
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

IE70LT

Shivalingaiah Venkataramanayya Palya Shivaramaiah

IVEM144711

INERTIAL MOTION SENSOR PROTOTYPE

WITH BLUETOOTH LOW ENERGY

CONNECTIVITY

Master’s Thesis

Supervisor: Alar Kuusik

 PhD

 Senior Research

Scientist

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

IE70LT

Shivalingaiah Venkataramanayya Palya Shivaramaiah

IVEM144711

BLUETOOTH LE SIDET KASUTAV

INERTSIAALSE LIIKUMISANDURI

PROTOTÜÜP

magistritöö

Juhendaja: Alar Kuusik

 Tehnikateaduste

doktor

 TTÜ vanemteadur

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Shivalingaiah Venkataramanayya Palya Shivaramaiah

04.06.2018

4

Abstract

The wireless communication can enable swift data transmission, location independent

communication and real-time monitoring and control, which are of paramount

significance for further health care monitoring purposes. Some of the toughest issues

facing portable medical devices are smooth real-time data processing and streaming,

especially because of low power consumption requirements.

There was an existing inertial motion sensor (IMS) developed for patient rehabilitation

and diagnoses purposes. Existing device had limitation of processing power of sensor

data, insufficient amount of memory, difficulties for further software development

because of obsolete Bluetooth Low Energy protocol stack. In the thesis core software

development of a new sensor prototype solution is described. The prototype is based on

nRF52 development kit and BNO055 motion sensor. Main part of the thesis describes

new sensor software solution that is based on FreeRTOS operating system and Bluetooth

Low Energy communication stack. Throughput and communication range test results of

the system are presented.

This thesis is written in English and is 50 pages long, including 9 chapters, 18 figures,

1equation and 10 tables.

5

Annotatsioon

Bluetooth LE sidet kasutav inertsiaalse liikumisanduri

prototüüp

Juhtmevaba side võimaldab kiiret ja asukohast sõltumatut andmevahetust, monitoorimist

ja juhtimist reaalajas. Need on esmatähtsad nõuded patsientide tervise jälgimise

rakendustes tulevikus. Ühed kõige keerukamad probleemid kantavate meditsiiniseadmete

juures on seotud reaalajaliselt sujuva andmetöötluse ja voogedastusega, eriti võttes

arvesse madala energiatarbe nõudeid.

Varasemal perioodil oli välja töötatud inertsiaalne liikumisandur patsientide

rehabilitatsiooni ja diagnoosi eesmärkidel. Eksisteerinud seadmel olid puudused seoses

piiratud arvutusvõimuse ja mälumahuga, edasine tarkvaraarendus oli raskendatud seoses

vananenud Bluetooth LE protokollipinuga.

Diplomitöös kirjeldatakse süsteemitarkvara arendust uue sensori prototüübile. Prototüüp

põhineb nRF52 arendusmoodulil ja BNO055 liikumisanduril. Töö peamine osa kirjeldab

uue sensori tarkvaralahendust, mis põhineb FreeRTOS operatsioonisüsteemil ja

Bluetooth LE sidepinul. Esitatakse süsteemi andmevahetuskanali läbilaskevõime ja

sidekauguse testide tulemused.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 50 leheküljel, 9 peatükki, 18

joonist, 1 võrrandit ja 10 tabelit.

6

Acknowledgement

First and for most, I would like to thank my supervisor Alar Kuusik, Senior Research

Scientist of Faculty of Information Technology-Thomas Johan Seebeck Department of

Electronics at Tallinn University of Technology. His guidance, encouragement, positive

attitude and consultation is very inspiring. I would like to take this chance to thank, Katri

Kadakas, Student counsellor, School of information technologies.

I would like to thank all my friends staying in Tallinn. Vinay, Yashwanth, Susu, Chethan,

your support is very remarkable in my life.

I can’t forget continuous encouragement and support from my family. I would take this

moment to express my very profound gratitude to my family. This accomplishment would

not have been possible without my family.

Thank you

Shivalingaiah Venkataramanayya Palya Shivaramaiah

7

LIST OF ABBREVIATIONS AND TERMS

AES - Advanced Encryption Standard

API - Application Program Interface

ARM - Advance RISC Machine

ASSN - Application Specific Sensor Nodes

bps - bits per second

BLE - Bluetooth Low Energy

BSX - Bosch Sensortec sensor fusion software

GAP - Generic Access Profile

GATT - Generic Attributes

I2C - Inter IC Communication

ID - Identification

IDE - Integrated Development Environment

IMS - Inertial Motion Sensor

IoT - Internet of Things

OS - Operating System

RAM - Random Access Memory

RF - Radio Frequency

RISC - Reduced Instruction Set Computing

ROM - Read Only Memory

RTOS - Real Time Operating System

SDK - Software Development Kit

SiP - System in Package

SoC - System on Chip

SPI - Serial Peripheral Interface

SRAM - Static Random Access Memory

TI - Texas Instruments

UART - Universal Asynchronous Receiver Transmitter

USB - Universal Serial Bus

UUID - Universally Unique Identifier

8

TABLE OF CONTENTS

Abstract ... 4

Annotatsioon Bluetooth LE sidet kasutav inertsiaalse liikumisanduri prototüüp ... 5

