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Abstract

Rapid advances in deep submicron and nanotechnologies, as well as in design 
automation are enabling engineers to design more complex integrated circuits 
(IC) and driving them toward new design paradigms like System-on-Chip (SoC) 
and  Network-on-Chip  (NoC).  Such  a  design  style  allows  to  reuse  previous 
designs and lead to shorter time to market and reduced cost. On the other hand, 
SoC design philosophy makes external test increasingly difficult. Internal speed 
of SoC is constantly increasing and the technology used in external testers is 
always one step behind. Therefore Built-In Self-Test (BIST) has emerged as a 
promising solution to the VLSI and SoC testing problem. 

This  thesis  is  dedicated  to  investigations  and  developments  to  improve  the 
efficiency and quality of BIST architectures. First,  hybrid BIST architectures, 
where pseudorandom test patterns are combined with deterministic test patterns, 
were researched. Then, a new functional hybrid BIST approach was developed 
where  instead  of  pseudorandom test  patterns  the  normal  functional  routines 
carried out in digital systems are combined with deterministic test patterns. And 
finally, a Design-for-Testability (DfT) technique was combined with BIST for 
sequential circuits to achieve the needed test quality.

A method and  algorithms were  developed for  fast  calculation of  the  cost  of 
hybrid  BIST.  The  cost  model  was  used  to  find  an optimal  balance  between 
pseudorandom and deterministic test  sets,  and to perform the hybrid self-test 
with minimum cost of both, time and memory, and without losing in test quality. 
The functional  hybrid BIST approach was investigated in the case of  testing 
microprogrammed data-paths in digital systems. A method was proposed to find 
the trade-off between the functional test-routines and deterministic test parts.

A new generic functional fault model was proposed to increase the accuracy of 
evaluating the fault coverage of given test sets, and as a consequence to improve 
the  quality  of  testing  including  BIST.  The  fault  model  allows  to  map  the 
physical transistor-level defects on the higher macro logic level which reduces 
the complexity of fault simulation algorithms and helps to increase the speed of 
test quality analysis. 



To prove the efficiency of the developed new methods, a lot of software tools 
and  scripts  were  developed  and  integrated  into  a  joint  R&D  and  teaching 
environment with the purpose to improve the teaching quality. The environment 
is targeted to e-learning the topics like fault simulation, test generation, BIST, 
and  fault  diagnosis  in  digital  circuits.  Experimental  part  of  the  work 
demonstrated  the  feasibility  of  the  developed  theoretical  ideas,  and  the 
advantages compared to known approaches.

Keywords: Physical Defects, Fault models, Fault Simulation, Test Generation, 
Pseudorandom Test, Deterministic Test, Built-In Self-Test, Fault Diagnosis.



Resümee

Kiire  areng  submikron-  ja  nanotehnoloogias  ning  elektroonikadisaini 
automatiseerimine  võimaldavad  inseneridel  projekteerida  üha  keerukamaid 
integraalskeeme, mis on  kokkuvõttes viinud uutele disainiparadigmadele nagu 
“süsteem-kiibil” ja “võrk-kiibil”. Kiipsüsteemide kontseptuaalne sisu tähendab 
eelnevalt  projekteeritud  moodulite  korduvkasutamist,  mis  võimaldab 
disainiprotsesside  kiirendamist,  kiiremat  sisenemist  turule  ja  väiksemaid 
disainikulusid. Samas aga on süsteemide keerukuse kasv teinud traditsioonilise 
välise testimise erakordselt  raskeks.  Kuna kiipsüsteemides  töösagedus kiiresti 
kasvab, siis on välised testrid testitavatest objektidest kiiruse mõttes alati sammu 
võrra taga. Nendel põhjustel on ülisuurte integraalskeemide testimisprobleemi 
lahendusena  järjest  enam  hakanud  levima  sisseehitatud  isetestimise 
kontseptsioon. 

Väitekiri  on  pühendatud  istestivate  arhitektuuride  efektiivsuse  ja  kvaliteedi 
uuringutele  ja  väljatöötlustele  parandamisele.  Esiteks  uuriti  ja  töötati  välja 
hübriidseid  isetestimislahendusi,  kus  pseudojuhuteste  kombineeritakse 
deterministlike testsignaalidega. Teiseks töötati välja uus funktsionaalne hübriid-
isetestimise  kontseptsioon,  kus  pseudojuhutesti  asemel  kasutatakse  süsteemi 
enda  funktsionaalseid  signaale  ning  kombineeritakse  neid  deterministlike 
testidega. Kolmandaks kasutati isetestimise kvaliteedi tõstmiseks ka testitavuse 
parandamise meetodeid.

Töötati  välja  meetod  ja  algoritmid  hübriid-isetestimise  maksumuse 
arvutamiseks. Uut hinnamudelit kasutati töös optimaalse vahekorra leidmiseks 
pseudojuhutesti  ja  deterministliku testi  vahel,  minimeerides  nii  testimise aega 
kui ka mälutarvet ette antud kitsendustel. Töötati välja optimeerimismeetodid ka 
funktsionaalse hübriidtesti arhitektuuride jaoks.

Rikete  simuleerimise  täpsuse  tõstmiseks  ja  testimise,  s.h.  ka 
isetestimislahenduste  kvaliteedi  parandamiseks  töötati  välja  uut  tüüpi 
funktsionaalne  rikete  mudel.  Uus  mudel  võimaldab  teisendada  suvalisi 
loogikaliselt  kirjeldatavaid füüsikalisi  defekte loogikatasandile ja seeläbi tõsta 
rikete analüüsi produktiivsust digitaalskeemides.



Uute  meetodite  efektiivsuse  tõestamiseks  töötati  välja  terve  hulk 
tarkvaratööriistu,  mis  integreeriti  ühtsesse  keskkonda  nii  uurimistöö  kui  ka 
õppetöö efektiivsuse suurendamiseks. Keskkonda on võimalik kasutada e-õppe 
eesmärgil niisuguste disaini ja testi probleemide uurimisel ja omandamisel nagu 
rikete  simuleerimine,  testide  genereerimine,  isetestimine  ja  rikete  diagnoos 
digitaalskeemides.  Töö  eksperimentaalosas,  mille  aluseks  oli  nimetatud 
keskkond,  õnnestus  demonstreerida  uute  meetodite  teostatavust  ja  suuremat 
efektiivsust võrreldes seniste meetoditega.

Võtmesõnad: füüsikalised defektid, rikete mudelid, rikete simuleerimine, testide 
genereerimine, pseudojuhutest, deterministlik test, isetestimine, rikete diagnoos.
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1 Introduction

According  to  the  Moore’s  law [26],  the  scale  of  integrated  circuits  (IC) has 
doubled  every  18  months.  Today,  very  large  scale  ICs  (VLSI)  with  many 
millions  of  transistors  are  commonly  used  in  computers  and  electronic 
applications.  This  is  a  result  of  continuously  decreasing  dimensions  (feature 
size) of the transistors and interconnecting wires from tens of microns to tens of 
nanometers.  The  reduction  in  feature  size  increases  the  probability  that  a 
manufacturing defect in the IC will result in a faulty chip. Therefore, testing is 
required to guarantee fault-free products.

Electronic testing includes IC testing, printed circuit board (PCB) testing, and 
system  testing  at  the  various  manufacturing  stages,  and  also  during  system 
operation in the field. Testing is used not only to find out faulty chips, boards or 
systems, but also to improve the production yield by analyzing the causes of 
faults.  Periodic  testing  in  the  field  is  performed  to  ensure  fault-free  system 
operation. Hence, VLSI testing is important to designers, product engineers, test 
engineers, manufacturers, and end-users.

Because of the diversity of VLSI defects, and high complexity of VLSI devices 
and  systems  it  is  difficult  to  generate  tests  for  real  transistor  level  physical 
defects. Higher level and more uniform fault models are needed for generating 
and evaluating a set of test patterns. Generally, a good fault model should satisfy 
two criteria: it should accurately reflect the behavior of defects, and it should be 
computationally efficient and simple. The stuck-at fault model has been used 
already  many  decades  as  the  basis  for  test  generation  and  fault  analysis. 
However, there are many other defect types like transistor faults, also referred as 
stuck-opens or stuck-shorts,  open and short faults,  different types of bridging 
faults  between  wires,  delay  faults,  crosstalk  faults,  pattern  sensitivity  and 
coupling faults, analog faults etc. [50]. These faults are not well covered by the 
commonly accepted stuck-at fault model. Therefore research is going on to find 
better ways for modelling as well as describing existing physical defects.

The rapid advances in the areas of  deep submicron and nanotechnologies, as 
well as in design automation are enabling engineers to design more and more 
complex integrated circuits. These developments are driving engineers toward 
new design paradigms like System-on-Chip (SoC) and Network-on-Chip (NoC). 
SoC is usually designed by embedding pre-designed complex functional blocks, 
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referred as cores, into one single die. Such a design style allows designers to 
reuse previous designs and will lead to a shorter time to market and a reduced 
cost. Testing of SoC, on the other hand, shares all the problems related to testing 
modern deep submicron chips, and introduces also some additional challenges 
due to the protection of intellectual property as well as the increased complexity 
and higher density [17].

Test engineers usually have to develop test sets after the design is completed. 
This  requires  a  lot  of  time  and  effort  that  could  be  avoided  if  testing  was 
considered  already  during  the  early  design  phase  to  make  the  design  better 
testable. 

As a result,  a new research field was established called design for testability 
(DfT). DfT techniques generally fall into the following three categories: ad hoc 
DfT techniques, scan design techniques, and built-in self-test (BIST) techniques.

SoC design philosophy makes external testing increasingly difficult. Also, the 
internal  speed  of  SoC  is  constantly  increasing  and  the  technology  used  in 
external automated test equipments (ATE) is always lagging one step behind. 
Therefore, the built-in self-test has emerged as a promising solution to the VLSI 
and SoC testing problem.

The requirement to integrate an increasing number of functions on a single chip, 
giving rise to system-on-chip (SoC) designs, has made the problem of testing 
them more difficult. Not only  the fault models for various logic and memory 
functions are diverse, there is also restricted observability and controllability for 
individual embedded modules or cores in a SoC. This significantly impacts the 
test  cost and test quality of such SoCs.  The cost of  test  is affected by many 
factors like - test application time, independence on external tester infrastructure, 
dedicated access to embedded IP,  stress mode and normal mode test quality, 
field test, etc., commonly addressed by BIST techniques [102].

BIST  is  a  design  for  testability  methodology  aimed  at  detecting  faulty 
components in a system by incorporating test logic on-chip [50].  In BIST, a 
portion of a circuit on a chip, board or system is used to test the digital circuit 
itself.  Depending  on  the  tested  circuit  type  Logic  BIST  and  Memory  BIST 
techniques are used [50]. In this work, only Logic BIST is considered. In the 
following text  we skip  the  attribute  “Logic”  and  use  only  the  term “BIST”, 
however, still meaning  “Logic BIST”.

BIST was introduced already two decades ago [14, 73] to integrate a test pattern 
generator (TPG) and an output response analyzer (ORA) in the VLSI device to 
perform internal IC testing as illustrated in Fig 1-1.
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   Test P attern  Generator   
               ( TPG )   

Circuit Under Test   
             ( CUT )   

. . . . . .   

Output Response  
Analyser  ( ORA )   

. . . . . .   

BIST   
Control Unit   

Fig 1-1. Classical built-in self-test architecture

The TPG automatically generates test patterns for application to the inputs of the 
CUT. The ORA automatically compacts the output responses of the CUT into a 
signature.  Specific  BIST  timing  control  signals  are  generated  by  the  BIST 
control  unit  for  coordinating  the  BIST operation  among  the  TPG,  CUT and 
ORA. The BIST Control Unit also provides pass/fail indication once the BIST 
operation  is  complete.  It  includes  comparison  logic  to  compare  the  final 
signature with an embedded expected (i.e. known “good”) signature. 

In traditional BIST architectures, test pattern generation is mostly performed by 
ad hoc circuitry, typically Linear Feedback Shift Registers (LFSR) [9], cellular 
automata  [71] or  multifunctional  registers  like  BILBO (Built-in Logic  Block 
Observer)  [59].  These  circuitries  are  used  to  generate  test  sequences  for 
exhaustive,  pseudo-random, and pseudo-exhaustive testing.  Exhaustive testing 
always  guarantees  100%  single-stuck  and  multiple-stuck  fault  coverage 
efficiency.  On  the  other  hand,  exhaustive  test  can  take  too  much  time  for 
combinational circuits  with a lot of  inputs.  Therefore,  pseudo-random testing 
[72] is often used for generating a subset of the exhaustive test. In this case, fault 
simulation is needed to calculate the exact fault coverage.

There are a number of advantages to use BIST techniques like:
● no ATE is needed
● allows at-speed testing
● the  cost  is  reduced  due to  the  reduced  test  time,  and  tester  memory 

requirements.
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However, there are also disadvantages associated with this approach, and related 
either to long test or to the insufficient fault coverage. Many circuits contain 
random-pattern-resistant  faults  which  limit  the  fault  coverage  achieved  by 
pseudorandom test patterns alone. To overcome the mentioned disadvantages, 
different modifications of BIST like hybrid BIST or improvements of BIST by 
DfT techniques have been introduced.

In hybrid BIST, also called as mixed-mode BIST [50],  the pseudorandom test is 
combined with deterministic test data in different ways by using methods like 
ROM compression [107], LFSR reseeding [8], embedding deterministic patterns 
[67]  and  other  methods  discussed  below  in  the  next  chapter.  The  task  of 
combining  pseudorandom  and  deterministic  test  data  leads  to  a  difficult 
combinatiorial problem of finding an optimal trade-off between pseudorandom 
and deterministic test data or minimal test cost under given constraints. 

These optimization tasks are also very closely related to another NP-complete 
task of generating optimized deterministic test sets.  The simplest approach to 
hybrid BIST is to perform top-up automated test pattern generation (ATPG) for 
the  faults  not  detected  by  pseudorandom  BIST.  It  helps  to  obtain  a 
supplementary  subset  of  deterministic  test  patterns  that  “top-up”  the  fault 
coverage to the desired level and then store this part of the test set directly on the 
tester.  This desired level of fault  coverage should be reached at minimal test 
cost.

The  work  under  this  thesis  was  devoted  to  development  of  methods  and 
algorithms  of  finding  optimal  trade-offs  between  pseudorandom  and 
deterministic  test  parts  in  the  hybrid  BIST  under  different  constraints. 
Investigation of the problem how to use DfT to improve the quality of BIST 
solutions was also one of the research topics of this work. Both of these research 
topics were closely related to the tasks of deterministic test generation and fault 
simulation. In such a way a very broad scope of test problems had to be covered. 
Consequently, to carry out all the investigations in this thesis, a lot of tools had 
to be developed or accommodated and integrated into different workflows for 
performing  experimental  proof  of  feasibility  or  efficiency  of  the  proposed 
algorithms and methodological solutions. 

This research work also involved students were in form of tasks for course or 
diploma works. The experience of working with students gave an idea of setting 
up an e-learning environment presenting tools for modelling the processes of test 
generation,  fault  simulation,  pseudorandom  test  pattern  generation,  fault 
diagnosis,  BIST  cost  estimation,  BIST  quality  evaluation  and  hybrid  BIST 
optimization.
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Our society is  becoming increasingly  dependent  on computing systems.  This 
dependency is especially felt upon the occurrence of failures in systems. That is 
the reason why design for dependability and test are becoming more and more 
important in all the life periods of electronic systems, and therefore, these issues 
should be considered also in teaching tomorrows system engineers. Students and 
young  engineers  should  be  trained  on  integrating  design  and  test  solutions. 
Teaching in this domain should be facilitated by using integrated CAD tools that 
support  design  verification,  testability  analysis,  design  for  testability,  test 
generation, fault simulation, built-in self-test, fault diagnosis and fault tolerance.

Tools developed for the research were also integrated into an e-Learning and 
research environment as  means for improving digital test teaching at technical 
universities in the field of hybrid BIST. This can be regarded as a side-effect of 
the  experimental  research  and  should  help  to  prove  the  feasibility  and 
correctness of new ideas presented here.
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2 State-of-the-art

2.1 Fault models

Testing and diagnosis of digital electronics systems have faced a lot of problems 
produced mainly by the complexity of systems. The efficiency of test generation 
(quality of  tests,  speed of test  generation) is  highly dependent  on the system 
description and chosen fault models.

Many fault models have been proposed, like:
● transistor stuck-opens and stuck-shorts
● gate open and short faults
● different types of bridging faults between wires
● delay faults
● crosstalk faults
● pattern sensitivity and coupling faults
● analog faults, etc [50, 59]

Unfortunately,  no  single  fault  model  accurately  reflects  the  behavior  of  all 
possible defects.  Often, a combination of different fault models is used, making 
test  generation,  fault  analysis  and  test  quality  evaluation  difficult.  As  a 
compromise,  simple  gate-level  stuck-at  fault  model  has  been  chosen  as  a 
representative fault model for all possible physical defects, and it has been used 
for decades in the industry as the target for test generation and as the unit of 
measure in test quality evaluation.

Since traditional low-level test generation methods and tools for complex VLSI 
systems  have  lost  their  importance,  other  approaches  based  mainly  on 
functional,  behavioral,  or  hierarchical  methods  are  gaining  more  and  more 
popularity  [15,  98].  The advantage of hierarchical  test  generation approaches 
compared to the functional ones lies in the possibility of constructing test plans 
at higher functional levels and modeling faults at lower levels. 

Conventional  low-level  fault  modeling  methods  use  logic  gate  level 
representations of digital circuits and stuck-at-0/stuck-at-1 fault (SAF) model. 
The rather popular SAF model in test quality estimation has not withstood the 
test of time. It has been shown that high SAF coverage cannot guarantee high 
quality of testing, for example, for CMOS integrated circuits [43, 44, 109]. The 

6



reason  is  that  the  SAF model  ignores  the  actual  behavior  of  digital  circuits 
implemented as CMOS integrated circuits, and does not adequately represent the 
majority of real IC defects and failure mechanisms. 

Physical defects occurring in real-life circuits often do not manifest themselves 
as stuck-at faults. Moreover, the types of faults that can be observed in a real 
gate depend not only on the logic function of the gate, but also on its physical 
design. Although these facts are well known, in engineering practice they are 
usually ignored. A layout-based test generation technique proposed in [74] is 
limited  to  current  testing  methodology.  Another  work  [62]  treats  the 
probabilities of defects in an oversimplified way.

