
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technology
Department of Software Science

Tallinn 2017

ITC70LT
Seifollah Akbari 156343

AN IMPLEMENTATION OF SYNFUL KNOCK
ATTACK IN CISCO ROUTER AND

FIREWALL DEVICES
Master thesis

Supervisor: Truls T. Ringkjob

2

Author’s declaration of originality
I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.
Author: Seifollah Akbari
[18.05.17]

3

Abstract
Today, communication is the most important part of life, and the most of the devices in
IT networks rely on layer 3 devices; most of them are running on embedded operating
systems to give us network connectivity. However, the latest research has shown that it
is possible to compromise layer 3 devices operating systems to have unauthorized access
to an entire network. Since this is the case, most of the experts think, implementation of
a rootkit inside the layer 3 devices requires government agencies' knowledge, but in this
study, the author will prove that it is possible with an individuals' knowledge to implant
a rootkit into layer 3 devices.
The objective of this master thesis is to propose technical methods for a SYNful Knock
attack implementation on the Cisco routers and firewalls devices. This master thesis
focuses on a new method for SYNful Knock attack implementation in the Cisco ASA
5505 firewall. Moreover, this master thesis proposes technical guidance for
implementation of a SYNful Knock attack on Cisco routers and firewalls devices to give
security researchers a clear picture of an embedded operating systems' security that is
running on most of the critical infrastructure networks.
This thesis is written in English and is 71 pages long, including 6 chapters, 49 figures and
4 tables.

4

Annotatsioon
SYNFUL KNOCK RÜNNAKU RAKENDAMINE CISCO RUUTERITES JA

TULEMÜÜRIDES
Tänapäeva ühiskonnas on kommunikatsioon elu tähtis osa. Enamus seadmed
infotehnoloogias toetuvad 3 kihilistele seadistustele, millest enamus töötab sisseehitatud
operatsiooni süsteemil, mis annavad meile ühenduse võrku. Sellegi poolest on uusimad
uuringud tuvastanud, et on võimalik kompormiteerida 3 kihiselise seadme operatsiooni
süsteemi, et saavutada volitamata õigused kogu võrku. Sellest tulenevalt on paljud
eksperdid kindlad, et avalikkust tuleks teavitada võimalikkusest rootkiti rakendamisest 3-
kihlistes seadmetes. Selles töös tõestab autor, et indiviidil on võimalik rootkiti
sisendamist 3-kihilisse seadmesse.
Magistritöö eesmärk on pakkuda tehnilisi meetodeid SYNful Knock rünnaku
rakendamisel Cisco ruuteritel ja tulemüüridel. Magistritöö fokusseerub uutele
meetoditele SYNful Knock rünnaku raknendamisel Cisco ASA 5505 tulemüürile ja
pakub tehnilist tuge ja soovitusi küberturve huvilistele, mis puudutavad SYnful knock
rünnakut Cisco ruuteritele ja tulemüüridele ning nende opertatsiooni süsteemidele, mis
on kõige kriitilisemad osad võrgu infrastruktuurides.
Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 71 lehelküljel, 6 peatükki, 49
jooniseid, 4 tabelit.

5

Table of abbreviations and terms
Abbreviation Term
IT Information technology
ASA Adaptive Security Appliance
IOS Originally Internetwork Operating System
PowerPC Performance Optimization With Enhanced RISC –

Performance Computing
ARM Advanced RISC Machines
RISC RNA-induced silencing complex
OS Operating system
FTP File Transfer Protocol
WebVPN Web-based virtual private network
DoS Denial of service
SSL Secure Sockets Layer
VPN Virtual private network
DOM Document Object Model
URL Uniform Resource Locator
IKEv1 Internet Key Exchange version 1
IKEv2 Internet Key Exchange version 2
CIFS Common Internet File System
ELF Executable and Linkable Format

