
Tallinn 2025

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Johan Valdemar Leoste 232665IVCM

Comparative Analysis of Deep Learning and

Machine Learning for Network Intrusion

Detection Using Data from the Largest Live-

Fire Cyber Defence Exercise

Master's thesis

Supervisor: Risto Vaarandi, PhD

Co-Supervisor: Allard Dijk, MSc

Tallinn 2025

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Johan Valdemar Leoste 232665IVCM

Süvaõppe ja masinõppe võrdlev analüüs võrgu

sissetungide tuvastamiseks kasutades andmeid

maailma suurimalt küberkaitseõppuselt

magistritöö

Juhendaja: Risto Vaarandi, PhD

Kaasjuhendaja: Allard Dijk, MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Johan Valdemar Leoste

18.05.2025

4

Abstract

Intrusion detection systems face ongoing challenges in accurately identifying malicious

activities, particularly due to the increasing complexity of cyber threats. Despite

widespread research on machine learning and deep learning for intrusion detection, real-

world applicability of the findings remains limited due to limitations inherent to outdated

or synthetic training datasets. This thesis addresses this gap through a comparative

analysis of a random forest model and a custom one-dimensional convolutional neural

network, trained and evaluated using the large-scale Locked Shields 2023 dataset, derived

from NATO CCDCOE's live-fire cyber defence exercises. The results, validated on over

16 million network flows, demonstrate that both models achieve high detection accuracy

with F1 scores over 99%, with the neural network marginally outperforming the random

forest in classifying malicious traffic, while the latter offers significant advantages in

computational efficiency and interpretability. Cross-year validation using data from

Locked Shields 2024 highlights a notable decrease in performance for both models,

emphasizing the inherent difficulty of maintaining high accuracy amidst continuously

evolving threats and network configurations. This thesis delivers a practical workflow

and detailed insights into the comparative strengths and limitations of both traditional

machine learning and advanced deep learning techniques, equipping cybersecurity

researchers with clear guidance for implementing resilient intrusion detection systems.

Additionally, the models implemented in this thesis provide a strong baseline for future

expansions, including multiclass detection or adaptation to upcoming Locked Shields

datasets.

This thesis is written in English and is 112 pages long, including 6 chapters, 17 figures

and 11 tables.

5

Annotatsioon

Süvaõppe ja masinõppe võrdlev analüüs võrgu sissetungide

tuvastamiseks kasutades andmeid maailma suurimalt

küberkaitseõppuselt

Sissetungituvastuse süsteemid (IDS) seisavad silmitsi üha keerukamate väljakutsetega

pahatahtliku võrguliikluse täpsel tuvastamisel küberohtude kasvava komplekssuse tõttu.

Kuigi masinõppe ja süvaõppe kasutamist sissetungituvastuses on laialdaselt uuritud,

piiravad vananenud või sünteetilised treeningandmestikud tulemuste rakendatavust

reaalsetes oludes. Käesolev magistritöö käsitleb nimetatud probleemi, võrreldes

otsustusmetsa (RF) algoritmi spetsiaalselt häälestatud ühemõõtmelise konvolutsioonilise

tehisnärvivõrguga (1-D CNN). Mõlemad masinõppe mudelid on treenitud ja hinnatud

NATO CCDCOE küberkaitseõppuse Locked Shields 2023 mahukal ja realistlikul

andmestikul. Rohkem kui 16 miljoni võrguliikluse voo põhjal valideeritud tulemused

näitavad, et mõlemad mudelid saavutavad kõrge klassifitseerimise täpsuse, saavutades

~99% F1-skoori. Tehisnärvivõrk ületas otsustusmetsa napilt tuvastustäpsuga, seevastu

otsustusmets pakkus olulisi eeliseid arvutusliku efektiivsuse ja tulemuste tõlgendatavuse

seisukohalt. Samas järgneva aasta Locked Shields 2024 andmetega ristvalideerimine

demonstreeris märkimisväärset mudelite jõudluse langust, mis viitab raskustele mudelite

üldistusvõimes ajas muutuvate võrgustruktuuride ja arenevate küberohtude korral.

Magistritöö tulemusteks on praktiliselt rakendatav töövoog ning detailne ülevaade nii

traditsiooniliste masinõppe meetodite kui ka süvaõppetehnikate tugevustest ja

piirangutest, pakkudes seeläbi küberkaitse ekspertidele selgeid juhiseid töökindlate

sissetungituvastuse süsteemide loomiseks. Lisaks moodustavad käesolevas töös

valideeritud mudelid tugeva aluse edasistele uuringutele, võimaldades näiteks

mitmeklassilise tuvastuse integreerimist või rakendamist järgnevate Locked Shieldsi

õppuste andmestikega.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 112 leheküljel, 6 peatükki, 17

joonist, 11 tabelit.

6

List of abbreviations and terms

AE

ANN

APT

CCDCOE

CNN

CRISP-DM

DL

DT

EXPO

Gamenet

GPU

ICS

IDS

IoT

KNN

LS

LSPR23

LSPR24

LSTM

MITRE ATT&CK

ML

NATO CCDCOE

NB

NIDS

PLC

RF

RFE

ROC-AUC

RNN

SCADA

SMOTE

SVM

Autoencoder

Artificial Neural Network

Advanced Persistent Threat

Cooperative Cyber Defence Centre of Excellence

Convolutional Neural Network

Cross-Industry Standard Process for Data Mining

Deep Learning

Decision Tree

Central Logging Platform for Locked Shields

Virtualised Exercise Network in Locked Shields

Graphics Processing Unit

Industrial Control Systems

Intrusion Detection System

Internet of Things

K-Nearest Neighbours

Locked Shields (Cyber Defence Exercise)

Locked Shields Partners Run 2023 (Dataset)

Locked Shields Partners Run 2024 (Dataset)

Long Short-Term Memory

MITRE Adversarial Tactics, Techniques & Common Knowledge Framework

Machine Learning

NATO Cooperative Cyber Defence Centre of Excellence

Naïve Bayes

Network-based Intrusion Detection System

Programmable Logic Controller

Random Forest

Recursive Feature Elimination

Receiver Operating Characteristic – Area Under the Curve

Recurrent Neural Network

Supervisory Control and Data Acquisition

Synthetic Minority Over-sampling Technique

Support Vector Machine

7

Table of contents

1 Introduction ... 12

1.1 Background ... 12

1.1.1 Network intrusion detection systems ... 12

1.1.2 Background of the Locked Shields cyber defence exercise 14

1.2 Research overview .. 15

1.2.1 Research problem .. 15

1.2.2 Research questions .. 16

1.2.3 Research objectives ... 17

1.3 Contribution .. 17

1.3.1 Extensive literature review .. 18

1.3.2 Comparative experimentation ... 18

1.3.3 Evaluation of model robustness ... 18

1.3.4 Reproducible methodology ... 18

1.3.5 Model architecture ... 19

1.4 Thesis roadmap ... 19

2 Literature review.. 20

2.1 Literature review protocol .. 20

2.1.1 Data sources and timeframe .. 20

2.1.2 Search strategy ... 21

2.2 Selection process .. 22

2.2.1 Preliminary screening .. 22

2.2.2 exclusion criteria ... 22

2.2.3 Full text evaluation .. 22

2.2.4 Inclusion criteria .. 23

2.3 Selected papers ... 24

2.3.1 Publication trends .. 25

2.3.2 Reproducibility of ML vs. DL approaches .. 26

2.3.3 Data extraction ... 27

2.4 Overview of ML-based models in intrusion detection ... 28

8

2.5 Overview of DL-based models in intrusion detection .. 32

2.6 Literature review findings .. 35

2.6.1 Summary .. 35

2.6.2 Importance of the training dataset for ML algorithm selection 36

2.6.3 Research gaps .. 37

2.6.4 Answer to research question RQ1 ... 38

3 Experimental design and implementation ... 39

3.1 Overview of CRISP-DM methodology .. 39

3.2 Business understanding .. 42

3.2.1 Objectives .. 42

3.2.2 Stakeholders .. 42

3.2.3 Resources and constraints .. 43

3.2.4 Success criteria .. 43

3.2.5 Risks and mitigation .. 44

3.3 Data understanding ... 44

3.3.1 Dataset selection .. 44

3.3.2 Data access .. 45

3.3.3 Overview of the Locked Shields cyber exercise ... 45

3.3.4 Network environment .. 46

3.3.5 Dataset characteristics and composition .. 48

3.3.6 Data quality and limitations ... 49

3.4 Data preparation ... 51

3.4.1 Feature selection .. 51

3.4.2 Flow identification features ... 52

3.4.3 Timestamp and duration features .. 54

3.4.4 Packet count and byte count features .. 54

3.4.5 Inter-arrival time features .. 54

3.4.6 TCP flags and protocol-specific indicators ... 55

3.4.7 Feature reduction ... 55

3.4.8 Data cleaning ... 55

3.4.9 Dataset partitioning strategy .. 58

3.4.10 Data balancing ... 60

3.5 Machine learning model: Random Forest .. 61

3.6 Deep learning model: 1D Convolutional neural network 63

9

3.6.1 Input features and feature encoding .. 64

3.6.2 Model architecture ... 66

3.7 Evaluation ... 67

3.7.1 Evaluation metrics and methodology .. 67

3.7.2 Computation performance metrics .. 68

3.7.3 Evaluation procedure ... 70

3.8 Deployment and reproducibility ... 71

3.8.1 Experimental setup .. 71

3.8.2 Scalability and deployment considerations ... 72

3.8.3 Explainability .. 73

3.8.4 Deployment plan ... 74

4 Results ... 75

4.1 Comparison of CPU-based and GPU-based random forest implementations 75

4.2 Comparison of ML and DL models on LSPR23 dataset 78

4.2.1 Classification performance comparison .. 78

4.2.2 Computational efficiency comparison ... 80

4.2.3 Answer to research question RQ2 ... 82

4.3 Cross-dataset validation results on LSPR24 ... 83

4.3.1 Importance of inter-arrival time features ... 84

4.3.2 Performance comparison without IAT features .. 84

4.3.3 Performance comparison with IAT features .. 85

4.3.4 Answer to research question RQ3 ... 87

5 Discussion .. 89

5.1 Practical implications ... 89

5.1.1 Necessity of machine- and deep learning in intrusion detection 90

5.1.2 Binary vs multiclass classification considerations .. 92

5.1.3 Model transferability and environment specifics .. 93

5.2 Limitations .. 95

5.3 Future research ... 97

6 Conclusion ... 100

References .. 101

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 108

Appendix 2 – Literature review table ... 109

10

List of figures

Figure 1. PRISMA systematic search flow diagram, adapted from Page et al. [17] 24

Figure 2. CRISP-DM process model .. 40

Figure 3. Locked Shields 2023 network map, adapted from Dijk et al. [3] 46

Figure 4. Overview of the traffic per network segment ... 47

Figure 5. Distribution of malicious / benign network flows in LSPR23 48

Figure 6. Distribution of non-finite values in the LSPR23 dataset 49

Figure 7. L3/L4 protocol value distribution in the LSPR23 dataset 52

Figure 8. Distribution of source and destination IP addresses in the LSPR23 dataset ... 53

Figure 9. Comparison of calculated vs computed Fwd Packets/s feature 54

Figure 10. Distribution of malicious traffic .. 59

Figure 11. Confusion matrices for GPU-based and CPU-based RF models 76

Figure 12. cuML vs scikit‑learn RF: training time, inference time & energy

consumption. .. 76

Figure 13. Average confusion matrices for the CNN and RF models 80

Figure 14. CNN vs RF training times over 10 runs .. 81

Figure 15. CNN vs RF average inference time .. 81

Figure 16. Confusion matrices comparing performance of CNN and RF models without

IAT features .. 85

Figure 17. Confusion matrices comparing performance of CNN and RF models with

IAT features .. 86

11

List of tables

Table 1. Overview of Machine Learning methods used in studies 28

Table 2. Overview of Deep Learning methods used in studies 34

Table 3. Summary of feature selection decisions ... 51

Table 4. LSPR23 features with non-finite values ... 56

Table 5. Random forest model hyperparameters .. 63

Table 6. Detailed CNN model architecture .. 66

Table 7. Definitions and formulas for the evaluation metrics .. 68

Table 8. Performance comparison between CNN and RF ... 79

Table 9. Computational efficiency of CNN and RF models .. 80

Table 10. Cross-dataset performance on LSPR24 without IAT Features 84

Table 11. Cross-dataset performance on LSPR24 with IAT Features 85

12

1 Introduction

Intrusion Detection Systems (IDS) are used for monitoring network traffic and detecting

suspicious or malicious activity. As such, IDS are a critical element of an effective

cybersecurity strategy in the constantly evolving threat landscape [1]. Despite ongoing

improvements in intrusion detection systems, accurately detecting increasingly evolving

attacks remains challenging. The primary difficulty is balancing the timely detection of

novel threats while minimising false alarms [1], [2]. Existing machine learning-based

intrusion detection systems are often limited by the quality and the scale of their training

datasets. This restricts the model’s effectiveness in recognising patterns in the malicious

network data, and thus worsening the detection accuracy [2], [3].

1.1 Background

The escalating frequency and sophistication of cyber threats pose a significant challenge

to the security of digital infrastructures and assets. Organisations across various sectors

are increasingly vulnerable to malicious activities that can compromise the integrity,

confidentiality, and availability of their critical systems and data. This evolving threat

landscape compels the deployment of robust security mechanisms capable of detecting

and mitigating these risks. [1], [4]

1.1.1 Network intrusion detection systems

Intrusion Detection Systems serve as a critical component of an organisation's defence

strategy. While preventative measures such as firewalls aim to block malicious traffic

before it enters a network, IDS focus on identifying and alerting security personnel to

malicious activities that may have bypassed these initial defences or originated from

within the network itself [4]. The primary function of an IDS is to detect suspicious

behaviour, providing timely alerts that enable security teams to respond effectively and

minimise potential damage. [1], [5]

13

Network-based Intrusion Detection Systems (NIDS) are deployed at various points within

a network infrastructure to monitor network traffic for suspicious activity [5]. These

systems operate by capturing and analysing network packets as they traverse the network,

looking for patterns that match known attack signatures or behaviours that deviate from

established baselines. Key characteristics of NIDS include real-time monitoring

capabilities, data preprocessing to filter irrelevant information, feature extraction to

identify potential threats, and detection processing and classification using various

algorithms [4], [6].

In the operation of an IDS, two common error types are false positives and false negatives.

A false positive occurs when an IDS incorrectly identifies benign or normal activity as

malicious, triggering an alert when no actual intrusion has taken place [6]. A high rate of

false positives can lead to alert fatigue among security personnel, causing them to

potentially miss genuine threats amidst the noise of numerous false alarms [6], [7].

Conversely, a false negative occurs when an IDS fails to detect an actual intrusion or

malicious activity, classifying it as normal [6]. False negatives are particularly dangerous

as they allow attackers to operate undetected within a system or network, potentially

leading to significant data breaches or other harmful consequences [8]. Therefore, these

two error types will be used as performance metrics for model validation in subsequent

sections of this thesis.

As the nature of cyber threats evolved, so did the sophistication and deployment of IDS,

adapting to new attack vectors and technological advancements. This is why machine

learning (ML) techniques have become increasingly popular in the field of IDS, offering

the potential to significantly enhance their capabilities in detecting both known and novel

cyber threats [9]. Supervised ML algorithms such as random forests are trained on

labelled datasets and then classify new traffic accordingly [9]. These methods can achieve

high accuracy given sufficiently representative training data [2]. Unsupervised ML

methods detect outliers or anomalies in unlabelled data and thus can potentially better

detect previously unseen attacks [10]. Nevertheless, the scope of this thesis is restricted

to supervised learning approaches.

In recent years, deep learning (DL) techniques have gained prominence in network

intrusion detection research as a subset of machine learning that can automatically learn

complex feature representations. Traditional ML methods typically rely on manually

14

crafted features as input, whereas deep learning models (e.g. deep neural networks) can

ingest raw or high-dimensional data and learn informative features during training [11].

Despite their effectiveness, DL models can be computationally intensive and may face

challenges related to interpretability and handling imbalanced datasets, which are

common in intrusion detection scenarios [9], [11]. These different strengths and

weaknesses highlight the need for a systematic comparative analysis of DL techniques

against traditional ML methods, assessing not only classification performance but also

practical considerations such as resource efficiency and generalisation to unseen data.

This thesis aims to address this gap by evaluating and comparing these approaches using

realistic datasets derived from the Locked Shields cyber defence exercise, thereby

providing meaningful insights into the optimal deployment of machine learning

methodologies for network intrusion detection in operational environments.

1.1.2 Background of the Locked Shields cyber defence exercise

Locked Shields is the world’s largest international live-fire cyber defence exercise, held

annually since 2010 by the NATO Cooperative Cyber Defence Centre of Excellence

(CCDCOE) in Tallinn [12]. It brings together thousands of cybersecurity professionals

from dozens of nations to practice defending critical national information systems in a

high-pressure, realistic scenario. The exercise comprises multiple simultaneous scenarios,

each mimicking different real-world APTs (Advanced Persistent Threats), complete with

distinct indicators of compromise. These scenarios challenge teams to maintain services

and rapidly respond to real-time threats [3], [12], [13].

The training exercise is primarily focused on evaluating blue team performance, with the

red team serving as adversaries and trainers, coordinating attacks across all blue team

networks. The blue teams act as national cyber defence incident response units, tasked

with securing and maintaining their assigned virtual infrastructures (or "Gamenets")

while under attack, and serve as the primary audience for the exercise. In contrast, the red

team centrally coordinates cyber-attacks against all blue team networks, employing pre-

planned operations to ensure a challenging, but level playing field. [2], [12], [14]. There

are several supporting teams: the green team maintains the technical infrastructure, the

yellow team offers real-time situational awareness, the user simulation team mimics

everyday user behaviour with imperfect cyber hygiene to add realism, and the white team

oversees overall coordination, including non-technical challenges. [14]

15

Blue teams operate as a rapid-reaction force in an already compromised network,

identifying active threats, preventing escalation, and eradicating or mitigating malicious

activity while maintaining critical services. In the past few scenarios, including 2023 and

2024, the story has centred on the fictional nation of Berylia coming under cyber-attack

amid geopolitical conflict [3], [12]. Blue teams are working to preserve critical services

like power grids, telecommunications, banking systems and other critical infrastructure

from the onslaught of red team attacks [13]. It is an interdisciplinary exercise, and as such

the defending teams must also be able to handle parallel challenges such as strategic

decision making, forensic analysis and legal issues. [12]

The Locked Shields cyber defence exercise provides an unmatched opportunity for IDS

research, as it uniquely captures contemporary threats within realistic scenarios, thereby

allowing for thorough evaluation of ML and DL models under conditions closely

mirroring real-world cyber operations. A more technical overview of the exercise is

described in the sections 3.2 and 3.3.

1.2 Research overview

1.2.1 Research problem

Even with the advancements in IDS technology, there remains a critical gap in

understanding how traditional machine learning models compare to deep learning models

in real-world intrusion detection scenarios. Many existing studies on network intrusion

detection have relied on outdated or synthetic benchmark datasets, which limits the

practical applicability of their findings [2]. Consequently, it remains unclear which type

of approach, traditional ML or modern DL, is more effective at detecting malicious

activities in contemporary network environments. The recent availability of a large, high-

quality intrusion detection dataset from the Locked Shields exercise [3] offers a new

opportunity to evaluate these approaches under realistic conditions. However, it also

raises new questions: will a conventional ML model or a deep neural network perform

better when trained on such state-of-the-art data, and how well can models trained on one

year's attack data generalise to novel threats emerging in the following year? Addressing

this uncertainty defines the research problem of this thesis: to determine the comparative

effectiveness and practicality of traditional machine learning versus deep learning

16

methods for network intrusion detection, using modern large-scale data and considering

the challenge of evolving cyber threats.

1.2.2 Research questions

The thesis is structured into 3 distinct parts. There is the literature review to identify the

best ML and DL models, the experimental setup using CRISP-DM, and validating the

trained models on the next years dataset, to test the generalisation capabilities of the

models when encountering novel threats. The RQ1 provides the conceptual foundation

on model selection and is addressed by the literature review. RQ2 provides direct

performance comparisons and is addressed by the ML experiments done on the LSPR23

dataset. RQ3 addresses model robustness over time, generalisation, and it is addressed by

cross-year validation using LSPR24.

To investigate the research problem, this research is structured around three key questions

(RQ1, RQ2, and RQ3). A systematic literature review is conducted to identify the leading

traditional ML model and deep learning model for network intrusion detection, an

experimental evaluation of these selected models on the LSPR23 dataset is performed

following a structured methodology (CRISP-DM), and a cross-year validation using the

subsequent year’s dataset (LSPR24) is used to test the models’ robustness to new threats.

Accordingly, each research question aligns with one part of the thesis: RQ1 lays the

conceptual foundation through model selection in the literature review, RQ2 involves the

performance comparison on the LSPR23 dataset, and RQ3 examines model performance

over time via validation on the LSPR24 dataset. The research questions are formulated as

follows:

RQ1. Which industry-standard traditional machine learning model and state-of-the-art

deep learning model are most effective and widely used for network intrusion detection?

RQ2. How do the traditional learning techniques compare to the deep learning techniques

in classification performance in classifying malicious network traffic?

RQ3. How effective are traditional machine learning models compared to deep learning

models in transfer learning across different databases?

17

1.2.3 Research objectives

To address the above research questions, the following research objectives have been

defined for this research, revolving around the central question: How can the best ML/DL

algorithms be reliably identified, trained, and validated for real-world IDS deployments,

using strong methodological standards and large-scale, up-to-date datasets?

O1: Conduct a comprehensive literature review to identify one representative traditional

machine learning model and one state-of-the-art deep learning model that are considered

most effective and widely used for network intrusion detection (addressing RQ1).

O2: Develop, implement, and evaluate the selected ML and DL models on a large-scale

real-world intrusion detection dataset from Locked Shields 2023. This evaluation will

compare the models’ classification performance in detecting malicious network traffic

under realistic conditions (addressing RQ2).

O3: Assess the generalisation capability of the trained models by validating their

performance on the following year’s dataset from Locked Shields 2024 (LSPR24). This

objective will determine how well each model handles novel attack patterns, thereby

evaluating the robustness of traditional ML vs. DL approaches to evolving cyber threats

(addressing RQ3).

1.3 Contribution

This thesis makes several contributions to the field of network intrusion detection systems

and advances the state of knowledge in network intrusion detection. In practical terms,

the findings of this thesis can help improve IDS performance, which has significant

implications for enhancing network security and reducing the impact of cyber-attacks.

The actionable insights gained from this comparative analysis will assist cybersecurity

professionals in selecting and deploying the most suitable machine learning techniques

for protecting critical systems against intrusions. In addition to these theoretical

contributions, the thesis introduces a fully reproducible and complete evaluation

framework which is directly applicable in future research or real-world scenarios, such as

live-fire cybersecurity exercises. The major contributions are listed as follows:

18

1.3.1 Extensive literature review

The thesis provides an up-to-date overview of current intrusion detection approaches by

performing a systematic literature search of machine learning and deep learning methods

for NIDS. This review condenses the landscape of techniques and identifies the most

effective and widely used ML and DL models reported in the literature (addressing RQ1).

Additionally, due to its comprehensive and structured presentation, the literature review

can effectively guide future research directions, both on the LSPR23 dataset and others

in the domain of intrusion detection.

1.3.2 Comparative experimentation

The thesis presents an empirical comparison of a traditional ML model and a modern DL

model on a realistic, large-scale IDS dataset, unlike most intrusion detection research

relying on outdated or artificial datasets. By leveraging the LSPR23 dataset, which

depicts real-world network traffic from a live-fire cyber exercise, the research bridges the

gap between theoretical model performance and practical deployment. The results offer

insights into each model’s detection capabilities and limitations in an operational

environment (addressing RQ2).

1.3.3 Evaluation of model robustness

The thesis evaluates the temporal robustness of ML and DL models through cross-dataset

validation on LSPR24. This analysis demonstrates how the chosen models perform when

faced with new and evolving attack vectors, providing evidence on whether advanced

deep learning techniques maintain their advantage and practical utility over time or if

their performance degrades relative to simpler models (addressing RQ3).

1.3.4 Reproducible methodology

A critical methodological contribution is the development of a fully reproducible

experimental framework based on the CRISP-DM methodology, explicitly tailored for

evaluating NIDS. All stages of the process, from data preparation and feature selection to

model training and evaluation, are documented and conducted in a transparent manner.

This provides a methodological best-practice and enables other researchers to replicate

the research or adapt it to future datasets. Moreover, the work presented in this thesis is

not only reproducible but directly applicable, as the developed models and procedures are

structured with operational use in mind. This means cybersecurity professionals or

19

researchers can deploy the methods described here in subsequent Locked Shields

exercises or similar live-fire cybersecurity scenarios. By clearly outlining computational

requirements, dataset handling strategies, and model configurations, this thesis enables

immediate practical application, enhancing its value beyond theoretical contribution

alone.

1.3.5 Model architecture

This thesis contributes an innovative and customised 1-dimensional Convolutional

Neural Network (1D CNN) architecture, specifically tailored and optimised for NIDS

applications on the LSPR23 dataset. Unlike standard CNN models typically used for

intrusion detection, this approach includes dedicated embedding layers for categorical

variables addressing the challenge of efficiently handling high-cardinality categorical

data, and thus significantly improving both computational performance and model

accuracy. Furthermore, this research incorporates a novel GPU-accelerated

implementation of the Random Forest algorithm using the recently introduced cuML

library [15], a feature not yet widely adopted within the cybersecurity research

community. This cutting-edge deployment has demonstrated significant efficiency and

computational time advantages, significantly reducing both training and inference

durations compared to conventional scikit-learn CPU-based implementations.

