
THESIS ON INFORMATION AND SYSTEM ENGINEERING C35

Hybrid Built-in Self-Test

Methods and Tools for Analysis and
 Optimization of BIST

ELMET ORASSON

TUT
Press

TALLINN TECHNICAL UNIVERSITY
Faculty of Information Technology
Department of Computer Engineering
Chair of Computer Engineering and Diagnostics

Dissertation was accepted for the defense of the degree of Doctor of Philosophy
in Computer and Systems Engineering on 5. October, 2007

Supervisor: Prof. Dr. Raimund Ubar

Opponents: Prof. Einar Aas, Norwegian University of Science and
Technology (NTNU) in Trondheim, NORWAY

Prof. Bernd Straube, Fraunhofer Institute for Integrated
Circuits, Dresden, GERMANY

Commencement: October 24, 2007

Thesis is submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Engineering at Tallinn Technical University.
Hereby I declare that this doctoral thesis, my own original investigation and
achievement, submitted for the doctoral degree at Tallinn University of
Technology has not been submitted for any degree or examination.

/Elmet Orasson/

Copyright 2007 Elmet Orasson

ISSN 1406-4731
ISBN 978-9985-59-730-9

INFORMAATIKA JA SÜSTEEMITEHNIKA C35

Sisseehitatud Hübriidne Isetestimine

Meetodid ja vahendid analüüsiks
ning optimeerimiseks

ELMET ORASSON

TTÜ
Kirjastus

To my mother,

To my colleagues and friends

Abstract

Rapid advances in deep submicron and nanotechnologies, as well as in design
automation are enabling engineers to design more complex integrated circuits
(IC) and driving them toward new design paradigms like System-on-Chip (SoC)
and Network-on-Chip (NoC). Such a design style allows to reuse previous
designs and lead to shorter time to market and reduced cost. On the other hand,
SoC design philosophy makes external test increasingly difficult. Internal speed
of SoC is constantly increasing and the technology used in external testers is
always one step behind. Therefore Built-In Self-Test (BIST) has emerged as a
promising solution to the VLSI and SoC testing problem.

This thesis is dedicated to investigations and developments to improve the
efficiency and quality of BIST architectures. First, hybrid BIST architectures,
where pseudorandom test patterns are combined with deterministic test patterns,
were researched. Then, a new functional hybrid BIST approach was developed
where instead of pseudorandom test patterns the normal functional routines
carried out in digital systems are combined with deterministic test patterns. And
finally, a Design-for-Testability (DfT) technique was combined with BIST for
sequential circuits to achieve the needed test quality.

A method and algorithms were developed for fast calculation of the cost of
hybrid BIST. The cost model was used to find an optimal balance between
pseudorandom and deterministic test sets, and to perform the hybrid self-test
with minimum cost of both, time and memory, and without losing in test quality.
The functional hybrid BIST approach was investigated in the case of testing
microprogrammed data-paths in digital systems. A method was proposed to find
the trade-off between the functional test-routines and deterministic test parts.

A new generic functional fault model was proposed to increase the accuracy of
evaluating the fault coverage of given test sets, and as a consequence to improve
the quality of testing including BIST. The fault model allows to map the
physical transistor-level defects on the higher macro logic level which reduces
the complexity of fault simulation algorithms and helps to increase the speed of
test quality analysis.

To prove the efficiency of the developed new methods, a lot of software tools
and scripts were developed and integrated into a joint R&D and teaching
environment with the purpose to improve the teaching quality. The environment
is targeted to e-learning the topics like fault simulation, test generation, BIST,
and fault diagnosis in digital circuits. Experimental part of the work
demonstrated the feasibility of the developed theoretical ideas, and the
advantages compared to known approaches.

Keywords: Physical Defects, Fault models, Fault Simulation, Test Generation,
Pseudorandom Test, Deterministic Test, Built-In Self-Test, Fault Diagnosis.

Resümee

Kiire areng submikron- ja nanotehnoloogias ning elektroonikadisaini
automatiseerimine võimaldavad inseneridel projekteerida üha keerukamaid
integraalskeeme, mis on kokkuvõttes viinud uutele disainiparadigmadele nagu
“süsteem-kiibil” ja “võrk-kiibil”. Kiipsüsteemide kontseptuaalne sisu tähendab
eelnevalt projekteeritud moodulite korduvkasutamist, mis võimaldab
disainiprotsesside kiirendamist, kiiremat sisenemist turule ja väiksemaid
disainikulusid. Samas aga on süsteemide keerukuse kasv teinud traditsioonilise
välise testimise erakordselt raskeks. Kuna kiipsüsteemides töösagedus kiiresti
kasvab, siis on välised testrid testitavatest objektidest kiiruse mõttes alati sammu
võrra taga. Nendel põhjustel on ülisuurte integraalskeemide testimisprobleemi
lahendusena järjest enam hakanud levima sisseehitatud isetestimise
kontseptsioon.

Väitekiri on pühendatud istestivate arhitektuuride efektiivsuse ja kvaliteedi
uuringutele ja väljatöötlustele parandamisele. Esiteks uuriti ja töötati välja
hübriidseid isetestimislahendusi, kus pseudojuhuteste kombineeritakse
deterministlike testsignaalidega. Teiseks töötati välja uus funktsionaalne hübriid-
isetestimise kontseptsioon, kus pseudojuhutesti asemel kasutatakse süsteemi
enda funktsionaalseid signaale ning kombineeritakse neid deterministlike
testidega. Kolmandaks kasutati isetestimise kvaliteedi tõstmiseks ka testitavuse
parandamise meetodeid.

Töötati välja meetod ja algoritmid hübriid-isetestimise maksumuse
arvutamiseks. Uut hinnamudelit kasutati töös optimaalse vahekorra leidmiseks
pseudojuhutesti ja deterministliku testi vahel, minimeerides nii testimise aega
kui ka mälutarvet ette antud kitsendustel. Töötati välja optimeerimismeetodid ka
funktsionaalse hübriidtesti arhitektuuride jaoks.

Rikete simuleerimise täpsuse tõstmiseks ja testimise, s.h. ka
isetestimislahenduste kvaliteedi parandamiseks töötati välja uut tüüpi
funktsionaalne rikete mudel. Uus mudel võimaldab teisendada suvalisi
loogikaliselt kirjeldatavaid füüsikalisi defekte loogikatasandile ja seeläbi tõsta
rikete analüüsi produktiivsust digitaalskeemides.

Uute meetodite efektiivsuse tõestamiseks töötati välja terve hulk
tarkvaratööriistu, mis integreeriti ühtsesse keskkonda nii uurimistöö kui ka
õppetöö efektiivsuse suurendamiseks. Keskkonda on võimalik kasutada e-õppe
eesmärgil niisuguste disaini ja testi probleemide uurimisel ja omandamisel nagu
rikete simuleerimine, testide genereerimine, isetestimine ja rikete diagnoos
digitaalskeemides. Töö eksperimentaalosas, mille aluseks oli nimetatud
keskkond, õnnestus demonstreerida uute meetodite teostatavust ja suuremat
efektiivsust võrreldes seniste meetoditega.

Võtmesõnad: füüsikalised defektid, rikete mudelid, rikete simuleerimine, testide
genereerimine, pseudojuhutest, deterministlik test, isetestimine, rikete diagnoos.

Acknowledgements

When I started my studies at Tallinn University of Technology (TUT) I did not
even imagine I would finish these with Ph.D degree. I hoped to become a
diploma computer engineer instead. What really happened is a completely
different story – Raimund-Johannes Ubar was giving lectures covering digital
test issues and in one course I showed him a little program I had developed and
used to generate test sequences. For me it was just another tool to get job done
but he saw more potential behind it. This tool (called 'bist') is now part of Turbo
Tester package and is one key component in most of the experiments discussed
in this thesis. He and Margus Kruus were also the main characters behind the
fact I continued my studies.

Very special thanks to Raimund-Johannes Ubar. First, for leading me to this
interesting research area more than 10 years ago, and secondly, for being a major
motivator behind the completion of this thesis. Without his support it would
definitely have taken much longer.

Most of this work presented here is part of group efforts on different topics.
Therefore I would like thank:

Heinz-Dietrich Wuttke and his colleagues from TU Ilmenau who supported the
work on Java based Applets for Teaching Digital Test and on a special web-site
for hosting theoretical material, laboratory exercises and software for teaching
digital test courses.

Witold Pleskacz and his colleagues from Warzaw University of Technology who
provided the DefSim chip along with the accompanying measurement hardware
and supported the development of DefSim educational software.

Many thanks to Maili Markvardt for her suggestions, they helped much when
catching typos and improving overall readability. She was motivating me to
finish this thesis, also.

My mother who supported me in any way imaginable through all these years I
have spent at university.

I would also thank Tarmo Robal, Helena Kruus and all my friends and
colleagues not mentioned above

List of publications

1. R. Ubar, E. Orasson, H.-D. Wuttke. Interactive Teaching Software
“Introduction To Digital Test”. 45th International Conference, Ilmenau
(Germany), October 4-6, 2000, pp. 949-954.

2. R. Ubar, E. Orasson, J. Raik, H.-D. Wuttke. Combining Learning,
Training and Research in Laboratory Course for Design and Test. 7th
Baltic Electronics Conference, Tallinn, October 8-11, 2000, 221-224.

3. R. Ubar, G. Jervan, Z. Peng, E. Orasson, R. Raidma. Fast Test Cost
Calculation for Hybrid BIST in Digital Systems. Proc. of EUROMICRO
Symposium on Digital Systems Design, Warsaw, September 4-6, 2001,
pp. 318-325.

4. R. Ubar, E. Orasson, T. Evartson. Java Applet for Self-Learning of
Digital Test Issues. 13th EAEEIE Conference, York, Great Britannia,
April 8-10, 2002

5. R. Ubar. E. Orasson, H.-D. Wuttke. Internet-Based Software for
Teaching Test of Digital Circuits. 23rd Int. Conf. on Microelectronics.
Nis, Yugoslavia, May 12-15 2002, Vol.2, pp. 659-662.

6. R. Ubar, A. Jutman, E. Orasson, J. Raik, T. Evartson, H.-D. Wuttke.
Internet-Based Software for Teaching Test of Digital Circuits. In the
book "Microelectronics Education", Marcombo Boixareu Ed., 2002, pp.
317-320.

7. R. Ubar, E. Orasson, T. Evartson. Self-learning tool for digital test.
Proceedings of 2nd Int. Conf. “Distance learning – educational sphere
of the XXI century”, Minsk, Belarus, Nov. 26-28, 2002, pp. 36-38.

8. R. Ubar, E. Orasson. E-Learning tool and Exercises for Teaching Digital
Test. Proc.of 2nd IEEE Conf. on Signals, Systems, Decision and
Information Technology. Sousse, Tunisia, March 26-28, 2003, CIT-6,
pp.1-6.

9. R. Ubar, E. Orasson. E-Learning tool and Exercises for Teaching Digital
Test. Proc.of 2nd IEEE Conf. on Signals, Systems, Decision and
Information Technology. Summaries. Sousse, Tunisia, March 26-28,
2003, CIT-6, pp. 134.

10. M. Aarna, E. Ivask, A. Jutman, E. Orasson, J. Raik, R. Ubar, V.
Vislogubov, H.-D. Wuttke. Turbo Tester – Diagnostic Package for
Research and Training. J. of Radioelectronics and Informatics, No3 (24),
July – September, 2003, pp. 69-73.

11. S. Devadze, R. Gorjachev, A. Jutman, E. Orasson, V. Rosin, R. Ubar.
E-Learning Tools for Digital Test. In “Distance Learning – Educational
Environment of the XXI Century”, Minsk, 2003, pp. 336-342.

12. R. Ubar, N. Mazurova, J. Smahtina, E. Orasson, J. Raik.
HyFBIST: Hybrid Functional Built-In Self-Test in Microprogrammed
Data-Paths of Digital Systems. Int. Conference MIXDES, Szczecin,
June 24-26, 2004, pp. 497-502.

13. J. Raik, E. Orasson, R. Ubar. Sequential Circuits BIST with Status BIT
Control. Int. Conference MIXDES, Szczecin, June 24-26, 2004, pp.
507-510.

14. E. Ivask, A. Jutman, E. Orasson, J. Raik, R. Ubar, H.-D. Wuttke.
Research Environment for Teaching Digital Test. 49. Int. Conf. IWK,
Ilmenau, Germany, September 27-30, 2004, pp. 468-473.

15. H. Kruus, E. Orasson, T. Robal, R. Ubar. Investigating Defects in
Digital Circuits by Boolean Differential Equations. The 4th
International Conference “Distance Learning – Educational Sphere of
XXI Century” (DLESC’04), Minsk, November 10-13, 2004, pp.
432-435.

16. V. Vislogubov, A. Jutman, H. Kruus, E. Orasson, J. Raik, R. Ubar.
Diagnostic Software with WEB Interface for Teaching Purposes. Proc.
of the 9th Biennial Baltic Electronics Conference, Oct. 3-6, 2004,
Tallinn, pp. 255-258

17. A. Jutman, J. Raik, E. Orasson, R. Ubar. Overview of the Educational
Tools developed in REASON. Workshop on Research and Training
Action for System on Chip DesigN – REASON, Tallinn, May 21, 2005,
7 p.

18. R. Ubar, E. Orasson, J. Raik, H.-D. Wuttke. Teaching Advanced Test
Issues in Digital Electronics. 6th IEEE International Conference on
Information Technology Based Higher Education and Training. July
7-9, 2005, Santo Domingo, pp. S2B-5 – S2B-10.

19. R. Ubar, E. Orasson, J. Raik, H.-D. Wuttke. Teaching Advanced Test
Issues in Digital Electronics. Summary. 6th IEEE International
Conference on Information Technology Based Higher Education and
Training. July 7-9, 2005, Santo Domingo, pp. 46-47.

20. R. Ubar, G. Jervan, H. Kruus, E. Orasson, I. Aleksejev. Optimization of
the Store-and-Generate Based Built-in Self-Test. Info- ja
kommunikatsioonitehnoloogia doktorikooli IKTDK aastakonverentsi
kogumik. ISBN 9985-59-624-2. Jäneda, 12.-13. mai 2006, pp. 93-96.

21. R. Ubar, G. Jervan, H. Kruus, E. Orasson, I. Aleksejev. Optimization of
the Store-and-Generate Based Built-in Self-Test. Baltic Electronics
Conference. Laulasmaa, Oct. 2006, pp.199-202.

22. R. Ubar, A. Jutman, M. Kruus, E. Orasson, S. Devadze, H.-D. Wuttke.
Learning Digital Test and Diagnostics via Internet. International Journal
of Emerging Technologies in Learning. International Journal of Online
Engineering, Vol.3, No.1, pp. 1-9, 2007.

23. H. Kruus, G. Jervan, E. Orasson, R. Ubar. Optimization of Memory-
Constrained Hybrid BIST for Testing Core-Based Systems. IKTDK
2007 aastakonverents. Viinistu, Mai 11-12, 2007, pp.133-136.

24. G. Jervan, H. Kruus, E. Orasson, R. Ubar. Optimization of Memory-
Constrained Hybrid BIST for Testing Core-Based Systems. IEEE 2nd
International Symposium on Industrial Embedded Systems - SIES'2007.
Lisbon, Portugal, 4-6 July 2007.

25. G. Jervan, H. Kruus, E. Orasson, R. Ubar. Hybrid BIST Optimization
Using Reseeding and Test Set Compaction. Proc. of 10th EUROMICRO
Conference on Digital System Design - DSD 2007, Lübeck, Germany,
August 27 - 31, 2007.

Abbreviations

ATE Automated Test Equipment
ATPG Automated Test Pattern Generation/Generator
BCU BIST Control Unit
BILBO Built-in Logic Block Observer
BIST Built-In Self Test
CA Cellular Automata
CAD Computer Aided Design
CBET Combination of BIST and External Test
CLI Command Line Interface
CPU Central Processing Unit
CUT Circuit Under Test
DfT Design for Testability
HTTF Hard-To-Test-Faults
HyFBIST Hybrid Functional BIST
IC Integrated Circuit
IP Intellectual Property
ISCAS International Symposium on Circuits and Systems
ITRS International Technology Roadmap for Semiconductors
LBIST Logic BIST
LFSR Linear Feedback Shift Register
NoC Network-on-Chip
ORA Output Response Analyzer
PCB Printed Circuit Board
PPB Pseudorandom Pattern Block
PPB Pseudorandom Pattern Blocks
PRG Pseudorandom Generator
ROM Read-Only Memory
RPRF Random Pattern Resistant Faults
SAF Stuck-At Fault
SoC System-on-Chip
SWR-BIST Segment Weighted Random BIST
TAM Test Access Mechanism
TPG Test Pattern Generator
TRA Test Response Analyzer
VLSI Very Large Scale IC
WPS Weighted Pseudorandom Sequences

Table of Contents

1 Introduction..1
2 State-of-the-art...6

2.1 Fault models..6
2.2 Hybrid BIST methods...7
2.3 E-Learning in Digital Test...12

3 Defect Modelling in BIST...14
3.1 Modelling Defects by Boolean Differential Equations............................14
3.2 Mapping Physical Transistor Defects to Logic Level17
3.3 Mapping Interconnection Defects to Logic Level21
3.4 Conclusions ..24

4 Hybrid Built-In Self-Test..25
4.1 Principles of Hybrid BIST...25
4.2 Cost Factors for Hybrid BIST...27
4.3 Fast Procedure for Calculating Stored Test Patterns...............................31
4.4 The concept of the Method of Hybrid BIST with Reseeding..................34
4.5 Optimization of the Hybrid BIST with Reseeding..................................37
4.6 Experimental results..42

4.6.1 Optimization of the hybrid BIST...42
4.6.2 Optimization of the hybrid BIST with reseeding.............................45

4.7 Conclusions...49
5 Hybrid Functional Built-In Self-Test..50

5.1 Principles of Hybrid Functional BIST...50
5.2 General Scheme of Hybrid Functional BIST...52
5.3 Finding Trade-off Between Functional and Deterministic Test patterns 55
5.4 Experimental results..58
5.5 Conclusions...63

6 Sequential Built-In Self-Test..64
6.1 Principles of Sequential Built-In Self-Test..64
6.2 Test Coverage Metrics for Sequential Circuits..65
6.3 General Architecture of the BIST..66
6.4 Experimental Results..67
6.5 Conclusions...70

7 Environment for e-Learning in Digital Test...71
7.1 Applet “Introduction to Digital Test”...71

7.1.1 User Interface..72
7.1.2 Test Vector Generation...75
7.1.3 Fault Diagnosis...77
7.1.4 Research Training in BIST..79

7.2 DefSim – a real life defect simulation environment................................83
7.2.1 DefSim user interface..84
7.2.2 Teaching CMOS defects on DefSim...85

7.3 e-EDU student management system..86
7.3.1 e-EDU services...87

7.4 Conclusions...89
 Summary..90
 Bibliography...93
 Appendix...104

1 Introduction

According to the Moore’s law [26], the scale of integrated circuits (IC) has
doubled every 18 months. Today, very large scale ICs (VLSI) with many
millions of transistors are commonly used in computers and electronic
applications. This is a result of continuously decreasing dimensions (feature
size) of the transistors and interconnecting wires from tens of microns to tens of
nanometers. The reduction in feature size increases the probability that a
manufacturing defect in the IC will result in a faulty chip. Therefore, testing is
required to guarantee fault-free products.

Electronic testing includes IC testing, printed circuit board (PCB) testing, and
system testing at the various manufacturing stages, and also during system
operation in the field. Testing is used not only to find out faulty chips, boards or
systems, but also to improve the production yield by analyzing the causes of
faults. Periodic testing in the field is performed to ensure fault-free system
operation. Hence, VLSI testing is important to designers, product engineers, test
engineers, manufacturers, and end-users.

Because of the diversity of VLSI defects, and high complexity of VLSI devices
and systems it is difficult to generate tests for real transistor level physical
defects. Higher level and more uniform fault models are needed for generating
and evaluating a set of test patterns. Generally, a good fault model should satisfy
two criteria: it should accurately reflect the behavior of defects, and it should be
computationally efficient and simple. The stuck-at fault model has been used
already many decades as the basis for test generation and fault analysis.
However, there are many other defect types like transistor faults, also referred as
stuck-opens or stuck-shorts, open and short faults, different types of bridging
faults between wires, delay faults, crosstalk faults, pattern sensitivity and
coupling faults, analog faults etc. [50]. These faults are not well covered by the
commonly accepted stuck-at fault model. Therefore research is going on to find
better ways for modelling as well as describing existing physical defects.

The rapid advances in the areas of deep submicron and nanotechnologies, as
well as in design automation are enabling engineers to design more and more
complex integrated circuits. These developments are driving engineers toward
new design paradigms like System-on-Chip (SoC) and Network-on-Chip (NoC).
SoC is usually designed by embedding pre-designed complex functional blocks,

1

referred as cores, into one single die. Such a design style allows designers to
reuse previous designs and will lead to a shorter time to market and a reduced
cost. Testing of SoC, on the other hand, shares all the problems related to testing
modern deep submicron chips, and introduces also some additional challenges
due to the protection of intellectual property as well as the increased complexity
and higher density [17].

Test engineers usually have to develop test sets after the design is completed.
This requires a lot of time and effort that could be avoided if testing was
considered already during the early design phase to make the design better
testable.

As a result, a new research field was established called design for testability
(DfT). DfT techniques generally fall into the following three categories: ad hoc
DfT techniques, scan design techniques, and built-in self-test (BIST) techniques.

SoC design philosophy makes external testing increasingly difficult. Also, the
internal speed of SoC is constantly increasing and the technology used in
external automated test equipments (ATE) is always lagging one step behind.
Therefore, the built-in self-test has emerged as a promising solution to the VLSI
and SoC testing problem.

The requirement to integrate an increasing number of functions on a single chip,
giving rise to system-on-chip (SoC) designs, has made the problem of testing
them more difficult. Not only the fault models for various logic and memory
functions are diverse, there is also restricted observability and controllability for
individual embedded modules or cores in a SoC. This significantly impacts the
test cost and test quality of such SoCs. The cost of test is affected by many
factors like - test application time, independence on external tester infrastructure,
dedicated access to embedded IP, stress mode and normal mode test quality,
field test, etc., commonly addressed by BIST techniques [102].

BIST is a design for testability methodology aimed at detecting faulty
components in a system by incorporating test logic on-chip [50]. In BIST, a
portion of a circuit on a chip, board or system is used to test the digital circuit
itself. Depending on the tested circuit type Logic BIST and Memory BIST
techniques are used [50]. In this work, only Logic BIST is considered. In the
following text we skip the attribute “Logic” and use only the term “BIST”,
however, still meaning “Logic BIST”.

BIST was introduced already two decades ago [14, 73] to integrate a test pattern
generator (TPG) and an output response analyzer (ORA) in the VLSI device to
perform internal IC testing as illustrated in Fig 1-1.

2

 Test P attern Generator
 (TPG)

Circuit Under Test
 (CUT)

.

Output Response
Analyser (ORA)

.

BIST
Control Unit

Fig 1-1. Classical built-in self-test architecture

The TPG automatically generates test patterns for application to the inputs of the
CUT. The ORA automatically compacts the output responses of the CUT into a
signature. Specific BIST timing control signals are generated by the BIST
control unit for coordinating the BIST operation among the TPG, CUT and
ORA. The BIST Control Unit also provides pass/fail indication once the BIST
operation is complete. It includes comparison logic to compare the final
signature with an embedded expected (i.e. known “good”) signature.

In traditional BIST architectures, test pattern generation is mostly performed by
ad hoc circuitry, typically Linear Feedback Shift Registers (LFSR) [9], cellular
automata [71] or multifunctional registers like BILBO (Built-in Logic Block
Observer) [59]. These circuitries are used to generate test sequences for
exhaustive, pseudo-random, and pseudo-exhaustive testing. Exhaustive testing
always guarantees 100% single-stuck and multiple-stuck fault coverage
efficiency. On the other hand, exhaustive test can take too much time for
combinational circuits with a lot of inputs. Therefore, pseudo-random testing
[72] is often used for generating a subset of the exhaustive test. In this case, fault
simulation is needed to calculate the exact fault coverage.

There are a number of advantages to use BIST techniques like:
● no ATE is needed
● allows at-speed testing
● the cost is reduced due to the reduced test time, and tester memory

requirements.

3

However, there are also disadvantages associated with this approach, and related
either to long test or to the insufficient fault coverage. Many circuits contain
random-pattern-resistant faults which limit the fault coverage achieved by
pseudorandom test patterns alone. To overcome the mentioned disadvantages,
different modifications of BIST like hybrid BIST or improvements of BIST by
DfT techniques have been introduced.

In hybrid BIST, also called as mixed-mode BIST [50], the pseudorandom test is
combined with deterministic test data in different ways by using methods like
ROM compression [107], LFSR reseeding [8], embedding deterministic patterns
[67] and other methods discussed below in the next chapter. The task of
combining pseudorandom and deterministic test data leads to a difficult
combinatiorial problem of finding an optimal trade-off between pseudorandom
and deterministic test data or minimal test cost under given constraints.

