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Abstract 

Intrusion detection systems face ongoing challenges in accurately identifying malicious 

activities, particularly due to the increasing complexity of cyber threats. Despite 

widespread research on machine learning and deep learning for intrusion detection, real-

world applicability of the findings remains limited due to limitations inherent to outdated 

or synthetic training datasets. This thesis addresses this gap through a comparative 

analysis of a random forest model and a custom one-dimensional convolutional neural 

network, trained and evaluated using the large-scale Locked Shields 2023 dataset, derived 

from NATO CCDCOE's live-fire cyber defence exercises.  The results, validated on over 

16 million network flows, demonstrate that both models achieve high detection accuracy 

with F1 scores over 99%, with the neural network marginally outperforming the random 

forest in classifying malicious traffic, while the latter offers significant advantages in 

computational efficiency and interpretability. Cross-year validation using data from 

Locked Shields 2024 highlights a notable decrease in performance for both models, 

emphasizing the inherent difficulty of maintaining high accuracy amidst continuously 

evolving threats and network configurations. This thesis delivers a practical workflow 

and detailed insights into the comparative strengths and limitations of both traditional 

machine learning and advanced deep learning techniques, equipping cybersecurity 

researchers with clear guidance for implementing resilient intrusion detection systems. 

Additionally, the models implemented in this thesis provide a strong baseline for future 

expansions, including multiclass detection or adaptation to upcoming Locked Shields 

datasets. 

This thesis is written in English and is 112 pages long, including 6 chapters, 17 figures 

and 11 tables. 
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Annotatsioon 

Süvaõppe ja masinõppe võrdlev analüüs võrgu sissetungide 

tuvastamiseks kasutades andmeid maailma suurimalt 

küberkaitseõppuselt 

Sissetungituvastuse süsteemid (IDS) seisavad silmitsi üha keerukamate väljakutsetega 

pahatahtliku võrguliikluse täpsel tuvastamisel küberohtude kasvava komplekssuse tõttu. 

Kuigi masinõppe ja süvaõppe kasutamist sissetungituvastuses on laialdaselt uuritud, 

piiravad vananenud või sünteetilised treeningandmestikud tulemuste rakendatavust 

reaalsetes oludes. Käesolev magistritöö käsitleb nimetatud probleemi, võrreldes 

otsustusmetsa (RF) algoritmi spetsiaalselt häälestatud ühemõõtmelise konvolutsioonilise 

tehisnärvivõrguga (1-D CNN). Mõlemad masinõppe mudelid on treenitud ja hinnatud 

NATO CCDCOE küberkaitseõppuse Locked Shields 2023 mahukal ja realistlikul 

andmestikul. Rohkem kui 16 miljoni võrguliikluse voo põhjal valideeritud tulemused 

näitavad, et mõlemad mudelid saavutavad kõrge klassifitseerimise täpsuse, saavutades 

~99% F1-skoori. Tehisnärvivõrk ületas otsustusmetsa napilt tuvastustäpsuga, seevastu 

otsustusmets pakkus olulisi eeliseid arvutusliku efektiivsuse ja tulemuste tõlgendatavuse 

seisukohalt. Samas  järgneva aasta Locked Shields 2024 andmetega ristvalideerimine 

demonstreeris märkimisväärset mudelite jõudluse langust, mis viitab raskustele mudelite 

üldistusvõimes ajas muutuvate võrgustruktuuride ja arenevate küberohtude korral. 

Magistritöö tulemusteks on  praktiliselt rakendatav töövoog ning detailne ülevaade nii 

traditsiooniliste masinõppe meetodite kui ka süvaõppetehnikate tugevustest ja 

piirangutest, pakkudes seeläbi küberkaitse ekspertidele selgeid juhiseid töökindlate 

sissetungituvastuse süsteemide loomiseks. Lisaks moodustavad käesolevas töös 

valideeritud mudelid tugeva aluse edasistele uuringutele, võimaldades näiteks 

mitmeklassilise tuvastuse integreerimist või rakendamist järgnevate Locked Shieldsi 

õppuste andmestikega. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 112 leheküljel, 6 peatükki, 17 

joonist, 11 tabelit. 
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1 Introduction 

Intrusion Detection Systems (IDS) are used for monitoring network traffic and detecting 

suspicious or malicious activity. As such, IDS are a critical element of an effective 

cybersecurity strategy in the constantly evolving threat landscape [1]. Despite ongoing 

improvements in intrusion detection systems, accurately detecting increasingly evolving 

attacks remains challenging. The primary difficulty is balancing the timely detection of 

novel threats while minimising false alarms [1], [2]. Existing machine learning-based 

intrusion detection systems are often limited by the quality and the scale of their training 

datasets. This restricts the model’s effectiveness in recognising patterns in the malicious 

network data, and thus worsening the detection accuracy [2], [3]. 

1.1 Background 

The escalating frequency and sophistication of cyber threats pose a significant challenge 

to the security of digital infrastructures and assets. Organisations across various sectors 

are increasingly vulnerable to malicious activities that can compromise the integrity, 

confidentiality, and availability of their critical systems and data. This evolving threat 

landscape compels the deployment of robust security mechanisms capable of detecting 

and mitigating these risks. [1], [4] 

1.1.1 Network intrusion detection systems 

Intrusion Detection Systems serve as a critical component of an organisation's defence 

strategy. While preventative measures such as firewalls aim to block malicious traffic 

before it enters a network, IDS focus on identifying and alerting security personnel to 

malicious activities that may have bypassed these initial defences or originated from 

within the network itself [4]. The primary function of an IDS is to detect suspicious 

behaviour, providing timely alerts that enable security teams to respond effectively and 

minimise potential damage. [1], [5] 
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Network-based Intrusion Detection Systems (NIDS) are deployed at various points within 

a network infrastructure to monitor network traffic for suspicious activity [5]. These 

systems operate by capturing and analysing network packets as they traverse the network, 

looking for patterns that match known attack signatures or behaviours that deviate from 

established baselines. Key characteristics of NIDS include real-time monitoring 

capabilities, data preprocessing to filter irrelevant information, feature extraction to 

identify potential threats, and detection processing and classification using various 

algorithms [4], [6]. 

In the operation of an IDS, two common error types are false positives and false negatives. 

A false positive occurs when an IDS incorrectly identifies benign or normal activity as 

malicious, triggering an alert when no actual intrusion has taken place [6]. A high rate of 

false positives can lead to alert fatigue among security personnel, causing them to 

potentially miss genuine threats amidst the noise of numerous false alarms [6], [7]. 

Conversely, a false negative occurs when an IDS fails to detect an actual intrusion or 

malicious activity, classifying it as normal [6]. False negatives are particularly dangerous 

as they allow attackers to operate undetected within a system or network, potentially 

leading to significant data breaches or other harmful consequences [8]. Therefore, these 

two error types will be used as performance metrics for model validation in subsequent 

sections of this thesis. 

As the nature of cyber threats evolved, so did the sophistication and deployment of IDS, 

adapting to new attack vectors and technological advancements. This is why machine 

learning (ML) techniques have become increasingly popular in the field of IDS, offering 

the potential to significantly enhance their capabilities in detecting both known and novel 

cyber threats [9]. Supervised ML algorithms such as random forests are trained on 

labelled datasets and then classify new traffic accordingly [9]. These methods can achieve 

high accuracy given sufficiently representative training data [2]. Unsupervised ML 

methods detect outliers or anomalies in unlabelled data and thus can potentially better 

detect previously unseen attacks [10]. Nevertheless, the scope of this thesis is restricted 

to supervised learning approaches. 

In recent years, deep learning (DL) techniques have gained prominence in network 

intrusion detection research as a subset of machine learning that can automatically learn 

complex feature representations. Traditional ML methods typically rely on manually 
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crafted features as input, whereas deep learning models (e.g. deep neural networks) can 

ingest raw or high-dimensional data and learn informative features during training [11]. 

Despite their effectiveness, DL models can be computationally intensive and may face 

challenges related to interpretability and handling imbalanced datasets, which are 

common in intrusion detection scenarios [9], [11]. These different strengths and 

weaknesses highlight the need for a systematic comparative analysis of DL techniques 

against traditional ML methods, assessing not only classification performance but also 

practical considerations such as resource efficiency and generalisation to unseen data. 

This thesis aims to address this gap by evaluating and comparing these approaches using 

realistic datasets derived from the Locked Shields cyber defence exercise, thereby 

providing meaningful insights into the optimal deployment of machine learning 

methodologies for network intrusion detection in operational environments. 

1.1.2 Background of the Locked Shields cyber defence exercise 

Locked Shields is the world’s largest international live-fire cyber defence exercise, held 

annually since 2010 by the NATO Cooperative Cyber Defence Centre of Excellence 

(CCDCOE) in Tallinn [12].  It brings together thousands of cybersecurity professionals 

from dozens of nations to practice defending critical national information systems in a 

high-pressure, realistic scenario. The exercise comprises multiple simultaneous scenarios, 

each mimicking different real-world APTs (Advanced Persistent Threats), complete with 

distinct indicators of compromise. These scenarios challenge teams to maintain services 

and rapidly respond to real-time threats [3], [12], [13]. 

The training exercise is primarily focused on evaluating blue team performance, with the 

red team serving as adversaries and trainers, coordinating attacks across all blue team 

networks. The blue teams act as national cyber defence incident response units, tasked 

with securing and maintaining their assigned virtual infrastructures (or "Gamenets") 

while under attack, and serve as the primary audience for the exercise. In contrast, the red 

team centrally coordinates cyber-attacks against all blue team networks, employing pre-

planned operations to ensure a challenging, but level playing field. [2], [12], [14]. There 

are several supporting teams: the green team maintains the technical infrastructure, the 

yellow team offers real-time situational awareness, the user simulation team mimics 

everyday user behaviour with imperfect cyber hygiene to add realism, and the white team 

oversees overall coordination, including non-technical challenges. [14] 
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Blue teams operate as a rapid-reaction force in an already compromised network, 

identifying active threats, preventing escalation, and eradicating or mitigating malicious 

activity while maintaining critical services. In the past few scenarios, including 2023 and 

2024, the story has centred on the fictional nation of Berylia coming under cyber-attack 

amid geopolitical conflict [3], [12]. Blue teams are working to preserve critical services 

like power grids, telecommunications, banking systems and other critical infrastructure 

from the onslaught of red team attacks [13]. It is an interdisciplinary exercise, and as such 

the defending teams must also be able to handle parallel challenges such as strategic 

decision making, forensic analysis and legal issues. [12] 

The Locked Shields cyber defence exercise provides an unmatched opportunity for IDS 

research, as it uniquely captures contemporary threats within realistic scenarios, thereby 

allowing for thorough evaluation of ML and DL models under conditions closely 

mirroring real-world cyber operations. A more technical overview of the exercise is 

described in the sections 3.2 and 3.3. 

1.2 Research overview 

1.2.1 Research problem 

Even with the advancements in IDS technology, there remains a critical gap in 

understanding how traditional machine learning models compare to deep learning models 

in real-world intrusion detection scenarios. Many existing studies on network intrusion 

detection have relied on outdated or synthetic benchmark datasets, which limits the 

practical applicability of their findings [2]. Consequently, it remains unclear which type 

of approach, traditional ML or modern DL, is more effective at detecting malicious 

activities in contemporary network environments. The recent availability of a large, high-

quality intrusion detection dataset from the Locked Shields exercise [3] offers a new 

opportunity to evaluate these approaches under realistic conditions. However, it also 

raises new questions: will a conventional ML model or a deep neural network perform 

better when trained on such state-of-the-art data, and how well can models trained on one 

year's attack data generalise to novel threats emerging in the following year? Addressing 

this uncertainty defines the research problem of this thesis: to determine the comparative 

effectiveness and practicality of traditional machine learning versus deep learning 
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methods for network intrusion detection, using modern large-scale data and considering 

the challenge of evolving cyber threats. 

1.2.2 Research questions 

The thesis is structured into 3 distinct parts. There is the literature review to identify the 

best ML and DL models, the experimental setup using CRISP-DM, and validating the 

trained models on the next years dataset, to test the generalisation capabilities of the 

models when encountering novel threats. The RQ1 provides the conceptual foundation 

on model selection and is addressed by the literature review. RQ2 provides direct 

performance comparisons and is addressed by the ML experiments done on the LSPR23 

dataset. RQ3 addresses model robustness over time, generalisation, and it is addressed by 

cross-year validation using LSPR24. 

To investigate the research problem, this research is structured around three key questions 

(RQ1, RQ2, and RQ3). A systematic literature review is conducted to identify the leading 

traditional ML model and deep learning model for network intrusion detection, an 

experimental evaluation of these selected models on the LSPR23 dataset is performed 

following a structured methodology (CRISP-DM), and a cross-year validation using the 

subsequent year’s dataset (LSPR24) is used to test the models’ robustness to new threats. 

Accordingly, each research question aligns with one part of the thesis: RQ1 lays the 

conceptual foundation through model selection in the literature review, RQ2 involves the 

performance comparison on the LSPR23 dataset, and RQ3 examines model performance 

over time via validation on the LSPR24 dataset. The research questions are formulated as 

follows: 

RQ1. Which industry-standard traditional machine learning model and state-of-the-art 

deep learning model are most effective and widely used for network intrusion detection? 

RQ2. How do the traditional learning techniques compare to the deep learning techniques 

in classification performance in classifying malicious network traffic?  

RQ3. How effective are traditional machine learning models compared to deep learning 

models in transfer learning across different databases? 
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1.2.3 Research objectives 

To address the above research questions, the following research objectives have been 

defined for this research, revolving around the central question: How can the best ML/DL 

algorithms be reliably identified, trained, and validated for real-world IDS deployments, 

using strong methodological standards and large-scale, up-to-date datasets? 

O1: Conduct a comprehensive literature review to identify one representative traditional 

machine learning model and one state-of-the-art deep learning model that are considered 

most effective and widely used for network intrusion detection (addressing RQ1). 

O2: Develop, implement, and evaluate the selected ML and DL models on a large-scale 

real-world intrusion detection dataset from Locked Shields 2023. This evaluation will 

compare the models’ classification performance in detecting malicious network traffic 

under realistic conditions (addressing RQ2). 

O3: Assess the generalisation capability of the trained models by validating their 

performance on the following year’s dataset from Locked Shields 2024 (LSPR24). This 

objective will determine how well each model handles novel attack patterns, thereby 

evaluating the robustness of traditional ML vs. DL approaches to evolving cyber threats 

(addressing RQ3). 

1.3 Contribution 

This thesis makes several contributions to the field of network intrusion detection systems 

and advances the state of knowledge in network intrusion detection. In practical terms, 

the findings of this thesis can help improve IDS performance, which has significant 

implications for enhancing network security and reducing the impact of cyber-attacks. 

The actionable insights gained from this comparative analysis will assist cybersecurity 

professionals in selecting and deploying the most suitable machine learning techniques 

for protecting critical systems against intrusions. In addition to these theoretical 

contributions, the thesis introduces a fully reproducible and complete evaluation 

framework which is directly applicable in future research or real-world scenarios, such as 

live-fire cybersecurity exercises. The major contributions are listed as follows: 
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1.3.1 Extensive literature review 

The thesis provides an up-to-date overview of current intrusion detection approaches by 

performing a systematic literature search of machine learning and deep learning methods 

for NIDS. This review condenses the landscape of techniques and identifies the most 

effective and widely used ML and DL models reported in the literature (addressing RQ1). 

Additionally, due to its comprehensive and structured presentation, the literature review 

can effectively guide future research directions, both on the LSPR23 dataset and others 

in the domain of intrusion detection. 

1.3.2 Comparative experimentation 

The thesis presents an empirical comparison of a traditional ML model and a modern DL 

model on a realistic, large-scale IDS dataset, unlike most intrusion detection research 

relying on outdated or artificial datasets. By leveraging the LSPR23 dataset, which 

depicts real-world network traffic from a live-fire cyber exercise, the research bridges the 

gap between theoretical model performance and practical deployment. The results offer 

insights into each model’s detection capabilities and limitations in an operational 

environment (addressing RQ2). 

1.3.3 Evaluation of model robustness 

The thesis evaluates the temporal robustness of ML and DL models through cross-dataset 

validation on LSPR24. This analysis demonstrates how the chosen models perform when 

faced with new and evolving attack vectors, providing evidence on whether advanced 

deep learning techniques maintain their advantage and practical utility over time or if 

their performance degrades relative to simpler models (addressing RQ3). 

1.3.4 Reproducible methodology 

A critical methodological contribution is the development of a fully reproducible 

experimental framework based on the CRISP-DM methodology, explicitly tailored for 

evaluating NIDS. All stages of the process, from data preparation and feature selection to 

model training and evaluation, are documented and conducted in a transparent manner. 

This provides a methodological best-practice and enables other researchers to replicate 

the research or adapt it to future datasets. Moreover, the work presented in this thesis is 

not only reproducible but directly applicable, as the developed models and procedures are 

structured with operational use in mind. This means cybersecurity professionals or 



19 

researchers can deploy the methods described here in subsequent Locked Shields 

exercises or similar live-fire cybersecurity scenarios. By clearly outlining computational 

requirements, dataset handling strategies, and model configurations, this thesis enables 

immediate practical application, enhancing its value beyond theoretical contribution 

alone. 

1.3.5 Model architecture 

This thesis contributes an innovative and customised 1-dimensional Convolutional 

Neural Network (1D CNN) architecture, specifically tailored and optimised for NIDS 

applications on the LSPR23 dataset. Unlike standard CNN models typically used for 

intrusion detection, this approach includes dedicated embedding layers for categorical 

variables addressing the challenge of efficiently handling high-cardinality categorical 

data, and thus significantly improving both computational performance and model 

accuracy. Furthermore, this research incorporates a novel GPU-accelerated 

implementation of the Random Forest algorithm using the recently introduced cuML 

library [15], a feature not yet widely adopted within the cybersecurity research 

community. This cutting-edge deployment has demonstrated significant efficiency and 

computational time advantages, significantly reducing both training and inference 

durations compared to conventional scikit-learn CPU-based implementations. 

1.4 Thesis roadmap 

The thesis is structured around the following key chapters. Chapter 2 provides an 

overview of the existing literature on machine learning and deep learning for intrusion 

detection, addressing RQ1. Chapter 3 describes the research methodology, including data 

analysis following CRISP-DM methodology, preprocessing, feature selection, and model 

implementation. Chapter 4 presents experimental results on the LSPR23 dataset and 

cross-year validation utilising LSPR24, addressing RQ2 and RQ3. Chapter 5 discusses 

findings, limitations, and future research directions. Chapter 6 summarizes the thesis, 

highlighting key contributions and implications of the conducted research for future 

intrusion detection systems.  
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2 Literature review 

The objective of this literature review is to systematically identify and critically analyse 

the current industry-standard ML and DL models utilised for NIDS. The review addresses 

the first research question which was: 

RQ1. Which industry-standard traditional machine learning model and state-of-the-art 

deep learning model are most effective and widely used for network intrusion detection? 

The review process starts with mapping the current landscape of ML- and DL-based 

intrusion detection research through database searches. The selected studies are screened 

based on the inclusion and exclusion criteria to eliminate unsuitable or irrelevant research 

and the remaining candidates are evaluated according to their real-world relevance, 

methodology reproducibility, and any potential compatibility issues with the LSPR23 

dataset. As the outcome of the literature review, one representative industry-standard 

traditional ML model and one state-of-the-art DL model are selected to be compared on 

the LSPR23 dataset. 

2.1 Literature review protocol 

Given that this research area is continually evolving due to rapid technological 

advancements, it is important that the literature review is conducted in a structured and 

transparent manner to be reproducible. This approach ensures the reliability of the results, 

allows future researchers to replicate and extend the analysis, and offers clarity on the 

decisions made during the review process. Consequently, systematic literature search 

methodology was adopted for this literature review following established guidelines such 

as PRISMA. [16], [17]. 

2.1.1 Data sources and timeframe 

To minimise selection bias and enhance the robustness of the review, three databases 

were chosen based on their relevance and coverage in computer science and machine 

learning: IEEE XPLORE Digital Library, ACM Digital Library, and Scopus [18]. These 

databases collectively encompass a wide variety of peer-reviewed journals, conference 

proceedings, and technical magazines. The timeframe for the literature review is from 
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January 2020, until March 2025, thus covering recent advancements in machine learning 

and deep learning for intrusion detection. 

2.1.2 Search strategy 

The search query was constructed by combining relevant keywords from the fields of 

traditional machine learning and deep learning, alongside specific terms related to 

intrusion detection systems. Keywords were selected based on common terminology 

found in existing literature and included terms indicating comparative studies, 

benchmarks, and performance evaluations. The goal was to retrieve literature directly 

evaluating or comparing different ML or DL methods applied to network intrusion 

detection. One search query, SQ1, was constructed from the identified keywords: 

SQ1. ("intrusion detection system" OR "network intrusion detection" OR "IDS" OR 

"network anomaly detection") AND ("machine learning" OR "ML" OR "deep learning" 

OR "DL") AND ("supervised learning") AND ("review" OR "survey" OR "comparative 

study" OR "benchmark" OR "evaluation") 

The search query was applied to the titles, abstracts and keywords of the articles. 

Including abstracts ensured that relevant studies were identified even if the specific search 

terms were absent from the titles, as abstracts typically summarise the objectives, 

methods, and key contributions of the papers, providing a more comprehensive basis for 

identifying relevant literature. For example, the Scopus database allowed the use of the 

TITLE-ABS-KEY() search operator, applying the search query specifically to the title, 

abstract, and keywords. Similar search options were also available and utilised in searches 

conducted within the ACM Digital Library and IEEE Xplore databases, ensuring a 

consistent approach across all selected sources. 