To improve the test quality, there is a need to replace abstract fault models like 
SAF with more realistic defect models.

In  this  work,  a  uniform  fault  model  for  representing  physical  defects  in 
components of  digital  circuits  is  introduced.  Physical  defects are modeled as 
parameters in generic Boolean differential equations. Solutions of the equations 
give the conditions at which defects are locally activated. The defect activation 
conditions  are  used  as  functional  fault  models  on  the  logic  level  for  fault 
simulation purposes. 

Using the proposed new functional fault model improves the exactness of test 
quality evaluation in the BIST design methods developed in this thesis.

2.2 Hybrid BIST methods

Rapid advances of the microelectronics technology in recent years have brought 
new possibilities to the design and manufacturing of integrated circuits  (ICs) 
[103]. Nowadays many systems are designed by embedding pre-designed and 
pre-verified complex functional blocks, usually referred as cores, into one single 
die. Such core-based design technique has led to increased design productivity, 
but at the same time it has introduced additional test-related problems. These 
additional testing problems, together with the test problems induced due to the 
complexity and heterogeneous nature of such systems-on-chip (SoC), pose great 
challenges to the SoC testing community [115]. 

Typically, a SoC consists of microprocessor cores, digital logic blocks, analogue 
devices, and memory structures [17]. These different types of components were 
traditionally tested as separate chips by dedicated automatic test equipment of 
different types. Now they must be tested all together as a single chip either by a 

7



super tester, capable of handling different types of cores and is very expensive, 
or by multiple testers, which is very time-consuming due to the time of moving 
from one tester to another.  Hence,  philosophy of SoC design makes external 
testing  increasingly  difficult.  Also,  the  internal  speed  of  SoC  is  constantly 
increasing and the technology used in external automated test equipments (ATE) 
is always lagging one step behind.

For the reasons described above, the Built-In Self-Test (BIST) has emerged as a 
promising  solution  to  the  VLSI  and  SoC  testing  problem.  BIST  is  a  DfT 
methodology aimed at detecting faulty components in a system by incorporating 
test logic on-chip [115]. 

Another key issue to be addressed for SoC testing is the implementation of test 
access mechanisms on the chip. For traditional system-on-board design, direct 
test access to the peripheries of the basic components, in the form of separate 
chips, is usually available. For the corresponding cores, embedded deeply in a 
SoC, such access is impossible.  Therefore,  additional test access mechanisms 
must be included in a SoC to connect the core peripheries to the test sources and 
sinks, which are the SoC pins when testing by an external tester. 

When using BIST the test access costs can be substantially reduced by putting 
test sources and sinks right next to the cores to be testes. This is one way of 
dealing with the discrepancy between rapidly increasing SoC and slow tester 
speeds.  The  testers  have  hard  time  to  match  typical  SoC  clock  frequencies 
because  of  the  simple  fact  -  testers  are  built  on  previous  technology  level 
whereas SoCs represent the new level.  The introduction of BIST mechanisms in 
a SoC will also improve the diagnostic ability and on-the-field/on-the-fly test 
capability,  essential for applications where regular operation and maintenance 
testing is important [17].

One  major  concern  with  implementing  the  BIST  is  hardware  overhead 
minimization,  since  test  pattern  generation  and  application  is  performed  by 
additional  on-chip  harware.  Unlike  stored  pattern BIST,  which requires  high 
hardware overhead due to required memory devices for storing precomputed test 
patterns, a pseudorandom BIST utilizes pseudorandom pattern generators such 
as linear feedback shift registers (LFSRs) [9], cellular automata (CA) [71] or 
multifunctional registers like BILBO (Built-in Logic Block Observer) [59] and, 
therefore,  requires  very  little  hardware  overhead.  However,  LFSR  or  CA 
generated random patterns often require unacceptably long test sequences (and 
increasing test length means longer application time)  for achieving high fault 
coverage for CUTs that contain many random pattern resistant faults (RPRFs). It 
has been shown that only a few RPRFs are often determining the random pattern 
test length [72], required for  achieving  high fault coverage. Usually, complex 
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circuits contain many RPRFs [16] which in turn limits the fault coverage that 
can be achieved with pseudorandom BIST approach.

One method for improving  the  fault  coverage for  a  test-per-scan BIST is  to 
modify  the  CUT by  either  inserting  test  points  [68]  or  by  redesigning  it  to 
improve the fault coverage [114]. The drawback of these techniques is that they 
generally add additional logic to the circuitry, degrading system performance.

Some other approaches are using weighted pseudorandom sequences (WPS) for 
BIST fault coverage improvement. In these approaches additional weight control 
logic is needed to change the probabilities of each bit in the test sequence. In 
weighted  random pattern testing  [29,  42,  45,  72],  the  outputs  of  test  pattern 
generator (TPG) are biased to generate test  sequences  that have non-uniform 
signal  probabilities  to  increase  detection  probabilities  of  RPRFs  that  escape 
pseudorandom test sequences which have a uniform signal probability of 0.5. 
Random pattern generators proposed in [69, 108] use Markov sources to exploit 
spatial correlation between state inputs that are consecutively located in the scan 
chain.

The weight logic can be placed either at the input of the scan chain [61] or in the 
individual scan cells themselves [8]. The disadvantage of the WPS approach is 
that the weight sets  have to be stored on chip and additional control logic is 
required to switch between different weights. Therefore, the hardware overhead 
may become large.

A third method for BIST fault coverage improvement is to use dual stage test 
application.  In  the  first  test  phase  LFSR  generated  pseudorandom  patterns, 
detecting  the  random  pattern  testable  faults.  Thereafter  some  additional 
deterministic test  patterns are applied for detecting remaining random pattern 
resistant faults. This approach is called also as “mixed mode” BIST [50]. This 
alternative might be as effective as WPS in terms of test  length but requires 
substantially less additional hardware.

In case of  many stored deterministic  patterns  this  may cause large hardware 
overhead.  Overcoming  this  drawback  of  hybrid  BIST  requires  additional, 
different  methods  for  compressing  deterministic  test  data  like  ROM 
compression, LFSR reseeding, embedding deterministic patterns, etc.

The simpliest way for generating deterministic test patterns on-chip is to store 
them in a Read-Only Memory (ROM). The disadvantage of this  approach is 
related to the size of required ROM which can be unacceptably high in case of 
very complex CUTs. Several ROM compression techniques have been proposed 
for reducing storage size [25, 60, 90, 107].
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The idea of LFSR reseeding is to compute a set of seeds, that when expanded by 
the LFSR, will produce the pre-generated deterministic test cubes. So, instead of 
storing  complete  test  sequence,  a  much  smaller  amount  of  LFSR  seeds  is 
needed. These seeds can be computed by linear algebra as described in [8], for 
example. Because the seeds are much smaller than the test patterns, they also 
require less ROM storage. 

One  problem  is  that  for  an  LFSR  with  a  fixed  characteristic  (feedback) 
polynomial, it may not always be possible to find the proper seeds that can lead 
to the needed fault coverage. This problem was solved in [96, 97] by introducing 
a multi-polynomial  LFSR where  a possibility  for  choosing between different 
feedback polynomials was introduced when encoding a test cube.

Techniques for further reductions in storage of deterministic test patterns can be 
achieved  by  using  variable-length  seeds  [41,  65],  a  special  ATPG algorithm 
using concatenation of test cubes [94], folding counters [30], and seed encoding 
[1].

Another  approach  for  mixed-mode  BIST  is  to  embed  the  deterministic  test 
patterns  in  the  pseudo-random sequence.  One  possible  way  to  do  this  is  to 
transform the “useless” pseudorandom test patterns which detect no new faults 
into  the  needed  deterministic  patterns.  This  idea  has  been  implemented  by 
adding mapping logic between the scan chains and the CUT [67], and by adding 
the mapping logic at the inputs to the scan chains to either perform bit-fixing 
[66]  or  bit-flipping  [24,  33]  techniques.  The  drawback  of  the  described 
approaches  is  that  the BIST architecture  is  extremely  tailored to  the specific 
circuit, and any change in the test set requires re-synthesis of the complete BIST 
hardware.  

For  manufacturing  fault  coverage  enhancement  where  an  external  tester  is 
present,  deterministic  data  from the  tester  can  be  used  to  improve  the  fault 
coverage. The deterministic patterns stored in the external tester are coded in a 
compressed  form  and  the  BIST  hardware  inside  the  chip  is  then  used  to 
decompress it. Such techniques are described in [2, 12,  48, 76].

In a SoC, test scheduling can be done to overlap the BIST run time with the 
transfer time for loading the deterministic test patterns from the tester [22, 57].

Although the attainment of  high fault  coverage with practical  lengths  of  test 
sequences  is  still  one major concern of BIST techniques,  reducing switching 
activity  has  become  another  important  objective.  It  has  been  observed  that 
switching activity during test application is often significantly higher than that 
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during the normal operation [111], therefore special caution must be exercised 
not to overload the CUT. In [100] a low hardware overhead TPG is presented for 
scan based BIST that can reduce switching activity in CUTs during BIST and 
also achieve very high fault coverage with a reasonable length of test sequence. 
In [11] a segment weighted random BIST (SWR-BIST) technique for low power 
testing  is  presented.  The  technique  divides  the  scan  chain  into  segments  of 
different  weights  whereas  heavily  weighted  segments  have  more  biased 
probability than lightly weighted segments, and heavily weighted segments are 
placed closer to the end of scan chain than the lightly weighted segments, so the 
scan-in transitions are minimized.

In  [22,  88],  a  trade-off  problem  between  the  cost  of  memory  or  power 
consumption and the test  length in hybrid BIST, which consists of two parts 
pseudorandom test and deterministic test, was investigated.

In [101]  the  problems of  optimizing  a  combined  BIST and  Automated  Test 
Equipment (ATE) process are considered to meet the high fault coverage while 
preserving  acceptable  costs.  For  digital  systems,  the  costs  associated  with  a 
combined  BIST/ATE  testing  process  mainly  consist  of  the  following 
components: 

● the cost due to the BIST area overhead and
● the cost due to the overall test time.

In general,  BIST is  faster  than ATE,  but  it  can provide only  a  limited fault 
coverage. For attaining a higher fault coverage from BIST, additional area (at a 
corresponding higher cost) is required.  However,  a higher fault  coverage can 
usually be achieved from ATE, but excessive use of ATE results in additional 
test time (as an increased cost). The fault coverage of BIST and ATE plays a 
significant role, because it can affect the area overhead in BIST and the test time 
in  BIST/ATE.  In  [101]  a  novel  numerical  method  is  proposed  to  find  the 
optimized  fault  coverage  by  BIST  and  ATE  so  that  minimal  cost  can  be 
achieved. 

A lot of papers have been devoted to using BIST for diagnosis purposes [5, 10, 
27,  32,  38,  53,  52,  87].  Some  papers  are  concentrating  on  BIST  targeting 
specific fault  models  like [113] for  delay faults  and [47] for  interconnection 
faults  testing.  In  [37,  99,  110]  BIST  dependability  issues  are  researched. 
Hierarchical  BIST  methods  are  considered  in  [6,  34].  In  [6]  a  complete 
hierarchical framework is presented for BIST scheduling, data delivering, and 
diagnosis  of  a  complex  system including  embedded cores  with  different  test 
requirements.  In [34] a hierarchical BIST method is proposed for testing a SoC 
with a global BIST controller, multiple local BIST circuits for each macro, and 
data/control paths to perform the SoC test operations.
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The task of optimizing hybrid BIST leads to a difficult combinatorial problem of 
finding optimal trade-offs between pseudorandom and deterministic test data, or 
minimizing the test cost under given constraints. As the complexity of design 
and  fabrication  highly  integrated  systems  on  chip  rapidly  increases,  the 
optimization of hybrid BIST remains a major concern of BIST techniques.

The  main  research  objective  in  this  thesis  is  to  investigate  and  develop 
alternative  methods  for  optimizing  hybrid  BIST  by  finding  optimal  balance 
between  pseudorandom  and  deterministic  test  pattern  sets,  whereas  the 
deterministic patterns may be used as seeds for LFSR. The optimization methods 
and  algorithms  are  based  on  the  store-and-generate  technique  as  the  general 
scheme with special cases and the optimization criteria is to minimize the test 
cost at given constraints on the fault coverage and the cost of the memory that is 
needed for storing deterministic test data. 

2.3 E-Learning in Digital Test

The increasing complexity of digital systems accompanied by entering the era of 
Systems-in-Chips (SoC) and Networks-on-Chips (NoC) has made testing and 
fault  diagnosis  in  electronic  systems  one of  the  most  complicated  and  time-
consuming problems in electronics design and manufacturing.  Because of the 
very high cost of testing electronic products and the increasing complexity of the 
electronics systems, the importance of DfT is growing steadily.

Recent  reviews have discovered that  most  VLSI and system designers  know 
little  about testing and design for testability  (DfT) of  today’s digital  systems 
because of the gap in education. In the today’s university curricula test issues are 
usually neglected: students learn how to design electronic systems but not how 
to test them. The importance of test and fault diagnosis as a teaching objective is 
underestimated in traditional engineering education [106]. 

In a design course test is usually taught as a subtopic of minor importance an is 
generally taught as an independent discipline only when it is a “hobby horse” of 
a professor. There are two reasons for that. The first one is because the test is 
interpreted as a nonproductive (read: not important) issue compared   to design. 
The second one can be explained by so called Tenhunen’s Law which claims 
that the number of courses that should be taught at  universities doubles in a 
decade [28]. To select courses for curricula is a difficult issue. And often a test 
course  as  a  component  of  engineering education is  left  outside the  curricula 
because of tough competition between courses.
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On the other hand, the topics like Testing and Fault Diagnosis are not only issues 
related to  Electronics Systems,  they have an important  didactive role for  the 
engineering education in general [70]. First,  testing is a method to learn how to 
ask  right  questions,  second,  it  develops  the  ability  to  analyze  cause-effect 
relationships, and third, diagnosis is looking for answers to the questions like 
“what is the reason of that what happened?”

Logic  world  (computers,  digital  circuits  and  systems,  SoC)  because  of  its 
inherent logical complexity could be the best objective for learning the concepts 
of testing and diagnostic analysis for any type of system in general. The real 
targets  of  education  are:  creativity,  critical  thinking,  problem  solving  skills. 
Therefore, learning testing at a university should be research-oriented. 

Moving towards  multi-million gate  System-on-Chips  (SoC) makes embedded 
test strategies via Built-In Self-Test (BIST) architectures mandatory. It is critical 
to ensure that students will be equipped with skills in DfT and BIST, and will 
get hands-on experience in solving test problems in digital systems like SoC. 

In this thesis a teaching/learning environment is presented with the purpose to 
increase the teaching quality in the field of electronics DfT by hands-on training 
exercises. The problems of test generation, fault simulation, fault diagnosis and 
optimized BIST design are covered. The environment supports basic learning 
and advanced research oriented laboratory training. The interactive modules are 
focused on easy action and reaction, learning by doing, a game-like use, and 
encouraging students critical thinking, problem solving, and creativity.
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3 Defect Modelling in BIST

As the complexity of digital systems continues to increase, the traditional low 
level methods for test  generation and fault  simulation have become obsolete. 
Other  approaches  based  mainly  on  higher  level  functional  and  behavioral 
methods are gaining more popularity. 

However, the trend towards higher level modeling moves us even more away 
from the real life of  defects and, hence,  from accuracy of testing. To handle 
adequately  defects  in  deep-submicron  technologies,  new  fault  models  and 
defect-oriented  test  methods  should  be  used.  On  the  other  hand,  the  defect-
orientation is increasing even more the complexity. 
To get out from the deadlock, the two opposite trends – high-level modeling and 
defect-orientation  –  should  be  combined  into  hierarchical  approaches.  The 
advantage  of  hierarchical  approaches  compared  to  high-level  functional 
modeling lies in the possibility of constructing test plans on higher levels, and 
modeling faults on more detailed lower levels. 

In this Chapter a new fault model is proposed to map the physical defects from 
the very low transistor level to gate or higher macro-gate level. The results of 
this chapter are published in [35, 82, 91].

3.1 Modelling Defects by Boolean Differential Equations

In the following, an approach is presented to model physical defects by generic 
Boolean differential equations with the goal to map them from physical level to 
logic level. A new physical defect oriented fault model is defined on that basis 
called functional fault model.

Consider  a  Boolean  function  y= f x1 , x 2 , , xn implemented  by  an 
embedded  component  C  in  a  circuit.  Introduce  a  Boolean  variable  d for 
representing a given physical defect in the component,  which may affect the 
value y by converting the Boolean function f into another function

  
y= f d  x1 , x2 , , x n

where in fact, some of the arguments xi can fall out, simplifying in that way 
the function because of the fault.
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For the block C, let us introduce  a generic parametric function

y*= f * x1 , x2 , , x n , d =d f ∨d f d  (3-1)

as  a  function  of  a  defect  variable  d,  which  describes  the  behavior  of  the 
component  simultaneously  for  both possible  fault-free  and  faulty  cases.  This 
could be written in a different manner:

y*={ f , if d=0  faultfree
f

d
, if d=1  faulty 

 (3-2)

 The solutions of the Boolean differential equation 

W d
=
∂ y*

∂d
=1  (3-3)

describe  the conditions which activate the defect d on a line y. The parametric 
modeling of a given defect  d  by equations (3-1) and (3-3) allows us to use the 
constraints  W d=1 , either in defect-oriented fault simulation, for checking if 
the condition (3-3) is fulfilled, or in defect-oriented test generation, to solve the 
equation (3-3) when the defect d should be activated and tested.

To find  W d  for a given defect  d we have to create the corresponding logic 
expression for the faulty function f d  either by logical reasoning, by carrying 
out directly defect simulation, or by carrying out real experiments to learn the 
physical behavior of different defects. 

Example 1.