These optimization tasks are also very closely related to another NP-complete
task of generating optimized deterministic test sets. The simplest approach to
hybrid BIST is to perform top-up automated test pattern generation (ATPG) for
the faults not detected by pseudorandom BIST. It helps to obtain a
supplementary subset of deterministic test patterns that “top-up” the fault
coverage to the desired level and then store this part of the test set directly on the
tester. This desired level of fault coverage should be reached at minimal test
cost.

The work under this thesis was devoted to development of methods and
algorithms of finding optimal trade-offs between pseudorandom and
deterministic test parts in the hybrid BIST under different constraints.
Investigation of the problem how to use DfT to improve the quality of BIST
solutions was also one of the research topics of this work. Both of these research
topics were closely related to the tasks of deterministic test generation and fault
simulation. In such a way a very broad scope of test problems had to be covered.
Consequently, to carry out all the investigations in this thesis, a lot of tools had
to be developed or accommodated and integrated into different workflows for
performing experimental proof of feasibility or efficiency of the proposed
algorithms and methodological solutions.

This research work also involved students were in form of tasks for course or
diploma works. The experience of working with students gave an idea of setting
up an e-learning environment presenting tools for modelling the processes of test
generation, fault simulation, pseudorandom test pattern generation, fault
diagnosis, BIST cost estimation, BIST quality evaluation and hybrid BIST
optimization.

4

Our society is becoming increasingly dependent on computing systems. This
dependency is especially felt upon the occurrence of failures in systems. That is
the reason why design for dependability and test are becoming more and more
important in all the life periods of electronic systems, and therefore, these issues
should be considered also in teaching tomorrows system engineers. Students and
young engineers should be trained on integrating design and test solutions.
Teaching in this domain should be facilitated by using integrated CAD tools that
support design verification, testability analysis, design for testability, test
generation, fault simulation, built-in self-test, fault diagnosis and fault tolerance.

Tools developed for the research were also integrated into an e-Learning and
research environment as means for improving digital test teaching at technical
universities in the field of hybrid BIST. This can be regarded as a side-effect of
the experimental research and should help to prove the feasibility and
correctness of new ideas presented here.

5

2 State-of-the-art

2.1 Fault models

Testing and diagnosis of digital electronics systems have faced a lot of problems
produced mainly by the complexity of systems. The efficiency of test generation
(quality of tests, speed of test generation) is highly dependent on the system
description and chosen fault models.

Many fault models have been proposed, like:
● transistor stuck-opens and stuck-shorts
● gate open and short faults
● different types of bridging faults between wires
● delay faults
● crosstalk faults
● pattern sensitivity and coupling faults
● analog faults, etc [50, 59]

Unfortunately, no single fault model accurately reflects the behavior of all
possible defects. Often, a combination of different fault models is used, making
test generation, fault analysis and test quality evaluation difficult. As a
compromise, simple gate-level stuck-at fault model has been chosen as a
representative fault model for all possible physical defects, and it has been used
for decades in the industry as the target for test generation and as the unit of
measure in test quality evaluation.

Since traditional low-level test generation methods and tools for complex VLSI
systems have lost their importance, other approaches based mainly on
functional, behavioral, or hierarchical methods are gaining more and more
popularity [15, 98]. The advantage of hierarchical test generation approaches
compared to the functional ones lies in the possibility of constructing test plans
at higher functional levels and modeling faults at lower levels.

Conventional low-level fault modeling methods use logic gate level
representations of digital circuits and stuck-at-0/stuck-at-1 fault (SAF) model.
The rather popular SAF model in test quality estimation has not withstood the
test of time. It has been shown that high SAF coverage cannot guarantee high
quality of testing, for example, for CMOS integrated circuits [43, 44, 109]. The

6

reason is that the SAF model ignores the actual behavior of digital circuits
implemented as CMOS integrated circuits, and does not adequately represent the
majority of real IC defects and failure mechanisms.

Physical defects occurring in real-life circuits often do not manifest themselves
as stuck-at faults. Moreover, the types of faults that can be observed in a real
gate depend not only on the logic function of the gate, but also on its physical
design. Although these facts are well known, in engineering practice they are
usually ignored. A layout-based test generation technique proposed in [74] is
limited to current testing methodology. Another work [62] treats the
probabilities of defects in an oversimplified way.

To improve the test quality, there is a need to replace abstract fault models like
SAF with more realistic defect models.

In this work, a uniform fault model for representing physical defects in
components of digital circuits is introduced. Physical defects are modeled as
parameters in generic Boolean differential equations. Solutions of the equations
give the conditions at which defects are locally activated. The defect activation
conditions are used as functional fault models on the logic level for fault
simulation purposes.

Using the proposed new functional fault model improves the exactness of test
quality evaluation in the BIST design methods developed in this thesis.

2.2 Hybrid BIST methods

Rapid advances of the microelectronics technology in recent years have brought
new possibilities to the design and manufacturing of integrated circuits (ICs)
[103]. Nowadays many systems are designed by embedding pre-designed and
pre-verified complex functional blocks, usually referred as cores, into one single
die. Such core-based design technique has led to increased design productivity,
but at the same time it has introduced additional test-related problems. These
additional testing problems, together with the test problems induced due to the
complexity and heterogeneous nature of such systems-on-chip (SoC), pose great
challenges to the SoC testing community [115].

Typically, a SoC consists of microprocessor cores, digital logic blocks, analogue
devices, and memory structures [17]. These different types of components were
traditionally tested as separate chips by dedicated automatic test equipment of
different types. Now they must be tested all together as a single chip either by a

7

super tester, capable of handling different types of cores and is very expensive,
or by multiple testers, which is very time-consuming due to the time of moving
from one tester to another. Hence, philosophy of SoC design makes external
testing increasingly difficult. Also, the internal speed of SoC is constantly
increasing and the technology used in external automated test equipments (ATE)
is always lagging one step behind.

For the reasons described above, the Built-In Self-Test (BIST) has emerged as a
promising solution to the VLSI and SoC testing problem. BIST is a DfT
methodology aimed at detecting faulty components in a system by incorporating
test logic on-chip [115].

Another key issue to be addressed for SoC testing is the implementation of test
access mechanisms on the chip. For traditional system-on-board design, direct
test access to the peripheries of the basic components, in the form of separate
chips, is usually available. For the corresponding cores, embedded deeply in a
SoC, such access is impossible. Therefore, additional test access mechanisms
must be included in a SoC to connect the core peripheries to the test sources and
sinks, which are the SoC pins when testing by an external tester.

When using BIST the test access costs can be substantially reduced by putting
test sources and sinks right next to the cores to be testes. This is one way of
dealing with the discrepancy between rapidly increasing SoC and slow tester
speeds. The testers have hard time to match typical SoC clock frequencies
because of the simple fact - testers are built on previous technology level
whereas SoCs represent the new level. The introduction of BIST mechanisms in
a SoC will also improve the diagnostic ability and on-the-field/on-the-fly test
capability, essential for applications where regular operation and maintenance
testing is important [17].

One major concern with implementing the BIST is hardware overhead
minimization, since test pattern generation and application is performed by
additional on-chip harware. Unlike stored pattern BIST, which requires high
hardware overhead due to required memory devices for storing precomputed test
patterns, a pseudorandom BIST utilizes pseudorandom pattern generators such
as linear feedback shift registers (LFSRs) [9], cellular automata (CA) [71] or
multifunctional registers like BILBO (Built-in Logic Block Observer) [59] and,
therefore, requires very little hardware overhead. However, LFSR or CA
generated random patterns often require unacceptably long test sequences (and
increasing test length means longer application time) for achieving high fault
coverage for CUTs that contain many random pattern resistant faults (RPRFs). It
has been shown that only a few RPRFs are often determining the random pattern
test length [72], required for achieving high fault coverage. Usually, complex

8

circuits contain many RPRFs [16] which in turn limits the fault coverage that
can be achieved with pseudorandom BIST approach.

One method for improving the fault coverage for a test-per-scan BIST is to
modify the CUT by either inserting test points [68] or by redesigning it to
improve the fault coverage [114]. The drawback of these techniques is that they
generally add additional logic to the circuitry, degrading system performance.

Some other approaches are using weighted pseudorandom sequences (WPS) for
BIST fault coverage improvement. In these approaches additional weight control
logic is needed to change the probabilities of each bit in the test sequence. In
weighted random pattern testing [29, 42, 45, 72], the outputs of test pattern
generator (TPG) are biased to generate test sequences that have non-uniform
signal probabilities to increase detection probabilities of RPRFs that escape
pseudorandom test sequences which have a uniform signal probability of 0.5.
Random pattern generators proposed in [69, 108] use Markov sources to exploit
spatial correlation between state inputs that are consecutively located in the scan
chain.

The weight logic can be placed either at the input of the scan chain [61] or in the
individual scan cells themselves [8]. The disadvantage of the WPS approach is
that the weight sets have to be stored on chip and additional control logic is
required to switch between different weights. Therefore, the hardware overhead
may become large.

A third method for BIST fault coverage improvement is to use dual stage test
application. In the first test phase LFSR generated pseudorandom patterns,
detecting the random pattern testable faults. Thereafter some additional
deterministic test patterns are applied for detecting remaining random pattern
resistant faults. This approach is called also as “mixed mode” BIST [50]. This
alternative might be as effective as WPS in terms of test length but requires
substantially less additional hardware.

In case of many stored deterministic patterns this may cause large hardware
overhead. Overcoming this drawback of hybrid BIST requires additional,
different methods for compressing deterministic test data like ROM
compression, LFSR reseeding, embedding deterministic patterns, etc.

The simpliest way for generating deterministic test patterns on-chip is to store
them in a Read-Only Memory (ROM). The disadvantage of this approach is
related to the size of required ROM which can be unacceptably high in case of
very complex CUTs. Several ROM compression techniques have been proposed
for reducing storage size [25, 60, 90, 107].

9

The idea of LFSR reseeding is to compute a set of seeds, that when expanded by
the LFSR, will produce the pre-generated deterministic test cubes. So, instead of
storing complete test sequence, a much smaller amount of LFSR seeds is
needed. These seeds can be computed by linear algebra as described in [8], for
example. Because the seeds are much smaller than the test patterns, they also
require less ROM storage.

One problem is that for an LFSR with a fixed characteristic (feedback)
polynomial, it may not always be possible to find the proper seeds that can lead
to the needed fault coverage. This problem was solved in [96, 97] by introducing
a multi-polynomial LFSR where a possibility for choosing between different
feedback polynomials was introduced when encoding a test cube.

Techniques for further reductions in storage of deterministic test patterns can be
achieved by using variable-length seeds [41, 65], a special ATPG algorithm
using concatenation of test cubes [94], folding counters [30], and seed encoding
[1].

Another approach for mixed-mode BIST is to embed the deterministic test
patterns in the pseudo-random sequence. One possible way to do this is to
transform the “useless” pseudorandom test patterns which detect no new faults
into the needed deterministic patterns. This idea has been implemented by
adding mapping logic between the scan chains and the CUT [67], and by adding
the mapping logic at the inputs to the scan chains to either perform bit-fixing
[66] or bit-flipping [24, 33] techniques. The drawback of the described
approaches is that the BIST architecture is extremely tailored to the specific
circuit, and any change in the test set requires re-synthesis of the complete BIST
hardware.

For manufacturing fault coverage enhancement where an external tester is
present, deterministic data from the tester can be used to improve the fault
coverage. The deterministic patterns stored in the external tester are coded in a
compressed form and the BIST hardware inside the chip is then used to
decompress it. Such techniques are described in [2, 12, 48, 76].

In a SoC, test scheduling can be done to overlap the BIST run time with the
transfer time for loading the deterministic test patterns from the tester [22, 57].

Although the attainment of high fault coverage with practical lengths of test
sequences is still one major concern of BIST techniques, reducing switching
activity has become another important objective. It has been observed that
switching activity during test application is often significantly higher than that

10

during the normal operation [111], therefore special caution must be exercised
not to overload the CUT. In [100] a low hardware overhead TPG is presented for
scan based BIST that can reduce switching activity in CUTs during BIST and
also achieve very high fault coverage with a reasonable length of test sequence.
In [11] a segment weighted random BIST (SWR-BIST) technique for low power
testing is presented. The technique divides the scan chain into segments of
different weights whereas heavily weighted segments have more biased
probability than lightly weighted segments, and heavily weighted segments are
placed closer to the end of scan chain than the lightly weighted segments, so the
scan-in transitions are minimized.

In [22, 88], a trade-off problem between the cost of memory or power
consumption and the test length in hybrid BIST, which consists of two parts
pseudorandom test and deterministic test, was investigated.

In [101] the problems of optimizing a combined BIST and Automated Test
Equipment (ATE) process are considered to meet the high fault coverage while
preserving acceptable costs. For digital systems, the costs associated with a
combined BIST/ATE testing process mainly consist of the following
components:

● the cost due to the BIST area overhead and
● the cost due to the overall test time.

In general, BIST is faster than ATE, but it can provide only a limited fault
coverage. For attaining a higher fault coverage from BIST, additional area (at a
corresponding higher cost) is required. However, a higher fault coverage can
usually be achieved from ATE, but excessive use of ATE results in additional
test time (as an increased cost). The fault coverage of BIST and ATE plays a
significant role, because it can affect the area overhead in BIST and the test time
in BIST/ATE. In [101] a novel numerical method is proposed to find the
optimized fault coverage by BIST and ATE so that minimal cost can be
achieved.

A lot of papers have been devoted to using BIST for diagnosis purposes [5, 10,
27, 32, 38, 53, 52, 87]. Some papers are concentrating on BIST targeting
specific fault models like [113] for delay faults and [47] for interconnection
faults testing. In [37, 99, 110] BIST dependability issues are researched.
Hierarchical BIST methods are considered in [6, 34]. In [6] a complete
hierarchical framework is presented for BIST scheduling, data delivering, and
diagnosis of a complex system including embedded cores with different test
requirements. In [34] a hierarchical BIST method is proposed for testing a SoC
with a global BIST controller, multiple local BIST circuits for each macro, and
data/control paths to perform the SoC test operations.

11

The task of optimizing hybrid BIST leads to a difficult combinatorial problem of
finding optimal trade-offs between pseudorandom and deterministic test data, or
minimizing the test cost under given constraints. As the complexity of design
and fabrication highly integrated systems on chip rapidly increases, the
optimization of hybrid BIST remains a major concern of BIST techniques.

The main research objective in this thesis is to investigate and develop
alternative methods for optimizing hybrid BIST by finding optimal balance
between pseudorandom and deterministic test pattern sets, whereas the
deterministic patterns may be used as seeds for LFSR. The optimization methods
and algorithms are based on the store-and-generate technique as the general
scheme with special cases and the optimization criteria is to minimize the test
cost at given constraints on the fault coverage and the cost of the memory that is
needed for storing deterministic test data.

2.3 E-Learning in Digital Test

The increasing complexity of digital systems accompanied by entering the era of
Systems-in-Chips (SoC) and Networks-on-Chips (NoC) has made testing and
fault diagnosis in electronic systems one of the most complicated and time-
consuming problems in electronics design and manufacturing. Because of the
very high cost of testing electronic products and the increasing complexity of the
electronics systems, the importance of DfT is growing steadily.

Recent reviews have discovered that most VLSI and system designers know
little about testing and design for testability (DfT) of today’s digital systems
because of the gap in education. In the today’s university curricula test issues are
usually neglected: students learn how to design electronic systems but not how
to test them. The importance of test and fault diagnosis as a teaching objective is
underestimated in traditional engineering education [106].

In a design course test is usually taught as a subtopic of minor importance an is
generally taught as an independent discipline only when it is a “hobby horse” of
a professor. There are two reasons for that. The first one is because the test is
interpreted as a nonproductive (read: not important) issue compared to design.
The second one can be explained by so called Tenhunen’s Law which claims
that the number of courses that should be taught at universities doubles in a
decade [28]. To select courses for curricula is a difficult issue. And often a test
course as a component of engineering education is left outside the curricula
because of tough competition between courses.

12

On the other hand, the topics like Testing and Fault Diagnosis are not only issues
related to Electronics Systems, they have an important didactive role for the
engineering education in general [70]. First, testing is a method to learn how to
ask right questions, second, it develops the ability to analyze cause-effect
relationships, and third, diagnosis is looking for answers to the questions like
“what is the reason of that what happened?”

Logic world (computers, digital circuits and systems, SoC) because of its
inherent logical complexity could be the best objective for learning the concepts
of testing and diagnostic analysis for any type of system in general. The real
targets of education are: creativity, critical thinking, problem solving skills.
Therefore, learning testing at a university should be research-oriented.

Moving towards multi-million gate System-on-Chips (SoC) makes embedded
test strategies via Built-In Self-Test (BIST) architectures mandatory. It is critical
to ensure that students will be equipped with skills in DfT and BIST, and will
get hands-on experience in solving test problems in digital systems like SoC.

In this thesis a teaching/learning environment is presented with the purpose to
increase the teaching quality in the field of electronics DfT by hands-on training
exercises. The problems of test generation, fault simulation, fault diagnosis and
optimized BIST design are covered. The environment supports basic learning
and advanced research oriented laboratory training. The interactive modules are
focused on easy action and reaction, learning by doing, a game-like use, and
encouraging students critical thinking, problem solving, and creativity.

13

3 Defect Modelling in BIST

As the complexity of digital systems continues to increase, the traditional low
level methods for test generation and fault simulation have become obsolete.
Other approaches based mainly on higher level functional and behavioral
methods are gaining more popularity.

However, the trend towards higher level modeling moves us even more away
from the real life of defects and, hence, from accuracy of testing. To handle
adequately defects in deep-submicron technologies, new fault models and
defect-oriented test methods should be used. On the other hand, the defect-
orientation is increasing even more the complexity.
To get out from the deadlock, the two opposite trends – high-level modeling and
defect-orientation – should be combined into hierarchical approaches. The
advantage of hierarchical approaches compared to high-level functional
modeling lies in the possibility of constructing test plans on higher levels, and
modeling faults on more detailed lower levels.

In this Chapter a new fault model is proposed to map the physical defects from
the very low transistor level to gate or higher macro-gate level. The results of
this chapter are published in [35, 82, 91].

3.1 Modelling Defects by Boolean Differential Equations

In the following, an approach is presented to model physical defects by generic
Boolean differential equations with the goal to map them from physical level to
logic level. A new physical defect oriented fault model is defined on that basis
called functional fault model.

Consider a Boolean function y= f x1 , x 2 , , xn implemented by an
embedded component C in a circuit. Introduce a Boolean variable d for
representing a given physical defect in the component, which may affect the
value y by converting the Boolean function f into another function

y= f d  x1 , x2 , , x n

where in fact, some of the arguments xi can fall out, simplifying in that way
the function because of the fault.

14

For the block C, let us introduce a generic parametric function

y*= f * x1 , x2 , , x n , d =d f ∨d f d (3-1)

as a function of a defect variable d, which describes the behavior of the
component simultaneously for both possible fault-free and faulty cases. This
could be written in a different manner:

y*={ f , if d=0  faultfree
f

d
, if d=1  faulty 

 (3-2)

 The solutions of the Boolean differential equation

W d
=
∂ y*

∂d
=1 (3-3)

describe the conditions which activate the defect d on a line y. The parametric
modeling of a given defect d by equations (3-1) and (3-3) allows us to use the
constraints W d=1 , either in defect-oriented fault simulation, for checking if
the condition (3-3) is fulfilled, or in defect-oriented test generation, to solve the
equation (3-3) when the defect d should be activated and tested.

To find W d for a given defect d we have to create the corresponding logic
expression for the faulty function f d either by logical reasoning, by carrying
out directly defect simulation, or by carrying out real experiments to learn the
physical behavior of different defects.

Example 1.

Let us have a transistor circuit in Fig. 3-1 which implements the function
y=x1 x 2 x3∨x 4 x5 . A short defect as shown in Fig. 3-1 changes the function of

the circuit as follows: yd= x1∨ x4∧ x2 x3∨x5 . Properties of Boolean
differential allow removing extra inversion from the given formulas.

15

Thus, using the defect variable d for the short, we can create a generic
differential equation for this defect and simplify the created expression as
follows:

∂ y*

∂d
=
∂ [x1 x 2 x3∨x 4 x5d∨ x1∨x4∧ x2 x3∨x5d]

∂d
=

=x1 x2 x4 x5∨ x1 x3 x4 x5∨x1 x2 x3 x 4 x5=1

From the equation three possible solutions follow: T = {10x01, 1x001, 01110}.
Each of them can be used as a test pattern for the given short. On this contra-
example, it is easy to show the inadequacy of the stuck-at fault (SAF) model for
testing the transistor level faults. For example, the set of five test patterns 1110x,
0xx11, 01101, 10110, 11010 which test all the stuck-at faults in the circuit does
not include any of the possible test solutions for detecting the short from the set
T.

y

x
1

x
2

x
3

x
4

x
5

Short

Fig. 3-1. Transistor circuit with a short

Note, that for the same purposes of finding the test for the defect d we could
solve also directly the equation

f ⊕ f d= x1 x2 x 3∨x 4 x5⊕ x1∨x4 x2 x3∨x5=1 (3-4)

without introducing the defect variable d. However, solving the equation (3-3)
will be much easier than (3-4) because of simplification possibilities resulting
from specific properties of Boolean differentials [4].

16

3.2 Mapping Physical Transistor Defects to Logic Level

The described method represents a general approach to map an arbitrary physical
defect onto a higher (in this case, logic) level. By the described approach an
arbitrary physical defect in a component can be represented by a logical
constraint Wd = 1 to be fulfilled for activating the defect (Fig. 3-2).

The event of erroneous value on the output y of a functional component can be
described as dy = 1, where dy means Boolean differential. A functional fault
representing a defect d can be described as a couple (dy, Wd). At the presence of
a physical level defect d, we will have an higher level erroneous signal dy = 1
iff the condition Wd = 1 is fulfilled.

Component

F(x
1
, x

2
, ... , x

n
)

Activated by Wd path

Defect

Fig. 3-2. Modelling a physical defect by a logic constraint

From another point of view, the equation (3-3) can be interpreted as a mapping
of a physical defect d from the transitor level to the logic level as an erroneous
change of a logic value dy = 1 by means of fulfilling the logic condition Wd = 1.
The following examples will show the feasibility of using Boolean differential
equations for mapping faults from physical transistor level to the logic level.

Example 2.

Transistor level stuck-on faults. The behavior of the transistor level NOR gate
depicted in Fig. 3-3 cannot be described strictly logically.

17

Stuck-on

x1 x2

Y

VDD

VSS

x1

x2

Conducting path for “10”

RN

RP

Stuck-on

x1 x2

Y

VDD

VSS

x1

x2

Conducting path for “10”

RN

RP

Fig. 3-3. Stuck-on fault in the transistor NOR gate

The input vector “10” produces a conducting path from VDD to VSS, and the
corresponding voltage at the output node Y will not be equal to either VDD or VSS

but will instead be a function of the voltage divider formed by the channel
resistances of the conducting transistors:

V Y=
V DD RN

RPRN 

Depending on the ratio of these resistances along with the switching thresholds
of the gates being driven by the output of the faulty gate y, the output voltage of
the faulty gate may or may not be detected at a primary output. This ambiguous
value on the gate output will be denoted by introducing the variable Z. Faulty
function of the gate can then be represented as follows:

yd=x1 x2∨x1 x2 Z

If x1 x2=1 then yd=Z Using now the expressions (3-1) and (3-3) we get:

y*=d  x1∨x 2∨d  x1 x2∨x1 x2 Z 

W d
=
∂ y *

∂d
=x 1 x2 Z=1

From that it follows that the condition to activate the defect is x1=1, x 2=0

18

Example 3.

Transistor level stuck-open faults. For the transistor stuck-open fault of the NOR
gate in Fig. 3-4, there will be no path from the output node to either VDD or VSS

for some input patterns. As a result, the output node will retain its previous logic
value. This creates a situation where a combinational logic gate behaves like a
dynamic memory element.

Stuck-off (open)

x1 x2

Y

VDD

VSS

x2

No conducting path
from VDD to VSS for “10”

x1

Stuck-off (open)

x1 x2

Y

VDD

VSS

x2

No conducting path
from VDD to VSS for “10”

x1

Fig. 3-4. Stuck-off (open) fault in the transistor NOR gate

The faulty function of the gate is: yd=x1 x2∨x1 x2 y ' where y’ corresponds to
the output value stored at the output of the faulty gate. Using now the
expressions (3-1) and (3-3) we get:

y*=d  x1∨x 2∨d  x1 x2∨x1 x2 y ' 

W d
=
∂ y *

∂d
=x 1 x2 y '=1

From that it follows that the condition to activate the defect is
x1=1, x 2=0, y '=1 . In other words, for testing the fault we need a test

sequence of two patterns: “00” to get the value 1 on the output, and then “11”.