The retrieved papers were sorted automatically by relevance on Scopus and IEEE Xplore, 

and by recency on ACM Digital Library, to prioritise the most relevant and recent papers 

prior to manual review. Following the automatic retrieval and prioritisation, a manual 

two-stage screening process was employed to further filter these results, as detailed in 

Section 2.2. 
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2.2 Selection process 

All papers were systematically selected from the previously defined databases. The 

literature review was conducted at the beginning of 2025 to ensure the inclusion of most 

up to date papers. The search produced a considerable number of papers, which were 

subjected to a two-staged screening process in accordance with PRISMA 2020 guidelines. 

[17]  

2.2.1 Preliminary screening 

The first stage involved screening the titles and abstracts of the retrieved papers to assess 

their relevance to the research objectives. This preliminary screening aimed to exclude 

studies that did not directly address the application of supervised machine learning or 

deep learning techniques in intrusion detection systems or those that focused on unrelated 

aspects of cybersecurity. During this phase, only papers that did not trigger any exclusion 

criteria were advanced to full-text evaluation. 

2.2.2 exclusion criteria 

A study was excluded if it matched any of the following criteria: 

1) The study was published prior to 2020, therefore increasing the risk of using 

outdated ML methods. 

2) The study was written in any language other than English, introducing potential 

language barriers. 

3) The study was not published in reputable, peer-reviewed journals or conference 

proceedings. 

4) The study was a duplicate of an already selected study from a different database. 

5) The methods proposed were clearly incompatible or impractical given the nature, 

size, or other characteristics of the dataset targeted by this research. 

2.2.3 Full text evaluation 

In the second stage, the full texts of the selected papers were examined to confirm their 

suitability and quality. This stage was used to validate that each paper clearly described 

its experimental setup, including model design, dataset specifics, and evaluation metrics, 
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so that the results could be independently reproduced. Only the studies that met all the 

inclusion criteria were included in the final review. 

2.2.4 Inclusion criteria 

A study was included if it met all the following criteria: 

1) The study primarily addresses network intrusion detection or cybersecurity 

anomaly detection using supervised machine learning or deep learning methods. 

2) The study provides sufficient details on the model’s architecture, evaluation 

metrics, and dataset characteristics to allow for replication. 

3) The proposed method in the study is reproducible using widely available libraries 

(e.g., TensorFlow, PyTorch, scikit-learn). 

4) The study includes empirical results or performance evaluations, preferably using 

recognised benchmarks or datasets. 

5) The dataset used to train the model/s is similar enough to LSPR23 to ensure likely 

compatibility. 
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2.3 Selected papers 

 

Figure 1. PRISMA systematic search flow diagram, adapted from Page et al. [17] 

As can be seen from the above PRISMA flow diagram [17] on figure 1, the search query 

returned a grand total of 3125 records. With ACM Digital Library contributing 2,524 

records, IEEE Xplore 362 records, and Scopus 239 records. After applying the language 

and publishing date restrictions, 924 records were dropped from the results. The ACM 

search returned a substantial number of records with a substantial proportion identified 

as irrelevant to the scope of the review upon preliminary screening. To optimise the 

allocation of resources and limit the assessment of unrelated literature, the abstract 

screening process for ACM was confined to the first 300 records. This amounted to 

discarding an extra 1422 records resulting in the removal of 2,347 records overall before 

the screening. This left 779 records eligible for further screening: 283 from IEEE Xplore, 

300 from the ACM Digital Library, and 196 from Scopus.  

The next phase involved a detailed screening based on title, abstract, and keywords to 

determine the relevance of each study in the context of the research topic. After this 
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assessment 667 of these records failed the exclusion criteria, e.g. the models used were 

unsupervised or otherwise clearly incompatible with the characteristics targeted by this 

research. Thus, 112 potentially relevant records, 28 from IEEE Xplore, 29 from ACM 

Digital Library, and 55 from Scopus, were sought for retrieval. Of these, 10 were not 

successfully retrieved as the full text was not available with the Taltech library access. 

Consequently, a total of 102 reports were advanced to full-text evaluation to determine 

their compliance with the inclusion criteria. Out of these reports, 17 were excluded due 

to including no empirical testing (Reason 1), 4 reports were duplicates of already selected 

papers (Reason 2) and 46 reports were dropped due to other issues (Reason 3), such as 

not including enough details to be reproducible. 

Ultimately, 35 papers were selected for inclusion in the final literature review, categorised 

as follows: 19 studies addressing machine learning approaches, and 16 studies focusing 

on deep learning methodologies. Specifically, the ACM Digital Library contributed 7 ML 

and 5 DL papers, IEEE Xplore produced 5 ML and 3 DL papers, and Scopus provided 7 

ML and 8 DL papers. After the full text analysis, four of the selected papers were 

identified to have sufficient depth to be included both in the ML and DL sections, 

resulting in a total of 21 papers for ML section and 18 for DL. Additionally, several papers 

addressing related topics, such as feature selection frameworks or explainability of 

machine learning methods within the context of NIDS were identified. While these papers 

were not included in the primary literature review, they were incorporated into subsequent 

sections of the thesis to provide complementary insights. 

2.3.1 Publication trends  

Out of the 21 reviewed machine learning studies, 15 appeared as conference papers and 

6 as journal articles. Similarly, the deep learning category comprised 13 conference 

papers and 5 journal articles, indicating a clear preference for rapid dissemination through 

conferences. Geographically, the research is global in scope: notable contributions 

originated from Asia, particularly China [19], [20], [21], [22] and India [23], [24], [25], 

USA [26], [27], [28], as well as Europe [29], [30], [31], [32] and the Middle East [33], 

[34], [35]. This diverse provenance highlights widespread international engagement in 

network intrusion detection research, with active cybersecurity research communities 

prominently represented: USA, China, India, Australia [36]. Overall, the reviewed 
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literature reflects a broad cross-section of global academic interest in ML- and DL-based 

intrusion detection methodologies. 

2.3.2 Reproducibility of ML vs. DL approaches 

Most NIDS papers outline their methodology in detail, aiding reproducibility. Many 

studies clearly describe data preprocessing, feature selection, and model tuning. For 

instance, Gnanasivam et al. [26] explicitly detail using recursive feature elimination and 

cross-validation in training ML models. Several works list hyperparameters: e.g., a 

decision tree’s settings or an LSTM’s architecture (4 layers, learning rate 0.0001, dropout 

0.2). Such transparency allows researchers to replicate or extend experiments. Almost all 

studies specify the dataset used (NSL-KDD, CIC-IDS2017, etc.), ensuring that evaluation 

benchmarks are well-defined. Both ML and DL papers report standard metrics: accuracy, 

precision, F1, etc., enabling result comparisons across studies. 

A high proportion of papers explicitly mention the libraries/frameworks employed, which 

further supports reproducibility. Traditional ML studies often used scikit-learn, Apache 

Spark MLlib, or MATLAB toolboxes. This indicates authors built on well-tested 

implementations. Deep learning studies frequently note using Keras/TensorFlow or 

PyTorch for neural networks. Knowing the framework and version (e.g., TensorFlow 2.x) 

helps others achieve consistent training behaviour. Additionally, some works utilise 

platform environments like Google Colab or CUDA acceleration, which are mentioned 

to inform the computational setup. 

Despite methodological clarity, only a minority of works publicly released code. In the 

surveyed papers, Code Repository links were rarely provided. Notable exceptions include 

Bridges et al. who shared a GitHub repository with code associated with their malware 

detector evaluation [28], and Alotaibi and Maffeis [32] who released the Mateen 

framework code. The lack of easy access to the code in the majority of papers means that 

reproducibility often relies on reimplementing models based on descriptions.  

Traditional ML papers generally achieve higher reproducibility due to simpler model 

structures and reliance on standard algorithms. Many ML studies evaluate well-known 

classifiers with default or easily tuned parameters (e.g. C4.5 decision trees, SVM with 

RBF kernel), which anyone with the same library can replicate. In contrast, DL papers 

involve custom neural network architectures that are sometimes not fully specified. For 
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instance, some DL works omit certain hyperparameters, e.g. number of neurons per layer, 

or only describe them qualitatively, for example “CNN with convolutional, pooling, and 

fully connected layers” without specifying the exact layer counts. This can make 

reimplementation tricky without additional guidance. However, several deep learning 

studies do enhance transparency by reporting training times or giving partial architecture 

details. Both ML and DL research in NIDS strive for methodological openness, but ML 

approaches tend to be easier to reproduce given their use of well-documented algorithms 

and fewer tuneable parameters. Deep learning approaches show very high performance 

yet require careful reimplementation of neural networks to replicate results, especially 

when code isn’t shared. 

2.3.3 Data extraction 

Key information from each reviewed paper was systematically extracted, including 

authors, publication year, algorithm category (classical machine learning or deep 

learning), models tested, datasets used, best-performing model, top reported metrics, with 

focus on accuracy and F1 score, utilised tools/libraries, and strengths or weaknesses 

highlighted by the original authors. Terminology and measurement units were 

standardised across studies to ensure consistency; for example, all decision tree-based 

methods (CART, C4.5, ID3) were consolidated under "DT (decision tree)." For the 

metrics, accuracy and F1 were chosen, as accuracy provides a straightforward evaluation 

of overall detection correctness across different literature due to its widespread use, while 

the F1 score balances precision and recall, useful for assessing performance in imbalanced 

datasets typical in NIDS literature. 

Uncertainties regarding the top-performing methods were resolved using authors' explicit 

conclusions or highest reported metric values. Tools and frameworks such as scikit-learn 

and TensorFlow were noted explicitly when stated by authors. Primary metrics, the 

accuracy and F1 score for binary supervised classification, were consistently extracted to 

enable uniform comparison. 

Although multiple data extraction tables were created, only the most essential and 

summarised data is presented here due to length constraints. Appendix 2 table provides a 

comprehensive reference summary of the key metrics and findings for comparative 

analysis. 
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2.4 Overview of ML-based models in intrusion detection  

A wide range of classical machine learning algorithms has been applied to network 

intrusion detection, with tree-based classifiers and support vector machines among the 

most prevalent approaches. This distribution suggests that researchers gravitate toward 

models known for high accuracy in classification tasks, such as trees and SVM for 

intrusion detection, while simpler models serve as baselines or for comparison. Table 1 

summarises the usage and average performance metrics of the main ML models across 

the literature.  

Table 1. Overview of Machine Learning methods used in studies 

ML model Studies (n) Avg. acc. Avg. F1 References 

Random Forest (RF) 18 
~95%  

(80.66–

100%) 
 

~93%  

(87.00–

99.82%) 

[26] [37] [33] [20] [38] [39] 
[29] [28] [21] [40] [41] [42] 
[43] [22] [25] [44] [23] [36] 

Decision Tree (DT) 11 
~93%  

(70.33–

100%) 
 

~92%  

(76.00–

99.90%) 

[26] [37] [20] [39] [40] [19] 
[42] [22] [25] [44] [23] 

Support Vector 

Machine (SVM) 
12 

~89%  

(51.75–

100%) 
 

~91%  

(82.00–

99.97%) 

[26] [33] [20] [38] [39] [30] 
[29] [40] [41] [43] [25] [36] 

K-Nearest-

Neighbours (KNN) 
11 

~91%  

(64.70–

100%) 

~91%  

(79.00–

99.52%) 

[26] [33] [20] [29] [40] [19] 
[41] [43] [25] [44] [23] 

Naïve Bayes (NB) 5 

~77%  

(51.75–

100%) 

~88%  

(83.00–

98.00%) 

[20] [38] [43] [25] [23]  

Logistic Regression 

(LR) 
5 

~83%  

(63.96–

93.00%) 

~88%  

(85.00–

93.60%) 

[26] [33] [20] [43] [25] 

LDA (Linear Disc. 

Anal.) 
3 

~94%  

(89.30–

98.10%) 

N/A [37] [29] [41] 

Extra Trees (Ext. 

Randomised Trees) 
3 

~97%  

(95.87–

99.03%) 

~98%  

(95.96–

99.82%) 
 

[30] [22] [36] 
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XGBoost (Gradient 

Boosted DT) 
5 

~90%  

(65.08–

99.30%) 

~97%  

(93.00–

99.40%) 

[33] [21] [35] [22] [25] 

Ensemble 

(Bagging/Stacking) 
4 

~97%  

(94.50–

99.00%) 

~96%  

(94.90–

96.90%) 

[20] [38] [43] [22] 

 

Random Forest is frequently highlighted for its robustness to overfitting and ability to 

handle high-dimensional feature spaces. Because RF aggregates many decision trees via 

bagging, it significantly reduces variance and can maintain strong performance even 

when the input feature set is large or noisy [25]. Indeed, several studies note that RF yields 

stable, high accuracy across different network environments and attack types, making it 

a reliable choice for intrusion detection [25], [41]. For example, Li et al. [20] found tree-

based models, such as DT, RF, and Bagging ensembles, consistently outperformed linear 

models in both accuracy and efficiency, and Leon et al. [41] showed that RF can 

accurately detect all classes of network attacks across multiple datasets. The primary 

drawback of Random Forest is its computational cost: training an ensemble of hundreds 

of trees can be slower and more memory-intensive than training simpler models [29], 

[41]. In one experiment on UNSW-NB15, an RF classifier attained the highest accuracy 

with the incurred cost in significantly longer training time, on the order of minutes, 

compared to lightweight methods like linear discriminant analysis or clustering, which 

had lower accuracy [29]. Nevertheless, RF often remains computationally feasible. RF 

model, even when trained on the large CIC-IDS-2017 dataset, was still faster in execution 

than an SVM or kNN classifier, indicating that well-optimised ensemble implementations 

can strike a good balance between accuracy and speed [41]. 

Decision Trees (DT), on the other hand, are praised for their simplicity, interpretability, 

and low latency. While a single DT might not always match the raw accuracy of an 

ensemble, it can be highly efficient and, if properly tuned, still achieve excellent detection 

rates. Li et al. [20] and Disha & Waheed [42] both demonstrate that a plain decision tree 

can reach around 92–99% accuracy in intrusion detection tasks when enhanced with 

appropriate preprocessing. In a comparative study focusing on resource-constrained IoT 

settings, a CART decision tree was identified as the best performer, providing over 99% 

accuracy with the shortest training and prediction time among 15 algorithms tested [37]. 

Likewise, using UNSW-NB15, a tuned decision tree achieved about 92.8% accuracy with 
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the lowest false positive rate of 11.7%, thus outperforming more complex models in that 

experiment. This was made possible by applying feature selection and class-balancing 

techniques [42]. The strengths of DTs include very fast inference and the ability to 

naturally handle categorical features, which are beneficial for real-time IDS deployment 

[20], [42]. However, a known weakness is the tendency to overfit if the tree grows too 

complex or if noisy features are present. Simpler trees may also have slightly lower 

precision than recall in skewed datasets, meaning they might produce more false alarms 

unless carefully pruned or balanced.  Overall, studies suggest that when computational 

efficiency is a priority, such as in IoT or edge devices, a well-tuned decision tree can offer 

a favourable trade-off between accuracy and speed [20], [37], [42]. 

Other classical classifiers have been explored to varying success. Support Vector 

Machines (SVMs) with non-linear kernels often attain high accuracy on binary 

classification tasks and have been used in numerous NIDS works. For instance, SVM 

reached about 96–97% accuracy in some evaluations on KDD and LAN simulation data 

[33], [41]. Nonetheless, SVMs tend to be memory- and time-intensive for large datasets, 

as training complexity grows with the number of samples, and their performance can 

degrade if the data is not scaled or if optimal hyperparameters are not found. In one multi-

dataset study, an RBF-kernel SVM achieved excellent accuracy on simpler datasets, such 

as KDD99, but was outperformed by ensemble methods on more complex data [41]. In  

another study, SVM was outperformed by even a basic tree [25]. Moreover, the SVM 

required longer runtime than RF to train on a large dataset, in this case the CIC-IDS-2017 

[41]. 

k-Nearest Neighbours classifiers have also shown strong detection capability in some 

cases. A comprehensive IoT-focused analysis by Saif et al. [23] found that kNN was 

among the top-performing algorithms with approximately 97% average accuracy across 

a collection of 15 IoT and network intrusion datasets. This reflects kNN’s strength in 

adapting to varied data distributions without an explicit training phase. However, kNN’s 

major drawback is computational inefficiency at scale: storing and comparing large 

volumes of network traffic instances leads to high memory usage and slow lookup times 

for detection. The same study noted that kNN’s classification process became 

computationally expensive for large datasets, making it less practical despite its accuracy. 
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Meanwhile, Naïve Bayes (NB) and linear models such as LR and LDA generally exhibit 

much faster training and prediction times but consistently underperform in detection 

accuracy on complex datasets. [25], [38] For example, Garg and Mukherjee [25] report 

NB barely reached 52% accuracy on NSL-KDD under certain realistic train-test 

conditions, which was the lowest among the algorithms examined. Because of such 

limitations, NB and simple linear classifiers are mostly used as lightweight baseline 

models or as components in ensemble strategies, rather than stand-alone solutions for 

high-security scenarios [25], [38]. 

Beyond individual algorithms, feature engineering and evaluation practices play a critical 

role in classical ML-based NIDS performance. Many researchers apply feature selection 

or dimensionality reduction techniques prior to modelling, in order to remove redundant 

features and mitigate the curse of dimensionality. For instance, Recursive Feature 

Elimination (RFE) with an RF estimator was used by Gnanasivam et al. [26] to identify 

an optimal subset of network features in UNSW-NB15, which improved the accuracy and 

balance of their classifiers by reducing overfitting. A similar approach using RFE was 

adopted in an ensemble study on NSL-KDD, where selecting the top 13 features 

contributed to a notable jump in detection accuracy for the combined SVM+RF model 

versus using all features [38]. Other studies have employed statistical measures such as 

mutual information, chi-square, or model-based importance scores to guide feature 

selection [25], [42]. Disha and Waheed [42] demonstrated that a backward elimination of 

less significant features by using chi-square tests significantly enhanced the performance 

of DT, GBT, and MLP models on UNSW-NB15. In in fact, the decision tree’s success in 

their work was partly attributed to this feature reduction, which pruned irrelevant 

attributes that had been hindering the more complex models. Interestingly, they observed 

that RF’s performance did not improve with feature elimination. This is likely because 

RF inherently benefits less from external feature selection, as it can internally ignore 

uninformative features due to averaging across trees [42]. This suggests that feature 

selection benefits are more pronounced for simpler models, whereas ensemble methods 

already mitigate some effects of high dimensionality. 

In summary, classical machine learning methods continue to be prominent in NIDS 

research. Tree ensemble models, particularly Random Forest and boosted trees, are the 

most frequently endorsed due to their high detection accuracy and resilience against 

overfitting [21], [37], [41]. In many cases, these ensembles have demonstrated 
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performance on par with or even exceeding more complex methods, especially when 

combined with proper feature selection and parameter tuning [21], [38]. Simpler 

algorithms such as decision trees, kNN, and SVM remain important as baseline or niche 

solutions, offering advantages in speed or simplicity that can be valuable in constrained 

environments, for example, real-time IoT devices [20], [23], [42]. The literature also 

highlights trade-offs between detection performance and computational cost: ensemble 

models yield superior accuracy but may introduce greater training or inference latency, 

whereas lightweight classifiers are faster but generally less accurate [23], [38]. 

Researchers have addressed these trade-offs by employing techniques such as 

dimensionality reduction, parallel processing, and adaptive sampling to ensure that even 

high-performing models can meet operational efficiency requirements [26], [29], [37], 

[45]. Finally, extensive evaluations on diverse datasets, including the classic KDD and 

NSL-KDD as well as newer benchmarks such as UNSW-NB15, CIC-IDS2017, and 

domain-specific IoT datasets, have built a thorough understanding of classical ML 

capabilities. These studies collectively demonstrate that with careful tuning and 

evaluation, traditional machine learning-based NIDS can achieve robust and reliable 

intrusion detection, forming a strong baseline against which newer deep learning 

approaches are often compared, as discussed in the next section. 

2.5 Overview of DL-based models in intrusion detection 

Feed-Forward Deep Neural Networks (DNN/ANN) surface frequently as effective 

classifiers as in multiple studies, a fully connected ANN with several hidden layers 

achieved top accuracy and F1 scores. For instance, a comprehensive survey by Gamage 

and Samarabandu [46] found that a deep feed-forward network attained accuracy up to 

~99% and the best F1-score across four benchmark datasets. Its strength lies in fast 

training/inference and high accuracy even on large datasets, outperforming other DL 

models in that survey. Similarly, Saif et al. [23] report an ANN classifier as the most 

reliable model for IoT intrusion detection, noting its adaptability to complex and 

structured data with robust recall and F1. Attia et al. [27] observed that compared to 

XGBoost an ANN -based approach could generalise better to previously unseen attacks 

in some cases. These results illustrate that a well-tuned deep MLP/ANN can provide 

strong baseline performance in NIDS tasks. 
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Convolutional Neural Networks (CNN) have been widely applied, especially for 

capturing spatial or sequential features in traffic data. Nour and Said [34] evaluated CNNs 

against DNNs and RNNs on the CICIDS2017 dataset and found CNN achieved the 

highest accuracy and F1-score. The CNN’s ability to extract local feature patterns 

contributed to its superior true positive and true negative rates. Several other works 

corroborate CNN effectiveness: CNN variants are also used in hybrid models; one study 

combined CNN with LSTM to leverage both spatial and temporal features, reporting that 

the CNN+LSTM hybrid consistently outperformed standalone RNNs on unbalanced and 

balanced data, but a standalone CNN outperformed the hybrid model when using 

balanced datasets [47]. However, CNNs typically require more training time and 

computational resources; for example, a CNN in one experiment needed substantially 

longer training time than a simpler DNN on the same data [34]. Despite this, their high 

accuracy on complex multi-class traffic patterns makes them a popular deep learning 

choice for NIDS. 

Recurrent Neural Networks (RNN), particularly Long Short-Term Memory networks 

(LSTMs), are effective when sequential dependencies in network flows are considered. 

They have been applied to model time-series aspects of packet streams or event logs. 