Acknowledgement ... 6

LIST OF ABBREVIATIONS AND TERMS ... 7

TABLE OF CONTENTS ... 8

LIST OF FIGURES .. 11

LIST OF TABLES .. 12

1 Introduction ... 13

1.1 Task description .. 13

1.2 Development objectives ... 14

2 IMS System Architecture .. 15

2.1 System architecture ... 15

2.2 System architecture components .. 16

2.2.1 Hardware ... 16

2.2.2 Microcontroller software ... 16

2.2.3 Application software ... 16

3 Bluetooth Low Energy .. 17

3.1 Introduction .. 17

3.2 Bluetooth Low Energy use cases in healthcare .. 18

3.3 Bluetooth Low Energy stack .. 19

3.3.1 Physical layer ... 19

3.3.2 Link layer ... 20

3.3.3 Host controller interface .. 20

3.3.4 Generic access profile .. 21

3.3.5 Generic attribute profile .. 21

3.4 Standard and custom services ... 22

3.5 UUID .. 22

4 Nordic nRF52 Microcontroller .. 23

4.1 Previous IMS hardware platform ... 23

4.2 New platform selection ... 23

4.2.1 Nordic nRF52840 evaluation kit ... 23

9

4.2.2 Features of PCA10040 development kit .. 24

5 Real Time Operating System .. 26

5.1 Introduction .. 26

5.1.1 nRF52 RTOS support .. 26

5.2 FreeRTOS ... 27

5.2.1 Features .. 27

5.2.2 nRF52 FreeRTOS .. 27

5.3 ARM Mbed ... 28

5.3.1 Mbed OS .. 28

5.3.2 Features of Mbed OS ... 28

5.3.3 nRF52 Mbed OS .. 29

5.3.4 Software development tools .. 29

5.3.5 ARM Mbed online compiler ... 29

5.4 RTOS Comparison ... 29

6 BNO055 Orientation Sensor ... 31

6.1 Introduction .. 31

6.2 Integral blocks .. 31

6.2.1 Accelerometer sensor .. 32

6.2.2 Gyroscope sensor ... 32

6.2.3 Magnetometer sensor ... 32

6.2.4 Microcontroller and Software .. 32

6.3 System architecture ... 32

6.3.1 Power management ... 34

6.3.2 Operation modes .. 34

7 Implementation of Prototype Solution .. 35

7.1 IMS interface to nRF52 .. 35

7.1.1 Hardware ... 35

7.1.2 Software ... 35

7.2 IMS communication packets .. 36

7.2.1 Command packet ... 36

7.2.2 Response packet .. 37

7.2.3 BLE application packet ... 37

7.3 IMS application using nRF52 SDK .. 38

7.4 IMS application using FreeRTOS .. 40

10

7.4.1 Idle task ... 41

7.4.2 BLE stack task ... 42

8 IMS Performance Assessment .. 43

8.1 Throughput ... 43

8.2 Range test ... 44

8.3 IMS application test .. 44

8.3.1 IMS application test using Mobile .. 44

8.3.2 IMS application test using Laptop ... 45

9 Conclusion .. 47

References.. 48

 Hardware ... 50

11

LIST OF FIGURES

Figure 1: IMS System architecture. .. 15

Figure 2: Hardware components used in IMS. ... 16

Figure 3: BLE Stack architecture. .. 19

Figure 4: Link layer state machine. .. 20

Figure 5: nRF52 development kit [15]. .. 24

Figure 6: BNO055 internal blocks.. 31

Figure 7: BNO055 system architecture. ... 33

Figure 8: IMS prototype sensor. ... 33

Figure 9: nRF52 and IMS board interface. ... 35

Figure 10: nRF dev kit and IMS board connection. ... 35

Figure 11: IMS sensor initialization. .. 36

Figure 12: IMS application using nRF52 SDK. ... 39

Figure 13: IMS application using FreeRTOS. .. 40

Figure 14: IMS application idle task. ... 41

Figure 15: IMS application BLE stack task.. 42

Figure 16: BLE mobile app connection sequence. ... 45

Figure 17: IMS application test setup using laptop. ... 46

Figure 18: nRF connect desktop software data. ... 46

Equation 1: Throughput calculation. .. 43

12

LIST OF TABLES

Table 1: BLE standard services. ... 22

Table 2: Microcontroller comparison. .. 25

Table 3: RTOS comparison. ... 29

Table 4: BNO055 power management. .. 34

Table 5: Sensor command packet. .. 37

Table 6: Sensor response packet. .. 37

Table 7: Sensor response error packet. ... 37

Table 8: BLE application packet. ... 38

Table 9: BLE application error status packet. .. 38

Table 10: Range test result. .. 44

13

1 Introduction

1.1 Task description

An inertial motion sensors (IMSs) are widely used for many movement tracking

applications like training monitoring, motion pattern recognition, industrial, automotive

and aviation motion sensing applications. The custom hardware platforms developed by

universities are widely used for motion measurement with help of signal processing and

pattern recognition algorithms. For example, motion data could be used for medical

rehabilitation and diagnoses of patients to provide proper treatment.

An existing hardware platform used at TTU has certain challenges in terms of

existing software improvements. The existing platform software drawbacks are as listed

below:

• The existing custom IMS platform is based on 8051 microcontroller of Texas

Instruments (TI) [1]; controller is only supporting BLE4.0 stack, processing of

BNO055 sensor data simultaneously with communication is performance critical.

I observed many times reboot and hang issues;

• Existing BLE4.0 [2] stack is obsolete and there is no more support from the

semiconductor vendor; further development of stack or software requires IAR

toolset, which is expansive;

• No real-time operating system (RTOS) support to handle peripherals in a simpler

way;

• Insufficient amount of memory for the further developments.

To overcome abovementioned software implementation challenges, the task has been

defined to find a new hardware and software platform for next generation IMS. New

platform should support BLE4.2 or newer version of Bluetooth stack and royalty free

software development environment. The platform should have more powerful

microcontroller to handle BLE stack, sensor data capture, and application tasks. And,

platform should support RTOS [3]. The microcontroller should have enough

RAM(>=256kB) and Flash memory(>=512kB) to handle stack, operating system,

application program efficiently.

14

1.2 Development objectives

Taking into consideration of software requirement for new IMS hardware platform

certain objectives are defined.

• Selection and evaluation of a new microcontroller hardware platform for IMS;

analysis of hardware peripherals like RAM, ROM, and communication protocols;

• Surveying of BLE profiles for health monitoring and implementation of relevant

connectivity solution;

• Implementation of RTOS based ISM software prototype;

• Testing performance of implemented IMS software.

15

2 IMS System Architecture

2.1 System architecture

The IMS system contains of three main components: IMS software (firmware), IMS

hardware and an application software on personal computer or mobile device (Fig. 1).

According to technical requirement analysis I selected Nordic Semiconductor

microcontroller nRF52 [4]. A higher version of nRF52 microcontroller is 32-bit ARM

Cortex -M4F runs at 64MHz and have 1Mbit of flash with cache, 512kB of RAM, and

many IDE’s supported for application development. As by previous IMS device, new one

should sample the physical sensor data for every fixed interval (max 20ms) and transmit

sensor data via Bluetooth Low Energy to mobile or personal computer, which is running

BLE server stack application.

Figure 1: IMS System architecture.

16

2.2 System architecture components

2.2.1 Hardware

The hardware for IMS prototyping used is nRF52 development kit (left in Fig. 2), nRF51

dongle (in the middle) [5] for application testing and BNO055 9DOF motion sensor

(right) [6]. More details about hardware components are presented in further chapters.

Figure 2: Hardware components used in IMS.

2.2.2 Microcontroller software

The IMS application software is structured as three components: (a) main application, (b)

Bluetooth Low Energy communication application, (c) BNO055 interface application.

The main application controls sensor data sampling using application timer and process

the motion sensor data. The BNO055 sensor is interfaced to nRF52 by UART protocol.

nRF52 Bluetooth Low Energy stack is used to communicate sensor data to mobile or a

laptop. The main application and BLE stack application software development is

discussed in further chapters. The main application software also developed for

FreeRTOS real-time operating system.

2.2.3 Application software

To test application on laptop or personal computer, nRF connect software can be used

that is an open source provided by Nordic Semiconductor. To test application on mobile

device any Bluetooth Low Energy Android or iOS application can be used. I used nRF

Connect application software for testing purpose. BLE Scanner application can be used

as well.