Let us have a transistor circuit in Fig. 3-1 which implements the function 
y=x1 x 2 x3∨x 4 x5 . A short defect as shown in Fig. 3-1 changes the function of 

the  circuit  as  follows:  yd= x1∨ x4∧ x2 x3∨x5 .   Properties  of  Boolean 
differential allow removing extra inversion from the given formulas.
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Thus,  using  the  defect  variable  d for  the  short,  we  can  create  a  generic 
differential  equation  for  this  defect  and  simplify  the  created  expression  as 
follows:

∂ y*

∂d
=
∂ [ x1 x 2 x3∨x 4 x5d∨ x1∨x4∧ x2 x3∨x5d ]

∂d
=

=x1 x2 x4 x5∨ x1 x3 x4 x5∨x1 x2 x3 x 4 x5=1

From the equation three possible solutions follow: T = {10x01, 1x001, 01110}. 
Each of them can be used as a test pattern for the given short. On this contra-
example, it is easy to show the inadequacy of the stuck-at fault (SAF) model for 
testing the transistor level faults. For example, the set of five test patterns 1110x, 
0xx11, 01101, 10110, 11010 which test all the stuck-at faults in the circuit does 
not include any of the possible test solutions for detecting the short from the set 
T.
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Fig. 3-1. Transistor circuit with a short

Note, that for the same purposes of finding the test for the defect  d we could 
solve also directly the equation

f ⊕ f d= x1 x2 x 3∨x 4 x5⊕ x1∨x4 x2 x3∨x5=1  (3-4)

without introducing the defect variable  d. However, solving the equation (3-3) 
will be much easier than (3-4) because of simplification possibilities resulting 
from specific properties of Boolean differentials [4].

16



3.2 Mapping Physical Transistor Defects to Logic Level 

The described method represents a general approach to map an arbitrary physical 
defect onto a higher (in this case, logic) level.  By the described approach an 
arbitrary  physical  defect  in  a  component  can  be  represented  by  a  logical 
constraint Wd = 1 to be fulfilled for activating the defect (Fig. 3-2).

The event of erroneous value on the output  y  of a functional component can be 
described as  dy = 1,  where  dy means Boolean differential.  A functional fault 
representing a defect d can be described as a couple (dy, Wd). At the presence of 
a physical level defect d,  we will have an higher level erroneous signal  dy = 1 
iff the condition  Wd = 1 is fulfilled.

Component

F(x
1
, x

2
, ... , x

n
 )

Activated by Wd path

Defect

Fig. 3-2. Modelling a physical defect by a logic constraint

From another point of view, the equation (3-3) can be interpreted as a mapping 
of a physical defect d from the transitor level to the logic level as an erroneous 
change of a logic value dy = 1 by means of fulfilling the logic condition Wd = 1.
The following examples will show the feasibility of using Boolean differential 
equations for mapping faults from physical transistor level to the logic level. 

Example 2. 

Transistor level stuck-on faults. The behavior of the transistor level NOR gate 
depicted in Fig. 3-3 cannot be described strictly logically.
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Fig. 3-3. Stuck-on fault in the transistor NOR gate

The input  vector “10” produces  a conducting path from VDD to VSS,  and the 
corresponding voltage at the output node Y will not be equal to either VDD or VSS 

but  will  instead  be a  function of  the  voltage  divider  formed by  the  channel 
resistances of the conducting transistors:

V Y=
V DD RN

RPRN 

Depending on the ratio of these resistances along with the switching thresholds 
of the gates being driven by the output of the faulty gate y, the output voltage of 
the faulty gate may or may not be detected at a primary output. This ambiguous 
value on the gate output will be denoted by introducing the variable  Z. Faulty 
function of the gate can then be represented as follows:

yd=x1 x2∨x1 x2 Z

If  x1 x2=1 then yd=Z  Using now the expressions (3-1) and (3-3) we get:

y*=d  x1∨x 2∨d  x1 x2∨x1 x2 Z 

W d
=
∂ y *

∂d
=x 1 x2 Z=1

From that it follows that the condition to activate the defect is x1=1, x 2=0
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Example 3.

Transistor level stuck-open faults. For the transistor stuck-open fault of the NOR 
gate in Fig. 3-4, there will be no path from the output node to either VDD or VSS 

for some input patterns. As a result, the output node will retain its previous logic 
value. This creates a situation where a combinational logic gate behaves like a 
dynamic memory element.

Stuck-off (open)

x1 x2

Y

VDD

VSS

x2

No conducting path 
from VDD to VSS for “10”

x1

Stuck-off (open)

x1 x2

Y

VDD

VSS

x2

No conducting path 
from VDD to VSS for “10”

x1

 

Fig. 3-4. Stuck-off (open) fault in the transistor NOR gate

The faulty function of the gate is: yd=x1 x2∨x1 x2 y ' where y’ corresponds to 
the  output  value  stored  at  the  output  of  the  faulty  gate.  Using  now  the 
expressions (3-1) and (3-3) we get:

y*=d  x1∨x 2∨d  x1 x2∨x1 x2 y ' 

W d
=
∂ y *

∂d
=x 1 x2 y '=1

From  that  it  follows  that  the  condition  to  activate  the  defect  is 
x1=1, x 2=0, y '=1 .  In  other  words,  for  testing  the  fault  we  need  a  test 

sequence of two patterns: “00” to get the value 1 on the output, and then “11”.
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Some examples  of  the  conditions  Wd for  different  type of  gate-level  defects 
(where stuck-at-fault (SAF) is a particular case) are given in Table 3-1 (here xk is 
the observable variable, and x’k is the variable at the previous time moment).

Table 3-1. Examples of representing typical gate-level faults by the condition Wd

# Defect Conditions Wd

1 SAF xk≡0 xk=1

2 SAF xk≡1 xk=0

3 Short between xk and xl xk=1, xl=0

4 Exchange of lines xk and xl xk=1, xl=0 ;
xk=0, xl=1

5 Delay fault on the line xk xk=1, xk
,=0 ;

xk=0, xk
,=1
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3.3 Mapping Interconnection Defects to Logic Level 

Consider  now  a  component  C  representing  a  Boolean  function 
y= f x1 , x 2 , , xn  embedded in an environment given by a subset of lines 
E c= xn1 , , x p .  Introduce  the  same  Boolean  variable  d for  representing 

physical  defects  in  the  subcircuit  (C,Ec),  given  by  the  block  C  with  its 
neighborhood Ec, which may affect on the value y. Let the defect d convert the 
Boolean function f into another function

  y= f d  x1 , x2 , , x n , xn1 , , x p 

Introduce  for  modelling  physical  defects  related  to  the  subcircuit  (C,Ec)  a 
generic parametric function

y*= f * x1 , x2 , , x n , xn1 , , x p , d =d∧ f ∨d∧ f d 

as  a  function  of  a  defect  variable  d,  which  describes  the  behavior  of  the 
subcircuit simultaneously for both, fault-free and faulty cases. For the faulty case 
the value of the defect variable d as a parameter is equal to 1, and for the fault-
free case d = 0. In other words,  y* = f d   if d = 1,  and  y* = f   if d = 0. The 
solutions  of  the  Boolean  differential  equation  (3-3)  describe   the  conditions 
which activate the defect d on a line y.

Example 4.

A short between two lines xk and xl in the circuit ( Fig. 3-5). The faulty function 
of xk in the case of the defect d in accordance to the wired-AND fault model can 
be represented as .

Introduce now a generic parametric function 

xk
*= f  xk , x l ,d =d xk∨d xk

d=d x k∨d x k xl 
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as  a  function   of  a  defect  variable  d,  which  describes  the  behavior  of  the 
interconnection network simultaneously for both, fault-free and faulty cases. The 
solution of the Boolean differential equation

W d
=
∂ y *

∂d
=x k kl

describes the conditions (constraints) which activate the fault d on a line xk (Fig.
3-5). The condition  means that in order to detect the short between lines xk  and 
xl we have to assign to  xk  the value 1 and to  xl  the value 0.

Example 5. 

A  short  between  two  lines  xk and  xl in  the  circuit  which  creates  a 
feedback  loop.  A  circuit  with  such  a  loop  and  its  equivalent  faulty  circuit 
corresponding to the wired-AND fault model is depicted in Fig. 3-6.

The  generic  parametric  function  for  describing  the  behavior  of  the  circuit 
simultaneously for both, fault-free and faulty cases has the following form:

y*=d x 1 x 2∨ x3∨d  x1 x2 y '∨x3=x1 x2 d∨y '  x3
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The solution of the Boolean differential equation

W d
=
∂ y*

∂d
=x 1 x2 x3 y '=1

    

describes the conditions (constraints) which activate the fault d on a line y (Fig.
3-6). The apostrophe at y means that the value of y belongs to the previous time 
moment.  The condition  W d=x1 x2 x 3 y '=1  means  that  a  sequence of  two 
patterns is needed for the testing of this short. First, we have to set  y=0 , by 
assigning  x3=0 for  example,  then  we  have  to  apply  the  pattern 

x1=1, x 2=1, x3=1 . 

From this  example  we see  that  the  constraints  for  activating a  fault  may be 
spread over different time moments, and represent a sequences of patterns. We 
see also that the method for describing faults by generic Boolean differential 
equations allows us directly to attack the problem of testing so called ”sequential 
faults”  which  convert  combinational  circuits  into  sequential  ones,  or  which 
increase the number of states in sequential circuits. Test generators which are 
able to work with such faults are missing.

The functional fault model described as a couple (dy, Wd) can be regarded first, 
as  a  method of  mapping  arbitrary  physical  defects  onto  the  logic  level,  and 
second, as a universal method of fault modeling in hierarchical approaches to 
test generation and fault simulation.

The conditions  Wd for  activating defects  d can be used as  constraints  at  the 
higher (logical or register transfer) level either for fault simulation or for test 
pattern generation without paying attention to the physical reasons of defects.
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3.4 Conclusions 

1. An approach is presented to map physical defects in digital circuits and 
systems from transistor level to logic level for test generation and fault 
simulation purposes.

2. For modelling physical defects generic Boolean differential  equations 
were  introduced  which  allow to  map  the  physical  faults  from lower 
physical level to higher logic level. 

3. Different transistor level defects were analyzed to show that this way of 
mapping is general and feasible. 

4. A new fault  model  was defined on that  basis,  called functional  fault 
model. 

5. The functional fault model can be regarded as a uniform interface for 
mapping faults from a given arbitrary level to the next higher level.
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4 Hybrid Built-In Self-Test

In this chapter a hybrid BIST solution is developed for testing systems-on-chip 
(SoC),  which  combines  pseudorandom test  patterns  with stored  precomputed 
deterministic test patterns. A procedure is proposed for fast calculation of the 
cost of hybrid BIST at different lengths of pseudorandom test to find an optimal 
balance between test sets, and to perform core test with minimum cost of both, 
time and memory, and without losing in test quality. Compared to the known 
approaches, based on iterative use of deterministic ATPG for evaluating the cost 
of stored patterns, in this paper a new, extremely fast procedure is proposed, 
which calculates costs on a basis of fault table manipulations. Experiments on 
the ISCAS benchmark circuits show that the new procedure is about two orders 
of magnitude faster than the previous one.

The results of this chapter are published in [21, 20, 83, 84].

4.1 Principles of Hybrid BIST

To test the electronic system we need test pattern source and sink together with 
an appropriate test access mechanism (TAM) [112]. Such a test architecture can 
be implemented in several different ways. A widespread approach implements 
both  source  and  sink  off-chip  and  requires  therefore  the  use  of  external 
Automatic  Test  Equipment  (ATE).  But  rapid  advances  in  recent  years  have 
enabled the integrated circuits (ICs) manufactures to move towards very deep 
submicron technologies and to integrate several complex functional blocks into 
one  single  chip.  The  internal  speed  of  such  a  Systems-on-Chip  (SoC)  is 
constantly increasing but the technology used in ATE is always one step behind 
and therefore the ATE solution has  already become unacceptably expensive and 
inaccurate [103]. Therefore, in order to apply at-speed tests and to keep the test 
costs under control, on-chip test solutions are needed. Such a solution is usually 
referred to as built-in self-test (BIST).

A BIST architecture consists of a test pattern generator (TPG), a test response 
analyzer (TRA) and a BIST control unit (BCU), all implemented on the chip. 
This approach supports at-speed tests and eliminates the need for an external 
tester. Different BIST approaches have been available for a while and have got 
wide acceptance especially for memory test. For logic BIST (LBIST) there is 
still  no  industry-wide  acceptance.  One  of  the  main  reasons  is  the  hardware 
overhead required to implement a BIST architecture. The BIST approach can 
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also introduce additional delay to the circuitry and requires a relatively long test 
application time. Nevertheless, even LBIST is becoming increasingly popular, 
since BIST is basically the only practical solution to perform at-speed test, and 
can  be  used  not  only  for  manufacturing  test  but  also  for  periodical  field 
maintenance tests.

The classical way to implement the TPG for BIST is to use linear feedback shift 
registers (LFSR). However, the LFSR-based approach often does not guarantee 
a sufficiently high fault coverage (especially in the case of large and complex 
designs) and demands very long test application times in addition to high area 
overheads.  Therefore,  several  proposals  have  been  made  to  combine 
pseudorandom test patterns, generated by LFSRs, with deterministic patterns [1, 
2,  12,  22,  24,  30,  33,  41,  48,  54,  57,  65,  66,  67,  76,  94,  95,  96,  97] to form a 
hybrid BIST solution.

The  main  concern  of  many  existing  hybrid  BIST  approaches  has  been  to 
improve the fault coverage by mixing pseudorandom vectors with deterministic 
ones, while the issue of cost minimization has not been addressed directly.

In the following, two solutions are proposed to find the optimal balance between 
the  on-line  pseudorandom  test  pattern  generation  and  usage  of  stored 
precomputed deterministic test patterns to perform core test with minimum cost 
of both time and memory, without losing test quality. Two algorithms will be 
described to calculate, with very low computational time, a complete hybrid test 
set, and to derive from it the optimal time-moment to stop pseudorandom test 
generation and to apply deterministic patterns.

A similar problem has been addressed in [57], where an approach to minimize 
testing time has been presented. The authors have shown that hybrid BIST (or 
Combination  of  BIST  and  External  Test,  CBET,  in  their  terminology)  can 
achieve  shorter  testing  time  than  pure  pseudorandom test  or  pure  externally 
applied deterministic  test.  The authors have made a realistic  assumption that 
externally applied test is much slower than LFSR generated one and therefore 
internally generated test vectors should be used as much as possible. However, 
the  proposed  algorithm  is  not  addressing  total  cost  minimization  (time  and 
memory) and is therefore only a special case of our approach.
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4.2 Cost Factors for Hybrid BIST

As test patterns, generated by LFSRs,  are pseudorandom by nature and have 
linear dependencies, the generated test sequences are usually very long and not 
sufficient to detect all the faults. To avoid the test quality loss due to random 
pattern resistant faults and in order to speed up the testing process, we have to 
apply deterministic test patterns targeting the random resistant and difficult to 
test  faults.  This  hybrid  BIST  approach  starts  with  on-line  generation  of 
pseudorandom test sequence with a length of  L. On the next stage, stored test 
approach takes place. For the stored approach, precomputed test patterns, stored 
in the memory, are applied to the core under test to reach 100% fault coverage. 
For off-line generation of S deterministic test patterns (the number of stored test 
patterns) arbitrary software test generators may be used, based on deterministic, 
random or genetic algorithms.

In hybrid BIST, the length of the pseudorandom test is an important parameter, 
which  determines  the  behavior  of  the  whole  test  process.  A  shorter 
pseudorandom  test  set  implies  a  larger  deterministic  test  set.  This  however 
requires additional memory space, but at the same time, shortens the overall test 
process. A longer pseudorandom test, on the other hand, will lead to longer test 
application time with reduced memory requirements. Therefore it is crucial to 
determine the optimal length of pseudorandom test in order to minimize the total 
testing cost.

Fig.  4-1 illustrates  graphically  the  total  cost  of  a  hybrid  BIST consisting  of 
pseudorandom  test  patterns  and  stored  test  patterns,  generated  off-line.  A 
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situation  is  illustrated,  where  100%  fault  coverage  is  achievable  with 
pseudorandom vectors alone, although it takes enormously long time to do it. In 
the  case  of  large  and  complex  designs  100%  fault  coverage  is  not  always 
achievable, however.

We can define the total test cost of the hybrid BIST CTOTAL as:

CTOTAL=CGENC MEM

where CGEN is the cost related to the time for generating the pseudorandom test 
patterns (number of clock cycles), CMEM is related to the memory cost for storing 
the precomputed test patterns to improve the pseudorandom test set.

Fig.  4-1 illustrates  also  how  the  cost  of  pseudorandom  test  increases  when 
striving for higher fault coverage (the  CGEN  curve). In general, it can be very 
expensive to achieve high fault coverage with pseudorandom test patterns only. 
The  CMEM curve describes the cost that we have to pay for storing additional 
precomputed  tests  from  the  fault  coverage  level  reached  by  pseudorandom 
testing to 100%. The total cost  CTOTAL is the sum of the above two costs. The 
CTOTAL curve is illustrated in  Fig. 4-1, where the minimum point is marked as 
Cmin. The main purpose of this work is to find a fast method for calculating the 
curve CTOTAL to find the minimal cost Cmin.
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Fig. 4-2. Cost calculation for Hybrid BIST

As  mentioned,  in  many  cases  100%  fault  coverage  is  not  achievable  with 
pseudorandom vectors alone. Therefore we have to include this assumption to 
the total cost calculation and the new situation is illustrated in  Fig. 4-2, where 
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the horizontal axis indicates the number of pseudorandom test patterns applied, 
instead of fault coverage level.

The  curve  for  the  total  cost  CTOTAL is  still  the  sum  of  two  cost  curves 
CGENCMEM  with the new assumption that the maximum fault coverage by 

using only deterministic ATPG is also achieved by the hybrid BIST.

We can also define the total cost of hybrid BIST CTOTAL as:

CTOTAL=LS

where  L is the length of the pseudorandom test sequence;  S is the number of 
deterministic  patterns;  and  weights    and    reflect  the  correlation 
between the cost and the pseudorandom test time (number of clock cycles used) 
and between the cost and the memory size needed for storing the deterministic 
test sequence, respectively. For simplicity, we assume here that  =1 ,  and 
=B where B is the number of bytes of an input test vector to be applied to 

the CUT. Hence, in the following we will use, as the cost units, number of cycles 
used  for  pseudorandom test  generation and  number  of  bytes  in  the  memory 
needed for storing the precomputed test patterns.