LSTM was the best performer in Layeghy and Portmann’s cross-domain NIDS evaluation 

[36], achieving the highest F1-score on certain NetFlow-based datasets. Its strength was 

noted in handling sequential data and maintaining high accuracy across different network 

domains. Pawlicki et al. [31] also found that a LTSM model yielded the highest balanced 

accuracy and F1 among deep models on CIC-IDS2017, effectively detecting multiple 

attack types. RNNs excel at temporal pattern recognition, for example Shaffi et al. [48] 

demonstrated a RNN surpassing a CNN on NSL-KDD, attributing this to the RNN’s 

ability to capture temporal features in the connection sequences. The downside is 

computational cost: RNN/LSTM models can be slower to train and inference, as noted 

by Pawlicki et al. and others, particularly due to high inference latency. They may also 

struggle with rare attack classes if not enough sequence data is available. Nonetheless, in 

scenarios where the order of events is important, such as detecting slow-moving attacks 

over time, LSTM-based NIDS have a clear advantage in capturing context that static 

models might miss. 
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Table 2. Overview of Deep Learning methods used in studies 

DL model Studies (n) Avg. acc. Avg. F1 References 

RNN/LSTM 11 

~92%  

(81.3–

100%) 

~88%  

(73–

99.92%) 

[34] [36] [47] [46] [48] [40] 

[19] [31] [49] [50] [51] 

CNN 9 

~92%  

(77.25–

98.71%) 

~93%  

(84–

98.67%) 

[34] [24] [47] [48] [52] [19] 

[31] [49] [51] 

DNN 4 

~96%  

(90.77–

98.05%) 

~95%  

(93–

98.33%) 

[34] [24] [31] [49] 

ANN 5 

~98%  

(95.99–

99.17%) 

~96%  

(86.43–

99.76%) 

[27] [23] [36] [46] [50] 

AE 5 

~95%  

(92.66–

99%) 

~90%  

(76.28–

99%) 

[23] [36] [46] [53] [32] 

MLP 2 

~90%  

(80.3–

99.99%) 

~83%    [54] [40] 

Other (e.g. 

Transformer, 

LAD, GRU, 

Mateen) 

7 N/A N/A 
[34] [24] [47] [46] [53] [19] 

[32] 

 

While the focus of this thesis is on supervised learning, a few studies integrated 

unsupervised components to the supervised approach to enhance detection of novel 

attacks. For example, Uddin et al. [53] proposed a dual-tier system using an Autoencoder 

(AE) in the first tier for one-class learning. Their unsupervised model (usfAD) retrains 

on anomalies via clustering, yielding an accuracy of ~98.9% and notably high detection 

of zero-day attacks. This highlights that even within supervised contexts, AEs can assist 

by learning normal traffic patterns and flagging outliers. Another study by Alotaibi & 

Maffeis [32] used Deep Autoencoders as part of an adaptive ensemble (Mateen) to handle 

concept drift in network traffic. While autoencoders alone were not the top-performing 

supervised classifiers as they were mainly used to reconstruct inputs, their value in NIDS 

is seen in hybrid or adaptive frameworks that maintain performance over time. 
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Across the DL literature, certain performance trends emerge. Most deep models, when 

trained and tuned properly, achieve very high binary classification accuracy, often 95–

99%, on standard datasets. For example, various IoT-focused studies report deep model 

F1-scores above 95% on average. However, these impressive results sometimes come 

with caveats: class imbalance can inflate accuracy as models may just learn the majority 

class, so recall and F1 are more reliable indicators in such cases. Indeed, many authors 

emphasise F1-score and recall for evaluation, and some note the need for techniques like 

oversampling to balance training data. Another trend is that no single DL architecture is 

universally best, as performance can depend on the dataset characteristics. CNNs topped 

the rankings on flow-based datasets with rich feature structure, whereas LSTMs excelled 

when temporal sequence mattered. Strengths noted for DL models include their ability to 

handle complex, high-dimensional data and discover intricate patterns e.g. subtle attack 

signatures without manual feature engineering. Reported weaknesses include high 

training time. the need for large, labelled datasets, and especially poor explainability, 

which is critical when taking decisions based on the models output. Researchers are 

actively addressing these issues by exploring hybrid models, transfer learning, and more 

explainable DL in NIDS [22], [36], [55], [56]. 

2.6 Literature review findings 

This section presents the primary findings derived from the systematic literature search 

conducted to identify effective and widely utilised machine learning and deep learning 

models for network intrusion detection. It identifies existing research gaps and establishes 

the rationale for selecting Random Forest and Convolutional Neural Networks as the 

representative models for subsequent experimental evaluation on the LSPR23 dataset. 

2.6.1 Summary 

Both classical machine learning and deep learning methods have achieved notable 

success in binary network intrusion detection. Among traditional ML approaches, tree-

based ensemble models stand out. Random Forest and boosted trees (e.g., XGBoost, 

LightGBM) consistently rank as top performers, often attaining accuracy above 99% on 

benchmark datasets, as can be seen in table 1. Multiple studies showed RF or gradient-

boosted trees detecting intrusions with near-perfect true positive rates and minimal false 

alarms [21], [22], [33], [37], [41], [43]. Simpler algorithms like K-Nearest Neighbours 
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and Naïve Bayes sometimes lag behind in complex scenarios but can excel in optimised 

settings or certain data domains [19], [23], [38]. For example, Yu et al. showed KNN 

outperforming more complex deep learning models across multiple log-based anomaly 

detection datasets, demonstrating that simpler methods can be more effective in 

optimised, well-suited data domains, particularly benefiting from simplicity and 

computational efficiency [19]. 

Deep learning models, meanwhile, demonstrate an ability to automatically learn features 

and handle complex attack patterns. Several works reported deep neural networks, 

especially CNNs and LSTMs, reaching 95–99% F1-scores in detecting attacks ranging 

from DoS to web intrusions [24], [31], [34], [36], [46], [47], [50]. Notably, DL methods 

proved adept at low signal-to-noise situations: e.g., an LSTM-based system maintained 

~99% F1 across different network environments [36]. However, the literature also 

highlights trade-offs. Classical ML models are generally faster to train and easier to 

interpret, for example decision trees offer transparency in decisions, whereas DL models, 

though powerful, can be computationally intensive and act as black boxes [19]. For 

instance, an AlexNet-based IDS achieved excellent accuracy with low latency, but its 

complexity makes it harder to interpret decisions [52]. Furthermore, some deep models 

did not significantly outperform well-tuned ML models on tabular NIDS datasets, 

suggesting that simpler algorithms remain competitive, especially with proper feature 

engineering. 

2.6.2 Importance of the training dataset for ML algorithm selection 

Performance outcomes for classical ML-based NIDS vary notably with the choice of 

dataset and algorithm. On legacy benchmarks like KDD99 and its refined version NSL-

KDD, most classifiers can achieve very high accuracy due to the relative simplicity or 

redundant patterns in these datasets [29], [37], [43]. In contrast, on more recent and 

complex datasets such as the  UNSW-NB15 or CIC-IDS 2017,  reported accuracies are 

generally lower, in the range of roughly 85–95% for the best classical models [26], [40], 

[42]. For instance, using the UNSW-NB15 dataset, which contains contemporary attack 

traffic and is more challenging, Gnanasivam et al. [26] observed the highest accuracy 

with a neural network model. 88.62%, while the best traditional classifier, RF, achieved 

about 87.39% accuracy. Notably, the RF in that thesis still produced a high recall and F1-

score, indicating balanced detection capability, and it did so with a faster runtime than the 
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neural network approach [26]. Chindove and Brown [40] report that while several 

algorithms showed nearly 100% overall accuracy on CIC-IDS owing to majority of traffic 

being benign, their F1-scores for attack detection were much lower; among the tested 

models, RF obtained the highest F1 of 87% on CIC-IDS-2017, outperforming other 

classifiers like multi-layer perceptrons, SVMs and RNNs under the same conditions. 

2.6.3 Research gaps 

Detecting unknown or zero-day attacks remains a significant challenge, as traditional 

supervised models typically underperform on novel threats [27]. While some deep 

learning models demonstrate improved generalisation, no unified solution currently 

exists, prompting exploration of hybrid or advanced models such as combining RF with 

anomaly detection or enhancing CNN with outlier detection mechanisms [34], [53]. 

Another persistent issue is the performance of models across different domains, with 

models often experiencing reduced accuracy across different datasets due to shifts in 

feature distribution [36], [44]. This indicates the need for robust models adaptable to 

varying network contexts, to be addressed through evaluations on multiple datasets and 

possible domain adaptation techniques. This and the previous point will be tested by using 

the 2024 LS dataset. 

Class imbalance of the datasets further complicates  intrusion detection tasks, as it can 

lead to high overall accuracy masking poor minority-class detection [40], [47]. This thesis 

plans to  address class imbalance by using the synthetic minority over-sampling technique 

(SMOTE) proposed by Chawla et al. [57], and utilised by Meliboev et al. [47], Chindove 

and Brown [40], Shaffi et al. [48],  Altamimi and Abu Al-Haija [44]. 

Reproducibility remains limited within the field of NIDS due to inconsistent evaluation 

practices and lack of shared code [28], [46]. By employing established models (RF, CNN) 

under uniform testing conditions, this research provides reproducible baseline results, 

validating previous claims. In summary, RF and CNN are confirmed as effective models 

for NIDS, and the experimental approach of this thesis is guided by addressing the 

highlighted gaps: particularly unknown attacks, cross-domain robustness, class 

imbalance, and reproducibility. 



38 

2.6.4 Answer to research question RQ1 

RQ1: Which industry-standard traditional machine learning model and state-of-the-art 

deep learning model are most effective and widely used for network intrusion detection? 

Based on performance and reproducibility considerations, the selections made for 

experimentation stage were Random Forest as the representative ML model and a 

Convolutional Neural Network as the representative DL model. RF was chosen because 

it repeatedly emerged as a top traditional classifier with robust accuracy and low false 

alarm rates across various studies. It offers advantages in reproducibility, as it is 

implemented in standard libraries, with relatively few hyperparameters (trees count, 

depth) to tune and many studies found RF results easy to replicate and stable across 

datasets [58]. On the deep learning side, CNNs have demonstrated high efficacy in 

capturing complex patterns in network traffic, yielding F1-scores around 97–99% in 

several evaluations. CNNs were frequently favoured for their balance of performance and 

implementation maturity: CNN architectures for intrusion detection are well-documented 

in frameworks like TensorFlow, and their design (convolution + pooling layers) is easier 

to customise for tabular or flow data than more opaque architectures. While other DL 

models also performed strongly, CNNs offer a good compromise between accuracy and 

training speed and have been successfully reproduced by multiple independent studies 

while providing enough details (layer counts, training epochs, etc.) [34], [46], [47] 

Random Forests and Convolutional Neural networks were selected based on literature 

consensus highlighting ensemble trees and deep neural networks as highly effective 

methods in NIDS, forming the basis of the experimental work. 

  



39 

3 Experimental design and implementation 

This chapter details the experimental design and methodology employed to systematically 

compare traditional machine learning and deep learning models for network intrusion 

detection. Specifically, it addresses the second research question (RQ2): 

RQ2: How do traditional machine learning techniques compare with deep learning 

techniques in terms of classification performance for malicious network traffic? 

The experimental approach integrates applied experimentation with the Cross-Industry 

Standard Process for Data Mining, providing a structured, transparent, and replicable 

framework for data preparation, model implementation, and evaluation. CRISP-DM was 

chosen due to its rigorous yet flexible process, which provides a clear understanding of 

data-centric steps required for robust model development. [59] 

Given that the primary goal is evaluating the practical efficacy of ML and DL models, an 

applied experimentation approach, specifically validation testing, was selected. 

Validation testing ensures a structured and controlled evaluation environment that closely 

mirrors real-world operational conditions, and thus enables a direct and fair comparison 

between competing models [60]. 

The experimental environment is established using the Locked Shields Partners Run 2023 

(LSPR23) dataset, which provides high-quality, accurately labelled, and realistic network 

traffic data captured from actual attacker-defender interactions during the world's largest 

live-fire cyber defence exercise [3]. Although real-time traffic is not used for the 

validation, the realism and scale of the LSPR23 dataset ensure appropriateness for the 

validation testing approach on the ML and DL algorithms. Consequently, this approach 

provides a solid foundation to determine whether state-of-the-art deep learning methods 

outperform, match, or underperform industry-standard traditional machine learning 

techniques in detecting malicious network activities. 

3.1 Overview of CRISP-DM methodology 

The Cross-Industry Standard Process for Data Mining methodology was chosen as the 

methodological backbone for this thesis because of its structured approach and proven 

effectiveness in handling data-related projects from the idea to the deployment. While 
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alternative methodologies offering more exploratory or iterative workflows have 

emerged, CRISP-DM remains highly regarded for projects that demand goal-oriented 

processes and clear, documented procedures. [59], [61], [62]. In the context of this thesis, 

CRISP-DM ensures that each phase, from understanding the business problem (or, in this 

case, the research objectives) to deploying and monitoring the model, can be conducted 

and reported systematically. 

 

Figure 2. CRISP-DM process model 

 

CRISP-DM contains six main phases, outlined on Figure 2. While the phases are 

commonly presented linearly, projects often loop back to earlier stages as new findings 

emerge, on the figure this is illustrated by the thicker dark grey arrows. For instance, 

additional data cleaning or feature engineering might be required if the evaluation phase 

reveals inadequate performance [62]. The six phases of CRISP-DM, as applied within the 

scope of this thesis, are detailed below: 

1. Business understanding 

Although originally designed with business contexts in mind, the CRISP-DM 

framework generalises to accommodate a broader spectrum of data science 

applications, including academic research [62]. In the context of this thesis this phase 

translates into defining the research goals, identifying the core problems to be solved, 

and specifying success criteria.  
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2. Data understanding 

This phase involves familiarisation with the dataset, exploration of its key 

characteristics, and initial identification of any quality or representativeness issues. 

For the LSPR23 dataset, data understanding entails examining its network traffic 

features, identifying the different types of malicious activity, and confirming that 

labelling is accurate and consistent. 

3. Data preparation 

The LSPR23 dataset is already well prepared and labelled by Dijk et al. [3]. Therefore, 

the data preparation required in this thesis primarily involves validating data integrity, 

selecting the relevant features, and performing minor preprocessing steps to optimise 

data compatibility with the selected machine learning and deep learning algorithms.  

4. Modelling 

This phase focuses on selecting and configuring appropriate algorithms to meet the 

research objectives: comparing traditional ML and deep learning approaches. Key 

activities include hyperparameter tuning, model architecture design, and resource 

usage, e.g. GPU vs CPU based approach considerations. Each model is built upon the 

refined dataset resulting from the earlier steps. 

5. Evaluation 

Evaluation involves measuring how well each model performs against established 

criteria, such as accuracy, F1-score, or ROC-AUC, and determining whether it meets 

the requirements defined during the initial phases. Because intrusion detection entails 

high-stakes decision-making in cybersecurity, this step also involves an in-depth look 

at false positives and false negatives, along with any potential trade-offs between 

model outcome explainability, detection efficacy and computational cost. 

6. Deployment 

Although the models evaluated in this thesis are not intended for immediate 

deployment in a production environment, the CRISP-DM framework emphasises the 

importance of planning for future deployment and monitoring. Therefore, this section 
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describes the experimental environment in detail, including hardware and software 

configurations, as well as providing clear instructions to ensure reproducibility of the 

conducted experiments. 

3.2 Business understanding 

In the context of this thesis, the 'Business Understanding' phase from CRISP-DM 

translates into clearly defining research objectives and establishing precise evaluation 

criteria. Although this thesis is conducted within an academic setting, it retains practical 

relevance by addressing real-world needs in network intrusion detection. 

3.2.1 Objectives 

The primary objective of this section, aligned directly with the second and third research 

questions (RQ2, RQ3), is to systematically evaluate and compare the effectiveness of 

traditional machine learning and deep learning models in classifying malicious network 

traffic. This involves not only measuring raw classification performance but also 

examining trade-offs in terms of computational efficiency, resource demands, and 

interpretability of results.  

Secondary objectives are to explicitly identify the operational constraints and 

requirements relevant to cybersecurity stakeholders, quantify the impact of resource 

limitations on model deployment feasibility, and offer clear guidance on selecting suitable 

intrusion detection models tailored to practical scenarios and real operational 

environments. 

3.2.2 Stakeholders 

From a practical standpoint, the stakeholders for this research would be the infrastructure 

defending cybersecurity teams, in the context of the LS cyber-exercise, the so-called blue 

teams. The blue teams are interested in detecting intrusions with high reliability, minimal 

false alarms, and manageable resource consumption [2], [63]. Incorrectly classified 

intrusions (false negatives) may lead to substantial operational disruption, loss of 

sensitive data, and potential reputational damage. On the flip side, excessive false alarms 

(false positives) divert critical human resources from real threats [8]. By conducting the 

comparative analysis, the goal of this section of the thesis is to inform these teams on the 

potential trade-offs between advanced DL models and more established ML counterparts.  
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3.2.3 Resources and constraints 

The operational environment within the LS cyber-defence exercise places substantial 

resource limitations on the participating Blue Teams. Teams predominantly rely on 

virtual machines (VMs) with restricted computational capacities and limited connectivity 

through a low-bandwidth VPN tunnel. Consequently, any intrusion detection systems 

employed must be optimised for computational efficiency and minimal bandwidth 

consumption. [63] 

In this research, experimental analyses are conducted using hardware of moderate 

computational capacity, comprising components that are several generations behind the 

current state-of-the-art as of publishing: an Intel Core i5-13500 CPU with 14 cores, an 

Nvidia RTX 3090 GPU, and 64GB of DDR4 RAM. This hardware configuration was 

deliberately selected due to its cost-effectiveness and realistic ML performance, making 

it a practical option for deployment by Blue Teams during the exercise [64]. Thus, the 

findings and models derived from this thesis maintain their practical relevance and 

applicability to environments subject to similar operational constraints. 

3.2.4 Success criteria 

In an typical operational environment, success is measured by how effectively an 

Intrusion Detection System can distinguish between benign and malicious traffic while 

minimising false negatives [8]. In this thesis, the primary performance indicators were 

chosen during the literature review. The chosen indicators are accuracy, F1-score, ROC-

AUC, and confusion matrix analyses. Secondary factors include training time, inference 

speed, power usage and memory usage, which can significantly impact deployment 

feasibility. Both sets of metrics, detection accuracy and resource footprint, are needed to 

justify the adoption of the given IDS model in practice. 

This stage of the thesis research has been considered a success if it results in clear, 

evidence-based conclusions regarding the relative effectiveness and practical trade-offs 

between traditional machine learning and deep learning models. Thus, providing 

stakeholders with actionable insights to support informed decision-making in operational 

intrusion detection contexts. 
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3.2.5 Risks and mitigation 

1. Data imbalance in the training dataset leading to biased models 

As discussed in the upcoming Data understanding section, the LSPR23 dataset is 

imbalanced, featuring approximately a 10:1 ratio of benign to malicious network flows. 

Such imbalance poses a risk of producing machine learning models biased towards the 

majority class, adversely affecting detection accuracy, particularly regarding malicious 

traffic. This risk can be mitigated by assigning weights to each class that are inversely 

proportional to their frequency in the dataset during training. Additionally, sampling 

methods specifically designed for imbalanced datasets, such as the SMOTE dataset 

balancing technique proposed by Chawla et al. [57], are considered to enhance model 

robustness if the model performance is not satisfactory.  

2. Computational resource limitations impeding deep learning model training 

Although the selected deep learning model was chosen with computational constraints in 

mind, there remains a potential risk that its resource demands, in particular GPU memory 

usage and processing power, could exceed the available hardware capacity. If such 

resource constraints impede effective model training, mitigation measures would include 

employing incremental or batch training strategies. A more substantial mitigation strategy 

would be reverting to an alternative, less resource-intensive yet adequately performing, 

runner-up model identified during the literature review. 

3.3 Data understanding 

3.3.1 Dataset selection 

The LSPR23 dataset was selected because it aligns best with the research objectives of 

this thesis. Established and popular datasets such as KDDCUP-99 and CICIDS-17 exhibit 

significant limitations, including outdated attack scenarios, unrealistic network 

infrastructure, restricted scale, and imbalanced data representation. Recent datasets like 

Rosid-23 and ETFD-22, while addressing some contemporary requirements, still lack 

sufficient scale for robust, generalisable machine learning model development. [2], [3] 

In contrast, LSPR23, derived from the Locked Shields exercise, the largest live-fire 

cybersecurity exercise globally, features realistic attacker-defender interactions, 
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sophisticated and contemporary attack types, and an extensive, balanced representation 

of network activities [3]. Unlike many of the network datasets which are unlabelled [65], 

the LSPR23 dataset provides accurately labelled data, which is essential given that this 

thesis exclusively employs supervised machine learning methods [66]. All these 

characteristics enhance the dataset’s applicability for advanced machine learning-based 

intrusion detection, making it the most suitable choice for this research among the 

publicly available datasets [3]. 

3.3.2 Data access 

The LSPR23 dataset utilised in this research is publicly accessible and can be retrieved 

from the Zenodo repository [67], thereby supporting reproducibility and transparency 

within the academic community. Additionally, the more recent LSPR24 dataset has now 

been published on Zenodo [68], with the accompanying paper scheduled to appear at 

CyCon2025. Early access to the LSPR24 dataset was granted through direct collaboration 

with the dataset creators, who permitted its use within the scope of this thesis. 

3.3.3 Overview of the Locked Shields cyber exercise 

Locked Shields (LS) is an annual international live-fire cyber defence exercise organised 

by the NATO Cooperative Cyber Defence Centre of Excellence (CCDCOE) since 2010 

[12]. It is structured as a red team vs. blue team competition: multiple national blue teams 

act as defenders, while a centralised red team plays the adversary launching cyber-attacks 

[2]. Within a compressed timeframe, typically two days of full-scale operations, red team 

attacks progress through all stages of sophisticated cyber campaigns. From initial 

intrusion and privilege escalation to data exfiltration and infrastructure sabotage, all of 

which blue teams must detect and mitigate in real time [2], [3]. Each blue team operates 

in isolation on its own identical network environment and is scored on its ability to 

maintain service availability and contain attacks [14].   