6

MIPS Million instructions per second-based
CLI Command-line user interface
DOS Disk operating system
MBR Master boot record
RAM Random-access memory
ARP Address Resolution Protocol
MITM Man-in-the-middle
DNS Domain Name System
SNMP Simple Network Management Protocol
HTTP Hypertext Transfer Protocol
TFTP Trivial File Transfer Protocol
OSPF Open Shortest Path First
BGP Border Gateway Protocol
IDS Intrusion detection systems
IPS Intrusion prevention systems
NSA National Security Agency/
ROM Read-only memory
ROMmon ROM Monitor mode
gdb GNU Debugger
RAR Roshal Archive
IDA Pro Interactive Disassembler Pro

7

GUI Graphical user interface
r2 Radare2
PE Portable Executable
MZ Mozart compressed
CC C compiler
apt Advanced Package Tool
PPC PowerPC
QEMU Quick Emulator
md5 Message digest 5
SFX self-extracting executable
hte Hex editor
SPARC Scalable Processor Architecture
dd Disk destroyer
rodata Read-only data
XREF eXternal REFerence
bne Branch if Not Equal
opcode Operation code
beq Branch if EQual
VTY Virtual teletype
scp Secure Copy Protocol
sha512 Secure Hash Algorithm 512

8

rootfs root filesystem
js Jump if sign
jns Jump if not sign
LAM Logical Memory Address
CPU Central processing unit
SVR4 System V Release 4
CRC Cyclical Redundancy Checking
gzip GNU ZIP

9

Table of contents
1. Introduction .. 15

1.1. Motivation .. 15
1.2. Problem statement .. 15
1.3. Research Question ... 16
1.4. Contribution ... 16
1.5. Methodology .. 17
1.6. Thesis Organization ... 18

1.6.1. Introduction .. 18
1.6.2. Related work ... 18
1.6.3. Technical background... 18
1.6.4. Implementation of SYNful Knock Attack in Cisco Router IOS Image ... 19
1.6.5. Implementation of SYNful Knock Attack in Cisco ASA Firewall 19
1.6.6. Conclusions and Future Work .. 19

2. Related work ... 20
2.1. Cisco router .. 20
2.2. Cisco firewall ... 20

3. Technical Background .. 22
3.1. Cisco IOS Architecture .. 22
3.2. Cisco ASA Software Architecture ... 23
3.3. Overview of Cisco IOS Attack Methods ... 23

3.3.1. Protocol-based attacks .. 24
3.3.2. Functionality attacks ... 24
3.3.3. Binary exploitation ... 24
3.3.4. Binary Modification (SYNful Knock Attack) .. 25

3.4. Overview of Cisco ASA Software Attack Methods .. 26
3.5. Attack Model ... 27

10

3.6. Preparing testing environment ... 28
3.6.1. Extraction of router/firewall operating system ... 29
3.6.2. Analyzing the decompressed Image using the disassembler 29
3.6.3. Pack everything and deliver to victim devices ... 29

4. Implementation of SYNful Knock Attack in Cisco Router IOS Image 30
4.1. Prepare the test environment .. 30

4.1.1. The Disassemblers .. 31
4.1.2. Dynamips-GDB-Mod ... 32
4.1.3. Binutils / Essentials .. 32
4.1.4. QEMU .. 32

4.2. Unpacking process ... 32
4.3. Analyzing process .. 38
4.4. Modification Process ... 42
4.5. Repacking Process ... 44
4.6. Bypassing Cisco IOS integrity checking system mechanisms 45

5. Implementation of SYNful Knock Attack in Cisco ASA Firewall 48
5.1. Prepare the test environment .. 48

5.1.1. Linux machine: ... 48
5.1.2. Disassembler tool ... 49
5.1.3. Cisco ASA 5505 hardware: .. 49

5.2. Unpacking process ... 49
5.2.1. Unpacking method verification .. 50

5.3. Analyzing process .. 53
5.4. Modification Process ... 56
5.5. Repacking Process ... 60
5.6. Bypassing Cisco ASA integrity checking system mechanisms 63