1.4 Thesis roadmap

The thesis is structured around the following key chapters. Chapter 2 provides an

overview of the existing literature on machine learning and deep learning for intrusion

detection, addressing RQ1. Chapter 3 describes the research methodology, including data

analysis following CRISP-DM methodology, preprocessing, feature selection, and model

implementation. Chapter 4 presents experimental results on the LSPR23 dataset and

cross-year validation utilising LSPR24, addressing RQ2 and RQ3. Chapter 5 discusses

findings, limitations, and future research directions. Chapter 6 summarizes the thesis,

highlighting key contributions and implications of the conducted research for future

intrusion detection systems.

20

2 Literature review

The objective of this literature review is to systematically identify and critically analyse

the current industry-standard ML and DL models utilised for NIDS. The review addresses

the first research question which was:

RQ1. Which industry-standard traditional machine learning model and state-of-the-art

deep learning model are most effective and widely used for network intrusion detection?

The review process starts with mapping the current landscape of ML- and DL-based

intrusion detection research through database searches. The selected studies are screened

based on the inclusion and exclusion criteria to eliminate unsuitable or irrelevant research

and the remaining candidates are evaluated according to their real-world relevance,

methodology reproducibility, and any potential compatibility issues with the LSPR23

dataset. As the outcome of the literature review, one representative industry-standard

traditional ML model and one state-of-the-art DL model are selected to be compared on

the LSPR23 dataset.

2.1 Literature review protocol

Given that this research area is continually evolving due to rapid technological

advancements, it is important that the literature review is conducted in a structured and

transparent manner to be reproducible. This approach ensures the reliability of the results,

allows future researchers to replicate and extend the analysis, and offers clarity on the

decisions made during the review process. Consequently, systematic literature search

methodology was adopted for this literature review following established guidelines such

as PRISMA. [16], [17].

2.1.1 Data sources and timeframe

To minimise selection bias and enhance the robustness of the review, three databases

were chosen based on their relevance and coverage in computer science and machine

learning: IEEE XPLORE Digital Library, ACM Digital Library, and Scopus [18]. These

databases collectively encompass a wide variety of peer-reviewed journals, conference

proceedings, and technical magazines. The timeframe for the literature review is from

21

January 2020, until March 2025, thus covering recent advancements in machine learning

and deep learning for intrusion detection.

2.1.2 Search strategy

The search query was constructed by combining relevant keywords from the fields of

traditional machine learning and deep learning, alongside specific terms related to

intrusion detection systems. Keywords were selected based on common terminology

found in existing literature and included terms indicating comparative studies,

benchmarks, and performance evaluations. The goal was to retrieve literature directly

evaluating or comparing different ML or DL methods applied to network intrusion

detection. One search query, SQ1, was constructed from the identified keywords:

SQ1. ("intrusion detection system" OR "network intrusion detection" OR "IDS" OR

"network anomaly detection") AND ("machine learning" OR "ML" OR "deep learning"

OR "DL") AND ("supervised learning") AND ("review" OR "survey" OR "comparative

study" OR "benchmark" OR "evaluation")

The search query was applied to the titles, abstracts and keywords of the articles.

Including abstracts ensured that relevant studies were identified even if the specific search

terms were absent from the titles, as abstracts typically summarise the objectives,

methods, and key contributions of the papers, providing a more comprehensive basis for

identifying relevant literature. For example, the Scopus database allowed the use of the

TITLE-ABS-KEY() search operator, applying the search query specifically to the title,

abstract, and keywords. Similar search options were also available and utilised in searches

conducted within the ACM Digital Library and IEEE Xplore databases, ensuring a

consistent approach across all selected sources.

The retrieved papers were sorted automatically by relevance on Scopus and IEEE Xplore,

and by recency on ACM Digital Library, to prioritise the most relevant and recent papers

prior to manual review. Following the automatic retrieval and prioritisation, a manual

two-stage screening process was employed to further filter these results, as detailed in

Section 2.2.

22

2.2 Selection process

All papers were systematically selected from the previously defined databases. The

literature review was conducted at the beginning of 2025 to ensure the inclusion of most

up to date papers. The search produced a considerable number of papers, which were

subjected to a two-staged screening process in accordance with PRISMA 2020 guidelines.

[17]

2.2.1 Preliminary screening

The first stage involved screening the titles and abstracts of the retrieved papers to assess

their relevance to the research objectives. This preliminary screening aimed to exclude

studies that did not directly address the application of supervised machine learning or

deep learning techniques in intrusion detection systems or those that focused on unrelated

aspects of cybersecurity. During this phase, only papers that did not trigger any exclusion

criteria were advanced to full-text evaluation.

2.2.2 exclusion criteria

A study was excluded if it matched any of the following criteria:

1) The study was published prior to 2020, therefore increasing the risk of using

outdated ML methods.

2) The study was written in any language other than English, introducing potential

language barriers.

3) The study was not published in reputable, peer-reviewed journals or conference

proceedings.

4) The study was a duplicate of an already selected study from a different database.

5) The methods proposed were clearly incompatible or impractical given the nature,

size, or other characteristics of the dataset targeted by this research.

2.2.3 Full text evaluation

In the second stage, the full texts of the selected papers were examined to confirm their

suitability and quality. This stage was used to validate that each paper clearly described

its experimental setup, including model design, dataset specifics, and evaluation metrics,

23

so that the results could be independently reproduced. Only the studies that met all the

inclusion criteria were included in the final review.

2.2.4 Inclusion criteria

A study was included if it met all the following criteria:

1) The study primarily addresses network intrusion detection or cybersecurity

anomaly detection using supervised machine learning or deep learning methods.

2) The study provides sufficient details on the model’s architecture, evaluation

metrics, and dataset characteristics to allow for replication.

3) The proposed method in the study is reproducible using widely available libraries

(e.g., TensorFlow, PyTorch, scikit-learn).

4) The study includes empirical results or performance evaluations, preferably using

recognised benchmarks or datasets.

5) The dataset used to train the model/s is similar enough to LSPR23 to ensure likely

compatibility.

24

2.3 Selected papers

Figure 1. PRISMA systematic search flow diagram, adapted from Page et al. [17]

As can be seen from the above PRISMA flow diagram [17] on figure 1, the search query

returned a grand total of 3125 records. With ACM Digital Library contributing 2,524

records, IEEE Xplore 362 records, and Scopus 239 records. After applying the language

and publishing date restrictions, 924 records were dropped from the results. The ACM

search returned a substantial number of records with a substantial proportion identified

as irrelevant to the scope of the review upon preliminary screening. To optimise the

allocation of resources and limit the assessment of unrelated literature, the abstract

screening process for ACM was confined to the first 300 records. This amounted to

discarding an extra 1422 records resulting in the removal of 2,347 records overall before

the screening. This left 779 records eligible for further screening: 283 from IEEE Xplore,

300 from the ACM Digital Library, and 196 from Scopus.

The next phase involved a detailed screening based on title, abstract, and keywords to

determine the relevance of each study in the context of the research topic. After this

25

assessment 667 of these records failed the exclusion criteria, e.g. the models used were

unsupervised or otherwise clearly incompatible with the characteristics targeted by this

research. Thus, 112 potentially relevant records, 28 from IEEE Xplore, 29 from ACM

Digital Library, and 55 from Scopus, were sought for retrieval. Of these, 10 were not

successfully retrieved as the full text was not available with the Taltech library access.

Consequently, a total of 102 reports were advanced to full-text evaluation to determine

their compliance with the inclusion criteria. Out of these reports, 17 were excluded due

to including no empirical testing (Reason 1), 4 reports were duplicates of already selected

papers (Reason 2) and 46 reports were dropped due to other issues (Reason 3), such as

not including enough details to be reproducible.

Ultimately, 35 papers were selected for inclusion in the final literature review, categorised

as follows: 19 studies addressing machine learning approaches, and 16 studies focusing

on deep learning methodologies. Specifically, the ACM Digital Library contributed 7 ML

and 5 DL papers, IEEE Xplore produced 5 ML and 3 DL papers, and Scopus provided 7

ML and 8 DL papers. After the full text analysis, four of the selected papers were

identified to have sufficient depth to be included both in the ML and DL sections,

resulting in a total of 21 papers for ML section and 18 for DL. Additionally, several papers

addressing related topics, such as feature selection frameworks or explainability of

machine learning methods within the context of NIDS were identified. While these papers

were not included in the primary literature review, they were incorporated into subsequent

sections of the thesis to provide complementary insights.

2.3.1 Publication trends

Out of the 21 reviewed machine learning studies, 15 appeared as conference papers and

6 as journal articles. Similarly, the deep learning category comprised 13 conference

papers and 5 journal articles, indicating a clear preference for rapid dissemination through

conferences. Geographically, the research is global in scope: notable contributions

originated from Asia, particularly China [19], [20], [21], [22] and India [23], [24], [25],

USA [26], [27], [28], as well as Europe [29], [30], [31], [32] and the Middle East [33],

[34], [35]. This diverse provenance highlights widespread international engagement in

network intrusion detection research, with active cybersecurity research communities

prominently represented: USA, China, India, Australia [36]. Overall, the reviewed

26

literature reflects a broad cross-section of global academic interest in ML- and DL-based

intrusion detection methodologies.

2.3.2 Reproducibility of ML vs. DL approaches

Most NIDS papers outline their methodology in detail, aiding reproducibility. Many

studies clearly describe data preprocessing, feature selection, and model tuning. For

instance, Gnanasivam et al. [26] explicitly detail using recursive feature elimination and

cross-validation in training ML models. Several works list hyperparameters: e.g., a

decision tree’s settings or an LSTM’s architecture (4 layers, learning rate 0.0001, dropout

0.2). Such transparency allows researchers to replicate or extend experiments. Almost all

studies specify the dataset used (NSL-KDD, CIC-IDS2017, etc.), ensuring that evaluation

benchmarks are well-defined. Both ML and DL papers report standard metrics: accuracy,

precision, F1, etc., enabling result comparisons across studies.

A high proportion of papers explicitly mention the libraries/frameworks employed, which

further supports reproducibility. Traditional ML studies often used scikit-learn, Apache

Spark MLlib, or MATLAB toolboxes. This indicates authors built on well-tested

implementations. Deep learning studies frequently note using Keras/TensorFlow or

PyTorch for neural networks. Knowing the framework and version (e.g., TensorFlow 2.x)

helps others achieve consistent training behaviour. Additionally, some works utilise

platform environments like Google Colab or CUDA acceleration, which are mentioned

to inform the computational setup.

Despite methodological clarity, only a minority of works publicly released code. In the

surveyed papers, Code Repository links were rarely provided. Notable exceptions include

Bridges et al. who shared a GitHub repository with code associated with their malware

detector evaluation [28], and Alotaibi and Maffeis [32] who released the Mateen

framework code. The lack of easy access to the code in the majority of papers means that

reproducibility often relies on reimplementing models based on descriptions.

Traditional ML papers generally achieve higher reproducibility due to simpler model

structures and reliance on standard algorithms. Many ML studies evaluate well-known

classifiers with default or easily tuned parameters (e.g. C4.5 decision trees, SVM with

RBF kernel), which anyone with the same library can replicate. In contrast, DL papers

involve custom neural network architectures that are sometimes not fully specified. For

27

instance, some DL works omit certain hyperparameters, e.g. number of neurons per layer,

or only describe them qualitatively, for example “CNN with convolutional, pooling, and

fully connected layers” without specifying the exact layer counts. This can make

reimplementation tricky without additional guidance. However, several deep learning

studies do enhance transparency by reporting training times or giving partial architecture

details. Both ML and DL research in NIDS strive for methodological openness, but ML

approaches tend to be easier to reproduce given their use of well-documented algorithms

and fewer tuneable parameters. Deep learning approaches show very high performance

yet require careful reimplementation of neural networks to replicate results, especially

when code isn’t shared.

2.3.3 Data extraction

Key information from each reviewed paper was systematically extracted, including

authors, publication year, algorithm category (classical machine learning or deep

learning), models tested, datasets used, best-performing model, top reported metrics, with

focus on accuracy and F1 score, utilised tools/libraries, and strengths or weaknesses

highlighted by the original authors. Terminology and measurement units were

standardised across studies to ensure consistency; for example, all decision tree-based

methods (CART, C4.5, ID3) were consolidated under "DT (decision tree)." For the

metrics, accuracy and F1 were chosen, as accuracy provides a straightforward evaluation

of overall detection correctness across different literature due to its widespread use, while

the F1 score balances precision and recall, useful for assessing performance in imbalanced

datasets typical in NIDS literature.

Uncertainties regarding the top-performing methods were resolved using authors' explicit

conclusions or highest reported metric values. Tools and frameworks such as scikit-learn

and TensorFlow were noted explicitly when stated by authors. Primary metrics, the

accuracy and F1 score for binary supervised classification, were consistently extracted to

enable uniform comparison.

Although multiple data extraction tables were created, only the most essential and

summarised data is presented here due to length constraints. Appendix 2 table provides a

comprehensive reference summary of the key metrics and findings for comparative

analysis.

28

2.4 Overview of ML-based models in intrusion detection

A wide range of classical machine learning algorithms has been applied to network

intrusion detection, with tree-based classifiers and support vector machines among the

most prevalent approaches. This distribution suggests that researchers gravitate toward

models known for high accuracy in classification tasks, such as trees and SVM for

intrusion detection, while simpler models serve as baselines or for comparison. Table 1

summarises the usage and average performance metrics of the main ML models across

the literature.

Table 1. Overview of Machine Learning methods used in studies

ML model Studies (n) Avg. acc. Avg. F1 References

Random Forest (RF) 18
~95%

(80.66–

100%)

~93%

(87.00–

99.82%)

[26] [37] [33] [20] [38] [39]
[29] [28] [21] [40] [41] [42]
[43] [22] [25] [44] [23] [36]

Decision Tree (DT) 11
~93%

(70.33–

100%)

~92%

(76.00–

99.90%)

[26] [37] [20] [39] [40] [19]
[42] [22] [25] [44] [23]

Support Vector

Machine (SVM)
12

~89%

(51.75–

100%)

~91%

(82.00–

99.97%)

[26] [33] [20] [38] [39] [30]
[29] [40] [41] [43] [25] [36]

K-Nearest-

Neighbours (KNN)
11

~91%

(64.70–

100%)

~91%

(79.00–

99.52%)

[26] [33] [20] [29] [40] [19]
[41] [43] [25] [44] [23]

Naïve Bayes (NB) 5

~77%

(51.75–

100%)

~88%

(83.00–

98.00%)

[20] [38] [43] [25] [23]

Logistic Regression

(LR)
5

~83%

(63.96–

93.00%)

~88%

(85.00–

93.60%)

[26] [33] [20] [43] [25]

LDA (Linear Disc.

Anal.)
3

~94%

(89.30–

98.10%)

N/A [37] [29] [41]

Extra Trees (Ext.

Randomised Trees)
3

~97%

(95.87–

99.03%)

~98%

(95.96–

99.82%)

[30] [22] [36]

29

XGBoost (Gradient

Boosted DT)
5

~90%

(65.08–

99.30%)

~97%

(93.00–

99.40%)

[33] [21] [35] [22] [25]

Ensemble

(Bagging/Stacking)
4

~97%

(94.50–

99.00%)

~96%

(94.90–

96.90%)

[20] [38] [43] [22]

Random Forest is frequently highlighted for its robustness to overfitting and ability to

handle high-dimensional feature spaces. Because RF aggregates many decision trees via

bagging, it significantly reduces variance and can maintain strong performance even

when the input feature set is large or noisy [25]. Indeed, several studies note that RF yields

stable, high accuracy across different network environments and attack types, making it

a reliable choice for intrusion detection [25], [41]. For example, Li et al. [20] found tree-

based models, such as DT, RF, and Bagging ensembles, consistently outperformed linear

models in both accuracy and efficiency, and Leon et al. [41] showed that RF can

accurately detect all classes of network attacks across multiple datasets. The primary

drawback of Random Forest is its computational cost: training an ensemble of hundreds

of trees can be slower and more memory-intensive than training simpler models [29],

[41]. In one experiment on UNSW-NB15, an RF classifier attained the highest accuracy

with the incurred cost in significantly longer training time, on the order of minutes,

compared to lightweight methods like linear discriminant analysis or clustering, which

had lower accuracy [29]. Nevertheless, RF often remains computationally feasible. RF

model, even when trained on the large CIC-IDS-2017 dataset, was still faster in execution

than an SVM or kNN classifier, indicating that well-optimised ensemble implementations

can strike a good balance between accuracy and speed [41].

Decision Trees (DT), on the other hand, are praised for their simplicity, interpretability,

and low latency. While a single DT might not always match the raw accuracy of an

ensemble, it can be highly efficient and, if properly tuned, still achieve excellent detection

rates. Li et al. [20] and Disha & Waheed [42] both demonstrate that a plain decision tree

can reach around 92–99% accuracy in intrusion detection tasks when enhanced with

appropriate preprocessing. In a comparative study focusing on resource-constrained IoT

settings, a CART decision tree was identified as the best performer, providing over 99%

accuracy with the shortest training and prediction time among 15 algorithms tested [37].

Likewise, using UNSW-NB15, a tuned decision tree achieved about 92.8% accuracy with

30

the lowest false positive rate of 11.7%, thus outperforming more complex models in that

experiment. This was made possible by applying feature selection and class-balancing

techniques [42]. The strengths of DTs include very fast inference and the ability to

naturally handle categorical features, which are beneficial for real-time IDS deployment

[20], [42]. However, a known weakness is the tendency to overfit if the tree grows too

complex or if noisy features are present. Simpler trees may also have slightly lower

precision than recall in skewed datasets, meaning they might produce more false alarms

unless carefully pruned or balanced. Overall, studies suggest that when computational

efficiency is a priority, such as in IoT or edge devices, a well-tuned decision tree can offer

a favourable trade-off between accuracy and speed [20], [37], [42].

Other classical classifiers have been explored to varying success. Support Vector

Machines (SVMs) with non-linear kernels often attain high accuracy on binary

classification tasks and have been used in numerous NIDS works. For instance, SVM

reached about 96–97% accuracy in some evaluations on KDD and LAN simulation data

[33], [41]. Nonetheless, SVMs tend to be memory- and time-intensive for large datasets,

as training complexity grows with the number of samples, and their performance can

degrade if the data is not scaled or if optimal hyperparameters are not found. In one multi-

dataset study, an RBF-kernel SVM achieved excellent accuracy on simpler datasets, such

as KDD99, but was outperformed by ensemble methods on more complex data [41]. In

another study, SVM was outperformed by even a basic tree [25]. Moreover, the SVM

required longer runtime than RF to train on a large dataset, in this case the CIC-IDS-2017

[41].

k-Nearest Neighbours classifiers have also shown strong detection capability in some

cases. A comprehensive IoT-focused analysis by Saif et al. [23] found that kNN was

among the top-performing algorithms with approximately 97% average accuracy across

a collection of 15 IoT and network intrusion datasets. This reflects kNN’s strength in

adapting to varied data distributions without an explicit training phase. However, kNN’s

major drawback is computational inefficiency at scale: storing and comparing large

volumes of network traffic instances leads to high memory usage and slow lookup times

for detection. The same study noted that kNN’s classification process became

computationally expensive for large datasets, making it less practical despite its accuracy.

31

Meanwhile, Naïve Bayes (NB) and linear models such as LR and LDA generally exhibit

much faster training and prediction times but consistently underperform in detection

accuracy on complex datasets. [25], [38] For example, Garg and Mukherjee [25] report

NB barely reached 52% accuracy on NSL-KDD under certain realistic train-test

conditions, which was the lowest among the algorithms examined. Because of such

limitations, NB and simple linear classifiers are mostly used as lightweight baseline

models or as components in ensemble strategies, rather than stand-alone solutions for

high-security scenarios [25], [38].

Beyond individual algorithms, feature engineering and evaluation practices play a critical

role in classical ML-based NIDS performance. Many researchers apply feature selection

or dimensionality reduction techniques prior to modelling, in order to remove redundant

features and mitigate the curse of dimensionality. For instance, Recursive Feature

Elimination (RFE) with an RF estimator was used by Gnanasivam et al. [26] to identify

an optimal subset of network features in UNSW-NB15, which improved the accuracy and

balance of their classifiers by reducing overfitting. A similar approach using RFE was

adopted in an ensemble study on NSL-KDD, where selecting the top 13 features

contributed to a notable jump in detection accuracy for the combined SVM+RF model

versus using all features [38]. Other studies have employed statistical measures such as

mutual information, chi-square, or model-based importance scores to guide feature

selection [25], [42]. Disha and Waheed [42] demonstrated that a backward elimination of

less significant features by using chi-square tests significantly enhanced the performance

of DT, GBT, and MLP models on UNSW-NB15. In in fact, the decision tree’s success in

their work was partly attributed to this feature reduction, which pruned irrelevant

attributes that had been hindering the more complex models. Interestingly, they observed

that RF’s performance did not improve with feature elimination. This is likely because

RF inherently benefits less from external feature selection, as it can internally ignore

uninformative features due to averaging across trees [42]. This suggests that feature

selection benefits are more pronounced for simpler models, whereas ensemble methods

already mitigate some effects of high dimensionality.

In summary, classical machine learning methods continue to be prominent in NIDS

research. Tree ensemble models, particularly Random Forest and boosted trees, are the

most frequently endorsed due to their high detection accuracy and resilience against

overfitting [21], [37], [41]. In many cases, these ensembles have demonstrated

32

performance on par with or even exceeding more complex methods, especially when

combined with proper feature selection and parameter tuning [21], [38]. Simpler

algorithms such as decision trees, kNN, and SVM remain important as baseline or niche

solutions, offering advantages in speed or simplicity that can be valuable in constrained

environments, for example, real-time IoT devices [20], [23], [42]. The literature also

highlights trade-offs between detection performance and computational cost: ensemble

models yield superior accuracy but may introduce greater training or inference latency,

whereas lightweight classifiers are faster but generally less accurate [23], [38].

Researchers have addressed these trade-offs by employing techniques such as

dimensionality reduction, parallel processing, and adaptive sampling to ensure that even

high-performing models can meet operational efficiency requirements [26], [29], [37],

[45]. Finally, extensive evaluations on diverse datasets, including the classic KDD and

NSL-KDD as well as newer benchmarks such as UNSW-NB15, CIC-IDS2017, and

domain-specific IoT datasets, have built a thorough understanding of classical ML

capabilities. These studies collectively demonstrate that with careful tuning and

evaluation, traditional machine learning-based NIDS can achieve robust and reliable

intrusion detection, forming a strong baseline against which newer deep learning

approaches are often compared, as discussed in the next section.

2.5 Overview of DL-based models in intrusion detection

Feed-Forward Deep Neural Networks (DNN/ANN) surface frequently as effective

classifiers as in multiple studies, a fully connected ANN with several hidden layers

achieved top accuracy and F1 scores. For instance, a comprehensive survey by Gamage

and Samarabandu [46] found that a deep feed-forward network attained accuracy up to

~99% and the best F1-score across four benchmark datasets. Its strength lies in fast

training/inference and high accuracy even on large datasets, outperforming other DL

models in that survey. Similarly, Saif et al. [23] report an ANN classifier as the most

reliable model for IoT intrusion detection, noting its adaptability to complex and

structured data with robust recall and F1. Attia et al. [27] observed that compared to

XGBoost an ANN -based approach could generalise better to previously unseen attacks

in some cases. These results illustrate that a well-tuned deep MLP/ANN can provide

strong baseline performance in NIDS tasks.

33

Convolutional Neural Networks (CNN) have been widely applied, especially for

capturing spatial or sequential features in traffic data. Nour and Said [34] evaluated CNNs

against DNNs and RNNs on the CICIDS2017 dataset and found CNN achieved the

highest accuracy and F1-score. The CNN’s ability to extract local feature patterns

contributed to its superior true positive and true negative rates. Several other works

corroborate CNN effectiveness: CNN variants are also used in hybrid models; one study

combined CNN with LSTM to leverage both spatial and temporal features, reporting that

the CNN+LSTM hybrid consistently outperformed standalone RNNs on unbalanced and

balanced data, but a standalone CNN outperformed the hybrid model when using

balanced datasets [47]. However, CNNs typically require more training time and

computational resources; for example, a CNN in one experiment needed substantially

longer training time than a simpler DNN on the same data [34]. Despite this, their high

accuracy on complex multi-class traffic patterns makes them a popular deep learning

choice for NIDS.

Recurrent Neural Networks (RNN), particularly Long Short-Term Memory networks

(LSTMs), are effective when sequential dependencies in network flows are considered.

They have been applied to model time-series aspects of packet streams or event logs.

LSTM was the best performer in Layeghy and Portmann’s cross-domain NIDS evaluation

[36], achieving the highest F1-score on certain NetFlow-based datasets. Its strength was

noted in handling sequential data and maintaining high accuracy across different network

domains. Pawlicki et al. [31] also found that a LTSM model yielded the highest balanced

accuracy and F1 among deep models on CIC-IDS2017, effectively detecting multiple

attack types. RNNs excel at temporal pattern recognition, for example Shaffi et al. [48]

demonstrated a RNN surpassing a CNN on NSL-KDD, attributing this to the RNN’s

ability to capture temporal features in the connection sequences. The downside is

computational cost: RNN/LSTM models can be slower to train and inference, as noted

by Pawlicki et al. and others, particularly due to high inference latency. They may also

struggle with rare attack classes if not enough sequence data is available. Nonetheless, in

scenarios where the order of events is important, such as detecting slow-moving attacks

over time, LSTM-based NIDS have a clear advantage in capturing context that static

models might miss.

34

Table 2. Overview of Deep Learning methods used in studies

DL model Studies (n) Avg. acc. Avg. F1 References

RNN/LSTM 11

~92%

(81.3–

100%)

~88%

(73–

99.92%)

[34] [36] [47] [46] [48] [40]

[19] [31] [49] [50] [51]

CNN 9

~92%

(77.25–

98.71%)

~93%

(84–

98.67%)

[34] [24] [47] [48] [52] [19]

[31] [49] [51]

DNN 4

~96%

(90.77–

98.05%)

~95%

(93–

98.33%)

[34] [24] [31] [49]

ANN 5

~98%

(95.99–

99.17%)

~96%

(86.43–

99.76%)

[27] [23] [36] [46] [50]

AE 5

~95%

(92.66–

99%)

~90%

(76.28–

99%)

[23] [36] [46] [53] [32]

MLP 2

~90%

(80.3–

99.99%)

~83% [54] [40]

Other (e.g.

