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Abstract 

The Messaging Data Platform (MDP) of Twilio, a cloud communication platform, is the source 

of truth for all data related to messaging. The MDP platform is designed to facilitate interactive 

queries and Extract, Transform, and Load (ETL) jobs but has limitations that impede the 

effective utilization of both the data lake and its associated data warehouse. These challenges 

include high data latency, missing data, and poor data discovery. 

 

The objective of this thesis is to propose a novel design that addresses the limitations of the 

existing MDP system and implement a fully functional data lakehouse utilizing Apache Hudi, 

capable of managing production traffic of hundreds of thousands of updates per second. The 

proposed data lakehouse design is expected to store, process, and expose data efficiently while 

adhering to ACID properties, thereby ensuring effective and dependable data management for 

the organization. 

 

This document presents an in-depth examination of the current design, the proposed design, 

and the outcomes of a proof of concept (PoC) implementation. The proposed data lakehouse 

design serves as a reusable and scalable solution for other organizations and companies seeking 

for an efficient and dependable data management system for large volumes of data. 

 

This thesis is written in English and is 59 pages long, including 5 chapters, 16 figures and 11 

tables. 
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Annotatsioon 

Andmejärvemaja arhitektuur Apache Hudiga suurandmete jaoks  

Twilio on pilvekommunikatsiooni platvorm, mis võimaldab arendajatel programmaatiliselt 

teha telefonikõnesid, saata ja vastu võtta tekstisõnumeid ning teha muid suhtlusfunktsioone, 

kasutades selle veebiteenuse programmiliidest (API). 

 

Sõnumside andmeplatvorm (MDP) on tõeallikas kõigile sõnumsidega seotud andmetele. See 

platvorm on loodud, et pääseda ligi andmetele läbi erinevate meetodite, keskendudes Hadoopi 

ökosüsteemile, mis hõlbustab interaktiivseid päringuid ja ETL-töid. Hetkel paljastab MDP 

teatud disainipiirangud, mis takistavad nii andmejärve kuid ka sellega seotud andmelao tõhusat 

kasutust. 

 

Mõned peamised väljakutsed, millega kokku puututakse, hõlmavad kõrget andmelatentsust, 

puuduvaid andmeid, päringute ebaõnnestumist ajutiste probleemide tõttu ning kehva andmete 

avastust. Need probleemid tõstavad esile vajadust platvormi edasiarenduse järele, et tagada 

selle vastavus organisatsiooni ja platformi sidusrühmade nõuetele. 

 

Lõputöö eesmärk on välja pakkuda ja implementeerida uus andmejärvemaja disain, mis 

adresseerib olemasoleva süsteemi piiranguid, kasutades Apache Hudit, mis suudab hallata sadu 

tuhandeid uuendusi sekundis. Uus disain peab olema võimeline andmeid tõhusalt salvestama, 

töötlema ja esitama, järgides ACID-i omadusi, tagades seeläbi usaldusväärse andmehalduse 

organisatsioonile. 

 

Käesolev lõputöö esitab põhjaliku ülevaate praegusest disainist, uuest disainist ja eduka 

implementatsiooni valideerimisest. Pakutud andmejärvemaja arhitektuur on taaskasutatav ja 

skaleeruv lahendus ka teistele organisatsioonidele ja ettevõtetele, kes otsivad tõhusat ja 

usaldusväärset andmehaldussüsteemi suurte andmehulkade jaoks. 

 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 59 leheküljel, 5 peatükki, 16 joonist, 

11 tabelit. 
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1 Introduction 

Twilio1 is a cloud communications platform that enables developers to programmatically make 

and receive phone calls, send and receive text messages, and perform other communication 

functions using its web service application programming interfaces (API). 

 

The Messaging Data Platform (MDP) serves as the source of truth for all data related to 

messaging. This platform has been engineered to offer a range of data access methods, with a 

focus on the Hadoop ecosystem, facilitating interactive queries, and Extract, Transform and 

Load (ETL) jobs. However, the present implementation of MDP reveals certain design 

limitations that impede the effective utilization of both the data lake and its associated data 

warehouse counterpart.  

 

Some of the key challenges encountered include high data latency, missing data, frequent 

failures of otherwise valid queries due to transient issues, and poor data discovery. These issues 

highlight the need for further refinement and optimization of the platform to ensure that it aligns 

with the evolving requirements of the organization and its stakeholders. 

 

The objective of this thesis is to propose a novel design that addresses the limitations of the 

existing system and implement a fully functional data lakehouse utilizing Apache Hudi2, 

capable of managing production traffic of hundreds of thousands of updates per second. The 

newly designed system is required to exhibit the ability to store, process, and expose data 

efficiently while adhering to ACID (Atomicity, Consistency, Isolation, Durability) properties, 

thereby ensuring effective and dependable data management for the organization. This 

document presents an in-depth examination of the current design, the proposed design, and the 

outcomes of a proof of concept (PoC) implementation, in which the results are thoroughly 

validated.  

 

The proposed data lakehouse design serves as a reusable and scalable solution for other 

organizations and companies seeking for an efficient and dependable data management system 

for large volumes of data. 

 

The author of this thesis identified the existing challenges and translated them into new 

functional requirements. Subsequently, the author engaged in the investigation of potential 

solutions, participated in the development of the new system's design, and implemented a PoC 

for the proposed solution. Upon completion of the implementation, the author validated the 

system's functionality, documented the results and observations, and presented the finalized 

project. 

 

 

  

 
1 https://www.twilio.com 
2 https://hudi.apache.org 
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2 Background 

MDP serves as a centralized hub for all messaging-related data, effectively acting as the single 

source of truth for all messaging across the organization. With numerous upstream sources 

contributing data to MDP, the platform's primary function is to collect, consolidate, and 

harmonize this information, making it accessible through various systems. A key area of focus 

for the MDP team is the Hadoop ecosystem, which empowers data scientists, analysts, and 

engineers to seamlessly run interactive queries and execute ETL jobs to facilitate further data 

processing and analysis. 

 

To accommodate the diverse analytical requirements of various stakeholders, MDP supports 

an extensive range of procedures, encompassing data exploration, trend and pattern analysis, 

ad-hoc analytics, complex analytics, reports, dashboards, and more [20]. In the past, data was 

predominantly stored in a data lake, with concerted efforts to expose it through a data 

warehouse system to enable more efficient analytics. 

 

The MDP team's overarching goal is to streamline the process of setting up new integrations 

and minimize operational burden, thereby enhancing the overall user experience for data 

scientists, analysts, engineers, and other stakeholders. By emphasizing the centralization of 

messaging data, the MDP team plays a critical role in promoting data-driven decision-making 

across the organization. Their efforts contribute to fostering a culture of data literacy and 

ensuring that insights derived from data analysis are effectively leveraged to drive 

organizational growth and innovation. 

 

This chapter outlines the existing architecture and main technologies used there, identifies its 

problems, and highlights the need for a novel architectural approach, detailing the functional 

requirements the system must fulfil. 
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2.1 Current technologies 

The current technological landscape for data processing and management relies heavily on 

several key components, which have become integral to modern data-driven applications. 

