
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Institute of Computer Science

ITT70LT

Roman Školin, 132429IAPM

PARALLEL AND DISTRIBUTED

COMPUTING APPROACH FOR

FINANCIAL DERIVATIVES PRICING
Master thesis

Advisor: Pavel Grigorenko

Doctor of Philosophy

Researcher

Tallinn

2016

I declare that this thesis is the result of my own research except as cited in

the references. The thesis has not been accepted for any degree and is not

concurrently submitted in candidature of any other degree.

Signature

Name Roman Školin

Date May 9, 2016

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Arvutiteaduse instituut

ITT70LT

Roman Školin, 132429IAPM

PARALLEEL- JA HAJUSARVUTUSTE

KASUTAMINE TULETISLEPINGUTE

HINDAMISEL
Magistritöö

Juhendaja: Pavel Grigorenko

Doktorikraad

Teadur

Tallinn

2016

ABSTRACT

Derivative contracts are a kind of financial instruments which play an im-

portant role in the financial markets. The complexity of derivatives, as well

as the need for the price forecasting and accurate analysis of forecast results

represent the main problems the derivatives market is facing. Parallel and

Distributed computing, special techniques and software packages provide ef-

fective approaches to meet these challenges. The goal of this work is to

conduct the study of methods for solving the problem of financial derivatives

pricing. The project is motivated by long-lasting calculations of the financial

forecasts, providing inaccurate results and costing a full working day in case

of the need for the recalculation.

Theoretical part of the work addresses the set of financial methods used

for derivatives pricing with respect to underlying asset price changes along

with the description of the application of parallel and distributed computing

techniques. The approach chosen for the thesis for solving the problem of

long-lasting calculations is a distributed computational cluster. The exper-

imental part contains the implementation of the prototype and evaluation

of the selected method, taking into account functional and non-functional

metrics – performance, set up effort, usage and maintenance costs. A result

of this work is a high-level description of the distributed system capable of

performing seamless calculations based on a given time series and model.

The thesis is in English and contains 84 pages of text, 6 chapters, 35

figures, 17 tables.

Annotatsioon

Tuletislepingud on finantsinstrumendid, mis mängivad olulist rolli finants-

turgudel. Tuletislepingute keerukus, vajadus teostada kiireid hinnaprog-

noose ning täpseid prognoostulemite hindamisi, on üks peamiseid väljakut-

seid tuletisinstrumentide turul. Paralleel- ning hajusarvutuste rakendamine

koos spetsiaalsete tehnikate ning tarkvaraga on antud probleemile efekti-

ivseks lahenduseks. Käesolev magistritöö käsitleb tuletisinstrumentide hin-

dade prognoosi probleemi, mille lahenduse teostus on inspireeritud pikalt

kestvatest ning mittetäpseid tulemeid pakkuvatest finantsprognooside arvu-

tustest, kus vea hind on võrdne ühe päeva ümberarvutustega. Töö teo-

reetiline osa kirjeldab mõningaid tuletislepingute hinnaprognooside arvutus-

meetodeid, sobiliku meetodi valimist ning paralleel- ja hajusarvutustehnikate

rakendamist. Lisaks eelnevale on kirjeldatud ühe väljavalitud meetodi põhjal

olukorra parendamiseks pika kestvusega kalkulatsioonide üleandmist käepäras-

test vahenditest koostatud klastrile. Töö praktiline osa sisaldab süsteemi pro-

totüübi dokumentatsiooni ning valmis lahendust prototüübi näol, mis teostab

järgnevaid tegevusi:

• tulemuste tootlikkuse hindamine.

• kasutus- ning hoolduskulu vaatenurgast ressursinõudlikkuse hindamine.

Selle projekti tulemiks on abstraktse matemaatilise mudeli ning aegridade

põhjal töötava hajussüsteemi kirjeldus.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 84 leheküljel, 6

peatükki, 35 joonist, 17 tabelit.

CONTENTS

1. Introduction . 12

1.1 Background and motivation 12

1.2 Goals . 13

1.3 The Problem Statement . 14

1.4 Outline of the thesis . 15

2. Theoretical overview . 17

2.1 Option Pricing . 17

2.1.1 Parallel and Distributed Computing Ideas 22

2.2 Parallel Computing . 24

2.2.1 Definition of Parallel Computing 24

2.2.2 Why use Parallel Computing? 24

2.2.3 Parallel Architectures 25

2.2.4 Parallel Programming Models 32

2.3 Distributed Computing . 41

2.3.1 Distributed Computing Systems 42

2.3.2 Multi-Agent Systems 43

2.3.3 Crowd Computing . 45

2.3.4 Other types of Distributed Systems 47

3. Related work . 48

3.1 Derivatives Pricing . 48

Contents 5

3.1.1 Numerical Methods . 48

3.1.2 Pricing Systems . 49

3.2 Parallel and Distributed Solutions 49

3.2.1 Hadoop . 50

3.2.2 Microsoft Dryad . 51

3.2.3 Nokia Disco . 52

3.2.4 BOINC . 52

3.2.5 MapReduce . 53

4. System Design And Implementation 55

4.1 System Summary . 56

4.2 Asset Data . 57

4.3 Pricing Model . 58

4.4 System Initial Requirements 59

4.5 High-level Architectural Overview 60

4.6 System Design . 62

4.7 Implementation . 71

4.7.1 Asset Historical Data 73

4.7.2 Forecast Calculation Agent 77

4.7.3 Forecast Agent Sending and Triggering 81

5. Evaluation of approach . 86

5.1 Performance Benchmarks . 86

5.2 Benefits . 92

5.3 Tradeoffs . 92

6. Conclusion . 94

6.1 Future work . 95

LIST OF FIGURES

2.1 SISD system . 26

2.2 SIMD system . 27

2.3 MISD system . 28

2.4 MIMD system . 29

2.5 Shared memory architecture 30

2.6 Distributed memory architecture 31

2.7 Computation as graph . 35

2.8 Preferred computation graph 35

2.9 Sequential Reduce . 38

2.10 Parallel Reduce . 39

2.11 Parallel Scan . 41

2.12 An example of cluster system 42

2.13 Grid Computing systems layers 43

2.14 An abstract agent architecture 44

2.15 Example of Multi Agent System 45

2.16 Crowd computing . 46

3.1 Dryad distributed job . 52

3.2 Map Reduce . 53

4.1 Schematic description of Forecasting System 57

4.2 Requirements model . 60

List of Figures 7

4.3 High-level architecture . 61

4.4 System Design . 63

4.5 Forecast Agent Sending Subsystem 64

4.6 Forecast Calculation Subsystem 66

4.7 Forecast Triggering Subsystem 69

4.8 Asset Data Structure . 74

4.9 Asset Output Data Structure 75

4.10 Model types . 77

4.11 Performance comparison . 80

4.12 Forecast Agent Sending and Triggering Application 82

4.13 Prototype.Trigger application 84

5.1 Prototype.For testing . 87

5.2 Managed threading . 88

5.3 Calculation speed . 90

5.4 Speed Increase . 91

LIST OF TABLES

2.1 Steps to n . 39

4.1 Asset Data . 57

4.2 Use case: Send Forecast Agent 64

4.3 Use case: Get Available Resource 65

4.4 Use case: Get Unprocessed Assets 66

4.5 Use case: Get Asset Historical Data 67

4.6 Use case: Calculate Option Price Forecast 67

4.7 Use case: Write Out Option Price Forecast 68

4.8 Use case: Start Forecast Agent 69

4.9 Use case: Stop Forecast Agent 70

4.10 Use case: Get Running Forecast Agent 70

4.11 Use case: Get Forecast Agent Data 70

4.12 Use case: Get Option Price Forecast 71

4.13 Computing resources . 72

4.14 Periodic Daily Return Calculation with 50000 elements 79

4.15 Periodic Daily Return Calculation with 150000000 elements . 80

5.1 Test Results . 89

GLOSSARY

Cloud the practice of using a network of remote servers hosted on the Inter-

net to store, manage, and process data, rather than a local server or a

personal computer. 9

CPU A central processing unit (CPU) is the electronic circuitry within a

computer that carries out the instructions of a computer program. 21

Financial Derivative A derivative is a security with a price that is dependent

upon or derived from one or more underlying assets. 9

FPGA A field-programmable gate array (FPGA) is an integrated circuit de-

signed to be configured by a customer or a designer after manufacturing.

43

GPU A graphics processing unit (GPU) is a computer chip that performs

rapid mathematical calculations, primarily for the purpose of rendering

images. 9

MPI Message Passing Interface (MPI) is a standardized and portable message-

passing system designed by a group of researchers from academia and

industry to function on a wide variety of parallel computers. 26

Option An option is a contract that gives the buyer the right, but not the

obligation, to buy or sell an underlying asset at a specific price on or

glossary 10

before a certain date. 9

ORM Object-relational mapping (ORM, O/RM, and O/R mapping tool)

technique for converting data between incompatible type systems in

object-oriented programming languages. 65

SQL Structured Query Language, special-purpose programming language

designed for managing data held in a relational database. 65

VM A virtual machine (VM) is a software computer that, like a physical

computer, runs an operating system and applications. 79

1. INTRODUCTION

This chapter provides an information about the financial derivative contracts,

addresses the pricing problem and sets the goals of the current work.

1.1 Background and motivation

By definition Financial Derivative is a contract with a price that is derived

from one or more underlying assets [1]. Any product or service can act as

underlying asset. Derivative value changes follow changes in a price of the

underlying assets. Financial Derivatives markets include manipulating the

high stakes, so even the slightest error in the assessment of the contract may

lead to large losses. As the nature of the financial markets is very unstable,

it is important to estimate the possible changes in prices of underlying assets

quickly and accurately. That requires solving complex computational tasks

such as identification and verification of economic models, analytical and

forward-looking estimates of price changes, creation of analytical materials

on the basis of the forecast results.

Fair valuation of derivatives contracts with respect to the underlying as-

sets price changes is called the pricing problem. Existing mathematical meth-

ods such as Black-Scholes equations [2] or Rubinstein-Cox-Ross binomial

method [3] created a basis for derivatives pricing using analytical approach.

The rapid development of computer technology has led to the possibility of

applying the numerical methods for overcoming the limitations of analytical

1. Introduction 12

methods. As the numeric methods require large number of computations,

parallel and distributed computing are the keywords to success.

Derivative pricing starts from the underlying asset price forecasting. On

the basis of the price time series different existing systems try to calculate

future prices. To illustrate the scope of computation – calculation of one

Option contract containing 5 underlying assets with prices for last 10 years

requires 7 ∗ 106 operations [4]. Cloud computing, high performance comput-

ing clusters, GPU-powered computations – all thise options are available for

solving given complex computational problem. Several researches were done

in the field of solving derivatives pricing problem, for example Hans Moritsch

in his phd dissertation described computational problems in finance and pro-

posed a mixture of Monte-Carlo method with backward induction, used in

binomial method [5] [6]. In addition to distributing the computations be-

tween different resources, a remarkable parallelization of existing algorithms

has been achieved. New trends involve distributed systems, built on the

voluntary basis (Crowd computing). All the facts mentioned above are en-

couraging to investigate how is it possible to benefit from knowing the latest

trends in parallel and distributed computing.

1.2 Goals

The major goal of this work is to research different ways of applying parallel

and distributed techniques for solving the derivative pricing problem on the

example of Option price calculations and to experiment with the approach,

which provides the best result in terms of simplicity of implementation and

trustworthiness of a results. The main objectives of this work are:

Theoretical objectives

1. Introduction 13

• Understand the nature of financial derivatives in general and option

pricing in particular.

• Understand the basics of stochastic model based option price valuation

methods.

• Research particular cases of applying parallel and distributed comput-

ing methods for option pricing.

• Research general parallel and distributed computing patterns and Map

and Reduce primitives in particular.

• On the basis of classified information to design a system, capable of

forecasting option underlying assets prices using the methodologies of

parallel and distributed computing in combination with Crowd com-

puting approach.

Practical objectives

• Implement a prototype of the designed system

• Evaluate the performance of the designed prototype, bring out benefits

and bottlenecks.