Transformer,

LAD, GRU,

Mateen)

7 N/A N/A
[34] [24] [47] [46] [53] [19]

[32]

While the focus of this thesis is on supervised learning, a few studies integrated

unsupervised components to the supervised approach to enhance detection of novel

attacks. For example, Uddin et al. [53] proposed a dual-tier system using an Autoencoder

(AE) in the first tier for one-class learning. Their unsupervised model (usfAD) retrains

on anomalies via clustering, yielding an accuracy of ~98.9% and notably high detection

of zero-day attacks. This highlights that even within supervised contexts, AEs can assist

by learning normal traffic patterns and flagging outliers. Another study by Alotaibi &

Maffeis [32] used Deep Autoencoders as part of an adaptive ensemble (Mateen) to handle

concept drift in network traffic. While autoencoders alone were not the top-performing

supervised classifiers as they were mainly used to reconstruct inputs, their value in NIDS

is seen in hybrid or adaptive frameworks that maintain performance over time.

35

Across the DL literature, certain performance trends emerge. Most deep models, when

trained and tuned properly, achieve very high binary classification accuracy, often 95–

99%, on standard datasets. For example, various IoT-focused studies report deep model

F1-scores above 95% on average. However, these impressive results sometimes come

with caveats: class imbalance can inflate accuracy as models may just learn the majority

class, so recall and F1 are more reliable indicators in such cases. Indeed, many authors

emphasise F1-score and recall for evaluation, and some note the need for techniques like

oversampling to balance training data. Another trend is that no single DL architecture is

universally best, as performance can depend on the dataset characteristics. CNNs topped

the rankings on flow-based datasets with rich feature structure, whereas LSTMs excelled

when temporal sequence mattered. Strengths noted for DL models include their ability to

handle complex, high-dimensional data and discover intricate patterns e.g. subtle attack

signatures without manual feature engineering. Reported weaknesses include high

training time. the need for large, labelled datasets, and especially poor explainability,

which is critical when taking decisions based on the models output. Researchers are

actively addressing these issues by exploring hybrid models, transfer learning, and more

explainable DL in NIDS [22], [36], [55], [56].

2.6 Literature review findings

This section presents the primary findings derived from the systematic literature search

conducted to identify effective and widely utilised machine learning and deep learning

models for network intrusion detection. It identifies existing research gaps and establishes

the rationale for selecting Random Forest and Convolutional Neural Networks as the

representative models for subsequent experimental evaluation on the LSPR23 dataset.

2.6.1 Summary

Both classical machine learning and deep learning methods have achieved notable

success in binary network intrusion detection. Among traditional ML approaches, tree-

based ensemble models stand out. Random Forest and boosted trees (e.g., XGBoost,

LightGBM) consistently rank as top performers, often attaining accuracy above 99% on

benchmark datasets, as can be seen in table 1. Multiple studies showed RF or gradient-

boosted trees detecting intrusions with near-perfect true positive rates and minimal false

alarms [21], [22], [33], [37], [41], [43]. Simpler algorithms like K-Nearest Neighbours

36

and Naïve Bayes sometimes lag behind in complex scenarios but can excel in optimised

settings or certain data domains [19], [23], [38]. For example, Yu et al. showed KNN

outperforming more complex deep learning models across multiple log-based anomaly

detection datasets, demonstrating that simpler methods can be more effective in

optimised, well-suited data domains, particularly benefiting from simplicity and

computational efficiency [19].

Deep learning models, meanwhile, demonstrate an ability to automatically learn features

and handle complex attack patterns. Several works reported deep neural networks,

especially CNNs and LSTMs, reaching 95–99% F1-scores in detecting attacks ranging

from DoS to web intrusions [24], [31], [34], [36], [46], [47], [50]. Notably, DL methods

proved adept at low signal-to-noise situations: e.g., an LSTM-based system maintained

~99% F1 across different network environments [36]. However, the literature also

highlights trade-offs. Classical ML models are generally faster to train and easier to

interpret, for example decision trees offer transparency in decisions, whereas DL models,

though powerful, can be computationally intensive and act as black boxes [19]. For

instance, an AlexNet-based IDS achieved excellent accuracy with low latency, but its

complexity makes it harder to interpret decisions [52]. Furthermore, some deep models

did not significantly outperform well-tuned ML models on tabular NIDS datasets,

suggesting that simpler algorithms remain competitive, especially with proper feature

engineering.

2.6.2 Importance of the training dataset for ML algorithm selection

Performance outcomes for classical ML-based NIDS vary notably with the choice of

dataset and algorithm. On legacy benchmarks like KDD99 and its refined version NSL-

KDD, most classifiers can achieve very high accuracy due to the relative simplicity or

redundant patterns in these datasets [29], [37], [43]. In contrast, on more recent and

complex datasets such as the UNSW-NB15 or CIC-IDS 2017, reported accuracies are

generally lower, in the range of roughly 85–95% for the best classical models [26], [40],

[42]. For instance, using the UNSW-NB15 dataset, which contains contemporary attack

traffic and is more challenging, Gnanasivam et al. [26] observed the highest accuracy

with a neural network model. 88.62%, while the best traditional classifier, RF, achieved

about 87.39% accuracy. Notably, the RF in that thesis still produced a high recall and F1-

score, indicating balanced detection capability, and it did so with a faster runtime than the

37

neural network approach [26]. Chindove and Brown [40] report that while several

algorithms showed nearly 100% overall accuracy on CIC-IDS owing to majority of traffic

being benign, their F1-scores for attack detection were much lower; among the tested

models, RF obtained the highest F1 of 87% on CIC-IDS-2017, outperforming other

classifiers like multi-layer perceptrons, SVMs and RNNs under the same conditions.

2.6.3 Research gaps

Detecting unknown or zero-day attacks remains a significant challenge, as traditional

supervised models typically underperform on novel threats [27]. While some deep

learning models demonstrate improved generalisation, no unified solution currently

exists, prompting exploration of hybrid or advanced models such as combining RF with

anomaly detection or enhancing CNN with outlier detection mechanisms [34], [53].

Another persistent issue is the performance of models across different domains, with

models often experiencing reduced accuracy across different datasets due to shifts in

feature distribution [36], [44]. This indicates the need for robust models adaptable to

varying network contexts, to be addressed through evaluations on multiple datasets and

possible domain adaptation techniques. This and the previous point will be tested by using

the 2024 LS dataset.

Class imbalance of the datasets further complicates intrusion detection tasks, as it can

lead to high overall accuracy masking poor minority-class detection [40], [47]. This thesis

plans to address class imbalance by using the synthetic minority over-sampling technique

(SMOTE) proposed by Chawla et al. [57], and utilised by Meliboev et al. [47], Chindove

and Brown [40], Shaffi et al. [48], Altamimi and Abu Al-Haija [44].

Reproducibility remains limited within the field of NIDS due to inconsistent evaluation

practices and lack of shared code [28], [46]. By employing established models (RF, CNN)

under uniform testing conditions, this research provides reproducible baseline results,

validating previous claims. In summary, RF and CNN are confirmed as effective models

for NIDS, and the experimental approach of this thesis is guided by addressing the

highlighted gaps: particularly unknown attacks, cross-domain robustness, class

imbalance, and reproducibility.

38

2.6.4 Answer to research question RQ1

RQ1: Which industry-standard traditional machine learning model and state-of-the-art

deep learning model are most effective and widely used for network intrusion detection?

Based on performance and reproducibility considerations, the selections made for

experimentation stage were Random Forest as the representative ML model and a

Convolutional Neural Network as the representative DL model. RF was chosen because

it repeatedly emerged as a top traditional classifier with robust accuracy and low false

alarm rates across various studies. It offers advantages in reproducibility, as it is

implemented in standard libraries, with relatively few hyperparameters (trees count,

depth) to tune and many studies found RF results easy to replicate and stable across

datasets [58]. On the deep learning side, CNNs have demonstrated high efficacy in

capturing complex patterns in network traffic, yielding F1-scores around 97–99% in

several evaluations. CNNs were frequently favoured for their balance of performance and

implementation maturity: CNN architectures for intrusion detection are well-documented

in frameworks like TensorFlow, and their design (convolution + pooling layers) is easier

to customise for tabular or flow data than more opaque architectures. While other DL

models also performed strongly, CNNs offer a good compromise between accuracy and

training speed and have been successfully reproduced by multiple independent studies

while providing enough details (layer counts, training epochs, etc.) [34], [46], [47]

Random Forests and Convolutional Neural networks were selected based on literature

consensus highlighting ensemble trees and deep neural networks as highly effective

methods in NIDS, forming the basis of the experimental work.

39

3 Experimental design and implementation

This chapter details the experimental design and methodology employed to systematically

compare traditional machine learning and deep learning models for network intrusion

detection. Specifically, it addresses the second research question (RQ2):

RQ2: How do traditional machine learning techniques compare with deep learning

techniques in terms of classification performance for malicious network traffic?

The experimental approach integrates applied experimentation with the Cross-Industry

Standard Process for Data Mining, providing a structured, transparent, and replicable

framework for data preparation, model implementation, and evaluation. CRISP-DM was

chosen due to its rigorous yet flexible process, which provides a clear understanding of

data-centric steps required for robust model development. [59]

Given that the primary goal is evaluating the practical efficacy of ML and DL models, an

applied experimentation approach, specifically validation testing, was selected.

Validation testing ensures a structured and controlled evaluation environment that closely

mirrors real-world operational conditions, and thus enables a direct and fair comparison

between competing models [60].

The experimental environment is established using the Locked Shields Partners Run 2023

(LSPR23) dataset, which provides high-quality, accurately labelled, and realistic network

traffic data captured from actual attacker-defender interactions during the world's largest

live-fire cyber defence exercise [3]. Although real-time traffic is not used for the

validation, the realism and scale of the LSPR23 dataset ensure appropriateness for the

validation testing approach on the ML and DL algorithms. Consequently, this approach

provides a solid foundation to determine whether state-of-the-art deep learning methods

outperform, match, or underperform industry-standard traditional machine learning

techniques in detecting malicious network activities.

3.1 Overview of CRISP-DM methodology

The Cross-Industry Standard Process for Data Mining methodology was chosen as the

methodological backbone for this thesis because of its structured approach and proven

effectiveness in handling data-related projects from the idea to the deployment. While

40

alternative methodologies offering more exploratory or iterative workflows have

emerged, CRISP-DM remains highly regarded for projects that demand goal-oriented

processes and clear, documented procedures. [59], [61], [62]. In the context of this thesis,

CRISP-DM ensures that each phase, from understanding the business problem (or, in this

case, the research objectives) to deploying and monitoring the model, can be conducted

and reported systematically.

Figure 2. CRISP-DM process model

CRISP-DM contains six main phases, outlined on Figure 2. While the phases are

commonly presented linearly, projects often loop back to earlier stages as new findings

emerge, on the figure this is illustrated by the thicker dark grey arrows. For instance,

additional data cleaning or feature engineering might be required if the evaluation phase

reveals inadequate performance [62]. The six phases of CRISP-DM, as applied within the

scope of this thesis, are detailed below:

1. Business understanding

Although originally designed with business contexts in mind, the CRISP-DM

framework generalises to accommodate a broader spectrum of data science

applications, including academic research [62]. In the context of this thesis this phase

translates into defining the research goals, identifying the core problems to be solved,

and specifying success criteria.

41

2. Data understanding

This phase involves familiarisation with the dataset, exploration of its key

characteristics, and initial identification of any quality or representativeness issues.

For the LSPR23 dataset, data understanding entails examining its network traffic

features, identifying the different types of malicious activity, and confirming that

labelling is accurate and consistent.

3. Data preparation

The LSPR23 dataset is already well prepared and labelled by Dijk et al. [3]. Therefore,

the data preparation required in this thesis primarily involves validating data integrity,

selecting the relevant features, and performing minor preprocessing steps to optimise

data compatibility with the selected machine learning and deep learning algorithms.

4. Modelling

This phase focuses on selecting and configuring appropriate algorithms to meet the

research objectives: comparing traditional ML and deep learning approaches. Key

activities include hyperparameter tuning, model architecture design, and resource

usage, e.g. GPU vs CPU based approach considerations. Each model is built upon the

refined dataset resulting from the earlier steps.

5. Evaluation

Evaluation involves measuring how well each model performs against established

criteria, such as accuracy, F1-score, or ROC-AUC, and determining whether it meets

the requirements defined during the initial phases. Because intrusion detection entails

high-stakes decision-making in cybersecurity, this step also involves an in-depth look

at false positives and false negatives, along with any potential trade-offs between

model outcome explainability, detection efficacy and computational cost.

6. Deployment

Although the models evaluated in this thesis are not intended for immediate

deployment in a production environment, the CRISP-DM framework emphasises the

importance of planning for future deployment and monitoring. Therefore, this section

42

describes the experimental environment in detail, including hardware and software

configurations, as well as providing clear instructions to ensure reproducibility of the

conducted experiments.

3.2 Business understanding

In the context of this thesis, the 'Business Understanding' phase from CRISP-DM

translates into clearly defining research objectives and establishing precise evaluation

criteria. Although this thesis is conducted within an academic setting, it retains practical

relevance by addressing real-world needs in network intrusion detection.

3.2.1 Objectives

The primary objective of this section, aligned directly with the second and third research

questions (RQ2, RQ3), is to systematically evaluate and compare the effectiveness of

traditional machine learning and deep learning models in classifying malicious network

traffic. This involves not only measuring raw classification performance but also

examining trade-offs in terms of computational efficiency, resource demands, and

interpretability of results.

Secondary objectives are to explicitly identify the operational constraints and

requirements relevant to cybersecurity stakeholders, quantify the impact of resource

limitations on model deployment feasibility, and offer clear guidance on selecting suitable

intrusion detection models tailored to practical scenarios and real operational

environments.

3.2.2 Stakeholders

From a practical standpoint, the stakeholders for this research would be the infrastructure

defending cybersecurity teams, in the context of the LS cyber-exercise, the so-called blue

teams. The blue teams are interested in detecting intrusions with high reliability, minimal

false alarms, and manageable resource consumption [2], [63]. Incorrectly classified

intrusions (false negatives) may lead to substantial operational disruption, loss of

sensitive data, and potential reputational damage. On the flip side, excessive false alarms

(false positives) divert critical human resources from real threats [8]. By conducting the

comparative analysis, the goal of this section of the thesis is to inform these teams on the

potential trade-offs between advanced DL models and more established ML counterparts.

43

3.2.3 Resources and constraints

The operational environment within the LS cyber-defence exercise places substantial

resource limitations on the participating Blue Teams. Teams predominantly rely on

virtual machines (VMs) with restricted computational capacities and limited connectivity

through a low-bandwidth VPN tunnel. Consequently, any intrusion detection systems

employed must be optimised for computational efficiency and minimal bandwidth

consumption. [63]

In this research, experimental analyses are conducted using hardware of moderate

computational capacity, comprising components that are several generations behind the

current state-of-the-art as of publishing: an Intel Core i5-13500 CPU with 14 cores, an

Nvidia RTX 3090 GPU, and 64GB of DDR4 RAM. This hardware configuration was

deliberately selected due to its cost-effectiveness and realistic ML performance, making

it a practical option for deployment by Blue Teams during the exercise [64]. Thus, the

findings and models derived from this thesis maintain their practical relevance and

applicability to environments subject to similar operational constraints.

3.2.4 Success criteria

In an typical operational environment, success is measured by how effectively an

Intrusion Detection System can distinguish between benign and malicious traffic while

minimising false negatives [8]. In this thesis, the primary performance indicators were

chosen during the literature review. The chosen indicators are accuracy, F1-score, ROC-

AUC, and confusion matrix analyses. Secondary factors include training time, inference

speed, power usage and memory usage, which can significantly impact deployment

feasibility. Both sets of metrics, detection accuracy and resource footprint, are needed to

justify the adoption of the given IDS model in practice.

This stage of the thesis research has been considered a success if it results in clear,

evidence-based conclusions regarding the relative effectiveness and practical trade-offs

between traditional machine learning and deep learning models. Thus, providing

stakeholders with actionable insights to support informed decision-making in operational

intrusion detection contexts.

44

3.2.5 Risks and mitigation

1. Data imbalance in the training dataset leading to biased models

As discussed in the upcoming Data understanding section, the LSPR23 dataset is

imbalanced, featuring approximately a 10:1 ratio of benign to malicious network flows.

Such imbalance poses a risk of producing machine learning models biased towards the

majority class, adversely affecting detection accuracy, particularly regarding malicious

traffic. This risk can be mitigated by assigning weights to each class that are inversely

proportional to their frequency in the dataset during training. Additionally, sampling

methods specifically designed for imbalanced datasets, such as the SMOTE dataset

balancing technique proposed by Chawla et al. [57], are considered to enhance model

robustness if the model performance is not satisfactory.

2. Computational resource limitations impeding deep learning model training

Although the selected deep learning model was chosen with computational constraints in

mind, there remains a potential risk that its resource demands, in particular GPU memory

usage and processing power, could exceed the available hardware capacity. If such

resource constraints impede effective model training, mitigation measures would include

employing incremental or batch training strategies. A more substantial mitigation strategy

would be reverting to an alternative, less resource-intensive yet adequately performing,

runner-up model identified during the literature review.

3.3 Data understanding

3.3.1 Dataset selection

The LSPR23 dataset was selected because it aligns best with the research objectives of

this thesis. Established and popular datasets such as KDDCUP-99 and CICIDS-17 exhibit

significant limitations, including outdated attack scenarios, unrealistic network

infrastructure, restricted scale, and imbalanced data representation. Recent datasets like

Rosid-23 and ETFD-22, while addressing some contemporary requirements, still lack

sufficient scale for robust, generalisable machine learning model development. [2], [3]

In contrast, LSPR23, derived from the Locked Shields exercise, the largest live-fire

cybersecurity exercise globally, features realistic attacker-defender interactions,

45

sophisticated and contemporary attack types, and an extensive, balanced representation

of network activities [3]. Unlike many of the network datasets which are unlabelled [65],

the LSPR23 dataset provides accurately labelled data, which is essential given that this

thesis exclusively employs supervised machine learning methods [66]. All these

characteristics enhance the dataset’s applicability for advanced machine learning-based

intrusion detection, making it the most suitable choice for this research among the

publicly available datasets [3].

3.3.2 Data access

The LSPR23 dataset utilised in this research is publicly accessible and can be retrieved

from the Zenodo repository [67], thereby supporting reproducibility and transparency

within the academic community. Additionally, the more recent LSPR24 dataset has now

been published on Zenodo [68], with the accompanying paper scheduled to appear at

CyCon2025. Early access to the LSPR24 dataset was granted through direct collaboration

with the dataset creators, who permitted its use within the scope of this thesis.

3.3.3 Overview of the Locked Shields cyber exercise

Locked Shields (LS) is an annual international live-fire cyber defence exercise organised

by the NATO Cooperative Cyber Defence Centre of Excellence (CCDCOE) since 2010

[12]. It is structured as a red team vs. blue team competition: multiple national blue teams

act as defenders, while a centralised red team plays the adversary launching cyber-attacks

[2]. Within a compressed timeframe, typically two days of full-scale operations, red team

attacks progress through all stages of sophisticated cyber campaigns. From initial

intrusion and privilege escalation to data exfiltration and infrastructure sabotage, all of

which blue teams must detect and mitigate in real time [2], [3]. Each blue team operates

in isolation on its own identical network environment and is scored on its ability to

maintain service availability and contain attacks [14].

The attacking red team in LS is a coordinated group of cybersecurity professionals who

execute a broad range of offensive tactics against each blue team’s network. Their

operations are pre-planned to meet exercise objectives but are performed in a live,

dynamic manner. This means that the red team is not limited to a any specific attack and

can adjust strategies, making the exercise unpredictable for defenders [14]. They also take

advantage of the exercise’s user simulation: for instance, red team may trick “benign”

46

users, played by the user simulation team, into executing malicious commands or opening

infected files, thereby bypassing some defences [3], [14]. From a defender’s perspective,

this means the network traffic includes everything from phishing emails and drive-by

downloads to SQL injection attacks on web servers and large DDoS bursts; all happening

in parallel. This multi-faceted threat environment produces a uniquely diverse network

data stream, and the many features of this environment (e.g., many simulated users,

diverse protocols, and coordinated multi-stage attacks) are directly reflected in the

LSPR23 dataset captures.

3.3.4 Network environment

Figure 3. Locked Shields 2023 network map, adapted from Dijk et al. [3]

 Each Blue Team in Locked Shields is provided a dedicated virtual network, known as a

“Gamenet”, which replicates the IT infrastructure of a fictional country’s critical systems

[14]. The Gamenet architecture is highly elaborate and segmented, combining

conventional enterprise IT components with specialised operational technology. For

example, the LS 2023 environment included typical enterprise networks: internet-facing

services, internal corporate LANs, ISP infrastructure with routers, switches, firewalls, and

VPNs. In addition critical infrastructure systems such as a 5G mobile network, industrial

control systems (SCADA/ICS) managing a power grid, a military air defence network, a

central bank payment system (SWIFT), border guard systems, and even satellite

communication link were also included as illustrated in figure 3, adopted from Dijk at al.

47

[3]. Therefore blue teams must be able to defend a wide range of devices and platforms

within this network, including Linux and Windows servers, user workstations, FreeBSD-

based firewalls, PLCs and other industrial controllers (for water treatment plants, power

management, etc.), and specialised military systems [3].

Figure 4. Overview of the traffic per network segment

An overview of network traffic by comparing the frequency of network flows originating

from (bars with diagonal hatching, Segment_src) and destined to (cross-hatched bars,

Segment_dst) each network segment, presented on a logarithmic scale is provided in

figure 4. Most network segments exhibit comparable counts for inbound and outbound

flows, though certain segments, notably ISP backbones, the 5G core network, and internal

corporate LANs, demonstrate significantly higher traffic compared to specialised

segments like satellite links, monitoring (mon), and remote management systems (RMS).

Several segments, such as the sinet and radio access networks, display noticeable

asymmetry between inbound and outbound flows. This distribution underscores that

network flow volumes vary widely across segments.

48

3.3.5 Dataset characteristics and composition

The LSPR23 dataset is a collection of network traffic

data captured from one of the blue team networks

during the LS 2023 exercise. Specifically, a special

virtual blue team deployed by the researchers to

gather data. The raw packet captures from the

exercise were processed into flow records, resulting

in 16.3 million network flows spanning the two days

of operations. Each flow represents a sequence of

packets sharing common endpoints and protocol

parameters, with bidirectional traffic combined into

a single record for analysis. Importantly, every flow in LSPR23 is labelled to indicate

whether it is part of malicious activity or just benign background traffic. The dataset

creators assigned binary labels ("malicious" or "benign") to the network flows based on

their connections to red-team infrastructure. Specifically, they classified a flow as

"malicious" if either its source or destination was associated with known red-team

infrastructure. As can be seen from figure 5, using this approach 1.64 million flows or

around 10% of the dataset, were labelled as "malicious," while the remaining flows were

labelled "benign." [3] This proportion of malicious traffic is much higher than in most

real-world network traces, reflecting the high intensity of attacks during LS and providing

a balanced dataset for machine learning in contrast to imbalanced legacy datasets [3].

 In terms of data format and features, LSPR23 is extremely rich. For each network flow

record, a total of 101 features have been extracted or computed. These include the usual

IP/TCP header fields and flow statistics (e.g. durations, byte counts, packet counts in each

direction) as well as higher-level attributes. The CICFlowMeter tool was modified to

recognise 26 additional network protocols present in LS, such as industrial and military

protocols not handled by default, so that application-layer traffic could be properly

identified in the flows. Custom features were added to characterise the LS environment,

for example an “Internal/External” flag to denote if a flow crosses the network boundary

and an “L3/L4 service” label indexing which service (by port/protocol) is in use. Each

flow is timestamped and indexed, and the dataset provides lookup tables for any coded

values. [3]

Figure 5. Distribution of malicious /

benign network flows in LSPR23

49

Beyond basic flow metrics, security-specific annotations are included: the team merged

Suricata IDS output into the flow records, this means if a flow triggered any Suricata

alert, the corresponding signature IDs, alert categories, and severity levels are attached to

that flow entry. Additionally, the dataset authors provide a high-level attack narrative that

runs in parallel to the flow data. This narrative is essentially a list of documented attack

events, extracted from the exercise’s central logging platform, EXPO. With fields

describing each attack’s goal, method, tools (mapped to MITRE ATT&CK tactics), the

affected victim segment, and timestamps for when the attack occurred. This acts as a

glossary of all significant red team actions during LS 2023, and it can be used to pinpoint

which flows correspond to which specific incidents. Finally, the dataset includes host

availability logs from the exercise’s scoring system: these indicate when critical services

went down or recovered, providing ground truth for denial-of-service or service outage

events. [3]

The structure of the released dataset is organised into multiple CSV files/tables: a primary

table for flow features and labels, and supplementary tables for attack events and service

availability, with relational keys that allow cross-reference. For example, an attack event

entry has an ID that can be found in the flow records that were part of that attack. Overall,

the dataset is delivered in a machine-learning-friendly format: numerical feature vectors

with ground truth labels, plus rich metadata to enable domain-specific analyses, like

focusing on specific attack techniques or network segments of interest.

3.3.6 Data quality and limitations

A throughout data quality assessment of

LSPR23 has already been conducted by

its creators to identify any shortcomings

or idiosyncrasies in the collected data.