 

Amazon DynamoDB1 (DDB) is a fully managed, serverless NoSQL database service from 

AWS. It supports key-value and document data models and provides automatic scaling, 

enabling seamless data management across various use cases. [36] 

 

Apache Kafka is a distributed streaming platform used for building real-time data pipelines and 

streaming applications. It is a durable message broker that enables applications to process, store 

and forward data streams in a fault-tolerant, highly available and scalable manner. Kafka can 

be used as a source or for real-time data streaming applications, offering seamless integration 

between data producers and consumers. [7, 9] 

 

Amazon Simple Storage System (S3)2 is a scalable, secure object storage service designed for 

diverse data storage needs, from archiving to big data analytics. It provides high durability and 

availability, allowing for easy storage and retrieval of data from anywhere on the internet. [31] 

 

Amazon Elastic MapReduce (EMR) is a managed cloud service, designed to streamline the 

deployment and management of big data processing frameworks, such as Apache Spark. This 

service allows users to efficiently handle large-scale data processing tasks in a distributed 

computing environment. [35] 

 

Apache Spark is a powerful open-source data processing engine that enables rapid analysis and 

processing of vast datasets by distributing the workload across multiple machines. It is widely 

used for various data-intensive tasks, including data analytics, machine learning, and pattern 

recognition. [33] 

 

The Spark Java API is a specialized interface that allows developers proficient in the Java 

programming language to create distributed data processing applications using Apache Spark. 

By leveraging the capabilities of Amazon EMR, developers can efficiently allocate computing 

resources and dynamically scale their applications to accommodate the demands of processing 

large volumes of data. [33, 35] 

 

Apache Presto3 is a distributed SQL query engine designed to perform interactive analytic 

queries across various data sources. Its high-performance, in-memory processing capabilities 

and support for different data formats make it a popular choice for unified big data analytics. 

[34] 

 

The Hadoop ecosystem is an extensive collection of open-source tools and frameworks aimed 

at facilitating the storage, processing, and analysis of large-scale, distributed data sets. Key 

components of the ecosystem include Hadoop Distributed File System (HDFS), which provides 

reliable and scalable storage, and the MapReduce programming model, which enables efficient 

distributed data processing. Additionally, the ecosystem integrates with other technologies 

such as Presto, a high-performance SQL query engine for interactive analytics, and Amazon 

S3, a scalable and secure object storage solution. [33]  

 
1 https://aws.amazon.com/dynamodb/ 
2 https://aws.amazon.com/s3/ 
3 https://prestodb.io/ 
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2.2 Current design 

To summarize the functions of these aforementioned technologies, DDB serves as the 

repository for record storage, while Apache Kafka is responsible for transmitting CDC logs for 

every record updated in DDB. On Hadoop ecosystem, Amazon EMR executes Spark jobs, 

which deduplicates CDC logs. Subsequently, the results are stored in Amazon S3, and Apache 

Presto is utilized to run queries on these records. Current architecture with these technologies 

is displayed on Figure 1. 

 

 

With current design, EMR jobs operate on Spark Java API. The Spark Java API, while 

powerful and capable of processing large amounts of data, lacks in providing utilities for 

common tasks such as effective data manipulation through file-level updates. These utilities 

can be implemented manually, but it is time-consuming and would be equivalent to recreating 

the functionality for which there is an open-source counterpart already available. If possible, it 

would be beneficial to utilize existing technologies to save time and reduce development costs. 

 

Since Spark API only supports partition rewrites for data updating, multiple jobs must be 

chained together, such as interactions 7, 9.a, and 9.b on Figure 1. This design has made the 

infrastructure more difficult to maintain and has problematic side effects. 

  

Figure 1. Architecture of existing system 
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Interactions on Figure 1 and problematic side effects that occur are discussed in Table 1. 

 
Table 1. Description and details of Figure 1 

# Interaction Description and Details 

1 Update state Upstream service updates message state by issuing a HTTP request to state 

service. State service is a data access layer service on top of a DynamoDB 

table for inflight data.  

 

State service finds an existing data record in database (DB) and merges 

upstream changes into it, saving data back to DB. If no record is found, a new 

record is created. All specifics like hot partitioning, backoffs, retries are 

handled by this service and auxiliary service, which are out of scope of this 

thesis.  

 

During peak hours, the system experiences a rate of approximately 300,000 

updates per second, while maintaining an average rate of 100,000 updates per 

second. 

2 Publish state State service publishes a successful state update into Kafka topic. For each 

successful update a message state event (MSE) is evaluated as well. 

3 Consume 

updates 

Services consume a Kafka topic with update events and build logic around 

received events and state changes. 

4 Store state The primary use-case for this system involves simple key-value operations, 

specifically the creation and updating of records. It employs an optimistic 

locking mechanism and implements retries in case of conflicts or errors. 

5 Event 

evaluation 

Event application translates MSE into a business event (BE) and publishes the 

BE to a Kafka topic.  

5.a Historical 

event 

evaluation 

ETL applications designed for use with EMR analyse S3 buckets containing 

historical data to extract BEs for further processing and analysis.  

6 Event 

publishing 

Upstream services function as sole publishers of BEs. They have direct 

publisher access to a specific Kafka topic. 
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# Interaction Description and Details 

7 History 

storage     

 

Message History Service is responsible for storing batched Message Detail 

Records (MDRs) in S3, which is further elaborated in Table 2. 

 
Table 2. MDR updates data layout properties 

Attribute Value 

Format Apache ORC1 

Path data/updates 

Partitioning Each consumed batch is grouped by partitioning  

function: ƒ: (accepted) → (year, month, day, hour)  

 

Each group is transformed into ORC and stored in S3 with 

an example path of: s3://data/updates
/year=2022/month=7/day=12/hour=4/batch-
{random}.orc 

Notes Median file size is less than 100 kilobytes. 

Size 2103 TiB 
 

8 Event storage Different instance of Message History Service is responsible for storing 

batched BEs in S3, which is further elaborated in Table 3. 

 
Table 3. BE updates data layout properties 

Attribute Value 

File format Apache Parquet2 

Path data/events 

Partitioning Each consumed batch is grouped by partitioning function: 

ƒ: (accepted) → (year, month, day, hour)  

 

Each group is transformed into Parquet and stored in S3 

with an example path of: s3://data/events
/year=2022/month=7/day=12/hour=4/batch-
{random}.parquet 

Notes Median file size is less than 100 kilobytes. 

Size 135 TiB 
 

  

 
1 https://orc.apache.org/ 
2 https://parquet.apache.org/ 
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# Interaction Description and Details 

8.a Finalizing  

BEs 

Problem #1. Poor data analysis performance of data/events storage due to a 

big number of small-sized files in the folder. 

 

In order to address this issue, EMR job has been implemented, which 

repartitions the small files from the "data/events" S3 bucket and stores them 

in a "data/events/repartitioned" subfolder. 

 

Operations done, henceforth referred to as "finalization": 

▪ Optimize for bigger file size  

▪ Repartition by event type 

▪ Deduplicate 

 

The rationale behind this approach is to mitigate performance and consistency 

challenges associated with conducting analysis on the "data/events" bucket. 

Due to the current implementation of finalization, which rewrites the entire 

partition when updating finalized records, this process gives rise to a problem 

#2: the replacement of files in the "data/events/repartitioned" folder disrupts 

concurrently running queries in upstream systems. 