1.3 The Problem Statement

Maintaining large data sets, costly long-lasting calculations using compli-

cated mathematical models and high rental fees for dedicated super comput-

ing services is a serious problem that the companies dealing with financial

analysis on the daily basis are facing. Some fortunate companies are able

to use out of the box solutions, while others utilize in-house modeling tools,

private historical data and servers working at the edge of capacity.

1. Introduction 14

There are many approaches, which could help to solve this problem. Com-

panies can buy more powerful servers or optimize the software or review the

practices of working with databases, change to faster hard disks or move

computing to a cloud platform and use the services, which contain a power-

ful distributed computing system under the hood. One side effect of all of

these approaches is a significant cost.

The problem can be described as a difficult choice between modern tech-

nical means and principles and selection the best option in terms of a limited

budget, which would provide stable and reliable result of large-scale calcula-

tions along with acceptable calculation speed.

1.4 Outline of the thesis

The thesis is organized as follows: the second chapter “Theoretical overview”

introduces existing approaches of the option pricing, parallel and distributed

computing techniques and gives insights for choosing the methodology to

perform option pricing calculations in accordance to the goals of the work.

The “Related work” chapter describes current state of art in the financial

derivatives pricing field and gives a brief overview of the financial derivatives

valuation with underlying assets price forecasting using numerical methods

and pricing models. Monte-Carlo approach is brought up. Some systems for

model-based price forecasting are described. The chapter contains a descrip-

tion of existing generic parallel and distributed computing frameworks and

systems. Creating of the computing cluster, which utilizes MapReduce pat-

tern and Crowd computing principles, is brought out as a possible solution

to the stated problem.

The chapter “System Design And Implementation” briefly describes the

results of the created cluster testing. During the testing of the whole sys-

1. Introduction 15

tem Monte-Carlo simulation of Option price forecast calculation was done in

parallel using several available computers. As an input for the testing 2000

assets were used. Each asset contains price time series from year 1960, which

makes 20440 days by the moment of writing. The chapters contains some

notes about system benefits, weak sides and technical constraints.

The last chapter contain conclusions and ideas for the future work.

2. THEORETICAL OVERVIEW

This chapter describes the existing approaches of the option pricing, parallel

and distributed computing techniques and gives and insights for choosing of

the methodology to perform option pricing calculations in accordance to the

goals of the work.

2.1 Option Pricing

An option is one of the main derivatives used for reducing risks at the financial

markets. By definition option is a contract that gives buyer a right, but not

the obligation to buy or sell an underlying asset at a specific price on or before

a certain date. An option, just like a stock or bond, is a security. It is also

a binding contract with strictly defined terms and properties [4]. Depending

on the option style it can have different execution times, for example, an

American option can be executed at any time before some defined period

and European option executes only at the defined moment.

Option pricing is based on the underlying asset price forecast. Two main

approaches can be distinguished. First, the analytical approach, relies on the

stochastic equation and, second, the simulations approach, bases on numer-

ical methods and a large amount of calculations.

Existing Mehtods

There are 2 types of options - Call [7] and Put [8].

2. Theoretical overview 17

Call – option gives an option buyer the right to buy the underlying as-

set from a seller of the option at the Strikeprice on time or abandon the

purchase.

Put – option gives an option buyer the right to sell the underlying asset

at the Strikeprice on time or the seller of the option to abandon the sale.

Strikeprice – The price at which a contract can be exercised [9]

The value of possible revenue from the buying or selling option is the

subject to calculate in this work. Several existing well-known numerical and

analytical methods of have been considered a starting point to explore the

possibilities of applying the techniques of parallel and distributed computing

for Option price forecasting. The observed methodologies are:

• Black-Scholes model [2]

• Binomial method [3]

• Monte-Carlo Simulation [10]

All evaluation methods are based on the assumption of a possible change

in the price of the underlying asset. Certain probability weight is assigned

for an each possible price change for a given interval. The changes in price

of the underlying asset are assumed to be have a log-normal distribution.

Return on assets is equal to the relative change in price of the underlying

assets during the option trading period.

The initial parameters for all three methods are the price volatility σ,

measured as the standard deviation of the yield on the asset, the average

rate of change of the price of the asset µ, expressed as a simple annual

interest and calculated as the expectation of return in one step τ , the Strike

price K, lifetime T , Spot price (current underlying asset price) S at time

2. Theoretical overview 18

moment t = 0, and risk-free rate r, according to which income is discounted

from assets

Black-Scholes. Option pricing model was first published in 1973, in an ar-

ticle entitled “Pricing of Options and Corporate Liabilities” in the journal

“Political Economy”. Black-Scholes model is used to calculate the possible

price for Put and Call options.

This model relies on several beliefs and assumptions:

• The right to buy or sell can be used only on the day of the option

expiration

• Dividends on assets, participating in options, are not paid during option

lifetime

• Market fluctuations can not be predicted

• Commissions and transaction costs are ignored

• Risk-free interest rate [11] and the volatility of the relevant asset options

are known constants.

• Option underlying assets’ price and revenue changes are distributed

normally

The Black-Scholes pricing equation for call options:

C = NS(d1)−N(d2)Ke
−rt (2.1)

d1 =
ln(S

K
) + (r + s2

2
)

s
√
t

(2.2)

d2 = d1 − s
√
t (2.3)

2. Theoretical overview 19

where:

C = Option revenue

S = Current underlying asset price

t = Time for option exercise

K = Strikeprice [9]

r = Risk-free intrest rate [11]

N = Normal distribution of prices (taken from tables)

s = Normal distribution of underlying asset prices aka volatility (taken from

tables)

The Binomial method. This method was developed in 1979 and is based

on constructing of a pricing binary tree in which is based on the assumption

that in the future, after a certain period of time the price of the asset will rise

by some certain value with a probability P or decreases by a certain value

with probability 1− P .

C

Cl

Cll

(1− P)2

Clu(1− P
)P

1− P

Cu

Cul

(1− P)P

CuuP
2

P

Asset price after taken period is calculated using equation 2.4

C =
PCu + (1− P)Cl

r
(2.4)

where Cu is the possible highest price at after the taken period time interval

and Cl is the lowest price after the taken time interval. Time intervals can be

2. Theoretical overview 20

added by building new branches of a binary tree. The amount of revenue is

the weighted price of the asset. The method can be implemented as a direct

construction of the tree recursively. With that particular case parallel execu-

tion can be used in case if the possible Cu and Cl is known and appropriate

pair of them is passed to every correspondent recursion.

Monte-Carlo simulation. Monte-Carlo simulation is based on constructing

a sufficiently large number of calculation iterations and averaging the calcu-

lation results. Monte-Carlo method is used when an additional level of input

data flexibility is needed (analysts want to bring in additional fluctuations in

the input parameters or the parameter list includes multiple uncertainties).

Monte-Carlo simulation flow is following:

• A set of underlying asset prices is calculated using equation

St = S0 e
(r−σ2

2
)+σB(t) (2.5)

• When the set of asset prices is generated, the option price is calculated.

Given equation demonstrates the calculation of the Call option price.

Ct = e−r(t)E max[(0, St −X)] (2.6)

• After calculation of the option price series, the mean price is calculated

Cmean =
1

n

N∑
i=1

Ci(S, T) (2.7)

The input date for the equations is given as following:

S(T) = Underlying asset price by the end of calculation period

S(0) = Current underlying asset price

t = Expiration time

2. Theoretical overview 21

σ = volatility

r = Risk-free intrest rate [11].

X = Strikeprice [9]

Bt = Brownian motion

Mean value of the calculation is the value of the possible option price.

2.1.1 Parallel and Distributed Computing Ideas

In this work Option premium calculation will be observed only in the context

of applying of parallelism and distribution for pricing problem solving. On

simple example of distributed computations is calculation of the stock assets

price forecast using several physical or virtual machines which are orches-

trated in some particular manner. The main focus is set to the investigation

of the ways to perform distributed calculations using the standard computers

– regular PCs or Notebooks with most common characteristics and without

any specific abilities to perform high-performance operations with a large

sets of input data.

The Black-Scholes model is the most favored method of the option pre-

mium valuation and it is quite accurate. It relies on solid data, such as current

stock prices, strike prices, expiration time, risk-free rate, volatility, absence

of dividends and commission and transaction fees. For most of the cases

Black-Scholes model is good enough. The disadvantage of the Black-Scholes

model is inflexibility, which makes it rather difficult to use with non-typical

features, for example price reset aspect or obligation of mandatory exercise.

In terms of digital prototyping, no big dataset processing is needed, all the

data required for Option price forecast can be scouted from the exchange

tables. This method is also known as analytical method, thus, is presented

2. Theoretical overview 22

just declaratively and not to be implemented in prototyping section.

In comparison to the Black-Scholes, a Binomial method splits the life-

cycle of the option to the time of expiration into several steps. At each step

two moves for the stock price are possible – one up and one down. This

produces a binomial distribution of underlying asset prices. As a result, the

model creates a theoretical representation of the all possible prices, which

stock prices could take over option life cycle. This model is more flexible

than Black-Scholes as there is a possibility to change input parameters at

a randomly selected time moment. Technically that method can be im-

plemented using recursive calls of price calculation kernel, but in terms of

parallel and distributed computing it is hard to create independent recursive

calls in parallel.A need for backward propagation of the calculated values

from iteration to iteration makes paralellizing of that method way too hard.

Another aspect is the need to evaluate a complexity of the algorithm before

implementation, which is also quite difficult for the parallel recursion.

Monte-Carlo method uses a multiple calculations to predict outcomes.

Selected model is just calculated over and over again providing a new Option

price at each iteration. After the sufficient amount of calculations is done, the

average of the all results is returned as a possible Option price. Monte-Carlo

method provides the best of both methods described above: it provides an

additional flexibility in comparison to Black-Scholes model, allowing user to

drop in some input changes on the fly, and it is pretty easy to evaluate the

algorithmic part and implement it in code. It is also the best candidate to

be run in parallel and to be distributed over several computers. With such

advantages, Monte-Carlo simulation is the best candidate for prototyping

part of this work.

2. Theoretical overview 23

2.2 Parallel Computing

2.2.1 Definition of Parallel Computing

Parallel computing is a way where computational work is done by several

processors simultaneously. Parallel computing solves the problems of expen-

sive computations by dividing the work between several processing units.

Nowadays all supercomputers and most of the existing consumer computers

utilize parallel computing principles. For composing of this particular section

Pace University’s resources [12] were used.

2.2.2 Why use Parallel Computing?

Parallel computing is a key to full utilization of modern multi-core proces-

sors. There are a lot of areas, where traditional serial approach is outdated

and parallel computations are the best match. One of such areas is scientific

modeling – from weather forecast to planetary movements. Parallel comput-

ing saves time and money by accomplishing given tasks faster. It can solve

tasks, which require so much resources that a single computer might not have

enough. [13]

From the software development perspective, the spreading of multi-core

processors already caused revolutionary changes. The majority of modern

programs are written as parallel, and the ones which are still sequential, are

going to be either converted or abandoned. The main reasons for that are

given below :

• For the efficient processor use it is very important to keep it busy, and

the only way to keep busy a multi-core processor is to make a parallel

program, meaning that the program will run on all processor cores.

2. Theoretical overview 24

• Next reason it also the consequence of processor architecture changes –

sequential code, written for one CPU will run slower because of multi-

core CPU clock rate decline in favour of adding more cores.

• It is also worth of noticing the constantly growing gap between the

actual speed of processors and memory latency (the situation when

some variable delivery from the memory to processor takes much longer

than a time, which is needed for a processing command execution)

2.2.3 Parallel Architectures

There is a wide variety of different parallel architectures and it is very dif-

ficult to create a fair classification of parallel architecture types. Although

different types of parallel architecture have overlapping characteristics, it is

still possible to distinguish different parallel architectures into several groups:

• Flynn’s taxonomy

• Instruction- and data stream based classification

• Classification based on the type of processing elements

• Specific Parallel Architectures

That division is not completely fair as different sources and different materials

can give different versions of classification with further explanations.

Flynn’s taxonomy

One of the most widely used classifications since 1966, which distinguishes

multi-processor computer architecture types according to how they can be

classified along the two dimensions – Instruction Stream and Data Stream.

2. Theoretical overview 25

Each of these dimensions can have only one of two possible states: Single or

Multiple. [14].