They reported that the dataset is

comprehensive in scope as it captures

traffic from all relevant parts of the LS

network and includes a broad spectrum of

protocols and systems [3]. In particular,

the network configuration used for data capture was very complete: all key segments:

internal LANs, external connections, and even the backbone ISP and special

Figure 6. Distribution of non-finite values in the

LSPR23 dataset

50

infrastructure; were monitored, and even typically hard-to-collect traffic like internal

routing updates and inter-segment traffic was recorded [3]. The histogram shown in figure

6 confirms the overall completeness of the dataset, with the majority of the columns

containing no missing data. A total of 16 columns had NaN or infinite values, but only 8

of these columns had NaN or infinite values accounting for more than 33% of their total

data points.

Several limitations and minor data issues were acknowledged by Dijk et al., mostly

relating to the accuracy of labels for certain edge-case attack scenarios. First, the authors

highlight a challenge with “stepping-stone” attacks, i.e. when a red team attacker gains

control of a blue team machine and then uses that machine to attack other blue systems.

In the current ground truth labelling, such internal attacks are not marked as malicious

because the labelling logic relied on identifying traffic involving red team IP addresses

as malicious. Consequently, if an attacker pivoted and launched an attack from an already

compromised blue host, the resulting network flows appear as legitimate blue-to-blue

communication and were incorrectly labelled as benign. The impact is that a learning

model trained on these labels might not recognise those internal attack patterns as

malicious since they are in the benign category. [3]

Beyond labelling nuances, the dataset’s quality review also notes some inherent

complexity that does not detract from data integrity but is important for analysis. For

instance, many hosts in the LS network have multiple network interfaces and IP addresses

for redundancy or to sit in multiple network segments [3]. This can complicate tracing an

attack end-to-end, since the same physical server might appear under different IPs in

different parts of the traffic. To mitigate this, the dataset includes host metadata such as

segment identifiers in addition to IPs so that analysts can potentially recognise when flows

on different IPs involve the same machine. Another point is that some benign traffic in

the exercise is generated by automated scoring bots: green team systems that continually

check service health, by making periodic requests to services. These bots’ traffic is

labelled benign and included in the dataset; it is legitimate activity, though it might look

artificial compared to human user traffic. The presence of scoring bot traffic is a feature

of the exercise environment and could be considered an artifact, but it is clearly

distinguishable by IP address and behaviour, and it provides useful information on service

availability [3]. Overall, the LSPR23 dataset is considered high-quality and representative

of a real, large-scale cyber defence scenario.

51

3.4 Data preparation

Data preparation involved feature selection, handling missing values, and performing

transformations on the raw dataset. Feature selection aimed to remove redundant and

irrelevant features to improve model generalisation and reduce complexity. Missing

values were identified and systematically addressed through appropriate imputation

techniques. The following subsections describe these processes in detail, outlining the

rationale behind the inclusion and exclusion of specific features.

3.4.1 Feature selection

Initially, the dataset contained a total of 101 features, spanning various aspects of network

traffic. To enhance model effectiveness and prevent overfitting, irrelevant or redundant

features, particularly those tied explicitly to flow identification and network addressing,

were excluded. For instance, features such as IP addresses were dropped to promote

model generalisability beyond the specific dataset context, as their inclusion could

negatively affect transferability and robustness over time. The selection process involved

careful consideration of the nature and redundancy of each feature, balancing the risk of

information loss against the benefits of dimensionality reduction. The table below

summarises the included and excluded features.

Table 3. Summary of feature selection decisions

Category Included/Total Selected feat. Excluded feat.

Flow identification &

network address columns

7/16 SrcPort, DstPort,

Protocol, service,

conn_state, External_src,

External_dst, L3/L4

Protocol

Flow ID, SrcIP, DstIP,

Int/Ext Dst IP,

Segment_src,

Segment_dst, Expoid_src,

Expoid_dst

Timestamp & duration

features

1/7 Flow Duration mTimestampStart,

mTimestampLast, Flow

Bytes/s, Flow Packets/s,

Fwd Packets/s,Bwd

Packets/s

Packet count & byte

count features

16/16 Tot Fwd Pkts, Tot Bwd

Pkts, Total Length of Fwd

Packet, Total Length of

Bwd Packet, Packet

Length Min / Max / Mean

/ Std, Fwd Packet Length

Min / Max / Mean / Std,

Bwd Packet Length Min /

Max / Mean / Std

52

Inter-arrival time (IAT)

features

14/14 Flow IAT Mean / Min /

Max / Stddev, Fwd IAT

Mean / Min / Max / Std,

Fwd IAT Tot, Bwd IAT

Mean / Min / Max / Std,

Bwd IAT Tot

TCP flags & protocol-

specific indicators

10/13 FIN Flag Cnt, SYN Flag

Cnt, RST Flag Cnt, ACK

Flag Cnt, CWR Flag Cnt,

ECE Flag Cnt, Fwd PSH

flags, Bwd PSH flags,

Fwd URG flags, Bwd

URG flags

URG Flag Cnt, PSH Flag

Cnt, Down/Up Ratio

Size, volume, and

window features

20 Average Packet Size, Fwd

Bytes/Bulk Avg, Fwd

Packet/Bulk Avg, Fwd

Bulk Rate Avg, Bwd

Bytes/Bulk Avg, Bwd

Packet/Bulk Avg, Bwd

Bulk Rate Avg, Subflow

Fwd Packets/Bytes,

Subflow Bwd

Packets/Bytes, Fwd Init

Win Bytes, Bwd Init Win

Bytes, Fwd Act Data

Pkts, Fwd Seg Size Min

Fwd/Bwd Segment Size

Avg

Active/idle times 8/8 Active Min / Mean / Max

/ Std, Idle Min / Mean /

Max / Std

Suricata alert features 0/4 - SigID_revision, Category,
Severity, Anomaly_event

Label columns 0/3 - Label_src, Label_dst,

Label

3.4.2 Flow identification features

 The L3/L4 protocol feature, initially defined by

Känzig et al. [63] and later adopted in the LSPR23

dataset by Dijk et al. [3] represents Layer 3

(Network Layer) and Layer 4 (Transport Layer)

protocols within the OSI reference model [69].

This feature is supposed to distinguish among

three primary protocols: TCP (coded as 0), UDP

(coded as 1), and ICMP (coded as 2). However,

exploratory analysis, shown on figure 7,

uncovered unexpected protocol identifiers
Figure 7. L3/L4 protocol value distribution in

the LSPR23 dataset

53

(4071 instances coded as 3, and 2617 instances coded as 4). These are undocumented

both in the works of Känzig et al. and Dijk et al, therefore these 2 values were treated as

NaN values and encoded into “unknown”. These anomalies should be corrected in the

most recent release of the LSPR24 dataset, eliminating the need for manual recoding.

Regarding the inclusion of IP addresses as features,

scholarly opinions diverge significantly. Dube [70] has

criticised the CIC-IDS 2017 dataset for omitting IP

addresses, highlighting their potential usefulness for

accurately identifying malicious or misbehaving nodes

within network environments when training ML models.

Conversely, from the perspective of cybersecurity

exercises and dataset generalisation, the inclusion of

specific IP addresses raises concerns about limited

applicability beyond the immediate context of a particular exercise, potentially reducing

transferability and robustness of findings, e.g. beyond the LSPR23 exercise. In practical

environments, IP addresses might also be dynamic or temporary. As can be seen from

figure 8, there was 1466 unique source IP addresses in the dataset, but 31598 destination

IP addresses. Including them as static features, for example by one-hot encoding, may

gradually degrade model performance as the network structure changes over time, leading

to frequent retraining. Relying on explicit IP addresses as identifying features may also

facilitate adversarial evasion by permitting attackers to merely alter these addresses,

thereby undermining the resilience and security efficacy of the detection models. Merkli

et al. demonstrated that adversaries could compromise network flow classifiers by

introducing minimal, strategically targeted perturbations to key traffic features, ultimately

subverting decision boundaries and exposing inherent vulnerabilities in such feature-

dependent systems [71].

Meliboev et al. [47] used IP header-based higher level data instead of specific IP

addresses when training their CNN deep learning models, and both Gehri et al. [58] &

Känzig et al. [63] also utilised an abstracted feature derived from IP addresses when

training their RF machine learning models, Int/Ext Dst IP. This feature indicates whether

destination IPs reside within internal or external network ranges. As the LSPR23 features

separate External_src, External_dst features, these were picked as they also contain

information about the source address.

Figure 8. Distribution of source

and destination IP addresses in

the LSPR23 dataset

54

Gehri et al. has noted that the LS network infrastructure changes annually [58]. Therefore,

exercise-specific features Segment_src, Segment_dst, Expoid_src and Expoid_dst were

also excluded to improve the model's ability to generalise.

3.4.3 Timestamp and duration features

 Start and last timestamps were dropped because in an offline ML context, raw

timestamps could inadvertently allow the model to cheat. For instance, if attacks primarily

occurred after a specific timestamp, the model might wrongly infer a simplistic rule such

as "timestamp > X implies malicious," limiting its ability to generalise beyond the specific

exercise context. Instead, the flow duration was chosen as a more useful feature because

it represents intrinsic temporal properties of network flows without relying on absolute

timing. Flow duration thus provides a robust, transferable

feature that enhances the model's ability to generalise

effectively across different scenarios.

Flow Bytes/s, Flow Packets/s, Fwd Packets/s and Bwd

Packets/s were dropped, as they consider no additional

information. These can directly be derived from time and

other features. For example, the Fwd Packets/s can be

perfectly calculated from Flow duration and Tot Fwd Pkts

features, as can be seen from figure 9.

3.4.4 Packet count and byte count features

All features in this category were considered valuable because they characterise the nature

of network communication, including the number and sizes of packets in each direction.

For instance, a benign flow might exhibit a balanced exchange consisting of a request

followed by a response. In contrast, a malicious scan could involve only forward-directed

packets without any responses, or a large data transfer may feature numerous large

forward packets accompanied by fewer and smaller response packets.

3.4.5 Inter-arrival time features

Inter-arrival time (IAT) features were all selected, as they provide useful information

about the arrival times and timing information of the packets, which can reveal patterns

in traffic flows. However, Gehri et al. noted that if network infrastructure changes, the

Figure 9. Comparison of

calculated vs computed Fwd

Packets/s feature

55

time dependant features can lead to incorrect classifications [58]. For this reason, these

features might be excluded from the training data when evaluating models on the 2024

dataset.

3.4.6 TCP flags and protocol-specific indicators

URG Flag Cnt and PSH Flag Cnt were dropped, as there are separate forwards and

backwards flag counts for both which provide more information. Down/up ratio is also

derived from total forward and total backward packets, so it is redundant.

3.4.7 Feature reduction

Disha and Waheed showed that while simpler algorithms such as DT benefited in

performance from an optimised feature set, RF and MLP (simple neural net) didn’t see

notable improvements from the reduced feature amount, and in fact RF saw a slight

performance decrease [42]. This is why for this thesis recursive feature elimination was

not done, instead being limited to manual removal of strongly correlating and irrelevant

features. Preliminary tests done both with the CNN and RF models showed that neither

model performed better with a reduced feature set, even if trained on the 2023 dataset and

validated on the 2024 dataset.

3.4.8 Data cleaning

In preparing the raw network-traffic dataset for analysis, a critical initial step involved

addressing the issue of missing data. Missing data, represented in the dataset as NaN (Not

a Number) or infinite values, arise naturally in real-world measurements, often due to

sensor malfunctions, measurement limitations, incomplete logging, or conditions inherent

to network traffic, such as flows with insufficient packets to compute certain statistics.

Table 4 shows that non-finite values are not uniformly distributed but cluster in a handful

of columns. Four Suricata alert fields exhibit more than 95 % missing values; however,

these variables had already been omitted from the training feature set on conceptual

grounds. In addition, several network-address descriptors (Conn_state, Service,

Segment_*, Expoid_*) are missing roughly one-third to two-thirds of all flows. Among

the numerical features, the entire family of inter-arrival-time statistics (Flow IAT *) lacks

data for about 18 % of the rows, and the rate-style metrics Flow Bytes/s and

Flow Packets/s contain the same proportion of Inf values caused by zero-duration flows

56

or out of range readings. In total these 16 columns account for all the non-finite entries in

the raw file, making them the primary targets for the imputation strategies discussed

below.

Table 4. LSPR23 features with non-finite values

Handling these missing values is essential because most machine learning algorithms,

including most gradient-boosted decision trees, random forests, and neural networks,

cannot directly process NaN values. If left untreated, missing data either causes errors

during model training or significantly degrades model performance. Therefore, a process

known as imputation was employed. Imputation refers to the substitution of missing data

points with reasonable estimates, derived from the observed dataset, thus enabling

complete and analysable data. Two separate imputation strategies were adopted,

corresponding to the types of features (numerical and categorical):

Feature Category dtype NaN values Inf values Nonfinite %

Anomaly_event Suricata alert features Float 16277465 0 99.535%

Category Suricata alert features Float 15639501 0 95.634%

Severity Suricata alert features Float 15639501 0 95.634%

SigID revision Suricata alert features Float 15639501 0 95.634%

Conn_state Flow identification & network address

columns

Category 10055421 0 61.488%

Service Flow identification & network address

columns

Category 7218172 0 44.138%

Segment_dst Flow identification & network address

columns

Category 5531411 0 33.824%

Expoid_dst Flow identification & network address

columns

Category 5531411 0 33.824%

Segment_src Flow identification & network address

columns

Category 3859355 0 23.600%

Expoid_src Flow identification & network address

columns

Category 3859355 0 23.600%

Flow IAT Min Inter-arrival time (IAT) features Float 3042190 0 18.603%

Flow IAT Mean Inter-arrival time (IAT) features Float 3042190 0 18.603%

Flow IAT Max Inter-arrival time (IAT) features Float 3042190 0 18.603%

Flow IAT

stddev

Inter-arrival time (IAT) features Float 3042190 0 18.603%

Flow Bytes/s Timestamp & duration features Float 1205 3052847 18.675%

Flow Packes/s Timestamp & duration features Float 0 3054052 18.675%

57

The categorical features included connection states (Conn_state), protocols (L3/L4,

Protocol), and port numbers (SrcPort, DstPort). For these features, the presence of

missing data was addressed by explicitly inserting a new categorical level, labelled

"unknown". Introducing a dedicated category for missing values is considered best

practice for categorical data, particularly when the absence of data itself may carry

meaningful patterns or predictive significance [72]. Unlike replacing missing values with

the most frequently occurring category (mode), assigning a dedicated category avoids

introducing biases by clearly differentiating missing data from valid observations. It

preserves the integrity of the original distribution and allows machine learning models to

explicitly learn from the absence of information rather than implicitly merging missing

data into an existing category.

Numerical features in this dataset primarily represent measurements related to network-

flow characteristics such as packet sizes, byte counts, and inter-arrival times (Flow IAT

features). These numeric features exhibited missingness typically due to insufficient

number of packets within certain flows, making it impossible to compute statistics like

mean or standard deviation. To handle these gaps, a median-imputation strategy was

chosen. Median imputation replaces missing numeric values with the median of the

observed data, ensuring robustness against outliers which are common in network traffic.

To ensure unbiased and representative median estimates across the large dataset of 16

million flows, the median was computed from a randomly selected subset of about four

million observations, including about ~25% of the values in the dataset. Random

sampling was used to prevent potential biases associated with the dataset’s temporal

ordering, ensuring the medians reflect the overall distribution rather than any localised or

temporal effects.

The actual imputation of numeric values was performed using a chunk-based approach

due to the large dataset size. Rather than loading the entire dataset into memory

simultaneously, data was processed incrementally in smaller chunks, each containing two

million rows. This method optimised memory usage, computational speed, and

efficiency. Once the median was calculated from the random subset, it was consistently

applied across all chunks, effectively filling in all missing numeric values in a

computationally manageable manner.

58

Following imputation, categorical features were further processed using embeddings.

Embeddings are dense vector representations of categorical variables, transforming

sparse, discrete categories into continuous numerical vectors suitable for neural networks.

Embeddings significantly enhance model performance by capturing semantic

relationships between categories and reducing dimensionality compared to traditional

one-hot encoding.

To determine the optimal number of dimensions of each embedding vector, the heuristic

from the FastAI library, commonly known as the "fastai tabular rule", was employed [73].

This rule calculates the embedding size using the formula:

Embedding_size = min(600, ⌊1.6×cardinality0.56⌉)

Here cardinality represents the number of distinct categories present in each categorical

feature. The embedding size increases sub-linearly with the number of categories,

ensuring that features with a very large number of unique values, such as port numbers,

do not result in prohibitively large embedding matrices. The upper bound of 600

dimensions prevents excessively large embeddings, thus balancing representational

power and computational feasibility. Using this approach, each categorical feature was

embedded into a numerical space optimised for capturing latent structures in the data,

significantly aiding the predictive capabilities of the neural network models used later in

this analysis.

For illustration, the `SrcPort` column in the training split alone contained 61 079 distinct

values. A naïve one-hot encoding would expand this single attribute into over 60 thousand

binary columns, ballooning the input matrix, wasting memory with ~99 % zeros, and

pushing the number of trainable weights well beyond practical limits. With the fastai rule,

the same column is mapped to a 600-dimensional embedding vector, as the value

computed by is capped at 600, shrinking the representation by two orders of magnitude

while still allowing the network to learn meaningful similarities between ports.

3.4.9 Dataset partitioning strategy

The partitioning of datasets into training and testing subsets is an important

methodological step, significantly impacting the reliability and validity of experimental

outcomes. Traditional machine learning research typically employs randomised splits,

59

with an 80/20 ratio widely recognised as an industry standard, balancing ample training

data with sufficient testing coverage for unbiased performance estimation [59].

Nonetheless, recent research highlights that this random approach may be inadequate for

evaluating models in cybersecurity contexts, where temporal and spatial characteristics

of network traffic are highly relevant [74], [75].

Ring et al. [75] emphasise that conventional randomised splits or k-fold cross-validation

strategies can inadvertently introduce data leakage, undermining realistic assessments of

model generalisability. They suggest either a temporal split, where training data precedes

test data chronologically, or a host-based split, where subsets are separated by source IP

addresses. These splits would preserve realistic network structure and correct temporal

patterns in both training and test subsets. Similarly, Vaarandi et al. [74] advocate for

chronological splits as they better reflect the evolving nature of cyber threats over time.

By training models exclusively on earlier network flows, temporal splits evaluate the

model's capacity to generalise effectively to future, potentially unseen attack patterns, a

condition closely resembling real-world intrusion detection scenarios.

Initially, a time-based partitioning strategy analogous to

that employed by Vaarandi et al. was considered,

dividing the LSPR23 dataset chronologically into

distinct training and testing intervals. However,

preliminary analysis revealed significant drawbacks: the

dataset exhibited marked asymmetry between days, with

the first day containing minimal malicious activity and

the majority of attacks occurring on the second day, as

can be seen from figure 10. This uneven distribution would severely limit model exposure

to malicious patterns in the training phase, resulting in poor generalisation during

evaluation, and thus, this chronological approach was ultimately deemed unsuitable.

An alternative host-based partitioning, recommended by Ring et al. [75] was also

assessed, splitting the dataset based on IP addresses. In theory, such an approach could

prevent leakage of information between training and test sets by ensuring distinct network

hosts and attack targets. However, as discussed earlier, the Locked Shields exercise

features dynamically changing host roles and IP addresses assigned to multiple interfaces,

significantly complicating host-based separation. Additionally, splitting by IP addresses

Figure 10. Distribution of malicious

traffic over the exercise duration

60

risked creating subsets that did not reflect realistic traffic distribution, as certain IP

addresses were involved disproportionately in either benign or malicious activities,

leading to artificially biased subsets.

Considering these challenges, the final solution was a straightforward, randomised 80/20

split. This widely adopted method ensured a representative distribution of malicious and

benign flows across both subsets, enabling robust and unbiased evaluation of the models'

predictive performance. To minimise concerns regarding potential data leakage or

temporal bias, careful cross-checking confirmed that malicious traffic and benign traffic

characteristics remained comparably distributed between training and testing datasets.

Furthermore, the large scale of the LSPR23 dataset significantly mitigated the risk of

inadvertent biases typically associated with smaller datasets.

While advanced split strategies proposed by Ring et al. [75] and Vaarandi et al. [74] are

theoretically superior in cybersecurity contexts, practical constraints specific to the

LSPR23 dataset made these approaches infeasible in this case. Thus, the adopted

randomised 80/20 split represents the most pragmatic and methodologically sound option,

providing a balanced and robust foundation for subsequent comparative analyses of

traditional and deep learning models.

3.4.10 Data balancing

Class imbalance is a common challenge in machine learning-based intrusion detection,

often resulting in biased models that perform poorly when identifying minority class

instances, typically malicious traffic [57]. The LSPR23 dataset, although relatively

balanced compared to legacy intrusion detection datasets, still exhibited a notable

imbalance, with benign network flows outnumbering malicious flows at an approximate

ratio of 10:1. Given this class distribution, careful consideration was given to

implementing class balancing techniques to mitigate potential bias towards the majority

(benign) class.

A comprehensive review of the literature (see chapter 2) indicated that Synthetic Minority

Over-sampling Technique (SMOTE), introduced by Chawla et al. [57], is widely

recognised as an effective method to address class imbalance in cybersecurity datasets.

SMOTE combines oversampling of minority class instances by synthetically generating

new examples with undersampling of majority class instances, aiming to improve the

61

classifier's sensitivity to minority class predictions without significantly compromising

overall accuracy. Many prior studies employing similar intrusion detection datasets have

effectively utilised SMOTE to improve classifier performance [40], [44], [47], [48].

However, preliminary experimentation with the LSPR23 dataset revealed that the

employed traditional and deep learning models achieved strong predictive performance

without applying explicit data balancing. Despite the inherent imbalance, the selected

models demonstrated high classification accuracy, satisfactory F1-scores, and robust

ROC-AUC metrics, indicating minimal bias towards the majority class. The results

suggested that the models successfully captured the distinctive patterns characterising

malicious traffic within the extensive and detailed feature set provided by the LSPR23

dataset, diminishing the necessity for additional balancing techniques such as SMOTE.

Given these findings, the decision was made not to apply SMOTE or any other data

balancing method for the final experiments. This decision simplified the preprocessing

pipeline and avoided potential complications introduced by synthetic data generation or

random undersampling, such as the risk of overfitting, loss of genuine data variability, or

reduced generalisability [57]. Thus, the dataset was employed in its original distribution,

and any residual imbalance was accounted for by carefully selecting and tuning model

hyperparameters, as well as performing rigorous model validation to confirm that

minority class performance was maintained at a high level.

The decision to forego explicit balancing is discussed further in the evaluation phase

(Section 4), where detailed comparative results illustrate the effectiveness of both

traditional machine learning and deep learning techniques in accurately classifying

malicious traffic despite inherent class imbalance.

3.5 Machine learning model: Random Forest

The traditional machine learning approach adopted in this research utilises the Random

Forest algorithm, which has consistently demonstrated robust performance in network

intrusion detection tasks across diverse cybersecurity datasets, as indicated by the

literature review in Chapter 2. RF was selected primarily due to its inherent strengths:

excellent classification accuracy, interpretability through feature importance metrics,

resilience to overfitting, and strong capability for handling high-dimensional and

62

heterogeneous feature spaces, which are characteristics particularly relevant to network

intrusion datasets, such as LSPR23.

Specifically, the RF implementation used for this thesis leverages GPU acceleration via

the cuML library, significantly enhancing training and inference speed compared to

traditional CPU-based implementations such as those provided by scikit-learn. GPU

acceleration, as quantitatively demonstrated in the results section, provides crucial

efficiency improvements, enabling faster analysis and classification of network traffic

flows, which is essential for practical deployment in real-time or near-real-time

cybersecurity scenarios. Although a detailed computational comparison between cuML's

GPU-accelerated Random Forest and scikit-learn's CPU-based implementation is

provided in Chapter 4, the choice of cuML here directly aligns with operational

requirements for timely intrusion detection.

In contrast to neural network-based approaches, Random Forest also offers additional

practical advantages, notably its transparency and interpretability. RF models inherently

support explainability through built-in metrics such as Gini importance scores, which can

provide cybersecurity professionals with actionable insights into feature significance and

model decision-making processes. Moreover, because the model aggregates many

decorrelated decision trees, its predictions are highly stable. The stable and reproducible

predictions are an essential attribute for reliable cybersecurity operations and audits.

When tested across 10 independent runs, the classifier’s performance metrics (F1,

accuracy, precision, recall) were extremely stable, with standard deviations on the order

of 10⁻⁴ or smaller. Further details are reported in section 4.

The Random Forest hyperparameters were selected based on optimisation results

previously established by Känzig et al. [63], who optimised these parameters specifically

for the detection of malicious network activity using similar datasets, for efficient yet

accurate detection. The suitability and robustness of the optimised hyperparameters have

been independently validated in subsequent studies employing comparable network

intrusion datasets, notably by Merkli et al. [71], Gehri et al. [58], and Dijk et al. [3].

The consistent and successful deployment of these hyperparameters across multiple

recent studies conducted between 2023 and 2024 demonstrates their transferability and

effectiveness for comparable intrusion detection tasks. Leveraging previously validated

63

hyperparameter values mitigates the need for extensive experimental tuning such as grid

search. This accelerated the experimental workflow and allocated more time to focus on

model performance and implications. Table 5 summarises the configuration parameters

used in this research:

Table 5. Random forest model hyperparameters

Device N-estimators Max depth N features in Bootstrap Outputs

GPU 128 10 72 True [0,1]

The chosen configuration effectively balances complexity and computational demands:

using 128 estimators provides diversity within the ensemble, ensuring reliable

classification performance without imposing high computational costs. Setting the

maximum tree depth to 10 helps control the model complexity and mitigates potential

overfitting, thus maintaining generalisability across varying intrusion scenarios [63]. All

72 features selected during preprocessing (Section 3.4) were fed into the model, allowing

the RF to utilise the rich feature space provided by the LSPR23 dataset. Additionally,

enabling bootstrap sampling further increases tree diversity, leading to enhanced stability

and accuracy. Bootstrap sampling is a statistical resampling technique that generates new

training subsets by randomly selecting observations from the original dataset with

replacement, thereby ensuring each tree within the Random Forest is trained on slightly

different data and reducing correlations between individual tree predictions [76]. The

model outputs probabilistic predictions in the range of [0, 1], which are subsequently

converted into binary classification outcomes (malicious or benign) using a sigmoid

decision threshold.