 In  Table 4-1, a fragment of the results of BIST simulation for the ISCAS’85 
circuit c880  is given, where: 

● k is the clock counter; 
● rDET(k) is the number of new faults detected by the group of test patterns 

generated between the last and the current entry at  k in the table;
● rNOT(k) is  the  number  of  faults  not  yet  covered  by  the  sequence  of 

patterns generated during all the k clock cycles; and
● FC(k) is  the  fault  coverage  reached  by  the  sequence  of  patterns 

generated during all the k clock cycles.
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Table 4-1. Pseudorandom test results for ISCAS'85 c880

k FC(k) % k FC(k) %
1 155 839 15. 593561 149 13 132 86. 720322
2 76 763 23. 239437 200 18 114 88. 531189
3 65 698 29. 778671 323 13 101 89. 839035
4 90 608 38. 832996 412 31 70 92. 957748
5 44 564 43. 259556 708 24 46 95. 372231
6 39 525 47. 183098 955 18 28 97. 183098

10 104 421 57. 645874 1536 4 24 97. 585510
16 66 355 64. 285713 1561 8 16 98. 390343
20 44 311 68. 712273 2154 11 5 99. 496979
29 42 269 72. 937622 3450 2 3 99. 698189
50 51 218 78. 068413 4520 2 1 99. 899399
70 57 161 83. 802818 4521 1 0 100. 000000

100 16 145 85. 412476

r
DET

(k) r
NOT

(k) r
DET

(k) r
NOT

(k)

In the list of BIST simulation results not all clock cycles are presented. We are 
only interested in the clock numbers at which at least one new fault  will  be 
covered, and thus the total fault coverage for the pseudorandom test sequence up 
to  this  clock  number  increases.  Let  us  call  such  clock  numbers  and  the 
corresponding  pseudorandom  test  patterns  resultative  clocks  and  resultative 
patterns. The rows in Table 4-1 represent the resultative clocks, but not all (we 
only give some resultative points for illustrative purpose), for the circuit c880.

If we decide to switch from the on-line pseudorandom test generation mode to 
the deterministic stored pattern mode after the clock number k, then L=k .

Creating the curves CGEN  and r NOT k   is not difficult. For this purpose, a 
simulation of  the  behavior  of  the  LSFR used  for  pseudorandom test  pattern 
generation is needed. A fault simulation should be carried out for the complete 
test sequence generated by the LFSR. As a result of such a simulation, we find 
for each clock cycle the list of faults which were covered up to this clock cycle. 
By removing these faults from the complete fault list, we will know the number 
of faults remaining to be tested.

More  difficult  is  to  find  the  values  of  S ,  the  cost  for  storing  additional 
deterministic patterns in order to reach the given fault coverage level (100% in 
the  ideal  case).  Let  t k   be  the  number  of  test  patterns  needed to  cover 

r NOT k   not yet detected faults (these patterns should be precomputed and 
used as stored test patterns). 
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As an  example,  these  data  for  the  circuit  c880  are  depicted  in   Table  4-2. 
Calculation of the data in the column  t(k) of  Table 4-2 is the most expensive 
procedure.

Table 4-2. C880: ATPG results

k t(k) k t(k)
0 104 148 46
1 104 200 41
2 100 322 35
3 101 411 26
4 99 707 17
5 99 954 12

10 95 1535 11
15 92 1560 7
20 87 2153 3
28 81 3449 2
50 74 4519 1
70 58 4520 0

100 52

In  the  following,  two  algorithms  for  calculating  t(k) will  be  compared:  the 
algorithm presented in [23] and the algorithm developed in this thesis.

4.3 Fast Procedure for Calculating Stored Test Patterns

Calculation of the data in the column  t(k) of  Table 4-2 is the most expensive 
procedure  in  the  hybrid  BIST  optimization  process.  In  this  section  the 
difficulties and possible ways to solve the problem are discussed.

There are two possibilities to find t(k): 
● ATPG based, and 
● fault table based approach. 

31



Let us have the following notations: 
● i – the current number of the resultative clock cycle (the number of the 

entry in tables for PRG and ATPG
● k(i) – the number of the clock cycle of the resultative clock i;
● RDET(i) - the set of new faults detected (covered) by the pseudorandom 

test pattern which is generated at the resultative clock signal number i; 
● RNOT(i) -  the  set  of  not  yet  covered  faults  after  applying  the 

pseudorandom test pattern number i;
● T(i) - the set of test patterns needed and found by the ATPG to cover the 

faults in RNOT(i);
● N – the number of all resultative patterns in the sequence created by the 

pseudorandom test;
● FT – the fault table for a given set of tests  T and for the given set of 

faults R:

The fault table  FT for a general case is defined as follows: given a set of test 
patterns T={t i} and a  set of faults R={r j} , FT=∥ij∥  where ij=1  if 
the test  t i∈T  detects the  r j∈R ,  and  ij=0  in the opposite case. We 
denote by R t i⊂R   the subset of faults detected by the test pattern  t i∈T .

We start the procedure for a given circuit by generating a test set T which gives 
the 100% (or as high as possible) fault coverage. This test set can be served as a 
stored test if no on-line generated pseudorandom test sequence will be used. By 
fault simulation of the test set  T for the given set of faults  R of the circuit, we 
create the fault table FT. 

Suppose now, that we use a pseudorandom test sequence  TL with a length  L 
which detects a subset of faults RL∈R . It is obvious that when switching from 
the pseudorandom test mode with a test set  TL to the precomputed stored test 
mode with a T, the test set T can be significantly reduced. At first, by the fault 
subtraction operation  R t i−RL   we can update all the contributions of the 
test patterns  ti  in  FT (i.e. to calculate for all  ti the remaining faults they can 
detect  after  performing  the  pseudorandom  test).  After  that  we  can  use  any 
procedure of static test compaction to minimize the test set T.
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The  described  procedure  of  updating  the  fault  table  FT can  be  carried  out 
iteratively for all possible breakpoints i=1, 2, , N  of the pseudorandom test 
sequence by the following algorithms:

– The first algorithm was presented in [23] and represents the ATPG based 
approach:

Algorithm 4-1: 

1. Take i :=N
2. Generate for RNOT,i a test set T i ,T :=T i , t i :=∣T i∣

3. For all i=N−1, N−2, ,1 :
 Generate for the faults RNOT,i not covered by test T, a test set 

T i ,T :=TT i , t i :=∣T∣
End.

– The second algorithm was developed in this thesis, and it represents the fault 
table approach:

Algorithm 4-2: 

1. Calculate  the  whole  test  T={t j}  for  the  whole  set  of  faults 
R={r j}   by  any  ATPG  to  reach  as  high  fault  coverage  C as 

possible
2. Create for  T  and  R  the fault table  FT={R t j}

3. Take i=1 ;  Rename: T i=T , Ri=R , FT i=FT  
4. Take i=i1
5. Calculate by fault simulation the fault set RDET ,i

6. Update the fault table:  ∀ j , t j∈T i : R t j−RDET ,i

7. Remove from the test set  Ti  all the test patterns  t j∈T i   where 
R t j=∅

8. Optimize the test set  Ti  by any test compaction algorithm; fix the 
value of S i=∣T i∣  as the length of the stored test for L=i

9. If  iL , go to 4;
End. 
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It is easy to understand that for each value L = i (the length of the pseudorandom 
test  sequence) the procedure guarantees  the constant  fault  coverage  C of  the 
hybrid BIST. The statement comes from the fact that the subset Ti of stored test 
patterns  is  complementing  the  pseudorandom  test  sequence  for  each 

i=1, 2,, N   to reach the same fault coverage reached by T.

As the result of the algorithms, the numbers of precomputed deterministic test 
patterns S i=∣T i∣  to be stored and the subsets of these patterns  Ti for each 

i=1, 2,, N   are calculated. On the basis of this data the cost of stored test 
patterns for each i can be calculated by the formula  CMEM=S i .  From the 
curve of the total cost CTOTAL i= LS   the value of the minimum cost of 
the hybrid BIST min {CTOTAL i}  can be easily found.

For the previously proposed Algorithm 4-1, the whole experiment of simulating 
the pseudorandom generation (PRG) behavior and of finding the numbers of test 
patterns to be stored for all possible switching points from PRG to stored test 
patterns  was  carried  out  for  the  whole  set  of  ISCAS’85 benchmark  circuits 
within about 8 hours. The data of these experiments are depicted in Table 4-3, 
page 42.

In the  case  of  very  large circuits  both  of  these  algorithms  will  lead  to  very 
expensive  and  time-consuming  experiments.  For  such  situations  we  have 
developed estimation algorithm to search for the optimum solution by using just 
a few samples from the whole test generation experiments set. As available data 
for such kind of estimation, the number of not yet covered faults in RNOT,k can be 
served. The value of  RNOT,k can be acquired directly from the PRG simulation 
results and is available for every significant time moment (see Table 4-2). Based 
on the value of ∣RNOT ,k∣  it is possible to reason about the expected number of 
test patterns needed for covering the faults in  RNOT,k. The starting point of the 
search  procedure  may be found by  giving  rough estimation of  the  total  cost 
based on the value of ∣RNOT ,k∣ .

Experimental  results  of  the  comparison  of  the  two  described  algorithms  are 
presented in chapter 4.6.1.

4.4 The concept of the Method of Hybrid BIST with Reseeding

The idea of the method of hybrid BIST with reseeding, called also Store-and-
Generate (S&G) method consists of using pseudorandom patterns generated by 
LFSR for detecting the random pattern testable faults, and the deterministic test 
patterns  for  testing  random  pattern  resistant,  so  called  hard-to-test-faults 
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(HTTF).  To demonstrate this let  us depict all  possible  2n−1  test  patterns 
with size  n as a line in  Fig. 4-3. These patterns are in the order as they are 
generated by the LFSR. Let the dots below the line represent HTTF that can be 
tested by only a single test pattern. A pseudorandom test generated by the LFSR 
at the given seed (initial state) is shown as a small interval on the line (bold line). 
Here we see that many HTTF are outside of this interval and remain untested. 
Therefore we should construct a full test set by a collection of pseudorandom 
pattern blocks (PPB), represented in Fig. 4-4 as separate intervals, in such a way 
that all HTTF will be covered by these test patterns. Each block has its own 
seed. The main problem of this approach is how to calculate the number and size 
of PPBs, and how these tests should be spread over all test patterns, i.e. which 
should be the seeds for the PPBs. The limiting factor is  that we don’t know 
which faults are HTTF and which test patterns are needed for detecting them.

d  

Hard
to test
faults

Seed

0

Pseudorandom test
sequence

2n-1

Fig. 4-3. Test patterns and hard-to-test-faults faults

Pseudorandom test
sequences

2n-10

Fig. 4-4. Testing with many pseudorandom pattern blocks

Let DT be the deterministic test set for a given CUT, and R the set of all possible 
faults in the CUT. Let us call all the faults in RH⊂R , which are covered only 
by a single test pattern in DT,  HTTFs. With DT H∈DT  we denote the subset 
of  test  patterns  which cover HTTFs  RH.  Obviously  ∣DT H∣=∣RH∣ .  The first 
seed  T i∈DT H  for the first pseudorandom pattern block  Bi , i=1 , will be 
selected  from  the  DTH.  Let  bi=∣Bi∣  be  the  length  of  the  block  Bi.  The 

35



algorithm now removes all the faults covered by Bi from R, and keeps in DT only 
these patterns that are needed for covering the faults in the updated  R. A new 

RH⊂R ,  and  a  new  DT H⊂D  are  calculated,  and  the  next  seed 
T i∈DT H , i=2  from the updated  DTH  will be chosen for starting the next 

block Bi , i=2 , of pseudorandom patterns. This procedure should be continued 
till the set of faults R is empty. Let the number of iterations will be k. Then the 
length of the full test is calculated as

L=∑
i=i

k

b i

The amount of memory M needed for storing the seeds is determined by k test 
patterns that are chosen for the  k blocks. The characteristics of the solutions  L 
and M are heavily depending on the length of the blocks. The task to be solved 
here is to find the lengths of the blocks so that L=min  at the given constraint 

M≤M max . 

We have carried out simulation as described in the procedure above for a range 
of different block lengths for the ISCAS benchmarks to see how the values of L 
and  M are changing with the length of  b. An example of the curves of  L1(b), 
L2(b) and M(b) for the ISCAS circuit c1908 is presented in Fig. 4-5, whereas for 
L1(b) the length of the blocks is equal, and for L2(b) the length of the blocks is 
different i.e. the block is cut shorter from the point where no useful patterns are 
generated. 
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Fig. 4-5. Relationships L(b) and M(b) for  c1908 circuit
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In Fig. 4-6 a possible structure of the assumed BIST architecture is shown [107]. 
ROM contains the seeds. Each pattern Pi in the ROM serves as an initial state of 
the  LFSR  for  test  pattern  generation.  Counter  1 counts  the  number  of  Li 

pseudorandom patterns that are generated starting from  Pi. After finishing the 
cycle, Counter 2 is incremented for reading the next pattern Pi+1.

ROM TPG UUT

ADR

Counter 2 Counter 1

RD

CL

ROM TPG UUT

ADR

Counter 2 Counter 1

RD

CL

Fig. 4-6. Store and generate approach

4.5 Optimization of the Hybrid BIST with Reseeding

There are two important issues to consider when constructing reseeding based 
solutions:  the  number  of  seeds  and  the  number  of  pseudorandom  patterns 
generated from each seed. Both have significant impact on the final solution in 
terms  of  fault  coverage,  test  length  and  test  memory  requirements.  In  the 
following  a  novel  method  is  proposed  for  finding  the  length  of  the 
pseudorandom  seeds,  such  that  the  test  memory  (number  of  seeds)  is 
constrained,  the  test  time  is  minimized,  and  the  maximum  achievable  fault 
coverage  is  guaranteed.  The  pseudocode  of  the  algorithm  is  depicted  in 
Algorithm 4-3 and the details of the algorithm will be explained below.
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Algorithm 4-3: pseudocode

- Generate deterministic test patterns DT, such that 

- foreach DTi:

- Generate L pseudorandom patterns, using deterministic pattern as a seed; 
// *1

- Fault simulate the block DTi + PRi

- block_length = 1;

- loop ( j <=L )

- foreach ( block ) // *2

-    calculate coverage summary ( block_length );

// Find coverage summary for block with block_length number of vectors,
// starting from the beginning of the block

-    minimize the block length;

// find a point within a block from where the fault coverage does not 
increase  anymore.
// Removes the useless PR vectors

-    order blocks based on the length;

// orders blocks in growing order (ie. shortest first)

-    minimize the number of blocks;

//  finds  minimal  number  of  blocks  needed  to  obtain  the  maximum
// fault coverage: remaining_blocks

-    initialize total_coverage_summary;

-    foreach( remaining_block );

// calculate final test length, *3

-        optimize block length;

//  remove all  unnecessary pseudorandom  patters that  do not  contribute
// to the final fault coverage. Here we use accumulative coverage, ie. 
taking
//  into  account  ALL  previously  applied  blocks.  For  this  we  use 
total_coverage_summary

-        total_coverage_summary += coverage( block );

-    end foreach;

// add new faults, covered by this block

-    set new block_length;

// block_length += block_length/stepping_const;

-    end loop;

- done;

 

 *1 – see Fig. 4-7, step 1 ; *2 – see Fig. 4-7, step 2; *3 – see Fig. 4-8
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Let DT be the deterministic test set DT={DT i}  for a given CUT and R the 
set of all possible faults in the CUT.  Let us denote by RDT i⊂R  the subset 
of faults detected by a test pattern DT i∈DT . We assume that the DT obtains 
the maximum achievable fault coverage, hence RDT =R . 

We start  by  generating  pseudorandom sequences  PRi with  a  given  length  L, 
where DTi is used as a seed for the pseudorandom sequence. Let us denote the 
set of  these hybrid sequences as  PR={PRi} .  For all  PRi∈PR  and for 
each test pattern tk∈PRi , cumulative fault coverage can be calculated as:

FC PR i ,k =
∣ ∪ R t j 

j=1,k ;t j∈PR i

∣
∣R∣

 (4-1)

Thereafter  the  pseudorandom  sequences  can  be  minimized.  From  each 
PRi∈PR  all  pseudorandom  test  patterns  t j , t j1 ,, t L   where 
FC PRi , k=FC PRi ,k−1 ,  for  all  k= j , j1 , , L ,  will  be  removed, 

because these  patterns  will  not  contribute  for  the  increase  in  fault  coverage. 
These first steps are illustrated in Fig. 4-7. Let us denote with Li the new reduced 
length of the pseudorandom sequence PRi, with  FC(PRi)  the fault coverage of 
the sequence  PRi calculated using formula  (4-1) of the last pattern in  PRi, and 
with RPRi⊂R  the subset of faults detected by PRi. 

Thereafter, all hybrid test sequences PRi will be ordered in increasing order, so 
that Li≥Li−1  for every i=1, 2, , N   where N=∣DT∣ .  

Consider now a composite hybrid test sequence PT, composed of all sequences 
PRi∈PR  in the order how they were ranked.  Since all  initially  generated 

deterministic test patterns t∈DT  are included in PT, we have 

FC PT =FC DT  ,
RPT =FC DT =R
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Fig. 4-7. Minimization of one pseudorandom sequence.

To minimize the length of the multi-seed hybrid test sequence we will use here 
the test pattern optimization algorithm( based on modified Greedy algorithm). In 
this algorithm the minimal subset  Tmin of the given test set T will be found based 
on the information of fault subsets R(t) detected by the test patterns t i∈PR , so 
that the fault coverage remains the same  FC T min=FC T  . To do this we 
interpret the sequences  PRi∈PR  as test patterns  t∈T , and the fault sets 

RPRi  , respectively as fault sets R(t). As a result of optimization we will find 
a minimal subset  PRmin⊂PR ,  so that  FC PRmin=FC PR  .  This step is 
rather fast as we do not optimize at the level of individual patterns but only at 
the level of complete sequences (blocks).

Now a new composite hybrid sequence PTmin will be created from the ordered set 
of subsequences PT min=PR1, PR 2, , PRm ,mN . 

The next step will be minimization of the total length of the sequence PTmin. As a 
result, a reduced final multi-seed hybrid sequence PT* will be created.  

To do that  we calculate again the cumulative fault  coverages for  all  the test 
patterns  tk∈PT min  similarly  to  formula  (4-1)  for  all  subsequences 

PRi∈PRmin  in  the  order  how they  were  ranked and  put  into  PTmin.  After 
calculating the fault coverage of a current subsequence  PRi in  PT* we remove 
from  PRi all  the  test  patterns  t j , t j1 , , t L ,i   where 
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FC PRi , k=FC PRi ,k−1 ,  for  all  k= j , j1 , , Li .  This  procedure  is 
illustrated in Fig. 4-8. As the optimization procedure takes into account only the 
cumulative  fault  coverage  of  earlier  blocks  and  does  not  analyze  individual 
patterns in these blocks, then also this step is rather fast.

Since the described reduction of the whole multi-seed hybrid sequence will not 
reduce the fault coverage, we have

FC PT *=FC PT =FC DT 

As a result of this algorithm we can find the length of a hybrid sequence for any 
arbitrary memory constraint. As a by-product we can also find the length of the 
longest hybrid block that remained at the end of the optimization sequence. 