6. Conclusions and Future Work .. 66

11

6.1. Conclusions .. 66
6.2. Future work .. 67

References .. 68

12

List of figures
Figure 1 unzip command output ... 33
Figure 2 hte warning ... 34
Figure 3 ELF/header ... 35
Figure 4 magic number and checksums ... 36
Figure 5 ll command output for IOS .. 36
Figure 6 IOS size hex calculation to decimals ... 37
Figure 7 dd command output .. 37
Figure 8 IDP Pro processor selection ... 39
Figure 9 running Dynamips and Telnet .. 40
Figure 10 % Bad passwords ... 41
Figure 11 "Password: " XREF value .. 41
Figure 12 Start address of code .. 42
Figure 13 Calculation to find bne address .. 43
Figure 14 bne chnaged to beq instruction ... 43
Figure 15 Cisco router checksums error ... 44
Figure 16 zip image .. 45
Figure 17 Calculate checksums .. 46
Figure 18 create a file to run on the Cisco router hardware ... 46
Figure 19 Upload IOS to router .. 47
Figure 20 ASA Software Features .. 50
Figure 21 binwalk output .. 50
Figure 22 Split ASA Software .. 51
Figure 23 Put split files together .. 51
Figure 24 "rootfs.img" extraction from binary file ... 52
Figure 25 Extraction of ASA Linux file system from rootfs.img 52
Figure 26 Enable command in ASA ... 53

13

Figure 27 ASA's lina file strings command output .. 54
Figure 28 Load lina into IDA Pro disassembler ... 54
Figure 29 IDA String .. 55
Figure 30 Enable command output messages in IDA .. 55
Figure 31 XREF value of "Access denied." ... 55
Figure 32 code section of "Access denied." ... 56
Figure 33 enable mode JUMP instruction .. 56
Figure 34 lina file start and base addresses .. 58
Figure 35 "js" instruction exact address in the binary file ... 58
Figure 36 Print "B380A" address with the objdump command 58
Figure 37 find command in hte for "js" .. 59
Figure 38 The orginal value of "js" .. 59
Figure 39 Change "js" to "jns".. 59
Figure 40 "B380A" address change result ... 60
Figure 41 Packing ASA directory structure into rootfs.img ... 61
Figure 42 rootfs.img file type ... 61
Figure 43 gzip on rootfs.img file .. 62
Figure 44 gzip data stat and end point .. 63
Figure 45 copy new rootfs.img with dd command in the ASA software 63
Figure 46 Upload a new ASA software in ASA hardware ... 64
Figure 47 Verify command in the ASA.. 64
Figure 48 Change ASA's hash value .. 65
Figure 49 Verify command for changed hash ASA software .. 65

14

List of tables
Table 1 List of published vulnerabilities on the Cisco ASA firewall 21
Table 2 SYNful knock attack vulnerability risk analyze .. 27
Table 3 radare2 installation in Ubuntu 16.04 ... 32
Table 4 JS and JNS instruction synonyms [49] .. 57

15

1. Introduction
In this section, the motivation for the research is described. Also, the problem statement
and research question are defined, along with additional issues that have to be discussed.
Moreover, the contribution and methodology of this study will be described. Finally,
thesis organization will be described in the text version of the outline.

1.1. Motivation
In today's digital era, layer 3 devices are the main components of the network
environment, and all packets are routed by them. However, studies have shown that most
system administrators are not keen to audit their layer 3 devices [1]. Since this is the case,
layer 3 devices are one of the main targets of attackers, and there are various
vulnerabilities on these devices. In this manner, this study provides an overview of layer
3 vulnerabilities in Cisco devices. Cisco was the first player in the layer 3 devices market,
and it currently has roughly 60 percent of the market shares [2]. Moreover, the Cisco IOS
and ASA Software do not have the possibility to run additional software to audit their
security [3], like an antivirus application. Also, this study gives the details of the SYNful
Knock attack and introduces a new method for the SYNful Knock attack on Cisco's latest
software (router and firewall); by the proposed method, if an attacker compromises the
Cisco layer 3 device, s/he can put 60 percent of the running networks at risk. Moreover,
this study gives details of vulnerabilities in Cisco layer 3 devices.