19

Some examples of the conditions Wd for different type of gate-level defects
(where stuck-at-fault (SAF) is a particular case) are given in Table 3-1 (here xk is
the observable variable, and x’k is the variable at the previous time moment).

Table 3-1. Examples of representing typical gate-level faults by the condition Wd

Defect Conditions Wd

1 SAF xk≡0 xk=1

2 SAF xk≡1 xk=0

3 Short between xk and xl xk=1, xl=0

4 Exchange of lines xk and xl xk=1, xl=0 ;
xk=0, xl=1

5 Delay fault on the line xk xk=1, xk
,=0 ;

xk=0, xk
,=1

20

3.3 Mapping Interconnection Defects to Logic Level

Consider now a component C representing a Boolean function
y= f x1 , x 2 , , xn embedded in an environment given by a subset of lines
E c= xn1 , , x p . Introduce the same Boolean variable d for representing

physical defects in the subcircuit (C,Ec), given by the block C with its
neighborhood Ec, which may affect on the value y. Let the defect d convert the
Boolean function f into another function

 y= f d  x1 , x2 , , x n , xn1 , , x p 

Introduce for modelling physical defects related to the subcircuit (C,Ec) a
generic parametric function

y*= f * x1 , x2 , , x n , xn1 , , x p , d =d∧ f ∨d∧ f d 

as a function of a defect variable d, which describes the behavior of the
subcircuit simultaneously for both, fault-free and faulty cases. For the faulty case
the value of the defect variable d as a parameter is equal to 1, and for the fault-
free case d = 0. In other words, y* = f d if d = 1, and y* = f if d = 0. The
solutions of the Boolean differential equation (3-3) describe the conditions
which activate the defect d on a line y.

Example 4.

A short between two lines xk and xl in the circuit (Fig. 3-5). The faulty function
of xk in the case of the defect d in accordance to the wired-AND fault model can
be represented as .

Introduce now a generic parametric function

xk
*= f  xk , x l ,d =d xk∨d xk

d=d x k∨d x k xl 

21

xk

xl

x*k
d

xk

xl

x*k
d

Fig. 3-5. A bridging fault

as a function of a defect variable d, which describes the behavior of the
interconnection network simultaneously for both, fault-free and faulty cases. The
solution of the Boolean differential equation

W d
=
∂ y *

∂d
=x k kl

describes the conditions (constraints) which activate the fault d on a line xk (Fig.
3-5). The condition means that in order to detect the short between lines xk and
xl we have to assign to xk the value 1 and to xl the value 0.

Example 5.

A short between two lines xk and xl in the circuit which creates a
feedback loop. A circuit with such a loop and its equivalent faulty circuit
corresponding to the wired-AND fault model is depicted in Fig. 3-6.

The generic parametric function for describing the behavior of the circuit
simultaneously for both, fault-free and faulty cases has the following form:

y*=d x 1 x 2∨ x3∨d  x1 x2 y '∨x3=x1 x2 d∨y '  x3

22

x1

x2

x3

y&
&

x1

x2 x3

y&
&

&

Equivalent faulty circuit:

Bridging fault causes a
feedback loop:

x1

x2

x3

y&
&

x1

x2 x3

y&
&

&

Equivalent faulty circuit:

Bridging fault causes a
feedback loop:

Fig. 3-6. Bridging fault with feedback loop

The solution of the Boolean differential equation

W d
=
∂ y*

∂d
=x 1 x2 x3 y '=1

describes the conditions (constraints) which activate the fault d on a line y (Fig.
3-6). The apostrophe at y means that the value of y belongs to the previous time
moment. The condition W d=x1 x2 x 3 y '=1 means that a sequence of two
patterns is needed for the testing of this short. First, we have to set y=0 , by
assigning x3=0 for example, then we have to apply the pattern

x1=1, x 2=1, x3=1 .

From this example we see that the constraints for activating a fault may be
spread over different time moments, and represent a sequences of patterns. We
see also that the method for describing faults by generic Boolean differential
equations allows us directly to attack the problem of testing so called ”sequential
faults” which convert combinational circuits into sequential ones, or which
increase the number of states in sequential circuits. Test generators which are
able to work with such faults are missing.

The functional fault model described as a couple (dy, Wd) can be regarded first,
as a method of mapping arbitrary physical defects onto the logic level, and
second, as a universal method of fault modeling in hierarchical approaches to
test generation and fault simulation.

The conditions Wd for activating defects d can be used as constraints at the
higher (logical or register transfer) level either for fault simulation or for test
pattern generation without paying attention to the physical reasons of defects.

23

3.4 Conclusions

1. An approach is presented to map physical defects in digital circuits and
systems from transistor level to logic level for test generation and fault
simulation purposes.

2. For modelling physical defects generic Boolean differential equations
were introduced which allow to map the physical faults from lower
physical level to higher logic level.

3. Different transistor level defects were analyzed to show that this way of
mapping is general and feasible.

4. A new fault model was defined on that basis, called functional fault
model.

5. The functional fault model can be regarded as a uniform interface for
mapping faults from a given arbitrary level to the next higher level.

24

4 Hybrid Built-In Self-Test

In this chapter a hybrid BIST solution is developed for testing systems-on-chip
(SoC), which combines pseudorandom test patterns with stored precomputed
deterministic test patterns. A procedure is proposed for fast calculation of the
cost of hybrid BIST at different lengths of pseudorandom test to find an optimal
balance between test sets, and to perform core test with minimum cost of both,
time and memory, and without losing in test quality. Compared to the known
approaches, based on iterative use of deterministic ATPG for evaluating the cost
of stored patterns, in this paper a new, extremely fast procedure is proposed,
which calculates costs on a basis of fault table manipulations. Experiments on
the ISCAS benchmark circuits show that the new procedure is about two orders
of magnitude faster than the previous one.

The results of this chapter are published in [21, 20, 83, 84].

4.1 Principles of Hybrid BIST

To test the electronic system we need test pattern source and sink together with
an appropriate test access mechanism (TAM) [112]. Such a test architecture can
be implemented in several different ways. A widespread approach implements
both source and sink off-chip and requires therefore the use of external
Automatic Test Equipment (ATE). But rapid advances in recent years have
enabled the integrated circuits (ICs) manufactures to move towards very deep
submicron technologies and to integrate several complex functional blocks into
one single chip. The internal speed of such a Systems-on-Chip (SoC) is
constantly increasing but the technology used in ATE is always one step behind
and therefore the ATE solution has already become unacceptably expensive and
inaccurate [103]. Therefore, in order to apply at-speed tests and to keep the test
costs under control, on-chip test solutions are needed. Such a solution is usually
referred to as built-in self-test (BIST).

A BIST architecture consists of a test pattern generator (TPG), a test response
analyzer (TRA) and a BIST control unit (BCU), all implemented on the chip.
This approach supports at-speed tests and eliminates the need for an external
tester. Different BIST approaches have been available for a while and have got
wide acceptance especially for memory test. For logic BIST (LBIST) there is
still no industry-wide acceptance. One of the main reasons is the hardware
overhead required to implement a BIST architecture. The BIST approach can

25

also introduce additional delay to the circuitry and requires a relatively long test
application time. Nevertheless, even LBIST is becoming increasingly popular,
since BIST is basically the only practical solution to perform at-speed test, and
can be used not only for manufacturing test but also for periodical field
maintenance tests.

The classical way to implement the TPG for BIST is to use linear feedback shift
registers (LFSR). However, the LFSR-based approach often does not guarantee
a sufficiently high fault coverage (especially in the case of large and complex
designs) and demands very long test application times in addition to high area
overheads. Therefore, several proposals have been made to combine
pseudorandom test patterns, generated by LFSRs, with deterministic patterns [1,
2, 12, 22, 24, 30, 33, 41, 48, 54, 57, 65, 66, 67, 76, 94, 95, 96, 97] to form a
hybrid BIST solution.

The main concern of many existing hybrid BIST approaches has been to
improve the fault coverage by mixing pseudorandom vectors with deterministic
ones, while the issue of cost minimization has not been addressed directly.

In the following, two solutions are proposed to find the optimal balance between
the on-line pseudorandom test pattern generation and usage of stored
precomputed deterministic test patterns to perform core test with minimum cost
of both time and memory, without losing test quality. Two algorithms will be
described to calculate, with very low computational time, a complete hybrid test
set, and to derive from it the optimal time-moment to stop pseudorandom test
generation and to apply deterministic patterns.

A similar problem has been addressed in [57], where an approach to minimize
testing time has been presented. The authors have shown that hybrid BIST (or
Combination of BIST and External Test, CBET, in their terminology) can
achieve shorter testing time than pure pseudorandom test or pure externally
applied deterministic test. The authors have made a realistic assumption that
externally applied test is much slower than LFSR generated one and therefore
internally generated test vectors should be used as much as possible. However,
the proposed algorithm is not addressing total cost minimization (time and
memory) and is therefore only a special case of our approach.

26

4.2 Cost Factors for Hybrid BIST

As test patterns, generated by LFSRs, are pseudorandom by nature and have
linear dependencies, the generated test sequences are usually very long and not
sufficient to detect all the faults. To avoid the test quality loss due to random
pattern resistant faults and in order to speed up the testing process, we have to
apply deterministic test patterns targeting the random resistant and difficult to
test faults. This hybrid BIST approach starts with on-line generation of
pseudorandom test sequence with a length of L. On the next stage, stored test
approach takes place. For the stored approach, precomputed test patterns, stored
in the memory, are applied to the core under test to reach 100% fault coverage.
For off-line generation of S deterministic test patterns (the number of stored test
patterns) arbitrary software test generators may be used, based on deterministic,
random or genetic algorithms.

In hybrid BIST, the length of the pseudorandom test is an important parameter,
which determines the behavior of the whole test process. A shorter
pseudorandom test set implies a larger deterministic test set. This however
requires additional memory space, but at the same time, shortens the overall test
process. A longer pseudorandom test, on the other hand, will lead to longer test
application time with reduced memory requirements. Therefore it is crucial to
determine the optimal length of pseudorandom test in order to minimize the total
testing cost.

Fig. 4-1 illustrates graphically the total cost of a hybrid BIST consisting of
pseudorandom test patterns and stored test patterns, generated off-line. A

27

Cost

Cost of stored
test C

MEM

to reach 100%
fault coverage

CTOTAL

Cost of
pseudorandomly
generated test

CGEN

100%
Fault coverage (%)

Cmin

Fig. 4-1. Cost calculation for Hybrid BIST (presuming 100% coverage)

situation is illustrated, where 100% fault coverage is achievable with
pseudorandom vectors alone, although it takes enormously long time to do it. In
the case of large and complex designs 100% fault coverage is not always
achievable, however.

We can define the total test cost of the hybrid BIST CTOTAL as:

CTOTAL=CGENC MEM

where CGEN is the cost related to the time for generating the pseudorandom test
patterns (number of clock cycles), CMEM is related to the memory cost for storing
the precomputed test patterns to improve the pseudorandom test set.

Fig. 4-1 illustrates also how the cost of pseudorandom test increases when
striving for higher fault coverage (the CGEN curve). In general, it can be very
expensive to achieve high fault coverage with pseudorandom test patterns only.
The CMEM curve describes the cost that we have to pay for storing additional
precomputed tests from the fault coverage level reached by pseudorandom
testing to 100%. The total cost CTOTAL is the sum of the above two costs. The
CTOTAL curve is illustrated in Fig. 4-1, where the minimum point is marked as
Cmin. The main purpose of this work is to find a fast method for calculating the
curve CTOTAL to find the minimal cost Cmin.

Number of remaining
faults after applying k
pseudorandom test
patterns r

NOT
(k)

Total Cost
C

TOTAL

Cost of
pseudorandom test

patterns C
GEN

Cost of stored
test C

MEM

Number of pseudorandom
test patterns applied, k

Fig. 4-2. Cost calculation for Hybrid BIST

As mentioned, in many cases 100% fault coverage is not achievable with
pseudorandom vectors alone. Therefore we have to include this assumption to
the total cost calculation and the new situation is illustrated in Fig. 4-2, where

28

the horizontal axis indicates the number of pseudorandom test patterns applied,
instead of fault coverage level.

The curve for the total cost CTOTAL is still the sum of two cost curves
CGENCMEM with the new assumption that the maximum fault coverage by

using only deterministic ATPG is also achieved by the hybrid BIST.

We can also define the total cost of hybrid BIST CTOTAL as:

CTOTAL=LS

where L is the length of the pseudorandom test sequence; S is the number of
deterministic patterns; and weights  and  reflect the correlation
between the cost and the pseudorandom test time (number of clock cycles used)
and between the cost and the memory size needed for storing the deterministic
test sequence, respectively. For simplicity, we assume here that =1 , and
=B where B is the number of bytes of an input test vector to be applied to

the CUT. Hence, in the following we will use, as the cost units, number of cycles
used for pseudorandom test generation and number of bytes in the memory
needed for storing the precomputed test patterns.

 In Table 4-1, a fragment of the results of BIST simulation for the ISCAS’85
circuit c880 is given, where:

● k is the clock counter;
● rDET(k) is the number of new faults detected by the group of test patterns

generated between the last and the current entry at k in the table;
● rNOT(k) is the number of faults not yet covered by the sequence of

patterns generated during all the k clock cycles; and
● FC(k) is the fault coverage reached by the sequence of patterns

generated during all the k clock cycles.

29

Table 4-1. Pseudorandom test results for ISCAS'85 c880

k FC(k) % k FC(k) %
1 155 839 15. 593561 149 13 132 86. 720322
2 76 763 23. 239437 200 18 114 88. 531189
3 65 698 29. 778671 323 13 101 89. 839035
4 90 608 38. 832996 412 31 70 92. 957748
5 44 564 43. 259556 708 24 46 95. 372231
6 39 525 47. 183098 955 18 28 97. 183098

10 104 421 57. 645874 1536 4 24 97. 585510
16 66 355 64. 285713 1561 8 16 98. 390343
20 44 311 68. 712273 2154 11 5 99. 496979
29 42 269 72. 937622 3450 2 3 99. 698189
50 51 218 78. 068413 4520 2 1 99. 899399
70 57 161 83. 802818 4521 1 0 100. 000000

100 16 145 85. 412476

r
DET

(k) r
NOT

(k) r
DET

(k) r
NOT

(k)

In the list of BIST simulation results not all clock cycles are presented. We are
only interested in the clock numbers at which at least one new fault will be
covered, and thus the total fault coverage for the pseudorandom test sequence up
to this clock number increases. Let us call such clock numbers and the
corresponding pseudorandom test patterns resultative clocks and resultative
patterns. The rows in Table 4-1 represent the resultative clocks, but not all (we
only give some resultative points for illustrative purpose), for the circuit c880.

If we decide to switch from the on-line pseudorandom test generation mode to
the deterministic stored pattern mode after the clock number k, then L=k .

Creating the curves CGEN and r NOT k  is not difficult. For this purpose, a
simulation of the behavior of the LSFR used for pseudorandom test pattern
generation is needed. A fault simulation should be carried out for the complete
test sequence generated by the LFSR. As a result of such a simulation, we find
for each clock cycle the list of faults which were covered up to this clock cycle.
By removing these faults from the complete fault list, we will know the number
of faults remaining to be tested.

More difficult is to find the values of S , the cost for storing additional
deterministic patterns in order to reach the given fault coverage level (100% in
the ideal case). Let t k  be the number of test patterns needed to cover

r NOT k  not yet detected faults (these patterns should be precomputed and
used as stored test patterns).

30

As an example, these data for the circuit c880 are depicted in Table 4-2.
Calculation of the data in the column t(k) of Table 4-2 is the most expensive
procedure.

Table 4-2. C880: ATPG results

k t(k) k t(k)
0 104 148 46
1 104 200 41
2 100 322 35
3 101 411 26
4 99 707 17
5 99 954 12

10 95 1535 11
15 92 1560 7
20 87 2153 3
28 81 3449 2
50 74 4519 1
70 58 4520 0

100 52

In the following, two algorithms for calculating t(k) will be compared: the
algorithm presented in [23] and the algorithm developed in this thesis.

4.3 Fast Procedure for Calculating Stored Test Patterns

Calculation of the data in the column t(k) of Table 4-2 is the most expensive
procedure in the hybrid BIST optimization process. In this section the
difficulties and possible ways to solve the problem are discussed.

There are two possibilities to find t(k):
● ATPG based, and
● fault table based approach.

31

Let us have the following notations:
● i – the current number of the resultative clock cycle (the number of the

entry in tables for PRG and ATPG
● k(i) – the number of the clock cycle of the resultative clock i;
● RDET(i) - the set of new faults detected (covered) by the pseudorandom

test pattern which is generated at the resultative clock signal number i;
● RNOT(i) - the set of not yet covered faults after applying the

pseudorandom test pattern number i;
● T(i) - the set of test patterns needed and found by the ATPG to cover the

faults in RNOT(i);
● N – the number of all resultative patterns in the sequence created by the

pseudorandom test;
● FT – the fault table for a given set of tests T and for the given set of

faults R:

The fault table FT for a general case is defined as follows: given a set of test
patterns T={t i} and a set of faults R={r j} , FT=∥ij∥ where ij=1 if
the test t i∈T detects the r j∈R , and ij=0 in the opposite case. We
denote by R t i⊂R the subset of faults detected by the test pattern t i∈T .

We start the procedure for a given circuit by generating a test set T which gives
the 100% (or as high as possible) fault coverage. This test set can be served as a
stored test if no on-line generated pseudorandom test sequence will be used. By
fault simulation of the test set T for the given set of faults R of the circuit, we
create the fault table FT.

Suppose now, that we use a pseudorandom test sequence TL with a length L
which detects a subset of faults RL∈R . It is obvious that when switching from
the pseudorandom test mode with a test set TL to the precomputed stored test
mode with a T, the test set T can be significantly reduced. At first, by the fault
subtraction operation R t i−RL we can update all the contributions of the
test patterns ti in FT (i.e. to calculate for all ti the remaining faults they can
detect after performing the pseudorandom test). After that we can use any
procedure of static test compaction to minimize the test set T.

32

The described procedure of updating the fault table FT can be carried out
iteratively for all possible breakpoints i=1, 2, , N of the pseudorandom test
sequence by the following algorithms:

– The first algorithm was presented in [23] and represents the ATPG based
approach:

Algorithm 4-1:

1. Take i :=N
2. Generate for RNOT,i a test set T i ,T :=T i , t i :=∣T i∣

3. For all i=N−1, N−2, ,1 :
 Generate for the faults RNOT,i not covered by test T, a test set

T i ,T :=TT i , t i :=∣T∣
End.

– The second algorithm was developed in this thesis, and it represents the fault
table approach:

Algorithm 4-2:

1. Calculate the whole test T={t j} for the whole set of faults
R={r j} by any ATPG to reach as high fault coverage C as

possible
2. Create for T and R the fault table FT={R t j}

3. Take i=1 ; Rename: T i=T , Ri=R , FT i=FT
4. Take i=i1
5. Calculate by fault simulation the fault set RDET ,i

6. Update the fault table:  ∀ j , t j∈T i : R t j−RDET ,i

7. Remove from the test set Ti all the test patterns t j∈T i where
R t j=∅

8. Optimize the test set Ti by any test compaction algorithm; fix the
value of S i=∣T i∣ as the length of the stored test for L=i

9. If iL , go to 4;
End.

33

It is easy to understand that for each value L = i (the length of the pseudorandom
test sequence) the procedure guarantees the constant fault coverage C of the
hybrid BIST. The statement comes from the fact that the subset Ti of stored test
patterns is complementing the pseudorandom test sequence for each

i=1, 2,, N to reach the same fault coverage reached by T.

As the result of the algorithms, the numbers of precomputed deterministic test
patterns S i=∣T i∣ to be stored and the subsets of these patterns Ti for each

i=1, 2,, N are calculated. On the basis of this data the cost of stored test
patterns for each i can be calculated by the formula CMEM=S i . From the
curve of the total cost CTOTAL i= LS the value of the minimum cost of
the hybrid BIST min {CTOTAL i} can be easily found.

For the previously proposed Algorithm 4-1, the whole experiment of simulating
the pseudorandom generation (PRG) behavior and of finding the numbers of test
patterns to be stored for all possible switching points from PRG to stored test
patterns was carried out for the whole set of ISCAS’85 benchmark circuits
within about 8 hours. The data of these experiments are depicted in Table 4-3,
page 42.

In the case of very large circuits both of these algorithms will lead to very
expensive and time-consuming experiments. For such situations we have
developed estimation algorithm to search for the optimum solution by using just
a few samples from the whole test generation experiments set. As available data
for such kind of estimation, the number of not yet covered faults in RNOT,k can be
served. The value of RNOT,k can be acquired directly from the PRG simulation
results and is available for every significant time moment (see Table 4-2). Based
on the value of ∣RNOT ,k∣ it is possible to reason about the expected number of
test patterns needed for covering the faults in RNOT,k. The starting point of the
search procedure may be found by giving rough estimation of the total cost
based on the value of ∣RNOT ,k∣ .

Experimental results of the comparison of the two described algorithms are
presented in chapter 4.6.1.

4.4 The concept of the Method of Hybrid BIST with Reseeding

The idea of the method of hybrid BIST with reseeding, called also Store-and-
Generate (S&G) method consists of using pseudorandom patterns generated by
LFSR for detecting the random pattern testable faults, and the deterministic test
patterns for testing random pattern resistant, so called hard-to-test-faults

34

(HTTF). To demonstrate this let us depict all possible 2n−1 test patterns
with size n as a line in Fig. 4-3. These patterns are in the order as they are
generated by the LFSR. Let the dots below the line represent HTTF that can be
tested by only a single test pattern. A pseudorandom test generated by the LFSR
at the given seed (initial state) is shown as a small interval on the line (bold line).
Here we see that many HTTF are outside of this interval and remain untested.
Therefore we should construct a full test set by a collection of pseudorandom
pattern blocks (PPB), represented in Fig. 4-4 as separate intervals, in such a way
that all HTTF will be covered by these test patterns. Each block has its own
seed. The main problem of this approach is how to calculate the number and size
of PPBs, and how these tests should be spread over all test patterns, i.e. which
should be the seeds for the PPBs. The limiting factor is that we don’t know
which faults are HTTF and which test patterns are needed for detecting them.

d

Hard
to test
faults

Seed

0

Pseudorandom test
sequence

2n-1

Fig. 4-3. Test patterns and hard-to-test-faults faults

Pseudorandom test
sequences

2n-10

Fig. 4-4. Testing with many pseudorandom pattern blocks

Let DT be the deterministic test set for a given CUT, and R the set of all possible
faults in the CUT. Let us call all the faults in RH⊂R , which are covered only
by a single test pattern in DT, HTTFs. With DT H∈DT we denote the subset
of test patterns which cover HTTFs RH. Obviously ∣DT H∣=∣RH∣ . The first
seed T i∈DT H for the first pseudorandom pattern block Bi , i=1 , will be
selected from the DTH. Let bi=∣Bi∣ be the length of the block Bi. The

35

algorithm now removes all the faults covered by Bi from R, and keeps in DT only
these patterns that are needed for covering the faults in the updated R. A new

RH⊂R , and a new DT H⊂D are calculated, and the next seed
T i∈DT H , i=2 from the updated DTH will be chosen for starting the next

block Bi , i=2 , of pseudorandom patterns. This procedure should be continued
till the set of faults R is empty. Let the number of iterations will be k. Then the
length of the full test is calculated as

L=∑
i=i

k

b i

The amount of memory M needed for storing the seeds is determined by k test
patterns that are chosen for the k blocks. The characteristics of the solutions L
and M are heavily depending on the length of the blocks. The task to be solved
here is to find the lengths of the blocks so that L=min at the given constraint

M≤M max .

We have carried out simulation as described in the procedure above for a range
of different block lengths for the ISCAS benchmarks to see how the values of L
and M are changing with the length of b. An example of the curves of L1(b),
L2(b) and M(b) for the ISCAS circuit c1908 is presented in Fig. 4-5, whereas for
L1(b) the length of the blocks is equal, and for L2(b) the length of the blocks is
different i.e. the block is cut shorter from the point where no useful patterns are
generated.

C1908

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 500 1000 1500 2000 2500 3000

0

20

40

60

80

100

120

140
Test length L Memory cost M

M(b)

L1(b)

L2(b)

Block size
b

Fig. 4-5. Relationships L(b) and M(b) for c1908 circuit

36

In Fig. 4-6 a possible structure of the assumed BIST architecture is shown [107].
ROM contains the seeds. Each pattern Pi in the ROM serves as an initial state of
the LFSR for test pattern generation. Counter 1 counts the number of Li

pseudorandom patterns that are generated starting from Pi. After finishing the
cycle, Counter 2 is incremented for reading the next pattern Pi+1.