...PT
min

...

Deterministic test vector (initial seed)

Pseudorandom test sequence

Discarded part of PR sequence due second
stage (cumulative coverage) block minimization

PT*

Fig. 4-8. Calculation of the final hybrid sequence.

Such an optimization is very necessary when developing a solution for testing 
core-based systems, such as SoCs or NoCs. The memory constraints can be seen 
as limitations of the on-chip memory or ATE, where the deterministic test set 
will be stored, and are therefore of great practical importance.
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4.6 Experimental results

4.6.1 Optimization of the hybrid BIST

Experiments  were  carried  out  on  the  ISCAS’85  benchmark  circuits  for 
investigating the efficiency of the method for optimizing the hybrid BIST and 
for  comparing  with  the  previous  algorithm  used  in  [23].  Experiments  were 
carried out using Turbo Tester [19,  119] toolset, for deterministic test pattern 
generation  and  fault  simulation,  and  using  the  test  compaction tool  [3].  The 
results are presented in Table 4-3. 

In  the  columns  of  Table  4-3 the  following  data  is  depicted:  ISCAS’85 
benchmark circuit name, LPR - length of the pseudorandom test sequence, LDET - 
the number of test patterns generated by the deterministic ATPG, CPR  - the fault 
coverage of the pseudorandom test sequence, CDET  - the total fault coverage of 
the hybrid BIST (after applying deterministic test patterns), N - number of all 
resultative  patterns  in  the  pseudorandom  test  sequence,  TG -  the  time  (sec) 
needed  for  ATPG to  generate  the  deterministic  test  set,  TA -  the  time  (sec) 
needed for carrying out manipulations on fault  tables  (subtracting faults,  and 
compacting the test set),  TOLD - the time (sec) needed for calculating the cost 
curve for hybrid BIST by the previous method , TNEW - the time (sec) needed for 
calculating the cost curve for hybrid BIST by the method proposed in this thesis, 
the  advantage  of  the  proposed  method compared  to  the  previous  one as  the 
relation  T1/T2  .  The  total  testing  time  for  both  methods  were  calculated  as 
follows:
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Table 4-3. Experimental results. Time comparison of two algorithms

Circuit N
C432 780 80 93.02 93.02 81 20.10 0.01 1632.9 21.0 77.75
C499 2036 132 99.33 99.33 114 0.65 0.02 74.1 2.9 25.55
C880 5589 77 100.00 100.00 114 0.15 0.02 17.1 2.4 7.13
C1355 1522 126 99.51 99.51 109 1.22 0.03 133.0 4.5 29.56
C1908 5803 143 99.48 99.48 183 11.65 0.07 2132.0 24.5 87.02
C2670 6581 155 84.92 99.51 118 1.95 0.09 230.1 12.6 18.25
C3540 8734 211 95.54 95.54 265 85.29 0.14 22601.9 122.4 184.66
C5315 2318 171 98.89 98.89 252 10.29 0.11 2593.1 38.0 68.24
C6288 210 45 99.34 99.34 53 3.79 0.04 200.9 5.9 34.05
C7552 18704 267 93.67 97.14 279 53.78 0.27 15004.6 129.1 116.22

LPR LDET CPR CDET TG TA TOLD TNEW TOLD/TNEW



T OLD=N∗T G

T NEW=T GN∗T A

In fact, the values for TG and TA differ for the different values of i=1, 2, , N . 
However the differences were in the range of few percents, which allowed us to 
neglect this impact and to use the average values of TG and TA.

Table 4-4. Experimental results. Parameters for optimized hybrid BIST

Circuit SOPT CTOTAL
C432 780 91 80 21 4 186
C499 2036 78 132 60 6 386
C880 5589 121 77 48 8 481
C1355 1522 121 126 52 6 388
C1908 5803 105 143 123 5 612
C2670 6581 444 155 77 30 26867
C3540 8734 297 211 110 7 889
C5315 2318 711 171 12 23 985
C6288 210 20 45 20 4 100
C7552 18704 583 267 61 51 2161

L
MAX

L
OPT

S
MAX

B
k

The switching point  from the PRG mode to  the stored deterministic patterns 
mode  was  found  at  the  minimum of  CTOTAL.  In  Table  4-4 the  parameters  of 
optimized hybrid BIST are depicted: ISCAS’85 benchmark circuit name, LMAX - 
the maximum length of the simulated pseudorandom test sequence,  LOPT - the 
length of the pseudorandom test sequence for the optimized BIST,  SMAX - the 
maximum number of test patterns generated by the deterministic ATPG,  SOPT - 
the number of stored test patterns for the optimized BIST,  Bk - the number of 
bytes needed for storing the input test pattern for the circuit k, and CTOTAL - the 
total cost of the optimized hybrid BIST, calculated by the formula

 CTOTAL=LOPTBk∗SOPT

In Fig. 4-9, the curves of the cost CGEN = L (denoted on Fig. 4-9 as T) for on-line 
pseudorandom test  generation,  the  cost  C MEM=Bk∗S  (denoted  as  M)  for 
storing  the  test  patterns,  the  number  ∣RNOT∣  of  not  detected  faults  after 
applying  the  pseudorandom test  sequence (denoted  as  Fr),  and  the  total  cost 
function CTOTAL  are depicted for selected benchmark circuits C432, C499, C880, 
C1908, C3540 and C7552 (Sc = 0 is used as a constant  in the cost function 
formula).
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Fig. 4-9. Cost curves of hybrid for ISCAS’85 benchmark circuits
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4.6.2 Optimization of the hybrid BIST with reseeding

Experiments  were  carried  out  on  the  ISCAS’85  benchmark  circuits  for 
investigating the efficiency of the method for reducing the test length based on 
the  proposed  algorithm of  calculating  the  hybrid  test  sets  for  each  possible 
memory constraint. For some tasks (like ATPG and fault simulation) tools from 
the Turbo Tester toolset [119] were used. 

 

 1* - described in [22]; 2* - described in [88]
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Table 4-5. Experimental results

Circuit
Proposed method

Total length

C432

10 11 96 206 280
15 7 81 188 210
20 4 60 151 160
25 3 62 120 125
30 2 51 79 120

C499

20 23 318 492 940
30 10 211 326 540
40 6 153 193 400
50 4 125 149 350
60 3 105 115 240

C1908

30 30 777 1318 1680
40 21 617 869 1240
50 13 444 735 1050
58 10 337 667 870
61 9 303 600 793

C1355

15 37 412 438 615
30 10 195 282 930
41 6 156 207 492
49 4 120 182 343
52 3 109 179 312

C2670

50 15 272 598 6400
54 8 211 342 2538
56 7 171 311 1568
60 4 140 290 1080
71 2 104 150 923

C3450

60 6 258 414 900
70 5 224 293 700
80 3 167 253 560
90 2 142 201 360

C5315

15 40 541 753 1290
35 10 237 451 560
42 5 173 299 504
46 4 134 268 368
51 3 124 199 255

C7552

95 10 414 900 1140
102 6 333 500 714
115 3 210 334 460
124 2 165 192 372

Memory 
Constraint 
(vectors)

Hybrid 
BIST *1

Reseeding 
*2

Max block 
size

Total 
length

Total 
length



The results are presented in Table 4-5, where we have depicted the test length of 
the final solution under different memory constraints.  We have compared the 
method, proposed in this paper, with methods proposed in [22] and [83]. The 
method proposed in [22] was originally developed for multi-core systems but it 
can equally well be used also for individual cores. In addition we have depicted 
in  Table  4-5 also  the  lengths  of  the  longest  hybrid  block  at  the  end  of  the 
optimization cycle.

As it can be seen from the results then the proposed method can always find a 
test set that is shorter than the test set found  using methods from [22] and [83]. 
The  main  explanation  lies  in  a  fact  that  the  proposed  method  handles  the 
deterministic  and  pseudorandom  sequences  together  and  the  test  sets  are 
optimized using a fast optimization method, based on cumulative fault coverage 
figures. The current implementation of the method [83]  is not optimizing the 
length of the individual hybrid blocks and therefore also the result worse than 
the result from [22]. 

Although  the  experiments  depicted  here,  were  performed  on  combinatorial 
circuits, the proposed method can with some small modifications also handle the 
sequential  circuits  with full  scan (using appropriate  test  architecture,  such as 
STUMPS).

In  Fig.  4-10 and  Fig.  4-11 we  have depicted  more  detailed  results  of  some 
selected circuits.

In Fig. 4-10 we have illustrated the relationships in between memory constraint 
(number of seeds), test length and the length of the longest block. As it can be 
seen from these charts then reduction of the number of seeds will increase the 
length  of  the  hybrid  blocks  and  consequently  also  the  test  length  will  be 
increased. 
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Fig. 4-10. Relationships in between number of seeds, maximal block size and total test  
length.
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In  Fig.  4-11 this  relationship  is  illustrated  in  more  straightforward  manner, 
showing how the test length is increasing while the number of seeds is reducing.
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Fig. 4-11. Relationship between the test length and number of seeds.

We have not included the CPU times here, as with the proposed method we are 
calculating the entire solution space, while the methods from [8] and [98] can 
find  a  single  solution for  a  predefined  memory  constraint.  We are  currently 
developing an optimization heuristic that would help us to avoid calculation of 
the complete curves and thereafter the comparison of CPU times is also possible.
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4.7 Conclusions

1. A hybrid BIST solution has been developed for testing systems-on-chip. 
It  combines  on-line  pseudorandom test  pattern generation with  using 
precomputed and stored deterministic test patterns. 

2. For  selecting  the  optimal  switching  moment  from  pseudorandom 
patterns mode to the stored deterministic patterns mode, a fast algorithm 
to calculate the total cost was developed.

3. It  was  shown by  experimental  results,  that  the  new  cost  calculation 
algorithm calculates the total cost of the hybrid BIST much faster (7 - 
184 times faster) than previously proposed algorithm and can therefore 
speed up the total cost minimization process significantly.

4. A method is developed for optimization of the hybrid BIST, based on 
reseeding.  An  optimization  heuristic  is  proposed  for  test  length 
reduction  under  given  memory  constraints,  based  on  the  test  set 
compaction using cumulative fault coverage of hybrid test sequences.

5. Experimental results have shown that the proposed approach is feasible 
and  efficient  for  finding  optimized  solutions  for  hybrid  BIST 
architectures, based on the reseeding concept.
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5 Hybrid Functional Built-In Self-Test

A  method  for  designing  hybrid  functional  BIST  (HyBIST)  is  proposed  to 
combine the functional routines carried out in digital systems with deterministic 
test patterns for testing microprogrammed data-paths in digital systems. In the 
first test phase only the functional resources of a system are used for testing 
purposes.  A  functional  microprogram is  carried  out  to  control  the  data-path 
based on some deterministic input data. A response compressor like signature 
analyzer is connected to the data path to monitor the process. 
To guarantee a high test coverage for BIST, the second phase of the test is used 
which consists of applying additional deterministic test patterns pre-generated 
by an ATPG to test the random-pattern-resistant faults. A method is proposed to 
find  the  trade-off  between  the  functional  test  and  deterministic  test  parts. 
Experiments  demonstrate  the  feasibility  of  the  approach,  and  also  show  the 
advantage of combining functional and deterministic test patterns compared to 
the pure deterministic test or pure functional test.

The results of this chapter are published in [86].

5.1 Principles of Hybrid Functional BIST

Rapid advances in the areas of deep-submicron electron technology and design 
automation  tools  are  enabling  engineers  to  design  larger  and  more  complex 
circuits  and to  integrate them into one single chip. System on a Chip (SoC) 
design methodology is seen as a major new technology and the future direction 
for semiconductor industry. The most important challenges of SoC testing are 
linked  to  test  cost  and  fault  coverage.  According  to  the  ITRS (International 
Technology Roadmap for Semiconductors) by 2014 it may cost more to test a 
transistor than to manufacture it unless techniques like logic Built-in Self-Test 
BIST are  employed [51].  BIST is  a  technology to  move on board  the  main 
functionalities previously carried out by Automated Test Equipments (ATE). In 
traditional BIST architectures, test pattern generation is mostly performed by ad 
hoc circuitry,  typically Linear Feedback Shift  Registers (LFSR) [51], cellular 
automata  [71] or  multifunctional  registers  like  BILBO (Built-in Logic  Block 
Observer) [16]. BIST involves using on-chip hardware to apply pseudorandom 
test patterns to the Circuit Under Test (CUT) and to analyze its output response. 
The  most  widespread  approach  is  test-per-scan  BIST  scheme  [16]. 
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Unfortunately, many circuits contain random-pattern-resistant faults [67] which 
limit the fault coverage that can be achieved with this approach.

One method for improving  the  fault  coverage for  a  test-per-scan BIST is  to 
modify the CUT by either inserting test points [55,  64] or by redesigning it to 
improve the fault coverage [18, 114]. The drawback of these techniques is that 
they generally add additional logic levels to the circuitry that can degrade system 
performance. Fault coverage can be improved by another way by using weighted 
pseudorandom sequences. Additional logic is needed to weight the probability of 
each bit in the test sequence. The weight logic can be placed either at the input 
of the scan chain [61] or in the individual scan cells themselves [8,  96]. The 
disadvantage of the probability weighting approach is in the need of storing of 
the weight sets on chip and also, control logic is required to switch between 
weights, so the hardware overhead may be large.

A third method to improve the fault coverage is to use a “mixed mode” approach 
where deterministic patterns are used to detect the faults that the pseudorandom 
patterns  miss.  Storing  deterministic  patterns  may  require  a  large  amount  of 
hardware  overhead.  In  [8]  a  technique  based  on  reseeding  an  LFSR  was 
proposed  that  reduces  the  storage  requirements.  In  [96]  another  improved 
technique was developed that uses a multi-polynomial LFSR for encoding a set 
of  deterministic  test  cubes.  Many  other  improvements  of  BIST  have  been 
discussed in the previous chapters

Established BIST solutions use special hardware for pattern generation (TPG) 
and  test  response  evaluation  (TRE)  on  chip,  but  this  in  general  introduces 
significant  area  overhead  and  performance  degradation.  To  overcome  these 
problems,  recently  new methods  have  been  proposed  which  exploit  specific 
functional  units  such  as  arithmetic  units  or  processor  cores  for  on-chip  test 
pattern generation and test response evaluation [40, 75, 76, 92, 95]. In particular, 
it has been shown that adders can be used as TPGs for pseudo-random, pseudo-
exhaustive and deterministic patterns. Investigations are known about properties 
of test patterns generated by simple adders [40], ones- and twos complemented 
subtractors [7],  and more complex multipliers and MAC circuits [39].  All of 
them may generate pseudo-exhaustive or pseudorandom patterns with a similar 
quality as LFSRs do, and may reach a comparable fault coverage.

The  term  "functional  BIST"  (FBIST)  describes  a  test  method  to  control 
functional modules so that they generate a deterministic test set, which targets 
structural faults within other parts of the system. It is a promising solution for 
self-testing complex digital systems at reduced costs in terms of area overhead 
and performance degradation. 
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In  this  work,  a  mixed-mode  or  hybrid  functional  BIST  (HyFBIST)  was 
developed for using in microprogrammed data-paths in digital systems. The idea 
of the HyFBIST consists in using for test  purposes the mixture of functional 
patterns produced by the microprogram, and additional stored deterministic test 
patterns to improve the total fault coverage.

In the first phase a microprogram (as a part of the functionality of the system) is 
used to control the data-path based on some deterministic or random input data. 
A response compressor like signature analyzer is connected to the data path to 
monitor the process. The data produced by the microprogram are used for both, 
stimulating the units under test and creating the signature of the process. The 
second  phase  of  the  test  consists  of  applying  additional  deterministic  test 
patterns pregenerated by an ATPG to test  the random-pattern-resistant  faults, 
which are  stored  in the  memory.  A method is  proposed  to  find  the  tradeoff 
between the functional test and deterministic test parts.

5.2 General Scheme of Hybrid Functional BIST

Consider  a  microprogrammed  data-path  for  division  of  fractional  numbers, 
presented in Fig. 5-1. It consists of a register block for storing the dividend, the 
divisor, intermediate results of division, the quotient, and the counter of cycles. 
All the microoperations needed in the division procedure are carried out in the 
Arithmetic and Logic Unit (ALU) which has the role of CUT in this work. The 
ALU has data inputs and outputs connected via buses to the register block. The 
control signals from the control unit serve as additional inputs for ALU, and 
status signals of the ALU serve as additional outputs connected to the control 
unit (not shown in Fig. 5-1).

During  N cycles  of  the  microprogram  ALU  is  exercised  with  N functional 
patterns, and the responses of ALU will be compressed in the signature analyzer 
which  monitors the whole division process.

In the division process,  we could use just  K pairs  of  the operands A and B 
involved as the test for the ALU, and K quotients C=A/B  as K responses to 
the test stimuli. However, in the FBIST scheme we will use all the  K∗N  
data words produced on the inputs of the ALU during the K∗N  cycles of the 
K division operations as input stimuli to the ALU, and all the  K∗N  data 
produced on the outputs of the ALU during the K∗N  cycles as the responses 
to stimuli. In such a way, we have got a multiplication effect of N times in the 
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number of test patterns when moving the test access from the instruction level to 
the microinstruction level.

Denote by L the number of bits in the data (dividend and divisor), and by l the 
number of  bits  on the inputs of  ALU. The reduction in the test  data volume 
through the compression of test data in the FBIST is equal to 

R=
N l
2L

For example (for the system used in the experiments), in the case of 32 bit words 
for the divisor with 105 inputs and 120 cycles the reduction in the volume of test 
data is 120*105/64 = 197.
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Fig. 5-1. Functional BIST quality analysis in the microprogrammed divisor

In this scheme the functional patterns produced directly on the inputs of ALU 
have the similar role as pseudorandom test patterns in classical BIST schemes. 
Similarly to the pseudorandom test, the functional test patterns are not able to 
cover random-pattern-resistant faults, which limits the fault coverage that can be 
achieved with the pure functional BIST approach.

To improve the fault coverage we can use similar approaches that are used to 
improve  the  LFSR-based  classical  BIST approaches:  to  modify  the  CUT by 
inserting test points, by redesigning it to improve the fault coverage, or by using 
hybrid  approaches,  adding  to  functional  test  additional  deterministic  test 
patterns.
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In Fig. 5-1 the quality of the set of functional test patterns generated during the 
division procedure will  be measured by fault  simulation,  the random-pattern-
resistant faults are determined, and to cover these faults, additional deterministic 
test patterns by an ATPG are generated. 