3.6 Deep learning model: 1D Convolutional neural network

The deep learning approach employed in this research consists of a custom-designed one-

dimensional Convolutional Neural Network, tailored specifically for detecting malicious

network traffic within the LSPR23 dataset. The model’s architecture was inspired by prior

state-of-the-art research on applying 1D CNNs for network intrusion detection tasks,

notably the works of Kilichev and Kim in 2023 on hyperparameter optimisation for 1D

CNNs [77], and Singh et al. in 2021 who developed a robust 1D CNN for the

classification and analysis of network attacks [78]. Building upon these foundational

64

studies, the CNN architecture has been adapted and optimised specifically for the

characteristics and scale of the LSPR23 dataset. The detailed structural breakdown of the

CNN and associated parameter counts is summarised in table 6.

Numeric and embedded categorical features were combined into a unified input vector of

length 953, subsequently passed through two convolutional layers. The first convolutional

layer transforms the input to 16 channels, and the second further increases it to 32

channels, employing kernels with a size of 3 with padding. This captures both localised

and broader contextual feature interactions across the input features. Fully connected

layers combined with dropout with probability of 0.5 and ReLU activations are utilised

downstream, concluding with in a sigmoid-activated neuron for binary classification:

malicious or benign. Training made use of an early stopping criterion based on the

validation F1-score to mitigate overfitting and ensure generalisability to novel network

conditions.

3.6.1 Input features and feature encoding

A one-dimensional convolutional neural network was specifically chosen over a two-

dimensional CNN due to the inherent nature of the input data. Unlike image data, which

inherently contains two spatial dimensions, the height and width, and thus naturally aligns

with a 2D CNN, the structured tabular network traffic data used here is inherently

sequential and one-dimensional. Each network flow is represented by a flat numeric

vector rather than a spatial matrix, making 1D convolutions a logical choice.

The network structure integrates both numeric and categorical data types, latter of which

require encoding to transform them from textual inputs into numeric inputs for the

machine learning models. In the example code provided with the LSPR23 dataset, Dijk

et al. [79] used SHA256 hashing for encoding the categorical features. This approach was

not considered as the structured categorical data such as ports, protocols, and service types

used here benefit more effectively from learned embeddings. Unlike hashing, embeddings

capture latent semantic relationships inherent in the data, thus providing richer feature

representations for the neural network model [80].

Kilichev and Kim instead used 1-hot encoding for handling the categorical features in

their model, producing 197 novel features from just 3 categorical variables [77]. This

approach was also unsuitable for the LSPR23 dataset, as some of the categorical variables

65

were high cardinality, e.g. as the src port with over 60 thousand distinct values. Using 1-

hot encoding would have resulted in a sparse and high-dimensional input space, leading

to computationally inefficient CNN, with an increased risk of overfitting.

 As a novel contribution, dedicated embedding layers for categorical feature

transformation were used. Embedding categorical variables has been demonstrated as an

effective technique in deep learning for tabular data, capturing latent semantic

relationships and improving predictive performance compared to traditional encoding

methods [80]. These embedding layers convert categorical features into dense, low-

dimensional numeric representations, enabling the CNN to capture latent semantic

relationships effectively. Eight categorical features were embedded with heuristically

determined dimensions based on feature cardinality: Source Port, Destination Port,

Protocol, L3/L4 Protocol, Service, Connection State, External Source, and External

Destination.

Each categorical feature is represented as distinct embedding layers labelled from 2-1 to

2-8 in the architecture overview table (Table 6) below. Embedding 2-1 corresponds to the

Source Port (600-dimensional), embedding 2-2 to the Destination Port (256-

dimensional), embedding 2-3 to the Protocol (5-dimensional), and embedding 2-4 to the

L3/L4 Protocol (4-dimensional). Further embeddings include 2-5 representing the Service

(11-dimensional), 2-6 corresponding to Connection State (7-dimensional), 2-7 for

External Source (3-dimensional), and finally, embedding 2-8 representing External

Destination (3-dimensional). These embedding sizes were heuristically determined using

a rule based on feature cardinality, as recommended in the FastAI library [73], balancing

representational power with computational efficiency. By assigning each categorical

variable to an appropriately sized embedding space, the model is capable of effectively

capturing semantic relationships inherent in network traffic data, substantially improving

predictive performance while minimising computational overhead compared to

traditional categorical encoding approaches, such as 1-hot.

66

3.6.2 Model architecture

Table 6. Detailed CNN model architecture

Layer (depth-idx) Input Shape Output Shape Param # Mult-Adds

CNN [1, 64] [1] -- --

├─ModuleDict: 1-1

│ └─Embedding: 2-1

│ └─Embedding: 2-2

│ └─Embedding: 2-3

│ └─Embedding: 2-4

│ └─Embedding: 2-5

│ └─Embedding: 2-6

│ └─Embedding: 2-7

│ └─Embedding: 2-8

├─Conv1d: 1-2

├─ReLU: 1-3

├─Conv1d: 1-4

├─ReLU: 1-5

├─Dropout: 1-6

├─Linear: 1-7

├─ReLU: 1-8

├─Dropout: 1-9

├─Linear: 1-10

--

[1]

[1]

[1]

[1]

[1]

[1]

[1]

[1]

[1, 1, 953]

[1, 16, 953]

[1, 16, 953]

[1, 32, 953]

[1, 30496]

[1, 30496]

[1, 64]

[1, 64]

[1, 64]

--

[1, 16, 953]

[1, 16, 953]

[1, 32, 953]

[1, 32, 953]

[1, 30496]

[1, 64]

[1, 64]

[1, 64]

[1, 1]

--

[1, 600]

[1, 256]

[1, 5]

[1, 4]

[1, 11]

[1, 7]

[1, 3]

[1, 3]

[1, 16, 953]

[1, 16, 953]

[1, 32, 953]

[1, 32, 953]

[1, 30496]

[1, 64]

[1, 64]

[1, 64]

[1, 1]

--

36,648,000

2,202,624

45

24

330

98

9

9

64

--

1,568

--

--

1,951,808

--

--

65

Total params: 40,804,644

Two Conv1D layers are utilised in the model, as this depth was found sufficient for

feature extraction in malicious traffic by both Singh et al. and Kilichev & Kim [77], [78].

Each Conv1D layer uses the ReLU activation function, following the practice of used in

the previously mentioned 2 studies. For the convolutional layers, Singh et al. adopted a

small kernel size of 1 in their 1D-CNN, effectively treating each input feature in isolation

[78], whereas Kilichev and Kim recommended a larger kernel size of 9 to capture broader

interactions among network features [77]. For this CNN, a kernel size of 3 was selected

as a balanced intermediate choice. This kernel size is large enough to detect meaningful

local feature interactions inherent in network traffic data, but small enough to maintain

computational efficiency, avoid overfitting, and retain flexibility in modelling more

complex patterns through multiple convolutional layers.

Following the architectural approach established by Singh et al [78], the model includes

a dropout layer following the convolutional layers, which serves to mitigate overfitting.

67

While Singh et al [78] used a single fully connected (FC) layer, Kilichev and Kim [77]

identified two as the optimal amount of FC layers after their hyperparameter optimisation.

This model utilises 2 linear FC layers with 64 neurons each. The output layer consists of

a single neuron with a sigmoid activation, this is in line with the approach employed by

Kilichev and Kim for binary classification [77].

The model's total parameter count of approximately 40.8 million is predominantly due to

the embedding layers used for categorical features, particularly due to high-cardinality

categorical variables such as Source and Destination Ports, which require substantial

embedding dimensions to capture meaningful representations. This CNN architecture,

implemented using PyTorch, employed binary cross-entropy loss optimised via the Adam

optimiser with a learning rate of 0.001, following Singh et al. [78]. This decision is further

supported by Kilichev and Kim’s optimisation results, which also converged on learning

rates on the order of 10^-3 for optimal performance [77]. Additionally Kilichev and Kim

[77] tested their optimised hyperparameters across multiple distinct network intrusion

detection datasets, demonstrating the broader applicability and robustness of these

architectural choices beyond the specific context of the LSPR23 dataset.

3.7 Evaluation

The evaluation phase of this research systematically assesses the classification

performance of traditional machine learning and deep learning models for network

intrusion detection. To ensure comprehensive and unbiased comparisons, multiple

evaluation metrics have been selected based on their appropriateness for cybersecurity

applications, particularly in the context of imbalanced datasets. Additionally,

computational performance metrics have been incorporated to quantify the practical

implications of model deployment.

3.7.1 Evaluation metrics and methodology

The models were evaluated using a set of performance metrics widely utilised in intrusion

detection literature. The metrics selected for assessing classification performance were

accuracy, precision, recall, F1-score, and confusion matrix analysis. Accuracy generally

refers to the proportion of correctly classified instances. Previously in this thesis, accuracy

has been used broadly, including references to both classification and detection contexts.

To avoid ambiguity, from this point forward, the term accuracy specifically denotes

68

classification accuracy, formally defined with the formula provided in Table 7. This is

distinct from detection accuracy, a broader concept specifically referring to the correct

identification of threats, often represented through metrics exclusively focused on threat

detection, such as precision and recall. However, accuracy alone may not sufficiently

describe model performance in scenarios characterised by class imbalance, which is

prevalent in cybersecurity data. Therefore, precision and recall metrics were included to

offer deeper insight into the models' predictive capabilities with respect to false positives

and false negatives. The F1-score was specifically included as a balanced metric that

harmonises precision and recall into a single indicative value. The confusion matrix

complements these metrics by explicitly representing counts of true positives (TP), false

positives (FP), true negatives (TN), and false negatives (FN), thus enabling nuanced

analysis of the types of errors models are prone to make. Table 7 provides detailed

definitions and calculation formulas of these evaluation metrics:

Table 7. Definitions and formulas for the evaluation metrics

Metric Formula Explanation

Accuracy

Proportion of correctly

classified instances

Precision

Proportion of positive

identifications that are

correct

Recall

Proportion of actual

positives correctly

identified by the model

F1-score

Harmonic mean of

precision and recall;

balances both metrics

Confusion Matrix n/a Matrix summarising TP,

FP, TN, FN to detail model

classification errors

These metrics were computed consistently across all ML and DL models, using standard

libraries such as scikit-learn, thereby ensuring reproducibility and consistency in

evaluation.

3.7.2 Computation performance metrics

In addition to assessing classification effectiveness, computational efficiency metrics

were measured to address practical considerations relevant to real-world deployments,

69

particularly in environments with limited resources. Specifically, training time, inference

speed, memory usage, and power consumption were monitored and reported.

For measuring training and inference time, python time library was used. Training time,

defined as the duration required to fully train a model to convergence or until CNNs early

stopping criteria are met, was recorded to reflect computational resource demands.

Inference speed was measured by calculating the time taken to classify batches of test

data, thus providing an indicator of suitability for deployment in scenarios requiring

timely response, such as in real-time NIDS usage during the exercise.

Memory usage was measured by recording the peak GPU memory allocated during

training phases. This metric is relevant because graphics card memory constraints often

limit model deployment in real-world cybersecurity environments. The peak memory

allocation was measured using PyTorch’s built-in CUDA functionality.

Power consumption was measured using the codecarbon library which accurately

captures the CPU GPU energy usage (in kilowatt-hours, kWh) during both model training

and inference phases. Internally, codecarbon leverages the pyNVML library, an

established interface providing direct access to power consumption metrics from Nvidia

graphics cards [81], [82]. The CPU energy usage was captured by the Intel Power Gadget

tool, which presents real-time data for Intel processors [82], [83]. Since codecarbon

currently lacks reliable methods for accurately measuring system memory power

consumption [82], the estimated memory-related energy metrics were excluded from this

evaluation to maintain the integrity of reported results.

To provide consistency, each experiment was repeated 10 times under identical

conditions, with no other computationally intensive processes active during the

experiments. The processor was consistently operated at Intel’s default optimised power

limit and the GPU was maintained at its nominal TDP. The experimental setup, described

in detail in section 3.8.1, provided a controlled and standardised computational

environment to ensure comparability and reproducibility. The average values for the

power usage and time were calculated over the 10 runs. Such metrics provide practical

insights into sustainability and operational costs associated with different modelling

approaches.

70

3.7.3 Evaluation procedure

All models were evaluated using a consistent experimental procedure. Initially, the

dataset was partitioned using an 80/20 randomised train-test split, ensuring representative

distributions of benign and malicious instances across both subsets. Data preprocessing

procedures, including median imputation for missing numerical values, embedding of

categorical variables using the FastAI heuristic, and standardisation of numeric features

based solely on the training set, were uniformly applied to maintain consistency across

models.

Model training procedures varied depending on the nature of the respective machine

learning methods. For the deep learning approach, specifically the convolutional neural

network, the binary cross-entropy loss function was utilised, optimised via the Adam

algorithm with a learning rate of 0.001. To reduce the risk of overfitting, an early stopping

criterion was implemented, monitoring improvements in the validation F1-score, with

training halted if no improvement occurred over three consecutive epochs. The CNN

model training used a batch size of 1024, which provided a balance between

computational efficiency and convergence stability.

In contrast, the traditional machine learning method, specifically the Random Forest

classifier, followed a different training procedure. Hyperparameters including the number

of trees (estimators) and tree depth, were tuned to the values found in the literature. Unlike

the CNN, this training process did not involve iterative optimisation or early stopping

criteria. Instead, the Random Forest model internally constructs an ensemble of decision

trees, combining their predictions automatically to produce the final classification. All

hyperparameters were selected to optimise classification performance while ensuring

computational feasibility and avoiding overfitting.

To account for inherent variability in stochastic training processes, a total of 10

independent training runs were conducted, each initialised with distinct random seeds.

This approach enabled the calculation of average performance metrics and reduced

variance attributable to random initialisation conditions.

71

3.8 Deployment and reproducibility

Although the models evaluated in this thesis are not intended for immediate deployment

into a production environment, the CRISP-DM framework highlights the necessity of

carefully documenting deployment considerations and ensuring the reproducibility of

conducted experiments. Consequently, this section outlines the experimental environment

in detail, describes hardware and software configurations employed, discusses

reproducibility aspects, and explores considerations regarding the scalability and

potential deployment of the evaluated models.

3.8.1 Experimental setup

As detailed previously, experiments conducted throughout this thesis utilised a hardware

configuration selected to represent realistic computational constraints common in

cybersecurity contexts. Specifically, the experimental hardware included an Intel Core

i5-13500 CPU with 14 cores, operated at Intel’s default optimised power limit of 65 watts

[84], paired with an Nvidia RTX 3090 GPU maintained at its nominal TDP of 350 watts

[85]. Additionally, the system was equipped with 64 GB of DDR4 RAM at 3200 MHz.

These hardware specifications, chosen to closely mirror typical operational environments,

supported accurate power and resource usage measurements using the codecarbon utility.

This approach facilitated practical assessments of model feasibility, including evaluations

of power consumption, computational efficiency, and potential limitations in realistic

cybersecurity scenarios.

Software configurations involved Python version 3.12.3 within an Ubuntu 24.02

environment, operating under Windows Subsystem for Linux (WSL) 2.0. The use of WSL

2.0 was specifically motivated by compatibility requirements related to the cuML library,

which provides GPU-accelerated machine learning algorithms but does not offer native

Windows support. The underlying host system was version 24H2 of Windows 11

Education, chosen for its enhanced support of virtualisation technologies and improved

integration with WSL 2.0. This configuration enabled seamless interoperability between

Linux-based GPU-accelerated computing environments and the Windows host system,

thereby providing a unified and efficient enough computational setup for model training

and evaluation.

72

To enable GPU acceleration uniformly across the chosen software stack, the CUDA

toolkit version 12.8 was installed. This specific version was selected because it enabled

compatibility with both PyTorch (version 2.8.0 nightly preview) and cuML (version 25.4)

in the same environment, thereby streamlining the development and minimising software

conflicts. In addition to cuML and PyTorch, the scikit-learn library, version 1.6.1, was

employed primarily for implementing and evaluating the machine learning models, while

other supporting libraries such as pandas, numpy, and codecarbon were utilised

extensively throughout data processing and evaluation procedures.

3.8.2 Scalability and deployment considerations

Given that intrusion detection systems often need to handle large volumes of network

data in near-real-time conditions, the scalability and efficiency of evaluated models must

be carefully considered. Traditional machine learning algorithms such as Random Forests

have been shown to scale effectively using parallel processing techniques inherent to

modern CPUs, as they naturally lend themselves to distributed training and inference due

to their ensemble structure. Rane et al. [56] highlight that Random Forest models exhibit

favourable scalability and can be effectively parallelised across multiple processor cores

without substantial algorithmic complexity. However, the efficiency of these models

tends to plateau as data volume significantly increases, potentially necessitating more

complex infrastructure.

In contrast, deep learning models, particularly convolutional neural networks, have

demonstrated considerable scalability through GPU acceleration. Frameworks like

PyTorch and TensorFlow leverage CUDA-based parallel computations, enabling

efficient training and inference on large-scale data, at the cost of increased memory usage

[56]. Moreover, CNNs inherently support batch processing, further enhancing their

suitability for high-throughput, real-time network monitoring scenarios. Nonetheless, the

computational requirements for GPU-based deep learning methods introduce higher

power and infrastructure demands compared to traditional models.

Regarding distributed computing possibilities, both traditional and deep learning models

support varying degrees of distributed implementation. Traditional ML methods can

utilise parallel processing environments easily accessible in distributed computing

frameworks such as Apache Spark [86]. Conversely, deep learning methods primarily

benefit from GPU-centric distributed architectures or specialised inference servers such

73

as NVIDIA Triton Server [87], which allows efficient scaling of CNN inference across

multiple GPUs and server nodes.

3.8.3 Explainability

Explainability in machine learning, particularly within intrusion detection systems, is a

critical factor for trust, transparency, and regulatory compliance. Burkart and Huber [88]

outline several approaches to achieve explainability, broadly categorising them into

interpretable models, surrogate model fitting, and direct explanation generation methods.

Interpretable models, such as decision trees and linear regression, provide transparency

by design, allowing direct insight into the decision-making process.

Random Forest models, though more complex than single decision trees, still offer global

explainability through techniques like feature importance metrics and partial dependence

plots. Feature importance metrics quantify the contribution of each feature towards the

predictive accuracy of the model, thereby identifying influential factors within the

dataset. Partial dependence plots visually represent the dependency of the model

predictions on selected features, helping stakeholders interpret model behaviour in

specific conditions and enhance trust in the predictive outcomes. [89] Although Random

Forest models excel at providing global explainability, their inherent complexity makes

them limited in offering detailed local explanations for individual predictions. As

highlighted by Plumb et al, specialised interpretability methods such as MAPLE, which

employ local linear approximations derived from Random Forest neighbourhoods, are

necessary to effectively generate accurate local explanations and thus address this

limitation [90].

Neural networks, despite their high complexity, offer several interpretability techniques

such as feature visualisation, saliency maps, and Grad-CAM (Gradient-weighted Class

Activation Mapping). Burkart and Huber highlight these methods as critical in explaining

CNN behaviour by visualising activations and heatmaps, effectively illustrating the

specific areas within input data that contribute significantly to model decisions [88].

These visualisation methods are instrumental in understanding CNN predictions, thus

enhancing transparency and facilitating debugging, trust-building, and compliance with

regulatory requirements, such as the EU AI act [91].

74

3.8.4 Deployment plan

While not directly within the scope of this thesis, a high-level deployment strategy could

involve initially integrating the best-performing intrusion detection models within

existing cybersecurity infrastructure as auxiliary threat-detection tools, complementing

established signature-based systems. Treating ML-based intrusion detection as an

auxiliary tool at first mitigates potential risks associated with limited interpretability and

vulnerability to adversarial evasion, which could undermine trust and operational

reliability if relied upon exclusively. Once these ML models have demonstrated sustained

accuracy and robustness under real-world conditions, their role could be progressively

expanded, potentially evolving into primary detection mechanism. This evolution

towards primary reliance on ML-based detection systems is supported by recent research;

for example, Dijk et al. [3] demonstrated that machine learning-based approaches can

significantly outperform traditional signature-based solutions such as Suricata in

accurately identifying network threats, underscoring the potential benefits of fully

integrating these advanced models into operational cybersecurity frameworks.

Deployment would ideally leverage containerisation technologies such as Docker to

simplify environment management and facilitate seamless scaling across distributed

network segments. Continuous monitoring and logging infrastructure, potentially

employing frameworks like Prometheus and Grafana, could enable ongoing performance

and resource-usage tracking. Periodic retraining and model updates, facilitated by

automation pipelines, would help maintain long-term effectiveness against evolving

cyber threats.

75

4 Results

This chapter presents a detailed comparative evaluation of traditional machine learning

(Random Forest) and deep learning (1D Convolutional Neural Network) approaches

applied to network intrusion detection using the LSPR23 and LSPR24 datasets. The

analysis is structured into three primary sections: firstly, a performance and

computational efficiency comparison between GPU-accelerated (cuML) and CPU-based

(scikit-learn) implementations of the Random Forest model; secondly, a thorough

comparison of the Random Forest and CNN models trained and evaluated on the LSPR23

dataset; and thirdly, a cross-dataset validation assessing the robustness and generalisation

capabilities of both models on the subsequent year's LSPR24 dataset. Each section

includes explicit metrics, confusion matrices, computational performance comparisons,

and discussions of key findings to comprehensively highlight the practical trade-offs,

strengths, and limitations associated with each modelling approach.

4.1 Comparison of CPU-based and GPU-based random forest

implementations

This section presents a comparative analysis of the computational efficiency and

performance of two implementations of the Random Forest algorithm: a GPU-accelerated

version utilising cuML, and a conventional CPU-based implementation utilising scikit-

learn. The comparison is based on identical default hyperparameters (100 estimators)

trained and evaluated on the LSPR23 dataset with a reduced feature set. Although this

comparison utilised a preliminary feature selection resulting in fewer features than the

final optimised set, the relative computational differences observed between the GPU and

CPU implementations remain relevant. This is because the primary aim of this

comparison is to illustrate the efficiency and resource advantages inherent in GPU

76

acceleration, rather than the absolute predictive performance which is addressed

separately in subsequent sections using the fully optimised feature set.

Figure 11. Confusion matrices for GPU-based and CPU-based RF models

The classification performance of both implementations is summarised in Figure 11,

which shows the confusion matrices obtained from each model. Both the GPU-based and

CPU-based models demonstrated excellent predictive performance, but subtle differences

were observed, with the cuML model having marginally more false prediction. The

difference, although small, indicates that the CPU-based implementation had marginally

fewer misclassifications overall, correctly identifying 86 additional malicious instances

compared to the GPU-based implementation, and reporting no false positives.

Nevertheless, both models showed very high classification reliability suitable for

operational cybersecurity contexts, and the differences can be attributed to runtime

variance.

Figure 12. cuML vs scikit‑learn RF: training time, inference time & energy consumption.

Figure 12 provides a comprehensive comparison of computational performance metrics,

including training time, inference time, and energy consumption based on CPU and GPU

77

power measurement readings. The energy consumption analysis revealed significant

distinctions between the GPU-based and CPU-based implementations in terms of

hardware utilisation and efficiency. The GPU-based cuML implementation consumed

substantially less CPU energy, approximately 0.83 Wh, highlighting efficient CPU

resource usage due to extensive offloading of computational tasks onto the GPU. In

contrast, the CPU-based scikit-learn implementation exhibited notably higher CPU

energy consumption, totalling 8.96 Wh. This elevated CPU energy usage directly reflects

the intensive computational load placed exclusively on the CPU cores when GPU

acceleration is not leveraged. Conversely, the GPU energy consumption analysis

naturally indicated higher GPU power draw for the cuML implementation (3.38 Wh),

consistent with its full utilisation of GPU hardware resources to accelerate Random Forest

training and inference. The scikit-learn model, limited by its minimal reliance on GPU

computation, utilised significantly less GPU energy, 1.62 Wh, reflecting only baseline

idling GPU usage associated with general system operations rather than dedicated

computational acceleration.

The GPU-based Random Forest implementation exhibited a substantial reduction in

computational time requirements compared to the traditional CPU-based implementation,

underscoring its suitability for time-sensitive cybersecurity applications. The GPU-

accelerated cuML Random Forest completed the training phase in 67.7 seconds,

demonstrating an improvement over the CPU-based scikit-learn model, which required

488.3 seconds; over eight minutes. This decrease in training duration represents a

considerable advantage, particularly in real-world scenarios demanding frequent model

retraining to adapt rapidly to evolving cyber threats.

Regarding inference performance, the GPU-accelerated model similarly displayed

notable speed advantages, completing the inference task in approximately 1.15 seconds,

whereas the CPU-based implementation required 2.04 seconds. Although the absolute

reduction in inference time was less pronounced compared to the training phase, nearly

halving inference latency still constitutes a meaningful improvement. This inference

speed-up is particularly relevant in operational environments like the Locked Shields

exercise, where rapid detection and timely response to network intrusions are critical to

minimising potential impacts. Consequently, GPU-based acceleration demonstrates

substantial value, not only in enhancing training efficiency but also in significantly

improving real-time predictive responsiveness within cybersecurity operations.

78

In summary, despite a minor performance advantage of the CPU-based Random Forest

in absolute classification accuracy with fewer misclassifications, the GPU-based

implementation demonstrated significantly greater efficiency in terms of training speed,

inference speed, and overall energy consumption. Such computational efficiency

advantages have direct practical implications in operational cybersecurity environments,

where timely threat detection and frequent model retraining are often crucial.

Consequently, the GPU-accelerated cuML Random Forest emerges as a compelling

choice, offering an optimal balance between high classification performance and resource

efficiency suitable for real-world deployment scenarios.