ROM TPG UUT

ADR

Counter 2 Counter 1

RD

CL

ROM TPG UUT

ADR

Counter 2 Counter 1

RD

CL

Fig. 4-6. Store and generate approach

4.5 Optimization of the Hybrid BIST with Reseeding

There are two important issues to consider when constructing reseeding based
solutions: the number of seeds and the number of pseudorandom patterns
generated from each seed. Both have significant impact on the final solution in
terms of fault coverage, test length and test memory requirements. In the
following a novel method is proposed for finding the length of the
pseudorandom seeds, such that the test memory (number of seeds) is
constrained, the test time is minimized, and the maximum achievable fault
coverage is guaranteed. The pseudocode of the algorithm is depicted in
Algorithm 4-3 and the details of the algorithm will be explained below.

37

Algorithm 4-3: pseudocode

- Generate deterministic test patterns DT, such that

- foreach DTi:

- Generate L pseudorandom patterns, using deterministic pattern as a seed;
// *1

- Fault simulate the block DTi + PRi

- block_length = 1;

- loop (j <=L)

- foreach (block) // *2

- calculate coverage summary (block_length);

// Find coverage summary for block with block_length number of vectors,
// starting from the beginning of the block

- minimize the block length;

// find a point within a block from where the fault coverage does not
increase anymore.
// Removes the useless PR vectors

- order blocks based on the length;

// orders blocks in growing order (ie. shortest first)

- minimize the number of blocks;

// finds minimal number of blocks needed to obtain the maximum
// fault coverage: remaining_blocks

- initialize total_coverage_summary;

- foreach(remaining_block);

// calculate final test length, *3

- optimize block length;

// remove all unnecessary pseudorandom patters that do not contribute
// to the final fault coverage. Here we use accumulative coverage, ie.
taking
// into account ALL previously applied blocks. For this we use
total_coverage_summary

- total_coverage_summary += coverage(block);

- end foreach;

// add new faults, covered by this block

- set new block_length;

// block_length += block_length/stepping_const;

- end loop;

- done;

 *1 – see Fig. 4-7, step 1 ; *2 – see Fig. 4-7, step 2; *3 – see Fig. 4-8

38

Let DT be the deterministic test set DT={DT i} for a given CUT and R the
set of all possible faults in the CUT. Let us denote by RDT i⊂R the subset
of faults detected by a test pattern DT i∈DT . We assume that the DT obtains
the maximum achievable fault coverage, hence RDT =R .

We start by generating pseudorandom sequences PRi with a given length L,
where DTi is used as a seed for the pseudorandom sequence. Let us denote the
set of these hybrid sequences as PR={PRi} . For all PRi∈PR and for
each test pattern tk∈PRi , cumulative fault coverage can be calculated as:

FC PR i ,k =
∣ ∪ R t j 

j=1,k ;t j∈PR i

∣
∣R∣

 (4-1)

Thereafter the pseudorandom sequences can be minimized. From each
PRi∈PR all pseudorandom test patterns t j , t j1 ,, t L where
FC PRi , k=FC PRi ,k−1 , for all k= j , j1 , , L , will be removed,

because these patterns will not contribute for the increase in fault coverage.
These first steps are illustrated in Fig. 4-7. Let us denote with Li the new reduced
length of the pseudorandom sequence PRi, with FC(PRi) the fault coverage of
the sequence PRi calculated using formula (4-1) of the last pattern in PRi, and
with RPRi⊂R the subset of faults detected by PRi.

Thereafter, all hybrid test sequences PRi will be ordered in increasing order, so
that Li≥Li−1 for every i=1, 2, , N where N=∣DT∣ .

Consider now a composite hybrid test sequence PT, composed of all sequences
PRi∈PR in the order how they were ranked. Since all initially generated

deterministic test patterns t∈DT are included in PT, we have

FC PT =FC DT  ,
RPT =FC DT =R

39

DTi

PR
i

DTi

L

DTi

PR
i

L
i

Deterministic test vector (initial seed) DTi

Pseudorandom test sequence PR
i

Discarded part of PR sequence due block minimization

Step 1 Step 2

Fig. 4-7. Minimization of one pseudorandom sequence.

To minimize the length of the multi-seed hybrid test sequence we will use here
the test pattern optimization algorithm(based on modified Greedy algorithm). In
this algorithm the minimal subset Tmin of the given test set T will be found based
on the information of fault subsets R(t) detected by the test patterns t i∈PR , so
that the fault coverage remains the same FC T min=FC T  . To do this we
interpret the sequences PRi∈PR as test patterns t∈T , and the fault sets

RPRi  , respectively as fault sets R(t). As a result of optimization we will find
a minimal subset PRmin⊂PR , so that FC PRmin=FC PR  . This step is
rather fast as we do not optimize at the level of individual patterns but only at
the level of complete sequences (blocks).

Now a new composite hybrid sequence PTmin will be created from the ordered set
of subsequences PT min=PR1, PR 2, , PRm ,mN .

The next step will be minimization of the total length of the sequence PTmin. As a
result, a reduced final multi-seed hybrid sequence PT* will be created.

To do that we calculate again the cumulative fault coverages for all the test
patterns tk∈PT min similarly to formula (4-1) for all subsequences

PRi∈PRmin in the order how they were ranked and put into PTmin. After
calculating the fault coverage of a current subsequence PRi in PT* we remove
from PRi all the test patterns t j , t j1 , , t L ,i where

40

FC PRi , k=FC PRi ,k−1 , for all k= j , j1 , , Li . This procedure is
illustrated in Fig. 4-8. As the optimization procedure takes into account only the
cumulative fault coverage of earlier blocks and does not analyze individual
patterns in these blocks, then also this step is rather fast.

Since the described reduction of the whole multi-seed hybrid sequence will not
reduce the fault coverage, we have

FC PT *=FC PT =FC DT 

As a result of this algorithm we can find the length of a hybrid sequence for any
arbitrary memory constraint. As a by-product we can also find the length of the
longest hybrid block that remained at the end of the optimization sequence.

...PT
min

...

Deterministic test vector (initial seed)

Pseudorandom test sequence

Discarded part of PR sequence due second
stage (cumulative coverage) block minimization

PT*

Fig. 4-8. Calculation of the final hybrid sequence.

Such an optimization is very necessary when developing a solution for testing
core-based systems, such as SoCs or NoCs. The memory constraints can be seen
as limitations of the on-chip memory or ATE, where the deterministic test set
will be stored, and are therefore of great practical importance.

41

4.6 Experimental results

4.6.1 Optimization of the hybrid BIST

Experiments were carried out on the ISCAS’85 benchmark circuits for
investigating the efficiency of the method for optimizing the hybrid BIST and
for comparing with the previous algorithm used in [23]. Experiments were
carried out using Turbo Tester [19, 119] toolset, for deterministic test pattern
generation and fault simulation, and using the test compaction tool [3]. The
results are presented in Table 4-3.

In the columns of Table 4-3 the following data is depicted: ISCAS’85
benchmark circuit name, LPR - length of the pseudorandom test sequence, LDET -
the number of test patterns generated by the deterministic ATPG, CPR - the fault
coverage of the pseudorandom test sequence, CDET - the total fault coverage of
the hybrid BIST (after applying deterministic test patterns), N - number of all
resultative patterns in the pseudorandom test sequence, TG - the time (sec)
needed for ATPG to generate the deterministic test set, TA - the time (sec)
needed for carrying out manipulations on fault tables (subtracting faults, and
compacting the test set), TOLD - the time (sec) needed for calculating the cost
curve for hybrid BIST by the previous method , TNEW - the time (sec) needed for
calculating the cost curve for hybrid BIST by the method proposed in this thesis,
the advantage of the proposed method compared to the previous one as the
relation T1/T2 . The total testing time for both methods were calculated as
follows:

42

Table 4-3. Experimental results. Time comparison of two algorithms

Circuit N
C432 780 80 93.02 93.02 81 20.10 0.01 1632.9 21.0 77.75
C499 2036 132 99.33 99.33 114 0.65 0.02 74.1 2.9 25.55
C880 5589 77 100.00 100.00 114 0.15 0.02 17.1 2.4 7.13
C1355 1522 126 99.51 99.51 109 1.22 0.03 133.0 4.5 29.56
C1908 5803 143 99.48 99.48 183 11.65 0.07 2132.0 24.5 87.02
C2670 6581 155 84.92 99.51 118 1.95 0.09 230.1 12.6 18.25
C3540 8734 211 95.54 95.54 265 85.29 0.14 22601.9 122.4 184.66
C5315 2318 171 98.89 98.89 252 10.29 0.11 2593.1 38.0 68.24
C6288 210 45 99.34 99.34 53 3.79 0.04 200.9 5.9 34.05
C7552 18704 267 93.67 97.14 279 53.78 0.27 15004.6 129.1 116.22

LPR LDET CPR CDET TG TA TOLD TNEW TOLD/TNEW

T OLD=N∗T G

T NEW=T GN∗T A

In fact, the values for TG and TA differ for the different values of i=1, 2, , N .
However the differences were in the range of few percents, which allowed us to
neglect this impact and to use the average values of TG and TA.

Table 4-4. Experimental results. Parameters for optimized hybrid BIST

Circuit SOPT CTOTAL
C432 780 91 80 21 4 186
C499 2036 78 132 60 6 386
C880 5589 121 77 48 8 481
C1355 1522 121 126 52 6 388
C1908 5803 105 143 123 5 612
C2670 6581 444 155 77 30 26867
C3540 8734 297 211 110 7 889
C5315 2318 711 171 12 23 985
C6288 210 20 45 20 4 100
C7552 18704 583 267 61 51 2161

L
MAX

L
OPT

S
MAX

B
k

The switching point from the PRG mode to the stored deterministic patterns
mode was found at the minimum of CTOTAL. In Table 4-4 the parameters of
optimized hybrid BIST are depicted: ISCAS’85 benchmark circuit name, LMAX -
the maximum length of the simulated pseudorandom test sequence, LOPT - the
length of the pseudorandom test sequence for the optimized BIST, SMAX - the
maximum number of test patterns generated by the deterministic ATPG, SOPT -
the number of stored test patterns for the optimized BIST, Bk - the number of
bytes needed for storing the input test pattern for the circuit k, and CTOTAL - the
total cost of the optimized hybrid BIST, calculated by the formula

 CTOTAL=LOPTBk∗SOPT

In Fig. 4-9, the curves of the cost CGEN = L (denoted on Fig. 4-9 as T) for on-line
pseudorandom test generation, the cost C MEM=Bk∗S (denoted as M) for
storing the test patterns, the number ∣RNOT∣ of not detected faults after
applying the pseudorandom test sequence (denoted as Fr), and the total cost
function CTOTAL are depicted for selected benchmark circuits C432, C499, C880,
C1908, C3540 and C7552 (Sc = 0 is used as a constant in the cost function
formula).

43

Fig. 4-9. Cost curves of hybrid for ISCAS’85 benchmark circuits

44

4.6.2 Optimization of the hybrid BIST with reseeding

Experiments were carried out on the ISCAS’85 benchmark circuits for
investigating the efficiency of the method for reducing the test length based on
the proposed algorithm of calculating the hybrid test sets for each possible
memory constraint. For some tasks (like ATPG and fault simulation) tools from
the Turbo Tester toolset [119] were used.

 1* - described in [22]; 2* - described in [88]

45

Table 4-5. Experimental results

Circuit
Proposed method

Total length

C432

10 11 96 206 280
15 7 81 188 210
20 4 60 151 160
25 3 62 120 125
30 2 51 79 120

C499

20 23 318 492 940
30 10 211 326 540
40 6 153 193 400
50 4 125 149 350
60 3 105 115 240

C1908

30 30 777 1318 1680
40 21 617 869 1240
50 13 444 735 1050
58 10 337 667 870
61 9 303 600 793

C1355

15 37 412 438 615
30 10 195 282 930
41 6 156 207 492
49 4 120 182 343
52 3 109 179 312

C2670

50 15 272 598 6400
54 8 211 342 2538
56 7 171 311 1568
60 4 140 290 1080
71 2 104 150 923

C3450

60 6 258 414 900
70 5 224 293 700
80 3 167 253 560
90 2 142 201 360

C5315

15 40 541 753 1290
35 10 237 451 560
42 5 173 299 504
46 4 134 268 368
51 3 124 199 255

C7552

95 10 414 900 1140
102 6 333 500 714
115 3 210 334 460
124 2 165 192 372

Memory
Constraint
(vectors)

Hybrid
BIST *1

Reseeding
*2

Max block
size

Total
length

Total
length

The results are presented in Table 4-5, where we have depicted the test length of
the final solution under different memory constraints. We have compared the
method, proposed in this paper, with methods proposed in [22] and [83]. The
method proposed in [22] was originally developed for multi-core systems but it
can equally well be used also for individual cores. In addition we have depicted
in Table 4-5 also the lengths of the longest hybrid block at the end of the
optimization cycle.

As it can be seen from the results then the proposed method can always find a
test set that is shorter than the test set found using methods from [22] and [83].
The main explanation lies in a fact that the proposed method handles the
deterministic and pseudorandom sequences together and the test sets are
optimized using a fast optimization method, based on cumulative fault coverage
figures. The current implementation of the method [83] is not optimizing the
length of the individual hybrid blocks and therefore also the result worse than
the result from [22].

Although the experiments depicted here, were performed on combinatorial
circuits, the proposed method can with some small modifications also handle the
sequential circuits with full scan (using appropriate test architecture, such as
STUMPS).

In Fig. 4-10 and Fig. 4-11 we have depicted more detailed results of some
selected circuits.

In Fig. 4-10 we have illustrated the relationships in between memory constraint
(number of seeds), test length and the length of the longest block. As it can be
seen from these charts then reduction of the number of seeds will increase the
length of the hybrid blocks and consequently also the test length will be
increased.

46

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 42 52 63 78 97 121 152 191 427

Max. block size

N
r.

 o
f

s
e

e
d

s

0

500

1000

1500

2000

2500

3000

T
e

s
t

le
n

g
th

Nr. of seeds v. max block size

Test length v. max block size

C1908

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Max. block size

N
r.

 o
f

s
e

e
d

s

0

50

100

150

200

250

300

350

T
e

s
t

le
n

g
th

Nr. of seeds v. max. block size

Test length v. max. block size

C2670

0

20

40

60

80

100

120

140

160

1 11 21 31 42 63 97 152 242 388 626 1012 1643

Block Size

S
e

e
d

s

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

T
e

s
t

L
e

n
g

th

Nr. of seeds v. max. block size

Test length v. max. block size

C7552

Fig. 4-10. Relationships in between number of seeds, maximal block size and total test
length.

47

In Fig. 4-11 this relationship is illustrated in more straightforward manner,
showing how the test length is increasing while the number of seeds is reducing.

0

500

1000

1500

2000

2500

3000

109 72 56 42 40 37 34 30 24 23 22 18 18 14 12 10 6

Nr. of seeds

T
e

s
t

le
n

g
th

C1908

0

50

100

150

200

250

300

350

88 60 56 53 51 48 47

Nr. of seeds

T
e

s
t

le
n

g
th

C2670

Fig. 4-11. Relationship between the test length and number of seeds.

We have not included the CPU times here, as with the proposed method we are
calculating the entire solution space, while the methods from [8] and [98] can
find a single solution for a predefined memory constraint. We are currently
developing an optimization heuristic that would help us to avoid calculation of
the complete curves and thereafter the comparison of CPU times is also possible.

48

4.7 Conclusions

1. A hybrid BIST solution has been developed for testing systems-on-chip.
It combines on-line pseudorandom test pattern generation with using
precomputed and stored deterministic test patterns.

2. For selecting the optimal switching moment from pseudorandom
patterns mode to the stored deterministic patterns mode, a fast algorithm
to calculate the total cost was developed.

3. It was shown by experimental results, that the new cost calculation
algorithm calculates the total cost of the hybrid BIST much faster (7 -
184 times faster) than previously proposed algorithm and can therefore
speed up the total cost minimization process significantly.

4. A method is developed for optimization of the hybrid BIST, based on
reseeding. An optimization heuristic is proposed for test length
reduction under given memory constraints, based on the test set
compaction using cumulative fault coverage of hybrid test sequences.

5. Experimental results have shown that the proposed approach is feasible
and efficient for finding optimized solutions for hybrid BIST
architectures, based on the reseeding concept.

49

5 Hybrid Functional Built-In Self-Test

A method for designing hybrid functional BIST (HyBIST) is proposed to
combine the functional routines carried out in digital systems with deterministic
test patterns for testing microprogrammed data-paths in digital systems. In the
first test phase only the functional resources of a system are used for testing
purposes. A functional microprogram is carried out to control the data-path
based on some deterministic input data. A response compressor like signature
analyzer is connected to the data path to monitor the process.
To guarantee a high test coverage for BIST, the second phase of the test is used
which consists of applying additional deterministic test patterns pre-generated
by an ATPG to test the random-pattern-resistant faults. A method is proposed to
find the trade-off between the functional test and deterministic test parts.
Experiments demonstrate the feasibility of the approach, and also show the
advantage of combining functional and deterministic test patterns compared to
the pure deterministic test or pure functional test.

The results of this chapter are published in [86].

5.1 Principles of Hybrid Functional BIST

Rapid advances in the areas of deep-submicron electron technology and design
automation tools are enabling engineers to design larger and more complex
circuits and to integrate them into one single chip. System on a Chip (SoC)
design methodology is seen as a major new technology and the future direction
for semiconductor industry. The most important challenges of SoC testing are
linked to test cost and fault coverage. According to the ITRS (International
Technology Roadmap for Semiconductors) by 2014 it may cost more to test a
transistor than to manufacture it unless techniques like logic Built-in Self-Test
BIST are employed [51]. BIST is a technology to move on board the main
functionalities previously carried out by Automated Test Equipments (ATE). In
traditional BIST architectures, test pattern generation is mostly performed by ad
hoc circuitry, typically Linear Feedback Shift Registers (LFSR) [51], cellular
automata [71] or multifunctional registers like BILBO (Built-in Logic Block
Observer) [16]. BIST involves using on-chip hardware to apply pseudorandom
test patterns to the Circuit Under Test (CUT) and to analyze its output response.
The most widespread approach is test-per-scan BIST scheme [16].

50

Unfortunately, many circuits contain random-pattern-resistant faults [67] which
limit the fault coverage that can be achieved with this approach.

One method for improving the fault coverage for a test-per-scan BIST is to
modify the CUT by either inserting test points [55, 64] or by redesigning it to
improve the fault coverage [18, 114]. The drawback of these techniques is that
they generally add additional logic levels to the circuitry that can degrade system
performance. Fault coverage can be improved by another way by using weighted
pseudorandom sequences. Additional logic is needed to weight the probability of
each bit in the test sequence. The weight logic can be placed either at the input
of the scan chain [61] or in the individual scan cells themselves [8, 96]. The
disadvantage of the probability weighting approach is in the need of storing of
the weight sets on chip and also, control logic is required to switch between
weights, so the hardware overhead may be large.

A third method to improve the fault coverage is to use a “mixed mode” approach
where deterministic patterns are used to detect the faults that the pseudorandom
patterns miss. Storing deterministic patterns may require a large amount of
hardware overhead. In [8] a technique based on reseeding an LFSR was
proposed that reduces the storage requirements. In [96] another improved
technique was developed that uses a multi-polynomial LFSR for encoding a set
of deterministic test cubes. Many other improvements of BIST have been
discussed in the previous chapters

Established BIST solutions use special hardware for pattern generation (TPG)
and test response evaluation (TRE) on chip, but this in general introduces
significant area overhead and performance degradation. To overcome these
problems, recently new methods have been proposed which exploit specific
functional units such as arithmetic units or processor cores for on-chip test
pattern generation and test response evaluation [40, 75, 76, 92, 95]. In particular,
it has been shown that adders can be used as TPGs for pseudo-random, pseudo-
exhaustive and deterministic patterns. Investigations are known about properties
of test patterns generated by simple adders [40], ones- and twos complemented
subtractors [7], and more complex multipliers and MAC circuits [39]. All of
them may generate pseudo-exhaustive or pseudorandom patterns with a similar
quality as LFSRs do, and may reach a comparable fault coverage.

The term "functional BIST" (FBIST) describes a test method to control
functional modules so that they generate a deterministic test set, which targets
structural faults within other parts of the system. It is a promising solution for
self-testing complex digital systems at reduced costs in terms of area overhead
and performance degradation.

51

In this work, a mixed-mode or hybrid functional BIST (HyFBIST) was
developed for using in microprogrammed data-paths in digital systems. The idea
of the HyFBIST consists in using for test purposes the mixture of functional
patterns produced by the microprogram, and additional stored deterministic test
patterns to improve the total fault coverage.

In the first phase a microprogram (as a part of the functionality of the system) is
used to control the data-path based on some deterministic or random input data.
A response compressor like signature analyzer is connected to the data path to
monitor the process. The data produced by the microprogram are used for both,
stimulating the units under test and creating the signature of the process. The
second phase of the test consists of applying additional deterministic test
patterns pregenerated by an ATPG to test the random-pattern-resistant faults,
which are stored in the memory. A method is proposed to find the tradeoff
between the functional test and deterministic test parts.

5.2 General Scheme of Hybrid Functional BIST

Consider a microprogrammed data-path for division of fractional numbers,
presented in Fig. 5-1. It consists of a register block for storing the dividend, the
divisor, intermediate results of division, the quotient, and the counter of cycles.
All the microoperations needed in the division procedure are carried out in the
Arithmetic and Logic Unit (ALU) which has the role of CUT in this work. The
ALU has data inputs and outputs connected via buses to the register block. The
control signals from the control unit serve as additional inputs for ALU, and
status signals of the ALU serve as additional outputs connected to the control
unit (not shown in Fig. 5-1).

During N cycles of the microprogram ALU is exercised with N functional
patterns, and the responses of ALU will be compressed in the signature analyzer
which monitors the whole division process.

In the division process, we could use just K pairs of the operands A and B
involved as the test for the ALU, and K quotients C=A/B as K responses to
the test stimuli. However, in the FBIST scheme we will use all the K∗N
data words produced on the inputs of the ALU during the K∗N cycles of the
K division operations as input stimuli to the ALU, and all the K∗N data
produced on the outputs of the ALU during the K∗N cycles as the responses
to stimuli. In such a way, we have got a multiplication effect of N times in the

52

number of test patterns when moving the test access from the instruction level to
the microinstruction level.

Denote by L the number of bits in the data (dividend and divisor), and by l the
number of bits on the inputs of ALU. The reduction in the test data volume
through the compression of test data in the FBIST is equal to

R=
N l
2L

For example (for the system used in the experiments), in the case of 32 bit words
for the divisor with 105 inputs and 120 cycles the reduction in the volume of test
data is 120*105/64 = 197.

Register
block

ALU

Signature analyser

Functional
test

Data

K

N cycles

K*N

K*N >> K

Fault
simulator

Fault
coverage

Test patterns are produced
on-line during the working
mode of the system

Register
block

ALU

Signature analyser

Functional
test

Data

K

N cycles

K*N

K*N >> K

Fault
simulator

Fault
coverage

Test patterns are produced
on-line during the working
mode of the system

Fig. 5-1. Functional BIST quality analysis in the microprogrammed divisor

In this scheme the functional patterns produced directly on the inputs of ALU
have the similar role as pseudorandom test patterns in classical BIST schemes.
Similarly to the pseudorandom test, the functional test patterns are not able to
cover random-pattern-resistant faults, which limits the fault coverage that can be
achieved with the pure functional BIST approach.

To improve the fault coverage we can use similar approaches that are used to
improve the LFSR-based classical BIST approaches: to modify the CUT by
inserting test points, by redesigning it to improve the fault coverage, or by using
hybrid approaches, adding to functional test additional deterministic test
patterns.

53

In Fig. 5-1 the quality of the set of functional test patterns generated during the
division procedure will be measured by fault simulation, the random-pattern-
resistant faults are determined, and to cover these faults, additional deterministic
test patterns by an ATPG are generated.

Such a hybrid functional test is carried out in two phases (Fig. 5-2). In the first
phase the microprogram (as a part of the functionality of the system) is used to
control the data-path based on some deterministic or random input data
(operands). A response compressor like signature analyzer is connected to the
data path to monitor the process. The data produced by the microprogram are
used for both, stimulating the CUT and creating the signature of the process.

Register
block

ALU

Signature analyser

Deterministic
test set

Data

K

M
Automatic

Test Pattern
Generator

Random
resistant

faults

Test patterns are
stored in the

memory

MUX

Register
block

ALU

Signature analyser

Deterministic
test set

Data

K

M
Automatic

Test Pattern
Generator

Random
resistant

faults

Test patterns are
stored in the

memory

MUX

Fig. 5-2. Functional BIST with adding deterministic test patterns

The second phase of the test consists of applying additional deterministic test
patterns pre-generated by an ATPG to test the random-pattern-resistant faults,
which are stored in the memory.

Further, a method is proposed to find the trade-off between the functional test
and deterministic test parts.