The attacking red team in LS is a coordinated group of cybersecurity professionals who 

execute a broad range of offensive tactics against each blue team’s network. Their 

operations are pre-planned to meet exercise objectives but are performed in a live, 

dynamic manner. This means that the red team is not limited to a any specific attack and 

can adjust strategies, making the exercise unpredictable for defenders [14]. They also take 

advantage of the exercise’s user simulation: for instance, red team may trick “benign” 
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users, played by the user simulation team, into executing malicious commands or opening 

infected files, thereby bypassing some defences [3], [14]. From a defender’s perspective, 

this means the network traffic includes everything from phishing emails and drive-by 

downloads to SQL injection attacks on web servers and large DDoS bursts; all happening 

in parallel. This multi-faceted threat environment produces a uniquely diverse network 

data stream, and the many features of this environment (e.g., many simulated users, 

diverse protocols, and coordinated multi-stage attacks) are directly reflected in the 

LSPR23 dataset captures. 

3.3.4 Network environment  

 

Figure 3. Locked Shields 2023 network map, adapted from Dijk et al. [3] 

 Each Blue Team in Locked Shields is provided a dedicated virtual network, known as a 

“Gamenet”, which replicates the IT infrastructure of a fictional country’s critical systems 

[14]. The Gamenet architecture is highly elaborate and segmented, combining 

conventional enterprise IT components with specialised operational technology. For 

example, the LS 2023 environment included typical enterprise networks: internet-facing 

services, internal corporate LANs, ISP infrastructure with routers, switches, firewalls, and 

VPNs. In addition critical infrastructure systems such as a 5G mobile network, industrial 

control systems (SCADA/ICS) managing a power grid, a military air defence network, a 

central bank payment system (SWIFT), border guard systems, and even satellite 

communication link were also included as illustrated in figure 3, adopted from Dijk at al. 
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[3]. Therefore blue teams must be able to defend a wide range of devices and platforms 

within this network, including Linux and Windows servers, user workstations, FreeBSD-

based firewalls, PLCs and other industrial controllers (for water treatment plants, power 

management, etc.), and specialised military systems [3]. 

 

Figure 4. Overview of the traffic per network segment 

An overview of network traffic by comparing the frequency of network flows originating 

from (bars with diagonal hatching, Segment_src) and destined to (cross-hatched bars, 

Segment_dst) each network segment, presented on a logarithmic scale is provided in 

figure 4. Most network segments exhibit comparable counts for inbound and outbound 

flows, though certain segments, notably ISP backbones, the 5G core network, and internal 

corporate LANs, demonstrate significantly higher traffic compared to specialised 

segments like satellite links, monitoring (mon), and remote management systems (RMS). 

Several segments, such as the sinet and radio access networks, display noticeable 

asymmetry between inbound and outbound flows. This distribution underscores that 

network flow volumes vary widely across segments. 
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3.3.5 Dataset characteristics and composition  

The LSPR23 dataset is a collection of network traffic 

data captured from one of the blue team networks 

during the LS 2023 exercise. Specifically, a special 

virtual blue team deployed by the researchers to 

gather data. The raw packet captures from the 

exercise were processed into flow records, resulting 

in 16.3 million network flows spanning the two days 

of operations. Each flow represents a sequence of 

packets sharing common endpoints and protocol 

parameters, with bidirectional traffic combined into 

a single record for analysis. Importantly, every flow in LSPR23 is labelled to indicate 

whether it is part of malicious activity or just benign background traffic. The dataset 

creators assigned binary labels ("malicious" or "benign") to the network flows based on 

their connections to red-team infrastructure. Specifically, they classified a flow as 

"malicious" if either its source or destination was associated with known red-team 

infrastructure. As can be seen from figure 5, using this approach 1.64 million flows or 

around 10% of the dataset, were labelled as "malicious," while the remaining flows were 

labelled "benign." [3] This proportion of malicious traffic is much higher than in most 

real-world network traces, reflecting the high intensity of attacks during LS and providing 

a balanced dataset for machine learning in contrast to imbalanced legacy datasets [3]. 

 In terms of data format and features, LSPR23 is extremely rich. For each network flow 

record, a total of 101 features have been extracted or computed. These include the usual 

IP/TCP header fields and flow statistics (e.g. durations, byte counts, packet counts in each 

direction) as well as higher-level attributes. The CICFlowMeter tool was modified to 

recognise 26 additional network protocols present in LS, such as industrial and military 

protocols not handled by default, so that application-layer traffic could be properly 

identified in the flows. Custom features were added to characterise the LS environment, 

for example an “Internal/External” flag to denote if a flow crosses the network boundary 

and an “L3/L4 service” label indexing which service (by port/protocol) is in use. Each 

flow is timestamped and indexed, and the dataset provides lookup tables for any coded 

values. [3] 

Figure 5. Distribution of malicious / 

benign network flows in LSPR23  
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Beyond basic flow metrics, security-specific annotations are included: the team merged 

Suricata IDS output into the flow records, this means if a flow triggered any Suricata 

alert, the corresponding signature IDs, alert categories, and severity levels are attached to 

that flow entry. Additionally, the dataset authors provide a high-level attack narrative that 

runs in parallel to the flow data. This narrative is essentially a list of documented attack 

events, extracted from the exercise’s central logging platform, EXPO. With fields 

describing each attack’s goal, method, tools (mapped to MITRE ATT&CK tactics), the 

affected victim segment, and timestamps for when the attack occurred. This acts as a 

glossary of all significant red team actions during LS 2023, and it can be used to pinpoint 

which flows correspond to which specific incidents. Finally, the dataset includes host 

availability logs from the exercise’s scoring system: these indicate when critical services 

went down or recovered, providing ground truth for denial-of-service or service outage 

events. [3] 

The structure of the released dataset is organised into multiple CSV files/tables: a primary 

table for flow features and labels, and supplementary tables for attack events and service 

availability, with relational keys that allow cross-reference. For example, an attack event 

entry has an ID that can be found in the flow records that were part of that attack. Overall, 

the dataset is delivered in a machine-learning-friendly format: numerical feature vectors 

with ground truth labels, plus rich metadata to enable domain-specific analyses, like 

focusing on specific attack techniques or network segments of interest. 

3.3.6 Data quality and limitations 

A throughout data quality assessment of 

LSPR23 has already been conducted by 

its creators to identify any shortcomings 

or idiosyncrasies in the collected data. 

They reported that the dataset is 

comprehensive in scope as it captures 

traffic from all relevant parts of the LS 

network and includes a broad spectrum of 

protocols and systems [3]. In particular, 

the network configuration used for data capture was very complete: all key segments: 

internal LANs, external connections, and even the backbone ISP and special 

Figure 6. Distribution of non-finite values in the 

LSPR23 dataset 
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infrastructure; were monitored, and even typically hard-to-collect traffic like internal 

routing updates and inter-segment traffic was recorded [3]. The histogram shown in figure 

6 confirms the overall completeness of the dataset, with the majority of the columns 

containing no missing data. A total of 16 columns had NaN or infinite values, but only 8 

of these columns had NaN or infinite values accounting for more than 33% of their total 

data points. 

Several limitations and minor data issues were acknowledged by Dijk et al., mostly 

relating to the accuracy of labels for certain edge-case attack scenarios. First, the authors 

highlight a challenge with “stepping-stone” attacks, i.e. when a red team attacker gains 

control of a blue team machine and then uses that machine to attack other blue systems. 

In the current ground truth labelling, such internal attacks are not marked as malicious 

because the labelling logic relied on identifying traffic involving red team IP addresses 

as malicious. Consequently, if an attacker pivoted and launched an attack from an already 

compromised blue host, the resulting network flows appear as legitimate blue-to-blue 

communication and were incorrectly labelled as benign. The impact is that a learning 

model trained on these labels might not recognise those internal attack patterns as 

malicious since they are in the benign category. [3] 

Beyond labelling nuances, the dataset’s quality review also notes some inherent 

complexity that does not detract from data integrity but is important for analysis. For 

instance, many hosts in the LS network have multiple network interfaces and IP addresses 

for redundancy or to sit in multiple network segments [3]. This can complicate tracing an 

attack end-to-end, since the same physical server might appear under different IPs in 

different parts of the traffic. To mitigate this, the dataset includes host metadata such as 

segment identifiers in addition to IPs so that analysts can potentially recognise when flows 

on different IPs involve the same machine. Another point is that some benign traffic in 

the exercise is generated by automated scoring bots: green team systems that continually 

check service health, by making periodic requests to services. These bots’ traffic is 

labelled benign and included in the dataset; it is legitimate activity, though it might look 

artificial compared to human user traffic. The presence of scoring bot traffic is a feature 

of the exercise environment and could be considered an artifact, but it is clearly 

distinguishable by IP address and behaviour, and it provides useful information on service 

availability [3]. Overall, the LSPR23 dataset is considered high-quality and representative 

of a real, large-scale cyber defence scenario. 
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3.4 Data preparation  

Data preparation involved feature selection, handling missing values, and performing 

transformations on the raw dataset. Feature selection aimed to remove redundant and 

irrelevant features to improve model generalisation and reduce complexity. Missing 

values were identified and systematically addressed through appropriate imputation 

techniques. The following subsections describe these processes in detail, outlining the 

rationale behind the inclusion and exclusion of specific features. 

3.4.1 Feature selection  

Initially, the dataset contained a total of 101 features, spanning various aspects of network 

traffic. To enhance model effectiveness and prevent overfitting, irrelevant or redundant 

features, particularly those tied explicitly to flow identification and network addressing, 

were excluded. For instance, features such as IP addresses were dropped to promote 

model generalisability beyond the specific dataset context, as their inclusion could 

negatively affect transferability and robustness over time. The selection process involved 

careful consideration of the nature and redundancy of each feature, balancing the risk of 

information loss against the benefits of dimensionality reduction. The table below 

summarises the included and excluded features. 

Table 3. Summary of feature selection decisions 

Category Included/Total Selected feat. Excluded feat. 

Flow identification & 

network address columns 

7/16 SrcPort, DstPort, 

Protocol, service, 

conn_state, External_src,  

External_dst, L3/L4 

Protocol 

Flow ID, SrcIP, DstIP,  

Int/Ext Dst IP, 

Segment_src,  

Segment_dst, Expoid_src, 

Expoid_dst 

Timestamp & duration 

features 

1/7 Flow Duration mTimestampStart, 

mTimestampLast, Flow 

Bytes/s, Flow Packets/s, 

Fwd Packets/s,Bwd 

Packets/s 

Packet count & byte 

count features 

16/16 Tot Fwd Pkts, Tot Bwd 

Pkts, Total Length of Fwd 

Packet, Total Length of 

Bwd Packet, Packet 

Length Min / Max / Mean 

/ Std, Fwd Packet Length 

Min / Max / Mean / Std, 

Bwd Packet Length Min / 

Max / Mean / Std 
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Inter-arrival time (IAT) 

features 

14/14 Flow IAT Mean / Min / 

Max / Stddev, Fwd IAT 

Mean / Min / Max / Std, 

Fwd IAT Tot, Bwd IAT 

Mean / Min / Max / Std, 

Bwd IAT Tot 

 

TCP flags & protocol-

specific indicators 

10/13 FIN Flag Cnt, SYN Flag 

Cnt, RST Flag Cnt, ACK 

Flag Cnt, CWR Flag Cnt, 

ECE Flag Cnt, Fwd PSH 

flags, Bwd PSH flags, 

Fwd URG flags, Bwd 

URG flags 

URG Flag Cnt, PSH Flag 

Cnt, Down/Up Ratio 

Size, volume, and 

window features 

20 Average Packet Size, Fwd 

Bytes/Bulk Avg, Fwd 

Packet/Bulk Avg, Fwd 

Bulk Rate Avg, Bwd 

Bytes/Bulk Avg, Bwd 

Packet/Bulk Avg, Bwd 

Bulk Rate Avg, Subflow 

Fwd Packets/Bytes, 

Subflow Bwd 

Packets/Bytes, Fwd Init 

Win Bytes, Bwd Init Win 

Bytes, Fwd Act Data 

Pkts, Fwd Seg Size Min 

Fwd/Bwd Segment Size 

Avg 

Active/idle times 8/8 Active Min / Mean / Max 

/ Std, Idle Min / Mean / 

Max / Std 

 

Suricata alert features 0/4 - SigID_revision, Category, 
Severity, Anomaly_event 

Label columns 0/3 - Label_src, Label_dst, 

Label 

 

3.4.2 Flow identification features 

 The L3/L4 protocol feature, initially defined by 

Känzig et al. [63] and later adopted in the LSPR23 

dataset by Dijk et al. [3] represents Layer 3 

(Network Layer) and Layer 4 (Transport Layer) 

protocols within the OSI reference model [69]. 

This feature is supposed to distinguish among 

three primary protocols: TCP (coded as 0), UDP 

(coded as 1), and ICMP (coded as 2). However, 

exploratory analysis, shown on figure 7, 

uncovered unexpected protocol identifiers 
Figure 7. L3/L4 protocol value distribution in 

the LSPR23 dataset 



53 

(4071 instances coded as 3, and 2617 instances coded as 4). These are undocumented 

both in the works of Känzig et al. and Dijk et al, therefore these 2 values were treated as 

NaN values and encoded into “unknown”. These anomalies should be corrected in the 

most recent release of the LSPR24 dataset, eliminating the need for manual recoding. 

Regarding the inclusion of IP addresses as features, 

scholarly opinions diverge significantly. Dube [70] has 

criticised the CIC-IDS 2017 dataset for omitting IP 

addresses, highlighting their potential usefulness for 

accurately identifying malicious or misbehaving nodes 

within network environments when training ML models. 

Conversely, from the perspective of cybersecurity 

exercises and dataset generalisation, the inclusion of 

specific IP addresses raises concerns about limited 

applicability beyond the immediate context of a particular exercise, potentially reducing 

transferability and robustness of findings, e.g. beyond the LSPR23 exercise. In practical 

environments, IP addresses might also be dynamic or temporary. As can be seen from 

figure 8, there was 1466 unique source IP addresses in the dataset, but 31598 destination 

IP addresses. Including them as static features, for example by one-hot encoding, may 

gradually degrade model performance as the network structure changes over time, leading 

to frequent retraining. Relying on explicit IP addresses as identifying features may also 

facilitate adversarial evasion by permitting attackers to merely alter these addresses, 

thereby undermining the resilience and security efficacy of the detection models. Merkli 

et al. demonstrated that adversaries could compromise network flow classifiers by 

introducing minimal, strategically targeted perturbations to key traffic features, ultimately 

subverting decision boundaries and exposing inherent vulnerabilities in such feature-

dependent systems [71]. 

Meliboev et al. [47] used IP header-based higher level data instead of specific IP 

addresses when training their CNN deep learning models, and both Gehri et al. [58] & 

Känzig et al. [63] also utilised an abstracted feature derived from IP addresses when 

training their RF machine learning models, Int/Ext Dst IP. This feature indicates whether 

destination IPs reside within internal or external network ranges. As the LSPR23 features 

separate External_src, External_dst features, these were picked as they also contain 

information about the source address. 

Figure 8. Distribution of source 

and destination IP addresses in 

the LSPR23 dataset 
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Gehri et al. has noted that the LS network infrastructure changes annually [58]. Therefore, 

exercise-specific features Segment_src, Segment_dst, Expoid_src and Expoid_dst were 

also excluded to improve the model's ability to generalise. 

3.4.3 Timestamp and duration features 

 Start and last timestamps were dropped because in an offline ML context, raw 

timestamps could inadvertently allow the model to cheat. For instance, if attacks primarily 

occurred after a specific timestamp, the model might wrongly infer a simplistic rule such 

as "timestamp > X implies malicious," limiting its ability to generalise beyond the specific 

exercise context. Instead, the flow duration was chosen as a more useful feature because 

it represents intrinsic temporal properties of network flows without relying on absolute 

timing. Flow duration thus provides a robust, transferable 

feature that enhances the model's ability to generalise 

effectively across different scenarios. 

Flow Bytes/s, Flow Packets/s, Fwd Packets/s and Bwd 

Packets/s were dropped, as they consider no additional 

information. These can directly be derived from time and 

other features. For example, the Fwd Packets/s can be 

perfectly calculated from Flow duration and Tot Fwd Pkts 

features, as can be seen from figure 9. 

3.4.4 Packet count and byte count features 

All features in this category were considered valuable because they characterise the nature 

of network communication, including the number and sizes of packets in each direction. 

For instance, a benign flow might exhibit a balanced exchange consisting of a request 

followed by a response. In contrast, a malicious scan could involve only forward-directed 

packets without any responses, or a large data transfer may feature numerous large 

forward packets accompanied by fewer and smaller response packets. 

3.4.5 Inter-arrival time features 

Inter-arrival time (IAT) features were all selected, as they provide useful information 

about the arrival times and timing information of the packets, which can reveal patterns 

in traffic flows. However, Gehri et al. noted that if network infrastructure changes, the 

Figure 9. Comparison of 

calculated vs computed Fwd 

Packets/s feature 



55 

time dependant features can lead to incorrect classifications [58]. For this reason, these 

features might be excluded from the training data when evaluating models on the 2024 

dataset. 

3.4.6 TCP flags and protocol-specific indicators 

URG Flag Cnt and PSH Flag Cnt were dropped, as there are separate forwards and 

backwards flag counts for both which provide more information. Down/up ratio is also 

derived from total forward and total backward packets, so it is redundant.  

3.4.7 Feature reduction 

Disha and Waheed showed that while simpler algorithms such as DT benefited in 

performance from an optimised feature set, RF and MLP (simple neural net) didn’t see 

notable improvements from the reduced feature amount, and in fact RF saw a slight 

performance decrease [42]. This is why for this thesis recursive feature elimination was 

not done, instead being limited to manual removal of strongly correlating and irrelevant 

features. Preliminary tests done both with the CNN and RF models showed that neither 

model performed better with a reduced feature set, even if trained on the 2023 dataset and 

validated on the 2024 dataset. 

3.4.8 Data cleaning  

In preparing the raw network-traffic dataset for analysis, a critical initial step involved 

addressing the issue of missing data. Missing data, represented in the dataset as NaN (Not 

a Number) or infinite values, arise naturally in real-world measurements, often due to 

sensor malfunctions, measurement limitations, incomplete logging, or conditions inherent 

to network traffic, such as flows with insufficient packets to compute certain statistics. 

Table 4 shows that non-finite values are not uniformly distributed but cluster in a handful 

of columns. Four Suricata alert fields exhibit more than 95 % missing values; however, 

these variables had already been omitted from the training feature set on conceptual 

grounds. In addition, several network-address descriptors (Conn_state, Service, 

Segment_*, Expoid_*) are missing roughly one-third to two-thirds of all flows. Among 

the numerical features, the entire family of inter-arrival-time statistics (Flow IAT *) lacks 

data for about 18 % of the rows, and the rate-style metrics Flow Bytes/s and 

Flow Packets/s contain the same proportion of Inf values caused by zero-duration flows 
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or out of range readings. In total these 16 columns account for all the non-finite entries in 

the raw file, making them the primary targets for the imputation strategies discussed 

below. 

Table 4. LSPR23 features with non-finite values 

 

Handling these missing values is essential because most machine learning algorithms, 

including most gradient-boosted decision trees, random forests, and neural networks, 

cannot directly process NaN values. If left untreated, missing data either causes errors 

during model training or significantly degrades model performance. Therefore, a process 

known as imputation was employed. Imputation refers to the substitution of missing data 

points with reasonable estimates, derived from the observed dataset, thus enabling 

complete and analysable data. Two separate imputation strategies were adopted, 

corresponding to the types of features (numerical and categorical): 

Feature Category dtype NaN values Inf values Nonfinite % 

Anomaly_event Suricata alert features Float 16277465 0 99.535% 

Category Suricata alert features Float 15639501 0 95.634% 

Severity Suricata alert features Float 15639501 0 95.634% 

SigID revision Suricata alert features Float 15639501 0 95.634% 

Conn_state Flow identification & network address 

columns 

Category 10055421 0 61.488% 

Service Flow identification & network address 

columns 

Category 7218172 0 44.138% 

Segment_dst Flow identification & network address 

columns 

Category 5531411 0 33.824% 

Expoid_dst Flow identification & network address 

columns 

Category 5531411 0 33.824% 

Segment_src Flow identification & network address 

columns 

Category 3859355 0 23.600% 

Expoid_src Flow identification & network address 

columns 

Category 3859355 0 23.600% 

Flow IAT Min Inter-arrival time (IAT) features Float 3042190 0 18.603% 

Flow IAT Mean Inter-arrival time (IAT) features Float 3042190 0 18.603% 

Flow IAT Max Inter-arrival time (IAT) features Float 3042190 0 18.603% 

Flow IAT 

stddev 

Inter-arrival time (IAT) features Float 3042190 0 18.603% 

Flow Bytes/s Timestamp & duration features Float 1205 3052847 18.675% 

Flow Packes/s Timestamp & duration features Float 0 3054052 18.675% 
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The categorical features included connection states (Conn_state), protocols (L3/L4, 

Protocol), and port numbers (SrcPort, DstPort). For these features, the presence of 

missing data was addressed by explicitly inserting a new categorical level, labelled 

"unknown". Introducing a dedicated category for missing values is considered best 

practice for categorical data, particularly when the absence of data itself may carry 

meaningful patterns or predictive significance [72]. Unlike replacing missing values with 

the most frequently occurring category (mode), assigning a dedicated category avoids 

introducing biases by clearly differentiating missing data from valid observations. It 

preserves the integrity of the original distribution and allows machine learning models to 

explicitly learn from the absence of information rather than implicitly merging missing 

data into an existing category. 