4.2 Comparison of ML and DL models on LSPR23 dataset

This section presents a detailed comparative analysis of the classification performance,

computational efficiency, and resource consumption between the traditional machine

learning approach (Random Forest, RF) and the deep learning approach (1D

Convolutional Neural Network, CNN), utilising the LSPR23 dataset. Multiple aspects of

each model's performance are evaluated in depth, including detailed metrics such as

accuracy, precision, recall, F1-score, confusion matrices, computational times for training

and inference, GPU energy consumption, and GPU memory usage. The analysis also

includes graphical representations and comprehensive tables for a thorough overview of

the practical trade-offs involved in choosing between these two modelling approaches.

4.2.1 Classification performance comparison

The classification results for both models demonstrate excellent overall performance,

reflecting their strong ability to distinguish malicious network flows from benign traffic.

Table 8 presents a detailed comparison of CNN and RF classifiers based on accuracy,

precision, recall, and F1-score, summarising their respective mean (marked as avg),

minimum, maximum, and standard deviation values calculated over 10 independent runs.

The best result per metric is marked in bold.

79

Table 8. Performance comparison between CNN and RF

Metric Convolutional Neural Network Random Forest

Accuracy

Avg

Min

Max

Std

99.974%

99.969%

99.978%

0.0028%

99.951%

99.946%

99.956%

0.0041%

Precision Avg

Min

Max

Std

99.913%

99.874%

99.952%

0.0249%

99.996%

99.996%

99.997%

0.0003%

Recall Avg

Min

Max

Std

99.824%

99.749%

99.880%

0.0392%

99.520%

99.471%

99.570%

0.0406%

F1-Score Avg

Min

Max

Std

99.868%

99.847%

99.888%

0.0140%

99.758%

99.733%

99.783%

0.0203%

Both models achieved exceptionally high accuracy, surpassing 99.9%. As can be seen

from the above table, the CNN slightly outperformed the RF model in terms of accuracy,

recall and F1-score. In particular, the higher recall of the CNN model indicates superior

sensitivity, effectively minimising false negatives. However, the RF model demonstrated

close to perfect precision, 99.996%, which implies almost zero false positives in this

evaluation scenario, significantly reducing the risk of generating unnecessary operational

alerts. Such precision is highly advantageous in practical cybersecurity deployments

where alert fatigue can negatively impact the efficiency and effectiveness of security

teams.

The confusion matrices depicted in figure 13 give closer insight into each model’s

predictive behaviours. The CNN model accurately identified more malicious flows

compared to RF, demonstrating fewer false negatives. Specifically, CNN correctly

identified 999 fewer false negatives compared to RF, significantly reducing the likelihood

of missing critical threats. The standard deviation for false negatives was 129 for the CNN

and 133 for the RF. This means that even the worst performing CNN out of the 10 had

fewer false negatives than the best performing RF.

80

Figure 13. Average confusion matrices for the CNN and RF models

Conversely, the RF model demonstrated an exceptionally low false-positive rate, 11 false

positives compared to 285 of the CNN, greatly decreasing the generation of unnecessary

alarms. The best performing CNN had 159 false negatives, while the worst RF had 13.

Ultimately the confusion matrix results clearly guide decisions based on the priorities of

the cybersecurity environment; either selecting the CNN for reducing missed threats or

minimising false alarms by choosing RF.

4.2.2 Computational efficiency comparison

In cybersecurity operational scenarios, computational efficiency directly influences the

practicality, scalability, and real-world applicability of an intrusion detection system. A

comprehensive comparison of computational performance metrics for the CNN and RF

models is summarised in Table 9:

Table 9. Computational efficiency of CNN and RF models

Metric CNN Random Forest

Training time

Avg

Min

Max

1313.48 s

801.00 s

1607.14 s

146.83 s

145.30 s

149.33 s

GPU Energy (Training) Avg 0.076 kWh 0.0069 kWh

Peak GPU memory usage Avg

Min

Max

7024.62 Mb

6813.65 Mb

7245.66 Mb

1024.3 Mb

1024.3 Mb

1024.3 Mb

81

Metric CNN Random Forest

Inference Time Avg 7.41 s 0.33 s

GPU Energy (Inference) Avg 0.0007 kWh 0.0000021 kWh

Eval CO₂ Equivalent Avg ≈0.3g CO₂-eq ≈0.0033g CO₂-eq

The computational timings

presented in Table 9 highlight

substantial efficiency advantages

for the Random Forest model. In

terms of training speed, the RF

completed training on average in

147 seconds, whereas the CNN

required 1313 seconds. This

significant difference means that

the RF model trained roughly 10 times faster than the CNN model, as can be seen from

figure 14. The reduced training time provided by the RF approach offers critical

advantages in dynamic cybersecurity environments, where rapid retraining is essential to

adapt promptly to continuously evolving threats.

Inference time, critical in operational contexts for real-time

decision-making, similarly favoured the RF approach. The RF

model completed inference on average in just 0.33 seconds,

significantly faster than the CNN, which required 7.41 seconds.

While a difference of several seconds may appear

nonconsequential, in practical cybersecurity applications

demanding rapid response and minimal detection latency, this

improvement of more than 20 times in inference speed substantially enhances the RF

model's suitability for operational deployment, enabling faster identification and response

to threats. The pronounced disparity between CNN and RF inference times can be

observed when comparing Table 9 and Figure 15, where the RF bar is noticeably shorter

than the CNN bar on the inference time chart.

Resource efficiency is another key operational consideration, encompassing GPU power

consumption, GPU memory usage, and environmental impact. GPU energy consumption

Figure 14. CNN vs RF training times over 10 runs

Figure 15. CNN vs RF

average inference time

82

during training was 10 times higher for the CNN model compared to the RF model.

Similarly, during inference, the CNN consumed significantly more GPU energy: 0.0007

kWh compared to the RF with 0.0000021 kWh, reflecting a difference exceeding 300

times. This contrast illustrates the difference of computational demands and power usage

inherent to deep learning architectures, which can pose constraints in resource-limited

environments or scenarios aiming for more sustainable, lower-impact computing

operations.

Additionally, GPU memory utilisation revealed substantial disparities. The CNN model

required approximately 7 Gb of GPU memory, whereas the RF model operated with only

1 Gb. This difference highlights the considerable resource efficiency advantage of the RF

model, making it particularly suitable for scenarios where hardware limitations or

resource constraints might restrict deployment feasibility.

Taken together, these computational and resource efficiency metrics illustrate clear

practical trade-offs: the CNN offers marginally superior detection accuracy but at a

substantial computational and resource cost. In contrast, the RF provides excellent

predictive performance combined with significantly superior computational efficiency,

lower resource consumption, and reduced environmental impact, making it highly

suitable for operational cybersecurity environments requiring rapid response, frequent

retraining, and resource-conscious implementation.

4.2.3 Answer to research question RQ2

RQ2: How do the traditional learning techniques compare to the deep learning techniques

in classification performance in classifying malicious network traffic?

The comparative analysis conducted using the LSPR23 dataset clearly demonstrates

strong performance from both traditional machine learning (Random Forest) and deep

learning (1D Convolutional Neural Network) techniques in identifying malicious network

traffic, with each exhibiting distinct strengths and trade-offs. Specifically, both models

achieved exceptional accuracy exceeding 99.9%, highlighting their suitability for

cybersecurity applications. However, nuanced differences emerged in the performance.

The CNN marginally surpassed RF in overall accuracy and demonstrated a superior

balance between precision and recall, achieving an F1-score of 99.87% compared to RF’s

83

99.76%. CNN exhibited notably higher sensitivity, recall of 99.82% versus RF’s 99.52%,

indicating greater effectiveness in identifying malicious traffic and decreasing missed

threats. This advantage positions CNN favourably in scenarios where detecting the

maximum number of threats is paramount. Conversely, RF demonstrated near-perfect

precision and substantially outperforming CNN, thus significantly reducing false

positives. This precision advantage makes RF highly useful in operational cybersecurity

contexts, where minimising false alarms is critical to maintaining security team

responsiveness and effectiveness.

In terms of computational efficiency, RF significantly outperformed CNN, training

roughly 10 times faster and achieving inference speeds more than 20 times quicker.

Furthermore, RF required substantially fewer computational resources and lower

environmental impact, making it particularly suitable for rapid, resource-constrained

deployments.

In conclusion, traditional machine learning techniques, represented by Random Forest,

offer outstanding predictive performance combined with significantly greater

computational efficiency, resource economy, and superior precision. Deep learning

techniques, represented by CNN, though marginally superior in overall accuracy and

recall, impose considerably higher computational costs and complexity. The choice

between these approaches should thus be guided by operational priorities: maximum

threat detection sensitivity (CNN) versus operational efficiency and minimal false

positives (RF).

4.3 Cross-dataset validation results on LSPR24

This section explores the robustness and generalisation capability of the previously

trained CNN and RF models by conducting a cross-dataset validation using the Locked

Shields Partners Run 2024 (LSPR24) dataset. Cross-year validation provides insight into

how effectively models trained on past datasets (LSPR23) can handle previously unseen

traffic patterns and novel cyber threats present in subsequent years. The LSPR24 dataset

is larger and more imbalanced, comprising 20,227,356 flows, with benign flows

constituting approximately 97.43% of the total (19,707,365 flows), and malicious flows

accounting for only 2.57% (519,991 flows). This notable shift in class distribution

compared to the LSPR23 dataset poses additional challenges for both classification

84

models, along with the changed network environment. For this evaluation, different

preprocessing was used to deal with non-finite values. Rows containing NaN values were

removed prior to evaluation and consequently, therefore the total counts presented in the

confusion matrices below differ slightly from the original dataset counts.

4.3.1 Importance of inter-arrival time features

As noted earlier in section 3.4.1.4, Inter-arrival Time (IAT) features offer valuable

timing-based information, capturing temporal patterns within network flows. However,

these features may become misleading if significant changes in the network infrastructure

occur across different datasets or years, as Gehri et al. highlighted previously [58].

Therefore, this validation explicitly compares the performance of the CNN and RF

models trained with and without the inclusion of IAT features to assess their impact on

cross-year generalisation capability.

4.3.2 Performance comparison without IAT features

Table 10 summarises the classification metrics for both CNN and RF models when IAT

features were excluded from training and evaluation:

Table 10. Cross-dataset performance on LSPR24 without IAT Features

Metric CNN Random Forest

Accuracy 84.66% 97.30%

Precision 8.05% 15.65%

Recall 47.69% 1.18%

F1-score 13.78% 2.20%

In the absence of IAT features, both models exhibited significant performance

degradation, indicating substantial difficulty in generalising to the 2024 network scenario.

Despite achieving a higher accuracy compared to the CNN, the RF model's recall was

notably poor, suggesting severe difficulty in correctly identifying malicious flows. As can

be seen from the confusion matrices below, this high accuracy is predominantly due to

the large number of benign flows (15,906,251 true negatives) compared to malicious

flows, thereby inflating the accuracy metric and rendering it misleading. The RF

confusion matrix clearly illustrates the severity of this issue, with the model identifying

only 4,980 out of 420,419 malicious flows correctly and thus missing the vast majority

85

of the malicious flows, posing critical operational risks. The CNN, conversely, exhibited

a substantially higher recall with 47.69% and successfully identified 200,484 malicious

flows out of the total 420,419. However, the CNN's improved sensitivity came with a

significantly higher false-positive count, 2,288,557 false alarms, as clearly depicted in its

confusion matrix.

Figure 16. Confusion matrices comparing performance of CNN and RF models without IAT features

4.3.3 Performance comparison with IAT features

Table 11. Cross-dataset performance on LSPR24 with IAT Features

Metric CNN Random Forest

Accuracy 91.98% 97.25%

Precision 12.47% 38.86%

Recall 35.23% 12.06%

F1-score 18.42% 18.41%

The inclusion of Inter-arrival Time features markedly influenced the predictive

performance of both CNN and RF models in the cross-dataset evaluation, as clearly

illustrated in Table 11 and Figure 17. Specifically, the Random Forest model exhibited

substantial improvements when these temporal features were included, particularly in

precision and recall. Precision increased significantly, rising from 15.65% to 38.86%,

demonstrating that the RF model became considerably more accurate in correctly

identifying malicious flows while simultaneously reducing false-positive detections.

86

Figure 17. Confusion matrices comparing performance of CNN and RF models with IAT features

Additionally, the recall improved notably from a very low 1.18% without IAT features to

a moderate 12.06% with these features. The confusion matrices in Figure 17 explicitly

illustrate this improvement, showing a noticeable increase in correctly identified

malicious flows, with true positives rising from 4,980 to 50,708 when using IAT features.

While the RF model still exhibited limited overall sensitivity, this tenfold improvement

highlights the considerable informational value of IAT features. For the CNN,

incorporating IAT features increased accuracy substantially, from 84.66% to 91.98%, and

precision improved from 8.05% to 12.47%. However, the recall decreased somewhat

from 47.69% to 35.23%, reflecting fewer true positive detections. Still, the overall

balance between precision and recall improved, as indicated by the F1-score increase

from 13.78% to 18.42%, confirming that IAT features positively influenced CNN's

generalisation capability.

Despite concerns raised by Gehri et al. regarding the potential instability and reduced

effectiveness of temporal features like IAT across changing network infrastructures [58],

the inclusion of these features has clearly enhanced the generalisation capability of both

RF and CNN models in this cross-dataset validation. The improvements observed in

precision, recall, and overall classification stability confirm that IAT features contribute

to capturing distinctive traffic patterns and temporal behaviours, thus enabling models to

better adapt to evolving threats and novel network conditions. Consequently, these results

emphasise the practical importance of carefully managing and incorporating temporal

87

features into intrusion detection models, provided network conditions remain sufficiently

stable.

4.3.4 Answer to research question RQ3

RQ3: How effective are traditional machine learning models compared to deep learning

models in transfer learning across different databases?

The cross-dataset validation using the LSPR24 dataset highlights significant challenges

faced by both traditional machine learning and deep learning approaches when

transferring learned patterns from the LSPR23 dataset to novel traffic and threat

conditions encountered in the following year. This evaluation clearly reveals distinct

differences in robustness and generalisation capabilities between the two modelling

strategies.

Without temporal inter-arrival time features, the CNN exhibited substantially higher

recall than RF, 47.69% vs 1.18%, thus indicating superior generalisation in recognising

malicious patterns despite changes in network conditions. However, this came at the cost

of extremely high false positives, significantly reducing practical operational

effectiveness. RF, despite high overall accuracy of 97.30% severely struggled to

generalise, identifying few malicious flows, emphasising critical limitations in

transferability without additional temporal context.

Including temporal IAT features significantly improved the generalisation capabilities of

both models. The RF model particularly benefited, achieving a substantial improvement

in recall, increasing from 1.18% to 12.06%, and precision, rising from 15.65% to 38.86%.

This indicates an enhanced ability to recognise malicious patterns across datasets when

temporal context is maintained. The CNN also experienced improvements, with accuracy

rising from 84.66% to 91.98% and precision increasing from 8.05% to 12.47%. However,

this improvement occurred at some expense to recall, underscoring the sensitivity of deep

learning models to changes in feature representation.

Although CNN consistently demonstrated higher recall, indicating better capability in

capturing new threats, its pronounced tendency toward false positives poses substantial

operational challenges. In contrast, the RF model, though initially poor in recall without

88

temporal features, significantly improved when temporal context was provided, offering

balanced and practical operational performance.

To summarise, random forest demonstrated notable robustness and significantly

improved generalisation across databases when supported by meaningful temporal

context. Convolutional neural network inherently captured more generalisable features,

resulting in better initial transfer capability, yet faced substantial trade-offs in precision

and operational practicality. Consequently, for effective transfer learning across

cybersecurity datasets, traditional models appear advantageous when carefully curated

features are consistently available, while deep learning models offer inherent adaptability

at higher computational and operational costs.

89

5 Discussion

This thesis compared a representative traditional machine learning model (Random

Forest, RF) and a deep learning model (1D Convolutional Neural Network, CNN) for

network intrusion detection, using the LSPR23 dataset derived from the Locked Shields

2023 cyber exercise. Both models achieved excellent predictive performance, with

overall accuracies exceeding 99.9%. CNN demonstrated slightly better sensitivity, with

higher recall compared to RF, indicating fewer missed threats. Conversely, the RF

showed near-perfect precision and thus substantially reduced the number of false alarms

(see Table 8). This trade-off, clearly visible in the confusion matrices (Figure 13), implies

operational decisions between minimising missed attacks (CNN) versus reducing alert

fatigue (RF). These findings align closely with prior literature: CNN-based models are

recognised for superior recall and accuracy [34], whereas ensemble tree-based methods

like RF consistently demonstrate robust, precise performance [25], [41]. Thus, this work

reinforces the literature's conclusion that well-optimised traditional methods remain

highly competitive for intrusion detection tasks.

5.1 Practical implications

The practical implications of these findings suggest distinct operational roles for each

model. The RF's exceptionally low false-positive rate makes it highly suitable as a

primary IDS, reducing analyst workload from false alerts. Conversely, CNN's higher

recall positions it favourably for environments where missing threats is particularly

costly, such as critical infrastructure or military exercises. Thus, a hybrid or tiered IDS

approach combining the strengths of both models could be optimal. Using RF for routine

threat detection and CNN for advanced analysis of potential false negatives. Additionally,

the interpretability advantage of RF makes it attractive in compliance-driven

environments, while CNN offers the potential to automatically capture subtle attack

patterns beyond traditional feature engineering.

In this thesis the RF model required significantly less computational effort than CNN,

achieving roughly a tenfold improvement in training speed and more than twentyfold

improvement in inference speed along with dramatically lower GPU memory and energy

demands (see table 9). These differences, visually confirmed in figures 14 and 15,

90

highlight RF's practical advantages, particularly in real-time, resource-constrained

environments requiring rapid threat detection and frequent model retraining. By contrast,

CNN’s higher computational load may impose operational constraints and limit practical

deployment to scenarios with sufficient computational infrastructure.

Ultimately, operational considerations, such as training and inference speed, resource

availability, and environmental impact, are as critical as raw accuracy when evaluating

model suitability for real-world cybersecurity deployment. Selecting the optimal IDS

approach therefore requires a careful balance between technical performance metrics and

the practical realities and constraints related to deployment, specific to each operational

environment.

5.1.1 Necessity of machine- and deep learning in intrusion detection

The near-perfect detection results on the LSPR23 dataset for both the RF and CNN

approaches raises the question on the practical necessity of employing advanced machine

learning models for intrusion detection. Indeed, several studies have demonstrated that

simpler ML and statistical methods can achieve strong results in certain intrusion

detection scenarios. Yu et al. conducted an empirical evaluation revealing that classical

algorithms such as k-Nearest Neighbours (kNN) outperformed DL models in log anomaly

detection, achieving superior accuracy and significantly reduced computational

complexity [19]. Specifically, kNN provided better detection performance compared to

complex neural network methods, highlighting the potential for simpler models to

effectively solve specific, well-defined intrusion detection problems. Supporting these

findings, Leon et al. conducted an extensive comparative analysis demonstrating that on

simpler datasets such as KDD99 and NSL-KDD, Linear Discriminant Analysis (LDA)

and Support Vector Machine (SVM) achieved performance comparable to artificial

neural networks but with significantly reduced computational complexity [41]. Moreover,

a recent comprehensive survey by Natarajan et al. reinforced that simpler supervised

algorithms, e.g., CART, Logistic Regression, frequently attained accuracy in the range of

98–99% on common datasets, underscoring their continued relevance in intrusion

detection tasks [37].

However, despite the strong performance of simpler methods reported in the literature,

the necessity for advanced ML and DL approaches becomes apparent when addressing

more realistic and complex intrusion detection scenarios. For instance, in the previously

91

cited study by Leon et al., the LDA model exhibited significantly lower performance on

the more recent UNSW-NB15 dataset, whereas advanced models such as RF and ANN

experienced only minor performance degradation [41]. The LSPR23 dataset used in this

thesis exemplifies such a realistic and challenging scenario. It features highly

sophisticated, multi-stage attacks embedded within legitimate background traffic from a

large-scale cybersecurity exercise, thereby representing conditions significantly more

complex than typical benchmark datasets. This complexity was particularly evident in the

performance evaluation conducted by Dijk et al. who assessed Suricata, a widely

recognised open-source IDS employing traditional signature-based detection methods.

Suricata demonstrated notably poor performance on the LSPR23 dataset, achieving only

53.1% F1-score with its standard rulesets, resulting in many missed detections and false

positives on the same time [3]. This significant performance gap clearly illustrates that

traditional signature-based methods, while simpler and computationally less intensive,

fail to capture the nuanced and novel attack patterns inherent in realistic cybersecurity

scenarios.

The excellent results achieved by the ML and DL models presented in this thesis are

therefore not indicative of overperforming on a trivially simple detection task. Rather,

they highlight the capacity of these models to effectively learn intricate and subtle features

distinguishing malicious from benign traffic. The comparative analysis of RF and CNN

approaches presented in the experimental chapter of this thesis reinforces this

interpretation. While the RF model achieved impressive results, the CNN model

demonstrated marginally superior accuracy, suggesting that the deep learning approach

was able to capture additional complexities and nuances in the data that simpler classifiers

could not. Although the computational costs associated with the CNN were notably

higher, its ability to generalise from complex patterns provides significant advantages

when faced with evolving or novel attack scenarios.

Nevertheless, the suitability of ML/DL solutions must be assessed on a case-by-case

basis. Where simpler statistical methods suffice, their advantages in interpretability and

computational efficiency are indeed valuable. The findings of this thesis align with

existing literature, demonstrating that simpler methods like Random Forest can achieve

remarkable results given well-structured data and informative features. However, the

security domain often necessitates minimising false negatives to the greatest possible

extent, as the costs associated with missed intrusions can be substantial. Thus, even

92

marginal improvements in detection performance afforded by complex ML/DL models

can significantly enhance operational security. An optimal strategy might therefore

involve employing a combination of simpler methods for initial rapid detection and

advanced ML/DL methods for in-depth analysis and detection of sophisticated attacks.

5.1.2 Binary vs multiclass classification considerations

When interpreting the results of this thesis within the broader context of NIDS, it should

be noted that both the evaluation presented in Sections 3 and 4 and the majority of related

studies presented in the literature review, focus predominantly on binary classification

tasks: distinguishing malicious traffic from benign traffic. This binary approach

considerably simplifies the problem space and achieving accuracy levels exceeding 90%,

as frequently reported in the literature (see table 1 and table 2), is inherently less

challenging in a binary scenario compared to more granular classification tasks.

Such impressive figures, however, come with important caveats: models can attain high

overall accuracy by potentially exploiting class imbalance by learning to always predict

the majority class or by glossing over distinctions between different attack types. For

example, Chindove and Brown observed in their study that several algorithms achieved

almost 100% accuracy on the CICIDS 2017 dataset simply because benign flows

dominated the traffic, whereas the results for the minority classes was much lower [40].

This serves as a reminder that an aggregate “malicious vs. benign” metric can mask poor

detection of specific attack categories.

This thesis, like much of the prior literature, adopts a binary classification paradigm

primarily because it aligns with how ground truth labels were provided in the dataset and

facilitates a clear evaluation of benign vs. malicious classification performance. The

LSPR23 dataset used for training and testing was labelled at the flow level with a simple

binary indicator for each network flow [3] and this made binary classification a natural

and pragmatic choice for measuring overall intrusion detection efficacy. It is worth noting

that the malicious portion of LSPR23 traffic is about 10% of flows (see section 3.3.5),

which is an unusually high attack prevalence compared to typical enterprise networks.

This imbalance enabled both the RF and CNN models to achieve over 99% accuracy on

the LSPR23 data by mainly learning to distinguish normal vs. attack behaviour, consistent

with other studies on imbalanced datasets [31], [40], [47]. In a multiclass setting, by

contrast, each specific attack type would constitute an even smaller minority of the traffic,

93

exacerbating the class imbalance problem. Moreover, any misclassification between

malicious classes, e.g. confusing a SQL injection for a brute-force attack, counts against

a multiclass classifier’s accuracy [31], whereas a binary classifier is oblivious to such

errors as long as the traffic is flagged as malicious.

Focusing solely on binary classification, while useful for benchmarking detection

capability, limits the operational usefulness of an IDS. Security operators often need to

know the nature of an intrusion to respond appropriately. A model that simply raises an

alert for “malicious activity” without further context offers limited guidance for incident

response [14]. Nonetheless, the high detection performance demonstrated by binary

models in section 4.2 serves as a strong foundation upon which more detailed multiclass

classification methods can be built, enabling incremental improvements in practical

intrusion response capabilities. Both the CNN and Random Forest models developed and

evaluated in this thesis inherently support multiclass classification with minimal

structural adjustments, making the transition towards more detailed threat categorisation

practically achievable.

5.1.3 Model transferability and environment specifics

The cross-year validation using the LSPR24 dataset highlighted significant generalisation

challenges for both models. RF in particular exhibited a severe reduction in recall,

identifying only a small fraction of new malicious flows and the CNN, though more

resilient with a higher recall still experienced a sharp rise in false positives, particularly

without temporal features (see table 10).

The comparatively low performance of both the Random Forest and CNN models on the

newer LSPR24 dataset is an expected outcome given the shift in data between these two

evaluations. In the domain of network intrusion detection, it is well-recognised that a

model trained in one environment often struggles when applied to a different environment

or a later dataset [40], [58], [92]. This is because the underlying network conditions and

threat landscape can change significantly: normal background traffic profiles vary across

organisations and time, and attackers continually adapt their tactics [75]. For instance,

Locked Shields exercise introduces up-to-date attack techniques and employs different

network infrastructures annually, meaning that the 2024 iteration inevitably differs from

2023 in both benign traffic and attack vectors [2]. A classifier built on LSPR23’s traffic

patterns and threat profile will therefore encounter previously unseen patterns in LSPR24,

94

both in terms of legitimate traffic behaviour and new malicious activities. This results in

degraded detection performance. This phenomenon is essentially an instance of concept

drift, where the statistical properties of the input data change over time. As Jordaney et

al. explain, models trained on older data will show signs of aging and begin to miss new

or evolved threats [92]. In other words, what the model learned as malicious or benign in

2023 may no longer hold true in 2024, leading to misclassifications.