 

A demonstration of the aforementioned issue is provided below: 

1. Consider a scenario where we have the following file: 

"data/events/repartitioned/ 

eventtype=1/year/month/day/hour/batch-12345.orc". 

2. A query is executed on "batch-12345.orc". 

3. New data arrives at the location: 

"data/events/eventtype=1/year/month/day/batch-

12345.orc". 

4. An ETL job is required to replace "batch-12345.orc". However, 

this action disrupts the query on the repartitioned data layout, 

resulting in a FileNotFoundException. 

Not all BEs necessitate partitioning by year, month, day, and hour, and some 

events may require different types of optimizations. This gives rise to problem 

#3: the same partitioning and optimization strategies are applied to all events, 

which may not be universally effective. In other words, a one-size-fits-all 

approach is not suitable for addressing the unique requirements of each event. 

As rewriting the entire table is inefficient, a more targeted approach is 

employed by focusing on a subset of data. However, this approach leads to 

Problem #4: High data latency and potentially missing data. 

9.a Optimizing 

MDR updates 

Same Problem #1. To overcome low performance on big number of small-

sized files in initial data/updates, EMR runs ETL job to optimize data for 

analysis, which combines smaller files to larger files. 
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# Interaction Description and Details 

9.b Finalizing 

updates 

For each message, there is an eventual history of its states. Those states can be 

represented as ordered cumulative change history (MDR1, MDR2, ..., MDRn), 

where MDRn contains all the information the pervious states contained. 

 

data/finalized is an S3 subfolder which is a target of ETL job that 

transform all historical data into final data, skipping all intermediate states. It 

is essentially a data layout where for each of existing messages only the last 

state of it is stored. 

 

Biggest peculiarity of finalization is that there is no such thing as final state, 

i.e., there is no state after which there are no guaranteed updates to it. Updates 

to the message state may occur over an extended period, potentially spanning 

several months. 

 

Because of that, data/finalized is prone to problems #2 and #4. 

10 Performing 

internal 

analysis 

Apache Zeppelin1 serves as an internal tool for conducting comprehensive 

analysis on all existing data locations. 
 

Zeppelin submits an ETL job to the EMR cluster that has access to all 

mentioned S3 storage locations.  

 

As mentioned above, it has flaws in form of problems #2 and #4 for all the 

folders where optimization or finalization ETLs are working. 

11 Working with 

external data 

warehouses 

MDP plugs data to Presto and by so, also to Looker.2 Integration operates on 

automated scripts; however, this solution is not scalable when applied to more 

complex schemas containing nested fields, such as those found in MDRs. 

Consequently, this gives rise to Problem #5: There is no scalable integration 

with external data warehouses. 

12 Publishing to 

external 

customers 

BEs topics are consumed by consumer integration service that translates BEs 

into specific customer-defined schemas. 

 

MDR updates table will be referenced as updates layout. MDR finalized table and problematic 

BE tables will be referenced as finalized layouts.  

 
1 https://zeppelin.apache.org/ 
2 https://www.looker.com/ 
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2.3 Functional requirements 

The goal of this thesis is to construct a system that meets the functional requirements, some 

of which have been recently introduced: 

1. Can handle petabyte scale. 

2. Is adaptable to different use-cases: 

▪ Late arriving updates. 

▪ CDC log deduplication. 

3. Customizable to accommodate all use-case related peculiarities. 

4. Solution is robust. System handles errors gracefully without side effects. 

5. Solution avoids the small file issue, which is detrimental to query effectiveness. 

6. Snapshot isolation between writers and readers. 

7. Data discovery is simple. 

8. Data should be readable with low data and query latency. 

9. Support for various analytical procedures, such as exploring the data, trying to 

understand various trends and patterns, ad-hoc analytics, complex analytics, reports, 

dashboards, and more [20].  

To address the existing problems, new functional requirements were established within the 

design of the new system, as illustrated in Table 4. 

 
Table 4: New functional requirements to address problems 

Problem Functional requirement 

Problem #1. Poor data analysis performance due to 

a big number of small-sized files. 

5. Solution avoids the small file issue 

Problem #2: replacing files break concurrently 

running queries in upstream systems. 

6. Snapshot isolation between writers and 

readers. 

Problem #3: Same partitioning and optimizations 

do not fit all use-cases. 

3. Customizable to accommodate all use-

case related peculiarities. 

Problem #4: High data latency and potentially 

missing data. 

8. Data should be readable with low data and 

query latency. 

Problem #5: There is no data warehouse. 7. Data discovery is simple. 

 

The lack of utility in the Spark Java API suggests that an alternative needs to be sought out in 

order to provide the necessary functionality. It is beneficial to explore alternative technologies 

that offer similar capabilities to Spark Java API and determine which one is best suited to meet 

the specific needs of the mentioned use-cases. 
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2.4 Novelty 

The author of the paper was unable to find a comprehensive solution that adequately addressed 

the problem they were attempting to solve. This highlights the need for further research and 

innovation in the field to address the challenges associated with managing and analysing 

complex and diverse datasets. 

 

Historically, there has been a clear differentiation between Data Lakes and Data Warehouses; 

however, Apache Hudi provides the means of connecting the two into a single entity called 

Data Lakehouse. [18] 

 

Comparison between Data Warehouse, Data Lake and Data Lakehouse is in Table 5. 

 
Table 5. Data Warehouse, Data Lake and Data Lakehouse comparison [18] 

Feature Data Warehouse Data Lake Data Lakehouse 

Data Structured 

Processed 

Structured, semi-

structured, unstructured; 

Raw 

Structured, semi-structured 

and unstructured. 

Both processed and raw 

Processing Schema-on-write Schema-on-read Schema-on-write, 

Schema-on-read 

Storage Expensive for large data 

volumes 

Designed for low-cost 

storage 

Designed for low-cost 

storage 

Agility Less agile, fixed 

configuration 

Highly agile, adjustable 

configuration 

Highly agile, adjustable 

configuration 

Security Mature Maturing Both mature and maturing 

Users Business professionals Data Scientists et. al. Whole business environment 

 

The system needs to be able to handle the production traffic of hundreds of thousands of records 

per second, which many companies in general are now requiring. This work provides 

guidelines on constructing a scalable system to manage an influx of data, as well as identifying 

problems to avoid. 

 

The author of this work identified the issues that needed to be addressed and converted them 

into new functional requirements. Subsequently, they assisted in researching alternative 

solutions, contributed to the design of the new system, and implemented the proposed solution. 

Following the implementation, they verified the system's functionality, documented the results 

and findings, and delivered the completed project.  
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3 Planning 

To mitigate the problems with current design, we must look back and align the existing view 

of modern data solutions and platforms to what has already been built. We need to 

accommodate our existing product goals and requirements and figure out what could be 

changed in existing design to reach and implement them. Because the change is fundamental, 

then every viable alternative solution will be considered. [12] 

 

Proposed design needs to mitigate mentioned problems by explicitly extracting concepts of 

data lake, data warehouse and data catalogue into dedicated services which can fill the 

functional requirements. 

 

To formalize this new design, we need to create a detailed architecture that outlines the 

functional and technical requirements, data flows, and the overall architecture of the new 

design. This architecture includes diagrams and other helpful visualizations to explain how the 

different components will interact with each other. Additionally, this architecture includes the 

steps necessary for implementing the new design. 