17

3 Bluetooth Low Energy

3.1 Introduction

Bluetooth Low Energy, also known in the industry as "Bluetooth Smart", is a lightweight

subset of classic Bluetooth and was introduced as part of the Bluetooth 4.0 core

specification [7]. While there is some overlap with classic Bluetooth, BLE has a

completely different lineage and was started by Nokia as an in-house project called

'Wibree' before being adopted by the Bluetooth SIG [2].

Bluetooth Low Energy is designed for low power consumption applications like beacons,

fitness devices, home automation, etc. Bluetooth Low Energy devices best suitable for

very low data rate and low power consumption applications. BLE is dedicated for devices

working from a battery for years. Bluetooth Classic depletes a battery quickly because it

was designed to exchange a lot of data in a short amount of time. BLE is intended to

provide considerably reduced power consumption, and low cost while maintaining very

similar communication range to standard Bluetooth; otherwise known as, radio coverage.

The difference between Bluetooth and BLE is that there is no data throughput because

BLE does not support streaming data. After a connection has been established (paired),

BLE spends most of the time in sleep mode waiting to send/receive the next set of device

status information also known as ‘expose state”, such as the Battery Level. It has a data

rate of 1Mbps allowing for quick data transfer of small chunks or data packets (kB),

exposing the state of the device to retrieve that information. This status update interval

rate delay can be programmed from 7ms up to 4s between data polls. Once the data has

been transferred, a few milliseconds, the BLE goes back to sleep to conserve battery;

whereas, Bluetooth stays on the entire time regardless if information is being transferred.

There are some differences between Bluetooth Low Energy 4.2 and 4.0, in 4.2

specification [7] induces more security features during connection and data transmission.

Many other features similar in both specs.

18

3.2 Bluetooth Low Energy use cases in healthcare

Medicinal services are exorbitant, regularly depending on costly expert hardware and

offices, and exceptionally prepared staff. If medicinal services could utilize those human

and physical assets all the more proficiently, at that point there is extraordinary potential

for cost reserve funds, especially by lessening use on routine assignments. Bluetooth Low

Energy is a valuable innovation for executing vitality proficient remote correspondence

frameworks for social insurance purpose.

• Health monitoring at home: The IoT makes it conceivable to procure gigantic

investment funds, increments in proficiency, and upgrades in tolerant solace, by

moving noteworthy zones of patient care out of healing facility wards and into the

home. It's getting to be conceivable to screen patients' wellbeing wherever they

are. Observing gadgets, for example, therapeutic weight scales, heart rate screens

and pulse screens can track wellbeing and ready patients, families and guardians

to changes in essential signs, or missed prescriptions.

• Inpatient monitoring: In hospitals patients are regularly associated with various

human services gadgets. Essentially getting rid of wires gives significant

advantages, sparing staff time, diminishing danger of blunder, and making

patients more agreeable. Electrocardiography (ECG) screens and circulatory

strain sensors can exchange crucial sign information remotely to the healing

facility's focal observing frameworks.

• Ambulance monitoring: As paramedics treat a patient in a rescue vehicle while

in transit to healing centre, the defibrillator can utilize BLE to send constant data

about the patient's status to a portal inside the vehicle. This data is consequently

exchanged to the defibrillator producer's cloud benefit. Healing centres can buy

in to this support of be better arranged when the patient touches base at the ER.

Clearly, a comparative procedure of continuous data social event can likewise be

utilized with other gear in ambulances.

• Medicine monitoring: Continuous blood donation centre checking is another

appealing application. Blood must be put away inside a specific temperature

range, or it may not be ok for utilize. Each blood sack is labelled with a minor re-

usable tracer that tracks the temperature by means of a Bluetooth low vitality. The

19

sensor spends the majority of its life sitting unobtrusively on the rack in rest mode,

however is modified to wake up when it recognizes physical development. It

demonstrates the legitimacy of the blood by means of a LED and publicizes its

quality by means of Bluetooth low vitality.

3.3 Bluetooth Low Energy stack

Bluetooth Low Energy is completely redesigned of Bluetooth Classic protocol, they are

so different in use case and architecture. Below figure shows architecture of BLE stack

[8].

Figure 3: BLE Stack architecture.

3.3.1 Physical layer

Bluetooth Low Energy physical layer works in 2.4GHz ISM band and have 40 channels

with 3 of them as advertising channels and all other channels are data channels, and each

channel bandwidth is 2MHz. so BLE physical layer have 3 advertising channels and 37

data channels. the data is transmitted over that channels are controlled by two events, they

are advertising and connection events.

20

3.3.2 Link layer

The BLE link layer have state machine and it has five states. Standby, advertising,

scanning and scanning have two sub states active, passive. Initiating, connection and

connection have two sub states central, peripheral.

Figure 4: Link layer state machine.

A Bluetooth Low Energy device can be named in one of the following roles according

to states of link layer.

• Scanner: The device which receive advertising packets on advertising channels

without intended to connect are referred to as scanners.

• Advertiser: The device which transmit the advertising packets on advertising

channels are called as advertisers.

• Initiator: the device which need to make a connection to another device listens

for connectable advertising packets, are referred as initiators.

• Connectors: after establishing connection, the initiator becomes central device

and advertising packet becomes peripheral device.

3.3.3 Host controller interface

The host controller interface layer should have ability to communicate data without prior

knowledge of the data being transferred. Different host controllers been used and the

Bluetooth Low Energy specification defined three host controller interfaces, those are

USB, UART and SPI.

21

3.3.4 Generic access profile

The generic access profile defines fundamental operations in standard, discovering device

and connecting with peer device, establishing secure connections, broadcast packets, etc.

also connection parameters are defined here.

3.3.5 Generic attribute profile

The generic attribute profile layer defines about data communication. The GATT [9] have

two roles, a GATT server and GATT client, they completely independent of the GAP

roles. The device which is holding data is GATT server and the device which is accessing

data called GATT client. A device can act as both GATT server and GATT client

simultaneously. The GATT server organizes data in attribute table and the attributes that

contain actual data.

• Attribute: The attribute has handle, UUID, and value. Handle controls index in

the GATT table for the attribute. The UUID have information of type of data

within the attribute. There may be many other attributes in a GATT table within

the same UUID.

• Characteristics: A characteristic contains at least two attributes, a characteristic

declaration and the characteristic which holds attribute value. All data transferred

through a GATT service must be mapped to characteristics.

• Descriptors: A descriptor is an additional attribute and provides information

about characteristics. There is one special feature Client Characteristic

Configuration Descriptor this can be added to any characterises and that supports

the notify or indicate properties.

• Service: A service contains logical collection of related one or more

characteristics. Some of the GATT services are defined by SIG group and they

called as standard profiles.