SISD - Single Instruction, Single Data

Fig. 2.1: SISD system

• A serial computer

• Single Instruction: Only one instruction stream is being acted on by

the CPU during each clock cycle

• Single Data: Only one data stream is being used as input during each

clock cycle

• Deterministic execution

• This is the oldest type of computer

Examples: older generation mainframes, minicomputers, workstations

and single processor/core PCs.

2. Theoretical overview 26

SIMD - Single Instruction, Multiple Data

Fig. 2.2: SIMD system

• A type of parallel computer

• Single Instruction: All processing units execute the same instruction

at any given clock cycle

• Multiple Data: Each processing unit can operate on a different data

element

• Best suited for specialized problems characterized by a high degree of

regularity, such as graphics/image processing.

• Synchronous and deterministic execution

• Processor Arrays and Vector Pipelines

• Examples:

Processor Arrays: Thinking Machines CM-2, MasPar MP-1 and MP-2,

IlliAC IV Vector

Pipelines: IBM 9000, Cray X-MP, Y-MP and C90, Fujitsu VP, NEC

SX-2, HItachi S820, ETA10

2. Theoretical overview 27

• Most modern computers, particularly those with graphics processor

units (GPUs) employ SIMD instructions and execution units.

MISD - Multiple Instruction, Single Data

Fig. 2.3: MISD system

• A type of parallel computer

• Multiple Instruction: Each processing unit operates on the data inde-

pendently via separate instruction streams.

• Single Data: A single data stream is fed into multiple processing units.

• Few actual examples of this class of parallel computer have ever existed.

• Some conceivable uses might be: multiple frequency filters operating

on a single signal stream, multiple cryptography algorithms attempting

to crack a single coded message.

2. Theoretical overview 28

MIMD - Multiple Instruction, Multiple Data

Fig. 2.4: MIMD system

• A type of parallel computer

• Multiple Instruction: Every processor may be executing a different

instruction stream

• Multiple Data: Every processor may be working with a different data

stream.

• Execution can be synchronous or asynchronous, deterministic or non-

deterministic.

• Currently, the most common type of parallel computer - most modern

supercomputers fall into this category.

• Examples: most current supercomputers, networked parallel computer

clusters and grids, multi-processor SMP computers, multi-core PCs.

Instruction- and data stream based classification

In terms of memory arrangement Parallel architectures can be divided into

2 major categories. These are: shared memory and message passing or dis-

2. Theoretical overview 29

tributed memory. Shared memory and distributed memory architectures are

also called tightly coupled and loosely coupled architectures respectively. [15]

Shared Memory Model

In accordance to the Parallel Architectures Classifications by Springer [16]

In this model multiple processors share a common memory unit comprising

a single or several memory modules. Processors of the systems are commu-

nicating with each other by writing information into common memory and

reading it out.

Fig. 2.5: Shared memory architecture

Message Passing Model

Is different from the Shared Memory architecture in a way, that each unit

in this model is a standalone computer with it’s own memory, processor and

IO devices. Communication among the processors is established in the form

of I/O operations through message signals and network bus. For example,

if a processor needs data from another processor it sends a signal to that

processor through an interconnected bus network demanding the required

data. The remote processor then responds accordingly. This kind of system

2. Theoretical overview 30

is also known as distributed memory system.

Fig. 2.6: Distributed memory architecture

Classification based on the type of processing elements

RISC

Reduced Instruction Set Computer – processing element, oriented to perform

a limited instruction set in a vary fast and effective way. [17]

CISC

Complex Instruction Set Computer – processing element capable of carrying

out many tasks such as memory IO and mathematical operations. [18]

Vector processors

Vector processors are designed to execute numerous matrix operations in a

very efficient way. [19]

Specific types of parallel architectures

Specific parallel architectures are architectures, which do not follow any com-

mon pattern, may vary from system to system and are meant to perform

specific tasks. One example of the specific parallelism is a pipelining – the

way of executing by breaking tasks into different processes and execution of

2. Theoretical overview 31

these processes on different processing units. Each computation unit within

a pipeline is responsible for special operation.

2.2.4 Parallel Programming Models

Parallel programming models are abstractions above Parallel memory and

hardware architectures. This work will bring out several most well-known

and widely used models:

• Message Passing

• Data Parallelism

• Shared memory

Message Passing

In this model programs are sharing data using transmission and reception

from process to process through cooperative operations of communication

system. Aggregating and standardization of the various messaging libraries

let to the foundation of MPI [20] standard.

Data Parallelism

In this model the main program determines how data is distributed among

all of the processors in the system. All operations over each element of the

data set are made in parallel, for that reason data set is being partitioned

in a way, which allows different threads to work with different data sections

simultaneously. Computational data can be split into different chunks and

every chunk is processed by separated computation node. The term “node”

here is declarative and can present a thread in multi-threaded program or a

2. Theoretical overview 32

machine in computation cluster. No dependencies between processing differ-

ent chunks of the data makes that model perfect in terms of concurrency.

Shared memory

In this model all processes share a common memory address space. That

creates an overhead when choosing a moment when you can put the data into

memory and when it is possible to remove it. Control over access to shared

memory is done using standard synchronization mechanisms – semaphores

and locking processes. The example of a shared memory model a threading

model with explicit thread management and control over accessed memory.

This approach is more complicated than data parallelism due to the need to

take into account such constraint that a single piece of memory space can

not be used in computation simultaneously.

Parallel Application Development

Development of parallel applications is still a complicated process because

of several issues. At one hand there is a huge legacy of sequential programs,

which work quite well and the overhead of parallel programming forces soft-

ware developers to prefer writing of the sequential code everywhere, where

deterministic execution result is expected.

Main challenges of the development in parallel are:

• Non-deterministic execution (hard to debug)

• Overhead of load-balancing (Difficulties with threads orchestration be-

tween processors in the system, as a result applying all threads to the

one system core)

2. Theoretical overview 33

• Deadlocks and Race conditions – parallel code failures due to poor

coding practises

• Synchronization and locking need

In general there are 2 approaches for parallel programming:

• Implicit parallelism – with this approach parallelizing is carried out by

compilers or specific libraries (example: Parallel loops in .NET or Java

8). This is a way of dynamic parallelism, where the level of parallelism

is decided without participation of a software developer.

• Explicit parallelism – in this approach creation and orchestrating of the

parallelism and a level of decomposition, mapping to different processor

cores, communication between threads, is done by a software developer.

Also known as static parallelism which is more tricky to implement.

In the most cases it is a matter of choice to develop a new application

from the scratch or to rewrite existing sequential application into parallel

mode.

Algorithms

Parallel algorithms, in contrary to traditional serial algorithms, are the algo-

rithm designed in a such way that they can be executed in parts on a variety

of different computing devices and, combining the execution results, pro-

duce the correct result. Parallel algorithms can be represented as a directed

acyclic graph where each vertex is a computational action (kernel invocation,

reading, writing, etc). Directed edges show, how one computational action

depends on another.

2. Theoretical overview 34

Fig. 2.7: Computation as graph

There are two main parameters for evaluation of the algorithm cost.

• Work complexity W (n) - the amount of the vertices on the computa-

tional graph

• Step complexity D(n) - the amount of the vertices on the longest path

of the graph (Critical path through the graph)

An efficient parallel algorithm graph will contain as low dependencies

count as possible and will be more spread in width than in length.

Fig. 2.8: Preferred computation graph

To evaluate the possible speed of algorithm assuming that every compu-

tational action takes 1 unit of the time,where T – time.

T (n) >= W (n) (2.8)

If the computational graph contains a few dependencies and several vertices

can be given to different processors, which by assumption run at one speed,

2. Theoretical overview 35

then Tp(n) can be expressed as

Tp(n) >=
W (n)

p
(2.9)

where p is a count of the processors in a system. Taking into account the

fact, that some vertices in a graph can have dependencies the longest depen-

dency chain will affect the resulting time of computation or, in other words,

Step complexity of the calculation will play very significant role. Overall

computational time of the algorithm can be expressed as

Tp(n) = max[D(n),
W (n)

p
] (2.10)

which is actually a demonstration of Brent’s theorem [21]

Computer with amount of processors P can perform calculations with

a time Tp less or equal than the number of processors needed to exploit

the maximum concurrency in the algorithm.

Divide-and-Conquer

Divide-and-Conquer strategy is based on the splitting of the bigger problem

into several sub-problems and executing sub-problems in the parallel. In

ideal situation every sub-problem is an independent process with no need to

communicate with other processes or all the communication is limited to the

communication with the main (parent) process.

An example of a divide and conquer algorithm is Mergesort when a task is

recursively broken down into sub-tasks, and sub-tasks results are combined

together to produce the final result.

Typical way to express parallel Divide-and-Conquer pattern is given in the

listing below:

2. Theoretical overview 36

1 ExpectedResult GetExpectedResut(InputData inputData) {
2 if (inputData.Lenght < SEQUENTIAL_TRESHOLD)
3 return GetExpecedResultSequentially(inputData);
4 else
5 {
6 ExpectedResult _left, _right;
7 PARALLEL INVOCATION
8 {
9 _left = GetExpectedResut(ExtractLeftHalf(inputData));

10 _right = GetExpectedResut(ExtractRightHalf(inputData));
11 }
12 SYNCRONIZE;
13 return Merge(_left, _right);
14 }
15 }

Mergesort sorts inputData array. After parallel invocation of GetEx-

pectdResults methods for the both parts of array Merge method is invoked.

SYNCRONIZE block esures that Merge will take place only after inputData

left and right sides are processed. It is obvious that the bottlneck of the

MergeSort algorithm the is a Merge part. The Work and Step complexity of

the Merge part is O(n). Thus, for the method, given in the code listing, the

Work of the whole algorithm can be evaluated as

ER1(n) = 2ER1(
n

2
) +O(n) = O(nlogn) (2.11)

Parallel Patterns

Parallel programming patterns were described in different sources, this work

refers to the pattern described in Michael D. McCool paper [22]. In scope of

this work the most interesting patterns are:

• Map

• Reduce

• Scan

2. Theoretical overview 37

Reduce. The reduce operation is an operation of the gathering of several

values into one value. For instance the example of the reduce operation is a

calculation of the sum of the all elements in array.

1 var sum = 0;
2 for(int i=0; i < inputData.Lehgth; i++)
3 {
4 sum += inputData[i];
5 }

In this serial version of the code on each iteration the value of the variable

sum is increased. There are several computational operation behind + =

operator: 1 – the current value of the sum variable is read out of the memory,

2 – sum value is summed together with the value of the inputData[i] element,

3 - new value of sum is placed into memory. Overall the result of each new

iteration depends from the result of the previous iteration.

Fig. 2.9: Sequential Reduce

Having the list of elements [A,B,C,D] it takes 3 calculations to make

full reduce, which make it’s Work complicity to be O(n) performing n − 1

operation. At the first look it is quite difficult to make such calculation in

parallel because of dependencies between the iterations. Explicit shape of

the calculation will look like that:

((A+B) + C) +D

2. Theoretical overview 38

Using operator associativity this equation can be rewritten as

(A+B) + (C +D)

and in that manner it is already possible to exploit parallel ways of reducing

operation.

Fig. 2.10: Parallel Reduce

Both of given graphs have 3 units of Work, but the longest path through

the graph, or Step complexity is reduced. As it is seen in the figure 2.10,

potentially the parallel implementation should finish faster. Calculation of

the needed steps count is done in the table 2.1

Tab. 2.1: Steps to n

n Step Count

2 1

4 2

8 3

From the table 2.1 it is seen, that for the Parallel reduce the step com-

plexity is O(log2n) which is very good speed up in productivity.