1.2. Problem statement
In the implementation of an advanced initial persistent threat, attackers focus on layer 3
devices to compromise them for the sake of deploying their malicious code to the entire
network [4]. That can be done either with remote exploitation, local exploitation, or social
engineering attack methods. Even states are trying to have a root key for the all layer 3
devices. However, studies have shown that the possibility of advanced persistent threats
in the layer 3 devices is high because they are the main backbone of the networks, and all
packets are routed by them. There has been a real case of the detection of an advanced
persistent threat in the layer 3 devices[5]. Moreover, there are some solutions out there
for detecting an advanced persistent threat in the layer 3 devices [6], but they work on a
limited number of devices and cases to identify compromised layer 3 devices. Other than

16

this, identifying compromised layer 3 devices is complex because of integrity-bypassing
mechanisms in the attack scenarios. That makes all layer 3 devices vulnerable in case of
SYNful knock attacks. Currently, most of the vendors use detection systems for
compromised versions of layer 3 devices' operating systems, but as mentioned, there is a
solution to bypass that detection system. In today's world, various types of layer 3 devices
are used in different architectures such as x86, power-PC, or even ARM that could be a
case of the complexity of deploying the attack. This thesis aims to implement SYNful
Knock attacks on Cisco devices for the sake of proving the existence of the rootkits in the
embedded OS.

1.3. Research Question
If the weakest link in the network is one of the network devices, this becomes a critical
issue for the IT infrastructures. The author feels that network devices can be extremely
vulnerable to advanced persistent threats. There are plenty of papers and studies for
rootkits in current operating systems like Windows [7], Linux [8], and Mac [9], but there
is a lack of published research about how weak embedded systems are in advanced
persistent threats. Current security audit tools are not useful in the detection of rootkits in
the embedded operating systems. Besides, there might be a much more advanced
persistent threat in the embedded operating systems that we do not have any idea about
because embedded operating systems are closed source, and we cannot evaluate their
integrity with third-party software. For the research question, the author would raise
following questions:

 How secure are network devices regarding embedded rootkits? That is, running an
embedded operating system.

 How can we elevate the weakness of the Cisco router and firewall software images
from the advanced persistent threat point of view?

1.4. Contribution
Since there is no clear implementation of SYNful Knock attack on Cisco router IOS
image in the literature, and there is no available implementation of SYNful Knock attack
on Cisco firewall software image in the literature, this study provides a basis for the

17

approach. Moreover, the study provides a new attack method for applying SYNful Knock
attack in the Cisco ASA software that is an entirely novel study in this domain, and since
today we could not find any kinds of literature about it. Also, a lab environment to test,
verify, and analyze the attack based on the SYNful attack to observe the advanced
persistent threat of the approach. The outcome of the study is a guidance and discovery of
techniques that apply SYNful knock attack in the Cisco router and firewall. The resulting
modified router IOS and ASA software can be tested on the Cisco router 2600 and Cisco
ASA 550x series.
To sum up, the main problems addressed by this thesis are:

 To prove it is possible to develop a rootkit inside the Cisco router and firewall
which can be used as an advanced persistent threat inside the Cisco router and
firewall images without government agencies' knowledge.

 To propose a new method for applying a SYNful Knock attack in Cisco ASA
image that could be hidden from third-party integrity-checking software.

 To implement a proposed attack method.