Recent research underlines how pronounced this effect can be when evaluating intrusion

detectors across different time periods or environments. Vaarandi and Guerra-

Manzanares [74] observe that in a realistic chronological evaluation, meaning training on

earlier network alert data and testing on later data, many new alert types emerged in the

later period that the model had never seen before. In their study, over half of the attack

signatures present in the test set were completely absent in the training set. They caution

that the common practice of randomly splitting data for training and testing ignores such

temporal evolution, yielding overly optimistic performance estimates [74]. In summary,

the LSPR23 to LSPR24 performance drop aligns with expectations for a cross-

environment deployment; it highlights the challenge of model transferability in the

presence of changing network conditions, new attacker strategies, and concept drift.

Gehri et al. emphasise that it is possible to train more generalised models by carefully

selecting features that are less dependent on any one network’s specifics, but even then

such models “generally fail to achieve the same performance” as models optimised and

evaluated in a single, static environment [58]. Känzig et al. similarly note that benign and

malicious traffic profiles can vary considerably between organisations or exercise

iterations, so a detector might work well on the network it was trained on yet

underperform on a new network without adaptation [63]. These findings justify the drop

in models’ efficacy on LSPR24 in section 4.3: without recalibration, the models trained

on 2023 data are not fully equipped for the 2024 scenario.

To address this practical challenge of balancing model accuracy and resource constraints

associated with frequent retraining, a hybrid approach combining generalisation and

adaptive mechanisms is recommended. Purely environment-specific retraining is often

impractical due to the high resource demands of continuously labelling data and updating

models, resulting in either diminishing returns or unreliable detection over time if updates

are infrequent [92]. Instead, leveraging time-independent features and historical diversity

95

in training datasets, such as aggregating multiple years of Locked Shields exercises, can

enhance baseline model generalisation across environments by establishing robust

decision boundaries capable of detecting a broader spectrum of malicious behaviours

[58], [63]. Additionally, incorporating active learning frameworks, where models

selectively solicit human expertise on uncertain alerts, can incrementally tailor detection

capabilities to specific environments without exhaustive retraining cycles [74]. Coupled

with proactive drift detection tools such as the Transcend framework [92], which identify

shifts in data distribution and prompt targeted interventions, the combined strategy can

maintain detection effectiveness while significantly reducing the manual overhead

typically associated with model maintenance.

5.2 Limitations

This thesis acknowledges several limitations which should be considered when

interpreting the findings. Recognising these limitations provides valuable insights and

directions for future research and development, discussed in section 5.3.

Firstly, the comparison deliberately focused on one representative algorithm from each

category. Random Forest for traditional machine learning (section 3.5), and a one-

dimensional CNN for deep learning (section 3.6). Although this pragmatic approach

provided clear insights, it excludes other potentially strong alternatives, such as gradient-

boosted trees, support vector machines, and alternative neural network architectures like

Long Short-Term Memory networks and Transformers.

Secondly, the evaluation in this thesis was limited exclusively to binary classification,

distinguishing only between malicious and benign traffic. This binary approach does not

account for the diversity, specificity, and varying characteristics of distinct attack

categories, such as denial-of-service attacks, data exfiltration attempts, port scans, or

privilege escalation efforts. High accuracy achieved within a simplified binary scenario

may not directly generalise or translate effectively to more nuanced multiclass

classification, where the system must correctly identify and differentiate multiple distinct

attack types, or anomaly detection scenarios, in which previously unseen or novel attacks

must be recognised and categorised.

96

Thirdly, the dataset used, although large-scale and realistic, originated from a single cyber

exercise environment, Locked Shields 2023. This environment possessed distinct

characteristics such as a fixed set of services, a relatively high malicious traffic ratio of

about 10% and particular attack patterns explicitly designed for the exercise scenario.

Consequently, the absolute performance metrics achieved by the evaluated models may

not directly generalise to networks that differ significantly in their operational profiles,

threat landscapes, and user behaviours, such as typical corporate or military networks.

The considerable reduction in model performance observed when transitioning from the

2023 Locked Shields dataset to the closely related yet distinct LSPR24 dataset

underscores these generalisation challenges. This performance drop highlights how even

minor variations in network architecture, threat distribution, and attack techniques can

substantially affect the effectiveness of trained models.

Another limitation relates to model hyperparameter tuning. While RF hyperparameters

were adopted from prior research [63] and CNN architecture was inspired by previous

works [77], [78], exhaustive hyperparameter optimisation tailored explicitly to this

dataset was not performed due to computational constraints and practical considerations.

Thus, performance could potentially be improved through more comprehensive model-

specific tuning and optimisation strategies. Moreover, feature engineering choices, such

as dropping certain fields or encoding categorical variables, were carefully considered

but not exhaustively evaluated. Although the impact of specific features (IAT timings)

was tested, subtle feature interactions that could further improve model robustness or

predictive performance might remain unaddressed.

Finally, the generalisation assessment conducted in this thesis utilised a static model

trained exclusively on data from one specific year (2023) and subsequently evaluated on

data collected the following year (2024), without employing incremental updates,

continuous learning, or periodic retraining strategies. Although this methodological

choice was intentionally designed to rigorously test the models’ generalisation

capabilities under challenging, worst-case conditions, it may not fully reflect practical

deployment scenarios in real-world cybersecurity operations, where intrusion detection

models typically benefit from ongoing adaptation to evolving threat landscapes.

97

5.3 Future research

Future research could extend the ML vs DL comparison by systematically evaluating a

broader array of algorithms, including those prominently discussed in the comprehensive

literature review presented in this thesis enriching the understanding of their relative

strengths and limitations within intrusion detection contexts. These currently untested

models could improve detection by incorporating temporal sequences and contextual

relationships among network flows. Techniques such as recurrent neural networks, 2-

dimensional convolutional neural networks, attention-based models, or graph neural

networks can effectively capture patterns and dependencies over time or across hosts,

potentially improving identification of coordinated or multi-stage attacks. Employing

these methods could reveal attack behaviours that single-flow analysis fails to identify,

thereby reducing false negatives and increasing model precision.

Similarly, future work could move beyond binary classification tasks on the Locked

Shields datasets by incorporating multiclass classification scenarios and addressing the

detection of novel or emerging threats. Specifically, efforts should focus on identifying

and differentiating specific attack types, such as port scans, brute-force attempts, and

DDoS, which provide more actionable insights by distinguishing among threat categories

and severity levels. This would align intrusion detection research more closely with

realistic operational cybersecurity requirements, ultimately offering a deeper

understanding of model capabilities, practical limitations, and suitability for detailed

threat characterisation. Given that the Locked Shields 2023 dataset prepared by Dijk et

al. already includes additional attack narratives in a separate file suitable for such

analyses, future studies could leverage this resource to develop more sophisticated multi-

class or hierarchical classification frameworks.

The deep learning model developed in this thesis can be easily adapted to support multi-

class predictions by modifying the final prediction layer to include multiple neurons

instead of one. Similarly, the Random Forest model evaluated here inherently supports

multi-class classification, requiring only appropriately labelled data without structural

adjustments.

The significant performance drop observed between the LSPR23 and LSPR24 datasets

emphasises the importance of addressing concept drift [92]. Future studies could

98

investigate continuous or incremental learning strategies, such as periodic model

retraining, online algorithms, or domain adaptation techniques to better represent realistic

operational conditions. Employing drift detection mechanisms to trigger timely model

updates could further enhance generalisation and resilience against evolving threats.

Additionally, integrating anomaly detection methods, such as the N-outlier approach

suggested by Vaarandi et al. [74], alongside supervised models could substantially

improve model robustness. Investigating these approaches could potentially reduce or

mitigate the performance degradation observed when models encounter previously

unseen network behaviours or emerging threat types, thereby enhancing their practical

applicability, resilience, and long-term effectiveness in dynamic and continually evolving

cybersecurity.

Evaluating models in live operational environments, such as future Locked Shields

exercises or controlled enterprise settings, would provide practical insights beyond lab-

based testing. Research could assess real-time detection performance, system stability

under load, latency, alert manageability, and integration with automated response

mechanisms. Such experiments would validate not only the detection accuracy and the

efficacy of continuous retraining, but also the models’ suitability for operational

cybersecurity environments, informing future model refinement, real-time adaptation

strategies, and deployment considerations.

Expanding evaluations beyond the LSPR23 and LSPR24 datasets to include additional

Locked Shields datasets from earlier years (e.g., LS17, LS18, LS19, LS21) presents a

promising direction to explore the generalisability of findings across multiple iterations

of this prominent cyber exercise. As highlighted by Gehri et al. [58], machine learning

models trained on traffic data from one year's Locked Shields exercise often fail to

generalise effectively to other editions due to differences in network conditions and attack

patterns. Thus, systematically evaluating models across these diverse yet related datasets

could provide deeper insights into model robustness, reveal factors influencing

performance stability, and clarify the conditions under which specific modelling

approaches succeed or fail. Additionally, integrating multiple data modalities, such as

host logs, IDS/IPS alerts, and endpoint data, into unified models represents another

compelling avenue, potentially uncovering cross-domain correlations and further

enhancing detection performance across varying network scenarios.

99

Given the demonstrated importance of feature selection, as exemplified by the impact of

Inter-Arrival Time features, further research should explore automated feature

engineering techniques and unsupervised representation learning approaches, such as

autoencoders. These strategies could help identify invariant or robust features that

consistently generalise across changing environments and over time, thereby improving

model resilience and reducing sensitivity to dataset shifts.

These future research avenues collectively aim to enhance the granularity, adaptability,

temporal awareness, operational realism, and generalisability of intrusion detection

systems. Pursuing these directions will significantly contribute to developing robust

detection mechanisms capable of maintaining high accuracy and operational

effectiveness amidst the continuously evolving cyber threat landscape.

100

6 Conclusion

This thesis compared traditional machine learning and deep learning methods for network

intrusion detection using realistic datasets from the Locked Shields 2023 and 2024

cybersecurity exercises. The literature review identified Random Forest and a one-

dimensional Convolutional Neural Network as prominent representatives of their

respective methodologies, supported by their widespread use and demonstrated efficacy

in prior research.

Utilising the CRISP-DM framework ensured methodological rigour throughout the

research process, from dataset preparation and feature engineering to model evaluation.

The models were systematically trained, validated, and compared using accuracy,

precision, recall, and F1-score metrics. Both the Random Forest and 1D Convolutional

Neural Network achieved F1-scores exceeding 99% on the LSPR23 dataset. CNN

demonstrated slightly higher recall, indicating greater sensitivity in identifying malicious

network activities while conversely RF offered near-perfect precision with minimal false

alarms, highlighting key trade-offs for operational decisions. Significant differences

emerged in computational efficiency: RF trained approximately ten times faster and

performed inference twenty times faster than CNN, also consuming substantially less

GPU memory and power. Thus, RF is highly efficient for real-time or resource-

constrained environments, whereas CNN provides marginal but potentially important

improvements at increased computational cost.

Cross-dataset validation using the LSPR24 dataset exposed substantial generalisation

challenges due to the evolving threat patterns and network environment. Both models

showed performance degradation, especially RF with a significantly lowered recall. CNN

being more resilient maintained higher sensitivity but produced more false alarms. These

findings strongly emphasise the necessity of continual retraining or adaptive learning

mechanisms to maintain intrusion detection effectiveness over time.

Future research building on top of this thesis should explore multi-class attack

classification, continuous learning methods to handle evolving network configurations,

and model evaluation in live, real-time operational contexts. Validation across additional

Locked Shields datasets and integrating temporal, contextual, and multimodal data could

further enhance practical applicability for the ever-evolving cyberthreat landscape.

101

References

[1] ‘What is Intrusion Detection Systems (IDS)? How does it Work?’, Fortinet.

Accessed: Nov. 16, 2024. [Online]. Available:

https://www.fortinet.com/resources/cyberglossary/intrusion-detection-system

[2] Maj. E. Halisdemir, H. Karacan, M. Pihelgas, T. Lepik, and S. Cho, ‘Data Quality

Problem in AI-Based Network Intrusion Detection Systems Studies and a Solution

Proposal’, in 2022 14th International Conference on Cyber Conflict: Keep Moving!

(CyCon), May 2022, pp. 367–383. doi: 10.23919/CyCon55549.2022.9811014.

[3] A. Dijk, E. Halisdemir, C. Melella, A. Schu, M. Pihelgas, and R. Meier, ‘LSPR23:

A novel IDS dataset from the largest live-fire cybersecurity exercise’, J. Inf. Secur.

Appl., vol. 85, p. 103847, Sep. 2024, doi: 10.1016/j.jisa.2024.103847.

[4] S. Thapa and A. M. Dissanayaka, ‘The Role of Intrusion Detection/Prevention

Systems in Modern Computer Networks: A Review’, 2020. Accessed: Mar. 30,

2025. [Online]. Available: https://www.semanticscholar.org/paper/The-Role-of-

Intrusion-Detection-Prevention-Systems-Thapa-

Dissanayaka/0f572624baf9404887ba55b4a2baebbf5a03d015

[5] K. Scarfone, P. Mell, P. Stavroulakis, and M. Stamp, ‘Intrusion Detection and

Prevention Systems’, in Handbook of Information and Communication Security,

Springer, 2010, pp. 177–192. doi: 10.1007/978-3-642-04117-4_9.

[6] K. A. Scarfone and P. M. Mell, ‘Guide to Intrusion Detection and Prevention

Systems (IDPS)’, National Institute of Standards and Technology, Gaithersburg,

MD, NIST SP 800-94, 2007. doi: 10.6028/NIST.SP.800-94.

[7] GuardRails, ‘False Positives and False Negatives in Information Security’,

GuardRails. Accessed: Mar. 30, 2025. [Online]. Available:

https://www.guardrails.io/blog/false-positives-and-false-negatives-in-information-

security/

[8] ‘Understanding False Negatives in Cybersecurity’, Check Point Software.

Accessed: Mar. 29, 2025. [Online]. Available: https://www.checkpoint.com/cyber-

hub/cyber-security/understanding-false-negatives-in-cybersecurity/

[9] Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, and F. Ahmad, ‘Network

intrusion detection system: A systematic study of machine learning and deep

learning approaches’, Trans Emerg Telecommun Technol, vol. 32, no. 1, Jan. 2021,

doi: 10.1002/ett.4150.

[10] M. Lanvin, P.-F. Gimenez, Y. Han, F. Majorczyk, L. Mé, and E. Totel,

‘Towards Understanding Alerts raised by Unsupervised Network Intrusion

Detection Systems’, in Proceedings of the 26th International Symposium on

Research in Attacks, Intrusions and Defenses, in RAID ’23. New York, NY, USA:

Association for Computing Machinery, Oct. 2023, pp. 135–150. doi:

10.1145/3607199.3607247.

[11] H. Liu and B. Lang, ‘Machine Learning and Deep Learning Methods for

Intrusion Detection Systems: A Survey’, Appl. Sci., vol. 9, no. 20, Art. no. 20, Jan.

2019, doi: 10.3390/app9204396.

[12] CCDCOE, ‘Locked Shields’. Accessed: Mar. 29, 2025. [Online]. Available:

https://ccdcoe.org/exercises/locked-shields/

102

[13] CCDCOE, ‘World’s largest cyber defense exercise Locked Shields kicks off in

Tallinn’. Accessed: Mar. 29, 2025. [Online]. Available:

https://ccdcoe.org/news/2023/worlds-largest-cyber-defense-exercise-locked-shields-

kicks-off-in-tallinn/

[14] R. Meier, A. Lavrenovs, K. Heinaaro, L. Gambazzi, and V. Lenders, ‘Towards

an AI-powered Player in Cyber Defence Exercises’, in 2021 13th International

Conference on Cyber Conflict (CyCon), Tallinn, Estonia: IEEE, May 2021, pp.

309–326. doi: 10.23919/CyCon51939.2021.9467801.

[15] S. Sharma, N. Becker, B. Tepera, and D. G. Dessavre, ‘NVIDIA cuML Brings

Zero Code Change Acceleration to scikit-learn’, NVIDIA Technical Blog.

Accessed: May 17, 2025. [Online]. Available:

https://developer.nvidia.com/blog/nvidia-cuml-brings-zero-code-change-

acceleration-to-scikit-learn/

[16] V. Phillips and E. Barker, ‘Systematic reviews: Structure, form and content’, J.

Perioper. Pract., vol. 31, no. 9, pp. 349–353, Sep. 2021, doi:

10.1177/1750458921994693.

[17] M. J. Page et al., ‘PRISMA 2020 explanation and elaboration: updated guidance

and exemplars for reporting systematic reviews’, BMJ, vol. 372, p. n160, Mar.

2021, doi: 10.1136/bmj.n160.

[18] M. Gusenbauer and N. R. Haddaway, ‘Which academic search systems are

suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of

Google Scholar, PubMed, and 26 other resources’, Res. Synth. Methods, vol. 11, no.

2, pp. 181–217, 2020, doi: 10.1002/jrsm.1378.

[19] B. Yu et al., ‘Deep Learning or Classical Machine Learning? An Empirical

Study on Log-Based Anomaly Detection’, in Proceedings of the IEEE/ACM 46th

International Conference on Software Engineering, in ICSE ’24. New York, NY,

USA: Association for Computing Machinery, Feb. 2024, pp. 1–13. doi:

10.1145/3597503.3623308.

[20] S. Li, Y. Lu, and J. Li, ‘Can We Half the Work with Double Results: Rethinking

Machine Learning Algorithms for Network Intrusion Detection System’, in 2021

Ninth International Conference on Advanced Cloud and Big Data (CBD), Mar.

2022, pp. 242–247. doi: 10.1109/CBD54617.2021.00049.

[21] J. Hu, X. Wang, and Y. Liu, ‘Enhancing Network Intrusion Detection: A

Comparative Analysis of Machine Learning Models on Complex Network Traffic

Data’, in Proceedings of the 2024 2nd International Conference on Internet of

Things and Cloud Computing Technology, Paris France: ACM, Sep. 2024, pp. 364–

368. doi: 10.1145/3702879.3702942.

[22] T. Liu et al., ‘A Hybrid Supervised Learning Approach for Intrusion Detection

Systems’, in Knowledge and Systems Sciences, J. Chen, V.-N. Huynh, X. Tang, and

J. Wu, Eds., Singapore: Springer Nature, 2023, pp. 3–17. doi: 10.1007/978-981-99-

8318-6_1.

[23] S. Saif, Ansari ,Aqeef Alim, Biswas ,Suparna, and D. and Giri, ‘A

comprehensive analysis of machine learning-based intrusion detection systems:

evaluating datasets and algorithms for internet of things’, J. Cyber Secur. Technol.,

vol. 0, no. 0, pp. 1–27, Oct. 2023, doi: 10.1080/23742917.2024.2447124.

[24] S. Chauhan, L. Mahmoud, S. Gangopadhyay, and A. K. Gangopadhyay, ‘A

Comparative Study of LAD, CNN and DNN for Detecting Intrusions’, in Intelligent

Data Engineering and Automated Learning – IDEAL 2022, H. Yin, D. Camacho,

and P. Tino, Eds., Cham: Springer International Publishing, 2022, pp. 443–455. doi:

10.1007/978-3-031-21753-1_43.

103

[25] R. Garg and S. Mukherjee, ‘A comparative study using supervised learning for

anomaly detection in network traffic’, J. Phys. Conf. Ser., vol. 2161, no. 1, p.

012030, Jan. 2022, doi: 10.1088/1742-6596/2161/1/012030.

[26] S. Gnanasivam, D. Tveter, and N. Dinh, ‘Performance Evaluation of Network

Intrusion Detection Using Machine Learning’, in 2024 IEEE International

Conference on Consumer Electronics (ICCE), Jan. 2024, pp. 1–6. doi:

10.1109/ICCE59016.2024.10444363.

[27] A. Attia, M. Faezipour, and A. Abuzneid, ‘Network Intrusion Detection with

XGBoost and Deep Learning Algorithms: An Evaluation Study’, in 2020

International Conference on Computational Science and Computational

Intelligence (CSCI), Dec. 2020, pp. 138–143. doi: 10.1109/CSCI51800.2020.00031.

[28] R. A. Bridges et al., ‘Beyond the Hype: An Evaluation of Commercially

Available Machine Learning–based Malware Detectors’, Digit. Threats Res. Pract.,

vol. 4, no. 2, pp. 1–22, Jun. 2023, doi: 10.1145/3567432.

[29] M. Leon, T. Markovic, and S. Punnekkat, ‘Feature encoding with autoencoder

and differential evolution for network intrusion detection using machine learning’,

in Proceedings of the Genetic and Evolutionary Computation Conference

Companion, Boston Massachusetts: ACM, Jul. 2022, pp. 2152–2159. doi:

10.1145/3520304.3534009.

[30] O. Faraj, D. Megias, and J. Garcia-Alfaro, ‘ZW-IDS: Zero-Watermarking-based

network Intrusion Detection System using data provenance’, in Proceedings of the

19th International Conference on Availability, Reliability and Security, in ARES

’24. New York, NY, USA: Association for Computing Machinery, Jul. 2024, pp. 1–

11. doi: 10.1145/3664476.3670933.

[31] M. Pawlicki, R. Kozik, and M. Choraś, ‘Comparison of neural network

paradigms for their usefulness in a real-world network intrusion detection

deployment and a proposed optimised approach’, in EICC 2022: Proccedings of the

European Interdisciplinary Cybersecurity Conference, Barcelona Spain: ACM, Jun.

2022, pp. 53–56. doi: 10.1145/3528580.3532840.

[32] F. Alotaibi and S. Maffeis, ‘Mateen: Adaptive Ensemble Learning for Network

Anomaly Detection’, in The 27th International Symposium on Research in Attacks,

Intrusions and Defenses, Padua Italy: ACM, Sep. 2024, pp. 215–234. doi:

10.1145/3678890.3678901.

[33] F. Alshuaibi, F. Alshamsi, A. Saeed, and S. Kaddoura, ‘Machine Learning-

Based Classification Approach for Network Intrusion Detection System’, in 2024

15th Annual Undergraduate Research Conference on Applied Computing (URC),

Apr. 2024, pp. 1–6. doi: 10.1109/URC62276.2024.10604566.

[34] S. M. Nour and S. A. Said, ‘Deep Learning Performance Evaluation Model for

Enhancing Network Intrusion Detection Systems’, in 2024 6th Novel Intelligent and

Leading Emerging Sciences Conference (NILES), Oct. 2024, pp. 61–65. doi:

10.1109/NILES63360.2024.10753184.

[35] M. Saied, S. Guirguis, and M. Madbouly, ‘A Comparative Study of Using

Boosting-Based Machine Learning Algorithms for IoT Network Intrusion

Detection’, Int. J. Comput. Intell. Syst., vol. 16, no. 1, p. 177, Nov. 2023, doi:

10.1007/s44196-023-00355-x.

[36] S. Layeghy and M. Portmann, ‘Explainable Cross-domain Evaluation of ML-

based Network Intrusion Detection Systems’, Comput. Electr. Eng., vol. 108, p.

108692, May 2023, doi: 10.1016/j.compeleceng.2023.108692.

[37] B. Natarajan, S. Bose, N. Maheswaran, G. Logeswari, and T. Anitha, ‘A Survey:

An Effective Utilization of Machine Learning Algorithms in IoT Based Intrusion

104

Detection System’, in 2023 12th International Conference on Advanced Computing

(ICoAC), Aug. 2023, pp. 1–7. doi: 10.1109/ICoAC59537.2023.10249672.

[38] T. Hariguna and A. R. Hananto, ‘Improved Intrusion Detection System (IDS)

performance using Machine Learning: A Comparative Study of Single Classifier

and Ensemble Learning’, in 2022 IEEE Creative Communication and Innovative

Technology (ICCIT), Nov. 2022, pp. 1–7. doi:

10.1109/ICCIT55355.2022.10118993.

[39] I. A. Najm et al., ‘Enhanced Network Traffic Classification with Machine

Learning Algorithms’, in Proceedings of the Cognitive Models and Artificial

Intelligence Conference, İstanbul Turkiye: ACM, May 2024, pp. 322–327. doi:

10.1145/3660853.3660935.

[40] H. Chindove and D. Brown, ‘Adaptive Machine Learning Based Network

Intrusion Detection’, in Proceedings of the International Conference on Artificial

Intelligence and its Applications, in icARTi ’21. New York, NY, USA: Association

for Computing Machinery, Dec. 2021, pp. 1–6. doi: 10.1145/3487923.3487938.

[41] M. Leon, T. Markovic, and S. Punnekkat, ‘Comparative Evaluation of Machine

Learning Algorithms for Network Intrusion Detection and Attack Classification’, in

2022 International Joint Conference on Neural Networks (IJCNN), Jul. 2022, pp.

01–08. doi: 10.1109/IJCNN55064.2022.9892293.

[42] R. A. Disha and S. Waheed, ‘A Comparative study of machine learning models

for Network Intrusion Detection System using UNSW-NB 15 dataset’, in 2021

International Conference on Electronics, Communications and Information

Technology (ICECIT), Sep. 2021, pp. 1–5. doi:

10.1109/ICECIT54077.2021.9641471.

[43] J. Jeyasoundari, S. Sridevi, and S. C. Raja, ‘Comparison of Supervised Machine

Learning Algorithms with Bagged-Ensemble Method for Intrusion Detection’, in

2024 IEEE Students Conference on Engineering and Systems (SCES), Jun. 2024,

pp. 1–6. doi: 10.1109/SCES61914.2024.10652494.

[44] S. Altamimi and Q. Abu Al-Haija, ‘Maximizing intrusion detection efficiency

for IoT networks using extreme learning machine’, Discov. Internet Things, vol. 4,

no. 1, p. 5, Jul. 2024, doi: 10.1007/s43926-024-00060-x.