Scan. Another important parallel primitive is Parallel scan. Scan is an op-

eration of pairwise calculation of the array element sums. As the result of

2. Theoretical overview 39

each next calculations strongly depends on the result of the previous calcula-

tion, scan is quite difficult to implement in parallel. Given approach shows,

how it is possible to exploit a parallelism in such series of algorithms. The

scan chart is given in the Figure 2.11. Every member in the Out part of the

array is calculated as a sum of the elements at positions i and i+ 1

General flow of the Scan can be presented as pseudo code, which is given

below:

1 var startingElement = identityElement;
2 var outputData = new []{};
3 for(int i=0; i < inputData.Lehgth; i++)
4 {
5 startingElement = startingElement OPEATION inputData[i];
6 outputData[i] = startingElement;
7 }

Scan operation uses an identityElement – element, which while being

used with selected operator does not change the value of the second operation

participant, for example in multiplication identitElement = 1, in logical

AND identityElment = true, in logical OR identityElment = false. The

serial implementation of Scan Work and Step complexity is O(n). There are

two types of scans: Inclusive scan – the result is calculated as: [reduce(a1),

reduce (a1, a2), ..., reduce(a1, ..., an)] – output array will be the result of

applying the reducing operation on all the previous elements including i–th

element. Exclusive Scan - the result is calculated as: [reduce(a1), reduce (a1,

a2), ..., reduce(a1, ..., an - 1)] – output will contain result of reduce operation

of all the previous elements except the i–th element.

Scan operation, performed over array of elements, can be made in parallel

using the pairwise reductions of respective array elements.

2. Theoretical overview 40

Fig. 2.11: Parallel Scan

Map. Map mean mapping of the one element to another. In Map pattern

some function is applied to each element of the existing collection creating

a new collection with the results of function calls. The order of function

call over input array is not defined, which means it can run in parallel. If

executable functions are pure and do not cause any side-effect (do not share

states or have common variables), it is possible to talk about Step and Work

complexity of O(1). The real operations are bit more complicated, than

simple mapping of the one array into another, thus, Map usually serves as

an intermediate operation between other parallel primitives.

2.3 Distributed Computing

Calculations, done with participation of the several computation resources,

connected via shared resources (memory, network, services) are identified as

distributed calculations. Distributed systems include a lot of computational

resources, which work together to give an appearance of single coherent sys-

tem [23]. Some examples of Distributed systems are:

• Distributed Computing Systems

• Distributed Information Systems

• Distributed Pervasive Systems

• Multi-Agent Systems

2. Theoretical overview 41

2.3.1 Distributed Computing Systems

Cluster Computing Systems

Cluster computing is an easy way of doing high-performance computations

by linking together relatively simple computers in high-speed network [24].

In almost all cases cluster computing is used to make parallel computations

by running the same instance of one compute-intensive program at different

machines simultaneously in data-parallel mode.

Fig. 2.12: An example of cluster system

Usually computational cluster consists of similar computers, with same

operational system and capable of performing similar operations.

Grid Computing Systems

In Grid Computing systems computational resources can vary a lot (different

operational systems, different file systems, different naming conventions) and

might need additional effort for consolidation [25]. Grid computing uses

layered approach for the systems collaboration. Each set of resources is

grouped into a layer and these layers are responsible for particular set of

2. Theoretical overview 42

calculations.

Fig. 2.13: Grid Computing systems layers

Every layer is responsible for handling of different resource types:

• Fabric Layer – provides interfaces to the local systems in specific envi-

ronment

• Connectivity Layer – provides the set of protocols, needed for commu-

nication between different resources.

• Resource Layer – responsible for a single resource. Uses the functions

provided by the connectivity layer and calls the interfaces made avail-

able by the fabric layer

• Collective layer – handles access to multiple resources

• Application layer – layer, which makes Grid Computing system to be

available for the end-user

2.3.2 Multi-Agent Systems

As a one example of the Distributed computing, the idea of the distributed

computations using Multi-Agent systems can be taken in use. In the prof.

Taveter’s book “The Art of Agent-Oriented Modellng” Multi Agent system

2. Theoretical overview 43

[26] is defined as a set of Agent entities, which are grouped together to make

a complex entity, capable of performing some complicated actions. Agent is

defined as an entity that performs a specific activity in an environment of

which it is aware of and that can respond to changes.

An agent is a program, which acts in accordance with some predefined

protocol, is capable of making decisions on the basis of the existing knowledge

base and is able to gather and share behavioural data. Thy typical software

agent architecture can be found in the book “The Art of Agent-Oriented

Modeling” [27].

Fig. 2.14: An abstract agent architecture

Currently, many research labs, universities, companies and industrial or-

ganizations are working in this field, and the list of those companies are

constantly expanding. There are a few well-known names and small groups,

already recognized research labs and organizations (such as the Carnegie

Mellon University [28]), as well as huge multinational companies such as Ap-

ple [29], Daimler AG [30], HP [31], IBM [32], Microsoft [33], Oracle [34].

In practice agent-based technologies are used in information management

such as workflow management and network management, air traffic control,

information retrieval, e-commerce, banking, stock operations, training and

2. Theoretical overview 44

education, electronic libraries and many other fields. In this work agents will

be applied to commit scientific modelling operations using the large set of

input data.

Agent entities within multi-agent system can act as computational units

for solving of large computational task. Agent has an ability to learn and

share information with other agents. It is quite simple to organize a lot of

agents located over some network into one computation cluster and put them

to calculate chunks of data. Figure 2.15 shows the example of multi-agent

system.

Fig. 2.15: Example of Multi Agent System

2.3.3 Crowd Computing

In the recent years Crowdsourcing has been one of the buzzwords. In most

cases crowdsourcing is defined as the outsourcing of tasks to a large group of

people instead of assigning such tasks to an in – house employee or contractor

[35]. Technically some tasks are given away to the groups of the people, who

do the work either for free or for a very small fee.

2. Theoretical overview 45

Fig. 2.16: Crowd computing

One of the first cases of crowdsourcing can be considered a compilation

of the Oxford dictionary – editors used volunteers to participate in finding

all the words in a language and determining their values. Crowd computing

is a branch of the crowdsourcing, which takes advantages of remote compu-

tational resources on the basis of benevolence. In practice crowd computing

means the distribution of the payload between parties, who have given a

permission to use their computational resources to perform some tasks.

Crowd Computing works with an external crowd (public crowd comput-

ing) and internal (private crowd computing). The principles of work remain

the same, the main difference is in the tasks, which are solved by different

crowds. Although Crowd Computing is quite young and new, there are al-

ready many success stories of utilization and some successfull attempts of

commercial use – by the end of the year 2014 about 30 companies were offer-

ing commercial products and services to its customers using Crowd Comput-

ing. This companies work in different sub-segments of Crowd Computing.

For example, Workfusion [36] from the United States and Hong Kong Cloud

Factory [37] work with sub-segment of Crowd Management Application.

2. Theoretical overview 46

Another example in the utilization of Crowd Computing – the Sony

Playstations were used to build a computational cluster. [38]. That cluster

does not belong to the TOP 500 performance computing systems, but still

has a remarkable power. Another scientific experiment – Seti@Home uses

internet connected computers in the Search for Extraterrestrial Intelligence

(SETI). Everyone can participate by running a free program that downloads

and analyzes radio telescope data. [39]

Current work applies Crowd Computing principles (described in Section

2.3.1). Software units for option pricing will be created and suggested for

usage in several available machines in corporative network utilizing the idea of

private crowd computing. Software units will be sent to specified computers

with the help of a special trigger, capable of discovering and utilizing shared

resources in a network. For the convenience, the parts of the system which

are sent out to other computers are called the agents, although they do not

have all known intelligent agent features.

2.3.4 Other types of Distributed Systems

There are a lot of distributed computing systems, which do not fit into the

context of the current work. For example Transaction procressing systems.

Such systems are used as facilitators between distributed databases and soft-

ware applications [40].

3. RELATED WORK

This chapter describes the state of art in the field of the financial deriva-

tives pricing field, gives brief overview of the financial derivatives valuation

with respect to underlying assets price using numerical methods and pricing

models. Monte-Carlo approach is mentioned. Some systems for model-based

price forecasting are described. The chapter contains a description of ex-

isting generic parallel and distributed computing frameworks and systems.

Cluster systems, MapReduce pattern and Crowd computing are brought out

as a possible solution to the stated problem.

3.1 Derivatives Pricing

3.1.1 Numerical Methods

Along with existing Derivatives pricing methods, such as Black-Scholes [2],

binomial method [3], analytical and investment companies widely use in-

house pricing models of possible price changes. These models reflect be-

haviour of specific assets with multidimensional relations. For example Nor-

wegian company Rystad Energy [41] uses simulation modeling to make fore-

casting of Crude Oil price for High, Mid, Low and Low Low price scenarios.

Derivatives pricing is based on the need to constantly follow the asset

prices. That means there is a need to simulate as much price fluctuations as it

is possible. For that purpose numerical methods and Monte-Carlo techniques

3. Related work 48

are used. Monte-Carlo simulations provide statistical overview of all possible

price changes and the method itself can be easily implemented in parallel

way.

3.1.2 Pricing Systems

With a development of parallel and distributed computing techniques and

computational hardware, some platforms oriented to the financial deriva-

tives pricing problem were implemented. Schryver, Shcherbakov, Kienle and

Wehn proposed a system based on the FPGA and Heston model [42]. The

work covered creation of the hardware prototype with respective parallel im-

plementation of pricing model. The prototype of the system in comparison

to simulation with Intel Core i5-3320M CPU performed 38 times faster.

Another sample is PicsouGrid [43], a framework for Grid computing, writ-

ten in Java. Was present in 2007 at International Simposium of Grid com-

puting. It follows the Data Parallel approach with it’s server and workers

abstraction. Contains Simulator interface and some implementations. In

case of need own implementation can be defined.

A lot of companies have their own success stories of the Derivatives pricing

using in-house models and existing generic parallel and distributed comput-

ing solutions.

3.2 Parallel and Distributed Solutions

Systems, which do simulation modeling on a basis of big amount of data and

expensive computations are used in a wide variety of domains. The most

interesting systems in scope of this work are the systems, which allow to set

up the custom model of some process and distribute it over the numerous

computational resources in a fast, cheap and reliable way. The set of most

3. Related work 49

well-known systems, which can perform tasks, similar to the one, addressed

in this work are given below:

• Apache Hadoop

• Dryad

• Nokia Disco

• BOINC

3.2.1 Hadoop

The Apache Hadoop is a framework that enables the distributed processing

of large data sets across clusters of computers using simple programming

models. It is designed to scale up from a single server to thousands of ma-

chines, each offering local computations and storage. Apache Hadoop is a

set of products:

• Hadoop Distributed File System

• Hadoop YARN – framework for job scheduling and cluster resource

management

• Hadoop MapReduce – YARN-based system for parallel processing of

large data sets

• Hadoop Common – package of common tools for managing other mod-

ules

The main component and a trade mark is Hadoop Distributed File Sys-

tem, which, like regular file systems, consist of data blocks and descriptor

tables with the difference that in Hadoop Distributed File System the role

3. Related work 50

of descriptor tables fulfils NameNode and files data is spread across DataN-

odes. For each file NameNode contains a name, blocks and paths to blocks.

To increase reliability file blocks are replicated.

Apache Hadoop distributes computation across the workers, each worker

fulfils given part of the computations locally. The main focus of Hadoop is

to work with a big unstructured and constantly growing data files. Under

the hood Apache Hadoop is based on the MapReduce paradigm (see Secton

3.2.5).

3.2.2 Microsoft Dryad

Dryad is a distributed execution engine that simplifies the process of im-

plementing data-parallel applications to run on a cluster. Dryad has been

deployed by Microsoft since 2006 and is used daily to analyze petabytes of

data on Microsoft codename Cosmos clusters consisting of thousands of com-

puters. The existing public release of Dryad runs on Windows HPC clusters.

The original motivation for Dryad was to execute data mining operations but

later it became a general-purpose execution engine which could be used to

implement a wide range of other tasks, including time series analysis, image

processing, and a variety of scientific computations [44].

Dryad approach is to map a distributed system as a directed acyclic

graph, where each vertex would present some computational primitive – a

job. Graph would be used in computational environment to put together a

cluster system. Each vertex would run at least one computation job. A job

content could vary from specially designed programs to legacy executables,

which should be possible to incorporate into Dryad system. Figure 3.1 shows

the Dryad basic distributed job.

3. Related work 51

Fig. 3.1: Dryad distributed job

As Apache Hadoop, Dryad is also a follower of the MapReduce Pattern.

Dryad project was closed by Microsoft due to competing with Hadoop and

Microsoft decided to focus on Azure and Windows Server-based version of

Apache Hadoop [45].