• Profile: A profile is a collection of one or more services. The profile includes

information on services particularly profile as well how the peers communicate

data.

22

3.4 Standard and custom services

The Bluetooth special interest group (SIG) defines several profiles, services,

Characteristics, and an attribute based on GATT layer of the BLE stack. Anyway,

Bluetooth Low Energy all service are depends on requirement and designer, not on the

stack. The profiles which is defined by SIG called standard profiles and profiles which is

defined by vendors called custom profiles. Some SIG defined standard services are listed

below.

Standard services Handle

Alert notification service 0x1811

Battery service 0x180F

Blood pressure service 0x1810

Current time service 0x1805

Location and navigation service 0x1816

Device information service 0x180A

Glucose service 0x1808

Health thermometer service 0x1809

Heart rate service 0x180D

Table 1: BLE standard services.

3.5 UUID

A UUID is a 128-bit number and it is globally unique, provides an attribute type

information. The SIG defines separation between base UUID and a 16-bit UUID, used to

make complete base UUID. A Bluetooth SIG defined UUID have common base

0x0000xxxx-0000-1000-8000-00805F9B . the SIG defined UUID’s cannot be used for

any custom attributes, services or characteristics.

23

4 Nordic nRF52 Microcontroller

4.1 Previous IMS hardware platform

The existing IMS platform uses TI’s CC2540 [10] Bluetooth Low Energy wireless

microcontroller. It’s a System-on-Chip(SoC) processor embedded with industry standard

2.4GHz RF transceiver, In system programmable flash of 128kB/256kB, 8kB SRAM,

UART, High speed USB, along with standard 8051 microcontroller. Texas instruments

provides Bluetooth Low Energy 4.0 stack for CC2540. IAR embedded workbench is used

for stack software development.

4.2 New platform selection

Considering requirements, I have chosen Nordic semiconductor nRF52840 advanced

multi-protocol SoC microcontroller [12]. nRF52840 is an ultra-low power 2.4 GHz

remote framework on chip (SoC) incorporating a multiprotocol 2.4 GHz transceiver, an

ARM Cortex-M4F CPU and flash program memory. It is a definitive SoC for any short

range remote individual zone system or IPv6-empowered mechanization application.

4.2.1 Nordic nRF52840 evaluation kit

The nRF52 Development Kit is a single-board development kit for Bluetooth Smart, ANT

and 2.4GHz proprietary applications using the nRF52 Series SoC. This kit supports both

development for nRF52832 SoCs [11]. The kit is compatible with the Arduino Uno

Revision 3 standard, making it possible to use 3rd-party shield that are compatible to this

standard with the kit.

The kit supports the Nordic Software Development Tool-chain using Keil [12], IAR [13]

and GCC. The kit likewise bolsters ARM mbed apparatus chain for quick prototyping

and advancement utilizing mbed's cloud-based IDE and device chain with a broad scope

of open-source programming libraries. Program/Debug alternatives on the pack are

Segger J-Link Lite for standard instrument chain and CMSIS-DAP for mbed. The pack

offers access to all I/O and interfaces by means of connectors and has 4 LEDs and 4

catches which are client programmable. A scope of programming cases are accessible

from the nRF5 SDK to help Bluetooth Smart, ANT, ZigBee and 2.4GHz applications.

24

Figure 5: nRF52 development kit [15].

4.2.2 Features of PCA10040 development kit

• Hardware prototype board contains nRF52832 System-on-Chip microcontroller

and its supports for multiprotocol radio.

• The connectors are compatible with Arduino Uno v3 and all I/O, peripherals and

interfaces available over connectors.

• Kit can be programmed by USB drag and drop programming, nRF studio software

and using IDE’s.

• External pins provided for RF and power measurements.

• Kit can be powered three ways USB, external source(1.8V-3.6V) or a coin cell

battery.

25

To meet hardware requirement, I have chosen nRF52 series microcontroller for Inertial

Motion Sensor prototyping. nRF52 series microcontroller very rich in features as compare

to old platform designed by CC2540 microcontroller. Very flexible in software

development and supported by many IDE’s vendors. The comparison of new platform

using nRF52 over old platform shown in below table.

 nRF52840 [11] CC2540 [10]
Microcontroller 32-bit ARM Cortex -M4F @ 64MHz 8-bit 8051 CPU @32MHz

Multiprotocol radio
Bluetooth 5, BLE 4.2, ANT /ANT+,

ZigBee, NFC and 2.4GHz proprietary
2.4GHz Bluetooth low energy

Cryptography 128-bit AES /ECB/CCM/AAR co-processor AES security coprocessor

Over the air programming Supported by stack Not supported

Memory 1MB flash with cache, 256kB RAM 128kB/256kB flash, 8kB SRAM

Software stack
Application development independent of

protocol stack support
Only BLE 4.0 stack support

Software development tools Keil, IAR, GCC, Med online tool IAR

RTOS FreeRTOS, Mbed os No support from vendor

Soft Devices Multiprotocol Soft devices No Soft devices

Table 2: Microcontroller comparison.

26

5 Real Time Operating System

5.1 Introduction

The real-time operating system (RTOS) [3] is an operating system used to execute time

critical operations. There are two different variants of RTOS, classified according to time

critical execution. An operating system generally meets a deadline is defined as Soft real-

time operating system, for example MP3 player. But, if deadline is deterministic than it

is Hard real-time system, for example aircraft control system. There are many RTOS are

available in market, the main open source RTOS are FreeRTOS, Mbed OS, Contiki and

non-open source RTOS are Vxworks, UCOS-III, etc.

The important features of real-time operating systems are,

• Reliability: The system must be reliable, system should operate without any

human intervention.

• Predictability: The system should complete tasks within time frames. That would

define deterministic nature of RTOS

• Performance: This characteristic defines overall performance of system in terms

of power consumption, processing and throughput, etc.

• Compactness: The system should be compact in nature, overall system size,

memory, etc.

• Scalability: The system should be scalable up or down to meet application

specific requirements.

5.1.1 nRF52 RTOS support

The nRF52 SDK [11] supports for multiple real-time operating systems, FreeRTOS [14],

ARM Mbed OS [15], RTX [16] and provides example project to integrate applications.

27

5.2 FreeRTOS

The FreeRTOS [14] is a widely used real-time operating system in open source

community. FreeRTOS is a very small and simple real-time operating system, written in

C language and the microkernel consists of just three C files along with small assembly

functions. The software is an open source distributed under MIT license.

5.2.1 Features

• FreeRTOS scheduler – priority based, pre-emptive and supports for priority

inheritance.

• Supports for tickles mode for low power applications.

• FreeRTOS official support for more than 30 embedded system architectures, like

ARM, Coldfire, etc.

• Efficient software timers, execution tracing and stack overflow detection options.