Numerical features in this dataset primarily represent measurements related to network-

flow characteristics such as packet sizes, byte counts, and inter-arrival times (Flow IAT 

features). These numeric features exhibited missingness typically due to insufficient 

number of packets within certain flows, making it impossible to compute statistics like 

mean or standard deviation. To handle these gaps, a median-imputation strategy was 

chosen. Median imputation replaces missing numeric values with the median of the 

observed data, ensuring robustness against outliers which are common in network traffic. 

To ensure unbiased and representative median estimates across the large dataset of 16 

million flows, the median was computed from a randomly selected subset of about four 

million observations, including about ~25% of the values in the dataset. Random 

sampling was used to prevent potential biases associated with the dataset’s temporal 

ordering, ensuring the medians reflect the overall distribution rather than any localised or 

temporal effects. 

The actual imputation of numeric values was performed using a chunk-based approach 

due to the large dataset size. Rather than loading the entire dataset into memory 

simultaneously, data was processed incrementally in smaller chunks, each containing two 

million rows. This method optimised memory usage, computational speed, and 

efficiency. Once the median was calculated from the random subset, it was consistently 

applied across all chunks, effectively filling in all missing numeric values in a 

computationally manageable manner. 
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Following imputation, categorical features were further processed using embeddings. 

Embeddings are dense vector representations of categorical variables, transforming 

sparse, discrete categories into continuous numerical vectors suitable for neural networks. 

Embeddings significantly enhance model performance by capturing semantic 

relationships between categories and reducing dimensionality compared to traditional 

one-hot encoding. 

To determine the optimal number of dimensions of each embedding vector, the heuristic 

from the FastAI library, commonly known as the "fastai tabular rule", was employed [73]. 

This rule calculates the embedding size using the formula:  

Embedding_size = min(600, ⌊1.6×cardinality0.56⌉) 

Here cardinality represents the number of distinct categories present in each categorical 

feature. The embedding size increases sub-linearly with the number of categories, 

ensuring that features with a very large number of unique values, such as port numbers, 

do not result in prohibitively large embedding matrices. The upper bound of 600 

dimensions prevents excessively large embeddings, thus balancing representational 

power and computational feasibility. Using this approach, each categorical feature was 

embedded into a numerical space optimised for capturing latent structures in the data, 

significantly aiding the predictive capabilities of the neural network models used later in 

this analysis. 

For illustration, the `SrcPort` column in the training split alone contained 61 079 distinct 

values. A naïve one-hot encoding would expand this single attribute into over 60 thousand 

binary columns, ballooning the input matrix, wasting memory with ~99 % zeros, and 

pushing the number of trainable weights well beyond practical limits. With the fastai rule, 

the same column is mapped to a 600-dimensional embedding vector, as the value 

computed by is capped at 600, shrinking the representation by two orders of magnitude 

while still allowing the network to learn meaningful similarities between ports. 

3.4.9 Dataset partitioning strategy 

The partitioning of datasets into training and testing subsets is an important 

methodological step, significantly impacting the reliability and validity of experimental 

outcomes. Traditional machine learning research typically employs randomised splits, 
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with an 80/20 ratio widely recognised as an industry standard, balancing ample training 

data with sufficient testing coverage for unbiased performance estimation [59]. 

Nonetheless, recent research highlights that this random approach may be inadequate for 

evaluating models in cybersecurity contexts, where temporal and spatial characteristics 

of network traffic are highly relevant [74], [75]. 

Ring et al. [75] emphasise that conventional randomised splits or k-fold cross-validation 

strategies can inadvertently introduce data leakage, undermining realistic assessments of 

model generalisability. They suggest either a temporal split, where training data precedes 

test data chronologically, or a host-based split, where subsets are separated by source IP 

addresses. These splits would preserve realistic network structure and correct temporal 

patterns in both training and test subsets. Similarly, Vaarandi et al. [74] advocate for 

chronological splits as they better reflect the evolving nature of cyber threats over time. 

By training models exclusively on earlier network flows, temporal splits evaluate the 

model's capacity to generalise effectively to future, potentially unseen attack patterns, a 

condition closely resembling real-world intrusion detection scenarios. 

Initially, a time-based partitioning strategy analogous to 

that employed by Vaarandi et al. was considered, 

dividing the LSPR23 dataset chronologically into 

distinct training and testing intervals. However, 

preliminary analysis revealed significant drawbacks: the 

dataset exhibited marked asymmetry between days, with 

the first day containing minimal malicious activity and 

the majority of attacks occurring on the second day, as 

can be seen from figure 10. This uneven distribution would severely limit model exposure 

to malicious patterns in the training phase, resulting in poor generalisation during 

evaluation, and thus, this chronological approach was ultimately deemed unsuitable. 

An alternative host-based partitioning, recommended by Ring et al. [75] was also 

assessed, splitting the dataset based on IP addresses. In theory, such an approach could 

prevent leakage of information between training and test sets by ensuring distinct network 

hosts and attack targets. However, as discussed earlier, the Locked Shields exercise 

features dynamically changing host roles and IP addresses assigned to multiple interfaces, 

significantly complicating host-based separation. Additionally, splitting by IP addresses 

Figure 10. Distribution of malicious 

traffic over the exercise duration 
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risked creating subsets that did not reflect realistic traffic distribution, as certain IP 

addresses were involved disproportionately in either benign or malicious activities, 

leading to artificially biased subsets. 

Considering these challenges, the final solution was a straightforward, randomised 80/20 

split. This widely adopted method ensured a representative distribution of malicious and 

benign flows across both subsets, enabling robust and unbiased evaluation of the models' 

predictive performance. To minimise concerns regarding potential data leakage or 

temporal bias, careful cross-checking confirmed that malicious traffic and benign traffic 

characteristics remained comparably distributed between training and testing datasets. 

Furthermore, the large scale of the LSPR23 dataset significantly mitigated the risk of 

inadvertent biases typically associated with smaller datasets. 

While advanced split strategies proposed by Ring et al. [75] and Vaarandi et al. [74] are 

theoretically superior in cybersecurity contexts, practical constraints specific to the 

LSPR23 dataset made these approaches infeasible in this case. Thus, the adopted 

randomised 80/20 split represents the most pragmatic and methodologically sound option, 

providing a balanced and robust foundation for subsequent comparative analyses of 

traditional and deep learning models. 

3.4.10 Data balancing 

Class imbalance is a common challenge in machine learning-based intrusion detection, 

often resulting in biased models that perform poorly when identifying minority class 

instances, typically malicious traffic [57]. The LSPR23 dataset, although relatively 

balanced compared to legacy intrusion detection datasets, still exhibited a notable 

imbalance, with benign network flows outnumbering malicious flows at an approximate 

ratio of 10:1. Given this class distribution, careful consideration was given to 

implementing class balancing techniques to mitigate potential bias towards the majority 

(benign) class. 

A comprehensive review of the literature (see chapter 2) indicated that Synthetic Minority 

Over-sampling Technique (SMOTE), introduced by Chawla et al. [57], is widely 

recognised as an effective method to address class imbalance in cybersecurity datasets. 

SMOTE combines oversampling of minority class instances by synthetically generating 

new examples with undersampling of majority class instances, aiming to improve the 
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classifier's sensitivity to minority class predictions without significantly compromising 

overall accuracy. Many prior studies employing similar intrusion detection datasets have 

effectively utilised SMOTE to improve classifier performance [40], [44], [47], [48]. 

However, preliminary experimentation with the LSPR23 dataset revealed that the 

employed traditional and deep learning models achieved strong predictive performance 

without applying explicit data balancing. Despite the inherent imbalance, the selected 

models demonstrated high classification accuracy, satisfactory F1-scores, and robust 

ROC-AUC metrics, indicating minimal bias towards the majority class. The results 

suggested that the models successfully captured the distinctive patterns characterising 

malicious traffic within the extensive and detailed feature set provided by the LSPR23 

dataset, diminishing the necessity for additional balancing techniques such as SMOTE. 

Given these findings, the decision was made not to apply SMOTE or any other data 

balancing method for the final experiments. This decision simplified the preprocessing 

pipeline and avoided potential complications introduced by synthetic data generation or 

random undersampling, such as the risk of overfitting, loss of genuine data variability, or 

reduced generalisability [57]. Thus, the dataset was employed in its original distribution, 

and any residual imbalance was accounted for by carefully selecting and tuning model 

hyperparameters, as well as performing rigorous model validation to confirm that 

minority class performance was maintained at a high level. 

The decision to forego explicit balancing is discussed further in the evaluation phase 

(Section 4), where detailed comparative results illustrate the effectiveness of both 

traditional machine learning and deep learning techniques in accurately classifying 

malicious traffic despite inherent class imbalance. 

3.5 Machine learning model: Random Forest 

The traditional machine learning approach adopted in this research utilises the Random 

Forest algorithm, which has consistently demonstrated robust performance in network 

intrusion detection tasks across diverse cybersecurity datasets, as indicated by the 

literature review in Chapter 2. RF was selected primarily due to its inherent strengths: 

excellent classification accuracy, interpretability through feature importance metrics, 

resilience to overfitting, and strong capability for handling high-dimensional and 
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heterogeneous feature spaces, which are characteristics particularly relevant to network 

intrusion datasets, such as LSPR23. 

Specifically, the RF implementation used for this thesis leverages GPU acceleration via 

the cuML library, significantly enhancing training and inference speed compared to 

traditional CPU-based implementations such as those provided by scikit-learn. GPU 

acceleration, as quantitatively demonstrated in the results section, provides crucial 

efficiency improvements, enabling faster analysis and classification of network traffic 

flows, which is essential for practical deployment in real-time or near-real-time 

cybersecurity scenarios. Although a detailed computational comparison between cuML's 

GPU-accelerated Random Forest and scikit-learn's CPU-based implementation is 

provided in Chapter 4, the choice of cuML here directly aligns with operational 

requirements for timely intrusion detection. 

In contrast to neural network-based approaches, Random Forest also offers additional 

practical advantages, notably its transparency and interpretability. RF models inherently 

support explainability through built-in metrics such as Gini importance scores, which can 

provide cybersecurity professionals with actionable insights into feature significance and 

model decision-making processes. Moreover, because the model aggregates many 

decorrelated decision trees, its predictions are highly stable. The stable and reproducible 

predictions are an essential attribute for reliable cybersecurity operations and audits. 

When tested across 10 independent runs, the classifier’s performance metrics (F1, 

accuracy, precision, recall) were extremely stable, with standard deviations on the order 

of 10⁻⁴ or smaller. Further details are reported in section 4. 

The Random Forest hyperparameters were selected based on optimisation results 

previously established by Känzig et al. [63], who optimised these parameters specifically 

for the detection of malicious network activity using similar datasets, for efficient yet 

accurate detection. The suitability and robustness of the optimised hyperparameters have 

been independently validated in subsequent studies employing comparable network 

intrusion datasets, notably by Merkli et al. [71], Gehri et al. [58], and Dijk et al. [3]. 

The consistent and successful deployment of these hyperparameters across multiple 

recent studies conducted between 2023 and 2024 demonstrates their transferability and 

effectiveness for comparable intrusion detection tasks. Leveraging previously validated 
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hyperparameter values mitigates the need for extensive experimental tuning such as grid 

search. This accelerated the experimental workflow and allocated more time to focus on 

model performance and implications. Table 5 summarises the configuration parameters 

used in this research: 

Table 5. Random forest model hyperparameters 

Device N-estimators Max depth N features in Bootstrap Outputs 

GPU 128 10 72 True [0,1] 

 

The chosen configuration effectively balances complexity and computational demands: 

using 128 estimators provides diversity within the ensemble, ensuring reliable 

classification performance without imposing high computational costs. Setting the 

maximum tree depth to 10 helps control the model complexity and mitigates potential 

overfitting, thus maintaining generalisability across varying intrusion scenarios [63]. All 

72 features selected during preprocessing (Section 3.4) were fed into the model, allowing 

the RF to utilise the rich feature space provided by the LSPR23 dataset. Additionally, 

enabling bootstrap sampling further increases tree diversity, leading to enhanced stability 

and accuracy. Bootstrap sampling is a statistical resampling technique that generates new 

training subsets by randomly selecting observations from the original dataset with 

replacement, thereby ensuring each tree within the Random Forest is trained on slightly 

different data and reducing correlations between individual tree predictions [76]. The 

model outputs probabilistic predictions in the range of [0, 1], which are subsequently 

converted into binary classification outcomes (malicious or benign) using a sigmoid 

decision threshold. 

3.6 Deep learning model: 1D Convolutional neural network 

The deep learning approach employed in this research consists of a custom-designed one-

dimensional Convolutional Neural Network, tailored specifically for detecting malicious 

network traffic within the LSPR23 dataset. The model’s architecture was inspired by prior 

state-of-the-art research on applying 1D CNNs for network intrusion detection tasks, 

notably the works of Kilichev and Kim in 2023 on hyperparameter optimisation for 1D 

CNNs [77], and Singh et al. in 2021 who developed a robust 1D CNN for the 

classification and analysis of network attacks [78]. Building upon these foundational 
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studies, the CNN architecture has been adapted and optimised specifically for the 

characteristics and scale of the LSPR23 dataset. The detailed structural breakdown of the 

CNN and associated parameter counts is summarised in table 6. 

Numeric and embedded categorical features were combined into a unified input vector of 

length 953, subsequently passed through two convolutional layers. The first convolutional 

layer transforms the input to 16 channels, and the second further increases it to 32 

channels, employing kernels with a size of 3 with padding. This captures both localised 

and broader contextual feature interactions across the input features. Fully connected 

layers combined with dropout with probability of 0.5 and ReLU activations are utilised 

downstream, concluding with in a sigmoid-activated neuron for binary classification: 

malicious or benign. Training made use of an early stopping criterion based on the 

validation F1-score to mitigate overfitting and ensure generalisability to novel network 

conditions. 

3.6.1 Input features and feature encoding 

A one-dimensional convolutional neural network was specifically chosen over a two-

dimensional CNN due to the inherent nature of the input data. Unlike image data, which 

inherently contains two spatial dimensions, the height and width, and thus naturally aligns 

with a 2D CNN, the structured tabular network traffic data used here is inherently 

sequential and one-dimensional. Each network flow is represented by a flat numeric 

vector rather than a spatial matrix, making 1D convolutions a logical choice.  

The network structure integrates both numeric and categorical data types, latter of which 

require encoding to transform them from textual inputs into numeric inputs for the 

machine learning models. In the example code provided with the LSPR23 dataset, Dijk 

et al. [79] used SHA256 hashing for encoding the categorical features. This approach was 

not considered as the structured categorical data such as ports, protocols, and service types 

used here benefit more effectively from learned embeddings. Unlike hashing, embeddings 

capture latent semantic relationships inherent in the data, thus providing richer feature 

representations for the neural network model [80]. 

Kilichev and Kim instead used 1-hot encoding for handling the categorical features in 

their model, producing 197 novel features from just 3 categorical variables [77]. This 

approach was also unsuitable for the LSPR23 dataset, as some of the categorical variables 



65 

were high cardinality, e.g. as the src port with over 60 thousand distinct values. Using 1-

hot encoding would have resulted in a sparse and high-dimensional input space, leading 

to computationally inefficient CNN, with an increased risk of overfitting. 

 As a novel contribution, dedicated embedding layers for categorical feature 

transformation were used. Embedding categorical variables has been demonstrated as an 

effective technique in deep learning for tabular data, capturing latent semantic 

relationships and improving predictive performance compared to traditional encoding 

methods [80]. These embedding layers convert categorical features into dense, low-

dimensional numeric representations, enabling the CNN to capture latent semantic 

relationships effectively. Eight categorical features were embedded with heuristically 

determined dimensions based on feature cardinality: Source Port, Destination Port, 

Protocol, L3/L4 Protocol, Service, Connection State, External Source, and External 

Destination.  

Each categorical feature is represented as distinct embedding layers labelled from 2-1 to 

2-8 in the architecture overview table (Table 6) below. Embedding 2-1 corresponds to the 

Source Port (600-dimensional), embedding 2-2 to the Destination Port (256-

dimensional), embedding 2-3 to the Protocol (5-dimensional), and embedding 2-4 to the 

L3/L4 Protocol (4-dimensional). Further embeddings include 2-5 representing the Service 

(11-dimensional), 2-6 corresponding to Connection State (7-dimensional), 2-7 for 

External Source (3-dimensional), and finally, embedding 2-8 representing External 

Destination (3-dimensional). These embedding sizes were heuristically determined using 

a rule based on feature cardinality, as recommended in the FastAI library [73], balancing 

representational power with computational efficiency. By assigning each categorical 

variable to an appropriately sized embedding space, the model is capable of effectively 

capturing semantic relationships inherent in network traffic data, substantially improving 

predictive performance while minimising computational overhead compared to 

traditional categorical encoding approaches, such as 1-hot. 
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3.6.2 Model architecture 

Table 6. Detailed CNN model architecture 

Layer (depth-idx) Input Shape   Output Shape       Param #      Mult-Adds 

CNN [1, 64] [1] -- -- 

├─ModuleDict: 1-1 

│    └─Embedding: 2-1 

│    └─Embedding: 2-2 

│    └─Embedding: 2-3 

│    └─Embedding: 2-4 

│    └─Embedding: 2-5 

│    └─Embedding: 2-6 

│    └─Embedding: 2-7 

│    └─Embedding: 2-8 

├─Conv1d: 1-2 

├─ReLU: 1-3 

├─Conv1d: 1-4 

├─ReLU: 1-5 

├─Dropout: 1-6 

├─Linear: 1-7 

├─ReLU: 1-8 

├─Dropout: 1-9 

├─Linear: 1-10 

-- 

[1] 

[1] 

[1] 

[1] 

[1] 

[1] 

[1] 

[1] 

[1, 1, 953] 

[1, 16, 953] 

[1, 16, 953] 

[1, 32, 953] 

[1, 30496] 

[1, 30496] 

[1, 64] 

[1, 64] 

[1, 64] 

-- 

 

 

 

 

 

 

 

 

[1, 16, 953] 

[1, 16, 953] 

[1, 32, 953] 

[1, 32, 953] 

[1, 30496] 

[1, 64] 

[1, 64] 

[1, 64] 

[1, 1] 

-- 

[1, 600] 

[1, 256] 

[1, 5] 

[1, 4] 

[1, 11] 

[1, 7] 

[1, 3] 

[1, 3] 

[1, 16, 953] 

[1, 16, 953] 

[1, 32, 953] 

[1, 32, 953] 

[1, 30496] 

[1, 64] 

[1, 64] 

[1, 64] 

[1, 1] 

-- 

36,648,000 

2,202,624 

45 

24 

330 

98 

9 

9 

64 

-- 

1,568 

-- 

-- 

1,951,808 

-- 

-- 
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Total params: 40,804,644 

 

Two Conv1D layers are utilised in the model, as this depth was found sufficient for 

feature extraction in malicious traffic by both Singh et al. and Kilichev & Kim [77], [78]. 

Each Conv1D layer uses the ReLU activation function, following the practice of used in 

the previously mentioned 2 studies. For the convolutional layers, Singh et al. adopted a 

small kernel size of 1 in their 1D-CNN, effectively treating each input feature in isolation 

[78], whereas Kilichev and Kim recommended a larger kernel size of 9 to capture broader 

interactions among network features [77]. For this CNN, a kernel size of 3 was selected 

as a balanced intermediate choice. This kernel size is large enough to detect meaningful 

local feature interactions inherent in network traffic data, but small enough to maintain 

computational efficiency, avoid overfitting, and retain flexibility in modelling more 

complex patterns through multiple convolutional layers.  

Following the architectural approach established by Singh et al [78], the model includes 

a dropout layer following the convolutional layers, which serves to mitigate overfitting. 
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While Singh et al [78] used a single fully connected (FC) layer, Kilichev and Kim [77] 

identified two as the optimal amount of FC layers after their hyperparameter optimisation. 

This model utilises 2 linear FC layers with 64 neurons each.  The output layer consists of 

a single neuron with a sigmoid activation, this is in line with the approach employed by 

Kilichev and Kim for binary classification [77]. 

The model's total parameter count of approximately 40.8 million is predominantly due to 

the embedding layers used for categorical features, particularly due to high-cardinality 

categorical variables such as Source and Destination Ports, which require substantial 

embedding dimensions to capture meaningful representations. This CNN architecture, 

implemented using PyTorch, employed binary cross-entropy loss optimised via the Adam 

optimiser with a learning rate of 0.001, following Singh et al. [78]. This decision is further 

supported by Kilichev and Kim’s optimisation results, which also converged on learning 

rates on the order of 10^-3 for optimal performance [77]. Additionally Kilichev and Kim 

[77] tested their optimised hyperparameters across multiple distinct network intrusion 

detection datasets, demonstrating the broader applicability and robustness of these 

architectural choices beyond the specific context of the LSPR23 dataset. 

3.7  Evaluation  

The evaluation phase of this research systematically assesses the classification 

performance of traditional machine learning and deep learning models for network 

intrusion detection. To ensure comprehensive and unbiased comparisons, multiple 

evaluation metrics have been selected based on their appropriateness for cybersecurity 

applications, particularly in the context of imbalanced datasets. Additionally, 

computational performance metrics have been incorporated to quantify the practical 

implications of model deployment. 

3.7.1 Evaluation metrics and methodology 

The models were evaluated using a set of performance metrics widely utilised in intrusion 

detection literature. The metrics selected for assessing classification performance were 

accuracy, precision, recall, F1-score, and confusion matrix analysis. Accuracy generally 

refers to the proportion of correctly classified instances. Previously in this thesis, accuracy 

has been used broadly, including references to both classification and detection contexts. 