Such a hybrid functional test is carried out in two phases (Fig. 5-2). In the first 
phase the microprogram (as a part of the functionality of the system) is used to 
control  the  data-path  based  on  some  deterministic  or  random  input  data 
(operands). A response compressor like signature analyzer is connected to the 
data path to monitor the process. The data produced by the microprogram are 
used for both, stimulating the CUT and creating the signature of the process.
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Fig. 5-2. Functional BIST with adding deterministic test patterns

The second phase of the test consists of applying additional deterministic test 
patterns pre-generated by an ATPG to test the random-pattern-resistant faults, 
which are stored in the memory. 

Further, a method is proposed to find the trade-off between the functional test 
and deterministic test parts.
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5.3 Finding Trade-off  Between Functional  and Deterministic 
Test patterns 

This  hybrid FBIST approach starts  with on-line  generation of  functional  test 
sequence with a length of 2kL  where L is the length of the data word in bits, 
and  k is the number of data operands used for producing the functional test 
sequence. 2kL   is the memory cost for the functional part of the test. On the 
next phase, deterministic test approach takes place. Precomputed deterministic 
test patterns, stored in the memory, are applied to the CUT to reach 100% fault 
coverage. For the off-line generation of  D deterministic test patterns (D is the 
number of  test patterns to be stored), arbitrary software test generators may be 
used, based on deterministic, random or genetic algorithms.

The length of the functional test (the number of data operands) is an important 
parameter,  which  determines  the  structure  and  the  quality  of  the  whole  test 
process. A shorter functional test set implies a larger deterministic test set. This 
however requires additional memory space, but at the same time, shortens the 
overall  test  process.  A longer functional test,  on the other hand,  will  lead to 
longer test application time, however, with reduced memory requirements, since 
the functional test  data is more tightly compressed.  Therefore it  is crucial to 
determine the optimal length of functional part of the test in order to minimize 
the total test cost.

Consider the total test cost CTOTAL of the hybrid FBIST as the sum of total costs 
CFB_Total  and CD_Total, correspondingly, of producing functional and deterministic 
test patterns

CTotal=C FB TotalC D Total

where
CFB Total=C FB ConstCFB TC FB M , and

CD Total=CD ConstC D TC D M

Here  CFB_Const (CD_Const),  CFB_T  (CD_T), and  CFB_M  (CD_M) mean, correspondingly, 
additional logic cost, the cost related to the time used for testing, and the cost of 
additional memory needed for functional and deterministic test parts, whereas 
 and   reflect the weights, of time and memory expenses. An example of 

the cost curves is shown in Fig. 5-3.
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Creating the curve of CFB_Total  is not difficult. The static component CFB_Const  is 
related  to  the  cost  of  signature  analyzer,  and  the  dynamic  components  are 
determined linearly by the number of test operands used for the functional test 
whereas

CFB T=∑
j=1

k

N j

is the number of clocks (time cost) used for carrying out the microprogram, and

CFB M=2kL

is the number of bits (memory cost) needed for storing the data operands.
For simplicity we take =1 , and =1 . Hence, in the following we calculate 
the time cost by the number of clocks used for carrying out the test, and the 
memory cost by the number of bits needed for storing the precomputed test data. 

The static component  CD_Const  of the deterministic test is related to the cost of 
multiplexer on the inputs of ALU and to the cost of an additional microprogram 
needed for carrying out the deterministic part of the test. 

For calculating the dynamic part of the the cost of deterministic test,

CD T= D  and  CD M=Dl ,

the not tested by FBIST faults are found by fault simulator, and the number of 
additional patterns D of the deterministic test is calculated by Algorithm 5-1.
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Using  the  values  D(j) found  by  Algorithm  5-1 for  each  possible  length 
j=1, 2,, k  of the functional test, it is possible to create the curve of the 

cost  CD_Total of  the  deterministic  test,  and  the  curve of  the total  cost  CTotal of 
HyBIST.  By finding  the  minimum  of  CTotal  we can determine  the  optimal 
mixture of the functional and deterministic parts of HyBIST.

57

Algorithm 5-1: 

1. Take j = 0; calculate the whole deterministic test  TD(j) for the whole 
set of faults R(j) in the CUT.

2. Create the fault table FT  j 
3. FOR all j=1, 2, , k :

BEGIN
● Find the first pair of data operands (Aj,Bj);
● Carry out the functional test with (Aj,Bj) and find the set of  Nj 

functional test patterns;
● Fault simulate the Nj patterns produced by the functional test, 

and find the set of faults RDET(j) detected;
● Create a new fault table  FT(j) by removing from FT(j-1) the 

faults  RDET(j) and  optimize  the  deterministic  test  TD(j-1) in 
relation to FT(j);

● The  optimized  new  test  set  is  TD(j) with  the  length 
D  j=∣T D  j ∣ ;

END FOR
END.



5.4 Experimental results

Experiments were carried out for the microprogrammed data path for division of 
fractional numbers presented in Fig. 5-4.

The data path has 105 inputs, and 71 outputs, it consists of three 32- bit registers 
(dividend, divisor and quotient), 5-bit counter, and a combinational part of 513 
gates. The fault list of the UUT consists of 2382 faults. 

A series of experiments was carried out to determine the fault coverage which 
may be achieved by a single division microprogram. The results are depicted in 
Table 5-1 where  A is the dividend,  B is the divisor,  C is the quotient,  N is the 
number of  cycles  carried out  during  the microprogram, and  FC is  the fault 
coverage  reached  by  the  N  functional  test  patterns  produced  by  the 
microprogram on the inputs of ALU. For this UUT a single microprogram as a 
functional test allows test data compression in 197 times (see Section 5.2).

From Table 5-1 we see that a single division procedure for a single pair of data 
operands A and B is not able to produce a high fault  coverage by using the 
proposed functional BIST scheme.

The  second series  of  experiments  was  carried  out  to  merge  several  division 
procedures into a single functional test program.
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The sequences  of  up  to  10  division microprograms with different  data  pairs 
(A,B) were carried out to calculate for each case the optimum combination of 
functional and deterministic test parts. A selection of 6 experiments is presented 
in Table 5-2. Here k is the optimal number of runs of the microprogram (optimal 
length of the functional test part),  N is the number of functional test patterns 
produced by k microprograms,  FC is fault coverage, and  D is the number of 
additional deterministic test patterns generated to achieve 100% fault coverage 
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for the whole hybrid FBIST procedure. The total costs are calculated for both, 
functional  and deterministic test  parts,  and for the whole  hybrid FBIST. For 
simplicity we have taken a = b = 1, and CFB_Const = CD_Const = 0. The best results of 
each column are marked by bold.

Table 5-1. Selected functional tests implemented as a single division procedure

No A B C N FC(%)
1 0.5000 0.5000 1.0000 94 42.48
2 0.2500 0.5000 0.5000 124 44.87
3 0.1500 0.1500 1.0000 94 48.78
4 0.4000 0.8000 0.5000 124 52.64
5 0.2000 0.8000 0.2500 124 56.38
6 0.5000 0.8000 0.6250 99 64.48
7 0.9043 0.9865 0.9167 108 65.07
8 0.2953 0.3456 0.8545 109 66.20
9 0.6943 0.7234 0.9598 105 66.96

10 0.4320 0.8569 0.5041 113 67.25
11 0.4567 0.4678 0.9763 104 67.51
12 0.4320 0.5678 0.7608 108 67.84
13 0.4320 0.6000 0.7200 108 68.01
14 0.7435 0.8764 0.8484 104 68.30
15 0.4320 0.4509 0.9581 107 68.89

From  Table 5-2 we see that the minimal total cost essentially depends on the 
data operands chosen for the functional test. The task of generating the best data 
operands for the functional test part was not the task in this work. The goal in the 
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Table 5-2. Selected optimal test procedures

Functional test part

k N FC % D

4 430 89.1 686 16 1696 2382
3 329 84.7 521 16 1696 2217
4 438 83.7 694 16 1696 2390
3 293 69.0 485 22 2332 2817
3 282 69.1 474 22 2332 2806
2 213 76.7 277 18 1908 2185

Deterministic 
test part Total 

costTotal 
cost

Total 
cost



thesis  was  to  minimize  the  whole  cost  of  the  hybrid  FBIST  at  the  given 
functional test.

In  Table  5-3,  the  progress  of  parameters  at  the  increasing  length  k of  the 
functional  test  part  is  shown  for  the  best  combination  of  functional  and 
deterministic test parts. The cost curves for this experiment are shown also in 
Fig. 5-5 with minimum total cost at k=2 . For this solution, the functional part 
of the hybrid BIST consists of two runs of the microprogram for two pairs of 
stored 32-bit data operands, and of the deterministic part with 18 stored 105-bit 
test patterns. The cost of optimized HyBIST  CTotal_opt = 2185 compared to the 
pure deterministic testing CD_Total_pure  = 6148 is 2.8 times less that characterizes 
the gain achieved by the presented approach..

Table 5-3. Calculation of data for optimization

Functional test part
Total cost

k N FC % D Total cost

0 0 0 100 0 58 6148 6148
1 108 108 66.8 140 24 2544 2684
2 105 213 76.7 277 18 1908 2185
3 113 326 83.3 518 17 1802 2320
4 108 434 85.5 690 16 1696 2386
5 110 544 88.4 864 15 1590 2454
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cost
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Fig. 5-5. Cost curves for the HyFBIST
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Table 5-4. Comparison of functional test with FBIST

Data
Functional testing Functional BIST
B1 B2 Total B1 B2 Total

4/2 13.21 15.09 14.15 35.14 40.57 29.72
7/2 21.23 16.98 19.10 38.44 47.64 29.25
6/3 19.34 31.6 25.47 41.04 39.62 42.45
8/2 25.47 10.38 17.92 32.07 40.57 25.00
9/4 8.96 5.66 7.31 36.56 47.64 25.47
9/3 32.55 26.89 29.72 43.63 46.07 40.57
12/6 13.44 8.02 18.87 36.08 39.62 32.55
14/2 18.16 25.00 11.32 37.50 49.06 25.94
15/3 29.48 31.13 27.83 47.88 50.00 45.75
2/4 7.8 7.55 8.02 29.01 20.75 33.02

Average 18.96 17.83 17.97 37.74 42.15 32.97
Gain 1.0 1.0 1.0 2.0 2.4 1.8

A research environment for investigating different aspects of RT level design 
and  test  was  recently  developed  [93]  where  the  described  functional  BIST 
approach can be compared with traditional functional RT level testing. There is a 
possibility in the applet to run different microprograms (taken from the library or 
user defined) for arbitrary chosen data operands, and calculate the sensitivity of 
the final results of microprograms to all possible stuck-at faults in the data path. 
This corresponds to traditional functional testing where a computer instruction is 
exercised  with  different  data.  Another  mode  of  working  of  the  applet  is 
functional BIST where signature analyzers can be inserted at different places of 
the circuit to increase the observability of the microprogram behavior in its role 
as a test. 

The results  of  comparison of  the  traditional  functional  testing and functional 
BIST for the integer division microprogram by using the applet [93] are given in 
Table 5-4. 

Two  blocks  B1  and  B2  were  selected  for  comparison.  The  gains  in  fault 
coverage  in  favour  for  FBIST  are  2.0,  2.4  and  1.8  times  in  average, 
correspondingly, for selected blocks B1, B2 and in total for the whole data path.

The fault coverage reached by FBIST was higher in the experiments presented in 
Table 5-1 compared to the results in  Table 5-4. This can be explained by the 
difference in the lengths of data words. In the educational applet [93] only 4-bit 
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data  are  used  (for  making  processes  visually  better  observable)  whereas  the 
results in Table 5-1 are based on 32-bit data.

5.5 Conclusions

1. A new approach to  functional BIST was developed which uses three 
ideas:

● functional data generated cyclically online in a digital  system 
are used as test patterns, 

● these functional data are combined with additional deterministic 
test patterns to achieve 100% fault coverage, and 

● an optimal combination of both test parts is found. 

2. Experiments showed the feasibility and efficiency of this approach. The 
data  compression  in  FBIST  was  197,  and  the  gain  in  test  cost  for 
HyBIST compared to pure deterministic testing was 2.8 times.

3. As we see from the experimental results, the global problem of finding 
hybrid FBIST with minimum cost is more complex than only finding the 
best functional part, and then optimizing the HyFBIST. The experiments 
showed  that  the  best  functional  test  part  with  highest  fault  coverage 
(89,1%  in  Table  5-2)  does  not  guarantee  the  best  HyFBIST.  These 
investigations targeted to  optimization of HyFBIST in a global  sense 
need future research..
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6 Sequential Built-In Self-Test

In this  chapter  a  Design-for-Testability  (DfT) technique of Built-In Self-Test 
(BIST) for sequential circuits is proposed. The technique is based on making the 
status signals entering the control part controllable during the test mode to force 
the device under test  to  traverse all  the branches in the FSM state transition 
graph. Extra outputs are added to the circuit under test in order to observe the 
values of the status bits masked out.

The proposed idea of architecture requires little device area overhead since a 
simple  controller  can  be  implemented  to  manipulate  the  control  signals. 
Experiments were carried out on six sequential examples in order to compare 
different approaches to sequential BIST. 

6.1 Principles of Sequential Built-In Self-Test

Here we propose a technique known from software testing to be implemented in 
Built-In  Self-Test  (BIST)  for  synchronous  sequential  circuits.  Here,  path 
coverage metrics s[8] is used to generate masks for controlling the FSM of the 
device under test in the test mode. In addition, general architecture to allow such 
application  of  the  masks  is  proposed.  It  contains  an  LFSR  and  a  simple 
controller to manipulate the masked out bits. Due to the small number of such 
signals in most of the circuits, very little area overhead is required.

The  problem  of  Built-In  Self-Test  (BIST)  for  combinational  and  full-scan 
circuits  has  been  thoroughly  researched  in  the  past.  Implementing  weighted 
random test patterns [18,  31] and  bit-flipping [33] have been among the most 
efficient solutions. 

Nachman, Saluja et al. [49] propose an a method were the values are held at 
inputs and scan registers while a certain number of clock pulses are applied. This 
requires preliminary testability analysis of the circuit structure. Furthermore, the 
above approach is applicable for circuits containing scan-chains only. 

However,  rather  limited  amount  of  work  is  available  on  BIST for  non-scan 
sequential designs. The main motivation for sequential BIST is that, unlike in 
scan-chain approach, there is no need to reconfigure the circuit flip-flops during 
the test mode. This allows testing of the circuit at its normal operating speed.
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Pomeranz  and  Reddy  present  a  solution  for  the  general  case  of  sequential 
circuits  [36].  However,  the main problem is  an excessive hardware overhead 
since  dedicated  test  pattern  generators  are  to  be  tailored  for  each  individual 
primary input. In [46], Chakrabarty  proposes a method similar to the reseeding 
approach  [97].  Here,  deterministic  patterns  are  embedded  to  a  sequence 
generated on-chip by using twisted ring counters (or Johnson counters, as they 
are also referred to). 

The Chapter  is  organized  as  follows.  Section 2 explains  the  functional  fault 
model of covering all the branches in an FSM state transition graph. Section 3 
presents  the  proposed  DfT-based  BIST  approach  technique.  In  Section  4, 
experimental results are provided. Finally, main conclusions are given.

6.2 Test Coverage Metrics for Sequential Circuits

Consider a Finite State Machine (FSM) as a model for sequential circuits. FSM 
may be represented using a state transition table or  a state diagram.  A state 
diagram  is  a  directed  graph,  where  the  nodes  correspond  to  states  and  the 
branches correspond to transitions between the states. Marked on the branches 
are the conditions required to activate them. In a digital system, these conditions 
usually correspond to status bits originating from conditional operations in the 
datapath.

The approach proposed here  is  based on all-branches  coverage metrics  [56], 
which  is  known  to  be  more  powerful  than  all-statement  coverage.  Let  us 
consider an example in  Fig. 6-1, where covering all the branches in the state 
transition graph of the FSM is presented.
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Fig. 6-1. Traversing all branches in the state transition graph
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In Fig. 6-1a, we traverse a sequence s0 → s1 → s5 → s0 by setting the status 
signal A to be 1. Fig. 6-1b shows traversing the next sequence s0 → s1 → s2 → 
s3 → s4 → s1 by assigning A:=0  and B :=0 . Finally, the sequence s1 
→ s2 → s4 is covered by assigning 1 to the status bit B (Fig. 6-1c). As it can be 
seen,  all  the branches  of  the  state transition graph for the  example  FSM are 
covered by the paths in Fig. 6-1.

The  main  idea  of  current  approach  is  to  force  the  FSM to  traverse  all  the 
branches in the state transition graph. This is implemented by controlling the 
status  bits  entering  the  control  part  and  feeding  pseudorandom  data  to  the 
primary inputs of the circuit. The next Section explains this architecture more in 
detail.

6.3 General Architecture of the BIST

Fig. 6-2 presents the general architecture of the DfT enhanced BIST. It contains 
a Pseudo Random Pattern Generator (PRPG), a BIST controller, Circuit Under 
Test  (CUT)  and  a  MUX  to  select  between  the  normal  inputs  and  the 
pseudorandom  test.  Linear  Feedback  Shift-Register  (LFSR)  has  been 
implemented as the PRPG.

The  task  of  the  BIST  controller  is  to  activate  the  pseudo-random  pattern 
generator  and  control  the  values  of  the  status  bits.  The  pseudorandom  test 
generation  in  the  experiments  were  carried  out  by  CAD tools  belonging  to 
Turbo-Tester  [58].  Output  response  (signature,  aliasing)  analysis  was  not 
considered here.
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Fig. 6-3 shows the structure of a digital system modified according to the DfT 
approach. The circuit under test is divided into an FSM and a datapath. The DfT 
architecture  implements  multiplexers  to  mask  out  the  status  signals  of  the 
datapath  entering  the  FSM. Normal  status  bit  values  are  selected  during  the 
working mode (TM=0) and controller-generated masked values during the test 
mode (TM=1). The muxed-out signals are made observable by adding dedicated 
observation points. 

Digital System

FSM

Datapath

control signals status 
signals

reset

clock

primary  
inputs

primary outputs

masked
status bits

MUX

test/normal 
mode (TM)

observation 
points

Fig. 6-3. Digital system modified for DfT

As we can see in the experiments presented in the following Section, the number 
of  such  signals  is  usually  very  low  (from  zero  to  two  in  the  considered 
benchmarks). Thus the area overhead required by the controller and the MUX-es 
is low.