• There are no software restrictions on number of real time tasks can be created and

task priorities can be used.

• Free development tools for supported architectures, free embedded software

source code and royalty free.

5.2.2 nRF52 FreeRTOS

The nRF52 SDK supports an implementation of a FreeRTOS port to nRF52 and the

provides tickles idle mode. The FreeRTOS is perfectly works with all SoftDevice

implementations, that means which never blocks any global interrupt when it has been

running with a SoftDevice. The nRF52 uses critical region functions to maintain interrupt

compatibility and BASEPRI register used to block interrupts below designed level.

The FreeRTOS port on nRF52 along with SoftDevice have certain limitations.

• The values of configLIBRARY_LOWEST_INTERRUPT_PRIORITY and

NRF_APP_PRIORITY_LOW should be same.

28

• The SYSCALL priority should be set to higher or equal as compare to lowest

application priority. to make sure this, set value of

configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY to equal or

higher than NRF_APP_PRIORITY_LOW.

• The behaviour of interrupt is not tested before the FreeRTOS initialization.

Interrupts having priority level higher or equal to NRF_APP_PRIORITY_HIGH

which uses FreeRTOS functions might break system initialization.

5.3 ARM Mbed

ARM Mbed [15] is a platform and operating system for Internet of Things devices. It

provides the Real-time operating system, gateway, device management services, and

cloud facility. The operating system ported on 32-bit ARM Cortex-M microcontrollers.

ARM Mbed is a collaborative project managed by ARM technologies and its partners.

5.3.1 Mbed OS

Mbed OS [17] is an open source embedded operating system developed specifically for

internet of things devices. The Mbed OS designed for products based on an ARM cortex-

M microcontroller, including security, connectivity, and drivers for sensors and I/O

devices.

5.3.2 Features of Mbed OS

• IDE and Toolchains: Development of Mbed OS supports several IDE’s and tools

available in market, ARM compiler 5, GCC, IAR [13], Keil [12], etc.

• Devices and RTOS: The Mbed OS supports for wide range of ARM Cortex -M

based devices. An IoT application can prototype easily on low cost developments

boards. RTOS core is based open source CMSIS RTOS-RTX [16].

• Connectivity: Varies connectivity options available in Mbed OS, supports for

WIFI, Bluetooth LE, NFC, Thread, LoRa LPWAN, Ethernet, RFID, Cellular, etc.

• Modularity: The software is structured such way that require modules are

included automatically and designer just need to focus on application code.

29

• Security: Mbed OS supports for multilayer security that helps to protect IoT

solutions. uVisor kernel restrict access to memory and peripherals. The

communication security uses SSL and TSL methods to protect data.

• Open source: Published under apache 2.0 license, software can be used for

commercial and personal projects.

5.3.3 nRF52 Mbed OS

The ARM Mbed provide free embedded software for nRF52 and it is royalty free. Also,

development tools for software development provided by ARM, which comes for free of

cost.

5.3.4 Software development tools

The arm Mbed ecosystem provides rich set of software development tools support. They

are categorised as arm Mbed Online Compiler and arm Mbed CLI. Depending on

development requirements choose software development tools.

5.3.5 ARM Mbed online compiler

The ARM Mbed online compiler, which allows to build Mbed os applications without

installing a toolchain and it provides facility for editing, compiling source online. The

online libraries help to generate optimized code.

5.4 RTOS Comparison

Features FreeRTOS [14] Mbed OS [17]

Developer Real Time Engineers Ltd

Collaborative project managed by

ARM and its partners

Language C, Assembly C, C++

Platforms

ARM, Atmel AVR, AVR32,

Microblaze, Cold fire, Fujitsu,

X86, TMS570, etc. 32-bit ARM Cortex-M

Kernel Microkernel Hybrid

Table 3: RTOS comparison.

30

The nRF52 software development kit supports for different Real Time Operating

Systems. I have considered FreeRTOS and Mbed OS for evaluation purpose. Finally, I

have chosen FreeRTOS for Inertial Motion Sensor prototyping. It has tickles sleep mode

control and supports many other microcontroller architectures other than ARM. The

kernel itself micro kernel and require very less flash and RAM memory. According IMS

application software using FreeRTOS consumes 27.264kB flash and 9.6kB of RAM

memory and have idle task for handling tickles sleep mode. Software is written in C

programming language.

31

6 BNO055 Orientation Sensor

6.1 Introduction

The BNO055 [18] is the first in a new family of Application Specific Sensor Nodes

(ASSN) implementing an intelligent 9-axis Absolute Orientation Sensor, which includes

sensors and sensor fusion in a single package. The BNO055 is a System in Package (SiP),

integrating a triaxial 14-bit accelerometer, a triaxial 16-bit gyroscope with a range of

±2000 degrees per second, a triaxial geomagnetic sensor and a 32-bit cortex M0+

microcontroller running with BSX FusionLib software. The sensor fused data provides

Quaternion, Euler angles, Rotation vector, linear acceleration, Gravity, Heading, etc.

6.2 Integral blocks

The BNO055 is an embedded with multiple sensor and fusion software. It has

accelerometer, gyroscope, and magnetometer sensor along with cortex M0+

microcontroller controlled by proprietary fusion software.

Figure 6: BNO055 internal blocks.

32

6.2.1 Accelerometer sensor

The accelerometer measures acceleration ranges from ±2g/±4g/±8g/±16g and with low

pass filter bandwidth of 1kHz to <8kHz. It can operate normal, suspend, low power,

standby, and deep suspend mode. Sensor has on chip motion triggered interrupt and

configured to any motion detection, slow or no motion detection, and high-g detection.

6.2.2 Gyroscope sensor

The gyroscope sensor measure ranges from ±125º/s to ±2000º/s and with low pass filter

bandwidth of 523Hz to 12Hz. Sensor operates in five different modes, normal, fast power

up, deep suspend, advance power saves. On chip interrupts controller can be set to any

motion detection, high rate.

6.2.3 Magnetometer sensor

The magnetometer sensor measure ranges from ±1300µT (x and y – axis) to ±2500µT (z

– axis) and magnetic field resolution of ̴ 0.3µT. sensor operates in four different modes,

low power, regular, enhanced regular, high accuracy and with four power modes of

operation, normal, sleep, suspend, force.

6.2.4 Microcontroller and Software

The BNO055 orientation sensor design with powerful 32bit cortex M0+ microcontroller

and running with Bosch Sensortec sensor fusion software and this software not exposes

to user programming.

6.3 System architecture

As discussed in above section BNO055 sensor embedded with multiple sensors and

microcontroller. The below figure shows architecture of BNO055 sensor.

33

Magnetometer

Gyroscope

Accelerometer

Data Fusion Power Management

Host Processor

BNO055

MCU

SPI

PC/

UART INT

Figure 7: BNO055 system architecture.