54

5.3 Finding Trade-off Between Functional and Deterministic
Test patterns

This hybrid FBIST approach starts with on-line generation of functional test
sequence with a length of 2kL where L is the length of the data word in bits,
and k is the number of data operands used for producing the functional test
sequence. 2kL is the memory cost for the functional part of the test. On the
next phase, deterministic test approach takes place. Precomputed deterministic
test patterns, stored in the memory, are applied to the CUT to reach 100% fault
coverage. For the off-line generation of D deterministic test patterns (D is the
number of test patterns to be stored), arbitrary software test generators may be
used, based on deterministic, random or genetic algorithms.

The length of the functional test (the number of data operands) is an important
parameter, which determines the structure and the quality of the whole test
process. A shorter functional test set implies a larger deterministic test set. This
however requires additional memory space, but at the same time, shortens the
overall test process. A longer functional test, on the other hand, will lead to
longer test application time, however, with reduced memory requirements, since
the functional test data is more tightly compressed. Therefore it is crucial to
determine the optimal length of functional part of the test in order to minimize
the total test cost.

Consider the total test cost CTOTAL of the hybrid FBIST as the sum of total costs
CFB_Total and CD_Total, correspondingly, of producing functional and deterministic
test patterns

CTotal=C FB TotalC D Total

where
CFB Total=C FB ConstCFB TC FB M , and

CD Total=CD ConstC D TC D M

Here CFB_Const (CD_Const), CFB_T (CD_T), and CFB_M (CD_M) mean, correspondingly,
additional logic cost, the cost related to the time used for testing, and the cost of
additional memory needed for functional and deterministic test parts, whereas
 and  reflect the weights, of time and memory expenses. An example of

the cost curves is shown in Fig. 5-3.

55

Creating the curve of CFB_Total is not difficult. The static component CFB_Const is
related to the cost of signature analyzer, and the dynamic components are
determined linearly by the number of test operands used for the functional test
whereas

CFB T=∑
j=1

k

N j

is the number of clocks (time cost) used for carrying out the microprogram, and

CFB M=2kL

is the number of bits (memory cost) needed for storing the data operands.
For simplicity we take =1 , and =1 . Hence, in the following we calculate
the time cost by the number of clocks used for carrying out the test, and the
memory cost by the number of bits needed for storing the precomputed test data.

The static component CD_Const of the deterministic test is related to the cost of
multiplexer on the inputs of ALU and to the cost of an additional microprogram
needed for carrying out the deterministic part of the test.

For calculating the dynamic part of the the cost of deterministic test,

CD T= D and CD M=Dl ,

the not tested by FBIST faults are found by fault simulator, and the number of
additional patterns D of the deterministic test is calculated by Algorithm 5-1.

C

Opt. length

Opt.

C
D_Const

Length of FBIST

C
FB_Const

C
Total

= C
FB_Total

 + C
D_Total

C
FB_Total

C
D_Total

Fig. 5-3. Cost curves for HyFBIST

56

Using the values D(j) found by Algorithm 5-1 for each possible length
j=1, 2,, k of the functional test, it is possible to create the curve of the

cost CD_Total of the deterministic test, and the curve of the total cost CTotal of
HyBIST. By finding the minimum of CTotal we can determine the optimal
mixture of the functional and deterministic parts of HyBIST.

57

Algorithm 5-1:

1. Take j = 0; calculate the whole deterministic test TD(j) for the whole
set of faults R(j) in the CUT.

2. Create the fault table FT  j 
3. FOR all j=1, 2, , k :

BEGIN
● Find the first pair of data operands (Aj,Bj);
● Carry out the functional test with (Aj,Bj) and find the set of Nj

functional test patterns;
● Fault simulate the Nj patterns produced by the functional test,

and find the set of faults RDET(j) detected;
● Create a new fault table FT(j) by removing from FT(j-1) the

faults RDET(j) and optimize the deterministic test TD(j-1) in
relation to FT(j);

● The optimized new test set is TD(j) with the length
D  j=∣T D  j ∣ ;

END FOR
END.

5.4 Experimental results

Experiments were carried out for the microprogrammed data path for division of
fractional numbers presented in Fig. 5-4.

The data path has 105 inputs, and 71 outputs, it consists of three 32- bit registers
(dividend, divisor and quotient), 5-bit counter, and a combinational part of 513
gates. The fault list of the UUT consists of 2382 faults.

A series of experiments was carried out to determine the fault coverage which
may be achieved by a single division microprogram. The results are depicted in
Table 5-1 where A is the dividend, B is the divisor, C is the quotient, N is the
number of cycles carried out during the microprogram, and FC is the fault
coverage reached by the N functional test patterns produced by the
microprogram on the inputs of ALU. For this UUT a single microprogram as a
functional test allows test data compression in 197 times (see Section 5.2).

From Table 5-1 we see that a single division procedure for a single pair of data
operands A and B is not able to produce a high fault coverage by using the
proposed functional BIST scheme.

The second series of experiments was carried out to merge several division
procedures into a single functional test program.

58

The sequences of up to 10 division microprograms with different data pairs
(A,B) were carried out to calculate for each case the optimum combination of
functional and deterministic test parts. A selection of 6 experiments is presented
in Table 5-2. Here k is the optimal number of runs of the microprogram (optimal
length of the functional test part), N is the number of functional test patterns
produced by k microprograms, FC is fault coverage, and D is the number of
additional deterministic test patterns generated to achieve 100% fault coverage

59

1

&

&

1

&

1

32

Rg3

Y6

&

Y3

Y4
Y3

-1

Y7
5 L

5

Σ
Y3

32

Rg1

Y3

Rg2

1
X2

X1
Rg1(31)

Rg3

32

32

&

L1

1

1

&

Y4

Y5

Rg1

Y4

Y5

L

Fig. 5-4. Unit under test used in the experiments

for the whole hybrid FBIST procedure. The total costs are calculated for both,
functional and deterministic test parts, and for the whole hybrid FBIST. For
simplicity we have taken a = b = 1, and CFB_Const = CD_Const = 0. The best results of
each column are marked by bold.

Table 5-1. Selected functional tests implemented as a single division procedure

No A B C N FC(%)
1 0.5000 0.5000 1.0000 94 42.48
2 0.2500 0.5000 0.5000 124 44.87
3 0.1500 0.1500 1.0000 94 48.78
4 0.4000 0.8000 0.5000 124 52.64
5 0.2000 0.8000 0.2500 124 56.38
6 0.5000 0.8000 0.6250 99 64.48
7 0.9043 0.9865 0.9167 108 65.07
8 0.2953 0.3456 0.8545 109 66.20
9 0.6943 0.7234 0.9598 105 66.96

10 0.4320 0.8569 0.5041 113 67.25
11 0.4567 0.4678 0.9763 104 67.51
12 0.4320 0.5678 0.7608 108 67.84
13 0.4320 0.6000 0.7200 108 68.01
14 0.7435 0.8764 0.8484 104 68.30
15 0.4320 0.4509 0.9581 107 68.89

From Table 5-2 we see that the minimal total cost essentially depends on the
data operands chosen for the functional test. The task of generating the best data
operands for the functional test part was not the task in this work. The goal in the

60

Table 5-2. Selected optimal test procedures

Functional test part

k N FC % D

4 430 89.1 686 16 1696 2382
3 329 84.7 521 16 1696 2217
4 438 83.7 694 16 1696 2390
3 293 69.0 485 22 2332 2817
3 282 69.1 474 22 2332 2806
2 213 76.7 277 18 1908 2185

Deterministic
test part Total

costTotal
cost

Total
cost

thesis was to minimize the whole cost of the hybrid FBIST at the given
functional test.

In Table 5-3, the progress of parameters at the increasing length k of the
functional test part is shown for the best combination of functional and
deterministic test parts. The cost curves for this experiment are shown also in
Fig. 5-5 with minimum total cost at k=2 . For this solution, the functional part
of the hybrid BIST consists of two runs of the microprogram for two pairs of
stored 32-bit data operands, and of the deterministic part with 18 stored 105-bit
test patterns. The cost of optimized HyBIST CTotal_opt = 2185 compared to the
pure deterministic testing CD_Total_pure = 6148 is 2.8 times less that characterizes
the gain achieved by the presented approach..

Table 5-3. Calculation of data for optimization

Functional test part
Total cost

k N FC % D Total cost

0 0 0 100 0 58 6148 6148
1 108 108 66.8 140 24 2544 2684
2 105 213 76.7 277 18 1908 2185
3 113 326 83.3 518 17 1802 2320
4 108 434 85.5 690 16 1696 2386
5 110 544 88.4 864 15 1590 2454

Deterministic
test part

N
j

Total
cost

Cost

0500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500

0 1 2 3 4 5 6 7 8 9
10k

C
FB_Total

C
D_Total

 C
Total

Fig. 5-5. Cost curves for the HyFBIST

61

Table 5-4. Comparison of functional test with FBIST

Data
Functional testing Functional BIST
B1 B2 Total B1 B2 Total

4/2 13.21 15.09 14.15 35.14 40.57 29.72
7/2 21.23 16.98 19.10 38.44 47.64 29.25
6/3 19.34 31.6 25.47 41.04 39.62 42.45
8/2 25.47 10.38 17.92 32.07 40.57 25.00
9/4 8.96 5.66 7.31 36.56 47.64 25.47
9/3 32.55 26.89 29.72 43.63 46.07 40.57
12/6 13.44 8.02 18.87 36.08 39.62 32.55
14/2 18.16 25.00 11.32 37.50 49.06 25.94
15/3 29.48 31.13 27.83 47.88 50.00 45.75
2/4 7.8 7.55 8.02 29.01 20.75 33.02

Average 18.96 17.83 17.97 37.74 42.15 32.97
Gain 1.0 1.0 1.0 2.0 2.4 1.8

A research environment for investigating different aspects of RT level design
and test was recently developed [93] where the described functional BIST
approach can be compared with traditional functional RT level testing. There is a
possibility in the applet to run different microprograms (taken from the library or
user defined) for arbitrary chosen data operands, and calculate the sensitivity of
the final results of microprograms to all possible stuck-at faults in the data path.
This corresponds to traditional functional testing where a computer instruction is
exercised with different data. Another mode of working of the applet is
functional BIST where signature analyzers can be inserted at different places of
the circuit to increase the observability of the microprogram behavior in its role
as a test.

The results of comparison of the traditional functional testing and functional
BIST for the integer division microprogram by using the applet [93] are given in
Table 5-4.

Two blocks B1 and B2 were selected for comparison. The gains in fault
coverage in favour for FBIST are 2.0, 2.4 and 1.8 times in average,
correspondingly, for selected blocks B1, B2 and in total for the whole data path.

The fault coverage reached by FBIST was higher in the experiments presented in
Table 5-1 compared to the results in Table 5-4. This can be explained by the
difference in the lengths of data words. In the educational applet [93] only 4-bit

62

data are used (for making processes visually better observable) whereas the
results in Table 5-1 are based on 32-bit data.

5.5 Conclusions

1. A new approach to functional BIST was developed which uses three
ideas:

● functional data generated cyclically online in a digital system
are used as test patterns,

● these functional data are combined with additional deterministic
test patterns to achieve 100% fault coverage, and

● an optimal combination of both test parts is found.

2. Experiments showed the feasibility and efficiency of this approach. The
data compression in FBIST was 197, and the gain in test cost for
HyBIST compared to pure deterministic testing was 2.8 times.

3. As we see from the experimental results, the global problem of finding
hybrid FBIST with minimum cost is more complex than only finding the
best functional part, and then optimizing the HyFBIST. The experiments
showed that the best functional test part with highest fault coverage
(89,1% in Table 5-2) does not guarantee the best HyFBIST. These
investigations targeted to optimization of HyFBIST in a global sense
need future research..

63

6 Sequential Built-In Self-Test

In this chapter a Design-for-Testability (DfT) technique of Built-In Self-Test
(BIST) for sequential circuits is proposed. The technique is based on making the
status signals entering the control part controllable during the test mode to force
the device under test to traverse all the branches in the FSM state transition
graph. Extra outputs are added to the circuit under test in order to observe the
values of the status bits masked out.

The proposed idea of architecture requires little device area overhead since a
simple controller can be implemented to manipulate the control signals.
Experiments were carried out on six sequential examples in order to compare
different approaches to sequential BIST.

6.1 Principles of Sequential Built-In Self-Test

Here we propose a technique known from software testing to be implemented in
Built-In Self-Test (BIST) for synchronous sequential circuits. Here, path
coverage metrics s[8] is used to generate masks for controlling the FSM of the
device under test in the test mode. In addition, general architecture to allow such
application of the masks is proposed. It contains an LFSR and a simple
controller to manipulate the masked out bits. Due to the small number of such
signals in most of the circuits, very little area overhead is required.

The problem of Built-In Self-Test (BIST) for combinational and full-scan
circuits has been thoroughly researched in the past. Implementing weighted
random test patterns [18, 31] and bit-flipping [33] have been among the most
efficient solutions.

Nachman, Saluja et al. [49] propose an a method were the values are held at
inputs and scan registers while a certain number of clock pulses are applied. This
requires preliminary testability analysis of the circuit structure. Furthermore, the
above approach is applicable for circuits containing scan-chains only.

However, rather limited amount of work is available on BIST for non-scan
sequential designs. The main motivation for sequential BIST is that, unlike in
scan-chain approach, there is no need to reconfigure the circuit flip-flops during
the test mode. This allows testing of the circuit at its normal operating speed.

64

Pomeranz and Reddy present a solution for the general case of sequential
circuits [36]. However, the main problem is an excessive hardware overhead
since dedicated test pattern generators are to be tailored for each individual
primary input. In [46], Chakrabarty proposes a method similar to the reseeding
approach [97]. Here, deterministic patterns are embedded to a sequence
generated on-chip by using twisted ring counters (or Johnson counters, as they
are also referred to).

The Chapter is organized as follows. Section 2 explains the functional fault
model of covering all the branches in an FSM state transition graph. Section 3
presents the proposed DfT-based BIST approach technique. In Section 4,
experimental results are provided. Finally, main conclusions are given.

6.2 Test Coverage Metrics for Sequential Circuits

Consider a Finite State Machine (FSM) as a model for sequential circuits. FSM
may be represented using a state transition table or a state diagram. A state
diagram is a directed graph, where the nodes correspond to states and the
branches correspond to transitions between the states. Marked on the branches
are the conditions required to activate them. In a digital system, these conditions
usually correspond to status bits originating from conditional operations in the
datapath.

The approach proposed here is based on all-branches coverage metrics [56],
which is known to be more powerful than all-statement coverage. Let us
consider an example in Fig. 6-1, where covering all the branches in the state
transition graph of the FSM is presented.

S
4

S0

S
1

S
5

S
2

S
3

A = 1

A = 0

B = 0 B = 1

A = 1

A = 0

B = 0 B = 1

1

A = 1

A = 0

B = 0 B = 1

S0 S0

S
4

S
4

S
3

S
3

S
2

S
2

S
1

S
1

S
5

S
5

(a) (b) (c)

Fig. 6-1. Traversing all branches in the state transition graph

65

In Fig. 6-1a, we traverse a sequence s0 → s1 → s5 → s0 by setting the status
signal A to be 1. Fig. 6-1b shows traversing the next sequence s0 → s1 → s2 →
s3 → s4 → s1 by assigning A:=0 and B :=0 . Finally, the sequence s1
→ s2 → s4 is covered by assigning 1 to the status bit B (Fig. 6-1c). As it can be
seen, all the branches of the state transition graph for the example FSM are
covered by the paths in Fig. 6-1.

The main idea of current approach is to force the FSM to traverse all the
branches in the state transition graph. This is implemented by controlling the
status bits entering the control part and feeding pseudorandom data to the
primary inputs of the circuit. The next Section explains this architecture more in
detail.

6.3 General Architecture of the BIST

Fig. 6-2 presents the general architecture of the DfT enhanced BIST. It contains
a Pseudo Random Pattern Generator (PRPG), a BIST controller, Circuit Under
Test (CUT) and a MUX to select between the normal inputs and the
pseudorandom test. Linear Feedback Shift-Register (LFSR) has been
implemented as the PRPG.

The task of the BIST controller is to activate the pseudo-random pattern
generator and control the values of the status bits. The pseudorandom test
generation in the experiments were carried out by CAD tools belonging to
Turbo-Tester [58]. Output response (signature, aliasing) analysis was not
considered here.

66

M
U
X

CUT
PRPG

BIST
controller Masked status bits

PR sequence

BIST select

PI

PO

Test mode select
 (TM)

Fig. 6-2. General BIST architecture for status bit masking

Fig. 6-3 shows the structure of a digital system modified according to the DfT
approach. The circuit under test is divided into an FSM and a datapath. The DfT
architecture implements multiplexers to mask out the status signals of the
datapath entering the FSM. Normal status bit values are selected during the
working mode (TM=0) and controller-generated masked values during the test
mode (TM=1). The muxed-out signals are made observable by adding dedicated
observation points.

Digital System

FSM

Datapath

control signals status
signals

reset

clock

primary
inputs

primary outputs

masked
status bits

MUX

test/normal
mode (TM)

observation
points

Fig. 6-3. Digital system modified for DfT

As we can see in the experiments presented in the following Section, the number
of such signals is usually very low (from zero to two in the considered
benchmarks). Thus the area overhead required by the controller and the MUX-es
is low.

6.4 Experimental Results

Table 6-1 presents characteristics of the benchmark circuits that have been
chosen from the HLSynth92 [118] and VILAB benchmark families [117]. The
circuits with '_MOD' extension are the modified designs, where the test mode
multiplexer has been inserted and the status bits have been made controllable.

67

Table 6-1. Characteristics of the benchmark circuits

Circuit PO bits registers MUXes FUs faults

DIFFEQ 6 81 48 7 9 5 10360 - -
DIFFEQ_MOD 6 83 48 7 10 5 10372 1 0.1 %
ELLIPF 28 130 113 17 7 3 5674 - -
GCD 8 9 4 3 4 3 452 - -
GCD_MOD 8 12 4 3 6 3 474 2 4.4 %
MULT8x8 8 17 16 7 4 9 2064 - -
MULT8x8_MOD 8 20 16 7 6 9 2098 2 1.7 %
RISC 4 26 16 8 4 4 6418 - -
SOSQ 5 9 32 7 2 6 1952 - -
SOSQ_MOD 5 11 32 7 3 6 1964 1 0.5 %

FSM
states

PI
bits

mask
bits

area
overhead

The last column of the Table 6-1 shows the area overhead imposed by the status-
bit multiplexers. As we can see, the number of mask bits and therefore, the
number of additional multiplexers, is very low. Thus, the required overhead of
the multiplexers is neglectable ranging from 0.1 % to 4.4 %.

Table 6-2 shows the average and maximum fault coverages for all the
benchmarks both, for 1000 and 10000 pseudorandom vectors. Five different test
configurations were considered:

– LFSR and original circuit.
The original circuit was tested with pseudorandom patterns generated by an
LFSR.

– LFSR and modified circuit (_MOD)
The modified circuit (i.e. the circuit, where status bits have been made
controllable) was tested with an LFSR.

– LFSR and test masks in test mode (TM=1)
The modified circuit was tested with an LFSR, the test masks were applied
in the test mode (TM signal was active).

– LFSR and test masks in normal mode (TM=0)
The modified circuit was tested with an LFSR, but the test masks were
applied in the normal working mode (TM signal was deactivated).

– LFSR with reset handling (Reset)
The modified circuit was tested with an LFSR and the global reset was kept
deactivated during each test sequence.

68

Table 6-2. Comparison of sequential BIST solutions

Circuit
average coverage %

1000 10000 1000 10000
MULT8x8 1.55 1.55 1.55 1.55
MULT8x8_MOD 5.90 5.90 5.90 5.90
MULT8x8_MOD (TM=1) 47.63 47.98 47.95 48.05
MULT8x8_MOD (TM=0) 5.67 5.67 5.67 5.67
MULT8x8_MOD (reset) 49.71 58.29 54.10 58.52
SOSQ 3.63 3.27 3.63 3.63
SOSQ_MOD 10.49 9.62 10.58 10.58
SOSQ_MOD (TM=1) 46.63 47.71 47.71 47.71
SOSQ_MOD (TM=0) 3.60 3.60 3.61 3.61
SOSQ_MOD (reset) 38.49 36.70 42.22 42.27
ELLIPF 4.96 5.26 5.59 5.80
ELLIPF (reset) 85.00 85.01 85.02 85.02
DIFFEQ 93.03 94.27 93.35 94.55
DIFFEQ_MOD 94.15 95.53 94.56 95.96
DIFFEQ_MOD (TM=1) 94.63 95.39 95.06 95.88
DIFFEQ_MOD (TM=0) 94.75 95.40 94.92 95.74
DIFFEQ_MOD (reset) 94.63 95.32 94.78 95.44
GCD 39.56 50.44 53.08 68.72
GCD_MOD 56.13 71.26 79.41 84.66
GCD_MOD (TM=1) 85.95 85.95 86.13 86.13
GCD_MOD (TM=0) 81.76 84.73 84.87 84.87
GCD_MOD (reset) 84.39 87.29 88.03 88.03
RISC 29.00 40.03 33.05 42.43
RISC (reset) 36.87 39.50 37.91 39.55

maximal coverage
%

Fig. 6-4 gives a clearer view of the results presenting the performance of the
above-mentioned techniques on the six circuits. The data is presented for the
maximal results obtained with 1000 clock-cycles. We can distinguish between
several types of circuits with different characteristics. There are two circuits,
which are well random-testable: GCD and DIFFEQ. As it can be seen from the
Fig. 6-4, all the bars for these circuits are of nearly similar height and reach
nearly 100 %. This means that for these circuits any BIST scheme will do,
including the pure pseudo-random approach. Another circuit that can be easily
tested by pseudorandom data is RISC. However, here the main reason is most
likely the very small sequential depth (4 clock-cycles).

69

0,00

20,00

40,00

60,00

80,00

100,00

MULT8x8SOSQ ELLIPF DIFFEQ GCD RISC

original

modif ied

mask TM=1

mask TM=0

reset

Fig. 6-4. Effect of DfT on different example circuits

The rest of the circuits can not be efficiently tested by pseudo-random vectors.
While ELLIPF and MULT8x8 could be well tested by simple reset handling, for
the SOSQ benchmark, signal masking should be preferred. Thus, depending on
the pseudo-random testability characteristics, an appropriate approach can be
selected for each individual case.

6.5 Conclusions

1. A new technique known from software testing was introduced to be
implemented in Built-In Self-Test for synchronous sequential circuits.
Path coverage metrics was used to generate masks for controlling the
FSM of the device under test. In addition, general architecture to allow
such application of the masks was proposed.

2. Experiments carried out on six sequential benchmarks showed that most
of the circuits could not be tested by pseudorandom data. Controlling the
FSM of the circuit under test considerably improved the results.

3. The experiments also showed that there was no universally better
solution among the compared architectures. Depending on the pseudo-
random testability characteristics, an appropriate approach has to be
selected for each individual test case.

70

7 Environment for e-Learning in Digital Test

A set of tools developed as prototypes for experimental research of new BIST
approaches described above has been accommodated and extended for using in
education purposes.

In this Chapter these tools (as “interactive modules”) are presented and it is
shown how they can be used as e-Learning environment for teaching and
learning logic level test generation and fault diagnosis problems in digital
circuits. The tools can support laboratory work for different university courses
on computer engineering, switching and automata theories, digital electronics
and design for testability to learn by hands-on exercises test and fault diagnosis
related topics. A big reservoir of examples and the possibility to set up
interesting engineering problems like how to generate test patterns for a digital
circuit, or how to locate a faulty gate makes the learning process more
interesting and allows learning at an individual depth and duration. The
interactive modules are focused on easy action and reaction, multilingual
descriptions, learning by doing, and a game-like use. The tasks chosen for
hands-on training represent simultaneously real research problems, which allow
to foster in students critical thinking, problem solving skills and creativity.

The results in this chapter are published in [77, 78, 79, 80, 81, 89]

7.1 Applet “Introduction to Digital Test”

The increasing complexity of VLSI circuits, Systems-on-Chip (SOC) or even
Networks-on-Chip (NOC) has made test generation one of the most complicated
and time-consuming problems in digital design. The more complex are getting
electronics systems, the more important will be the problems of test and design
for testability because of the very high cost of testing electronic products. At
present, most system designers and electronics engineers know little about
testing, so that companies frequently hire test experts to advise their designers on
test problems, and they even pay a higher salary to the test experts than to their
VLSI designers [63]. This reflects also today’s university education: everyone
learns about design, but only truly dedicated students learn testing. The next
generation of engineers involved with System-on-Chip (SoC) technology should
be made better aware of the importance of test, and trained in test technology to
enable them to produce high quality and defect-free products.

71

In this Section a conception is presented how to improve the skills of students to
be educated for hardware and SoC design in test related topics. We present a
learning method based on using so-called living pictures [85]. The method
presented deals with the goal, to put interactive teaching modules to the Internet
that can be used in a lecture as well as for individual self-studies [85]. They can
be accessed independent of time and place. On one hand, teachers can
demonstrate different examples and procedures of test related topics using living
pictures during the lessons. On the other hand, students can use the same
simulations on their home computer, if the living pictures are available on the
Internet.