6.4 Experimental Results

Table  6-1 presents  characteristics  of  the  benchmark  circuits  that  have  been 
chosen from the HLSynth92 [118] and VILAB benchmark families [117]. The 
circuits with '_MOD' extension are the modified designs, where the test mode 
multiplexer has been inserted and the status bits have been made controllable.
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Table 6-1. Characteristics of the benchmark circuits

Circuit PO bits registers MUXes FUs faults

DIFFEQ 6 81 48 7 9 5 10360 - -
DIFFEQ_MOD 6 83 48 7 10 5 10372 1 0.1 %
ELLIPF 28 130 113 17 7 3 5674 - -
GCD 8 9 4 3 4 3 452 - -
GCD_MOD 8 12 4 3 6 3 474 2 4.4 %
MULT8x8 8 17 16 7 4 9 2064 - -
MULT8x8_MOD 8 20 16 7 6 9 2098 2 1.7 %
RISC 4 26 16 8 4 4 6418 - -
SOSQ 5 9 32 7 2 6 1952 - -
SOSQ_MOD 5 11 32 7 3 6 1964 1 0.5 %

FSM 
states

PI 
bits

mask 
bits

area 
overhead

The last column of the Table 6-1 shows the area overhead imposed by the status-
bit  multiplexers.  As we can see,  the number  of  mask bits  and therefore,  the 
number of additional multiplexers, is very low. Thus, the required overhead of 
the multiplexers is neglectable  ranging from 0.1 % to 4.4 %.

Table  6-2 shows  the  average  and  maximum  fault  coverages  for  all  the 
benchmarks both, for 1000 and 10000 pseudorandom vectors. Five different test 
configurations were considered:

– LFSR and original circuit.
The original circuit was tested with pseudorandom patterns generated by an 
LFSR.

– LFSR and modified circuit (_MOD)
The modified circuit (i.e. the circuit, where status bits have been made 
controllable) was tested with an LFSR.

– LFSR and test masks in test mode (TM=1)
The modified circuit was tested with an LFSR, the test masks were applied 
in the test mode (TM signal was active).

– LFSR and test masks in normal mode (TM=0)
The modified circuit was tested with an LFSR, but the test masks were 
applied in the normal working mode (TM signal was deactivated).

– LFSR with reset handling (Reset)
The modified circuit was tested with an LFSR and the global reset was kept 
deactivated during each test sequence.
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Table 6-2. Comparison of sequential BIST solutions

Circuit
average coverage %

1000 10000 1000 10000
MULT8x8 1.55 1.55 1.55 1.55
MULT8x8_MOD 5.90 5.90 5.90 5.90
MULT8x8_MOD (TM=1) 47.63 47.98 47.95 48.05
MULT8x8_MOD (TM=0) 5.67 5.67 5.67 5.67
MULT8x8_MOD (reset) 49.71 58.29 54.10 58.52
SOSQ 3.63 3.27 3.63 3.63
SOSQ_MOD 10.49 9.62 10.58 10.58
SOSQ_MOD (TM=1) 46.63 47.71 47.71 47.71
SOSQ_MOD (TM=0) 3.60 3.60 3.61 3.61
SOSQ_MOD (reset) 38.49 36.70 42.22 42.27
ELLIPF 4.96 5.26 5.59 5.80
ELLIPF (reset) 85.00 85.01 85.02 85.02
DIFFEQ 93.03 94.27 93.35 94.55
DIFFEQ_MOD 94.15 95.53 94.56 95.96
DIFFEQ_MOD (TM=1) 94.63 95.39 95.06 95.88
DIFFEQ_MOD (TM=0) 94.75 95.40 94.92 95.74
DIFFEQ_MOD (reset) 94.63 95.32 94.78 95.44
GCD 39.56 50.44 53.08 68.72
GCD_MOD 56.13 71.26 79.41 84.66
GCD_MOD (TM=1) 85.95 85.95 86.13 86.13
GCD_MOD (TM=0) 81.76 84.73 84.87 84.87
GCD_MOD (reset) 84.39 87.29 88.03 88.03
RISC 29.00 40.03 33.05 42.43
RISC (reset) 36.87 39.50 37.91 39.55

maximal coverage 
%

Fig. 6-4 gives a clearer view of the results presenting the performance of the 
above-mentioned techniques on the six circuits.  The data is presented for the 
maximal results obtained with 1000 clock-cycles. We can distinguish between 
several types of  circuits  with different  characteristics.  There are two circuits, 
which are well random-testable: GCD and DIFFEQ. As it can be seen from the 
Fig. 6-4, all the bars for these circuits are of nearly similar height and reach 
nearly  100 %.  This  means  that  for  these  circuits  any  BIST scheme will  do, 
including the pure pseudo-random approach. Another circuit that can be easily 
tested by pseudorandom data is RISC. However, here the main reason is most 
likely the very small sequential depth (4 clock-cycles).
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Fig. 6-4. Effect of DfT on different example circuits

The rest of the circuits can not be efficiently tested by pseudo-random vectors. 
While ELLIPF and MULT8x8 could be well tested by simple reset handling, for 
the SOSQ benchmark, signal masking should be preferred. Thus, depending on 
the  pseudo-random testability  characteristics,  an appropriate  approach can be 
selected for each individual case.

6.5 Conclusions

1. A new technique known from software  testing  was introduced  to  be 
implemented in Built-In Self-Test for synchronous sequential circuits. 
Path coverage metrics was used to generate masks for controlling the 
FSM of the device under test. In addition, general architecture to allow 
such application of the masks was proposed.

2. Experiments carried out on six sequential benchmarks showed that most 
of the circuits could not be tested by pseudorandom data. Controlling the 
FSM of the circuit under test considerably improved the results. 

3. The  experiments  also  showed  that  there  was  no  universally  better 
solution among the compared architectures. Depending on the pseudo-
random testability  characteristics,  an  appropriate  approach  has  to  be 
selected for each individual test case.
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7 Environment for e-Learning in Digital Test

A set of tools developed as prototypes for experimental research of new BIST 
approaches described above has been accommodated and extended for using in 
education purposes. 

In this  Chapter  these tools  (as  “interactive modules”) are  presented and it  is 
shown  how  they  can  be  used  as  e-Learning  environment  for  teaching  and 
learning  logic  level  test  generation  and  fault  diagnosis  problems  in  digital 
circuits. The tools can support laboratory work for different university courses 
on computer engineering,  switching and automata theories,  digital  electronics 
and design for testability to learn by hands-on exercises test and fault diagnosis 
related  topics.  A  big  reservoir  of  examples  and  the  possibility  to  set  up 
interesting engineering problems like how to generate test patterns for a digital 
circuit,  or  how  to  locate  a  faulty  gate  makes  the  learning  process  more 
interesting  and  allows  learning  at  an  individual  depth  and  duration.  The 
interactive  modules  are  focused  on  easy  action  and  reaction,  multilingual 
descriptions,  learning  by  doing,  and  a  game-like  use.  The  tasks  chosen  for 
hands-on training represent simultaneously real research problems, which allow 
to foster in students critical thinking, problem solving skills and creativity.

The results in this chapter are published in [77, 78, 79, 80, 81, 89]

7.1  Applet “Introduction to Digital Test”

The increasing complexity of VLSI circuits,  Systems-on-Chip (SOC) or even 
Networks-on-Chip (NOC) has made test generation one of the most complicated 
and time-consuming problems in digital design. The more complex are getting 
electronics systems, the more important will be the problems of test and design 
for testability because of the very high cost of testing electronic products. At 
present,  most  system  designers  and  electronics  engineers  know  little  about 
testing, so that companies frequently hire test experts to advise their designers on 
test problems, and they even pay a higher salary to the test experts than to their 
VLSI designers [63]. This reflects also today’s university education: everyone 
learns about design,  but  only truly dedicated students  learn testing.  The next 
generation of engineers involved with System-on-Chip (SoC) technology should 
be made better aware of the importance of test, and trained in test technology to 
enable them to produce high quality and defect-free products.
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In this Section a conception is presented how to improve the skills of students to 
be educated for hardware and SoC design in test related topics. We present a 
learning  method  based  on  using  so-called  living  pictures  [85].  The  method 
presented deals with the goal, to put interactive teaching modules to the Internet 
that can be used in a lecture as well as for individual self-studies [85]. They can 
be  accessed  independent  of  time  and  place.  On  one  hand,  teachers  can 
demonstrate different examples and procedures of test related topics using living 
pictures  during  the  lessons.  On  the  other  hand,  students  can  use  the  same 
simulations on their home computer, if the living pictures are available on the 
Internet.

In the core of the teaching concept presented here are some Java-applets (the 
interactive modules) running on any browser connected to the Internet. We call 
this  type  of  applet  "Living  Pictures".  By  using  interaction  possibilities  the 
students can produce input stimuli, watch the behavior of the circuit in the fault-
free  mode  and  also  in  different  faulty  modes.  In  the  following  paragraphs, 
different  learning  tasks  and  exercises  are  described  which  make  use  of  this 
applet.

7.1.1 User Interface

The program for representing “living pictures”  for  teaching Digital  Test  was 
originally  written  in  Java  1.3.  It  can  be  run  over  network,  using  standard 
browsers like Netscape and Internet Explorer with Java 1.3 (or newer) runtime 
plug-in, or with Java 1.3 (or newer) applet viewer. The program can be used for 
teaching  the  basics  of  testing  digital  systems,  deterministic  test  generation, 
pseudo-random test generation, fault simulation and fault diagnosis. 

The work window of the applet consists of three main parts (Fig. 7-1):

● Vector insertion panel
● View panel for design schematics 
● View  panel  for  displaying  information  (test  patterns,  fault  tables, 

waveforms, and different statistics) 

The  vector  insertion  panel  has  two  subpanels  for  inserting  single  input  test 
vectors and for setting up the feedback configuration of a Linear Feedback Shift 
Register (LFSR) to be used for automatically generating test vectors [51]. In the 
LFSR mode,  the first  subpanel  is used for initializing the LFSR. The LFSR-
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based Automated Test Pattern Generator (ATPG) is used for emulating different 
Built-In  Self-Test  (BIST) ideas  like  BILBO,  Circular-Self-Test-Path  (CSTP), 
“Store-and-generate” [107], or other hybrid BIST approaches discussed on this 
thesis.

 

The  first  subpanel  is  also  used  when  creating  test  vectors  for  specific  fault 
detection. In this case, the fault activating and propagating values are inserted 
one by one into the signal boxes at connections of the design schematics, and the 
input test vector will be deduced from these internal signal values.

The schematics panel displays currently selected schematics. The small boxes at 
the lines display internal signal values on connections. The boxes are clickable 
during manual test vector generation and fault diagnosis. In the test generation 
mode, the needed signal values for fault activation or fault propagation can be 
inserted directly at the connections. In the fault diagnosis mode, by clicking the 
boxes, a guided probing procedure can be simulated. A click on the box shows 
the result of measuring the “real” signal on the corresponding connection of the 
simulated faulty circuit.
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Detected faults, signal conflicts etc. are displayed as colored bold wires. Color 
encoding is as follows:

● red - stuck-at-1 fault is detectable, 
● green - stuck-at-0 fault is detectable, 
● gray - undefined  (don’t care) signal, and
● blue - conflicting signals.

The data panel displays information about simulated test vectors and detected 
faults. In the fault simulation mode it is possible to click on the row of a given 
test vector and have a visualization which faults are detected by the given vector. 
In the signal (waveform) mode it is possible to select all the signals in interest 
and leave out those which are not. 

There are four main menus used with the applet: schematics, mode, language, 
and help. 
The  schematics  menu  contains  a  list  of  predefined  circuits.  For  didactive 
purposes most of them are very simple circuits for better understanding the most 
important relationships between signals, functions and faults.

By  the  language  menu  the  user  may  choose  one  of  the  currently  supported 
languages from the given list.

The help menu provides with useful tips and explanations. 
The mode menu tells the applet what is to be done:

● test vector insertion, 
● manual test vector generation, 
● fault simulation or fault diagnosis (two possible diagnostic approaches 

are implemented: sequential and combinational diagnosis).

We start working with the applet by selecting a circuit from a set of predefined 
ones. Then we can carry out different experiments with this circuit by selecting a 
proper working mode from the mode menu.
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7.1.2 Test Vector Generation

There are two methods possible for test vector generation using the applet: 
● direct test vector insertion on inputs (on the vector insertion panel), and
● test  generation  by  path  activation  in  the  circuit  (on  the  schematics 

panel). 

In  the  direct  test  vector  insertion  mode  we  can  choose  test  vectors  either 
automatically by using LFSR, or by inserting vectors manually. 

In  the  manual  mode,  we  generate  step  by  step  input  patterns  which  are 
simultaneously simulated.  The boxes at  the lines  on the schematics subpanel 
display  the  result  of  simulation  –  the  values  of  internal  signals  on  the 
connections. The waveforms can be viewed on the data subpanel.
When using LFSR, we have to specify the initial state, to set up the feedback 
structure,  and  to  specify  the  length  of  the  test  sequence.  By  LFSR we can 
simulate the BIST either in the mode of Built-In Logic Block Observer (BILBO) 
or in the mode of Circular Self-Test Path (CSTP) [51]. By changing the settings 
on the vector insertion panel we can emulate different feedback structures of the 
chosen BIST architecture.

In the test generation mode we choose a target fault in the schematic and create 
step by step proper activated paths in the circuit to activate the fault at his site 
and to propagate the error signals caused by the fault towards output by clicking 
the needed values into boxes on the lines. From these values finally, an input 
vector will be deduced. The colors on lines help us to understand the current 
status of the task: activated faults and activated paths are marked by red and 
green lines, the inconsistencies of the signal values are highlighted by blue color. 
As the result of the procedure, a test pattern will be generated. The detected by 
the test faults are displayed also on the data panel in form of a row in the fault 
table.

For example, to generate a test pattern for the fault x3≡1  in Fig. 7-2, first, a 
signal with opposite value 0 to the faulty value 1 should be inserted to x3  by 
clicking the box on the line  x3 .  Then, the faulty signal of  x3  should be 
propagated to the output of the circuit. By inserting the value 1 on the line x2  
the  faulty  signal  from  x3  is  propagated  through  the  gate  I 1 .  Next,  by 
inserting  the  value  0  on  the  upper  input  of  gate  I 4  the  faulty  signal  is 
propagated through the gate I 4 . Finally, by inserting the value 1 on the lower 
input of gate I 6  the faulty signal is propagated through the gate I 6  to the 
output y.
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Fig. 7-2. Test generation by path activation

The activated path is shown in  Fig. 7-2 by bold lines. All the inserted values 
should be properly justified step by step by other signals moving towards the 
inputs.  As  the  result,  a  test  pattern  will  be  created  on  the  inputs.  For  this 
example, the input pattern x1 x2 x 3=110  will be found. 

In the fault simulation mode, a fault table is generated and shown on the data 
panel for all the test vectors created by the given moment. By selecting a test 
vector on the data panel, all the detected faults will be highlighted by colors on 
the schematic panel.  
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Fig. 7-3. Fault simulation results

For example, in  Fig. 7-3, activated paths (shown by bold lines) are found by 
fault simulating the test pattern x1 x2 x 3=111 .

76



The following faults are detected along these paths:

 

x1≡0, x2≡0, x3≡0
I 0 b≡0, I 1 a≡0
I 4 a≡1, I 4 b≡1
I 6 a≡0, I 6 b≡0
y≡0

The inputs of gates are denoted from above down by a, b.

In Fig. 7-1, the results of fault simulation for 5 test vectors are shown. On the 
schematic panel we see the activated paths and detected faults  for the vector 
number 4 which is selected in the view panel.  The values in boxes show the 
behavior of  connection lines  of  the circuit  for  this  test  vector.  The activated 
faults are highlighted by colored lines, the value 0 (or 1) in the boxes means that 
the fault stuck-at-1 (or stuck-at-0) is activated.

7.1.3 Fault Diagnosis

In the fault diagnosis mode we need at first, to create a fault table by running the 
fault simulator for a set of previously generated test vectors. Entering into the 
diagnosis mode will insert a random fault into the circuit. 

The  following  diagnosis  strategies  chosen  from  menu  can  be  investigated: 
combinational and sequential diagnosis. 

For learning the combinational diagnostic strategy, a single vector or a subset of 
vectors can be selected and applied to the erroneous circuit (by imitating test 
experiments).  The  applet  shows  the  results  of  testing,  and  displays  also  the 
subset of suspected faults. To improve the diagnostic resolution, additional test 
vector(s) may be generated and used in the repeated test experiment. 

Sequential  diagnosis  (guided-probe  testing)  is  based  on  the  guided  probing 
strategy. A test pattern is applied and the expected behavior of  the circuit  is 
displayed. The principle of guided-probe testing lies in backtracing an error from 
the output, where it has been observed, to its source (faulty gate).  By clicking 
on the connection boxes, the real values of signals of the faulty circuit can be 
measured. A faulty gate is located if it has been found that the signal on the 
output  of  the  gate  is  faulty,  while  only  expected  signals  are  observed  at  its 
inputs. 

The main didactive point in learning the both diagnostic strategies is to try to 
localize the fault by as few test vectors (in the combinational approach) or by as 
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few measurements (in the case of sequential approach) as possible. In this task a 
competition between students can be carried out which makes the “play” with 
the applet even more exciting.

As  an  example,  let  us  see  the  procedure  of  sequential  fault  localization  by 
pinpointing the signals in the circuit for the case of test pattern x1 x2 x 3=110  
represented in Fig. 7-2. Suppose the gate I1 is faulty. An error has been observed 
on the output. Three possible fault location procedures can be imagined.
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Fig. 7-4. Fault diagnosis by backtracing errors

First, we may use a trivial backtracing procedure of erroneous signals shown as 
a search tree in Fig. 7-4. In the worst case we may click on the 6 nodes. Starting 
with the node I6b we observe a correct signal. Then, we try the next input I6a of 
the gate I6 where the error is detected. We continue now backtracing in the node 
I4a.  Then,  we  try  the  next  input  I4b of  the  gate  I4 where  again  the  error  is 
detected.  Now we backtrace to  the inputs of  the gate I1 where no errors  are 
found.  This  means  that  we  have  located  the  erroneous  gate  I1 by  6 
measurements.

Second, we may analyze the fault activation conditions on the inputs of gates in 
the backtrace tree for local optimization (at each gate) of the search process. For 
example, based on the input signals of the gate I6 we realize that if an erroneous 
signal has been propagated through the gate, it can originate only from the input 
I6a. In other words, we can skip pinpointing of the node I6b. In the same way, we 
realize  that  the  measurement  of  I4a  is  also  not  needed.  As  the  result,  the 
backtracing procedure will cost only 4 measurements (see the bold lines in Fig.
7-4).