The BNO055 microcontroller controls interfaces of internal and external devices.

Accelerometer, Gyroscope and Magnetometer sensor are embedded in System in

Package(SiP) and uses serial peripheral interface(SPI) for communication. And

Controller manages sensor data read/write and power management according to register

settings. BNO055 can be interface with external processor using I2C or UART

communication protocol.

The below picture is BNO055 sensor supported by UART protocol and this sensor is

used IMS prototyping purpose. The sensor board was developed for TUT.

Figure 8: IMS prototype sensor.

34

6.3.1 Power management

The BNO055 sensor can be configured to run in three different modes. Normal mode,

low power mode, and suspend mode. The power mode selected through writing to the

PWR_MODE register as defined in below table.

Parameter Value [Reg Addr]: Reg value

Power mode Normal mode [PWR_MODE]: xxxxxx00b

Low power mode [PWR_MODE]: xxxxxx01b

Suspend mode [PWR_MODE]: xxxxxx10b

Table 4: BNO055 power management.

In normal mode all embedded sensors are switched ON. The register map and internal

peripherals are operated in this mode. If there no activity sensor can be configure to low

power mode. So that, power is saved. In this mode accelerometer is active. Once motion

detected, the system is woken up and entered normal mode. The interrupt pins can also

be configured to inform host controller about mode change. In suspend mode system is

paused and kept in sleep mode. Values are not updated into mapped registers. To exit

from suspend mode changed by writing to the PWR_MODE register.

6.3.2 Operation modes

The BNO055 provides a variety of operation modes, mainly Fusion and non-fusion mode.

the appropriate operation mode selected based on requirement. The default mode after

power on reset is CONFIGMODE. According to operation mode sensor are powered on.

While the sensors whose signals not required kept in suspend mode.

35

7 Implementation of Prototype Solution

7.1 IMS interface to nRF52

7.1.1 Hardware

The IMS board is connected to nRF52 development kit through UART interface [19].

The nRF52 transmitter line connected to receiver of IMS and nRF52 receiver line

connected to transmitter of IMS. Power line(Vdd) of 3.3V and ground lines also

connected to get power up IMS board. The below block diagram shows connections

between nRF52 development kit and IMS.

Figure 9: nRF52 and IMS board interface.

The below picture shows real interface of nRF52 development kit and IMS board.

Figure 10: nRF dev kit and IMS board connection.

7.1.2 Software

The IMS data communication is controlled by nRF52 microcontroller. So, software for

IMS is initialized after nRF52 bootup. very first, UART protocol configured to

36

115200bps, 8bit data, no parity and one stop bit [20]. Once the communication protocol

initialized IMS is configured. prior configure sensor verify chip responds or not. So, to

verify sensor, read chip ID and it should be 0xA0. After receiving valid chip ID select

page0 address of IMS sensor configure NDOF mode [21] for sensor operation. The flow

chart shows initialization of IMS sensor in software.

Figure 11: IMS sensor initialization.

The function imm_sensor_application_init () is used for IMS sensor initialization

in software.

void imm_sensor_application_init (void)

{

imm_sensor_uart_init (); // Configures UART protocol

 imm_sensor_init (); // IMM sensor configuring

 imm_sensor_timers_init (); // Starting sampling timer

}

7.2 IMS communication packets

According to implementation, IMS system follows communication packet structures [22].

They are sensor command packet, sensor response and ble application packet.

7.2.1 Command packet

To communicate with IMS sensor, the nRF52 should follow UART packet structure

defined by BNO055 sensor [22]. The command packet sent by nRF52 defined as follows,

37

the packet contains 4bytes. The first byte indicates start command(0xAA), second byte is

read command(0x01), third byte defines data reading address and fourth byte indicates

number of data to be read.

No of bytes Byte1 Byte2 Byte3 Byte4

Details Start Read Address length

Data 0xAA 0x01 0x08 0x12

Table 5: Sensor command packet.

7.2.2 Response packet

As a response for sensor command packet, the IMS sensor transmits response packet. The

typical time to acknowledge for command packet is 1ms and maximum is 4ms. In case

of successful, the IMS sensor will respond following message.

No of bytes Byte1 Byte2

Byte3 to

Byte8

Byte9 to

Byte14

Byte15 to

Byte20

Details Response Length Accelerometer Magnetometer Gyroscope

Data 0xBB 0x14 0xXX 0xXX 0xXX

Table 6: Sensor response packet.

In case of an error, the IMS sensor will respond with an error message and a status

information.

No of bytes Byte1 Byte2 Comments

Details Response Status

Data 0xEE 0x01 Write success

 0x03 Write fail

 0x04 Register map invalid address

 0x06 Wrong start byte

 0x07 Bus over run error

 0x08 Maximum length error

 0x09 Minimum length error

 0x0A Receive character timeout

Table 7: Sensor response error packet.

7.2.3 BLE application packet

The final packet turns over after receiving sensor data packet. The BLE application packet

contains two major parts one is packet count and sensor data. The data will be sent out if

38

IMS data service indication flag is enabled in Bluetooth Low Energy stack. Below table

details ble application packet.

No of bytes

Byte1 to

Byte2

Byte3 to

Byte8

Byte9 to

Byte14

Byte15 to

Byte20

Details Packet count Accelerometer Magnetometer Gyroscope

Data 0xXX 0xXX 0xXX 0xXX

Table 8: BLE application packet.

In case of an error, the ble application packet will respond with an error message and a

status information.

No of bytes Byte1 to Byte2 Byte3

Details Packet count Error status

Data 0xXX 0xXX

Table 9: BLE application error status packet.

7.3 IMS application using nRF52 SDK

The IMS applications developed using nRF52 software development kit [23]. Different

version of nRF52 SDK available in following link [23]. I have chosen nRF5 SDK v11.0.0

for IMS application development. The SDK comes with BLE stack, example code and

SoftDevice hex files. SoftDevice is a proprietary software of Nordic semiconductor and

only API’s exposed to application development. The application software can be

developed using following IDE’s Keil(up to 32kb free), Segger studio, GCC and its freely

available.

A standalone IMS application is implemented on top of UART example code provided

by nRF5 SDK. The sequence of software execution is as shown in below flow chart.

Software initialization starts after nRF52 bootup, the application software configures IMS

sensor and Bluetooth Low Energy stack of nRF52. IMS sampling timer starts after all

peripheral initialized, default sampling period is 100ms. Sampling period could be

changed in run time using BLE IMS sampling service in multiples of 100ms. The sampled

IMS data is transferred using BLE IMS data service.

39

Figure 12: IMS application using nRF52 SDK.

Two custom profiles are created in standalone IMS application, one is for sensor data

communication and other one is for sensor data sampling.