In the core of the teaching concept presented here are some Java-applets (the
interactive modules) running on any browser connected to the Internet. We call
this type of applet "Living Pictures". By using interaction possibilities the
students can produce input stimuli, watch the behavior of the circuit in the fault-
free mode and also in different faulty modes. In the following paragraphs,
different learning tasks and exercises are described which make use of this
applet.

7.1.1 User Interface

The program for representing “living pictures” for teaching Digital Test was
originally written in Java 1.3. It can be run over network, using standard
browsers like Netscape and Internet Explorer with Java 1.3 (or newer) runtime
plug-in, or with Java 1.3 (or newer) applet viewer. The program can be used for
teaching the basics of testing digital systems, deterministic test generation,
pseudo-random test generation, fault simulation and fault diagnosis.

The work window of the applet consists of three main parts (Fig. 7-1):

● Vector insertion panel
● View panel for design schematics
● View panel for displaying information (test patterns, fault tables,

waveforms, and different statistics)

The vector insertion panel has two subpanels for inserting single input test
vectors and for setting up the feedback configuration of a Linear Feedback Shift
Register (LFSR) to be used for automatically generating test vectors [51]. In the
LFSR mode, the first subpanel is used for initializing the LFSR. The LFSR-

72

based Automated Test Pattern Generator (ATPG) is used for emulating different
Built-In Self-Test (BIST) ideas like BILBO, Circular-Self-Test-Path (CSTP),
“Store-and-generate” [107], or other hybrid BIST approaches discussed on this
thesis.

The first subpanel is also used when creating test vectors for specific fault
detection. In this case, the fault activating and propagating values are inserted
one by one into the signal boxes at connections of the design schematics, and the
input test vector will be deduced from these internal signal values.

The schematics panel displays currently selected schematics. The small boxes at
the lines display internal signal values on connections. The boxes are clickable
during manual test vector generation and fault diagnosis. In the test generation
mode, the needed signal values for fault activation or fault propagation can be
inserted directly at the connections. In the fault diagnosis mode, by clicking the
boxes, a guided probing procedure can be simulated. A click on the box shows
the result of measuring the “real” signal on the corresponding connection of the
simulated faulty circuit.

73

Fig. 7-1. Working window of the applet

Detected faults, signal conflicts etc. are displayed as colored bold wires. Color
encoding is as follows:

● red - stuck-at-1 fault is detectable,
● green - stuck-at-0 fault is detectable,
● gray - undefined (don’t care) signal, and
● blue - conflicting signals.

The data panel displays information about simulated test vectors and detected
faults. In the fault simulation mode it is possible to click on the row of a given
test vector and have a visualization which faults are detected by the given vector.
In the signal (waveform) mode it is possible to select all the signals in interest
and leave out those which are not.

There are four main menus used with the applet: schematics, mode, language,
and help.
The schematics menu contains a list of predefined circuits. For didactive
purposes most of them are very simple circuits for better understanding the most
important relationships between signals, functions and faults.

By the language menu the user may choose one of the currently supported
languages from the given list.

The help menu provides with useful tips and explanations.
The mode menu tells the applet what is to be done:

● test vector insertion,
● manual test vector generation,
● fault simulation or fault diagnosis (two possible diagnostic approaches

are implemented: sequential and combinational diagnosis).

We start working with the applet by selecting a circuit from a set of predefined
ones. Then we can carry out different experiments with this circuit by selecting a
proper working mode from the mode menu.

74

7.1.2 Test Vector Generation

There are two methods possible for test vector generation using the applet:
● direct test vector insertion on inputs (on the vector insertion panel), and
● test generation by path activation in the circuit (on the schematics

panel).

In the direct test vector insertion mode we can choose test vectors either
automatically by using LFSR, or by inserting vectors manually.

In the manual mode, we generate step by step input patterns which are
simultaneously simulated. The boxes at the lines on the schematics subpanel
display the result of simulation – the values of internal signals on the
connections. The waveforms can be viewed on the data subpanel.
When using LFSR, we have to specify the initial state, to set up the feedback
structure, and to specify the length of the test sequence. By LFSR we can
simulate the BIST either in the mode of Built-In Logic Block Observer (BILBO)
or in the mode of Circular Self-Test Path (CSTP) [51]. By changing the settings
on the vector insertion panel we can emulate different feedback structures of the
chosen BIST architecture.

In the test generation mode we choose a target fault in the schematic and create
step by step proper activated paths in the circuit to activate the fault at his site
and to propagate the error signals caused by the fault towards output by clicking
the needed values into boxes on the lines. From these values finally, an input
vector will be deduced. The colors on lines help us to understand the current
status of the task: activated faults and activated paths are marked by red and
green lines, the inconsistencies of the signal values are highlighted by blue color.
As the result of the procedure, a test pattern will be generated. The detected by
the test faults are displayed also on the data panel in form of a row in the fault
table.

For example, to generate a test pattern for the fault x3≡1 in Fig. 7-2, first, a
signal with opposite value 0 to the faulty value 1 should be inserted to x3 by
clicking the box on the line x3 . Then, the faulty signal of x3 should be
propagated to the output of the circuit. By inserting the value 1 on the line x2
the faulty signal from x3 is propagated through the gate I 1 . Next, by
inserting the value 0 on the upper input of gate I 4 the faulty signal is
propagated through the gate I 4 . Finally, by inserting the value 1 on the lower
input of gate I 6 the faulty signal is propagated through the gate I 6 to the
output y.

75

x3

x2

x1

I3

I1

I0

&

&

I4

1

I5

1

I6

&
I2

&

&

1

1

0

0

1

0
1

0

1

Fig. 7-2. Test generation by path activation

The activated path is shown in Fig. 7-2 by bold lines. All the inserted values
should be properly justified step by step by other signals moving towards the
inputs. As the result, a test pattern will be created on the inputs. For this
example, the input pattern x1 x2 x 3=110 will be found.

In the fault simulation mode, a fault table is generated and shown on the data
panel for all the test vectors created by the given moment. By selecting a test
vector on the data panel, all the detected faults will be highlighted by colors on
the schematic panel.

y
x3

x2

x1

I3

I1

I0

&

&

I4

1

I5

1

I6

&
I2

&

&

1

1

1

0

1

1
0

1

1

1

Fig. 7-3. Fault simulation results

For example, in Fig. 7-3, activated paths (shown by bold lines) are found by
fault simulating the test pattern x1 x2 x 3=111 .

76

The following faults are detected along these paths:

x1≡0, x2≡0, x3≡0
I 0 b≡0, I 1 a≡0
I 4 a≡1, I 4 b≡1
I 6 a≡0, I 6 b≡0
y≡0

The inputs of gates are denoted from above down by a, b.

In Fig. 7-1, the results of fault simulation for 5 test vectors are shown. On the
schematic panel we see the activated paths and detected faults for the vector
number 4 which is selected in the view panel. The values in boxes show the
behavior of connection lines of the circuit for this test vector. The activated
faults are highlighted by colored lines, the value 0 (or 1) in the boxes means that
the fault stuck-at-1 (or stuck-at-0) is activated.

7.1.3 Fault Diagnosis

In the fault diagnosis mode we need at first, to create a fault table by running the
fault simulator for a set of previously generated test vectors. Entering into the
diagnosis mode will insert a random fault into the circuit.

The following diagnosis strategies chosen from menu can be investigated:
combinational and sequential diagnosis.

For learning the combinational diagnostic strategy, a single vector or a subset of
vectors can be selected and applied to the erroneous circuit (by imitating test
experiments). The applet shows the results of testing, and displays also the
subset of suspected faults. To improve the diagnostic resolution, additional test
vector(s) may be generated and used in the repeated test experiment.

Sequential diagnosis (guided-probe testing) is based on the guided probing
strategy. A test pattern is applied and the expected behavior of the circuit is
displayed. The principle of guided-probe testing lies in backtracing an error from
the output, where it has been observed, to its source (faulty gate). By clicking
on the connection boxes, the real values of signals of the faulty circuit can be
measured. A faulty gate is located if it has been found that the signal on the
output of the gate is faulty, while only expected signals are observed at its
inputs.

The main didactive point in learning the both diagnostic strategies is to try to
localize the fault by as few test vectors (in the combinational approach) or by as

77

few measurements (in the case of sequential approach) as possible. In this task a
competition between students can be carried out which makes the “play” with
the applet even more exciting.

As an example, let us see the procedure of sequential fault localization by
pinpointing the signals in the circuit for the case of test pattern x1 x2 x 3=110
represented in Fig. 7-2. Suppose the gate I1 is faulty. An error has been observed
on the output. Three possible fault location procedures can be imagined.

OUT

I 6a

I 6b

I 4 a

I 4 b

I 1 a

I 1 b
OK

F

OK

F

OK

OK

Fig. 7-4. Fault diagnosis by backtracing errors

First, we may use a trivial backtracing procedure of erroneous signals shown as
a search tree in Fig. 7-4. In the worst case we may click on the 6 nodes. Starting
with the node I6b we observe a correct signal. Then, we try the next input I6a of
the gate I6 where the error is detected. We continue now backtracing in the node
I4a. Then, we try the next input I4b of the gate I4 where again the error is
detected. Now we backtrace to the inputs of the gate I1 where no errors are
found. This means that we have located the erroneous gate I1 by 6
measurements.

Second, we may analyze the fault activation conditions on the inputs of gates in
the backtrace tree for local optimization (at each gate) of the search process. For
example, based on the input signals of the gate I6 we realize that if an erroneous
signal has been propagated through the gate, it can originate only from the input
I6a. In other words, we can skip pinpointing of the node I6b. In the same way, we
realize that the measurement of I4a is also not needed. As the result, the
backtracing procedure will cost only 4 measurements (see the bold lines in Fig.
7-4).

There is a third possibility to analyze the situation for a global optimization of
the search process. Since there exists a continuous activated path from the input

78

x3 to the output y, the faulty gate should be located on that path. By measuring
the value of I4b we can divide all the possible faults into two equal groups. In the
case of correct value, we have to proceed towards the output and pinpoint the
value of I6a to determine which of the gates I4 or I6 is faulty. In the case of
erroneous signal, we have to continue towards the inputs and measure the value
of x3 to determine if either the input x3 or the gate I1 is faulty. In both cases we
need only 2 measurements to locate the fault.

On this little example, we managed to show that the fault diagnosis process can
be regarded as a demanding mental experiment. A competition can be organized
between students to make the learning procedure an exciting event.

7.1.4 Research Training in BIST

In the following we show how the tasks can be chosen based on the applet for
hands-on training, which simultaneously represent real research problems.
Solving the formulated tasks allow to foster in students critical thinking,
problem solving skills and creativity.

The research oriented tasks are related to the field of Built-In Self-Test (BIST) in
Systems on Chip.

 BIST is the capability of a circuit to test itself. From a large variety of BIST
methodologies, we concentrate ourselves in a off-line BIST [51] consisting of
the following main components: test pattern generator (TPG), unit under test
(UUT) and a response analyzer (RA). The corresponding BIST architecture is
shown in Fig. 7-5.

TPG is usually a pseudorandom test pattern generator, and RA – a signature
analyzer, both based on linear feedback shift registers (LFSR) [5].

There are several disadvantages of such a structure. First, the test sequences
generated randomly are usually very long, second, they do not guarantee always
a sufficient fault coverage because of existence of so called “hard-to-test” faults.

TPG UUT RA

Fig. 7-5. BIST architecture (BILBO)

79

To overcome these drawbacks, combinations of several approaches have been
proposed. One of them, called hybrid BIST, is based on combining on-line
generated pseudorandom test patterns with stored pre-generated test patterns

PRPG

. . .
. . .

. . .

ROM

.

SoC

Core

MISR

B
IS

T
 C

on
tro

lle
r

CORE UNDER
TEST

Fig. 7-6. BIST architecture (BILBO)

A hybrid BIST architecture is depicted in Fig. 7-6. Pseudorandom pattern
generator (PRPG) and Multiple Input Signature Analyzer (MISR) are
implemented inside the core under test. Pre-generated deterministic patterns are
stored in ROM.

In this approach, at first pseudorandom test sequence with a length L is
generated on-line, after that a switch to a stored test approach takes place. For
the stored test approach, previously generated and then in the memory stored test
patterns are read one by one from the memory and applied to the UUT to reach
the 100% fault coverage.

The applet presented allows to generate test patterns by both methods: by
generating on-line pseudorandom test patterns using the LFSR approach, and by

80

manually generating deterministic test patterns for the faults not detected by
pseudorandom test patterns.

There are now several problems to be solved which still have not found
sufficient solutions in the research and industrial community:

● What is the shortest LFSR and what is the best characteristic polynomial
for the LFSR to be used for on-line test generation to achieve the highest
fault coverage at the minimum length of the pseudorandom test
sequence?

● How to find the best level of mixing the pseudorandom test and stored
deterministic test as the trade-off between the memory cost and testing
time.

To find solutions for the mentioned questions will be the task of the laboratory
research for students. The students are not asked to carry out boring
measurements, to press simply on buttons for starting a program and getting
results which are nothing but a simple confirmation of what they already know
from lectures. Instead, they are asked to solve a series of engineering problems,
they have to plan and carry out experiments to find answers for the given
questions.

Fault Cover %

Creal_min

Cestimated_min

Predicted cost

Real cost

CTOTAL (Total cost of BIST)

Stored
test

length
MS

Generated
test

length
TG

100%

Fig. 7-7. Optimization of hybrid BIST

The are not available straightforward algorithms or software tools to find
directly solutions for the mentioned problems. The only method is to set up
hypotheses and check them by experiments.

81

Fig. 7-7 shows a graphical solution for finding the optimum of mixing
pseudorandom and stored test approaches as the trade-off between the memory
cost and testing time. Let have the whole cost of the BIST to be found as

CTOTAL=CTIMECHW=TGMS

where CTIME is the cost related to the time needed for test, CHW is the hardware
cost related to the BIST architecture, TG is the length of the test generated by
LFSR, MS is is the number of patterns to be stored, and α, β are constants to
map the test length and memory space to the costs of two parts of test solutions
to be mixed.

The problem is that it would be very time consuming to find experimentally all
the curves shown in Fig. 7-7, except the generated test length TG. The practical
way would be in trying to find the curve for MS with as least as possible number
of experiments, and to try to predict the curve on the basis of experimental data,
and then by choosing as few as possible additional experiments to approach step
by step to the real optimum.

To find a proper algorithm for solving this optimization problem will be the task
of the student.

7.2 DefSim – a real life defect simulation environment

Many tools exist for behavioral emulation of defects (using mathematical
models) but only few of them let students make real-life measurements. To fill
this gap a project was started, the goal set on designing a chip which is,
basically, full of defects. At first, a selection of different logic elements – simple
and complex gates and circuits was chosen. In the second stage a set of different
defects was selected, based on probabilistic analysis. Also, all stuck-at faults
were included although the probability of such a fault tended to be quite small.
Each of the selected defects was implemented in standalone circuit (called cell),
embedded in wrapper circuits. For each cell an power control unit, current
monitor, input and output buffers were added. Design solution like this clears
many problems like:

● Overcurrent protection system. Although the cells are 'defective from
the start' we surely do not want to completely destroy them when
activated.

● Multiple fault interaction elimination. Usage of switching logic for
defect activation may cause side-effects on measurement results, thus

82

one fault per circuit should make it behave more naturally. This is
especially important for shorts because every milli-ohm counts there.

● Overall circuit power reduction. The final product is connected via USB
interface, thus the design is limited in power usage (about 100mA up to
500mA in special cases). Because of the wrapper logic it is possible to
activate single cells at a time, considerably reducing the power
consumption.

● Precise current detection for Iddq testing and output voltage measurement.

Author's main contribution to this project was the command line interface utility,
but he also participated in general chip design, modified the DefSim Linux
driver for the use on 64-bit systems and helped with the Linux web server
installation and administration.

83

7.2.1 DefSim user interface

DefSim is designed to be accessible through different means. The cheapest (per
student) solution is server-based [116], utilizing Apache Tomcat web server and
is accessible by every JavaScript enabled web browser [105]. Also, a local
installation is available where DefSim measurement box is connected directly to
each workplace (see diagram on Fig. 7-8) and can be accessed using graphical
user interface or simply by using command line interface (CLI) DefSim utility.

Microcontroller operated mea-
surement environment

DefSim
chip USB port

PC
(Linux/Windows)

Driver

DefSim library/
CLI program

Apache Tomcat

Web Server
GUI Console

Fig. 7-8. DefSim system diagram

Web interface to DefSim measurement environment (called WebTT) is a
multiuser solution where each user has to create (or log in to) its own account.
Each user can create multiple test stimuli files and store them under different
projects, alongside with the measurement result files for reports or further
analysis.

Illustration 7-1 depicts login window to the DefSim measurement environment,
also the DefSim measurement box and chip are visible.

84

Illustration 7-1. DefSim start page

7.2.2 Teaching CMOS defects on DefSim

A variety of different circuits with stuck-open or stuck-on transistor defects and
classical SAF defects are implemented in the DefSim IC. Also two types of
measurements can be used for detecting defects. Thus, various exercises are
possible for students to work on (and not limited to) [13]:

● Simple simulation experiment. This experiment will show how logic
functions may change in the presence of certain defect.

● Manual test generation and application. How to create tests for detecting
certain defect and check if the test really detects it. This, of course
expects a basic understanding of low level defect behavior and is a good
way to learn defect modelling.

● Manual SAF test generation and application. A good way to show that
the simple SAF model is not so good when dealing with real-life defects.
This fact will become clear after applying SAF tests to all implemented
defects.

● Diagnosis of SAF defects. When pre-generated tests are applied to
certain circuit (with known function) and some of the circuit responses
don't match with the expected truth table then it is possible to locate the
defect using combinational diagnosis.

● Minimal test generation.

85

Test generation and compaction can be done either manually or by using ATPG
tools from Turbo Tester package. All test stimuli insertion, analysis and use of
ATPG toolset is incorporated into the web environment, so the users don't have
to install them. A JavaScript-enabled web-browser is the only requirement for
the user.

7.3 e-EDU student management system

An in-house design attempt to construct a prototype of powerful and versatile
information system for different targets was started several years ago. As a
result, three branches (views) emerged, respectively called as:

● ATI. (Illustration 7-2) This view displays many information pages about
the department. Its well categorized links are easy to follow and
everyone searching materials about Department of Computer
Engineering (TUT) should find useful information.

● ITA. (Illustration 7-3) This is an administrative view, restricted to the
public access and modifying of ATI and e-EDU views is possible
through this view. Also, teachers side of e-EDU student management
system is located there. Users with high level administrative rights can
also affect ITA itself.

● EDU. (Illustration 7-4) This is usually referred to as e-EDU [104] and it
is accessible for registered users only. Registering system is tied to the
external student account management system. Meaning, when students
apply for their computer classes account activation, they also gain
access to the e-EDU system.

Although being one system logically, all these three parts are residing on
different web-servers. This greatly simplifies user access checking and allows
hiding of components the users are not supposed to see, even by mistake or by
hacking attempt. Blocking access to one or the other view is also easy in this
solution. Thanks to innovative modular architecture and flexible module
management system this system is extremely adaptive and could be used for
almost any task imaginable.

86

Illustration 7-2. ATI view

Illustration 7-3. ITA view with activated e-EDU administration page

7.3.1 e-EDU services

For students the e-EDU view enables access to many different items. Most
important links are duplicated by icons in main subject view. Course material
(both lectures and practicum guides), supervisor contacts and of course
automatic practical work assignment system modules are associated to each
subject.

87

Illustration 7-4. e-EDU, student view with activated subject page

The task assigment (in eEDU view for students), task managenent and student
statistics (in ITA view) are incorporated into two modules developed by the
author of this thesis.

The task assignment system is able to serve a range of worksheets – from simple
static page up to complicated electronic worksheet. This means it can potentially
be used for on-line examination using “interactive modules” in case the applets
have additional built-in support for logging and reporting.

Completed work reports are then filed by e-EDU system and become visible to
the teacher who then can accept, reject or send it back for improvement(s) using
ITA view. Since all the reports are kept in a single storage it is easy to generate
statistics about participating students and keep track of their course advancement
and activity. The system can also handle typical situation where many students
are divided into smaller groups with different supervisors and, possible, different
tasks. Thus, the overall progress of whole course can be tracked in real-time.

88

7.4 Conclusions

The applet, described in Section 7.1 can be used for teaching the basics of
testing digital systems.

The teacher can use the applet during the lecture explaining the basics of the
topic. The applet can be used also during the exam for giving some tasks to
students.

Students can use the same applet for training purposes. They can insert different
possible faults, and watch how the faults change the circuit’s behavior at
different input patterns, how the test patterns can be generated to detect a given
fault, or how the faults can be localized by test patterns.

The tasks formulated for students based on the applet are research oriented.. The
students are not asked to carry out boring measurements, to press simply on
buttons for starting a program and getting results which are nothing but a simple
confirmation of what they already know from lectures. Instead, they are asked to
solve problems, and they themselves have to plan and carry out experiments to
find answers for the given questions.

By the use of web-based media we achieve:
● presentation of course material independent of place and time,
● individual learning according to the students‘ own needs,
● new forms of communication between teachers and students (chat, joint

editing),
● up-to-date course material.

The conception presented allows to improve the skills of students to be educated
for digital hardware and SoC design in test related topics. The principal mission
of the conception is to inspire students to learn, to inspire them on a journey to
knowledge, and to prepare them to develop problem-solving strategies.

Applets and other web services tied into one place like e-EDU make it very easy
to access and use different resources, keeping close track of students progress.

89

Summary

In this thesis the following three results are presented:
– development of a new generic functional fault model to represent physical

defects in digital circuits,
– development of methods for improving the quality of built-in self-testing in

digital systems, and
– development of an educational applets based e-learning environment for

learning and teaching the basics of testing digital systems.

A new generic functional fault model was proposed to increase the accuracy of
evaluating the fault coverage of given test sets, and consequently improving the
quality of testing including built-in self-testing. The fault model allows to map
the physical transistor-level faults, like shorts or bridges, opens or any other
logically describable defects on the higher gate-level or even on more higher
macro logic level which reduces the complexity of fault simulation algorithms
and helps to increase the speed of test quality analysis. It was shown also that the
new fault model supports hierarchical approaches to test generation or fault
analysis, since it can be regarded as a uniform interface for mapping faults from
a given arbitrary level of abstraction to the next higher level of abstraction. The
results on the new fault model are published in [15,18,19].

Different approaches were investigated to improve the efficiency and quality of
built-in self-test architectures. First, hybrid BIST architectures, where
pseudorandom test patterns were combined with deterministic test patterns, were
researched. Then, a new functional hybrid BIST approach was developed where
instead of pseudorandom test patterns the normal functional routines carried out
in digital systems are combined with deterministic test patterns. And finally, a
Design-for-Testability (DfT) technique was combined with Built-In Self-Test for
sequential circuits to achieve the needed test quality.

For the hybrid BIST which combines pseudorandom test patterns with stored
precomputed deterministic test patterns, a method and algorithms were
developed for fast calculation of the cost of hybrid BIST. The cost can be
calculated for different pseudorandom test sequences to find an optimal balance
between pseudorandom and deterministic test sets, and to perform the hybrid
self-test with minimum cost of both, time and memory, and without losing in
test quality. Compared to the previous approaches, in this work a new, extremely
fast procedure was proposed, which calculates costs on the basis of fault table

90

manipulations. Experiments on the ISCAS benchmark circuits showed that the
new procedure is about two orders of magnitude faster than the compared one.
The results on the hybrid BIST are published in [3,20,21,23-25].

The hybrid functional BIST (HyBIST) approach where the functional routines
carried out in digital systems are combined with deterministic test patterns was
investigated in the case of testing microprogrammed data-paths in digital
systems. In the first test phase only the functional resources of a system are used
for testing purposes. A functional microprogram is executed to control the data-
path based on some very small deterministic input data. A response compressor
like signature analyzer is connected to the data path to monitor the process. To
guarantee a high test coverage for BIST, the second phase of the test is used
which consists of applying additional deterministic test patterns pre-generated
by an ATPG to test the random-pattern-resistant faults. A method was proposed
to find the trade-off between the functional test and deterministic test parts.
Experimental part of the work demonstrated the feasibility of the approach, and
the advantage of combining functional and deterministic test patterns compared
to the pure deterministic test. The results on the hybrid functional BIST are
published in [12].