To avoid ambiguity, from this point forward, the term accuracy specifically denotes 



68 

classification accuracy, formally defined with the formula provided in Table 7. This is 

distinct from detection accuracy, a broader concept specifically referring to the correct 

identification of threats, often represented through metrics exclusively focused on threat 

detection, such as precision and recall. However, accuracy alone may not sufficiently 

describe model performance in scenarios characterised by class imbalance, which is 

prevalent in cybersecurity data. Therefore, precision and recall metrics were included to 

offer deeper insight into the models' predictive capabilities with respect to false positives 

and false negatives. The F1-score was specifically included as a balanced metric that 

harmonises precision and recall into a single indicative value. The confusion matrix 

complements these metrics by explicitly representing counts of true positives (TP), false 

positives (FP), true negatives (TN), and false negatives (FN), thus enabling nuanced 

analysis of the types of errors models are prone to make. Table 7 provides detailed 

definitions and calculation formulas of these evaluation metrics: 

Table 7. Definitions and formulas for the evaluation metrics 

Metric  Formula Explanation 

Accuracy  
 

Proportion of correctly 

classified instances 

Precision  

 

Proportion of positive 

identifications that are 

correct 

Recall  

 

Proportion of actual 

positives correctly 

identified by the model 

F1-score  

 

Harmonic mean of 

precision and recall; 

balances both metrics 

Confusion Matrix  n/a Matrix summarising TP, 

FP, TN, FN to detail model 

classification errors 

 

These metrics were computed consistently across all ML and DL models, using standard 

libraries such as scikit-learn, thereby ensuring reproducibility and consistency in 

evaluation. 

3.7.2 Computation performance metrics 

In addition to assessing classification effectiveness, computational efficiency metrics 

were measured to address practical considerations relevant to real-world deployments, 
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particularly in environments with limited resources. Specifically, training time, inference 

speed, memory usage, and power consumption were monitored and reported. 

For measuring training and inference time, python time library was used. Training time, 

defined as the duration required to fully train a model to convergence or until CNNs early 

stopping criteria are met, was recorded to reflect computational resource demands. 

Inference speed was measured by calculating the time taken to classify batches of test 

data, thus providing an indicator of suitability for deployment in scenarios requiring 

timely response, such as in real-time NIDS usage during the exercise. 

Memory usage was measured by recording the peak GPU memory allocated during 

training phases. This metric is relevant because graphics card memory constraints often 

limit model deployment in real-world cybersecurity environments. The peak memory 

allocation was measured using PyTorch’s built-in CUDA functionality.  

Power consumption was measured using the codecarbon library which accurately 

captures the CPU GPU energy usage (in kilowatt-hours, kWh) during both model training 

and inference phases. Internally, codecarbon leverages the pyNVML library, an 

established interface providing direct access to power consumption metrics from Nvidia 

graphics cards [81], [82]. The CPU energy usage was captured by the Intel Power Gadget 

tool, which presents real-time data for Intel processors [82], [83]. Since codecarbon 

currently lacks reliable methods for accurately measuring system memory power 

consumption [82], the estimated memory-related energy metrics were excluded from this 

evaluation to maintain the integrity of reported results. 

To provide consistency, each experiment was repeated 10 times under identical 

conditions, with no other computationally intensive processes active during the 

experiments. The processor was consistently operated at Intel’s default optimised power 

limit and the GPU was maintained at its nominal TDP. The experimental setup, described 

in detail in section 3.8.1, provided a controlled and standardised computational 

environment to ensure comparability and reproducibility. The average values for the 

power usage and time were calculated over the 10 runs. Such metrics provide practical 

insights into sustainability and operational costs associated with different modelling 

approaches. 
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3.7.3 Evaluation procedure 

All models were evaluated using a consistent experimental procedure. Initially, the 

dataset was partitioned using an 80/20 randomised train-test split, ensuring representative 

distributions of benign and malicious instances across both subsets. Data preprocessing 

procedures, including median imputation for missing numerical values, embedding of 

categorical variables using the FastAI heuristic, and standardisation of numeric features 

based solely on the training set, were uniformly applied to maintain consistency across 

models. 

Model training procedures varied depending on the nature of the respective machine 

learning methods. For the deep learning approach, specifically the convolutional neural 

network, the binary cross-entropy loss function was utilised, optimised via the Adam 

algorithm with a learning rate of 0.001. To reduce the risk of overfitting, an early stopping 

criterion was implemented, monitoring improvements in the validation F1-score, with 

training halted if no improvement occurred over three consecutive epochs. The CNN 

model training used a batch size of 1024, which provided a balance between 

computational efficiency and convergence stability. 

In contrast, the traditional machine learning method, specifically the Random Forest 

classifier, followed a different training procedure. Hyperparameters including the number 

of trees (estimators) and tree depth, were tuned to the values found in the literature. Unlike 

the CNN, this training process did not involve iterative optimisation or early stopping 

criteria. Instead, the Random Forest model internally constructs an ensemble of decision 

trees, combining their predictions automatically to produce the final classification. All 

hyperparameters were selected to optimise classification performance while ensuring 

computational feasibility and avoiding overfitting. 

To account for inherent variability in stochastic training processes, a total of 10 

independent training runs were conducted, each initialised with distinct random seeds. 

This approach enabled the calculation of average performance metrics and reduced 

variance attributable to random initialisation conditions. 
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3.8 Deployment and reproducibility 

Although the models evaluated in this thesis are not intended for immediate deployment 

into a production environment, the CRISP-DM framework highlights the necessity of 

carefully documenting deployment considerations and ensuring the reproducibility of 

conducted experiments. Consequently, this section outlines the experimental environment 

in detail, describes hardware and software configurations employed, discusses 

reproducibility aspects, and explores considerations regarding the scalability and 

potential deployment of the evaluated models. 

3.8.1 Experimental setup 

As detailed previously, experiments conducted throughout this thesis utilised a hardware 

configuration selected to represent realistic computational constraints common in 

cybersecurity contexts. Specifically, the experimental hardware included an Intel Core 

i5-13500 CPU with 14 cores, operated at Intel’s default optimised power limit of 65 watts 

[84], paired with an Nvidia RTX 3090 GPU maintained at its nominal TDP of 350 watts 

[85]. Additionally, the system was equipped with 64 GB of DDR4 RAM at 3200 MHz. 

These hardware specifications, chosen to closely mirror typical operational environments, 

supported accurate power and resource usage measurements using the codecarbon utility. 

This approach facilitated practical assessments of model feasibility, including evaluations 

of power consumption, computational efficiency, and potential limitations in realistic 

cybersecurity scenarios. 

Software configurations involved Python version 3.12.3 within an Ubuntu 24.02 

environment, operating under Windows Subsystem for Linux (WSL) 2.0. The use of WSL 

2.0 was specifically motivated by compatibility requirements related to the cuML library, 

which provides GPU-accelerated machine learning algorithms but does not offer native 

Windows support. The underlying host system was version 24H2 of Windows 11 

Education, chosen for its enhanced support of virtualisation technologies and improved 

integration with WSL 2.0. This configuration enabled seamless interoperability between 

Linux-based GPU-accelerated computing environments and the Windows host system, 

thereby providing a unified and efficient enough computational setup for model training 

and evaluation. 
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To enable GPU acceleration uniformly across the chosen software stack, the CUDA 

toolkit version 12.8 was installed. This specific version was selected because it enabled 

compatibility with both PyTorch (version 2.8.0 nightly preview) and cuML (version 25.4) 

in the same environment, thereby streamlining the development and minimising software 

conflicts. In addition to cuML and PyTorch, the scikit-learn library, version 1.6.1, was 

employed primarily for implementing and evaluating the machine learning models, while 

other supporting libraries such as pandas, numpy, and codecarbon were utilised 

extensively throughout data processing and evaluation procedures. 

3.8.2 Scalability and deployment considerations 

Given that intrusion detection systems often need to handle large volumes of network 

data in near-real-time conditions, the scalability and efficiency of evaluated models must 

be carefully considered. Traditional machine learning algorithms such as Random Forests 

have been shown to scale effectively using parallel processing techniques inherent to 

modern CPUs, as they naturally lend themselves to distributed training and inference due 

to their ensemble structure. Rane et al. [56] highlight that Random Forest models exhibit 

favourable scalability and can be effectively parallelised across multiple processor cores 

without substantial algorithmic complexity. However, the efficiency of these models 

tends to plateau as data volume significantly increases, potentially necessitating more 

complex infrastructure. 

In contrast, deep learning models, particularly convolutional neural networks, have 

demonstrated considerable scalability through GPU acceleration. Frameworks like 

PyTorch and TensorFlow leverage CUDA-based parallel computations, enabling 

efficient training and inference on large-scale data, at the cost of increased memory usage 

[56]. Moreover, CNNs inherently support batch processing, further enhancing their 

suitability for high-throughput, real-time network monitoring scenarios. Nonetheless, the 

computational requirements for GPU-based deep learning methods introduce higher 

power and infrastructure demands compared to traditional models. 

Regarding distributed computing possibilities, both traditional and deep learning models 

support varying degrees of distributed implementation. Traditional ML methods can 

utilise parallel processing environments easily accessible in distributed computing 

frameworks such as Apache Spark [86]. Conversely, deep learning methods primarily 

benefit from GPU-centric distributed architectures or specialised inference servers such 



73 

as NVIDIA Triton Server [87], which allows efficient scaling of CNN inference across 

multiple GPUs and server nodes. 

3.8.3 Explainability 

Explainability in machine learning, particularly within intrusion detection systems, is a 

critical factor for trust, transparency, and regulatory compliance. Burkart and Huber [88] 

outline several approaches to achieve explainability, broadly categorising them into 

interpretable models, surrogate model fitting, and direct explanation generation methods. 

Interpretable models, such as decision trees and linear regression, provide transparency 

by design, allowing direct insight into the decision-making process. 

Random Forest models, though more complex than single decision trees, still offer global 

explainability through techniques like feature importance metrics and partial dependence 

plots. Feature importance metrics quantify the contribution of each feature towards the 

predictive accuracy of the model, thereby identifying influential factors within the 

dataset. Partial dependence plots visually represent the dependency of the model 

predictions on selected features, helping stakeholders interpret model behaviour in 

specific conditions and enhance trust in the predictive outcomes. [89] Although Random 

Forest models excel at providing global explainability, their inherent complexity makes 

them limited in offering detailed local explanations for individual predictions. As 

highlighted by Plumb et al, specialised interpretability methods such as MAPLE, which 

employ local linear approximations derived from Random Forest neighbourhoods, are 

necessary to effectively generate accurate local explanations and thus address this 

limitation [90]. 

Neural networks, despite their high complexity, offer several interpretability techniques 

such as feature visualisation, saliency maps, and Grad-CAM (Gradient-weighted Class 

Activation Mapping). Burkart and Huber highlight these methods as critical in explaining 

CNN behaviour by visualising activations and heatmaps, effectively illustrating the 

specific areas within input data that contribute significantly to model decisions [88]. 

These visualisation methods are instrumental in understanding CNN predictions, thus 

enhancing transparency and facilitating debugging, trust-building, and compliance with 

regulatory requirements, such as the EU AI act [91]. 
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3.8.4 Deployment plan 

While not directly within the scope of this thesis, a high-level deployment strategy could 

involve initially integrating the best-performing intrusion detection models within 

existing cybersecurity infrastructure as auxiliary threat-detection tools, complementing 

established signature-based systems. Treating ML-based intrusion detection as an 

auxiliary tool at first mitigates potential risks associated with limited interpretability and 

vulnerability to adversarial evasion, which could undermine trust and operational 

reliability if relied upon exclusively. Once these ML models have demonstrated sustained 

accuracy and robustness under real-world conditions, their role could be progressively 

expanded, potentially evolving into primary detection mechanism. This evolution 

towards primary reliance on ML-based detection systems is supported by recent research; 

for example, Dijk et al. [3] demonstrated that machine learning-based approaches can 

significantly outperform traditional signature-based solutions such as Suricata in 

accurately identifying network threats, underscoring the potential benefits of fully 

integrating these advanced models into operational cybersecurity frameworks. 

Deployment would ideally leverage containerisation technologies such as Docker to 

simplify environment management and facilitate seamless scaling across distributed 

network segments. Continuous monitoring and logging infrastructure, potentially 

employing frameworks like Prometheus and Grafana, could enable ongoing performance 

and resource-usage tracking. Periodic retraining and model updates, facilitated by 

automation pipelines, would help maintain long-term effectiveness against evolving 

cyber threats. 
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4 Results  

This chapter presents a detailed comparative evaluation of traditional machine learning 

(Random Forest) and deep learning (1D Convolutional Neural Network) approaches 

applied to network intrusion detection using the LSPR23 and LSPR24 datasets. The 

analysis is structured into three primary sections: firstly, a performance and 

computational efficiency comparison between GPU-accelerated (cuML) and CPU-based 

(scikit-learn) implementations of the Random Forest model; secondly, a thorough 

comparison of the Random Forest and CNN models trained and evaluated on the LSPR23 

dataset; and thirdly, a cross-dataset validation assessing the robustness and generalisation 

capabilities of both models on the subsequent year's LSPR24 dataset. Each section 

includes explicit metrics, confusion matrices, computational performance comparisons, 

and discussions of key findings to comprehensively highlight the practical trade-offs, 

strengths, and limitations associated with each modelling approach.  

4.1 Comparison of CPU-based and GPU-based random forest 

implementations 

This section presents a comparative analysis of the computational efficiency and 

performance of two implementations of the Random Forest algorithm: a GPU-accelerated 

version utilising cuML, and a conventional CPU-based implementation utilising scikit-

learn. The comparison is based on identical default hyperparameters (100 estimators) 

trained and evaluated on the LSPR23 dataset with a reduced feature set. Although this 

comparison utilised a preliminary feature selection resulting in fewer features than the 

final optimised set, the relative computational differences observed between the GPU and 

CPU implementations remain relevant. This is because the primary aim of this 

comparison is to illustrate the efficiency and resource advantages inherent in GPU 
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acceleration, rather than the absolute predictive performance which is addressed 

separately in subsequent sections using the fully optimised feature set. 

 

Figure 11. Confusion matrices for GPU-based and CPU-based RF models 

The classification performance of both implementations is summarised in Figure 11, 

which shows the confusion matrices obtained from each model. Both the GPU-based and 

CPU-based models demonstrated excellent predictive performance, but subtle differences 

were observed, with the cuML model having marginally more false prediction. The 

difference, although small, indicates that the CPU-based implementation had marginally 

fewer misclassifications overall, correctly identifying 86 additional malicious instances 

compared to the GPU-based implementation, and reporting no false positives. 

Nevertheless, both models showed very high classification reliability suitable for 

operational cybersecurity contexts, and the differences can be attributed to runtime 

variance. 

 

Figure 12. cuML vs scikit‑learn RF: training time, inference time & energy consumption. 

Figure 12 provides a comprehensive comparison of computational performance metrics, 

including training time, inference time, and energy consumption based on CPU and GPU 
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power measurement readings. The energy consumption analysis revealed significant 

distinctions between the GPU-based and CPU-based implementations in terms of 

hardware utilisation and efficiency. The GPU-based cuML implementation consumed 

substantially less CPU energy, approximately 0.83 Wh, highlighting efficient CPU 

resource usage due to extensive offloading of computational tasks onto the GPU. In 

contrast, the CPU-based scikit-learn implementation exhibited notably higher CPU 

energy consumption, totalling 8.96 Wh. This elevated CPU energy usage directly reflects 

the intensive computational load placed exclusively on the CPU cores when GPU 

acceleration is not leveraged. Conversely, the GPU energy consumption analysis 

naturally indicated higher GPU power draw for the cuML implementation (3.38 Wh), 

consistent with its full utilisation of GPU hardware resources to accelerate Random Forest 

training and inference. The scikit-learn model, limited by its minimal reliance on GPU 

computation, utilised significantly less GPU energy, 1.62 Wh, reflecting only baseline 

idling GPU usage associated with general system operations rather than dedicated 

computational acceleration. 

The GPU-based Random Forest implementation exhibited a substantial reduction in 

computational time requirements compared to the traditional CPU-based implementation, 

underscoring its suitability for time-sensitive cybersecurity applications. The GPU-

accelerated cuML Random Forest completed the training phase in 67.7 seconds, 

demonstrating an improvement over the CPU-based scikit-learn model, which required 

488.3 seconds; over eight minutes. This decrease in training duration represents a 

considerable advantage, particularly in real-world scenarios demanding frequent model 

retraining to adapt rapidly to evolving cyber threats. 

Regarding inference performance, the GPU-accelerated model similarly displayed 

notable speed advantages, completing the inference task in approximately 1.15 seconds, 

whereas the CPU-based implementation required 2.04 seconds. Although the absolute 

reduction in inference time was less pronounced compared to the training phase, nearly 

halving inference latency still constitutes a meaningful improvement. This inference 

speed-up is particularly relevant in operational environments like the Locked Shields 

exercise, where rapid detection and timely response to network intrusions are critical to 

minimising potential impacts. Consequently, GPU-based acceleration demonstrates 

substantial value, not only in enhancing training efficiency but also in significantly 

improving real-time predictive responsiveness within cybersecurity operations. 
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In summary, despite a minor performance advantage of the CPU-based Random Forest 

in absolute classification accuracy with fewer misclassifications, the GPU-based 

implementation demonstrated significantly greater efficiency in terms of training speed, 

inference speed, and overall energy consumption. Such computational efficiency 

advantages have direct practical implications in operational cybersecurity environments, 

where timely threat detection and frequent model retraining are often crucial. 

Consequently, the GPU-accelerated cuML Random Forest emerges as a compelling 

choice, offering an optimal balance between high classification performance and resource 

efficiency suitable for real-world deployment scenarios. 

4.2 Comparison of ML and DL models on LSPR23 dataset  

This section presents a detailed comparative analysis of the classification performance, 

computational efficiency, and resource consumption between the traditional machine 

learning approach (Random Forest, RF) and the deep learning approach (1D 

Convolutional Neural Network, CNN), utilising the LSPR23 dataset. Multiple aspects of 

each model's performance are evaluated in depth, including detailed metrics such as 

accuracy, precision, recall, F1-score, confusion matrices, computational times for training 

and inference, GPU energy consumption, and GPU memory usage. The analysis also 

includes graphical representations and comprehensive tables for a thorough overview of 

the practical trade-offs involved in choosing between these two modelling approaches. 

4.2.1 Classification performance comparison 

The classification results for both models demonstrate excellent overall performance, 

reflecting their strong ability to distinguish malicious network flows from benign traffic. 

Table 8 presents a detailed comparison of CNN and RF classifiers based on accuracy, 

precision, recall, and F1-score, summarising their respective mean (marked as avg), 

minimum, maximum, and standard deviation values calculated over 10 independent runs. 

The best result per metric is marked in bold. 
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Table 8. Performance comparison between CNN and RF 

Metric Convolutional Neural Network Random Forest 

Accuracy 

 

Avg 

Min 

Max 

Std 

99.974% 

99.969% 

99.978% 

0.0028% 

99.951% 

99.946% 

99.956% 

0.0041% 

Precision Avg 

Min 

Max 

Std 

99.913% 

99.874% 

99.952% 

0.0249% 

99.996% 

99.996% 

99.997% 

0.0003% 

Recall Avg 

Min 

Max 

Std 

99.824% 

99.749% 

99.880% 

0.0392% 

99.520% 

99.471% 

99.570% 

0.0406% 

F1-Score Avg 

Min 

Max 

Std 

99.868% 

99.847% 

99.888% 

0.0140% 

99.758% 

99.733% 

99.783% 

0.0203% 

 

Both models achieved exceptionally high accuracy, surpassing 99.9%. As can be seen 

from the above table, the CNN slightly outperformed the RF model in terms of accuracy, 

recall and F1-score. In particular, the higher recall of the CNN model indicates superior 

sensitivity, effectively minimising false negatives. However, the RF model demonstrated 

close to perfect precision, 99.996%, which implies almost zero false positives in this 

evaluation scenario, significantly reducing the risk of generating unnecessary operational 

alerts. Such precision is highly advantageous in practical cybersecurity deployments 

where alert fatigue can negatively impact the efficiency and effectiveness of security 

teams. 

The confusion matrices depicted in figure 13 give closer insight into each model’s 

predictive behaviours. The CNN model accurately identified more malicious flows 

compared to RF, demonstrating fewer false negatives. Specifically, CNN correctly 

identified 999 fewer false negatives compared to RF, significantly reducing the likelihood 

of missing critical threats. The standard deviation for false negatives was 129 for the CNN 

and 133 for the RF. This means that even the worst performing CNN out of the 10 had 

fewer false negatives than the best performing RF. 
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Figure 13. Average confusion matrices for the CNN and RF models 

Conversely, the RF model demonstrated an exceptionally low false-positive rate, 11 false 

positives compared to 285 of the CNN, greatly decreasing the generation of unnecessary 

alarms. The best performing CNN had 159 false negatives, while the worst RF had 13. 

Ultimately the confusion matrix results clearly guide decisions based on the priorities of 

the cybersecurity environment; either selecting the CNN for reducing missed threats or 

minimising false alarms by choosing RF. 

4.2.2 Computational efficiency comparison 

In cybersecurity operational scenarios, computational efficiency directly influences the 

practicality, scalability, and real-world applicability of an intrusion detection system. A 

comprehensive comparison of computational performance metrics for the CNN and RF 

models is summarised in Table 9: 

Table 9. Computational efficiency of CNN and RF models 

Metric CNN Random Forest 

Training time 

 

Avg 

Min 

Max 

1313.48 s  

801.00 s 

1607.14 s 

146.83 s 

145.30 s 

149.33 s 

GPU Energy (Training) Avg 0.076 kWh 0.0069 kWh 

Peak GPU memory usage Avg 

Min 

Max 

7024.62 Mb 

6813.65 Mb 

7245.66 Mb 

1024.3 Mb 

1024.3 Mb 

1024.3 Mb 
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Metric CNN Random Forest 

Inference Time Avg 7.41 s 0.33 s 

GPU Energy (Inference) Avg 0.0007 kWh 0.0000021 kWh 

Eval CO₂ Equivalent Avg ≈0.3g CO₂-eq ≈0.0033g CO₂-eq 

 

The computational timings 

presented in Table 9 highlight 

substantial efficiency advantages 

for the Random Forest model. In 

terms of training speed, the RF 

completed training on average in 

147 seconds, whereas the CNN 

required 1313 seconds. This 

significant difference means that 

the RF model trained roughly 10 times faster than the CNN model, as can be seen from 

figure 14. The reduced training time provided by the RF approach offers critical 

advantages in dynamic cybersecurity environments, where rapid retraining is essential to 

adapt promptly to continuously evolving threats. 