There is a third possibility to analyze the situation for a global optimization of 
the search process. Since there exists a continuous activated path from the input 
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x3 to the output y, the faulty gate should be located on that path. By measuring 
the value of I4b we can divide all the possible faults into two equal groups. In the 
case of correct value, we have to proceed towards the output and pinpoint the 
value of I6a to determine which of the gates I4 or I6  is faulty. In the case of 
erroneous signal, we have to continue towards the inputs and measure the value 
of x3 to determine if either the input x3 or the gate I1 is faulty. In both cases we 
need only 2 measurements to locate the fault.

On this little example, we managed to show that the fault diagnosis process can 
be regarded as a demanding mental experiment. A competition can be organized 
between students to make the learning procedure an exciting event.

7.1.4 Research Training in BIST

In the following we show how the tasks can be chosen based on the applet for 
hands-on  training,  which  simultaneously  represent  real  research  problems. 
Solving  the  formulated  tasks  allow  to  foster  in  students  critical  thinking, 
problem solving skills and creativity.

The research oriented tasks are related to the field of Built-In Self-Test (BIST) in 
Systems on Chip.

 BIST is the capability of a circuit to test itself. From a large variety of BIST 
methodologies, we concentrate ourselves in a off-line BIST [51] consisting of 
the following main components: test  pattern generator (TPG),  unit  under test 
(UUT) and a response analyzer (RA). The corresponding BIST architecture is 
shown in Fig. 7-5.

TPG is usually a pseudorandom test pattern generator,  and RA – a signature 
analyzer, both based on linear feedback shift registers (LFSR) [5]. 

There  are  several  disadvantages  of  such a structure.  First,  the  test  sequences 
generated randomly are usually very long, second, they do not guarantee always 
a sufficient fault coverage because of existence of so called “hard-to-test” faults.

 

TPG UUT RA 

Fig. 7-5. BIST architecture (BILBO)
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To overcome these drawbacks, combinations of several approaches have been 
proposed.  One  of  them,  called  hybrid  BIST,  is  based  on  combining  on-line 
generated pseudorandom test patterns with stored pre-generated test patterns
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Fig. 7-6. BIST architecture (BILBO)

A  hybrid  BIST  architecture  is  depicted  in  Fig.  7-6.  Pseudorandom  pattern 
generator  (PRPG)  and  Multiple  Input  Signature  Analyzer  (MISR)  are 
implemented inside the core under test. Pre-generated deterministic patterns are 
stored in ROM.

In  this  approach,  at  first  pseudorandom  test  sequence  with  a  length  L is 
generated on-line, after that a switch to a stored test approach takes place. For 
the stored test approach, previously generated and then in the memory stored test 
patterns are read one by one from the memory and applied to the UUT to reach 
the 100% fault coverage. 

The  applet  presented  allows  to  generate  test  patterns  by  both  methods:  by 
generating on-line pseudorandom test patterns using the LFSR approach, and by 
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manually  generating  deterministic  test  patterns  for  the  faults  not  detected by 
pseudorandom test patterns.

There  are  now  several  problems  to  be  solved  which  still  have  not  found 
sufficient solutions in the research and industrial community:

● What is the shortest LFSR and what is the best characteristic polynomial 
for the LFSR to be used for on-line test generation to achieve the highest 
fault  coverage  at  the  minimum  length  of  the  pseudorandom  test 
sequence?

● How to find the best level of mixing the pseudorandom test and stored 
deterministic test as the trade-off between the memory cost and testing 
time.

To find solutions for the mentioned questions will be the task of the laboratory 
research  for  students.  The  students  are  not  asked  to  carry  out  boring 
measurements,  to  press simply on buttons for  starting a program and getting 
results which are nothing but a simple confirmation of what they already know 
from lectures. Instead, they are asked to solve a series of engineering problems, 
they  have  to  plan  and  carry  out  experiments  to  find  answers  for  the  given 
questions.

Fault Cover  %

Creal_min

Cestimated_min

Predicted cost

Real cost

CTOTAL  (Total cost of BIST)

Stored
test

length
MS

Generated
test

length
TG

100%

 

Fig. 7-7. Optimization of hybrid BIST

The  are  not  available  straightforward  algorithms  or  software  tools  to  find 
directly  solutions  for  the  mentioned problems.  The only method is  to  set  up 
hypotheses and check them by experiments. 
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Fig.  7-7 shows  a  graphical  solution  for  finding  the  optimum  of  mixing 
pseudorandom and stored test approaches as the trade-off between the memory 
cost and testing time. Let have the whole cost of  the BIST to be found as

CTOTAL=CTIMECHW=TGMS

where CTIME is the cost related to the time needed for test, CHW is the hardware 
cost related to the BIST architecture, TG is the length of the test generated by 
LFSR, MS is is the number of patterns to be stored, and  α,  β are constants to 
map the test length and memory space to the costs of two parts of test solutions 
to be mixed.

The problem is that it would be very time consuming to find experimentally all 
the curves shown in Fig. 7-7, except the generated test length TG. The practical 
way would be in trying to find the curve for MS with as least as possible number 
of experiments, and to try to predict the curve on the basis of experimental data, 
and then by choosing as few as possible additional experiments to approach step 
by step to the real optimum. 

To find a proper algorithm for solving this optimization problem will be the task 
of the student.

7.2 DefSim – a real life defect simulation environment

Many  tools  exist  for  behavioral  emulation  of  defects  (using  mathematical 
models) but only few of them let students make real-life measurements. To fill 
this  gap  a  project  was  started,  the  goal  set  on  designing  a  chip  which  is, 
basically, full of defects. At first, a selection of different logic elements – simple 
and complex gates and circuits was chosen. In the second stage a set of different 
defects was selected,  based on probabilistic  analysis.  Also,  all  stuck-at faults 
were included although the probability of such a fault tended to be quite small.
Each of the selected defects was implemented in standalone circuit (called cell), 
embedded  in  wrapper  circuits.  For  each  cell  an  power  control  unit,  current 
monitor, input and output buffers were added. Design solution like this clears 
many problems like:

● Overcurrent  protection system. Although the cells  are 'defective from 
the  start'  we  surely  do  not  want  to  completely  destroy  them  when 
activated.

● Multiple  fault  interaction  elimination.  Usage  of  switching  logic  for 
defect activation may cause side-effects on measurement results,  thus 
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one  fault  per  circuit  should  make  it  behave  more  naturally.  This  is 
especially important for shorts because every milli-ohm counts there.

● Overall circuit power reduction. The final product is connected via USB 
interface, thus the design  is limited in power usage (about 100mA up to 
500mA in special cases). Because of the wrapper logic it is possible to 
activate  single  cells  at  a  time,  considerably  reducing  the  power 
consumption.

● Precise current detection for Iddq testing and output voltage measurement.

Author's main contribution to this project was the command line interface utility, 
but  he  also  participated  in  general  chip  design,  modified  the  DefSim Linux 
driver  for  the  use  on  64-bit  systems  and  helped  with  the  Linux web  server 
installation and administration.
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7.2.1 DefSim user interface

DefSim is designed to be accessible through different means. The cheapest (per 
student) solution is server-based [116], utilizing Apache Tomcat web server and 
is  accessible  by  every  JavaScript  enabled  web  browser  [105].  Also,  a  local 
installation is available where DefSim measurement box is connected directly to 
each workplace (see diagram on Fig. 7-8) and can be accessed using graphical 
user interface or simply by using command line interface (CLI) DefSim utility.

Microcontroller operated mea-
surement environment

DefSim
chip USB port

PC
(Linux/Windows)

Driver

DefSim library/
CLI program

Apache Tomcat

Web Server
GUI Console

Fig. 7-8. DefSim system diagram

Web  interface  to  DefSim  measurement  environment  (called  WebTT)  is  a 
multiuser solution where each user has to create (or log in to) its own account. 
Each user can create multiple test stimuli files and store them  under different 
projects,  alongside  with  the  measurement  result  files  for  reports  or  further 
analysis. 

Illustration 7-1 depicts login window to the DefSim measurement environment, 
also the DefSim measurement box and chip are visible.
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Illustration 7-1. DefSim start page

7.2.2 Teaching CMOS defects on DefSim

A variety of different circuits with stuck-open or stuck-on transistor defects and 
classical SAF defects are implemented in the DefSim IC. Also two types of 
measurements  can be used  for  detecting  defects.  Thus,  various  exercises  are 
possible for students to work on (and not limited to) [13]:

● Simple  simulation experiment.  This  experiment  will  show how logic 
functions may change in the presence of certain defect.

● Manual test generation and application. How to create tests for detecting 
certain  defect  and  check  if  the  test  really  detects  it.  This,  of  course 
expects a basic understanding of low level defect behavior and is a good 
way to learn defect modelling.

● Manual SAF test generation and application. A good way to show that 
the simple SAF model is not so good when dealing with real-life defects. 
This fact will become clear after applying SAF tests to all implemented 
defects.

● Diagnosis  of  SAF  defects.  When  pre-generated  tests  are  applied  to 
certain circuit (with known function) and some of the circuit responses 
don't match with the expected truth table then it is possible to locate the 
defect using combinational diagnosis.

● Minimal test generation.
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Test generation and compaction can be done either manually or by using ATPG 
tools from Turbo Tester package. All test stimuli insertion, analysis and use of 
ATPG toolset is incorporated into the web environment, so the users don't have 
to install them. A JavaScript-enabled web-browser is the only requirement for 
the user.

7.3 e-EDU student management system

An in-house design attempt to construct a prototype of powerful and versatile 
information  system for  different  targets  was  started  several  years  ago.  As  a 
result, three branches (views) emerged, respectively called as:

● ATI. (Illustration 7-2) This view displays many information pages about 
the  department.  Its  well  categorized  links  are  easy  to  follow  and 
everyone  searching  materials  about  Department  of  Computer 
Engineering (TUT) should find useful information. 

● ITA. (Illustration 7-3) This is an administrative view, restricted to the 
public  access  and  modifying  of  ATI  and  e-EDU  views  is  possible 
through this view. Also, teachers side of e-EDU student management 
system is located there. Users with high level administrative rights can 
also affect ITA itself.

● EDU. (Illustration 7-4) This is usually referred to as e-EDU [104] and it 
is accessible for registered users only. Registering system is tied to the 
external student account management system. Meaning, when students 
apply  for  their  computer  classes  account  activation,  they  also  gain 
access to the e-EDU system.

Although  being  one  system  logically,  all  these  three  parts  are  residing  on 
different web-servers. This greatly simplifies user access checking and allows 
hiding of components the users are not supposed to see, even by mistake or by 
hacking attempt. Blocking access to one or the other view is also easy in this 
solution.  Thanks  to  innovative  modular  architecture  and  flexible  module 
management system this  system is  extremely adaptive and could be used for 
almost any task imaginable.
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Illustration 7-2. ATI view

Illustration 7-3. ITA view with activated e-EDU administration page

7.3.1 e-EDU services

For  students  the  e-EDU view enables  access  to  many  different  items.  Most 
important links are duplicated by icons in main subject view. Course material 
(both  lectures  and  practicum  guides),  supervisor  contacts  and  of  course 
automatic practical  work assignment system modules  are  associated to  each 
subject.
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Illustration 7-4. e-EDU, student view with activated subject page

The task assigment (in eEDU view for students), task managenent and student 
statistics (in ITA view) are incorporated into two modules  developed by the 
author of this thesis.

The task assignment system is able to serve a range of worksheets – from simple 
static page up to complicated electronic worksheet. This means it can potentially 
be used for on-line examination using “interactive modules” in case the applets 
have additional built-in support for logging and reporting.

Completed work reports are then filed by e-EDU system and become visible to 
the teacher who then can accept,  reject or send it back for improvement(s) using 
ITA view. Since all the reports are kept in a single storage it is easy to generate 
statistics about participating students and keep track of their course advancement 
and activity. The system can also handle typical situation where many students 
are divided into smaller groups with different supervisors and, possible, different 
tasks. Thus, the overall progress of whole course can be tracked in real-time.
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7.4 Conclusions

The applet,  described  in  Section  7.1 can be used  for  teaching  the  basics  of 
testing digital systems. 

The teacher can use the applet during the lecture explaining the basics of the 
topic. The applet can be used also during the exam for giving some tasks to 
students.
 
Students can use the same applet for training purposes. They can insert different 
possible  faults,  and  watch  how  the  faults  change  the  circuit’s  behavior  at 
different input patterns, how the test patterns can be generated to detect a given 
fault, or how the faults can be localized by test patterns.

The tasks formulated for students based on the applet are research oriented.. The 
students are not asked to carry out boring measurements,  to press simply on 
buttons for starting a program and getting results which are nothing but a simple 
confirmation of what they already know from lectures. Instead, they are asked to 
solve problems, and they themselves have to plan and carry out experiments to 
find answers for the given questions. 

By the use of web-based media we achieve:
● presentation of course material independent of place and time, 
● individual learning according to the students‘ own needs, 
● new forms of communication between teachers and students (chat, joint 

editing),
● up-to-date course material.

The conception presented allows to improve the skills of students to be educated 
for digital hardware and SoC design in test related topics. The principal mission 
of the conception is to inspire students to learn, to inspire them on a journey to 
knowledge, and to prepare them to develop problem-solving strategies.

Applets and other web services tied into one place like e-EDU make it very easy 
to access and use different resources, keeping close track of students progress.
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Summary

In this thesis the following three results are presented: 
– development of a new generic functional fault model to represent physical 

defects in digital circuits,
– development of methods for improving the quality of built-in self-testing in 

digital systems, and
– development  of  an  educational  applets  based  e-learning  environment  for 

learning and teaching the basics of testing digital systems.

A new generic functional fault model was proposed to increase the accuracy of 
evaluating the fault coverage of given test sets, and consequently improving the 
quality of testing including built-in self-testing. The fault model allows to map 
the  physical  transistor-level  faults,  like shorts  or  bridges,  opens or  any  other 
logically describable defects on the higher gate-level or even on more higher 
macro logic level which reduces the complexity of fault simulation algorithms 
and helps to increase the speed of test quality analysis. It was shown also that the 
new fault  model  supports  hierarchical  approaches  to  test  generation  or  fault 
analysis, since it can be regarded as a uniform interface for mapping faults from 
a given arbitrary level of abstraction to the next higher level of abstraction. The 
results on the new fault model are published in [15,18,19].

Different approaches were investigated to improve the efficiency and quality of 
built-in  self-test  architectures.  First,  hybrid  BIST  architectures,  where 
pseudorandom test patterns were combined with deterministic test patterns, were 
researched. Then, a new functional hybrid BIST approach was developed where 
instead of pseudorandom test patterns the normal functional routines carried out 
in digital systems are combined with deterministic test patterns. And finally, a 
Design-for-Testability (DfT) technique was combined with Built-In Self-Test for 
sequential circuits to achieve the needed test quality. 

For the hybrid BIST which combines pseudorandom test patterns with stored 
precomputed  deterministic  test  patterns,  a  method  and  algorithms  were 
developed  for  fast  calculation  of  the  cost  of  hybrid  BIST.  The  cost  can  be 
calculated for different pseudorandom test sequences to find an optimal balance 
between pseudorandom and deterministic test  sets,  and to perform the hybrid 
self-test with minimum cost of both, time and memory, and without losing in 
test quality. Compared to the previous approaches, in this work a new, extremely 
fast procedure was proposed, which calculates costs on the basis of fault table 
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manipulations. Experiments on the ISCAS benchmark circuits showed that the 
new procedure is about two orders of magnitude faster than the compared one. 
The results on the hybrid BIST are published in [3,20,21,23-25].

The hybrid functional BIST (HyBIST) approach where the functional routines 
carried out in digital systems are combined with deterministic test patterns was 
investigated  in  the  case  of  testing  microprogrammed  data-paths  in  digital 
systems. In the first test phase only the functional resources of a system are used 
for testing purposes. A functional microprogram is executed to control the data-
path based on some very small deterministic input data. A response compressor 
like signature analyzer is connected to the data path to monitor the process. To 
guarantee a high test coverage for BIST, the second phase of the test is used 
which consists of applying additional deterministic test patterns pre-generated 
by an ATPG to test the random-pattern-resistant faults. A method was proposed 
to  find  the  trade-off  between the  functional  test  and  deterministic  test  parts. 
Experimental part of the work demonstrated the feasibility of the approach, and 
the advantage of combining functional and deterministic test patterns compared 
to  the  pure deterministic  test.  The results  on the  hybrid functional  BIST are 
published in [12].

A Design-for-Testability (DfT) technique of Built-In Self-Test (BIST) for digital 
systems consisting of control and data parts was developed. The technique is 
based on making the status signals entering the control part controllable during 
the test mode to force the system under test to traverse all the branches in the 
FSM state transition graph. Extra outputs are added to the system under test in 
order  to  observe  the  values  of  the  status  bits  masked  out.  This  type  of 
architecture requires little chip area overhead since a simple controller can be 
implemented  to  manipulate  the  control  signals.  The  experimental  research 
showed that  simple LFSR does not provide an acceptable fault coverage for 
sequential designs. However, no universally best test generating approach was 
identified and the optimal solution appears to be highly dependent on designs 
pseudo-random testability characteristics. To improve the test quality if needed 
the  hybrid  BIST  approach  discussed  above  can  be  used.  The  results  on 
improving the BIST by DFT are published in [13].

A set of tools (“interactive modules”) targeted to e-learning were developed for 
learning  and  teaching  logic  level  test  generation,  built-in  self-test,  and  fault 
diagnosis in digital circuits. The tools can support different university courses on 
computer engineering, switching and automata theories, digital electronics and 
design  for  testability  to  learn  by  hands-on  exercises  test  and  fault  diagnosis 
related  topics.  A  big  reservoir  of  examples  and  the  possibility  to  set  up 
interesting engineering problems like how to generate test patterns for a digital 
circuit, how to locate a faulty gate, or how to design an optimal hybrid BIST 
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architecture makes the learning process more interesting and allows learning at 
an individual depth and duration. The interactive modules are focused on easy 
action and reaction, learning by doing, and a game-like use. The tasks chosen for 
hands-on training represent simultaneously real research problems, which allow 
to foster in students critical thinking, problem solving skills and creativity. The 
results on developing tools for e-Learning environment are published in [1-2, 
4-11, 14, 16-19, 22].
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