A Design-for-Testability (DfT) technique of Built-In Self-Test (BIST) for digital
systems consisting of control and data parts was developed. The technique is
based on making the status signals entering the control part controllable during
the test mode to force the system under test to traverse all the branches in the
FSM state transition graph. Extra outputs are added to the system under test in
order to observe the values of the status bits masked out. This type of
architecture requires little chip area overhead since a simple controller can be
implemented to manipulate the control signals. The experimental research
showed that simple LFSR does not provide an acceptable fault coverage for
sequential designs. However, no universally best test generating approach was
identified and the optimal solution appears to be highly dependent on designs
pseudo-random testability characteristics. To improve the test quality if needed
the hybrid BIST approach discussed above can be used. The results on
improving the BIST by DFT are published in [13].

A set of tools (“interactive modules”) targeted to e-learning were developed for
learning and teaching logic level test generation, built-in self-test, and fault
diagnosis in digital circuits. The tools can support different university courses on
computer engineering, switching and automata theories, digital electronics and
design for testability to learn by hands-on exercises test and fault diagnosis
related topics. A big reservoir of examples and the possibility to set up
interesting engineering problems like how to generate test patterns for a digital
circuit, how to locate a faulty gate, or how to design an optimal hybrid BIST

91

architecture makes the learning process more interesting and allows learning at
an individual depth and duration. The interactive modules are focused on easy
action and reaction, learning by doing, and a game-like use. The tasks chosen for
hands-on training represent simultaneously real research problems, which allow
to foster in students critical thinking, problem solving skills and creativity. The
results on developing tools for e-Learning environment are published in [1-2,
4-11, 14, 16-19, 22].

92

Bibliography

[1] A. Al-Yamani, S. Mitra, E. J. McCluskey, "Optimized Reseeding by
Seed Ordering and Encoding", IEEE Trans. CAD, pp. 264-270,
2005

[2] A. Jas, C. V. Krishna, N. A. Touba, "Weighted Pseudo-Random
Hybrid BIST", IEEE Trans. VLSI Syst., pp. 1277-1283, 2004

[3] A. Markus, J. Raik, R. Ubar, "Test Set Minimization Using Bipartite
Graphs", Proc. of the 6th Baltic Electronics Conference, Tallinn,
Estonia, pp. 175-178, October 1998

[4] A. Thayse, "Boolean Calculus of Differences", Springer Verlag,
1981

[5] A. B. Kahng, S. Reda, "New and Improved BIST Diagnosis
Methods From Combinatorial Group Testing Theory", IEEE Trans.
on CAD of IC and Systems, pp. 533-542, March 2006

[6] A. Benso, S. Chiusano, S. Di Carlo, P. Prinetto, F. Ricciato,
"HD2BIST: a Hierarchical Framework for BIST Scheduling, Data
patterns delivering and diagnosis in SoCs", Proc. ITC, pp. 892-901,
2000

[7] A. P. Ströle, "BIST pattern generators using addition and
subtraction operations", JETTA, pp. 69-80, Aug., 1977

[8] B. Könemann, "LFSR-Coded Test Patterns for Scan-Designs", Proc.
European Test Conf, pp. 237-242, April 1991

[9] C. Fagot, O. Gascuel, P. Girard, C. Landrault, "On Calculating
Efficient LFSR Seeds for Built-In Self-Test", Proc. of European
Test Symposium, Munich, 1999

[10] C. Liu, K. Chakrabarty, M. Goessel, "An Interval-based Diagnosis
Scheme for Identifying Failing Vectors in a Scan-BIST
Environment", DATE, 2002

93

[11] C.-Y. Lee, C.-M. Li, "Segment Weighted Random BIST (SWR-
BIST): A Low Power BIST Technique", Proc. ASSC, pp. 333-336,
2005

[12] D. Das, N. A. Touba, "Reducing test data volume using
external/LBIST hybrid test patterns", Proc. Int. Test Conf., pp.
115-122, Oct. 2000

[13] D. Zhukov, "Development of an educational environment based on
a new educational chip for “Diagnostics of Digital Systems”
course.", TTU, 2004

[14] E. J. McCluskey, "Logic Design Principles: With Emphasis on
Testable Semiconductor Circuits", Prentice Hall, 1986

[15] E. M. Rudnick, R. Vietti, A. Ellis, F. Corno, P. Prinetto, M. Sonza
Reorda, "Fast sequential circuit test generation using high-level and
gate-level techniques", Proc. of DATE, 1998

[16] E. B. Eichelberger, E. Lindbloom, "Random Pattern Coverage
Enhancement and Diagnosis for LSSD Logic Self-Test", IBM J.
Res. Dev., pp. 265-272, May 1983

[17] E. J. Marinissen, Y. Zorian, "Challenges in Testing Core-Based
System ICs", IEEE Communications Magazine, pp. 104-109, June
1999

[18] F. Brglez, et al., "Hardware-Based Weighted Random Pattern
Generation for Boundary-Scan", Proc. IEEE Int. Test Conf., pp.
264-274, 1989

[19] G. Jervan, A. Markus, P. Paomets, J. Raik, R. Ubar, "A CAD
system for Teaching Digital Test", 2nd European Workshop on
Microelectronics Education, Noordwijkerhout, the Netherlands, pp.
287-290, May 14-15, 1998

[20] G. Jervan, H. Kruus, E. Orasson, R. Ubar, "Hybrid BIST
Optimization Using Reseeding and Test Set Compaction", Proc. of
10th EUROMICRO Conference on Digital System Design - DSD
2007, Lübeck, Germany, August 27 - 31, 2007

[21] G. Jervan, H. Kruus, E. Orasson, R. Ubar, "Optimization of
Memory-Constrained Hybrid BIST for Testing Core-Based

94

Systems", IEEE 2nd International Symposium on Industrial
Embedded Systems - SIES'2007, Lisbon, Portugal, 4-6 July 2007

[22] G. Jervan, P. Eles, Z. Peng, R. Ubar, M. Jenihhin, "Test Time
Minimization for Hybrid BIST of Core-Based Systems", Proc.
Asian Test Symp., pp. 318-323, Nov. 2003

[23] G. Jervan, Z. Peng, R. Ubar, "Test Cost Minimization for Hybrid
BIST", IEEE Int. Symp. on Defect and Fault Tolerance in VLSI
Systems, pp. 283-291, October 25-28, 2000

[24] G. Kiefer, H.-J. Wunderlich, "Deterministic BIST with Multiple
Scan Chains", Proc. Int. Test Conf, pp. 1057-1064, Oct. 1998

[25] G. Edirisooriya, J. P. Robinson, "Design of Low-Cost ROM Based
Test Generators", Proc. VLSI Test Symp., pp. 61-66, April 1992

[26] G. Moore, "Cramming more components onto integrated circuits",
Electronics, pp. 114-117, 1965

[27] H. Takahashi, Y. Tsugaoka, H. Ayano, Y. Takamatsu, "BIST Based
Fault Diagnosis Using Ambiguous Test Set", Proc. 18th IEEE
International Symposium on Defect and Fault Tolerance in VLSI
Systems, p. 80, 2003

[28] H. Tenhunen, "Invited talk: System-on-Chip Curriculum
Challenges", Proc 5th European Workshop on Microelectronics
Education – EWME, Lausanne Switzerland, April 15-16, 2003

[29] H.-C.Tsai, K.-T.Cheng, C.-J.Lin, S.Bhawmik, "Efficient Testpoint
Selection for Scan-Based BIST", IEEE Trans. VLSI Syst., pp. 667–
676, Dec. 1998

[30] H.-G. Liang, S. Hellebrand, H.-J. Wunderlich, "Two-Dimentional
Test Data Compression for Scan-Based Deterministic BIST", Proc.
Int. Test Conf., pp. 894-902, Sept. 2001

[31] H.-J. Wunderlich, "Multiple distributions for biased random test
patterns", Proc. ITC, pp. 236-244, 1988

[32] H.-J. Wunderlich, "From Embedded Test to Embedded Diagnosis",
IEEE 10th European Test Conference, Tallinn, , May 22-25, 2005

95

[33] H.-J. Wunderlich, G. Kiefer, "Bit-Flipping BIST", Proc. ICCAD,
pp. 337-343, November 1996

[34] H. H. Chen, "Hierarchical BIST for SOC Design", Proc. Emerging
Information Technology Conf., pp. 1-3, 2005

[35] H. Kruus, E. Orasson, T. Robal, R. Ubar, "Investigating Defects in
Digital Circuits by Boolean Differential Equations", The 4th
International Conference “Distance Learning – Educational Sphere
of XXI Century” (DLESC’04), Minsk, pp. 432-435, November
10-13, 2004

[36] I. Pomeranz, S. M. Reddy, "Built-in test generation for synchronous
sequential circuits", ICCAD, pp. 421-426, 1997

[37] I. Voyiatzis, C. Halatsis, "A Low-Cost Concurrent BIST Scheme for
Increased Dependability", IEEE Trans. on Dependable and Secure
Computing, pp. 150-156, April-June 2005

[38] J. Ghosh-Dastidar, N. A. Touba, "A Rapid and Scalable Diagnosis
Scheme for BIST Environments with a Large Number of Scan
Chains", VTS, 2000

[39] J. Rajski, J. Tyszer, "Multiplicative window generators of
pseudorandom test vectors", Proc. European Design and Test Conf.,
pp. 42-48, 1996

[40] J. Rajski, J. Tyszer, "Arithmetic BIST For Embedded Systems",
Prentice-Hall, NJ, 1998

[41] J. Rajski, J. Tyszer, N. Zacharia, "Test Data Decompression for
Multiple Scan Designs with Boundary Scan", IEEE Trans. Comput.,
pp. 1188-1200, 1998

[42] J. Hartmann, G. Kemnitz, "How to Do Weighted Random Testing
for BIST", Proc. IEEE Int. Conf. Comput.-Aided Design, pp. 568–
571, 1993

[43] J. M. Soden, C. F. Hawkins, "Quality Testing Requires Quality
Thinking", Proc. Int. Test Conference, pp. 596, 1993

[44] J. P. Shen, W. Maly, J. Ferguson, "Inductive Fault Analysis of MOS
Integrated Circuits", IEEE Design and Test, pp. 13-26, 1985

96

[45] J. Waicukauski, E. Lindbloom, E. Eichelberger, O. Forlenza, "A
Method for Generating Weighted Random Test Patterns", IEEE
Trans. Comput., pp. 149–161, Mar. 1989

[46] K. Chakrabarty, B. T. Murray, V. Iyengar, "Deterministic built-in
test pattern generation for high-performance circuits using twisted-
ring counters", IEEE Trans. VLSI Systems, Oct. 2000

[47] K. Sekar, S. Dey, "LI-BIST: A Low-Cost Self-Test Scheme for SoC
Logic Cores and Interconnects", Proc. 20th IEEE VTS, pp. 1-6,
April 2002

[48] L. Lei, K. Chakrabarty, "Hybrid BIST on Repeating Sequences and
Cluster Analysis", Proc. DATE, pp. 1142-1147, March 2005

[49] L. Nachman, K. K. Saluja, S. Upadhyaya, R. Reuse, "Random
pattern testing for sequential circuits revisited", Proc. of FTCS-26,
1996

[50] L.-T. Wang, Ch.-W. Wu, X. Wen, "VLSI Test Principles and
Architectures. Design for Testability", Morgan Kaufmann
Publishers, 2006

[51] M. Abramovici, M. Breuer, A.D. Friedman, "Digital System Testing
and Testable Design", Computer Sci. Press, 1995

[52] M. Abramovici, Ch. E. Stroud, J. M. Emmert, "Online BIST and
BIST-Based Diagnosis of FPGA Logic Blocks", IEEE Trans. on
VLSI Systems, pp.1284-1294, Dec. 2004

[53] M. Abramovici, Ch. E. Stroud, J. M. Emmert, "Online BIST and
BIST-Based Diagnosis of FPGA Logic Blocks", Proc. 18th IEEE
DFT, pp. 1-8, 2003

[54] M. Chatterjee, D. K. Pradhan, "A novel pattern generator for near-
perfect fault-coverage", VLSI Test Symposium, pp. 417-425, 1995

[55] M. Chatterjee, D. K. Pradhan, W. Kunz, "LOT: Logic optimization
with testability – New transformations using recursive learning",
Proc. Int. Conf. on CAD, pp. 318-325, Nov. 1995

97

[56] M. Roper, "Software Testing", McGraw-Hill Book Company, 1994

[57] M. Sugihara, H. Date, H. Yasuura, "A Novel Test Methodology for
Core-Based System LSIs and a Testing Time Minimization
Problem", Proc. Int. test Conf., pp. 465-472, Oct 1998

[58] M. Aarna, E. Ivask, A. Jutman, E. Orasson, J. Raik, R. Ubar, V.
Vislogubov, H.-D. Wuttke, "Turbo Tester - Diagnostic Package for
Research and Training", Proc. EWDTC'03, Scientific-Technical
Journal Radioelectronics and Informatics, pp. 69-73, July-Sept.
2003

[59] M. Abramovici, M. Breuer, A. D. Friedman, "Digital System
Testing and Testable Design", Computer Sci. Press, 1995

[60] M. E. Aboulhamid, E. Cerny, "A class of test generators for Built-In
Testing", IEEE Trans. Comput., pp. 957-959, 1983

[61] M. F. AlShaibi, Ch. Kime, "MFBIST: A BIST Method for Random
Pattern Resistant Circuits", Proc. ITC, pp. 176-185, Oct. 1996

[62] M. Jacomet, W. Guggenbuhl, "Layout-Dependent Fault Analysis
and Test Synthesis for CMOS Circuits", IEEE Trans. on CAD, pp.
888-899, 1993

[63] M. L. Bushnell, "Increasing Test Coverage in a VLSI Design
Course", ITC, Atlantic City, NJ, USA, p. 1133, 1999

[64] N. Tamarapalli, J. Rajski, "Constructive multi-phase test point
insertion for scan-based BIST", Proc. ITC, pp. 649-658, Oct. 1996

[65] N. Zacharia, J. Rajski, J. Tyszer, "Decompression of Test Data
Using Variable-Length Seed LFSRs", Proc. of VLSI Test
Symposium, pp. 426-433, 1995

[66] N. A. Touba, E. J. McCluskey, "Bit-Fixing in Pseudorandom
Sequences for Scan BIST", IEEE Trans. CAD, pp. 545-555, 2001

[67] N. A. Touba, E. J. McCluskey, "Transformed Paseudo-Random
Patterns for BIST", Proc. VLSI Test Symp., pp. 410-416, April
1995

98

[68] N. A. Touba, E. J. McCluskey, "Test Point Insertion Based on Path
Tracing", Proc. VLSI Test Symp., pp. 2-8, 1996

[69] N. Z. Basturkmen, S. M. Reddy, I. Pomeranz, "Pseudo Random
Patterns Using Markov Sources for Scan BIST", Proc. IEEE Int.
Test Conf., pp.1013–1021, 2002

[70] P. Prinetto et al., "Panel Session: Design & Test Education and
Training in Europe", 7th IEEE Workshop on Design and
Diagnostics of Electronic Circuits and Systems – DDECS, Stara
Lesna, Slovakia, , April 18-21, 2004

[71] P. D. Hortensius, et al., "Cellular automata based pseudorandom
number generators for BIST", IEEE Trans. CAD, pp. 842-859, 1990

[72] P. H. Bardell, W. H. McAnney, J.Savir, "Built-In Test for VLSI:
Pseudo-Random Techniques", J. Wiley & Sons, 1987

[73] P. H. Bardell, W. H. McAnney, "Self-Testing of multiple logic
modules", Proc. Int.Test Conference, pp. 200-204, Oct. 1982

[74] P.Nigh and W.Maly, "Layout-Driven Test Generation", Proc.1989
International Conference on Computer Aided Design, pp. 154-157,
1989

[75] R. Dorsch, H-J. Wunderlich, "Accumulator Based Deterministic
BIST", ITC, Washington D.C, 1998

[76] R. Dorsch, H.-J. Wunderlich, "Tailoring ATPG for Embedded
Testing", Proc. Int. Test Conf., pp. 530-537, Oct. 2001

[77] R. Ubar, A. Jutman, E. Orasson, J. Raik, T. Evartson, H.-D. Wuttke,
"Internet-Based Software for Teaching Test of Digital Circuits",
"Microelectronics Education", Marcombo Boixareu Ed., 2002

[78] R. Ubar, A. Jutman, M. Kruus, E. Orasson, S. Devadze, H.-D.
Wuttke, "Learning Digital Test and Diagnostics via Internet",
International Journal of Emerging Technologies in Learning.
International Journal of Online Engineering, pp. 1-9, 2007

99

[79] R. Ubar, E. Orasson, "E-Learning tool and Exercises for Teaching
Digital Test", Proc.of 2nd IEEE Conf. on Signals, Systems,
Decision and Information Technology. Sousse, Tunisia, CIT-6, pp.
1-6, March 26-28, 2003

[80] R. Ubar, E. Orasson, H.-D. Wuttke, "Interactive Teaching Software
"Introduction To Digital Test"", 45th International Conference,
Ilmenau (Germany), pp. 949-954, October 4-6, 2000

[81] R. Ubar, E. Orasson, J. Raik, H.-D. Wuttke, "Combining Learning,
Training and Research in Laboratory Course for Design and Test",
7th Baltic Electronics Conference, Tallinn, pp. 221-224, October
8-11, 2000

[82] R. Ubar, E. Orasson, J. Raik, H.-D. Wuttke, "Teaching Advanced
Test Issues in Digital Electronics. Summary", 6th IEEE
International Conference on Information Technology Based Higher
Education and Training, Santo Domingo, pp. 46-47, July 7-9, 2005

[83] R. Ubar, G. Jervan, H. Kruus, E. Orasson, I. Aleksejev,
"Optimization of the Store-and-Generate Based Built-in Self-Test",
Baltic Electronics Conference, Laulasmaa, Estonia, pp. 199-202,
Oct. 2006

[84] R. Ubar, G. Jervan, Z. Peng, E. Orasson, R. Raidma, "Fast Test Cost
Calculation for Hybrid BIST in Digital Systems", Proc. of
EUROMICRO Symposium on Digital Systems Design, Warsaw, pp.
318-325, September 4-6, 2001

[85] R. Ubar, H.-D. Wuttke, "Action-Based Learning System for
Teaching Digital Electronics and Test", 3rd European Workshop on
Microelectronics Education, Aix en Provence, France, May 18-19,
2000

[86] R. Ubar, N. Mazurova, J. Smahtina, E. Orasson, J. Raik, "HyFBIST:
Hybrid Functional Built-In Self-Test in Microprogrammed Data-
Paths of Digital Systems", Int. Conference MIXDES, Szczecin, pp.
497-502, June 24-26, 2004

[87] R. Ubar, S. Kostin, J. Raik, "Experimental Comparison of Different
Diagnosis Algorithms in the BIST Environment", 8th IEEE Latin-
American Test Workshop, March, 2007

100

[88] R. Ubar, T. Shchenova, G. Jervan, Z. Peng, "Energy Minimization
for Hybrid BIST in a System-on-Chip Test Environment", Proc. of
10th IEEE European Test Symposium, Tallinn, pp. 2-7, May 22-25,
2005

[89] R. Ubar. E. Orasson, H.-D. Wuttke, "Internet-Based Software for
Teaching Test of Digital Circuits", 23rd Int. Conf. on
Microelectronics, Nis, Yugoslavia, Vol. 2, pp. 659-662, May 12-15,
2002

[90] R. Dandapani, J. Patel, J. Abraham, "Design of Test Pattern
Generators for Built-In Test", Proc. Int. Test Conf., pp. 315-319,
Oct. 1984

[91] R. Ubar, E. Orasson, J. Raik, H.-D. Wuttke, "Teaching Advanced
Test Issues in Digital Electronics", 6th IEEE International
Conference on Information Technology Based Higher Education
and Training, Santo Domingo, pp. S2B-5 – S2B-10, July 7-9, 2005

[92] S. Chiusano, S. Di Carlo, P. Prinetto, H.-J. Wunderlich, "On
applying the set covering model to reseeding", Proc. DATE, pp.
156-161, 2001

[93] S. Devadze, A. Jutman, A. Sudnitson, R. Ubar, H.-D. Wuttke,
"Teaching Digital RT-Level Self-Test Using a Java Applet",
NORCHIP’2002 Conf., Copenhagen, pp. 322-328, November
11-12, 2002

[94] S. Hellebrand, B. Reeb, S. Tarnick, H.-J.Wunderlich, "Pattern
Generation for a Deterministic BIST Scheme", Proc. Int. Conf. on
CAD, pp. 88-94, Nov. 1995

[95] S. Hellebrand, H.-J. Wunderlich, A. Hertwig, "Mixed-Mode BIST
Using Embedded Processors", No. 12, Journal of Electronic Testing:
Theory and Applications, pp. 127-138, 1998

[96] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataramann, B. Courtois,
"Built-in Test for Circuits with Scan Based on Reseeding of Multi-
Polynomial LFSR", IEEE Trans. on Comput, pp. 223-233, Feb.
1995

[97] S. Hellebrand, S. Tarnick, J. Rajski, and B. Courtois, "Generation of
Vector Patterns through Reseeding of Multiple-Polynomial Linear

101

Feedback Shift Registers", Proc. IEEE Int. Test Conf., pp. 120-129,
1992

[98] S. R. Rao, B. Y. Pan, J. R. Armstrong, "Hierarchical Test
Generation for VHDL Behavioral Models", Proc. EDAC, pp.
175-183, Feb. 1993

[99] S. Swaminathan, K. Chakrabarty, "A Deterministic Scan-BIST
Architecture with Application to Field Testing of High-Availability
Systems", IEEE Custom Integrated Circuits Conf., pp. 259-262,
2001

[100] S. Wang, "A BIST TPG for Low Power Dissipation and High Fault
Coverage", Proc. Int. Test Conf., Baltimore, MD, pp. 777-789, Oct.
30 - Nov. 1, 2001

[101] S. Zhang, M. Choi, F. Lombardi, "Cost-Driven Optimization of
Coverage of Combined Built-In Self-Test/Automated Test
Equipment Testing", IEEE Trans. on Instrumentation and
Measurement, pp. 1094-1100, June 2007

[102] S. Jain, J. Abraham, S.-K. Vooka, S. Kale, A. Dutta, R. Parekhji,
"Enhancements in Deterministic BIST Implementations for
Improving Test of Complex SOCs", Proc. 20th Int. Conf. on VLSI
Design, pp. 1-6, 2007

[103] "The International Technology Roadmap for Semiconductors. 2005
Edition (ITRS 2005)", http://public.itrs.net/

[104] T. Robal, A. Kalja, "e-EDU. An Information System for e-learning
Services", Vol 118, Databases and Information Systems, J Barzdins
and A. Caplinskas (Eds). Frontiers in Artificial Intelligence and
Applications, Amsterdam, The Netherlands, IOS Press, pp. 288-298,
2005

[105] V. Vislogubov, A. Jutman, H. Kruus, E. Orasson, J. Raik, R. Ubar,
"Diagnostic Software with WEB Interface for Teaching Purposes",
Proc. of the 9th Biennial Baltic Electronics Conference, Tallinn, pp.
255-258, Oct. 3-6, 2004

[106] V. D. Agrawal, "Increasing Test Coverage in a VLSI Design
Course", International Test Conference, Atlantic City, NJ, USA, p.
1131, 1999

102

http://public.itrs.net/

[107] V. K. Agrawal, E. Cerny, "Store and Generate Built-In Testing
Approach", Digest of Papers, Fault-Tolerant Computing Symp, pp.
35-40, June 1981

[108] W. Li, C. Yu, S. M. Reddy, I. Pomeranz, "A Scan BIST Generation
Method Using a Markov Source and Partial BIST Bit-Fixing", Proc.
IEEE-ACM Design Autom. Conf., pp. 554–559, 2003

[109] W. Maly, J. P .Shen, J. Ferguson, "Systematic Characterization of
Physical Defects for Fault Analysis of MOS IC Cells", Proc. 1984
International Test Conference, Philadelphia, pp. 390-399, 1984

[110] Y. Nakamura, J. Savir, H. Fujiwara, "BIST Pretest of ICs: Risks and
Benefits", Proc. 24th IEEE VTS, May 2006

[111] Y. Zorian, "A distributed BIST control scheme for complex VLSI
devices", Proc. VLSI Testing Symp, pp. 4–9, 1993

[112] Y. Zorian, E.J. Marinissen, S. Dey, "Testing embedded core-based
system chips", Proc. IEEE International Test Conference.
Washington, pp. 130–143, 1998

[113] Y.-C. Lin, F. Lu, K.-T. Cheng, "Pseudo-Functional Scan-based
BIST for Delay Fault", Proc. 23nd IEEE VTS, pp. 1-6, May 2005

[114] Z. Zhao, B. Pouya, N. A. Touba, "BETSY: Synthesizing Circuits for
a Specified BIST", Proc. ITC, pp. 144-153, Oct. 1998

[115] Zorian, Y., Marinissen, E. J. and Dey, S., "Testing embedded core-
based system chips", Proc. IEEE International Test Conference.
Washington, pp. 130–143, 1998

[116] "DefSim Home Page", http://www.defsim.com

[117] "VILAB", http://vilab.dcs.elf.stuba.sk/

[118] "High Level Benchmarks",
http://www.cbl.ncsu.edu:16080/benchmarks/HLSynth92/

[119] "Turbo Tester Reference Manual", http://www.pld.ttu.ee/tt

103

http://www.cbl.ncsu.edu/

Appendix

Curriculum Vitae

1. Personal Data

First name Elmet
Last name Orasson
Date and place of birth 18.06.1974, Võru
Marital status single
Children no

2. Contacts

Address Luha 23-11, Võru, 65607 Estonia
Tsolgo, Võrumaa, 65552 Estonia

Phone +372-620-2263
+372-56683-512
+372-78-60023

E-mail elmet@pld.ttu.ee

3. Education

104

Educational Institution Aeg Haridus
Tallinn University of Technology 2002-2007

Tallinn University of Technology 2001-2002

Tallinn University of Technology 1992-2001

1989 - 1992 Secondary Education

(Võru Kreutzwald Gymnasium)

Information and Communication
Technology/PhD studies
Computer and Systems
Engineering/MsC
Computer and Systems
Engineering/Dip.Eng

Võru Kreutzwald Secondary
Scool

4. Language Skills

Estonian (formal) high level
Estonian/võro native
English high level
Finnish intermediate
German intermediate
Russian poor

5. Special Courses

6. Career

105

2005 - ... Researcher

2001 - 2005 Senior engineer

1998 - 2001 Engineer

1994 - 1998 Engineer

Tallinn University of Technology,
Faculty of Infotechnology,
Department of Computer
Engineering, Chair of Computer
Engineering and Diagnostics
Tallinn University of Technology,
Faculty of Infotechnology,
Department of Computer
Engineering, Chair of Computer
Engineering and Diagnostics
Tallinn University of Technology,
Faculty of Infotechnology,
Department of Computer
Engineering, Chair of Computer
Engineering and Diagnostics
Tallinn University of Technology,
Faculty of Infotechnology,
Department of Computer Control,
Chair of Circuit Theory and
Design

7. Scientific Work

Publications

1. R. Ubar, E.Orasson, H.-D. Wuttke. “Interactive Teaching Software
'Introduction To Digital Test' “. 45th International Conference, Ilmenau
(Germany), October 4-6, 2000, pp. 949-954.