3.2.3 Nokia Disco

Another similar framework for distributed computing is Nokia Disco. Disco

is an implementation of MapReduce for distributed computing. [46].

3.2.4 BOINC

A software platform, which is designed to support scientific project, in scope

of which radio telescope data is downloaded and analysed [47]. The project

SETI@HOME [39] connected computers on voluntary basis and every com-

puter performed some part of needed calculations. BOINC system kept track,

how much CPU time each joined node contributes to the platform. BOINC

is known as MapReduce in Volunteer environment [49].

3. Related work 52

3.2.5 MapReduce

MapReduce [50] is a common programming model for the systems described

above. MapReduce is a model of distributed computations, presented by

Google. It is used in processing of large data sets in computational clusters.

In general, the work of MapReduce contains of two steps – Map and Reduce.

Map does the processing of the input data. In classical implementation of

MapReduce one part of the system always serves as a master node which

serves the subtasks to worker nodes. Reduce step involves “deflating” of the

calculation results, received by the master node from worker nodes. The

typical MapReduce workflow is shown in the Figure 3.2

Fig. 3.2: Map Reduce

Google issued a framework with the same name. Framework is based on

the Map and Reduce functions, which are widely used in functional program-

ming [50].

To reach the goals of this work, the insights of all these systems are

combined together:

• MapReduce programming model is selected as a main approach to solve

the stated problems.

• Map and Reduce primitives are empowered by the application of Par-

allel Computing – Parallel Map and Parallel Reduce.

3. Related work 53

• To create a cluster from available computers, a method proposed by

Dryad research project team is used.

• Voluntary calculations approach used with BOINC is used for creating

of private calculation crowd.

• The principles of calculation clustering with MapReduce are examined

for the applicability with relational database models.

4. SYSTEM DESIGN AND IMPLEMENTATION

This chapter contains the proposal of solution to the problem stated in Sec-

tion 1.3. Chapter describes the high-level design of the distributed system,

which utilizes MapReduce pattern and the principles of Crowd Sourcing. The

implementation section contains a description of computer cluster creation on

the basis of available computation resources. Each available resource runs

asset price forecasting program employing Monte-Carlo approach. At the

phase of prototyping initial tests are done to determine the best program

parallelism options.

Starting point for the prototype – local network of small analytical com-

pany, consist of 40 personal computers and 4 servers. Company uses in-house

mathematical models and custom application to create Option price forecast.

Forecasting application is a hand-made application, which runs on one of the

company servers nightly. Every night is takes at least 7 hours to calculate a

forecast, which is later placed into business intelligence data storage.

The idea is to exploit the data-parallel pattern for increasing the produc-

tivity of existing forecast application by introducing calculations on different

machines – Cluster Computing System. Cluster will consist of computational

agents, which are sent to all servers and to the personal computers of the

company employees (Private Computing Crowd). Instead of running the ap-

plication on one relatively powerful server, all available computing resources

are participating in calculations. The idea of the system proposed in this

4. System Design And Implementation 55

work is in utilization of the methods, described previously, for creation of a

cluster on the basis of the available computers, allowed to be involved into

calculations by their owners.

4.1 System Summary

To achieve the goals, established at the beginning of this work it was decided

to design a prototype of a dynamic computation system basing on ideas

of Crowd Computing 2.3.3 and Cluster Computing Systems 2.3.1. System

will calculate Option underlying assets price forecast using one of methods

described in Section 2.1. During Option price calculation the time series of

underlying asset price will be used. The lowest granularity level is 1 day.

Figure 4.1 shows the schematic outline of price forecast calculation. The

“Asset Input” data set holds all known information about the option un-

derlying assets. All asset updates are made to the Asset Input data set.

Assumptions (prices, dates etc.) and model parameters (cost elements and

levels, country factors, technology factors, etc.) are fed into tables and used

in processing. Processing is done asset by asset, after that the “Asset Out-

put” data set is populated with calculated price forecast data for each of

existing assets.

4. System Design And Implementation 56

Fig. 4.1: Schematic description of Forecasting System

The system uses the data available for free at Yahoo Finance [51] and

Option price calculation will be done using the model described in Section

4.3.

4.2 Asset Data

Asset data is updated every day, which implies the need to recalculate under-

lying asset price forecast daily taking into account the dynamics of pricing

at the lowest granularity level. Table 4.1 shows the Asset data structure.

Tab. 4.1: Asset Data

Asset Details Comment

Name Asset Name

Date Historical date

Open Opening trading price at the Date

High Highest trading price at the Date

Low Lowest trading price at the Date

Close Closing price at the Date

4. System Design And Implementation 57

4.3 Pricing Model

Current work assumes that data from opened sources, is good enough to

calculate Option underlying assets price forecast using MonteCarlo approach

[10] and mathematical model partly based on the Black-Sholes [2] equation.

Monte-Carlo simulation can be easily wrapped into a scalable distributed

application, which encapsulates parallel solution for the model calculations.

Although, as mentioned above, the calculation of the price of the Euro-

pean option is very convenient to carry out using the analytical method,

Monte-Carlo method will be used as the most suitable method to demon-

strate achievement of the objectives of this work.

Modelling purpose is to forecast the price of Option at some moment t

Model operates on the basis of historical prices data P = [P0, P1.....Pt] and

given strike price X and

1. Daily return rate can is calculated as

dr = ln(
Pt
Pt−1

) (4.1)

2. Average of daily return rates

µ =
1

n

n∑
i=1

dri (4.2)

3. Variance of the daily return rates

var =

∑
(x− xavg)2

n
(4.3)

4. Standard deviation of daily return rates

stddev =

√∑
(x− xavg)2

n
(4.4)

4. System Design And Implementation 58

5. Asset drift

drift = µ− (
var

2
) (4.5)

6. Asset future price calculation

Pt = Pt−1 e
(drit+var∗Bt) (4.6)

7. Option price for 1 iteration is calculated using equation

Ct = e−r(t)E max[(0, Pt −X)] (4.7)

8. Option price estimation is done on the basis of the mean value of cal-

culated price series using

Cmean =
1

n

N∑
i=1

Ci(P, T) (4.8)

This model is implemented as a set of kernels, responsible for calculating

of the needed features (Both in serial and parallel manner).

4.4 System Initial Requirements

System high-level description is given as following: as a financial analyst I

would like to have a system for Option price forecasting on the basis of the

underlying assets historical data. System has to be easy to run and maintain.

System should provide a result within appropriate time.

Basing on that description it is possible to define the requirements more

precisely. There are four main possible aspects client might look for:

• Performance – system has to deliver result within a specified time limit

• Reliability – downtime per specified timespan amount should not ex-

ceed specified number

4. System Design And Implementation 59

• Scalability – system has to be easily extendable

• Maintainability – system should be easily maintainable

Below, only top-level requirements were listed. Schematic requirements

model is presented in the Figure 4.2.

Fig. 4.2: Requirements model

4.5 High-level Architectural Overview

The task of calculation of the Option prices on the basis of historical data is a

task of producing new data rows from the old data rows using mathematical

model. Mathematical model does a specified action on every historical data

row, which correspond to Map pattern. Then a large set of historical data

is used for creation of one or more rows of future prices, this corresponds to

Reduce pattern. Suitable algorithms with the justification of the choice are

4. System Design And Implementation 60

given in Section 2.2.4. The processing of the historical rows using Monte-

Carlo simulation will be done in parallel on a single node

Every node of the system, implementing MapReduce pattern is able to

run independently on every available computer in the local area network,

leading to additional parallelism and performance gaining by distributing

the calculation units across available machines, creating computing cluster,

described in Section 2.3.1.

An account the system is running, should be granted with appropriate

rights to access data storages and computing resources. High-level presenta-

tion of the system architecture is given in the Figure 4.3

Fig. 4.3: High-level architecture

4. System Design And Implementation 61

Classical cluster consists of fairly the same type of machines, and usually

the amount of these machines is known, however each company usually has

a lot of personal workstations, which run during working hours and stay

idle more than 10 hours per day. This work proposes to take in use those

machines on the basis of benevolence – to compose Private Crowd, described

in Section 2.3.3. Literally, each computer in the local area network can be

considered as computational resource and it’s owner can accept or decline

the computational task. For those who will accept a task, software agent can

be added remotely.

System idea is applicable for every software – and database server plat-

form. In scope of that work the relational database is used. It is not strictly

required, but should satisfy the need for data structuring need and data

delivery options from the storage to calculation part.

4.6 System Design

For demonstration of the selected approach, Cluster computing system pro-

totype is designed and evaluated for the performance, usability and develop-

ment costs.

For the Price Forecasting System main four subsystems are required:

• Forecast Agent Sending System – refers to Scalability requirement in

the Figure 4.2. The goal of the system is to send a calculation agent

to specified computer in the computation environment.

• Forecast Triggering Subsystem – refers to the Maintainability require-

ment in the Figure 4.2. Subsystem provides the interface for start, stop

and monitoring of the whole system.

4. System Design And Implementation 62

• Forecast Calculation Subsystem – refers to the Performance and Re-

liability requirements in the Figure 4.2. Subsystem is responsible for

Price Forecast delivery within a specified time.

• Forecast Aggregation Subsystem – integration with data visualization

or analysis systems. Out of the scope of this work and not covered in

a full details.

Schematic representation of the system is given in the Figure 4.4.

Fig. 4.4: System Design

Forecast Agent Sending Subsystem

Although the idea of Cluster Computing Systems is not new, classical cluster

computing system can be empowered using Crowd Computing [35] principles.

Some users willing to help with calculations can join their computers into the

4. System Design And Implementation 63

cluster. The Forecast Agent Subsystem goal is to discover and deliver such

computers into the computation environment. Figure 4.5 shows the use case

model for Agent Sending Subsystem.

Fig. 4.5: Forecast Agent Sending Subsystem

Primary use cases of the system are given below.

Tab. 4.2: Use case: Send Forecast Agent

Use Case Send Forecast Agent

Primary Actor System Operator

Scope Computational Environment

Brief description Forecast application sending to available computational resource

– server or personal computer

Preconditions Server name and network path are known

Postconditions Forecast calculation application is placed on a specified com-

puter.

4. System Design And Implementation 64

Tab. 4.3: Use case: Get Available Resource

Use Case Discover Available Resource

Primary Actor System Operator

Scope Computational Environment

Brief description Get information about available computers with shared resources

in computational environment

Preconditions Primary Actor has appropriate access rights

Postconditions List of resources returned

Forecast Calculation Subsystem

The core of the system. Price Forecast Calculation application, which utilizes

data-parallel software development pattern described in Section 2.2.4. Appli-

cation utilises the best practises of Parallel programming described in Section

2.2.4 and, in particular, parallel Map and Reduce primitives. The application

is distributed across computational environment and works simultaneously

using cluster computing approach. Cluster system utilizes Crow computing

approach.

Use cases of the Forecast Calculation Subsystem are given in Figure 4.6

4. System Design And Implementation 65

Fig. 4.6: Forecast Calculation Subsystem

Use cases definitions:

Tab. 4.4: Use case: Get Unprocessed Assets

Use Case Get Unprocessed Assets

Primary Actor Forecast App

Scope Computational Environment

Brief description Forecast Application gets the Assets available for calculation

from the database and marks them as participating in calculation

Preconditions not calculated Assets present in the data storage

Postconditions List of Assets transferred for calculation, in data storage an asset

marked as participating in calculation

4. System Design And Implementation 66

Tab. 4.5: Use case: Get Asset Historical Data

Use Case Get Asset Historical Data

Primary Actor Forecast App

Scope Computational Environment

Brief description Forecast calculation application gets the price time series for the

asset, which participates in the Option price forecast calculation

Preconditions Price time series for selected asset are available in the data stor-

age

Postconditions Price time series for selected asset are delivered to Forecast cal-

culation application

Tab. 4.6: Use case: Calculate Option Price Forecast

Use Case Calculate Option Price Forecast

Primary Actor Forecast App

Scope Computational Environment

Brief description Forecast application performs multiple calculations of underlying

assets price using Monte-Carlo method and chosen mathematical

model

Preconditions Price time series for selected asset are available in the data stor-

age

Postconditions New price time series are generated in forecast application

4. System Design And Implementation 67

Tab. 4.7: Use case: Write Out Option Price Forecast

Use Case Write Out Price Forecast

Primary Actor Forecast App

Scope Computational Environment

Brief description Option Price Forecast and new generated asset time series writing

to data storage

Preconditions Selected asset is calculated

Postconditions New price time series are inserted to the data storage

Forecast Triggering Subsystem

Forecast Triggering Subsystem, along with the Forecast Agent Sending Sub-

system defines an interface for operating and maintenance of the Forecasting

System. The main goal of this system is to start, stop and monitor price

forecasting system in a flexible way – on all available cluster nodes together

or on one particular node. It also has to capture the current state of the

whole entire forecasting system or one particular running Forecasting Agent

on some specified computation node of the cluster.