[45] V. Joshi and J. Korah, ‘Formulating Parallel Supervised Machine Learning

Designs For Anomaly-Based Network Intrusion Detection in Resource Constrained

Use Cases’, in 2022 IEEE 19th International Conference on Mobile Ad Hoc and

Smart Systems (MASS), Oct. 2022, pp. 748–753. doi:

10.1109/MASS56207.2022.00117.

[46] S. Gamage and J. Samarabandu, ‘Deep learning methods in network intrusion

detection: A survey and an objective comparison’, J. Netw. Comput. Appl., vol. 169,

p. 102767, Nov. 2020, doi: 10.1016/j.jnca.2020.102767.

[47] A. Meliboev, J. Alikhanov, and W. Kim, ‘Performance Evaluation of Deep

Learning Based Network Intrusion Detection System across Multiple Balanced and

Imbalanced Datasets’, Electronics, vol. 11, no. 4, Art. no. 4, Jan. 2022, doi:

10.3390/electronics11040515.

[48] Abubucker. S. Shaffi, J. V. Chacko, G. Eliyan, and S. Balaji, ‘A study on

Anomaly-based Intrusion Detection Systems Employing Supervised Deep Learning

Techniques’, in 2024 8th International Conference on Inventive Systems and

Control (ICISC), Jul. 2024, pp. 366–370. doi: 10.1109/ICISC62624.2024.00069.

[49] B. N. Shaker, B. Q. Al-Musawi, and M. F. Hassan, ‘A Comparative Study of

IDS-Based Deep Learning Models for IoT Network’, in Proceedings of the 2023

105

International Conference on Advances in Artificial Intelligence and Applications,

Wuhan China: ACM, Nov. 2023, pp. 15–21. doi: 10.1145/3603273.3635058.

[50] N. Chaibi, B. Atmani, and M. Mokaddem, ‘Deep Learning Approaches to

Intrusion Detection: A new Performance of ANN and RNN on NSL-KDD’, in

Proceedings of the 1st International Conference on Intelligent Systems and Pattern

Recognition, Virtual Event Tunisia: ACM, Oct. 2020, pp. 45–49. doi:

10.1145/3432867.3432889.

[51] Y. Li, ‘Network Anomaly Detection Algorithm Based on Deep Learning and

Data Mining’, in Proceedings of the 2024 3rd International Conference on

Cryptography, Network Security and Communication Technology, Harbin China:

ACM, Jan. 2024, pp. 220–225. doi: 10.1145/3673277.3673316.

[52] T. Talaei Khoei and N. Kaabouch, ‘A Comparative Analysis of Supervised and

Unsupervised Models for Detecting Attacks on the Intrusion Detection Systems’,

Information, vol. 14, no. 2, Art. no. 2, Feb. 2023, doi: 10.3390/info14020103.

[53] Md. A. Uddin, S. Aryal, M. R. Bouadjenek, M. Al-Hawawreh, and Md. A.

Talukder, ‘A dual-tier adaptive one-class classification IDS for emerging

cyberthreats’, Comput. Commun., vol. 229, p. 108006, Jan. 2025, doi:

10.1016/j.comcom.2024.108006.

[54] A. R. Tapsoba and T. Frédéric OUEDRAOGO, ‘Evaluation of supervised

learning algorithms in binary and multi-class network anomalies detection’, in 2021

IEEE AFRICON, Sep. 2021, pp. 1–6. doi: 10.1109/AFRICON51333.2021.9570886.

[55] D. Han et al., ‘Rules Refine the Riddle: Global Explanation for Deep Learning-

Based Anomaly Detection in Security Applications’, in Proceedings of the 2024 on

ACM SIGSAC Conference on Computer and Communications Security, Salt Lake

City UT USA: ACM, Dec. 2024, pp. 4509–4523. doi: 10.1145/3658644.3670375.

[56] N. L. Rane, J. Rane, S. K. Mallick, and Ö. Kaya, Scalable and adaptive deep

learning algorithms for large-scale machine learning systems. Deep Science

Publishing, 2024. doi: 10.70593/978-81-981271-0-5.

[57] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, ‘SMOTE:

synthetic minority over-sampling technique’, J Artif Int Res, vol. 16, no. 1, pp. 321–

357, Jun. 2002.

[58] L. Gehri, R. Meier, D. Hulliger, and V. Lenders, ‘Towards Generalizing

Machine Learning Models to Detect Command and Control Attack Traffic’, in 2023

15th International Conference on Cyber Conflict: Meeting Reality (CyCon),

Tallinn, Estonia: IEEE, May 2023, pp. 253–271. doi:

10.23919/CyCon58705.2023.10182001.

[59] ‘CRISP-DM Help Overview’. Accessed: Mar. 16, 2025. [Online]. Available:

https://www.ibm.com/docs/en/spss-modeler/saas?topic=dm-crisp-help-overview

[60] T. W. Edgar and D. O. Manz, ‘Chapter 11 - Applied Experimentation’, in

Research Methods for Cyber Security, T. W. Edgar and D. O. Manz, Eds., Syngress,

2017, pp. 271–297. doi: 10.1016/B978-0-12-805349-2.00011-X.

[61] F. Martínez-Plumed et al., ‘CRISP-DM Twenty Years Later: From Data Mining

Processes to Data Science Trajectories’, IEEE Trans. Knowl. Data Eng., vol. 33, no.

8, pp. 3048–3061, Aug. 2021, doi: 10.1109/TKDE.2019.2962680.

[62] E. Sügis, A. Tampuu, A. Aljanaki, M. Fišel, and M. Kull, Praktiline

andmeteadus Kõrgkooliõpik, 2nd ed. Tartu, Estonia: Tartu Ülikooli arvutiteaduse

instituut, 2025. Accessed: Mar. 16, 2025. [Online]. Available:

https://courses.cs.ut.ee/t/andmeteadus/

[63] N. Känzig, R. Meier, L. Gambazzi, V. Lenders, and L. Vanbever, ‘Machine

Learninģ-based Detection of C&C Channels with a Focus on the Locked Shields

106

Cyber Defense Exercise’, in 2019 11th International Conference on Cyber Conflict

(CyCon), May 2019, pp. 1–19. doi: 10.23919/CYCON.2019.8756814.

[64] ‘NVIDIA GeForce 3090/Ti For AI Software - Still Worth It? - Tech Tactician’.

Accessed: Mar. 29, 2025. [Online]. Available: https://techtactician.com/nvidia-

geforce-3090-ti-for-local-ai-software-use/

[65] B. Sangster et al., ‘Toward Instrumenting Network Warfare Competitions to

Generate Labeled Datasets’, presented at the 2nd Workshop on Cyber Security

Experimentation and Test (CSET 09), 2009. Accessed: Mar. 29, 2025. [Online].

Available: https://www.usenix.org/conference/cset-09/toward-instrumenting-

network-warfare-competitions-generate-labeled-datasets

[66] M. Ahmed, A. Naser Mahmood, and J. Hu, ‘A survey of network anomaly

detection techniques’, J. Netw. Comput. Appl., vol. 60, pp. 19–31, Jan. 2016, doi:

10.1016/j.jnca.2015.11.016.

[67] A. Dijk, E. Halisdemir, C. Melella, A. Schu, M. Pihelgas, and R. Meier, ‘Locked

Shields Partners Run 23 (LSPR23): A novel IDS dataset from the largest live-fire

cybersecurity exercise’. Zenodo, Aug. 06, 2024. doi: 10.5281/zenodo.8042347.

[68] A. Dijk, R. Meier, C. Melella, and M. Pihelgas, ‘Locked Shields Partners Run

24 (LSPR24): A Next-Generation Cybersecurity Dataset for Blue Team

Automation’, doi: 10.5281/zenodo.14900873.

[69] B. Leo, ‘OSI Model Layers and Protocols in Computer Network’, GURU99.

Accessed: Apr. 09, 2025. [Online]. Available: https://www.guru99.com/layers-of-

osi-model.html

[70] R. Dube, ‘Faulty use of the CIC-IDS 2017 dataset in information security

research’, J. Comput. Virol. Hacking Tech., vol. 20, no. 1, pp. 203–211, 2024, doi:

10.1007/s11416-023-00509-7.

[71] Y. Merkli, R. Meier, M. Strohmeier, and V. Lenders, ‘Defeating and Improving

Network Flow Classifiers Through Adversarial Machine Learning’, in 2024 16th

International Conference on Cyber Conflict: Over the Horizon (CyCon), May 2024,

pp. 103–121. doi: 10.23919/CyCon62501.2024.10685592.

[72] L. Bhuva, ‘Handling Missing Values in Categorical Data: Techniques and Best

Practices’, Medium. Accessed: Apr. 20, 2025. [Online]. Available:

https://medium.com/@lomashbhuva/handling-missing-values-in-categorical-data-

techniques-and-best-practices-0a3ddd523824

[73] ‘Tabular model’, fastai. Accessed: Apr. 20, 2025. [Online]. Available:

https://docs.fast.ai/tabular.model.html

[74] R. Vaarandi and A. Guerra-Manzanares, ‘Network IDS alert classification with

active learning techniques’, J. Inf. Secur. Appl., vol. 81, p. 103687, Mar. 2024, doi:

10.1016/j.jisa.2023.103687.

[75] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, ‘A survey of

network-based intrusion detection data sets’, Comput. Secur., vol. 86, pp. 147–167,

Sep. 2019, doi: 10.1016/j.cose.2019.06.005.

[76] D. Choudhary, ‘Bootstrapping and OOB samples in Random Forests’, Analytics

Vidhya. Accessed: Apr. 20, 2025. [Online]. Available:

https://medium.com/analytics-vidhya/bootstrapping-and-oob-samples-in-random-

forests-6e083b6bc341

[77] D. Kilichev and W. Kim, ‘Hyperparameter Optimization for 1D-CNN-Based

Network Intrusion Detection Using GA and PSO’, Mathematics, vol. 11, no. 17,

Art. no. 17, Jan. 2023, doi: 10.3390/math11173724.

[78] K. Singh, A. Mahajan, and V. Mansotra, ‘1D-CNN based Model for

Classification and Analysis of Network Attacks’, Int. J. Adv. Comput. Sci. Appl.

107

IJACSA, vol. 12, no. 11, Art. no. 11, Jan. 2021, doi:

10.14569/IJACSA.2021.0121169.

[79] A. Dijk, Code Example for LSPR23. (Oct. 14, 2024). Python. Accessed: Nov.

17, 2024. [Online]. Available: https://github.com/scilicet64/LSPR23

[80] R. Thomas, ‘Rachel Thomas, PhD - An Introduction to Deep Learning for

Tabular Data’. Accessed: Apr. 20, 2025. [Online]. Available:

https://rachel.fast.ai/posts/2018-04-29-categorical-embeddings/

[81] nvidia-ml-py: Python Bindings for the NVIDIA Management Library. Python.

Accessed: May 04, 2025. [Microsoft :: Windows, POSIX :: Linux]. Available:

https://forums.developer.nvidia.com

[82] S. Friedler and J. Wilson, ‘Methodology’, Codecarbon. [Online]. Available:

https://mlco2.github.io/codecarbon/methodology.html

[83] S.-W. Kim, J. Jin-Sung Lee, V. Dugar, and J. De Vega, ‘Using the Intel® Power

Gadget 3.0 API on Windows*’, Intel. Accessed: May 04, 2025. [Online]. Available:

https://www.intel.com/content/www/us/en/developer/articles/training/using-the-

intel-power-gadget-30-api-on-windows.html

[84] ‘Intel® CoreTM i5-13500 Processor (24M Cache, up to 4.80 GHz) - Product

Specifications’, Intel. Accessed: May 17, 2025. [Online]. Available:

https://www.intel.com/content/www/us/en/products/sku/230580/intel-core-i513500-

processor-24m-cache-up-to-4-80-ghz/specifications.html

[85] ‘3090 & 3090 Ti Graphics Cards’. Accessed: May 17, 2025. [Online].

Available: https://www.nvidia.com/en-eu/geforce/graphics-cards/30-series/rtx-

3090-3090ti/

[86] G. P. Gupta and M. Kulariya, ‘A Framework for Fast and Efficient Cyber

Security Network Intrusion Detection Using Apache Spark’, Procedia Comput. Sci.,

vol. 93, pp. 824–831, Jan. 2016, doi: 10.1016/j.procs.2016.07.238.

[87] ‘NVIDIA Triton Inference Server — NVIDIA Triton Inference Server’.

Accessed: Apr. 20, 2025. [Online]. Available:

https://docs.nvidia.com/deeplearning/triton-inference-server/user-

guide/docs/index.html

[88] N. Burkart and M. F. Huber, ‘A Survey on the Explainability of Supervised

Machine Learning’, J. Artif. Intell. Res., vol. 70, pp. 245–317, Jan. 2021, doi:

10.1613/jair.1.12228.

[89] C. Molnar, Interpretable Machine Learning. 2020. [Online]. Available:

https://christophm.github.io/interpretable-ml-book/

[90] G. Plumb, D. Molitor, and A. Talwalkar, ‘Model Agnostic Supervised Local

Explanations’, Jan. 05, 2019, arXiv: arXiv:1807.02910. doi:

10.48550/arXiv.1807.02910.

[91] ‘EU AI Act: first regulation on artificial intelligence’, Topics | European

Parliament. Accessed: Apr. 20, 2025. [Online]. Available:

https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-

first-regulation-on-artificial-intelligence

[92] R. Jordaney et al., ‘Transcend: Detecting Concept Drift in Malware

Classification Models’, presented at the 26th USENIX Security Symposium

(USENIX Security 17), 2017, pp. 625–642. Accessed: Apr. 20, 2025. [Online].

Available: https://www.usenix.org/conference/usenixsecurity17/technical-

sessions/presentation/jordaney

108

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Johan Valdemar Leoste

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Comparative Analysis of Deep Learning and Machine Learning for Network

Intrusion Detection Using Data from the Largest Live-Fire Cyber Defence Exercise”,

supervised by Risto Vaarandi and Allard Dijk.

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

18.05.2025

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

109

Appendix 2 – Literature review table

Ref. Authors Date ML /

DL

Datasets Used Models Used Best Model Model

Acc

Libraries/ Frameworks Code

Repo

[26] S. Gnasivam et

al.

2024 ML UNSW-NB15 ANN, RF, DT, KNN,

SVM, LR

DT 85+% Python, Jupyter Lab,

Visual Studio Code, Anaconda

x

[28] R. A. Bridges

et al.

2023 ML VirusShare, Custom

Polyglot, Zero-day,

APT, Hyperion

RF, proprietary

models

Net Dynamic x x link

[32] F. Alotaibi, S.

Maffeis

2024 DL CICIDS2017, CSE-

CICIDS2018,

Kitsune, mKitsune,

rKitsune

DAE-based ensemble

(“Mateen”)

Mateen 95+% PyTorch, Python, CUDA link

[37] B. Natarajan et

al.

2023 ML KDD Cup ’99 CART (DT), LDA,

RF

RF 99+% Apache Spark, Spark MLlib x

[33] F. Alshuaibi et

al.

2024 ML USAF LAN

simulation

LR, SVM, KNN, RF,

XGBoost

RF 99+% Google Colab, Python x

[20] S. Li, Y. Lu, J.

Li

2022 ML CIC-IDS2017, NSL-

KDD

SVM, RF, KNN,

GNB, DT, Bagging,

GraTree, MLP, LR,

SGD, ridge, ridgeCV,

MNB, CNB, BNB

DT 99+% x x

[38] T. Hariguna,

A. R. Hananto

2022 ML NSL-KDD NB, SVM, RF,

Ensemble

Ensemble (SVM +

RF)

90+% x x

https://github.com/bridgesra/beyond-the-hype-paper-code
https://github.com/ICL-ml4csec/Mateen

110

[39] I. A. Najm et

al.

2024 ML Computer Network

Traffic Data (IOT)

DT, RF, SVM, RNN RF 95+% x x

[29] M. Leon et al. 2022 ML UNSW-NB15 RF, SVM, LDA,

ANN, KNN, K-means

RF 95+% MATLAB x

[21] J. Hu,

X. Wang,

Y. Liu

2024 ML Kaggle HydraS

Network Traffic

LSTM, RF, Isolation

Forest, GBM,

XGBoost

GBM / XGBoost 99+% Python, Keras, TensorFlow, scikit-

learn

x

[40] H. Chindove,

D. Brown

2021 Both CIC-IDS2017; CIC-

IDS2018

RF, DT, KNN, SVM,

MLP, RNN

ML: RF ~99+% Python x

DL: RNN 99+%

[41] M. Leon et al. 2022 ML KDD99, NSL-KDD,

UNSW-NB15, CIC-

IDS-2017

ANN, SVM, RF,

LDA, K-NN,

K-means, Mean-shift,

DBSCAN

RF 99+% MATLAB x

[42] R. A. Disha, S.

Waheed

2021 ML UNSW-NB15 DT, RF, GBT, MLP DT 90+% Python, NumPy, scikit-learn x

[43] J. Jeyasoundari

et al.

2024 ML KDDCUP 99 LR, KNN, NB, SVM,

RF

RF 99+% Python, Google Colab x

[22] T. Liu et al. 2023 ML Edge-IIoTset DT, RF, ET,

XGBoost, Stacking

XGBoost 95+% Python, scikit-learn, XGBoost,

Optuna

x

[25] R. Garg,

S. Mukherjee

2022 ML NSL-KDD, CSE-

CIC-IDS2018

DT, RF, K-NN, SVM,

LR, XGBoost, NB

RF 80+% Python x

[44] S. Altamimi,Q.

Abu Al-Haija

2024 ML NSL-KDD, Distilled-

Kitsune

ELM, KNN, DT, RF RF 99+% Python, Google Colab,

StandardScaler, SMOTE, scikit-learn

x

[23] S. Saif et al. 2024 Both 15 IoT/Network

datasets (ToN_IoT,

CIC-IDS, KDD99,

UNSW-NB15, IoT-

Botnet, …)

kNN, RF, DT, NB,

ANN, AE

ML: kNN

95+% Python, scikit-learn x

DL: ANN 99+%

111

[36] S. Layeghy,

M. Portmann

2023 Both NFv2-BoT-IoT,

NFv2-CIC-2018,

NFv2-ToN-IoT,

NFv2-UNSW-NB15

ET, RF, Feed Forward

NN, LSTM,

IsolationForest,

oSVM, SGD-oSVM,

AE

ML: RF

x VMware ESXi, Python, scikit-learn,

TensorFlow, SHAP

x

DL: LSTM x

[19] B. Yu et al. 2024 Both HDFS, BGL, Spirit,

Thunderbird, Liberty

KNN, DT, SLFN;

CNN, LogRobust (Bi-

LSTM), NeuralLog

(Transformer)

ML: KNN x sklearn, Drain, Loglizer, BERT link

DL: Transformer x

[30] O. Faraj, D.

Megías, J.

Garcia-Alfaro

2024 ML CIC-IDS2017 SVM (Linear,

Polynomial, RBF,

Sigmoid), ExtraTrees

SVM (RBF) 99+% Python, sklearn x

[35] M. Saied, S.

Guirguis, M.

Madbouly

2023 ML N-BaIoT (Mirai IoT

botnet)

ADB, GDB, XGB,

CAB, HGB, LGB

HGB 99+% Python, sklearn, XGBoost, CatBoost,

LightGBM

link

[46] S. Gamage, J.

Samarabandu

2020 DL KDD 99, NSL-KDD,

CIC-IDS2017, CIC-

IDS2018

ANN, AE, DBN,

LSTM, RF

ANN (Deep NN) 99+% x x

[27] A. Attia, M.

Faezipour, A.

Abuzneid

2020 DL Kitsune (IoT network) XGBoost, ANN XGBoost 99+% x x

[34] S. M. Nour,

S. A. Said

2024 DL CICIDS2017 CNN, DNN, RNN

(LSTM), Attention

CNN 95+% Google Colab, Python x

[47] A. Meliboev,

J. Alikhanov,

W. Kim

2022 DL UNSW_NB15,

KDD_cup99, NSL-

KDD

CNN, LSTM, RNN,

GRU, CNN+LSTM

CNN 95+% Keras, TensorFlow, NumPy, scikit-

learn, Pandas

x

[31] M. Pawlicki,

R. Kozik,

M. Choraś

2022 DL CICIDS2017 DNN, CNN, LSTM

(RNN)

LSTM (RNN) 95+% Python, TensorFlow x

https://github.com/BoxiYu/LightAD
https://github.com/MohamedSaiedEssa/BoostingBasedIoTNIDS

112

[48] A. S. Shaffi et

al.

2024 DL NSL-KDD,

KDDcup99

CNN, RNN RNN 85+% TensorFlow, Python x

[49] B. Shaker et al. 2023 DL NF-BoT-IoT, NF-

ToN-IoT, NF-UNSW-

NB15

RNN, CNN, DNN DNN 95+% x x

[50] N. Chaibi et al. 2020 DL NSL-KDD ANN, RNN (LSTM) RNN (LSTM) 99+% Python, Keras, TensorFlow, scikit-

learn

x

[51] Y. Li 2024 DL KDD Cup 99 CNN, RNN,

DBSCAN

(combined)

CNN+RNN+DBSCA

N (hybrid)

80+% x x

[24] S- Chauhan et

al.

2022 DL UNSW-NB15, CSE-

CIC-IDS2018

LAD, CNN, DNN LAD (UNSW) / CNN

& DNN (CIC)

95+% Keras, TensorFlow x

[52] T. Talaei

Khoei, N.

Kaabouch

2023 DL CIC-DDoS2019 GNB, DT, LR, C-

SVM, LightGBM,

AlexNet

+ PCA, K-means,

VAE

AlexNet 95+% ADAM optimiser x

[53] M. A. Uddin et

al.

2025 DL NSL-KDD, UNSW-

NB15, CIC-DoS2017,

CIC-DDoS2019,

Darknet2020,

MalMem2022, X-

IIoTID, ToN-IoT

(Net/Linux), ISCX-

URL2016

AE; (LOF, IOF,

OCSVM, usfAD)

usfAD 95+% Python, Pandas, NumPy, scikit-learn x

[54] A. R. Tapsoba

et al.

2021 DL NSL-KDD MLP, SVM, KNN,

RF, DT, LR

MLP 80+% scikit-learn x

	Author’s declaration of originality
	Abstract
	Annotatsioon Süvaõppe ja masinõppe võrdlev analüüs võrgu sissetungide tuvastamiseks kasutades andmeid maailma suurimalt küberkaitseõppuselt
	List of abbreviations and terms
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Background
	1.1.1 Network intrusion detection systems
	1.1.2 Background of the Locked Shields cyber defence exercise

	1.2 Research overview
	1.2.1 Research problem
	1.2.2 Research questions
	1.2.3 Research objectives

	1.3 Contribution
	1.3.1 Extensive literature review
	1.3.2 Comparative experimentation
	1.3.3 Evaluation of model robustness
	1.3.4 Reproducible methodology
	1.3.5 Model architecture

	1.4 Thesis roadmap

	2 Literature review
	2.1 Literature review protocol
	2.1.1 Data sources and timeframe
	2.1.2 Search strategy

	2.2 Selection process
	2.2.1 Preliminary screening
	2.2.2 exclusion criteria
	2.2.3 Full text evaluation
	2.2.4 Inclusion criteria

	2.3 Selected papers
	2.3.1 Publication trends
	2.3.2 Reproducibility of ML vs. DL approaches
	2.3.3 Data extraction

	2.4 Overview of ML-based models in intrusion detection
	2.5 Overview of DL-based models in intrusion detection
	2.6 Literature review findings
	2.6.1 Summary
	2.6.2 Importance of the training dataset for ML algorithm selection
	2.6.3 Research gaps
	2.6.4 Answer to research question RQ1

	3 Experimental design and implementation
	3.1 Overview of CRISP-DM methodology
	3.2 Business understanding
	3.2.1 Objectives
	3.2.2 Stakeholders
	3.2.3 Resources and constraints
	3.2.4 Success criteria
	3.2.5 Risks and mitigation

	3.3 Data understanding
	3.3.1 Dataset selection
	3.3.2 Data access
	3.3.3 Overview of the Locked Shields cyber exercise
	3.3.4 Network environment
	3.3.5 Dataset characteristics and composition
	3.3.6 Data quality and limitations

	3.4 Data preparation
	3.4.1 Feature selection
	3.4.2 Flow identification features
	3.4.3 Timestamp and duration features
	3.4.4 Packet count and byte count features
	3.4.5 Inter-arrival time features
	3.4.6 TCP flags and protocol-specific indicators
	3.4.7 Feature reduction
	3.4.8 Data cleaning
	3.4.9 Dataset partitioning strategy
	3.4.10 Data balancing

	3.5 Machine learning model: Random Forest
	3.6 Deep learning model: 1D Convolutional neural network
	3.6.1 Input features and feature encoding
	3.6.2 Model architecture

	3.7 Evaluation
	3.7.1 Evaluation metrics and methodology
	3.7.2 Computation performance metrics
	3.7.3 Evaluation procedure

	3.8 Deployment and reproducibility
	3.8.1 Experimental setup
	3.8.2 Scalability and deployment considerations
	3.8.3 Explainability
	3.8.4 Deployment plan

	4 Results
	4.1 Comparison of CPU-based and GPU-based random forest implementations
	4.2 Comparison of ML and DL models on LSPR23 dataset
	4.2.1 Classification performance comparison
	4.2.2 Computational efficiency comparison
	4.2.3 Answer to research question RQ2

	4.3 Cross-dataset validation results on LSPR24
	4.3.1 Importance of inter-arrival time features
	4.3.2 Performance comparison without IAT features
	4.3.3 Performance comparison with IAT features
	4.3.4 Answer to research question RQ3

	5 Discussion
	5.1 Practical implications
	5.1.1 Necessity of machine- and deep learning in intrusion detection
	5.1.2 Binary vs multiclass classification considerations
	5.1.3 Model transferability and environment specifics

	5.2 Limitations
	5.3 Future research

	6 Conclusion
	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix 2 – Literature review table