IMS data custom service UUID: 6E400027-B5A3-F393-E0A9-E50E24DCCA9E

IMS sampling custom service UUID: 6E400026-B5A3-F393-E0A9-E50E24DCCA9E

Default data sampling rate: 100ms

40

7.4 IMS application using FreeRTOS

The nRF52 SDK also supports for FreeRTOS application development. I have developed

IMS application software using FreeRTOS provided by nRF52 SDK. The nRF52 ported

FreeRTOS provides many functionalities like tickles idle mode, semaphores, timers,

device drivers, etc. To make use of FreeRTOS functionalities in IMS application two

tasks are created, one is for handling Bluetooth Low Energy stack and other one is for

handling nRF52 sleep mode. In this application, four BLE services are available. Two

custom profiles and two standard profiles.

IMS data custom service UUID is 6E400027-B5A3-F393-E0A9-E50E24DCCA9E and

notification property is activated.

IMS sampling custom service UUID is 6E400026-B5A3-F393-E0A9-E50E24DCCA9E

and write property is enabled.

Battery standard service UUID is 0x180F and notification property is enabled, simulated

battery samples are notifying for every one second.

Device information standard service UUID is 0x180A and read only property is enabled.

The below flow chart shows software execution sequence of IMS application using

FreeRTOS.

Figure 13: IMS application using FreeRTOS.

41

7.4.1 Idle task

One of the core feature of FreeRTOS is tickles sleep mode. In IMS application software

idle task handles tickles sleeping of nRF52 microcontroller. The below flow chart shows

idle task execution sequence.

Figure 14: IMS application idle task.

42

7.4.2 BLE stack task

The BLE stack task handles BLE services and advertising BLE packets for connection.

The below flow chart shows execution of BLE stack task.

Figure 15: IMS application BLE stack task.

43

8 IMS Performance Assessment

8.1 Throughput

The maximum achievable throughput is depending on different factors. The major factors

are listed here, selection of connection interval which is part of BLE connection

parameter. According to nRF52 SDK the minimum connection interval is 16ms and

maximum connection interval is 60ms. The second major factor is operating system

which is handling BLE stack call back functions and notification or indication responses.

Sometimes transmitted or received data from BLE require an acknowledgement, if that

not handled on time. This would significantly reduce data rate. Third factor is number of

packets transmitted per connection event. The nRF52 can both send or receive up to 6

packets per interval. Some of the android devices supports ~4 packets per interval and

iOS devices supports up to 6 packets per interval. Other minor factors also influence on

throughput, such as interference.

Now throughput can be calculated as below, number of packets per interval n and T is a

connection interval.

𝑇ℎ𝑟𝑜𝑢𝑟𝑔ℎ𝑝𝑢𝑡 = 𝑛 ∗ 20𝐵 ∗
1

𝑇
= 6 ∗ 20𝐵 ∗

1

0.016𝑠
=

7.5𝑘𝐵

𝑠
= 60 𝑘𝑏𝑝𝑠

Equation 1: Throughput calculation.

44

8.2 Range test

The nRF52 ble stack supports for different transmitter power settings, according

application requirement transmitter power can be set by using SoftDevice function call

sd_ble_gap_tx_power_set(). The below table shows different transmitter power and

achieved distance in meters.

Transmitter power Distance achieved in meters

−40 dBm ≤ 1

−30 dBm ≤ 1.5

−20 dBm 2

−16 dBm 3

−12 dBm 5

−8 dBm 7

−4 dBm 12

0 dBm 16

4 dBm 18

8 dBm Not supported by nRF52832

Table 10: Range test result.

8.3 IMS application test

8.3.1 IMS application test using Mobile

Hardware required: nRF52 development kit(PCA10040) [24], IMS sensor board, Mobile

with Bluetooth Low Energy supported for example Honor 7 [25].

Software required: IMS standalone application software or IMS application software

using FreeRTOS, nRF connect android mobile application [26].

Procedure: Install nRF connect android mobile application on mobile. Load IMS

application hex file to nRF52 development kit using nRFgo studio software [27]. Open

nRF connect application on mobile look for IMS application advertising device and

connect to that. The below pictures show sequence of IMS application software sending

sensor data to mobile.

45

Figure 16: BLE mobile app connection sequence.

The IMS application transmits data for every 100ms interval using IMS data service

(0x0027 handle) and interval can be modified using IMS data sampling service (0x0026

handle). Data sampling interval should be multiples of 100ms.

8.3.2 IMS application test using Laptop

Hardware required: nRF52 development kit(PCA10040) [24], nRF51 USB dongle, IMS

sensor board.

Software required: IMS standalone application software or IMS application software

using FreeRTOS, nRF connect for desktop software [28].

Procedure: Connect nRF51 USB dongle to laptop and run nRF connect desktop software,

select respective serial port for dongle and set for 115200 baudrate. Scan for BLE devices

and connect to IMS application device. After connecting BLE services are displayed on

application software. Enable notification of IMS data service and nRF connect software

start receiving sensor data for every 100ms interval and data is displayed on console

window. using IMS sampling service sensor data sampling interval could be changed in

multiples of 100ms. The below picture shows setup for IMS application test setup using

laptop.

46

Figure 17: IMS application test setup using laptop.

The below picture is nRF connect desktop software screen shot and could be able to see

IMS application device and sensor data.

Figure 18: nRF connect desktop software data.

47

9 Conclusion

The powerful and energy efficient device nRF52840 wireless microcontroller from

Nordic Semiconductor was selected for IMS prototype work. So, new IMS prototype was

implemented using nRF52 series development board. The sensor software prototype was

implemented on nRF52840 PCA10040 development board that supports different real-

time Operating Systems. I have considered FreeRTOS and Mbed OS for evaluation

purpose. Finally, FreeRTOS was selected for IMS prototype. FreeRTOS has energy

efficient tickles sleep mode control, small footprint micro kernel and it supports other

microcontroller architectures besides of ARM as well.

I implemented IMS application software based on FreeRTOS on nRF52840 evaluation

board. Software uses only 27.264kB flash and 9.6kB of RAM memory and supports

tickles sleep mode. Software was written in C programming language.

According to range test results nRF52 PCA10040 hardware development kit could be

able to send IMS sensor data 18 meters at 4 dBm of transmitter power. Range could be

increased by using another version of nRF52 chip. However, 10-15 meters of

communication range is well enough for the body area health applications.

The default IMS data sampling interval is set for 100ms. For every 100ms microcontroller

collect data from sensor and send it over BLE IMS data service. Data sampling interval

can be changed using by calling write property of IMS data sampling service. The

sampling rate only accepts multiples of 100ms. I have tested up to 20ms sampling interval

and able to receive without data lose.

48

References

[1] M. A. Mazidi, The 8051 Microcontroller and Embedded Systems: Using

Assembly and C, Pearson.