Inference time, critical in operational contexts for real-time 

decision-making, similarly favoured the RF approach. The RF 

model completed inference on average in just 0.33 seconds, 

significantly faster than the CNN, which required 7.41 seconds. 

While a difference of several seconds may appear 

nonconsequential, in practical cybersecurity applications 

demanding rapid response and minimal detection latency, this 

improvement of more than 20 times in inference speed substantially enhances the RF 

model's suitability for operational deployment, enabling faster identification and response 

to threats. The pronounced disparity between CNN and RF inference times can be 

observed when comparing Table 9 and Figure 15, where the RF bar is noticeably shorter 

than the CNN bar on the inference time chart. 

Resource efficiency is another key operational consideration, encompassing GPU power 

consumption, GPU memory usage, and environmental impact. GPU energy consumption 

Figure 14. CNN vs RF training times over 10 runs 

Figure 15. CNN vs RF 

average inference time 
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during training was 10 times higher for the CNN model compared to the RF model. 

Similarly, during inference, the CNN consumed significantly more GPU energy: 0.0007 

kWh compared to the RF with 0.0000021 kWh, reflecting a difference exceeding 300 

times. This contrast illustrates the difference of computational demands and power usage 

inherent to deep learning architectures, which can pose constraints in resource-limited 

environments or scenarios aiming for more sustainable, lower-impact computing 

operations. 

Additionally, GPU memory utilisation revealed substantial disparities. The CNN model 

required approximately 7 Gb of GPU memory, whereas the RF model operated with only 

1 Gb. This difference highlights the considerable resource efficiency advantage of the RF 

model, making it particularly suitable for scenarios where hardware limitations or 

resource constraints might restrict deployment feasibility. 

Taken together, these computational and resource efficiency metrics illustrate clear 

practical trade-offs: the CNN offers marginally superior detection accuracy but at a 

substantial computational and resource cost. In contrast, the RF provides excellent 

predictive performance combined with significantly superior computational efficiency, 

lower resource consumption, and reduced environmental impact, making it highly 

suitable for operational cybersecurity environments requiring rapid response, frequent 

retraining, and resource-conscious implementation. 

4.2.3 Answer to research question RQ2 

RQ2: How do the traditional learning techniques compare to the deep learning techniques 

in classification performance in classifying malicious network traffic? 

The comparative analysis conducted using the LSPR23 dataset clearly demonstrates 

strong performance from both traditional machine learning (Random Forest) and deep 

learning (1D Convolutional Neural Network) techniques in identifying malicious network 

traffic, with each exhibiting distinct strengths and trade-offs. Specifically, both models 

achieved exceptional accuracy exceeding 99.9%, highlighting their suitability for 

cybersecurity applications. However, nuanced differences emerged in the performance. 

The CNN marginally surpassed RF in overall accuracy and demonstrated a superior 

balance between precision and recall, achieving an F1-score of 99.87% compared to RF’s 
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99.76%. CNN exhibited notably higher sensitivity, recall of 99.82% versus RF’s 99.52%, 

indicating greater effectiveness in identifying malicious traffic and decreasing missed 

threats. This advantage positions CNN favourably in scenarios where detecting the 

maximum number of threats is paramount. Conversely, RF demonstrated near-perfect 

precision and substantially outperforming CNN, thus significantly reducing false 

positives. This precision advantage makes RF highly useful in operational cybersecurity 

contexts, where minimising false alarms is critical to maintaining security team 

responsiveness and effectiveness. 

In terms of computational efficiency, RF significantly outperformed CNN, training 

roughly 10 times faster and achieving inference speeds more than 20 times quicker. 

Furthermore, RF required substantially fewer computational resources and lower 

environmental impact, making it particularly suitable for rapid, resource-constrained 

deployments. 

In conclusion, traditional machine learning techniques, represented by Random Forest, 

offer outstanding predictive performance combined with significantly greater 

computational efficiency, resource economy, and superior precision. Deep learning 

techniques, represented by CNN, though marginally superior in overall accuracy and 

recall, impose considerably higher computational costs and complexity. The choice 

between these approaches should thus be guided by operational priorities: maximum 

threat detection sensitivity (CNN) versus operational efficiency and minimal false 

positives (RF). 

4.3 Cross-dataset validation results on LSPR24 

This section explores the robustness and generalisation capability of the previously 

trained CNN and RF models by conducting a cross-dataset validation using the Locked 

Shields Partners Run 2024 (LSPR24) dataset. Cross-year validation provides insight into 

how effectively models trained on past datasets (LSPR23) can handle previously unseen 

traffic patterns and novel cyber threats present in subsequent years. The LSPR24 dataset 

is larger and more imbalanced, comprising 20,227,356 flows, with benign flows 

constituting approximately 97.43% of the total (19,707,365 flows), and malicious flows 

accounting for only 2.57% (519,991 flows). This notable shift in class distribution 

compared to the LSPR23 dataset poses additional challenges for both classification 
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models, along with the changed network environment. For this evaluation, different 

preprocessing was used to deal with non-finite values. Rows containing NaN values were 

removed prior to evaluation and consequently, therefore the total counts presented in the 

confusion matrices below differ slightly from the original dataset counts.  

4.3.1 Importance of inter-arrival time features 

As noted earlier in section 3.4.1.4, Inter-arrival Time (IAT) features offer valuable 

timing-based information, capturing temporal patterns within network flows. However, 

these features may become misleading if significant changes in the network infrastructure 

occur across different datasets or years, as Gehri et al. highlighted previously [58]. 

Therefore, this validation explicitly compares the performance of the CNN and RF 

models trained with and without the inclusion of IAT features to assess their impact on 

cross-year generalisation capability. 

4.3.2 Performance comparison without IAT features 

Table 10 summarises the classification metrics for both CNN and RF models when IAT 

features were excluded from training and evaluation: 

Table 10. Cross-dataset performance on LSPR24 without IAT Features 

Metric CNN Random Forest 

Accuracy 84.66% 97.30% 

Precision 8.05% 15.65% 

Recall 47.69% 1.18% 

F1-score 13.78% 2.20% 

 

In the absence of IAT features, both models exhibited significant performance 

degradation, indicating substantial difficulty in generalising to the 2024 network scenario. 

Despite achieving a higher accuracy compared to the CNN, the RF model's recall was 

notably poor, suggesting severe difficulty in correctly identifying malicious flows. As can 

be seen from the confusion matrices below, this high accuracy is predominantly due to 

the large number of benign flows (15,906,251 true negatives) compared to malicious 

flows, thereby inflating the accuracy metric and rendering it misleading. The RF 

confusion matrix clearly illustrates the severity of this issue, with the model identifying 

only 4,980 out of 420,419 malicious flows correctly and thus missing the vast majority 
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of the malicious flows, posing critical operational risks. The CNN, conversely, exhibited 

a substantially higher recall with 47.69% and successfully identified 200,484 malicious 

flows out of the total 420,419. However, the CNN's improved sensitivity came with a 

significantly higher false-positive count, 2,288,557 false alarms, as clearly depicted in its 

confusion matrix. 

 

Figure 16. Confusion matrices comparing performance of CNN and RF models without IAT features 

4.3.3 Performance comparison with IAT features 

Table 11. Cross-dataset performance on LSPR24 with IAT Features 

Metric CNN Random Forest 

Accuracy 91.98% 97.25% 

Precision 12.47% 38.86% 

Recall 35.23% 12.06% 

F1-score 18.42% 18.41% 

 

The inclusion of Inter-arrival Time features markedly influenced the predictive 

performance of both CNN and RF models in the cross-dataset evaluation, as clearly 

illustrated in Table 11 and Figure 17. Specifically, the Random Forest model exhibited 

substantial improvements when these temporal features were included, particularly in 

precision and recall. Precision increased significantly, rising from 15.65% to 38.86%, 

demonstrating that the RF model became considerably more accurate in correctly 

identifying malicious flows while simultaneously reducing false-positive detections.  
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Figure 17. Confusion matrices comparing performance of CNN and RF models with IAT features 

Additionally, the recall improved notably from a very low 1.18% without IAT features to 

a moderate 12.06% with these features. The confusion matrices in Figure 17 explicitly 

illustrate this improvement, showing a noticeable increase in correctly identified 

malicious flows, with true positives rising from 4,980 to 50,708 when using IAT features. 

While the RF model still exhibited limited overall sensitivity, this tenfold improvement 

highlights the considerable informational value of IAT features. For the CNN, 

incorporating IAT features increased accuracy substantially, from 84.66% to 91.98%, and 

precision improved from 8.05% to 12.47%. However, the recall decreased somewhat 

from 47.69% to 35.23%, reflecting fewer true positive detections. Still, the overall 

balance between precision and recall improved, as indicated by the F1-score increase 

from 13.78% to 18.42%, confirming that IAT features positively influenced CNN's 

generalisation capability. 

Despite concerns raised by Gehri et al. regarding the potential instability and reduced 

effectiveness of temporal features like IAT across changing network infrastructures [58], 

the inclusion of these features has clearly enhanced the generalisation capability of both 

RF and CNN models in this cross-dataset validation. The improvements observed in 

precision, recall, and overall classification stability confirm that IAT features contribute 

to capturing distinctive traffic patterns and temporal behaviours, thus enabling models to 

better adapt to evolving threats and novel network conditions. Consequently, these results 

emphasise the practical importance of carefully managing and incorporating temporal 
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features into intrusion detection models, provided network conditions remain sufficiently 

stable. 

4.3.4 Answer to research question RQ3 

RQ3: How effective are traditional machine learning models compared to deep learning 

models in transfer learning across different databases? 

The cross-dataset validation using the LSPR24 dataset highlights significant challenges 

faced by both traditional machine learning and deep learning approaches when 

transferring learned patterns from the LSPR23 dataset to novel traffic and threat 

conditions encountered in the following year. This evaluation clearly reveals distinct 

differences in robustness and generalisation capabilities between the two modelling 

strategies. 

Without temporal inter-arrival time features, the CNN exhibited substantially higher 

recall than RF, 47.69% vs 1.18%, thus indicating superior generalisation in recognising 

malicious patterns despite changes in network conditions. However, this came at the cost 

of extremely high false positives, significantly reducing practical operational 

effectiveness. RF, despite high overall accuracy of 97.30% severely struggled to 

generalise, identifying few malicious flows, emphasising critical limitations in 

transferability without additional temporal context. 

Including temporal IAT features significantly improved the generalisation capabilities of 

both models. The RF model particularly benefited, achieving a substantial improvement 

in recall, increasing from 1.18% to 12.06%, and precision, rising from 15.65% to 38.86%. 

This indicates an enhanced ability to recognise malicious patterns across datasets when 

temporal context is maintained. The CNN also experienced improvements, with accuracy 

rising from 84.66% to 91.98% and precision increasing from 8.05% to 12.47%. However, 

this improvement occurred at some expense to recall, underscoring the sensitivity of deep 

learning models to changes in feature representation. 

Although CNN consistently demonstrated higher recall, indicating better capability in 

capturing new threats, its pronounced tendency toward false positives poses substantial 

operational challenges. In contrast, the RF model, though initially poor in recall without 
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temporal features, significantly improved when temporal context was provided, offering 

balanced and practical operational performance. 

To summarise, random forest demonstrated notable robustness and significantly 

improved generalisation across databases when supported by meaningful temporal 

context. Convolutional neural network inherently captured more generalisable features, 

resulting in better initial transfer capability, yet faced substantial trade-offs in precision 

and operational practicality. Consequently, for effective transfer learning across 

cybersecurity datasets, traditional models appear advantageous when carefully curated 

features are consistently available, while deep learning models offer inherent adaptability 

at higher computational and operational costs.  
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5 Discussion 

This thesis compared a representative traditional machine learning model (Random 

Forest, RF) and a deep learning model (1D Convolutional Neural Network, CNN) for 

network intrusion detection, using the LSPR23 dataset derived from the Locked Shields 

2023 cyber exercise. Both models achieved excellent predictive performance, with 

overall accuracies exceeding 99.9%. CNN demonstrated slightly better sensitivity, with 

higher recall compared to RF, indicating fewer missed threats. Conversely, the RF 

showed near-perfect precision and thus substantially reduced the number of false alarms 

(see Table 8). This trade-off, clearly visible in the confusion matrices (Figure 13), implies 

operational decisions between minimising missed attacks (CNN) versus reducing alert 

fatigue (RF). These findings align closely with prior literature: CNN-based models are 

recognised for superior recall and accuracy [34],  whereas ensemble tree-based methods 

like RF consistently demonstrate robust, precise performance [25], [41]. Thus, this work 

reinforces the literature's conclusion that well-optimised traditional methods remain 

highly competitive for intrusion detection tasks. 

5.1 Practical implications 

The practical implications of these findings suggest distinct operational roles for each 

model. The RF's exceptionally low false-positive rate makes it highly suitable as a 

primary IDS, reducing analyst workload from false alerts. Conversely, CNN's higher 

recall positions it favourably for environments where missing threats is particularly 

costly, such as critical infrastructure or military exercises. Thus, a hybrid or tiered IDS 

approach combining the strengths of both models could be optimal. Using RF for routine 

threat detection and CNN for advanced analysis of potential false negatives. Additionally, 

the interpretability advantage of RF makes it attractive in compliance-driven 

environments, while CNN offers the potential to automatically capture subtle attack 

patterns beyond traditional feature engineering. 

In this thesis the RF model required significantly less computational effort than CNN, 

achieving roughly a tenfold improvement in training speed and more than twentyfold 

improvement in inference speed along with dramatically lower GPU memory and energy 

demands (see table 9). These differences, visually confirmed in figures 14 and 15, 
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highlight RF's practical advantages, particularly in real-time, resource-constrained 

environments requiring rapid threat detection and frequent model retraining. By contrast, 

CNN’s higher computational load may impose operational constraints and limit practical 

deployment to scenarios with sufficient computational infrastructure. 

Ultimately, operational considerations, such as training and inference speed, resource 

availability, and environmental impact, are as critical as raw accuracy when evaluating 

model suitability for real-world cybersecurity deployment. Selecting the optimal IDS 

approach therefore requires a careful balance between technical performance metrics and 

the practical realities and constraints related to deployment, specific to each operational 

environment. 

5.1.1 Necessity of machine- and deep learning in intrusion detection 

The near-perfect detection results on the LSPR23 dataset for both the RF and CNN 

approaches raises the question on the practical necessity of employing advanced machine 

learning models for intrusion detection. Indeed, several studies have demonstrated that 

simpler ML and statistical methods can achieve strong results in certain intrusion 

detection scenarios. Yu et al. conducted an empirical evaluation revealing that classical 

algorithms such as k-Nearest Neighbours (kNN) outperformed DL models in log anomaly 

detection, achieving superior accuracy and significantly reduced computational 

complexity [19]. Specifically, kNN provided better detection performance compared to 

complex neural network methods, highlighting the potential for simpler models to 

effectively solve specific, well-defined intrusion detection problems. Supporting these 

findings, Leon et al. conducted an extensive comparative analysis demonstrating that on 

simpler datasets such as KDD99 and NSL-KDD, Linear Discriminant Analysis (LDA) 

and Support Vector Machine (SVM) achieved performance comparable to artificial 

neural networks but with significantly reduced computational complexity [41]. Moreover, 

a recent comprehensive survey by Natarajan et al. reinforced that simpler supervised 

algorithms, e.g., CART, Logistic Regression, frequently attained accuracy in the range of 

98–99% on common datasets, underscoring their continued relevance in intrusion 

detection tasks [37].  

However, despite the strong performance of simpler methods reported in the literature, 

the necessity for advanced ML and DL approaches becomes apparent when addressing 

more realistic and complex intrusion detection scenarios. For instance, in the previously 
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cited study by Leon et al., the LDA model exhibited significantly lower performance on 

the more recent UNSW-NB15 dataset, whereas advanced models such as RF and ANN 

experienced only minor performance degradation [41]. The LSPR23 dataset used in this 

thesis exemplifies such a realistic and challenging scenario. It features highly 

sophisticated, multi-stage attacks embedded within legitimate background traffic from a 

large-scale cybersecurity exercise, thereby representing conditions significantly more 

complex than typical benchmark datasets. This complexity was particularly evident in the 

performance evaluation conducted by Dijk et al. who assessed Suricata, a widely 

recognised open-source IDS employing traditional signature-based detection methods. 

Suricata demonstrated notably poor performance on the LSPR23 dataset, achieving only 

53.1% F1-score with its standard rulesets, resulting in many missed detections and false 

positives on the same time [3]. This significant performance gap clearly illustrates that 

traditional signature-based methods, while simpler and computationally less intensive, 

fail to capture the nuanced and novel attack patterns inherent in realistic cybersecurity 

scenarios. 

The excellent results achieved by the ML and DL models presented in this thesis are 

therefore not indicative of overperforming on a trivially simple detection task. Rather, 

they highlight the capacity of these models to effectively learn intricate and subtle features 

distinguishing malicious from benign traffic. The comparative analysis of RF and CNN 

approaches presented in the experimental chapter of this thesis reinforces this 

interpretation. While the RF model achieved impressive results, the CNN model 

demonstrated marginally superior accuracy, suggesting that the deep learning approach 

was able to capture additional complexities and nuances in the data that simpler classifiers 

could not. Although the computational costs associated with the CNN were notably 

higher, its ability to generalise from complex patterns provides significant advantages 

when faced with evolving or novel attack scenarios. 

Nevertheless, the suitability of ML/DL solutions must be assessed on a case-by-case 

basis. Where simpler statistical methods suffice, their advantages in interpretability and 

computational efficiency are indeed valuable. The findings of this thesis align with 

existing literature, demonstrating that simpler methods like Random Forest can achieve 

remarkable results given well-structured data and informative features. However, the 

security domain often necessitates minimising false negatives to the greatest possible 

extent, as the costs associated with missed intrusions can be substantial. Thus, even 
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marginal improvements in detection performance afforded by complex ML/DL models 

can significantly enhance operational security. An optimal strategy might therefore 

involve employing a combination of simpler methods for initial rapid detection and 

advanced ML/DL methods for in-depth analysis and detection of sophisticated attacks. 

5.1.2 Binary vs multiclass classification considerations 

When interpreting the results of this thesis within the broader context of NIDS, it should 

be noted that both the evaluation presented in Sections 3 and 4 and the majority of related 

studies presented in the literature review, focus predominantly on binary classification 

tasks: distinguishing malicious traffic from benign traffic. This binary approach 

considerably simplifies the problem space and achieving accuracy levels exceeding 90%, 

as frequently reported in the literature (see table 1 and table 2), is inherently less 

challenging in a binary scenario compared to more granular classification tasks. 

Such impressive figures, however, come with important caveats: models can attain high 

overall accuracy by potentially exploiting class imbalance by learning to always predict 

the majority class or by glossing over distinctions between different attack types. For 

example, Chindove and Brown observed in their study that several algorithms achieved 

almost 100% accuracy on the CICIDS 2017 dataset simply because benign flows 

dominated the traffic, whereas the results for the minority classes was much lower [40]. 

This serves as a reminder that an aggregate “malicious vs. benign” metric can mask poor 

detection of specific attack categories. 

This thesis, like much of the prior literature, adopts a binary classification paradigm 

primarily because it aligns with how ground truth labels were provided in the dataset and 

facilitates a clear evaluation of benign vs. malicious classification performance. The 

LSPR23 dataset used for training and testing was labelled at the flow level with a simple 

binary indicator for each network flow [3] and this made binary classification a natural 

and pragmatic choice for measuring overall intrusion detection efficacy. It is worth noting 

that the malicious portion of LSPR23 traffic is about 10% of flows (see section 3.3.5), 

which is an unusually high attack prevalence compared to typical enterprise networks. 

This imbalance enabled both the RF and CNN models to achieve over 99% accuracy on 

the LSPR23 data by mainly learning to distinguish normal vs. attack behaviour, consistent 

with other studies on imbalanced datasets [31], [40], [47]. In a multiclass setting, by 

contrast, each specific attack type would constitute an even smaller minority of the traffic, 
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exacerbating the class imbalance problem. Moreover, any misclassification between 

malicious classes, e.g. confusing a SQL injection for a brute-force attack, counts against 

a multiclass classifier’s accuracy [31], whereas a binary classifier is oblivious to such 

errors as long as the traffic is flagged as malicious. 

Focusing solely on binary classification, while useful for benchmarking detection 

capability, limits the operational usefulness of an IDS. Security operators often need to 

know the nature of an intrusion to respond appropriately. A model that simply raises an 

alert for “malicious activity” without further context offers limited guidance for incident 

response [14]. Nonetheless, the high detection performance demonstrated by binary 

models in section 4.2 serves as a strong foundation upon which more detailed multiclass 

classification methods can be built, enabling incremental improvements in practical 

intrusion response capabilities. Both the CNN and Random Forest models developed and 

evaluated in this thesis inherently support multiclass classification with minimal 

structural adjustments, making the transition towards more detailed threat categorisation 

practically achievable. 

5.1.3 Model transferability and environment specifics 

The cross-year validation using the LSPR24 dataset highlighted significant generalisation 

challenges for both models. RF in particular exhibited a severe reduction in recall, 

identifying only a small fraction of new malicious flows and the CNN, though more 

resilient with a higher recall still experienced a sharp rise in false positives, particularly 

without temporal features (see table 10). 