2. R. Ubar, E. Orasson, J. Raik, H.-D. Wuttke. “Combining Learning,
Training and Research in Laboratory Course for Design and Test”. 7th
Baltic Electronics Conference, Tallinn, October 8-11, 2000, 221-224.

3. R. Ubar, G. Jervan, Z. Peng, E. Orasson, R. Raidma. “Fast Test Cost
Calculation for Hybrid BIST in Digital Systems”. Proc. of
EUROMICRO Symposium on Digital Systems Design, Warsaw,
September 4-6, 2001, pp. 318-325.

4. R. Ubar, E. Orasson, T. Evartson. “Java Applet for Self-Learning of
Digital Test Issues”. 13th EAEEIE Conference, York, Great Britain,
April 8-10, 2002

5. R. Ubar. E. Orasson, H.-D. Wuttke. “Internet-Based Software for
Teaching Test of Digital Circuits”. 23rd Int. Conf. on Microelectronics.
Nis, Yugoslavia, May 12-15 2002, Vol.2, pp. 659-662.

6. R. Ubar, A. Jutman, E. Orasson, J. Raik, T. Evartson, H.-D. Wuttke.
“Internet-Based Software for Teaching Test of Digital Circuits”. In the
book "Microelectronics Education", Marcombo Boixareu Ed., 2002, pp.
317-320.

7. R. Ubar, E. Orasson, T. Evartson. “Self-learning tool for digital test”.
Proceedings of 2nd Int. Conf. “Distance learning – educational sphere
of the XXI century”, Minsk, Belarus, Nov. 26-28, 2002, pp. 36-38.

8. R. Ubar, E. Orasson. “E-Learning tool and Exercises for Teaching
Digital Test”. Proc. of 2nd IEEE Conf. on Signals, Systems, Decision
and Information Technology. Sousse, Tunisia, March 26-28, 2003,
CIT-6, pp. 1-6.

106

9. R. Ubar, E. Orasson. “E-Learning tool and Exercises for Teaching
Digital Test”. Proc. of 2nd IEEE Conf. on Signals, Systems, Decision
and Information Technology. Summaries. Sousse, Tunisia, March
26-28, 2003, CIT-6, pp. 134.

10. M. Aarna, E. Ivask, A. Jutman, E. Orasson, J. Raik, R. Ubar, V.
Vislogubov, H.-D. Wuttke. “Turbo Tester – Diagnostic Package for
Research and Training”. Journal of Radioelectronics and Informatics,
No3 (24), July – September, 2003, pp. 69-73.

11. S. Devadze, R. Gorjachev, A. Jutman, E. Orasson, V. Rosin, R. Ubar.
“E-Learning Tools for Digital Test”. In “Distance Learning –
Educational Environment of the XXI Century”, Minsk, 2003, pp.
336-342.

12. R. Ubar, N. Mazurova, J. Smahtina, E. Orasson, J. Raik. “HyFBIST:
Hybrid Functional Built-In Self-Test in Microprogrammed Data-Paths
of Digital Systems”. Int. Conference MIXDES, Szczecin, June 24-26,
2004, pp. 497-502.

13. J. Raik, E. Orasson, R. Ubar. “Sequential Circuits BIST with Status BIT
Control”. Int. Conference MIXDES, Szczecin, June 24-26, 2004, pp.
507-510.

14. E. Ivask, A. Jutman, E. Orasson, J. Raik, R. Ubar, H-D. Wuttke.
“Research Environment for Teaching Digital Test”. 49. Int. Conf. IWK,
Ilmenau, Germany, September 27-30, 2004, pp. 468-473.

15. H. Kruus, E. Orasson, T. Robal, R. Ubar. “Investigating Defects in
Digital Circuits by Boolean Differential Equations”. The 4th
International Conference “Distance Learning – Educational Sphere of
XXI Century” (DLESC’04), Minsk, November 10-13, 2004, pp.
432-435.

16. V. Vislogubov, A. Jutman, H. Kruus, E. Orasson, J. Raik, R. Ubar.
“Diagnostic Software with WEB Interface for Teaching Purposes”.
Proc. of the 9th Biennial Baltic Electronics Conference, Oct. 3-6, 2004,
Tallinn, pp. 255-258

17. A. Jutman, J. Raik, E. Orasson, R. Ubar. Overview of the Educational
Tools developed in REASON. Workshop on Research and Training
Action for System on Chip DesigN – REASON, Tallinn, May 21, 2005,
7 p.

107

18. R. Ubar, E. Orasson, J. Raik, H.-D. Wuttke. “Teaching Advanced Test
Issues in Digital Electronics”. 6th IEEE International Conference on
Information Technology Based Higher Education and Training. July
7-9, 2005, Santo Domingo, pp. S2B-5 – S2B-10.

19. R. Ubar, E. Orasson, J. Raik, H.-D. Wuttke. “Teaching Advanced Test
Issues in Digital Electronics. Summary”. 6th IEEE International
Conference on Information Technology Based Higher Education and
Training. July 7-9, 2005, Santo Domingo, pp. 46-47.

20. E. Orasson. “E-learning software for digital test”. IKDK annual
conference pp. 133 – 134. TUT, 2006

21. R. Ubar, G. Jervan, H. Kruus, E. Orasson, I. Aleksejev. Optimization of
the Store-and-Generate Based Built-in Self-Test. IKTDK annual
conference. ISBN 9985-59-624-2. Jäneda, Estonia, 12.-13. may 2006,
pp. 93-96.

22. R. Ubar, G. Jervan, H. Kruus, E. Orasson, I. Aleksejev. “Optimization of
the Store-and-Generate Based Built-in Self-Test”. Baltic Electronics
Conference. Laulasmaa, Oct. 2006, pp. 199-202.

23. R. Ubar, A. Jutman, M. Kruus, E. Orasson, S. Devadze, H.-D. Wuttke.
“Learning Digital Test and Diagnostics via Internet”. International
Journal of Emerging Technologies in Learning. International Journal of
Online Engineering, Vol. 3, No. 1, pp.1-9, 2007.

24. H. Kruus, G. Jervan, E. Orasson, R. Ubar. “Optimization of Memory-
Constrained Hybrid BIST for Testing Core-Based Systems”. IKTDK
2007 annual conference. Viinistu, Estonia, May 11-12, 2007, pp.
133-136.

25. G. Jervan, H. Kruus, E. Orasson, R. Ubar. “Optimization of Memory-
Constrained Hybrid BIST for Testing Core-Based Systems”. IEEE 2nd
International Symposium on Industrial Embedded Systems - SIES'2007.
Lisbon, Portugal, 4-6 July 2007.

26. G. Jervan, H. Kruus, E. Orasson, R. Ubar. Hybrid BIST Optimization
Using Reseeding and Test Set Compaction. Proc. of 10th EUROMICRO
Conference on Digital System Design - DSD 2007, Lübeck, Germany,
August 27 - 31, 2007.

108

27. R. Ubar, A. Jutman, M. Kruus, E. Orasson, S. Devadze, H.-D. Wuttke,
“Learning Digital Test and Diagnostics via Internet”. International
Journal of Online Engineering, 3(1), 1 – 9. 2007

28. G. Jervan, H. Kruus, E. Orasson, R. Ubar, “Optimization of Memory-
Constrained Hybrid BIST for Testing Core-Based Systems”.
Proceedings of the IEEE 2nd International Symposium on Industrial
Embedded Systems - SIES'2007, Lisbon, Portugal, 4-6 July 2007. IEEE
Computer Soc, 2007, 71 – 77.

8. Accomplished and defended theses

Elmet Orasson, Master's Degree, 2002, (sup) Raimund Ubar,
“Development of algorithms for test analysis”, Tallinn University of
Technology, Faculty of Infotechnology, Department of Computer
Engineering

9. Research Interests

Natural Sciences and Engineering, Electrical Engineering and
Electronics

10. Other research projects

109

Elulookirjeldus

1. Isikuandmed

Eesnimi Elmet
Perekonnanimi Orasson
Kodakondsus Eesti
Sünniaeg (pp.kk.aaaa) ja koht 18.06.1974, Võru
Perekonnaseis vallaline
Lapsed ei ole

2. Kontaktandmed

Aadress Luha 23-11, Võru, 65607 Eesti
Tsolgo, Võrumaa, 65552 Eesti

Telefon +372-620-2263
+372-56683-512
+372-78-60023

E-post elmet@pld.ttu.ee

3. Haridustee

4. Keelteoskus

Eesti (kirjakeel) kõrgtase
Eesti (võro keel) emakeel
Inglise kõrgtase
Soome kesk
Saksa kesk
Vene alg/kesk

110

Õppeasutus Aeg Haridus
Tallinna Tehnikaülikool 2002-2007 Doktorantuur, TTÜ
Tallinna Tehnikaülikool 2001-2002 Tehnikateaduste magister, TTÜ
Tallinna Tehnikaülikool 1992-2001

1989 - 1992 keskharidus

Diplomiinsener, Arvuti- ja
süsteemitehnika õppevaldkond, TTÜ

Fr. R. Kreutzwaldi nim.
Võru I Keskkool
(Võru Kreutzwaldi
Gümnaasium)

5. Täiendõpe

6. Teenistuskäik

7. Teadustegevus

Publikatsioonid

1. R. Ubar, E.Orasson, H.-D. Wuttke. “Interactive Teaching Software
'Introduction To Digital Test' “. 45th International Conference, Ilmenau
(Germany), October 4-6, 2000, pp. 949-954.

2. R. Ubar, E. Orasson, J. Raik, H.-D. Wuttke. “Combining Learning,
Training and Research in Laboratory Course for Design and Test”. 7th
Baltic Electronics Conference, Tallinn, October 8-11, 2000, 221-224.

3. R. Ubar, G. Jervan, Z. Peng, E. Orasson, R. Raidma. “Fast Test Cost
Calculation for Hybrid BIST in Digital Systems”. Proc. of
EUROMICRO Symposium on Digital Systems Design, Warsaw,
September 4-6, 2001, pp. 318-325.

4. R. Ubar, E. Orasson, T. Evartson. “Java Applet for Self-Learning of
Digital Test Issues”. 13th EAEEIE Conference, York, Great Britain,
April 8-10, 2002

5. R. Ubar. E. Orasson, H.-D. Wuttke. “Internet-Based Software for
Teaching Test of Digital Circuits”. 23rd Int. Conf. on Microelectronics.
Nis, Yugoslavia, May 12-15 2002, Vol.2, pp. 659-662.

111

2005 - ... Teadur

2001 - 2005 Vaneminsener

1998 - 2001 Insener

1994 - 1998 Insener

Tallinna Tehnikaülikool, Infotehnoloogia teaduskond,
Arvutitehnika instituut, Arvutitehnika- ja diagnostika
õppetool
 Tallinna Tehnikaülikool, Infotehnoloogia teaduskond,
Arvutitehnika instituut, Arvutitehnika- ja diagnostika
õppetool
 Tallinna Tehnikaülikool, Infotehnoloogia teaduskond,
Arvutitehnika instituut, Arvutitehnika- ja diagnostika
õppetool
 Tallinna Tehnikaülikool, Infotehnoloogia teaduskond,
Automaatikainstituut, Siduteooria ja -disaini õppetool

6. R. Ubar, A. Jutman, E. Orasson, J. Raik, T. Evartson, H.-D. Wuttke.
“Internet-Based Software for Teaching Test of Digital Circuits”. In the
book "Microelectronics Education", Marcombo Boixareu Ed., 2002, pp.
317-320.

7. R. Ubar, E. Orasson, T. Evartson. “Self-learning tool for digital test”.
Proceedings of 2nd Int. Conf. “Distance learning – educational sphere
of the XXI century”, Minsk, Belarus, Nov. 26-28, 2002, pp. 36-38.

8. R. Ubar, E. Orasson. “E-Learning tool and Exercises for Teaching
Digital Test”. Proc. of 2nd IEEE Conf. on Signals, Systems, Decision
and Information Technology. Sousse, Tunisia, March 26-28, 2003,
CIT-6, pp. 1-6.

9. R. Ubar, E. Orasson. “E-Learning tool and Exercises for Teaching
Digital Test”. Proc. of 2nd IEEE Conf. on Signals, Systems, Decision
and Information Technology. Summaries. Sousse, Tunisia, March
26-28, 2003, CIT-6, pp. 134.

10. M. Aarna, E. Ivask, A. Jutman, E. Orasson, J. Raik, R. Ubar, V.
Vislogubov, H.-D. Wuttke. “Turbo Tester – Diagnostic Package for
Research and Training”. Journal of Radioelectronics and Informatics,
No3 (24), July – September, 2003, pp. 69-73.

11. S. Devadze, R. Gorjachev, A. Jutman, E. Orasson, V. Rosin, R. Ubar.
“E-Learning Tools for Digital Test”. In “Distance Learning –
Educational Environment of the XXI Century”, Minsk, 2003, pp.
336-342.

12. R. Ubar, N. Mazurova, J. Smahtina, E. Orasson, J. Raik. “HyFBIST:
Hybrid Functional Built-In Self-Test in Microprogrammed Data-Paths
of Digital Systems”. Int. Conference MIXDES, Szczecin, June 24-26,
2004, pp. 497-502.

13. J. Raik, E. Orasson, R. Ubar. “Sequential Circuits BIST with Status BIT
Control”. Int. Conference MIXDES, Szczecin, June 24-26, 2004, pp.
507-510.

14. E. Ivask, A. Jutman, E. Orasson, J. Raik, R. Ubar, H-D. Wuttke.
“Research Environment for Teaching Digital Test”. 49. Int. Conf. IWK,
Ilmenau, Germany, September 27-30, 2004, pp. 468-473.

112

15. H. Kruus, E. Orasson, T. Robal, R. Ubar. “Investigating Defects in
Digital Circuits by Boolean Differential Equations”. The 4th
International Conference “Distance Learning – Educational Sphere of
XXI Century” (DLESC’04), Minsk, November 10-13, 2004, pp.
432-435.

16. V. Vislogubov, A. Jutman, H. Kruus, E. Orasson, J. Raik, R. Ubar.
“Diagnostic Software with WEB Interface for Teaching Purposes”.
Proc. of the 9th Biennial Baltic Electronics Conference, Oct. 3-6, 2004,
Tallinn, pp. 255-258

17. A. Jutman, J. Raik, E. Orasson, R. Ubar. Overview of the Educational
Tools developed in REASON. Workshop on Research and Training
Action for System on Chip DesigN – REASON, Tallinn, May 21, 2005,
7 p.

18. R. Ubar, E. Orasson, J. Raik, H.-D. Wuttke. “Teaching Advanced Test
Issues in Digital Electronics”. 6th IEEE International Conference on
Information Technology Based Higher Education and Training. July
7-9, 2005, Santo Domingo, pp. S2B-5 – S2B-10.

19. R. Ubar, E. Orasson, J. Raik, H.-D. Wuttke. “Teaching Advanced Test
Issues in Digital Electronics. Summary”. 6th IEEE International
Conference on Information Technology Based Higher Education and
Training. July 7-9, 2005, Santo Domingo, pp.46-47.

20. E. Orasson. “E-learning software for digital test”. IKDK
aastakonverentsi artiklite kogumik (133 – 134). Tallinna Tehnikaülikool,
2006

21. R. Ubar, G. Jervan, H. Kruus, E. Orasson, I. Aleksejev. Optimization of
the Store-and-Generate Based Built-in Self-Test. Info- ja
kommunikatsioonitehnoloogia doktorikooli IKTDK aastakonverentsi
kogumik. ISBN 9985-59-624-2. Jäneda, 12.-13. mai 2006, lk. 93-96.

22. R. Ubar, G. Jervan, H. Kruus, E. Orasson, I. Aleksejev. “Optimization of
the Store-and-Generate Based Built-in Self-Test”. Baltic Electronics
Conference. Laulasmaa, Oct. 2006, pp.199-202.

23. R. Ubar, A. Jutman, M. Kruus, E. Orasson, S. Devadze, H.-D. Wuttke.
“Learning Digital Test and Diagnostics via Internet”. International
Journal of Emerging Technologies in Learning. International Journal of
Online Engineering, Vol. 3, No. 1, pp.1-9, 2007.

113

24. H. Kruus, G. Jervan, E. Orasson, R. Ubar. “Optimization of Memory-
Constrained Hybrid BIST for Testing Core-Based Systems”. IKTDK
2007 aastakonverents. Viinistu, Mai 11-12, 2007, pp. 133-136.

25. G. Jervan, H. Kruus, E. Orasson, R. Ubar. “Optimization of Memory-
Constrained Hybrid BIST for Testing Core-Based Systems”. IEEE 2nd
International Symposium on Industrial Embedded Systems - SIES'2007.
Lisbon, Portugal, 4-6 July 2007.

26. G. Jervan, H. Kruus, E. Orasson, R. Ubar. Hybrid BIST Optimization
Using Reseeding and Test Set Compaction. Proc. of 10th EUROMICRO
Conference on Digital System Design - DSD 2007, Lübeck, Germany,
August 27 - 31, 2007.

27. R. Ubar, A. Jutman, M. Kruus, E. Orasson, S. Devadze, H.-D. Wuttke,
“Learning Digital Test and Diagnostics via Internet”. International
Journal of Online Engineering, 3(1), 1 – 9. 2007

28. G. Jervan, H. Kruus, E. Orasson, R. Ubar, “Optimization of Memory-
Constrained Hybrid BIST for Testing Core-Based Systems”.
Proceedings of the IEEE 2nd International Symposium on Industrial
Embedded Systems - SIES'2007, Lisbon, Portugal, 4-6 July 2007. IEEE
Computer Soc, 2007, 71 – 77.

8. Kaitstud lõputööd

Diplomitöö 2001

Magistritöö 2002

Java-põhine interaktiivne õppeprogramm
“Sissejuhatus testi ja diagnostikasse”
Digitaalsüsteemide testi- ja
diagnostikaalase õppetarkvara arendus

9. Teadustöö põhisuunad

Loodusteadused ja tehnika, Elektrotehnika ja elektroonika
(Digitaalsüsteemide istestimine)

10. Teised uurimisprojektid

Allkiri Kuupäev

114

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON
INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational modelling of a communication office. 1992.

2. Kalle Tammemäe. Control intensive digital system synthesis. 1997.

3. Eerik Lossmann. Complex signal classification algorithms, based on the third-
order statistical models. 1999.

4. Kaido Kikkas. Using the Internet in rehabilitation of people with mobility
impairments - case studies and views from Estonia. 1999.

5. Nazmun Nahar. Global electronic commerce process: business-to-business.
1999.

6. Jevgeni Riipulk. Microwave radiometry for medical applications. 2000.

7. Alar Kuusik. Compact smart home systems: design and verification of cost
effective hardware solutions. 2001.

8. Jaan Raik. Hierarchical test generation for digital circuits represented by
decision diagrams. 2001.

9. Andri Riid. Transparent fuzzy systems: model and control. 2002.

10. Marina Brik. Investigation and development of test generation methods for
control part of digital systems. 2002.

11. Raul Land. Synchronous approximation and processing of sampled data
signals. 2002.

12. Ants Ronk. An extended block-adaptive Fourier analyser for analysis and
reproduction of periodic components of band-limited discrete-time signals.
2002.

13. Toivo Paavle. System level modeling of the phase locked loops: behavioral
analysis and parameterization. 2003.

14. Irina Astrova. On integration of obj ect-oriented applications with relational
databases. 2003.

15. Kuldar Taveter. A multi-perspective methodology for agent-oriented business
modelling and simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected issues of modeling, verification and testing of digital
systems. 2004.

115

18. Ander Tenno. Simulation and estimation of electro-chemical processes
in maintenance-free batteries with fixed electrolyte. 2004.

19. Oleg Korolkov. Formation of diffusion welded Al contacts to
semiconductor silicon. 2004.

20. Risto Vaarandi. Tools and techniques for event log analysis. 2005.

21. Marko Koort. Transmitter power control in wireless communication
systems. 2005.

22. Raul Savimaa. Modelling emergent behaviour of organizations. Time-
aware, UML and agent based approach. 2005.

23. Raido Kurel. Investigation of electrical characteristics of SiC based
complementary JBS structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega
astmete ja elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive secure data transmission method for OSI level I.
2005.

26. Deniss Kumlander. Some practical algorithms to solve the maximum
clique problem. 2005.

27. Tarmo Veskioja. Stable marriage problem and college admission. 2005.

28. Elena Fomina. Low power finite state machine synthesis. 2005.

29. Eero Ivask. Digital test in WEB-based environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой
фазы эпитаксиальных структур арсенида галлия с высоковольтным
p-n переходом и изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian large vocabulary speech
recognition. 2006.

32. Erki Eessaar. Relational and object-relational database management
systems as platforms for managing softwareengineering artefacts. 2006.

33. Rauno Gordon. Modelling of cardiac dynamics and intracardiac
bioimpedance. 2007.

34. Madis Listak. A task-oriented design of a biologically inspired
underwater robot. 2007.

116

	1Introduction
	2State-of-the-art
	2.1Fault models
	2.2Hybrid BIST methods
	2.3E-Learning in Digital Test

	3Defect Modelling in BIST
	3.1Modelling Defects by Boolean Differential Equations
	3.2Mapping Physical Transistor Defects to Logic Level
	3.3Mapping Interconnection Defects to Logic Level
	3.4Conclusions

	4Hybrid Built-In Self-Test
	4.1Principles of Hybrid BIST
	4.2Cost Factors for Hybrid BIST
	4.3Fast Procedure for Calculating Stored Test Patterns
	4.4The concept of the Method of Hybrid BIST with Reseeding
	4.5Optimization of the Hybrid BIST with Reseeding
	4.6Experimental results
	4.6.1Optimization of the hybrid BIST
	4.6.2Optimization of the hybrid BIST with reseeding

	4.7Conclusions

	5Hybrid Functional Built-In Self-Test
	5.1Principles of Hybrid Functional BIST
	5.2General Scheme of Hybrid Functional BIST
	5.3Finding Trade-off Between Functional and Deterministic Test patterns
	5.4Experimental results
	5.5Conclusions

	6Sequential Built-In Self-Test
	6.1Principles of Sequential Built-In Self-Test
	6.2Test Coverage Metrics for Sequential Circuits
	6.3General Architecture of the BIST
	6.4Experimental Results
	6.5Conclusions

	7Environment for e-Learning in Digital Test
	7.1 Applet “Introduction to Digital Test”
	7.1.1User Interface
	7.1.2Test Vector Generation
	7.1.3Fault Diagnosis
	7.1.4Research Training in BIST

	7.2DefSim – a real life defect simulation environment
	7.2.1DefSim user interface
	7.2.2Teaching CMOS defects on DefSim

	7.3e-EDU student management system
	7.3.1e-EDU services

	7.4Conclusions

	Summary
	Bibliography
	Appendix