The use case model of this subsystem is given in Figure 4.7

4. System Design And Implementation 68

Fig. 4.7: Forecast Triggering Subsystem

Forecast Triggering Subsystem’s Use Cases:

Tab. 4.8: Use case: Start Forecast Agent

Use Case Start Forecast Agent

Primary Actor System operator

Scope Computational Environment

Brief description Start Forecast Computation

Preconditions Forecast Agent is available at selected computing resource

Postconditions Forecast Agent is running at selected computing resource

4. System Design And Implementation 69

Tab. 4.9: Use case: Stop Forecast Agent

Use Case Stop Forecast Agent

Primary Actor System operator

Scope Computational Environment

Brief description Stop Forecast Computation

Preconditions Forecast Agent is running at selected computing resource

Postconditions Forecast Agent is stopped at selected computing resource

Tab. 4.10: Use case: Get Running Forecast Agent

Use Case Get Running Forecast Agent

Primary Actor System operator

Scope Computational Environment

Brief description Connect to running Forecast Agent and read current state

Preconditions Forecast Agent is running at selected computing resource

Postconditions Forecast Agent current state is read out

Tab. 4.11: Use case: Get Forecast Agent Data

Use Case Get Forecast Agent Data

Primary Actor System operator

Scope Computational Environment

Brief description Grant connectivity to the running Forecast Agent in order to

read current state

Preconditions Forecast Agent is running at selected computing resource

Postconditions Forecast Agent current state is read out

4. System Design And Implementation 70

Forecast Data Aggregation Subsystem

The last system in the design is a system for data aggregation. In general it

includes the Option Price Forecast output data available in the data storage

plus a standard interface for connecting to this data storage. It may be the

connection to some data visualization or analysis applications. The main

goal of this subsystem is to present the data in the shape needed for the

users of the system, consequently, a use case for that part of the system can

be defined as following:

Tab. 4.12: Use case: Get Option Price Forecast

Use Case Get Option Price Forecast

Primary Actor System User

Scope Computational Environment

Brief description Get calculated Option prices and new asset price time series

Preconditions Forecast System is finished at all the calculations

Postconditions Forecast data is sent to presentation layer

4.7 Implementation

The prototype presented in this Section is implemented in accordance to the

system design and system includes all parts, described in Section 4.6

There are several available computational resources connected to the local

area network. Along with these defined available resources there are other

personal computers and laptops, used by the company employees and not

fully loaded 24 hours per day. Specifications of available resources are given

below.

4. System Design And Implementation 71

Tab. 4.13: Computing resources

Server 1

Processor Intel R© CoreTM i7-5930K CPU @ 3.5 GHZ

CPU Cores 6

CPU Threads 12

CPU Number 1

Server 2

Processor Intel R© CoreTM i7-960 CPU @ 3.2 GHZ

CPU Cores 4

CPU Threads 8

CPU Number 1

Server 3

Processor Intel R© Xeon R© CPU X5660 CPU @ 2.6 GHZ

CPU Cores 6

CPU Threads 12

CPU Number 1

Server 4

Processor Intel R© Xeon R© CPU E5-2650 v3 @ 2.30 GH

CPU Cores 10

CPU Threads 20

CPU Number 2

Workstation

Processor Intel R© CoreTM i7-4810MQ Processor

CPU Cores 4

CPU Threads 8

CPU Number 1

The cluster under consideration contains at least four described servers,

which are always available, additionally it will use available workstations

4. System Design And Implementation 72

mentioned in table 4.13

The software is implemented using Microsoft.NET platform [52], which

fits perfectly with the existing operating systems and provides a wide set of

means for fast software development. In this work no special 3rd party high-

performance computing libraries are used. Triggering system is responsible

for the cluster managing and forecasting applications will perform Monte-

Carlo simulations.

4.7.1 Asset Historical Data

MS SQL server 2012 SP1 version 10.0.300 [53] is used as a data storage for

the prototype relational database.

Option underlying assets’ historical data structure is described in Section

4.2. A relational database table structure is created in accordance to this

definition. Asset data structure is split into two parts – common information,

which holds Asset name, an internal id, a processing status and pricing time

series of each asset. These parts are put into respective tables with assigning

of the primary and foreign keys and relations between the tables. Split of an

asset data structure is shown in Figure 4.8

4. System Design And Implementation 73

Fig. 4.8: Asset Data Structure

This database diagram shows the initial data storage. Schematically there

are two tables, sufficient to hold minimal set of data for the price forecast

modelling. Relation between tblAsset and tblPriceHistroy is One-to-Many

• tblAsset – where PK_Asset is clustered index, Name is Asset name

and Status is a system field, needed for signalling during the simulation

• tblPriceHistory – where PK_Price is clustered index, FK_Asset is

a Foreign key to tblAsset and Opening, High, Low and Closing prices

are respective prices for asset at some trading date in future.

Each asset is calculated against the mathematical model, calculating op-

tion price forecast for the amount of given days ahead. By assumption the

number of the days in future is less than the number of historical price data

entries, thus the output data of each asset contains reduced amount of entries

4. System Design And Implementation 74

(the implementation of parallel Reduce primitive). Output data table struc-

ture is almost the same as the tblPriceHistory structure. Linking between

common asset data table and output table is the same as the linking between

tblAsset and tblPriceHistory One-to-Many. Asset output data structure is

given in the Figure 4.9

Fig. 4.9: Asset Output Data Structure

Extraction of the data from the database is done using stored procedures.

Despite the fact of existing of the ORM frameworks for Microsoft SQL server

(NHibernate, Entity Framework), SQL stored procedures are still the best

fit to write applications, working with relational databases. There are a lot

of advantages of stored procedures in comparison with plain SQL or ORMs,

which literally generate plain SQL, such as easy maintenance, unified access,

enhanced security, but the main one is, of course, performance – stored pro-

cedures are pre-compiled software units, which perform faster in comparison

to SQL queries.

For prototype needs two main stored procedures are created:

4. System Design And Implementation 75

• appGetAsset

• appGetAssetPrice

Stored procedure appGetAsset is a procedure, which receives an inte-

ger parameter, which means the number of the assets to extract from the

database. This stored procedure returns a list of integers, representing the

column PK_Asset with offset defined by the input parameter.

1 SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
2 BEGIN TRANSACTION;
3

4 SELECT top(@AssetCount) PK_Asset INTO #assets FROM [dbo].[tblAsset]
WITH (ROWLOCK, XLOCK) WHERE [Status] = 0 order by PK_Asset;

5

6 UPDATE [dbo].[tblAsset] SET Status = 1 WHERE PK_Asset IN (SELECT
PK_Asset FROM #assets)

7

8 SELECT PK_Asset from #assets;
9 DROP TABLE #assets;

10

11 COMMIT TRANSACTION;

In that query an asset number specified by input parameter is extracted.

After that assets are marked into Processing state. As this procedure works

with many applications simultaneously, it is implemented using locking mech-

anism, which ensures that only one instance of Forecasting Agent fetches the

data from the table in order not to let same assets to leak to another instances

of Forecasting Agent

Stored procedure appGetAssetPrice receives primary key of tblAsset as

input parameter and fetches data from tblPricceHistory. Assuming the fact,

that the data in that table is always static, no updates or deletes are planned

during the simulation, to grant high level of readability select query is done

with NOLOCK instruction, which tells the server not to lock the table during

the execution of the asset price data selection by a Forecast Agent instance.

1 SELECT * from [dbo].[tblPriceHistory] WITH (NOLOCK)
where FK_Asset = @PK_Asset order by Date asc;

4. System Design And Implementation 76

Data is fed into Forecast Agent application,which calculates Option Price

Forecast making multiple price simulations in parallel.

4.7.2 Forecast Calculation Agent

The Core of the system is Forecast Calculation Agent. This is the program,

which performs Monte-Carlo simulation of underlying assets prices for further

Option price calculation. The program implements the model, described in

Section 4.3.

Ptototype.Common is the library, which contains the implementation of

the mathematical model, needed for performing the Monte-Carlo simulation.

Model is implemented as a set of user defined types with a helper class,

containing needed calculation method. Model type diagram is given in Figure

4.10

Fig. 4.10: Model types

4. System Design And Implementation 77

Prototype.SerialAgent is a serial implementation of the selected model

calculation, used for creating the first working calculation prototype.

During the implementation of Prototype.ParallelAgent several approaches

of multi-threading programming provided by .NET framework were tried

out. The method which showed the best performance was used as a basic

programming approach.

To have an idea, what parallel method of parallelism to prefer, one method

from the mathematical model implementation was selected and different par-

allel versions of this method were implemented. Different parallel implemen-

tations were examined to performance. Method serial version is given below:

1 /// <summary>
2 /// Periodic Daily Return calculation
3 /// </summary>
4 /// <param name="closingPrices"></param>
5 /// <returns></returns>
6 public static PeriodicDailyReturn

GetPeriodicDailyReturn(decimal[] closingPrices)
7 {
8 ConcurrentBag<double> decimals = new ConcurrentBag<double>();
9

10 for (int i = 0; i < closingPrices.Length - 1; i++)
11 {
12 double result = Math.Log((double)(closingPrices[i] /

closingPrices[i + 1]), Math.E);
13 decimals.Add(result);
14 }
15

16 PeriodicDailyReturn retParam = PeriodicDailyReturn(decimals);
17 return retParam;
18 }

Serial version was made for general purposes. After that four more dif-

ferent version of that method were created for the parallelism examination.

All methods were examined with mock data set, containing 50000 elements,

on a Workstation, described in Table 4.13.

4. System Design And Implementation 78

Tab. 4.14: Periodic Daily Return Calculation with 50000 elements

Parallel Option Time Spent (msec)

No Parallelism 56

Managed Threading 143447

Explicit Task Parallelism 44

PLINQ 27

Implicit Task Parallelism

(Parallel.For)
14

Due to the heavy-weight process of creating Thread objects in Managed

Threading approach, this way is not considered as an appropriate way for

the current prototype. The rest of the methods were examined again with

datasets of different sizes starting from 1000 up to 150000000. Figure 4.11

shows the trend of performance of the same code using different parallelism

ways.

4. System Design And Implementation 79

Fig. 4.11: Performance comparison

The last test results are given with exact numbers in Table 4.15.

Tab. 4.15: Periodic Daily Return Calculation with 150000000 elements

Parallel Option Time Spent (msec)

Explicit Task Parallelism 111728

PLINQ 89939

Implicit Task Parallelism

(Parallel.For)
44176

Testing was done using Scan primitive with mock data. Parallel.For per-

4. System Design And Implementation 80

formed in the best way. All tests were done at the Windows 7 Enterprise 64

bit operation system. The implementation of the method with a best per-

formance was selected as a general approach for the Prototype.ParallelAgent

creation.

1 Parallel.For(0, closingPrices.Length - 1, i =>
2 {
3 int tempCount = i;
4 double result = Math.Log((double)(closingPrices[tempCount] /

closingPrices[tempCount + 1]), Math.E);
5 decimals.Add(result);
6 });

4.7.3 Forecast Agent Sending and Triggering

Forecast Triggering Subsystem and Forecast Agent Sending Subsystem in

current prototype are implemented in one software application. The name of

the application is Prototype.Trigger and the Class diagram of the prototyped

system is given in Figure 4.12

4. System Design And Implementation 81

Fig. 4.12: Forecast Agent Sending and Triggering Application

One of the goals of this work is to demonstrate an approach of Crowd

Computing during the creating of the system prototype. By assumption

system operates at four available servers and in addition to that uses the

workstations of the employees, available on the local area network. In .NET

platform computers can be discovered using classes, providing functionality

of Active Directory reading. Sample code is given in the the listing below.