1.5. Methodology
Concerning the Cisco router side, the author would like to study the monolithic
architecture of the Power-PC platform so as to identify a Cisco IOS image structure. The
primary goal is to find weaknesses in the IOS image structure so as to use it for malicious
code implantation. Moreover, the Cisco unit has a mechanism for detecting compromised
IOS image files. In this case, the author would like to study it so as to find a new method
for bypassing Cisco's detection mechanism. Finally, we will implement a method of the
SYNful Knock attack in the Cisco IOS image by bypassing the detection method feature
on it.
Regarding the Cisco firewall side, the author would like to study the Cisco ASA Linux
embedded OS architecture that runs the ASA OS process and would look into the x86
platform so as to identify the Cisco ASA image structure. The primary goal is to find
weaknesses in the ASA software image structure so as to use these for malicious code
implantation. Moreover, the Cisco ASA has a mechanism for detecting compromised

18

software image files. In this case, the author would like to study it so as to find a new
method for bypassing Cisco's detection mechanism. Finally, we will implement a method
of the SYNful Knock Attack in the Cisco ASA image by bypassing detection methods
featured on it.

1.6. Thesis Organization
In content of this section, the thesis organization will be described. This thesis will contain
mainly six sections:

 Introduction
 Related work
 Technical background
 Implementation of SYNful Knock Attack in Cisco Router IOS Image
 Implementation of SYNful Knock Attack in Cisco ASA Firewall
 Conclusions and Future Work

1.6.1. Introduction
The Introduction part contains the motivation, problem statement, and research questions.
Moreover, the study contribution is provided, and the research methodology is described.
Additionally, it includes the thesis organization section.
1.6.2. Related work
The related work section discusses the literature review on the Cisco router IOS and ASA
software vulnerabilities that have already been done.
1.6.3. Technical background
The technical background section discusses the Cisco IOS and ASA image architecture
details, a general overview of the Cisco router and firewall attacks, and explains
the SYNful Knock attack in a detailed way. In addition to this, this section describes how
to prepare a testing environment for the SYNful Knock attack.

19

1.6.4. Implementation of SYNful Knock Attack in Cisco Router IOS Image
In the implementation of SYNful Knock attack in the Cisco Router IOS Image section, a
solution is proposed for the given problem in the problem statement. Moreover, the
solution is implemented in the router hardware environment.
1.6.5. Implementation of SYNful Knock Attack in Cisco ASA Firewall
In the implementation of SYNful Knock Attack in the Cisco ASA firewall section, a new
solution has been proposed for the given problem in the problem statement. Moreover,
the solution has been implemented in the Cisco firewall hardware.
1.6.6. Conclusions and Future Work
In the last section, the conclusion and future work segment summarizes the entirety of
this thesis and declares the study results. Moreover, it includes possible future work that
can possibly build upon this study.

20

2. Related work
In the content of this chapter, current research on this topic will be reviewed and
measured. The chapter consists of two parts. The first part describes, in detail, the SYNful
knock attack prior to the work on the Cisco router devices. The second part describes
similar, related work on the Cisco firewall devices since there is no
previous work out there covering the SYNful knock attacks on the Cisco firewall devices.

2.1. Cisco router
The FireEye Company [10] issued an alert in Sept. 2015 on the SYNful knock attack that
targeted the Cisco IOS. On the other hand, we can say that the SYNful knock is a new
attack method, so we may not find much related work on this issue [11]. Felix "FX"
Linder analyzes several explanations of and techniques for handling vulnerabilities, but
there is no proper documentation about them [12]. Lynn provided a brief overview of IOS
shellcode and exploitation, and he worked on file-injection attacks in Cisco IOS [13].
Besides Lynn, Uppal [14] worked on IOS bind Shellcode attacks. Davis published Cisco
IOS FTP server remote exploitation [15]. In another piece [16], Muniz addressed the
rootkit implementation in Cisco IOS. The biggest problem in related works is that most
of them talk about a possible way to apply exploitation in Cisco devices, but there is no
source code, documentation, or white paper about their work. In this situation, we can say
that we cannot prove their studies. However, we assume that they have done their work,
and for business reasons, they will not publish the technical aspects of their study. For
example [3], they propose a two-phase attack strategy to kill the Cisco diversity problem
that we mentioned, but there is no clear documentation about their claim.