 

Twilio adheres to a policy of using as many managed solutions as possible to minimize 

operational costs. As such, the company has chosen Amazon to host their systems. Amazon's 

business model revolves around adapting open-source solutions into managed solutions. 

Nevertheless, this approach does not detract from the adaptability of the solutions for use by 

other organizations and companies, since the adapted open-source solutions remain open-

source and are available for use by anyone via Amazon or not. 
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3.1 Deployment model 

Running an ETL job consists of multiple components: 

▪ A coordinator which communicates with workers and tells them what to do. 

▪ A worker which does the actual work that gets delegated to it. 

▪ Underlying data storage where data gets read from and written to. 

Any of the components can be either: [3] 

▪ Completely on-premise, where company hosts their own hardware. 

▪ Cloud instances, such as Amazon EC21, through infrastructure as a service (IaaS). 

▪ Cloud service through software, platform or delivery as a service (SaaS, PaaS or DaaS).  

However, since our company does not have any on-premise infrastructure and only uses cloud 

instances or cloud services, on-premise deployment is not an option. Therefore, we must decide 

whether to implement each component using cloud instances or cloud services. 

 

Our company policy requires that all data storage and computational engines use cloud 

services. Final option that remains is to choose whether the coordinator uses a cloud instance 

or a cloud service. 

 

Using a cloud instance provides much more flexibility in terms of customizing the instructions 

which are sent to the workers making it the preferable option. Additionally, using a cloud 

instance is also more cost-effective than using a licensed PaaS or SaaS on a petabyte level.2 

Furthermore, cloud services widely rely on most successful open-source projects [28]. Using 

these open-source projects themselves directly will accomplish the same result. 

 

Considered options for cloud services: 

▪ Google Snowflake3 

▪ Amazon Redshift4 

▪ Databricks Lakehouse Platform5 

Given that the company is heavily dependent on Amazon's cloud stack, integrating cloud 

services from another provider would likely result in significant complications. This could 

include obtaining the necessary security approvals, setting up the required integrations with 

existing infrastructure, and addressing compatibility issues. Therefore, with everything 

considered, in the next section, only Amazon Redshift will be further considered. 

  

 
1 https://aws.amazon.com/ec2/ 
2 https://askwonder.com/research/data-lake-warehousing-pricing-t1nu01wri 
3 https://www.snowflake.com/en/ 
4 https://aws.amazon.com/redshift/ 
5 https://www.databricks.com/product/data-lakehouse 
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3.2 Technologies chosen  

Currently, the data layouts are operating on the Hadoop ecosystem1; however, it would be 

beneficial to take a step back and consider other fundamental alternatives: 

▪ Cassandra and other key-value stores lack support for joining with external datasets and 

performing aggregations, thereby rendering them unsuitable for fulfilling functional 

requirement number nine. [1] 

▪ Graph databases could potentially be useful, but because MDP data has little to no 

relations and instead all information is already present in a single record, then it does 

not make sense to use it even in conjunction with other technologies. [2] 

▪ ElasicSearch2 is not meant to be used to store petabytes of data. However, they make 

for a good store for aggregated results of ETL jobs. [24] Example is to run ETL jobs 

on Hudi data lake and publish results to Kafka as business events, which are currently 

implemented as Event Evaluation Applications seen on Figure 1. [25]  

The two solutions here complement each other. 

▪ Some query engines may have support for various relational database management 

systems (RDBMS3) [26]. However, the query will be running RDBMS-side which 

means that it will not be possible to join the dataset to external Hadoop based tables. It 

will also mean that the server needs to be properly provisioned to handle the influx of 

read requests and queries will be limited by server resources which results in most 

solutions becoming unusable. 

▪ Even though Redshift4 is built on PostgreSQL5, a RDBMS, it exceeds where others 

failed. While it performs better and more cost-effectively on smaller workloads as 

compared to Hadoop, the opposite can be said for large workloads where queries are 

over billions of rows. For smaller workloads, Hadoop based solution remains to be 

competitive and not far behind. Redshift also requires reshuffling data which slows 

down the system and blocks other operations. Hadoop does not require any reshuffling. 

Most of company’s data is already on Hadoop ecosystem, and in order to join Redshifts 

data to it, Hadoop data needs to be loaded to Redshift. With everything considered, the 

price for Redshift would be considerably higher in terms of cost and engineering work 

once solution is up and running. [27, 32]  

The two solutions here also complement each other. For solving the functional 

requirements described in this paper, Hadoop based solution works best, but use-cases 

with smaller volume, Redshift solution can be employed alongside with Hadoop. 

It is safe to conclude that an alternative solution to Spark Java API on the Hadoop ecosystem 

should be used. Next, a framework must be chosen which operates on Hadoop and can be 

utilized by the orchestrator.  

 
1 https://www.edureka.co/blog/hadoop-ecosystem 
2 https://www.elastic.co/ 
3 https://www.oracle.com/database/what-is-a-relational-database/ 
4 https://aws.amazon.com/redshift/ 
5 https://www.postgresql.org/ 
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There were 3 contenders when choosing the right technology for orchestrator, for which there 

is comparison between Apache Hudi, Delta Lake and Iceberg is in Table 6. 

 
Table 6. Comparison between Apache Hudi, Delta Lake, and Iceberg [23] 

Feature Apache Hudi 

(v0.12.2) 

Delta Lake 

(v2.2.0) 

Iceberg  

(v1.1.0) 

ACID transactions + + + 

File versioning  

(Copy-on-Write) 

+ + + 

Amortized updates  

(Merge-on-Read) 

+ - + 

Concurrency 

(Optimistic-Concurrency-Control) 

+ + + 

Time travel 

(Point-in-Time queries) 

+ + + 

Deduplication + + + 

Record level indexes  

(Efficient updates to data) 

+ - - 

Automated file sizing + - - 

Compaction/Clustering  

(Combining files) 

+ - - 

Automatic cleaning 

(Old version deletion) 

+ - - 

Schema evolution + + + 

Disaster recovery  

(Savepoints) 

+ + - 

Automatic monitoring  

(Publishes metrics) 

+ - - 

 

The feature support comparison presented in this table is limited and specifically tailored to the 

needs of the author. It does not encompass all features of the frameworks and only focuses on 

those that are relevant for the current work. 

 

For orchestrator, Hudi was chosen because of its resiliency, transactionality, customizability, 

record level indexing feature and in general, it had the potential to fill all the functional 

requirements. [19] 
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Finally, a decision must be made on the computational engine on which to run Hudi and the 

location in which to store the resulting data. 

 

Considered query and analytics engines which operate on Hadoop: 

▪ Apache Tez1 is partially supported by Hudi. It is possible to read though Tez, but not 

incrementally load new data. [6] In addition, it has low performance. [22] 

▪ Apache Storm2 is for streaming workloads where output source benefits from small 

batches or record level writes, which is not the case with Hudi making it not the correct 

tool for the job. [13] 

▪ Impala3, DorisDB4, StarRocks5, Presto etc are great for running analytical queries, but 

they are not made to write data. However, it is possible to query data via these systems 

through Hudi or Hive connector. [19] 

▪ Pivotal HWAQ6 is primarily meant for more computational workloads. [22] While 

current workload is an I/O workload. 

