM32 -

STMicroelectronics.” https://www.st.com/en/development-

tools/stm32cubeide.html#overview (accessed Jun. 09, 2021).

[63] “Eclipse desktop & web IDEs | The Eclipse Foundation.”

https://www.eclipse.org/ide/ (accessed Jun. 09, 2021).

[64] “Description of STM32F4 HAL and low-layer drivers.” ST, 2020.

[65] “FatFs - Generic FAT Filesystem Module.” http://elm-

chan.org/fsw/ff/00index_e.html (accessed Jun. 04, 2021).

111

[66] “Framebuffer | TouchGFX Documentation.”

https://support.touchgfx.com/docs/4.15/basic-concepts/framebuffer (accessed

Jun. 05, 2021).