The comparatively low performance of both the Random Forest and CNN models on the 

newer LSPR24 dataset is an expected outcome given the shift in data between these two 

evaluations. In the domain of network intrusion detection, it is well-recognised that a 

model trained in one environment often struggles when applied to a different environment 

or a later dataset [40], [58], [92].  This is because the underlying network conditions and 

threat landscape can change significantly: normal background traffic profiles vary across 

organisations and time, and attackers continually adapt their tactics [75]. For instance, 

Locked Shields exercise introduces up-to-date attack techniques and employs different 

network infrastructures annually, meaning that the 2024 iteration inevitably differs from 

2023 in both benign traffic and attack vectors [2]. A classifier built on LSPR23’s traffic 

patterns and threat profile will therefore encounter previously unseen patterns in LSPR24, 
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both in terms of legitimate traffic behaviour and new malicious activities. This results in 

degraded detection performance. This phenomenon is essentially an instance of concept 

drift, where the statistical properties of the input data change over time. As Jordaney et 

al. explain, models trained on older data will show signs of aging and begin to miss new 

or evolved threats [92]. In other words, what the model learned as malicious or benign in 

2023 may no longer hold true in 2024, leading to misclassifications. 

Recent research underlines how pronounced this effect can be when evaluating intrusion 

detectors across different time periods or environments. Vaarandi and Guerra-

Manzanares [74] observe that in a realistic chronological evaluation, meaning training on 

earlier network alert data and testing on later data, many new alert types emerged in the 

later period that the model had never seen before. In their study, over half of the attack 

signatures present in the test set were completely absent in the training set. They caution 

that the common practice of randomly splitting data for training and testing ignores such 

temporal evolution, yielding overly optimistic performance estimates [74]. In summary, 

the LSPR23 to LSPR24 performance drop aligns with expectations for a cross-

environment deployment; it highlights the challenge of model transferability in the 

presence of changing network conditions, new attacker strategies, and concept drift. 

Gehri et al. emphasise that it is possible to train more generalised models by carefully 

selecting features that are less dependent on any one network’s specifics, but even then 

such models “generally fail to achieve the same performance” as models optimised and 

evaluated in a single, static environment [58]. Känzig et al. similarly note that benign and 

malicious traffic profiles can vary considerably between organisations or exercise 

iterations, so a detector might work well on the network it was trained on yet 

underperform on a new network without adaptation [63]. These findings justify the drop 

in models’ efficacy on LSPR24 in section 4.3: without recalibration, the models trained 

on 2023 data are not fully equipped for the 2024 scenario.  

To address this practical challenge of balancing model accuracy and resource constraints 

associated with frequent retraining, a hybrid approach combining generalisation and 

adaptive mechanisms is recommended. Purely environment-specific retraining is often 

impractical due to the high resource demands of continuously labelling data and updating 

models, resulting in either diminishing returns or unreliable detection over time if updates 

are infrequent [92]. Instead, leveraging time-independent features and historical diversity 
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in training datasets, such as aggregating multiple years of Locked Shields exercises, can 

enhance baseline model generalisation across environments by establishing robust 

decision boundaries capable of detecting a broader spectrum of malicious behaviours 

[58], [63]. Additionally, incorporating active learning frameworks, where models 

selectively solicit human expertise on uncertain alerts, can incrementally tailor detection 

capabilities to specific environments without exhaustive retraining cycles [74]. Coupled 

with proactive drift detection tools such as the Transcend framework [92], which identify 

shifts in data distribution and prompt targeted interventions, the combined strategy can 

maintain detection effectiveness while significantly reducing the manual overhead 

typically associated with model maintenance. 

5.2 Limitations 

This thesis acknowledges several limitations which should be considered when 

interpreting the findings. Recognising these limitations provides valuable insights and 

directions for future research and development, discussed in section 5.3. 

Firstly, the comparison deliberately focused on one representative algorithm from each 

category. Random Forest for traditional machine learning (section 3.5), and a one-

dimensional CNN for deep learning (section 3.6). Although this pragmatic approach 

provided clear insights, it excludes other potentially strong alternatives, such as gradient-

boosted trees, support vector machines, and alternative neural network architectures like 

Long Short-Term Memory networks and Transformers.  

Secondly, the evaluation in this thesis was limited exclusively to binary classification, 

distinguishing only between malicious and benign traffic. This binary approach does not 

account for the diversity, specificity, and varying characteristics of distinct attack 

categories, such as denial-of-service attacks, data exfiltration attempts, port scans, or 

privilege escalation efforts. High accuracy achieved within a simplified binary scenario 

may not directly generalise or translate effectively to more nuanced multiclass 

classification, where the system must correctly identify and differentiate multiple distinct 

attack types, or anomaly detection scenarios, in which previously unseen or novel attacks 

must be recognised and categorised.  
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Thirdly, the dataset used, although large-scale and realistic, originated from a single cyber 

exercise environment, Locked Shields 2023. This environment possessed distinct 

characteristics such as a fixed set of services, a relatively high malicious traffic ratio of 

about 10% and particular attack patterns explicitly designed for the exercise scenario. 

Consequently, the absolute performance metrics achieved by the evaluated models may 

not directly generalise to networks that differ significantly in their operational profiles, 

threat landscapes, and user behaviours, such as typical corporate or military networks. 

The considerable reduction in model performance observed when transitioning from the 

2023 Locked Shields dataset to the closely related yet distinct LSPR24 dataset 

underscores these generalisation challenges. This performance drop highlights how even 

minor variations in network architecture, threat distribution, and attack techniques can 

substantially affect the effectiveness of trained models. 

Another limitation relates to model hyperparameter tuning. While RF hyperparameters 

were adopted from prior research [63] and CNN architecture was inspired by previous 

works [77], [78], exhaustive hyperparameter optimisation tailored explicitly to this 

dataset was not performed due to computational constraints and practical considerations. 

Thus, performance could potentially be improved through more comprehensive model-

specific tuning and optimisation strategies. Moreover, feature engineering choices, such 

as dropping certain fields or encoding categorical variables, were carefully considered 

but not exhaustively evaluated. Although the impact of specific features (IAT timings) 

was tested, subtle feature interactions that could further improve model robustness or 

predictive performance might remain unaddressed. 

Finally, the generalisation assessment conducted in this thesis utilised a static model 

trained exclusively on data from one specific year (2023) and subsequently evaluated on 

data collected the following year (2024), without employing incremental updates, 

continuous learning, or periodic retraining strategies. Although this methodological 

choice was intentionally designed to rigorously test the models’ generalisation 

capabilities under challenging, worst-case conditions, it may not fully reflect practical 

deployment scenarios in real-world cybersecurity operations, where intrusion detection 

models typically benefit from ongoing adaptation to evolving threat landscapes.  
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5.3 Future research 

Future research could extend the ML vs DL comparison by systematically evaluating a 

broader array of algorithms, including those prominently discussed in the comprehensive 

literature review presented in this thesis enriching the understanding of their relative 

strengths and limitations within intrusion detection contexts. These currently untested 

models could improve detection by incorporating temporal sequences and contextual 

relationships among network flows. Techniques such as recurrent neural networks, 2-

dimensional convolutional neural networks, attention-based models, or graph neural 

networks can effectively capture patterns and dependencies over time or across hosts, 

potentially improving identification of coordinated or multi-stage attacks. Employing 

these methods could reveal attack behaviours that single-flow analysis fails to identify, 

thereby reducing false negatives and increasing model precision. 

Similarly, future work could move beyond binary classification tasks on the Locked 

Shields datasets by incorporating multiclass classification scenarios and addressing the 

detection of novel or emerging threats. Specifically, efforts should focus on identifying 

and differentiating specific attack types, such as port scans, brute-force attempts, and 

DDoS, which provide more actionable insights by distinguishing among threat categories 

and severity levels. This would align intrusion detection research more closely with 

realistic operational cybersecurity requirements, ultimately offering a deeper 

understanding of model capabilities, practical limitations, and suitability for detailed 

threat characterisation. Given that the Locked Shields 2023 dataset prepared by Dijk et 

al. already includes additional attack narratives in a separate file suitable for such 

analyses, future studies could leverage this resource to develop more sophisticated multi-

class or hierarchical classification frameworks. 

The deep learning model developed in this thesis can be easily adapted to support multi-

class predictions by modifying the final prediction layer to include multiple neurons 

instead of one. Similarly, the Random Forest model evaluated here inherently supports 

multi-class classification, requiring only appropriately labelled data without structural 

adjustments. 

The significant performance drop observed between the LSPR23 and LSPR24 datasets 

emphasises the importance of addressing concept drift [92]. Future studies could 
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investigate continuous or incremental learning strategies, such as periodic model 

retraining, online algorithms, or domain adaptation techniques to better represent realistic 

operational conditions. Employing drift detection mechanisms to trigger timely model 

updates could further enhance generalisation and resilience against evolving threats. 

Additionally, integrating anomaly detection methods, such as the N-outlier approach 

suggested by Vaarandi et al. [74], alongside supervised models could substantially 

improve model robustness. Investigating these approaches could potentially reduce or 

mitigate the performance degradation observed when models encounter previously 

unseen network behaviours or emerging threat types, thereby enhancing their practical 

applicability, resilience, and long-term effectiveness in dynamic and continually evolving 

cybersecurity. 

Evaluating models in live operational environments, such as future Locked Shields 

exercises or controlled enterprise settings, would provide practical insights beyond lab-

based testing. Research could assess real-time detection performance, system stability 

under load, latency, alert manageability, and integration with automated response 

mechanisms. Such experiments would validate not only the detection accuracy and the 

efficacy of continuous retraining, but also the models’ suitability for operational 

cybersecurity environments, informing future model refinement, real-time adaptation 

strategies, and deployment considerations. 

Expanding evaluations beyond the LSPR23 and LSPR24 datasets to include additional 

Locked Shields datasets from earlier years (e.g., LS17, LS18, LS19, LS21) presents a 

promising direction to explore the generalisability of findings across multiple iterations 

of this prominent cyber exercise. As highlighted by Gehri et al. [58], machine learning 

models trained on traffic data from one year's Locked Shields exercise often fail to 

generalise effectively to other editions due to differences in network conditions and attack 

patterns. Thus, systematically evaluating models across these diverse yet related datasets 

could provide deeper insights into model robustness, reveal factors influencing 

performance stability, and clarify the conditions under which specific modelling 

approaches succeed or fail. Additionally, integrating multiple data modalities, such as 

host logs, IDS/IPS alerts, and endpoint data, into unified models represents another 

compelling avenue, potentially uncovering cross-domain correlations and further 

enhancing detection performance across varying network scenarios. 
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Given the demonstrated importance of feature selection, as exemplified by the impact of 

Inter-Arrival Time features, further research should explore automated feature 

engineering techniques and unsupervised representation learning approaches, such as 

autoencoders. These strategies could help identify invariant or robust features that 

consistently generalise across changing environments and over time, thereby improving 

model resilience and reducing sensitivity to dataset shifts. 

These future research avenues collectively aim to enhance the granularity, adaptability, 

temporal awareness, operational realism, and generalisability of intrusion detection 

systems. Pursuing these directions will significantly contribute to developing robust 

detection mechanisms capable of maintaining high accuracy and operational 

effectiveness amidst the continuously evolving cyber threat landscape. 
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6 Conclusion 

This thesis compared traditional machine learning and deep learning methods for network 

intrusion detection using realistic datasets from the Locked Shields 2023 and 2024 

cybersecurity exercises. The literature review identified Random Forest and a one-

dimensional Convolutional Neural Network as prominent representatives of their 

respective methodologies, supported by their widespread use and demonstrated efficacy 

in prior research. 

Utilising the CRISP-DM framework ensured methodological rigour throughout the 

research process, from dataset preparation and feature engineering to model evaluation. 

The models were systematically trained, validated, and compared using accuracy, 

precision, recall, and F1-score metrics. Both the Random Forest and 1D Convolutional 

Neural Network achieved F1-scores exceeding 99% on the LSPR23 dataset. CNN 

demonstrated slightly higher recall, indicating greater sensitivity in identifying malicious 

network activities while conversely RF offered near-perfect precision with minimal false 

alarms, highlighting key trade-offs for operational decisions. Significant differences 

emerged in computational efficiency: RF trained approximately ten times faster and 

performed inference twenty times faster than CNN, also consuming substantially less 

GPU memory and power. Thus, RF is highly efficient for real-time or resource-

constrained environments, whereas CNN provides marginal but potentially important 

improvements at increased computational cost. 

Cross-dataset validation using the LSPR24 dataset exposed substantial generalisation 

challenges due to the evolving threat patterns and network environment. Both models 

showed performance degradation, especially RF with a significantly lowered recall. CNN 

being more resilient maintained higher sensitivity but produced more false alarms. These 

findings strongly emphasise the necessity of continual retraining or adaptive learning 

mechanisms to maintain intrusion detection effectiveness over time.  

Future research building on top of this thesis should explore multi-class attack 

classification, continuous learning methods to handle evolving network configurations, 

and model evaluation in live, real-time operational contexts. Validation across additional 

Locked Shields datasets and integrating temporal, contextual, and multimodal data could 

further enhance practical applicability for the ever-evolving cyberthreat landscape. 
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Appendix 2 – Literature review table 

Ref. Authors Date ML / 

DL 

Datasets Used Models Used Best Model Model 

Acc 

Libraries/ Frameworks Code 

Repo 

[26] S. Gnasivam et 

al. 

2024 ML UNSW-NB15 ANN, RF, DT, KNN, 

SVM, LR 

DT 85+% Python, Jupyter Lab,  

Visual Studio Code, Anaconda 

x 

[28] R. A. Bridges 

et al. 

2023 ML VirusShare, Custom 

Polyglot, Zero-day, 

APT, Hyperion 

RF, proprietary 

models 

Net Dynamic x x link 

[32] F. Alotaibi, S. 

Maffeis 

2024 DL CICIDS2017, CSE-

CICIDS2018, 

Kitsune, mKitsune, 

rKitsune 

DAE-based ensemble 

(“Mateen”) 

Mateen 95+% PyTorch, Python, CUDA link 

[37] B. Natarajan et 

al. 

2023 ML KDD Cup ’99 CART (DT), LDA, 

RF 

RF 99+% Apache Spark, Spark MLlib x 

[33] F. Alshuaibi et 

al. 

2024 ML USAF LAN 

simulation 

LR, SVM, KNN, RF, 

XGBoost 

RF 99+% Google Colab, Python x 

[20] S. Li, Y. Lu, J. 

Li 

2022 ML CIC-IDS2017, NSL-

KDD 

SVM, RF, KNN, 

GNB, DT, Bagging,  

GraTree, MLP, LR, 

SGD, ridge, ridgeCV, 

MNB, CNB, BNB 

DT 99+% x x 

[38] T. Hariguna, 

A. R. Hananto 

2022 ML NSL-KDD NB, SVM, RF, 

Ensemble 

Ensemble (SVM + 

RF) 

90+% x x 

https://github.com/bridgesra/beyond-the-hype-paper-code
https://github.com/ICL-ml4csec/Mateen
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[39] I. A. Najm et 

al. 

2024 ML Computer Network 

Traffic Data (IOT) 

DT, RF, SVM, RNN RF 95+% x x 

[29] M. Leon et al. 2022 ML UNSW-NB15 RF, SVM, LDA, 

ANN, KNN, K-means 

RF 95+% MATLAB x 

[21] J. Hu,  

X. Wang,  

Y. Liu 

2024 ML Kaggle HydraS  

Network Traffic 

LSTM, RF, Isolation 

Forest, GBM, 

XGBoost 

GBM / XGBoost 99+% Python, Keras, TensorFlow, scikit-

learn 

x 

[40] H. Chindove, 

D. Brown 

2021 Both CIC-IDS2017; CIC-

IDS2018 

RF, DT, KNN, SVM, 

MLP, RNN 

ML: RF  ~99+% Python x 

DL: RNN 99+% 

[41] M. Leon et al. 2022 ML KDD99, NSL-KDD,  

UNSW-NB15, CIC-

IDS-2017 

ANN, SVM, RF, 

LDA, K-NN,  

K-means, Mean-shift, 

DBSCAN 

RF 99+% MATLAB x 

[42] R. A. Disha, S. 

Waheed 

2021 ML UNSW-NB15 DT, RF, GBT, MLP DT 90+% Python, NumPy, scikit-learn x 

[43] J. Jeyasoundari 

et al.  

2024 ML KDDCUP 99 LR, KNN, NB, SVM, 

RF 

RF 99+% Python, Google Colab x 

[22] T. Liu et al.  2023 ML Edge-IIoTset DT, RF, ET, 

XGBoost, Stacking 

XGBoost 95+% Python, scikit-learn, XGBoost, 

Optuna 

x 

[25] R. Garg,  

S. Mukherjee 

2022 ML NSL-KDD, CSE-

CIC-IDS2018 

DT, RF, K-NN, SVM, 

LR, XGBoost, NB 

RF 80+% Python x 

[44] S. Altamimi,Q. 

Abu Al-Haija 

2024 ML NSL-KDD, Distilled-

Kitsune 

ELM, KNN, DT, RF RF 99+% Python, Google Colab, 

StandardScaler, SMOTE, scikit-learn 

x 

[23] S. Saif et al. 2024 Both 15 IoT/Network 

datasets (ToN_IoT, 

CIC-IDS, KDD99, 

UNSW-NB15, IoT-

Botnet, …) 

kNN, RF, DT, NB, 

ANN, AE 

ML: kNN  

 

95+% Python, scikit-learn x 

DL: ANN 99+% 
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[36] S. Layeghy, 

M. Portmann 

2023 Both NFv2-BoT-IoT, 

NFv2-CIC-2018,  

NFv2-ToN-IoT, 

NFv2-UNSW-NB15 

ET, RF, Feed Forward 

NN, LSTM, 

IsolationForest, 

oSVM, SGD-oSVM, 

AE 

ML: RF 

 

x VMware ESXi, Python, scikit-learn, 

TensorFlow, SHAP 

x 

DL: LSTM x 

[19] B. Yu et al. 2024 Both HDFS, BGL, Spirit, 

Thunderbird, Liberty 

KNN, DT, SLFN; 

CNN, LogRobust (Bi-

LSTM), NeuralLog 

(Transformer) 

ML: KNN x sklearn, Drain, Loglizer, BERT link 

DL: Transformer x 

[30] O. Faraj, D. 

Megías, J. 

Garcia-Alfaro 

2024 ML CIC-IDS2017 SVM (Linear, 

Polynomial, RBF, 

Sigmoid), ExtraTrees 

SVM (RBF) 99+% Python,  sklearn x 

[35] M. Saied, S. 

Guirguis, M. 

Madbouly 

2023 ML N-BaIoT (Mirai IoT 

botnet) 

ADB, GDB, XGB, 

CAB, HGB, LGB 

HGB 99+% Python, sklearn, XGBoost, CatBoost, 

LightGBM 

link 

[46] S. Gamage, J. 

Samarabandu 

2020 DL KDD 99, NSL-KDD, 

CIC-IDS2017, CIC-

IDS2018 

ANN, AE, DBN, 

LSTM, RF 

ANN (Deep NN) 99+% x x 

[27] A. Attia, M. 

Faezipour, A. 

Abuzneid 

2020 DL Kitsune (IoT network) XGBoost, ANN XGBoost 99+% x x 

[34] S. M. Nour,  

S. A. Said 

2024 DL CICIDS2017 CNN, DNN, RNN 

(LSTM), Attention 

CNN 95+% Google Colab, Python x 

[47] A. Meliboev, 

J. Alikhanov, 

W. Kim 

2022 DL UNSW_NB15, 

KDD_cup99, NSL-

KDD 

CNN, LSTM, RNN, 

GRU, CNN+LSTM 

CNN 95+% Keras, TensorFlow, NumPy, scikit-

learn, Pandas 

x 

[31] M. Pawlicki, 

R. Kozik, 

M. Choraś 

2022 DL CICIDS2017 DNN, CNN, LSTM 

(RNN) 

LSTM (RNN) 95+% Python, TensorFlow x 

https://github.com/BoxiYu/LightAD
https://github.com/MohamedSaiedEssa/BoostingBasedIoTNIDS
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[48] A. S. Shaffi et 

al. 

2024 DL NSL-KDD, 

KDDcup99 

CNN, RNN RNN 85+% TensorFlow, Python x 

[49] B. Shaker et al.  2023 DL NF-BoT-IoT, NF-

ToN-IoT, NF-UNSW-

NB15 

RNN, CNN, DNN DNN 95+% x x 

[50] N. Chaibi et al. 2020 DL NSL-KDD ANN, RNN (LSTM) RNN (LSTM) 99+% Python, Keras, TensorFlow, scikit-

learn 

x 

[51]  Y. Li 2024 DL KDD Cup 99 CNN, RNN, 

DBSCAN  

(combined) 

CNN+RNN+DBSCA

N (hybrid) 

80+% x x 

[24] S- Chauhan et 

al. 

2022 DL UNSW-NB15, CSE-

CIC-IDS2018 

LAD, CNN, DNN LAD (UNSW) / CNN 

& DNN (CIC) 

95+% Keras, TensorFlow x 

[52] T. Talaei 

Khoei, N. 

Kaabouch 

2023 DL CIC-DDoS2019 GNB, DT, LR, C-

SVM, LightGBM, 

AlexNet  

+ PCA, K-means, 

VAE 

AlexNet 95+% ADAM optimiser x 

[53] M. A. Uddin et 

al. 

2025 DL NSL-KDD, UNSW-

NB15, CIC-DoS2017, 

CIC-DDoS2019, 

Darknet2020, 

MalMem2022, X-

IIoTID, ToN-IoT 

(Net/Linux), ISCX-

URL2016 

AE; (LOF, IOF, 

OCSVM, usfAD) 

usfAD 95+% Python, Pandas, NumPy, scikit-learn x 

[54] A. R. Tapsoba 

et al. 

2021 DL NSL-KDD MLP, SVM, KNN, 

RF, DT, LR 

MLP 80+% scikit-learn x 
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