▪ Apache Hama7 is meant for processing graphs. [16] 

▪ Spark is fully supported by Hudi [19]. Spark also has high performance [23]. 

For workers, a popular analytics engine, Spark, was chosen, because infrastructure for it was 

already there and there were no better alternatives for which Hudi or equivalent alternative 

already had write support for. 

 

Technologies which were considered for storing tables: 

▪ Apache Ignite8 is effective for small workloads, but since the solution needs to handle 

petabyte scale, then storing all of it in RAM is not feasible. [17] 

▪ Hadoop Distributed File System (HDFS) is a good option to achieve low latencies, so 

it is used when spilling shuffle data to disk between Spark job stages, but it’s expensive 

and hard to integrate with for table data storage. [4]  

▪ Amazon S3 is cheap, robust, has excellent availability and is easy to set up, maintain 

and integrate with. [31] 

In terms of storage, Amazon S3 was selected as it was deemed superior to other options 

available. 

 

Having selected the appropriate technologies, the subsequent step is to identify configurations 

that will enable the fulfilment of the functional requirements.  

 
1 https://tez.apache.org/ 
2 https://storm.apache.org/ 
3 https://impala.apache.org/ 
4 https://doris.apache.org/ 
5 https://www.starrocks.io/ 
6 https://hawq.apache.org/ 
7 https://hama.apache.org/ 
8 https://ignite.apache.org/ 
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3.3 Hudi configurations 

Hudi offers a variety of configurations, which are taken from official Hudi homepage. [19] 

 

Most impactful one being the table type configuration. 

3.3.1 Table types 

Copy-on-Write (CoW) table stores data exclusively in columnar file formats. Updates are 

performed by versioning and rewriting the files, with a synchronous merge taking place during 

write. File slices only contain the base/columnar file, and each commit produces new versions 

of the base files. This means that only columnar data exists, leading to higher write 

amplification (number of bytes written for 1 byte of incoming data) and zero read amplification. 

This is a desirable property for analytical workloads, which are predominantly read-heavy.  

 

The CoW table aims to improve how tables are managed by:  

▪ Providing first-class support for atomically updating data at the file-level, instead of 

rewriting whole table or partition. 

▪ Offering the ability to incrementally consume changes, as opposed to scanning the 

whole table or partition. 

▪ Allowing tight control of file sizes to maintain excellent query performance. 

Merge-on-Read (MoR) table stores data using a combination of columnar and row-based file 

formats. Updates are logged to delta files, which are later compacted to produce new versions 

of the base files, both synchronously and asynchronously.  

 

MoR is a superset of CoW since it still supports read-optimized queries of the table by exposing 

only the base/columnar files in the latest file slices. Additionally, it stores incoming upserts for 

each file group in a row-based delta log, to support snapshot queries by applying the delta log 

onto the latest version of each file ID on-the-fly during query time. Thus, this table type 

attempts to balance read and write amplification intelligently, to provide near real-time data. 

The compactor is especially important here, since it needs to carefully choose which delta log 

files should be compacted onto their columnar base files, to keep query performance in check.  

 

The intention of the MoR table is to enable near real-time processing directly on top of DFS, 

rather than copying data out to specialized systems which may not be able to handle the data 

volume. There are also a few secondary benefits such as reduced write amplification by 

avoiding synchronous merge of data.  

 

Given that enabling near real-time data is not currently a requirement, then all tables will be in 

CoW table type as it is easier to set up and maintain. Since MoR is a superset of CoW, then 

table type can always be upgraded from CoW to MoR when it becomes a requirement. 

  



   

 

27 

 

3.3.2 Operation types 

Another impactful configuration is the operation type which is used when writing data. 

 

For UPSERT operation, input records are first tagged as inserts or updates by looking up the 

index. The records are ultimately written after heuristics are run to determine how best to pack 

them on storage to optimize for things like file sizing. This operation is recommended for use-

cases like database change capture where the input almost certainly contains updates. The 

target table will never show duplicates. 

 

INSERT operation is very similar to upsert in terms of heuristics and file sizing but completely 

skips the index lookup step. Thus, it can be a lot faster than upserts for use-cases like log de-

duplication. This is suitable for use-cases where the table can tolerate duplicates and just needs 

the transactional writes/incremental pull/storage management capabilities of Hudi. 

 

Both upsert and insert operations keep input records in memory to speed up storage heuristics 

computations (among other things) and thus can be cumbersome for initial loading and 

bootstrapping a Hudi table at first. BULK_INSERT operation provides the same semantics as 

insert, while implementing a sort-based data writing algorithm, which can scale very well for 

several hundred TBs of initial load. However, this just does a best-effort job at sizing files 

rather than guaranteeing file sizes like inserts and upserts do. 

 

Finalized layouts which have a functional requirement of only containing the latest version of 

the record will use UPSERT operation. The updates layouts, which do not have a hard 

requirement on containing duplicates, will use INSERT operation, which does not guarantee 

record key uniqueness, but still delivers good results for much lower performance costs. When 

backfilling the tables, BULK_INSERT operation can be used for fastest results. 
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3.3.3 Index types 

Hudi provides efficient upserts by mapping a given hoodie key, which consists of a record key 

and a partition path, consistently to a file identifier via an indexing mechanism. This mapping 

between record key and file group/file id, never changes once the first version of a record has 

been written to a file. This enables fast upsert and delete operations by avoiding the need to 

join against the entire dataset to determine which files to rewrite. 

 

Hudi exposes the following index types out of the box. 

▪ Bloom Index employs bloom filters built out of the record keys, optionally also pruning 

candidate files using record key ranges. 

▪ Simple Index performs a lean join of the incoming update or delete records against 

keys extracted from the table on storage. 

▪ HBase Index manages the index mapping in an external Apache HBase1 table, which 

is a key/value store. This will be prohibitively expensive for big volumes compared to 

other index types. 

Bloom index and Simple index can either be per partition or over the whole table. If the index 

should span over the whole table, then the global variant of the index should be used.  

 

Existing finalized tables will use Bloom indexing, as it is the most effective option given the 

nature of the data where there are multiple updates to a single record over the span of weeks. 

By default, bloom filters are stored in data files, but they can also be stored in metadata table, 

which make lookups faster.    

 
1 https://hbase.apache.org 
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3.4 First iteration 

After evaluating various technologies and finalizing the functional requirements with 

architects, author proceeded with the first iteration. In the first iteration of the solution, key 

changes are made to address the issues with the existing design and to fulfil the technical 

functional requirements, including poor analysis performance, high data latency, and missing 

data. These requirements will be further elaborated in Table 8. The primary aim of the first 

iteration is to maximize the use of the existing infrastructure while evaluating the feasibility of 

the proposed technologies. The design for the first iteration is illustrated in Figure 2. 

 

 

 

Figure 2. Architecture diagram of first iteration 
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Domains of the first iteration illustrated in Figure 2 are described in Table 7. 