1 PrincipalContext context = new
PrincipalContext(ContextType.Domain, "domainname");

2 ComputerPrincipal compPrincipal = new ComputerPrincipal(context);
3 compPrincipal.Name = "*";
4

5 PrincipalSearcher principalSearch = new PrincipalSearcher();
6 principalSearch.QueryFilter = compPrincipal;
7 PrincipalSearchResult<Principal> result =

principalSearch.FindAll();

With an appropriate set of rights Forecast program can be sent to discov-

4. System Design And Implementation 82

ered machines. Common Shared resource of Microsoft Windows operational

system or in case of having administrator right pattern \computername\drive

name$ can be used to access remote drive. Simple File.Copy can be used

to transfer file from one computer to another. That principle can be used to

create Private Crowd in local area network.

The part of the triggering subsystem, which allows to start, stop and

monitor agents is implemented in the same Prototype.Trigger application.

After the Forecast Agent is sent to remote host, it’s managing can be done

in different ways, for example:

• WMI

• Telnet

• psAnywhere

In this particular prototype Windows Sysinternals [54] utilities are used

for saving the time. Prototype.Trigger application includes remote pro-

cess management assemblies as a resources for managing of remote Forecast

Agents.

Figure 4.7 shows the class diagram for Forecast Agents control function-

ality – One common action base interface is defined and several implement-

ing classes perform the job. Start, Stop and Monitor is implemented by

wrapping the respective Sysinternals tool calls to the Prototype.Trigger ap-

plication. Implementers produce parametrized calls and Process Manager

communicates with remote hosts through the Sysinternals toolkit. The code

sample of starting the Forecast Agents are given below.

1 public Process RunAgent(string agentParams)
2 {
3 Process p = GetProcess("psexec", agentParams);
4 p.EnableRaisingEvents = true;
5 return p;
6 }

4. System Design And Implementation 83

As it can be seen from the code samples above, Prototype.Trigger operates

with .NET Process class. The method which return runnable process is

described in the next code sample.

1 private static Process GetProcess(string appname, string
arguments)

2 {
3 Process p = new Process
4 {
5 StartInfo =
6 {
7 CreateNoWindow = true,
8 FileName = string.Format(@"Resources\{0}.exe",

appname),
9 Arguments = arguments

10 };
11 };
12 return p;
13 }

Command pattern to operate the Prototype.Trigger is commandname

pParameter : value pParameter : value. Parameters define how to start

the system. Figure 4.13 demonstrates sending of the Forecast Agent to the

available personal computer in a local area network.

Fig. 4.13: Prototype.Trigger application

By the moment of writing available commands parameters are:

• start, stop, monitor – start, stop or monitor Forecast Agent

• pServer:0 – the name of the server, where Forecast Agent is sent

4. System Design And Implementation 84

• pAgent:parallel /pAgent:serial – agent type selection

• pPid:0 – running agent process id

• exit – exit Prototype.Trigger

5. EVALUATION OF APPROACH

This chapter briefly describes the results of testing of the created cluster

computing system. During the testing of the whole system, a Monte-Carlo

simulation of an Option Price Forecast Calculation was done using available

computational resources, managed from one common place. As an input for

the testing, 2000 assets were used. Each asset contains a price time series

from the year 1960, which makes 20440 days at the time of writing. The

chapter contains some notes about system benefits, weaknesses and technical

constraints.

5.1 Performance Benchmarks

A prototype, made on the basis of the selected method, was examined in sev-

eral configurations, starting from one single personal computer, and ending

with a cluster consisting of 11 computers. The goal of the examination was

to find out the speedup and possible bottlenecks of the system. The Option

Price Forecast calculation was performed several times, and the results were

documented and evaluated.

CPU involvement. The chosen approach to parallelization (Parallel.For)

performed well in a multi core environment with all available CPU types.

The goal of the selected parallelization approach was to make the program

keep CPU busy, in that sense .NET standard way of implicit dynamic par-

5. Evaluation of approach 86

allelism, used in Parallel.For construction, gave the best results. Figure 5.1

presents the results of two CPU involvement on a multi-processor system,

which consists of two Intel Xeon X5660 processors [55], having six cores and

twelve processor threads.

Fig. 5.1: Prototype.For testing

In comparison to managed threading with a manual thread start, shown

in Figure 5.2, Parallel.For showed undisputed performance and efficiency.

The best performance with Parallel.For was obtained using the settings for

a maximum degree of parallelism multiple to CPU thread count.

5. Evaluation of approach 87

Fig. 5.2: Managed threading

Cluster computing. Option price forecast calculation was performed by a set

of different computers. In that experiment the main idea was to see how the

speedup of the system would be related to the increase in the computational

nodes count. All the tests were done with one common database server MS

SQL 2012, located on a standalone workstation. The details of the hardware

used in testing are in Table 4.13.

The first test was done with an Intel Intel R© CoreTM i7-4810MQ [56] CPU,

equipped with 4 cores and 8 processor threads, which was connected to a local

area network via a 1000MB/s network connection, which corresponds to the

details of Workstation. The test was then repeated several times with the

following hardware set:

• Server 1 and Server 2

• Server 1, Server 2 and Server 3

• Server 1, Server 2, Server 3 and Server 4

• Server 1, Server 2, Server 3, Server 4 and Personal Computer 1

5. Evaluation of approach 88

• Server 1, Server 2, Server 3, Server 4 and two computers, similar to

Typical Personal Computer

• Server 1, Server 2, Server, Server 4 and three computers, similar to

Typical Personal Computer

The results of the tests are given in Table 5.1. Execution time is given in

seconds

Tab. 5.1: Test Results

Computers count Run Time (sec)

1 7420

2 3168

3 2442

4 2166

5 1623

6 1454

7 1245

8 1178

9 1145

10 1012

11 1011

Diagram in Figure 5.3 shows the decrease of the calculation time with an

increase on the number of the computation nodes. The significant difference

between the first test and others is caused by using different hardware.

5. Evaluation of approach 89

Fig. 5.3: Calculation speed

Figure 5.4 shows the relative speedup of the whole system after adding of

computational resources. The performance increase is almost linear, however,

the overall relative growth in performance depends on the type of hardware.

Adding the weak node to the computational cluster can cause a decrease in

speedup or even a slow down of the computation speed. This situation is

visible in the Figure 5.4 between 4 and 5th test and after test 8.

5. Evaluation of approach 90

Fig. 5.4: Speed Increase

The presented test results lead to the conclusion that the prototyped sys-

tem has a saturation point – the maximum number of resources that generate

an increase in computation speed. In the case of the available software, the

critical number was 8 computational resources. Further expansion of the

cluster leads to a decrease of the processing speed and degradation of the

system’s overall performance. The reason for this are the increasing infras-

tructure costs – more time is needed to transfer data to the computation

nodes and one single instance of MS SQL servers handles more requests to

the procedure, which locks a primary data table for all threads until one

thread reads the data.

Although the given system consists of different computational resources

and includes different levels of parallelism for each participating calculation

resource, the results of the test reflect Amdahl’s Law [57], which describes a

relation between the level of parallelism and the performance increase.

5. Evaluation of approach 91

5.2 Benefits

The described approach, designed system and implemented prototype all

together represent a very easy way of increasing calculation performance

using a self-tailored computing cluster. Every company has at least several

personal computers, which often stay idle. Using such system, it is possible

to load all resources. In terms of pricing, if the company has four computers

with four cores each and combines them together it can get a system with

sixteen cores, working in data-parallel mode for free. The same option using

Azure on the basis of a General Purpose computing platform with a twelve

hour per day set up would cost around $530 [58] per month.

Short calculation of one existing system, used for Crude Oil price fore-

casting:

Average system daily time, min 726

CPU Cores Count in a system 36

CPU Threads in a system 72

2 * 16 cores Intel R© Xeon R© E5 CPU VMs $2,322

The price is given without database server instance, in case of the need for

Cloud MS SQL server, price would be appended with additional $1,399 per

month for the premium MS SQL server instance with 500 GB storage. That

shows clear benefit of described system in comparison to Cloud computing

in the long – term perspective.

5.3 Tradeoffs

The given approach demonstrates a set of problems that require quite a large

effort to solve. First, the system does not have a load balancer, which would

5. Evaluation of approach 92

ensure that the load is distributed equally between all nodes in the cluster.

This leads to the weakest node of the cluster becoming a barrier for the whole

system. Load balancing could require an additional layer, which would make

the system more difficult to implement, install and maintain.

6. CONCLUSION

In accordance with the objectives of this work, the principles of pricing of

financial derivatives and a comparison between the three existing methods

have been studied. Among the existing methods of the financial derivatives

pricing the method, which seemed to be the most interesting in terms of par-

allel and distributed computing was selected. Based on the selected derivative

contract pricing methodology, a distributed system was designed. The sys-

tem followed the principles of Crowd computing and was built in parallel and

distributed programming patterns. The prototype of the designed system

was created using the Microsoft .NET platform and a Windows ecosystem.

Several prototype tests were made, where key points of testing were perfor-

mance, scalability and efficient CPU usage. Despite some limitations in the

prototype of the designed system, the testing results allowed the following

conclusions to be made:

• pricing models examined using a Monte-Carlo approach are effective in

assessing the value of derivative contracts that contain a large number

of underlying assets.

• it is is possible to get an almost linear increase in the performance

of a pricing system using the available personal computers and the

principles of parallel and distributed computing.

• it is very simple to manufacture and set up an easily scalable and

6. Conclusion 94

dynamically extendable computing cluster, which can replace or tem-

porarily postpone the need for the expensive acquisition of a cloud-

based or other specific computational resources.

The prototype showed some bottlenecks: the speed provided by the sys-

tem is dependent on the speed of its weakest node. System performance

depends on how quickly data is exchanged between the individual nodes.

System design was carried out to be as abstract as possible, and as a re-

sult, was obtained a cross-platform design, which can be used for different

data-parallel computations.

6.1 Future work

Further improvement of the system presented in this thesis should include

the following parts:

• The system should contain a layer for initial data distribution in order

to avoid bottlenecks on the reading of the initial data and writing out

the calculation results.

• The system should have a load balancer in order to avoid a situation

when one weak computation resource added to the cluster influences

the performance of the whole system.

• The prototype could be ported to other languages and examined in

other platforms, such as Unix-based operation systems and mobile plat-

forms.

BIBLIOGRAPHY

[1] “Derivatives.” http://www.investopedia.com/terms/d/

derivative.asp. Accessed: 2016-05-04.

[2] F. Black and M. Scholes, “The pricing of options and corporate liabili-

ties,” in The Journal of Political Economy, Vol. 81, No. 3, pp. 637–654,

1973.

[3] S. Benninga and Z. Wiener, “The binomial option pricing model,” in

Vol. 6 No. 3 1997 Mathematica in Education and Research publication,

pp. 1–9, 1997.

[4] “Option Basics : What are the options.” http://www.

investopedia.com/university/options/option.asp.

Accessed: 2016-01-30.

[5] H. Moritsch, “Computational problems in finance,” in High Performance

Computing in Finance—On the Parallel Implementation of Pricing and

Optimization Models, pp. 53–50, 2006.

[6] H. Moritsch, “Solution procedures,” in High Performance Computing in

Finance—On the Parallel Implementation of Pricing and Optimization

Models, pp. 52–62, 2006.

[7] “Call option.” http://www.investopedia.com/terms/c/

calloption.asp. Accessed: 2016-01-30.

http://www.investopedia.com/terms/d/derivative.asp
http://www.investopedia.com/terms/d/derivative.asp
http://www.investopedia.com/university/options/option.asp
http://www.investopedia.com/university/options/option.asp
http://www.investopedia.com/terms/c/calloption.asp
http://www.investopedia.com/terms/c/calloption.asp

Bibliography 96

[8] “Put Option.” http://www.investopedia.com/terms/p/

putoption.asp. Accessed: 2016-01-30.

[9] “Strike Price.” http://www.investopedia.com/terms/s/

strikeprice.asp. Accessed: 2016-01-30.