[2] B. S. I. Group, Core_V4.0.pdf, https://www.bluetooth.com/.

[3] Wikipedia, "Real time operating systems," pp. https://en.wikipedia.org/wiki/Real-

time_operating_system.

[4] N. Semiconductors, nRF52, [Online]. Available:

http://www.nordicsemi.com/eng/Products/nRF52-Series-SoC.

[5] N. Semiconductors, nRF51 USB dongle, [Online]. Available:

https://www.nordicsemi.com/eng/Products/nRF51-Dongle.

[6] B. Sensortec, BNO055, [Online]. Available: https://www.bosch-

sensortec.com/bst/products/all_products/bno055.

[7] Blutooth, "Bluetooth 4.0 Core specifications," [Online]. Available:

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737.

[8] B. SIG, "Core specifications," [Online]. Available:

https://www.bluetooth.com/specifications/bluetooth-core-specification.

[9] N. semiconductors, "Bluetooth low energy stack," [Online]. Available:

http://infocenter.nordicsemi.com/index.jsp.

[10] B. S. i. g. -. SIG, "GATT Specifications," [Online]. Available:

https://www.bluetooth.com/specifications/gatt.

[11] T. instruments, "CC2540 datasheet," [Online]. Available:

http://www.ti.com/lit/ds/symlink/cc2540.pdf.

[12] N. Semiconductor, "nRF52840 Product Specification," [Online]. Available:

http://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.0.pdf.

[13] N. semiconductor, "nRF52832 development kit," [Online]. Available:

http://infocenter.nordicsemi.com/index.jsp.

[14] K. software, "Keil software for ARM architecture microcontrollers," [Online].

Available: http://www.keil.com/.

[15] I. Systems, "IAR Embedded Workbench," [Online]. Available:

https://www.iar.com/.

[16] A. Mbed, "Nordic nRF52-DK," [Online]. Available:

https://os.mbed.com/platforms/Nordic-nRF52-DK/.

[17] FreeRTOS, "The FreeRTOS™ Kernel - Real time operating system," [Online].

Available: https://www.freertos.org/.

[18] A. Mbed, "Arm Mbed IoT Device Platform," [Online]. Available:

https://www.mbed.com/en/.

[19] A. Keil, "RTX Real-Time Operating System," [Online]. Available:

http://www.keil.com/arm/rl-arm/kernel.asp.

[20] A. M. OS, "Mbed OS 5 - Real time operating system," [Online]. Available:

https://os.mbed.com/.

49

[21] B. Sensortec, "BNO055 Intelligent 9-axis absolute orientation sensor," [Online].

Available: https://ae-bst.resource.bosch.com/.

[22] BOSCH, "BNO055 UART interface," [Online]. Available: https://ae-

bst.resource.bosch.com/media/_tech/media/application_notes/BST-BNO055-

AN012-00.pdf.

[23] BOSCH, Application note - BNO055 UART interface, BNO055 UART protocol,

BOSCH.

[24] BOSCH, "BST_BNO055_DS000_14 Datasheet," in BNO055 Intelligent 9-axis

absolute orientation sensor, BOSCH, pp. 21, 23.

[25] BOSCH, "BST-BNO055-AN012-00 - UART interface," in BNO055 UART

interface, BOSCH, p. 3.

[26] N. Semiconductor, nRF52 Software development kit,

http://infocenter.nordicsemi.com/index.jsp.

[27] N. Semiconductor, "nRF52832 Development Kit v1.1.x User Guide," [Online].

Available:

http://infocenter.nordicsemi.com/pdf/nRF52_DK_User_Guide_v1.2.pdf.

[28] gsmarena, Honor 7 specifications, https://www.gsmarena.com/huawei_honor_7-

7269.php.

[29] N. Semiconductor, nRF Connect for Mobile,

https://www.nordicsemi.com/eng/Products/Nordic-mobile-Apps/nRF-Connect-

for-Mobile.

[30] N. Semiconductor, nRFgo Studio-Win64,

https://www.nordicsemi.com/eng/nordic/Products/nRFgo-Studio/nRFgo-Studio-

Win64/14964.

[31] N. Semiconductor, "nRF Connect for desktop," [Online]. Available:

https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF-Connect-

for-desktop.

50

 Hardware

Typical UART connection to BNO055

	Abstract
	Annotatsioon Bluetooth LE sidet kasutav inertsiaalse liikumisanduri prototüüp
	Acknowledgement
	LIST OF ABBREVIATIONS AND TERMS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1 Introduction
	1.1 Task description
	1.2 Development objectives

	2 IMS System Architecture
	2.1 System architecture
	2.2 System architecture components
	2.2.1 Hardware
	2.2.2 Microcontroller software
	2.2.3 Application software

	3 Bluetooth Low Energy
	3.1 Introduction
	3.2 Bluetooth Low Energy use cases in healthcare
	3.3 Bluetooth Low Energy stack
	3.3.1 Physical layer
	3.3.2 Link layer
	3.3.3 Host controller interface
	3.3.4 Generic access profile
	3.3.5 Generic attribute profile

	3.4 Standard and custom services
	3.5 UUID

	4 Nordic nRF52 Microcontroller
	4.1 Previous IMS hardware platform
	4.2 New platform selection
	4.2.1 Nordic nRF52840 evaluation kit
	4.2.2 Features of PCA10040 development kit

	5 Real Time Operating System
	5.1 Introduction
	5.1.1 nRF52 RTOS support

	5.2 FreeRTOS
	5.2.1 Features
	5.2.2 nRF52 FreeRTOS

	5.3 ARM Mbed
	5.3.1 Mbed OS
	5.3.2 Features of Mbed OS
	5.3.3 nRF52 Mbed OS
	5.3.4 Software development tools
	5.3.5 ARM Mbed online compiler

	5.4 RTOS Comparison

	6 BNO055 Orientation Sensor
	6.1 Introduction
	6.2 Integral blocks
	6.2.1 Accelerometer sensor
	6.2.2 Gyroscope sensor
	6.2.3 Magnetometer sensor
	6.2.4 Microcontroller and Software

	6.3 System architecture
	6.3.1 Power management
	6.3.2 Operation modes

	7 Implementation of Prototype Solution
	7.1 IMS interface to nRF52
	7.1.1 Hardware
	7.1.2 Software

	7.2 IMS communication packets
	7.2.1 Command packet
	7.2.2 Response packet
	7.2.3 BLE application packet

	7.3 IMS application using nRF52 SDK
	7.4 IMS application using FreeRTOS
	7.4.1 Idle task
	7.4.2 BLE stack task

	8 IMS Performance Assessment
	8.1 Throughput
	8.2 Range test
	8.3 IMS application test
	8.3.1 IMS application test using Mobile
	8.3.2 IMS application test using Laptop

	9 Conclusion
	References
	APPENDIX A Hardware