  
Table 7. Domains and descriptions of first iteration 

# Domain Description and Details 

1 Ingress Ingress domain remains the same as described in Table 1. 

2 Data Lake Publisher Raw bucket is partitioned by year, month, day and hour partitions like 

the pervious updates bucket, but with the partitioning timestamp as 

current timestamp. This approach prevents late updates from creating 

small files that slow down Spark. [17] 

 

Every time a new file is uploaded to S3, the bucket is configured to send 

a notification to Simple Notification Service (SNS), which is a 

messaging service that enables applications, end-users, and devices to 

send and receive notifications. The notification is then fanned out to 

Simple Queue Service (SQS), a fully managed message queuing service 

that enables decoupling and scaling of microservices, distributed 

systems, and serverless applications. [29] 

 

The Hudi publisher periodically polls new files from SQS and then 

processes them into a Hudi table based on the provided configurations. 

SQS is a re-playable input source, so if Hudi application runs into an 

exception, then it will not result in data loss. [5] 

3 ETL Process Data is written to S3 using Hudi writer, which operates on EMR nodes 

that use Spark. After which the Hudi reader can be used to read that 

table through various query engines, making it into a fully functioning 

data lake. 

4 ETL Configuration Raw instructions for processing items in every SQS queue are stored in 

GitHub1. GitHub is a web-based platform for version control and 

collaboration that allows developers to store and manage their code 

repositories. Any configuration changes go through a review process 

and are automatically propagated to every environment by a pipeline 

after being approved. 

 

The Apache Hudi framework serves as an integral element within the overarching architecture. 

It constitutes the core technology that facilitates the realization of the design objectives. 

 

  

 
1 https://github.com/ 
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The first iteration addressed majority of the challenges associated with the existing architecture, 

as explicated in Table 8. 

 
Table 8. First iteration to solve the problems 

Problem Resolution 

Problem #1. Poor data analysis 

performance due to a big number of 

small-sized files. 

Hudi supports file clustering1 and compaction2, which 

allow combining existing data and appending new data 

to existing data respectively, resulting in larger files. 

Problem #2: replacing files break 

currently running queries in upstream 

systems. 

Whenever Hudi writes new data, it creates a new 

version of the file and later cleans up the old files to 

reclaim space using the cleaner service3 once the files 

are no longer used. 

Problem #3: Same partitioning and 

optimizations do not fit all use-cases. 

Here partitioning and general optimization scheme is 

customizable and is stored in GitHub which eventually 

makes it to the target Hudi table, allowing each table to 

be configured differently. 

Problem #4: High data latency and 

potentially missing data. 

Because raw bucket has unpartitioned data, then all data 

gets handled with same priority, and so, lowering worst 

case data latency. Hudi is also much more performant, 

because it only updates required files not all files in a 

partition. 

 

And because items from SQS are deleted only after that 

data made it to Hudi table, then no data will go missing.   

Problem #5: There is no data warehouse. This will be fully resolved in second iteration with the 

introduction of data catalogues, where Hudi allows 

updating partition data straight from writer itself after 

committing changes.4 

 

The first iteration of the project has been a success, as it has shown that it is feasible to use 

existing infrastructure and Hudi framework to build the proposed system. Proof of the 

resolution will be provided in the results section of this paper. 

 

However, it was necessary to fine-tune the Spark configurations to handle large volumes of 

data, and the methodology for doing so is discussed in the next section of this paper. 

  

 
1 https://hudi.apache.org/docs/clustering 
2 https://hudi.apache.org/docs/compaction 
3 https://hudi.apache.org/docs/hoodie_cleaner 
4 https://hudi.apache.org/docs/syncing_aws_glue_data_catalog 
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3.5 Spark configurations 

Spark operates on a batch processing principle, where batch jobs are organized into directed 

acyclic graphs (DAGs). This enables Spark to efficiently process data in batches, by breaking 

down a batch job into separate tasks and optimizing their execution accordingly. Tasks are 

constructed in a way that all updates for a single file-group are grouped up into a single task. 

 

The Bloom index filter is used to efficiently narrow down a large dataset by discarding files 

that do not match the given criteria. The remaining files are then sorted and merged using a 

Sort-Merge Join algorithm to return a single, sorted set of results. For upsert, merging consists 

of updating the existing row with custom logic. For our use-cases the updates are cumulative 

for now, so simply replacing the old version with new version is enough. In future, when 

different merging logic is needed, then it can be implemented. This algorithm is particularly 

useful when dealing with large datasets, as it can quickly narrow down the search and 

efficiently return the desired result, which all Hudi tables use when upserting data. [14] 

 

Due to the nature of our data, which involves multiple updates per record across significant 

number of partitions, we benefit from using large batches. This is because it helps us reduce 

the overhead associated with multiple overlapping jobs: 

▪ Updates against the same record. 

▪ Updates against the same file group. 

When processing tasks, Spark tends to run out of memory, so it is important to ensure that 

Spark has enough of memory to process the task by increasing the parallelism for different 

stages of jobs. As mentioned before, Hudi framework itself already partitions incoming data 

optimally to groups where updates to same file groups are grouped together, so increasing 

parallelism works out of the box. 

 

Spark executors are individual processes launched for an application on a given worker node, 

and they are responsible for executing tasks. Executor configurations are computed based on 

the task size, which is deterministic since input size and parallelism are known [11]. For 

example, if we have 1 TB of files to process with parallelism of 1000, then each executor will 

be assigned 1 GB chunk of data to be processed. 

 

Spark reads task input from HDFS and writes task output to HDFS. It is essential to ensure that 

HDFS is properly configured, which can be a lengthy process [8]. However, since we are using 

Amazon EMR as our MapReduce cluster, configuring HDFS is drastically simplified. All that 

is required is to ensure that there is sufficient disk space and IOPS available on the machines, 

eliminating the need for lengthy HDFS configuration processes. 
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3.6 Second iteration 

In the previous implementation, a significant limitation was the inability to query data from 

external systems, such as Presto, Athena, and Looker. As a result, the majority of data analysts 

and scientists within the company could not access the data for their use. The second iteration 

of the solution does not introduce fundamental changes to the architecture. Instead, it aims to 

enhance the visibility of the solution throughout the organization and broaden its capabilities 

to accommodate a more diverse range of use cases. For instance, this iteration allows analysts 

to execute queries on messaging data via existing Amazon offerings like Athena and data 

platform team offerings, such as Presto. Consequently, this enables the creation of dashboards, 

reports, and other metrics, which can inform business decisions. Additionally, it allows for the 

results to be sent to external systems for further processing and the development of new systems 

through ETL jobs. The architecture diagram for the second iteration can be found in Figure 3. 

 

 

 

  

Figure 3: Architecture diagram of second iteration 
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Domains are further elaborated in Table 9. 

 
Table 9. Domains and descriptions of second iteration 

Domain Description and Details 

Ingress System Ingress domain remains as is. 

Publisher System Loading configurations remains as is. Alternative frameworks to orchestrate 

Hudi publisher application were considered, but not used. 

Transform System A new system where people can run custom ETL jobs to create new datasets 

via AWS Glue1, which also has support for incrementally loading new data 

and updating existing datasets using Hudi framework [21]. Specifics of this is 

out of scope of this work. 

Analysis System Analysis system now includes an integration with data catalog, for which 

AWS Glue Data Catalog was chosen. Data catalog is required to integrate with 

other systems. For analysis various tools can be used, such as Zeppelin, Presto, 

AWS Glue, which discover datasets from data catalog. 

“Bring Your Own 

Data” System 

We provide a way for teams who already have their data and are not interested 

in migrating to our solution to expose their data to the rest of the company. 