[10] P. Glasserman, “Principles of monte carlo,” in Monte Carlo Methods in

Financial Engineering, pp. 1–19, 2003.

[11] “Risk-Free Rate Of Return.” http://www.investopedia.com/

terms/r/risk-freerate.asp. Accessed: 2016-01-30.

[12] “What is Parallel Computing.” http://csis.pace.edu/

˜marchese/SE765/L0/L0b.htm. Accessed: 2016-04-04.

[13] B. Barney, “Why use parallel computing?,” in Introduction to Parallel

Computing, 2014.

[14] B. Barney, “Flynns taxonomy,” in Introduction to Parallel Computing,

2014.

[15] M. O. Tokhi, M. A. Hossain, and M. H. Shaheed, “Classification based

on memory arrangement and communication among pes,” in Parallel

computing for real time signal processing and control, pp. 30–31, 2003.

[16] M. O. Tokhi, M. A. Hossain, and M. H. Shaheed, “Shared memory

multiprocessor,” in Parallel computing for real time signal processing

and control, p. 30, 2003.

[17] M. O. Tokhi, M. A. Hossain, and M. H. Shaheed, “Classification based

on characteristic nature of processing elements,” in Parallel computing

for real time signal processing and control, p. 42, 2003.

http://www.investopedia.com/terms/p/putoption.asp
http://www.investopedia.com/terms/p/putoption.asp
http://www.investopedia.com/terms/s/strikeprice.asp
http://www.investopedia.com/terms/s/strikeprice.asp
http://www.investopedia.com/terms/r/risk-freerate.asp
http://www.investopedia.com/terms/r/risk-freerate.asp
http://csis.pace.edu/~marchese/SE765/L0/L0b.htm
http://csis.pace.edu/~marchese/SE765/L0/L0b.htm

Bibliography 97

[18] M. O. Tokhi, M. A. Hossain, and M. H. Shaheed, “Classification based

on characteristic nature of processing elements,” in Parallel computing

for real time signal processing and control, p. 40, 2003.

[19] M. O. Tokhi, M. A. Hossain, and M. H. Shaheed, “Classification based

on characteristic nature of processing elements,” in Parallel computing

for real time signal processing and control, p. 42, 2003.

[20] M. Forum, “Introduction to mpi,” in MPI, Message-Passing Interface

Standard, pp. 1–9, 2012.

[21] Springer, “Brent’s theorem,” in Encyclopedia of Parallel Computing,

Volume 4, pp. 183–185, 2012.

[22] M. D. McCool, “Parallel computation patterns,” in Structured Parallel

Programming with Deterministic Patterns, 2010.

[23] M. van Steen, “Types of distibuted systems,” in Distibuted Systems:

priciples and paradigsm, pp. 1–14, 2012.

[24] M. van Steen, “Cluster computer system,” in Distibuted Systems: prici-

ples and paradigsm, pp. 17–18, 2012.

[25] M. van Steen, “Grid computer system,” in Distibuted Systems: priciples

and paradigsm, pp. 18–19, 2012.

[26] L. Sterling and K. Taveter, “From individual agents to multiagent sys-

tems,” in The Art of Agent-Oriented Modeling, pp. 10–14, 2009.

[27] L. Sterling and K. Taveter, “Agents and activities,” in The Art of Agent-

Oriented Modeling, pp. 36–40, 2009.

Bibliography 98

[28] “Carnegie Mellon University.” http://www.cmu.edu/. Accessed:

2016-05-04.

[29] “Apple website.” http://www.apple.com/. Accessed: 2016-05-04.

[30] “Daimler AG.” https://www.daimler.com/en/. Accessed: 2016-

05-04.

[31] “HP.” http://www.hp.com/. Accessed: 2016-05-04.

[32] “IBM.” http://www.ibm.com/us-en/. Accessed: 2016-05-04.

[33] “Microsoft.” http://www.microsoft.com/et-ee/. Accessed:

2016-05-04.

[34] “Oracle.” http://www.oracle.com/index.html. Accessed:

2016-05-04.

[35] F. G.-L. de Guevara, “Towards an integrated crowdsourcing definition,”

in Journal of Information Science, pp. 1–14, 2012.

[36] “WorkFusion.” https://www.crunchbase.com/

organization/crowdcomputing-systems#/entity. Ac-

cessed: 2016-01-30.

[37] “Cloudfactory.” http://www.cloudfactory.com/. Accessed:

2016-01-30.

[38] “PS3cluster.” http://moss.csc.ncsu.edu/˜mueller/

cluster/ps3/. Accessed: 2016-01-30.

[39] “cloudfactory.” http://moss.csc.ncsu.edu/˜mueller/

cluster/ps3/. Accessed: 2016-01-30.

http://www.cmu.edu/
http://www.apple.com/
https://www.daimler.com/en/
http://www.hp.com/
http://www.ibm.com/us-en/
http://www.microsoft.com/et-ee/
http://www.oracle.com/index.html
https://www.crunchbase.com/organization/crowdcomputing-systems#/entity
https://www.crunchbase.com/organization/crowdcomputing-systems#/entity
http://www.cloudfactory.com/
http://moss.csc.ncsu.edu/~mueller/cluster/ps3/
http://moss.csc.ncsu.edu/~mueller/cluster/ps3/
http://moss.csc.ncsu.edu/~mueller/cluster/ps3/
http://moss.csc.ncsu.edu/~mueller/cluster/ps3/

Bibliography 99

[40] M. van Steen, “Transaction processing systems,” in Distibuted Systems:

priciples and paradigsm, pp. 20–23, 2012.

[41] “Rystad Energy.” http://www.rystadenergy.com/. Accessed:

2016-04-04.

[42] C. de Schryver, I. Shcherbakov, F. Kienle, and N. Wehn, “An energy

efficient fpga accelerator for monte carlo option pricing with the hes-

ton model,” in An Energy Efficient FPGA Accelerator for Monte Carlo

Option Pricing with the Heston Model, 2011.

[43] “PicsouGrid.” http://www-sop.inria.fr/oasis/personnel/

Ian.Stokes-Rees/projects/PicsouGrid/docs/javadoc/

picsou/grid/PicsouGrid.html. Accessed: 2016-04-04.

[44] M. Research, “Dryad basics,” in Dryad and DryadLINQ: An Introduc-

tion, pp. 1–14, 2009.

[45] “Microsoft drops Dryad.” http://www.informationweek.

com/software/information-management/

microsoft-ditches-dryad-focuses-on-hadoop/d/d-id/

1101390? Accessed: 2016-01-30.

[46] “Nokia Disco.” http://disco.readthedocs.org/en/latest/

intro.html. Accessed: 2016-01-30.

[47] “BOINC.” http://boinc.berkeley.edu/. Accessed: 2016-04-04.

[48] “SETI[AT]HOME.” http://setiathome.ssl.berkeley.edu/.

Accessed: 2016-04-04.

[49] F. C. L. Veiga and P. Ferreira, “Boinc-mr architecture,” in BOINC-MR:

MapReduce in a Volunteer Environment, pp. 3–4, 2012.

http://www.rystadenergy.com/
http://www-sop.inria.fr/oasis/personnel/Ian.Stokes-Rees/projects/PicsouGrid/docs/javadoc/picsou/grid/PicsouGrid.html
http://www-sop.inria.fr/oasis/personnel/Ian.Stokes-Rees/projects/PicsouGrid/docs/javadoc/picsou/grid/PicsouGrid.html
http://www-sop.inria.fr/oasis/personnel/Ian.Stokes-Rees/projects/PicsouGrid/docs/javadoc/picsou/grid/PicsouGrid.html
http://www.informationweek.com/software/information-management/microsoft-ditches-dryad-focuses-on-hadoop/d/d-id/1101390?
http://www.informationweek.com/software/information-management/microsoft-ditches-dryad-focuses-on-hadoop/d/d-id/1101390?
http://www.informationweek.com/software/information-management/microsoft-ditches-dryad-focuses-on-hadoop/d/d-id/1101390?
http://www.informationweek.com/software/information-management/microsoft-ditches-dryad-focuses-on-hadoop/d/d-id/1101390?
http://disco.readthedocs.org/en/latest/intro.html
http://disco.readthedocs.org/en/latest/intro.html
http://boinc.berkeley.edu/
http://setiathome.ssl.berkeley.edu/

Bibliography 100

[50] J. Dean and S. Ghemawat, “Introduction,” in MapReduce: Simplified

Data Processing on Large Clusters, pp. 1–11, 2002.

[51] “Yahoo Finance.” http://finance.yahoo.com/. Accessed: 2016-

03-10.

[52] “Microsoft .NET.” https://www.microsoft.com/net/

default.aspx. Accessed: 2016-03-10.

[53] “MS Sql Server 2012.” https://www.microsoft.com/en-us/

download/details.aspx?id=35575. Accessed: 2016-03-10.

[54] “Windows Sysinternals.” https://technet.microsoft.com/

en-us/sysinternals/psexec.aspx. Accessed: 2016-03-30.

[55] “Xeon 5660 specifications.” http://ark.intel.com/products/

47921/Intel-Xeon-Processor-X5660-12M-Cache-2_

80-GHz-6_40-GTs-Intel-QPI. Accessed: 2016-01-30.

[56] “Intel R© CoreTM i7-4810MQ Processor specifica-

tions.” http://ark.intel.com/products/78937/

Intel-Core-i7-4810MQ-Processor-6M-Cache-up-to-3_

80-GHz. Accessed: 2016-01-30.

[57] J. Dean and S. Ghemawat, “Amdahl’s law in the multicore era,”

[58] “Microsoft Azure.” https://azure.microsoft.com/en-us/

pricing/details/virtual-machines. Accessed: 2016-04-04.

http://finance.yahoo.com/
https://www.microsoft.com/net/default.aspx
https://www.microsoft.com/net/default.aspx
https://www.microsoft.com/en-us/download/details.aspx?id=35575
https://www.microsoft.com/en-us/download/details.aspx?id=35575
https://technet.microsoft.com/en-us/sysinternals/ psexec.aspx
https://technet.microsoft.com/en-us/sysinternals/ psexec.aspx
http://ark.intel.com/products/47921/Intel-Xeon-Processor-X5660-12M-Cache-2_80-GHz-6_40-GTs-Intel-QPI
http://ark.intel.com/products/47921/Intel-Xeon-Processor-X5660-12M-Cache-2_80-GHz-6_40-GTs-Intel-QPI
http://ark.intel.com/products/47921/Intel-Xeon-Processor-X5660-12M-Cache-2_80-GHz-6_40-GTs-Intel-QPI
http://ark.intel.com/products/78937/Intel-Core-i7-4810MQ-Processor-6M-Cache-up-to-3_80-GHz
http://ark.intel.com/products/78937/Intel-Core-i7-4810MQ-Processor-6M-Cache-up-to-3_80-GHz
http://ark.intel.com/products/78937/Intel-Core-i7-4810MQ-Processor-6M-Cache-up-to-3_80-GHz
https://azure.microsoft.com/en-us/pricing/details/virtual-machines
https://azure.microsoft.com/en-us/pricing/details/virtual-machines

	Introduction
	Background and motivation
	Goals
	The Problem Statement
	Outline of the thesis

	Theoretical overview
	Option Pricing
	Parallel and Distributed Computing Ideas

	Parallel Computing
	Definition of Parallel Computing
	Why use Parallel Computing?
	Parallel Architectures
	Parallel Programming Models

	Distributed Computing
	Distributed Computing Systems
	Multi-Agent Systems
	Crowd Computing
	Other types of Distributed Systems

	Related work
	Derivatives Pricing
	Numerical Methods
	Pricing Systems

	Parallel and Distributed Solutions
	Hadoop
	Microsoft Dryad
	Nokia Disco
	BOINC
	MapReduce

	System Design And Implementation
	System Summary
	Asset Data
	Pricing Model
	System Initial Requirements
	High-level Architectural Overview
	System Design
	Implementation
	Asset Historical Data
	Forecast Calculation Agent
	Forecast Agent Sending and Triggering

	Evaluation of approach
	Performance Benchmarks
	Benefits
	Tradeoffs

	Conclusion
	Future work