They can register tables which point to their data source in our data catalog 

and run ETL jobs via provided tools such as AWS Glue. Specifics of this is 

out of scope of this work. 

 

Publisher orchestrator and data catalog choice will be explained in their respective chapters. 

 

  

 
1 https://aws.amazon.com/glue/ 
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3.7 Orchestrating Hudi application 

To orchestrate the Hudi application, three frameworks are supported: 

▪ Spark Streaming1 

▪ Apache Flink2 

▪ Native Spark writer 

Both Flink and Spark Streaming are open-source stream processing frameworks that can 

process near-real-time data from Apache Kafka. 

 

Flink uses a streaming-first approach and processes data in a streaming fashion as it arrives, 

while Spark Streaming uses a batching approach and stores intermediate results on HDFS. This 

difference affects both the latency and the throughput of the system [15]. However, Flink can 

also stream data in batches. Because Hudi was initially developed to be run on Spark, it uses 

batch jobs by design and does not benefit much from the streaming capabilities offered by Flink 

[30]. Moreover, Spark Streaming is more widely used within the company and thus will be 

preferred. 

 

In the Spark Streaming approach, the job polls batches of data from Kafka and submits them 

as Spark jobs. The combination of Kafka's replayable input source and Hudi's transactional 

batch writes ensures data consistency. Both systems are also configured to withstand hardware 

and software failures, ensuring high availability and reliability [5]. Migrating from the SQS 

solution to the Spark Streaming solution would be straightforward, as both solutions utilize 

Apache Spark as the MapReduce engine. 

 

  

 
1 https://spark.apache.org/docs/latest/streaming-programming-guide.html 
2 https://flink.apache.org/ 
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Comparison between SQS-based solution and Spark streaming is outlined in Table 10. 

 
Table 10: Comparison between SQS-based solution and Spark Streaming 

Comparison SQS-based solution Spark Streaming 

Extra latency Up to 10 second extra latency  

(I/O time of consuming Kafka micro-

batches and storing combined batch 

in S3) 

No extra latency 

Backup system Built-in  

(Raw layout in S3 acts as a long-term 

backup system) 

Another system needs to be used 

(Kafka cannot cost-effectively store data 

long term) 

Dependencies MHS, SQS, SNS, Kafka Kafka 

Scheduling Dynamic scheduling 

(Next job waits for previous one 

before scheduling) 

Fixed scheduling 

(Job is scheduled in a fixed interval) 

Operational 

complexity 

Low 

(Batch jobs do not need to finish in 

certain amount of time) 

High 

(Every batch job needs to finish within set 

time, so more fine tuning is required) 

Autoscaling Possible 

(Batch job configuration can be 

calculated off input batch) 

Not possible 

(Once streaming app is running, there is no 

configuring batch jobs at runtime) 

Backfilling Easy 

(Only file names need to be 

republished to SQS) 

Hard 

(Full record needs to be published to Kafka) 

Consistency Ensured Ensured 

Availability High High 

 

After comparing SQS-based solution to Spark Streaming solution, it was decided to keep using 

SQS-based solution, as Spark Streaming did not provide any required benefits over the current 

solution. 
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3.8 AWS Glue Data Catalog 

The AWS Glue Data Catalog acts as a Hive metastore and is a metadata repository that stores 

and organizes information about data sources, their structure, and their properties. It allows 

data warehouses and data lakes to access and query data stored in different formats without the 

need to manually manage these data sources or the data itself [21]. This addresses problem #5 

as most leading query engines support tables in the Hudi format and Hive metastores [19]. 

 

Since the company has an initiative to use cloud services for databases, AWS Glue was chosen 

as it was found to be easy to integrate with the existing infrastructure and no other alternatives 

were considered. 

 

Data discovery is improved through the use of indexes, which enable predicate pushdown on 

the query side. This involves creating an index on a specific data field that can be used to filter 

out records that do not match the given criteria. Indexes can be used to optimize query 

execution times by reducing the amount of data that needs to be scanned [10].  

 

For example, the query on Figure 4 filters by indexed fields. 

 

 

Figure 4. Example of predicate pushdown 

 

In this query: 

▪ year, month, and day fields are indexed fields. 

▪ messaging_data_platform is the database name in Hive metastore. 

▪ finalized is the table name in database. 

 

The same query can be executed from any query engine that is integrated with our Hive 

metastore. 
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4 Results 

This section provides proof of the successful implementation of PoC, with detailed evidence 

demonstrating how the system fulfils each functional requirement. 

4.1 Can handle petabyte scale 

Figure 5 provides a diagram of the system's functional requirement to manage petabyte-scale 

datasets. The histogram displays the growth of datasets over time, highlighting the system's 

expanding capacity to handle large amounts of data. Purple lines represent MDR layouts, while 

blue lines indicate BE layouts. 

 

  

 

The lines' gradual upward movement demonstrates the system's steady progress towards 

achieving petabyte levels, successfully addressing the functional requirement of handling 

petabyte-scale datasets. 

 

  

Figure 5. S3 bucket size 
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4.2 Late arriving updates 

Figure 6 provides a screenshot of the system's functional requirement to handle late updates, 

which previously went missing. The diagram presents SQL queries joining input data (raw 

table) to output data (finalized table) using a left anti join. The left anti join operation 

effectively signifies the inclusion of all elements found in the raw dataset that are not present 

in the finalized table. The raw table contains all data partitioned by the current timestamp, 

generated by the MHS as described in the first iteration. Demonstrating that all data from the 

raw layout makes it to the finalized table also confirms that all late updates are successfully 

included. This figure highlights the system's ability to manage late updates and ensure data 

integrity, fulfilling the functional requirement. 

 

 
Figure 6. Data consistency SQL query 

 

For the finalized table, a Bloom Index is employed, which uses bloom filter to identify the files 

requiring updates. Application logs indicate a false-positive rate of approximately 50%, 

suggesting room for improvement through bloom filter configuration tuning. Increasing the 

bloom filter size can reduce the false-positive rate while also increasing the filter size on disk. 

To minimize lookup latency, bloom filters could be stored in a metadata table.   
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4.3 CDC log deduplication 

Figure 7 provides a screenshot of the system's functional requirement to avoid duplicate 

records, ensuring data accuracy and integrity. The diagram displays an SQL query that 

compares the total number of records with the total number of distinct records identified by the 

msgid field. The equality of these results signifies that the table is free of duplicates. 

 

 

 

The system employs UPSERT when adding new data to the table, which facilitates updating 

existing records or inserting new ones as necessary. This approach effectively eliminates 

duplicate entries and contributes to the system's ability to maintain data accuracy.   

Figure 7. Finalized layout deduplication 
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4.4 All use-case related peculiarities are customizable 

Figure 8 presents a table of the system's functional requirement to be adaptable and 

configurable for different use-cases, ensuring flexibility and versatility. The diagram 

showcases some of the most impactful configurations for a table, with each table being able to 

accommodate different values compared to each-other, which was not the case before, as all 

BEs shared the same configurations. 

 

 
Figure 8. Runtime configuration 

 

In total, there are over 100 configurations that can be modified to suit specific needs. [19] 
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4.5 Solution is robust 

Figure 9 provides a diagram of the system's functional requirement to be robust, demonstrating 

its ability to handle transient exceptions and recover from them automatically. The diagram 

features a bar histogram with rollbacks, where app continues to function normally after rolling 

back changes made during a failed write. Both blue and purple bars are rollbacks which 

happened to MDR finalized table. The lack of further rollbacks indicates that table was 

recovered to stable state and continues to function normally.  

 

 
Figure 9. Rolling back changes 

 

Additionally, non-committed changes will not be visible on the query side at any point in time.  
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4.6 Solution avoids the small file issue 

Figure 10 presents a sorted table of the system's functional requirement to circumvent small 

file issue, ensuring that queries run as efficiently as possible. [17] 

 

 
Figure 10. Files in S3 

 

The diagram features a screenshot of the first few data files from a random partition, ordered 

in increasing order by size. As can be observed from the data presented in Figure 10, all files 

fall roughly within the 100MB range, with no data files smaller than 1MB.  
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4.7 Snapshot isolation between writers and readers 

Figure 11 provides a representation of the system's functional requirement to maintain isolation 

between writers and readers, achieved by employing snapshot isolation. The diagram includes 

the first few rows listing the timestamp when the query finished, and the number of rows 

queried from selected partitions. Additionally, the stack trace in Figure 11 indicates that the 

old versions were successfully cleaned after 22 hours of running queries on same metadata. 

Testing environment was modified to re-use the same table metadata between runs instead of 

refreshing it. 

 

 
Figure 11. Snapshot isolation logs 

 

Hudi's versioning mechanism enables snapshot isolation by allowing specific versions of the 

table to be queried as long as they are retained. During the test, which lasted approximately a 

day, 20 versions were kept before they were cleaned where writer app execution time was 

around an hour, resulting in the longest supported query time exceeding 20 hours. Each query 

reads the latest version of the table when it is executed, ensuring that every query can run for 

at least 20 hours with the given configuration. Moreover, the query returned the same result for 

all these runs, reinforcing the isolation as the data for the given version remained unchanged.  
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4.8 Data discovery is simple 

Figure 12 displays a screenshot showcasing the current tables constructed using Hudi. The 

integration of the AWS Glue Data Catalog allows for seamless data discovery across various 

query engines, enhancing the system's overall usability and accessibility. 

 

 
Figure 12. AWS Glue Data Catalog 

 

Additionally, Figures 14, 15, and 16 present examples of queries from different query engines 

performed on these tables, demonstrating the versatility and interoperability of the system. By 

leveraging the AWS Glue Data Catalog and Hudi, the system successfully fulfills the functional 

requirement of being easily discoverable, thereby facilitating efficient and effective data 

analysis and management for various use cases. 
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4.9 Data should be readable with low data and query latency 

Figure 13 effectively demonstrates the system's functional requirement for low data latency.  

In the past, data latency issues were significant, with some data being delayed by several days 

or even missing indefinitely. However, the current system has successfully addressed these 

issues, ensuring improved data latency that is now tied to the app execution time, as shown in 

Figure 13, where MDR finalized execution time is highlighted, which is computationally the 

most expensive job. 

 

 

 

Although data latency can be further reduced by converting the table type to MoR, it is 

currently not a requirement and thus falls beyond the scope of this work. Nevertheless, the 

system has significantly improved its data latency, reducing it from multiple days to the 

duration of the app execution time. 

 

Furthermore, the subsequent Figures 14 and 16 in the following section will showcase the 

system's low query latency, further solidifying its success in meeting the functional 

requirement for enhanced efficiency and performance in data processing and analysis. 

 

 

 

  

Figure 13. App execution duration 
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4.10 Support for various analytical procedures 

There are various analytical procedures, such as exploring the data, trying to understand various 

trends and patterns, ad-hoc analytics, complex analytics, reports, dashboards, and more [20]. 

In the end, however, they all boil down to SQL queries through various query engines. This 

section covers example queries from two prominent query engines: Presto and Spark SQL. 

 

Amazon offers a serverless Presto solution called Athena, which enables data querying via 

SQL. Figure 14 features an example Presto query, which scanned one day's worth of data in 

just 13 seconds. 

 

 
Figure 14. Daily aggregation via Presto 

 

The query performance demonstrated in these examples appears to satisfy the requirements of 

the relevant stakeholders. It is crucial to note that query execution times should not be 

compared directly, as the duration depends on the resources allocated for executing the query, 

which is done automatically by Presto.  
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SQL syntax for operating on lists and maps, and other more complex analytical procedures 

differ based on the query engine used, but in general, all data types are supported and can be 

queried. The following figure shows example Presto queries for nested fields, filtering, 

aggregation, ordering, and operating on lists and maps as shown on Figure 15. 

 

 
Figure 15: Schema peculiarities are supported 

 

Another popular query engine is Spark SQL, which also allows for data querying. Figure 16 

includes an example Spark SQL query that scanned one day's worth of data in 30 seconds.  

 

 
Figure 16. Daily aggregation via Spark SQL 

 

In conclusion, data can be used for various analytical procedures and queries run fast enough. 
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4.11 Future works 

The current solution is satisfactory and fulfils the functional requirements. However, more 

functional requirements may appear in the future, such as: 

▪ Less than 10-minute data latency, which require the following but not limited to: 

- Converting table to MoR 

- Bloom filter tuning 

- Enabling metadata table 

▪ Support for custom merging logic on table side 

 

For these potential future requirements, there are solutions with the new design. 
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5 Summary 

In summary, Twilio's adoption of the Apache Hudi framework provides a powerful tool for 

managing and accessing its Data Lakehouse in an efficient manner. With Apache Hudi's 

features, Twilio can perform incremental updates on its Data Lakehouse, making it easier to 

maintain a reliable source of messaging data.  

 

The Twilio's MDP team has implemented a modern design that addresses the shortcomings of 

the previous design, meets the functional requirements needed for an efficient system and 

better-prepares for more requirements to come down the line. This work has resulted in a fully 

functioning data lakehouse capable of handling petabyte scale, adaptability to different use-

cases, and supports various analytical procedures. This design serves as a reusable asset for 

other organizations and companies seeking an efficient and scalable data management system. 

 

The Twilio MDP team leveraged the technologies and frameworks mentioned in Table 11 to 

achieve the desired situation. 

 
Table 11. List of technologies and frameworks used 

System Technology 

SQL query 

engines 

Amazon Athena (Amazon managed PrestoDB) and Spark SQL via Apache Zeppelin 

Analytics 

engine 

Amazon Elastic MapReduce (Amazon managed Apache Spark cluster) 

Hive 

metastore 

AWS Glue data catalog (Amazon managed Apache Hive metastore) 

Output Amazon S3 

Input Amazon S3 with file notifications to Amazon SNS which gets fanned out to Amazon SQS 

or Apache Kafka through Apache Spark Structured Streaming framework 

Incremental 

processing 

Apache Hudi 

 

Apache Hudi is the epicentre of all systems, with every other system leveraging or being 

utilized by it.  
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Appendix 2 – Two-week aggregation query from Looker running on Presto in 34 seconds 
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Appendix 3 – Hudi writer app durations 
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Appendix 4 – DataHub view of Glue Metastore 
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Appendix 5 – MDR Finalized app Executors page in Spark history service 
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Appendix 6 – MDR Finalized app Stages page in Spark history service 
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Appendix 7 – MDR Finalized app Jobs page in Spark history service 

 