2.2. Cisco firewall
Unfortunately, there was no reported SYNful Knock attack on the Cisco ASA's firewall
until today, but there are some published vulnerabilities regarding Cisco ASA's firewall
(Table 1).

21

Table 1 List of published vulnerabilities on the Cisco ASA firewall
Year Description Author Attack method
2009[17] WebVPN Cross Site Scripting

Vulnerability
Bugs NotHugs Cross-Site Scripting

2009[18] Denial of service Daniel Clemens DoS
2009[19] Clientless SSL VPN DOM

Cross-Site Scripting
Trustwave's
SpiderLabs

Cross-Site Scripting

2009[20] VPN SSL module Clientless
URL-list control bypass

David Eduardo
Acosta Rodriguez

remote exploits

2003[21] Ethernet Information Leak Prdelka DoS
2016[22] IKEv1 and IKEv2 Exodus Intelligence Buffer Overflow
2016[23] Authentication Bypass Equation Group Authentication Bypass
2016[24] Privilege Escalation Shadow Brokers Privilege Escalation
2016[25] Authentication Bypass Sean Dillon Authentication Bypass
2017[26] WebVPN CIFS Handling

Buffer Overflow
Google Security
Research

DoS

There is a study on the Cisco ASA software security [27] which was published at a
Ruxcon computer security conference [27] in 2014; it focuses on Cisco ASA's Linux OS
manipulating, and it has a lack of manipulating Cisco ASA's software firewalling module
concerning editing a binary file. In this study, the author will be covered binary file
manipulating study part that is missing in the Cisco ASA prior research works.

22

3. Technical Background
This section gives the Cisco router and firewall architecture details, a general overview
of Cisco router and firewall attacks, and explains a SYNful Knock attack in a detailed
way. Additionally, this section states how to prepare a testing environment for a SYNful
Knock attack.

3.1. Cisco IOS Architecture
The Cisco IOS image uses a monolithic architecture, which means it uses one big ELF
[28] file. Everything is packed and integrated inside the ELF file, and it does not have
any dependency on an external library or module, like a Linux/Windows operating system
does [14].
Cisco layer 3 devices that are running IOS represent a vital part of the world's
communication infrastructure[29]. Moreover, they are running in the most critical
networks and critical infrastructures like the energy sector, nuclear reactors, the water and
wastewater systems sector, the military sector, and the government facilities sector. In
this situation, we can raise the following questions: Are Cisco layer 3 devices secure
regarding embedded rootkits? How can we identify that current systems have not been
compromised? In addition, from the attacker's point of view, if we find the zero-day attack
on them, we could compromise most of the critical networks and infrastructures in the
world. For this matter, the problem is that Cisco's IOS diversity doesn't mean that Cisco
Company has a diversity mechanism to protect from zero-day attacks. It says that this
protection method was developed by luck [3].
As Felix Linder and others have brought up [30], there are more than 300,000 one-of-a-
kind releases of Cisco IOS. Diversity in hardware architecture, hardware technology, IOS
features, license agreements, and some other basic/fundamental operating system
functionality all lead to building high diversity in IOS operating systems [3].
As we mentioned, the Cisco IOS image has a monolithic architecture that has some
drawbacks. First of all, based on a single image, all processes have access to others' virtual
memory. Moreover, there is no protection between virtual memory for processes. In the
worst-case scenario, an attacker could use a simple exploit to compromise all processes
that are running on the IOS with no memory protection. Finally, there is an issue with the

23

Cisco IOS scheduler. Specifically, it means that a current process that is scheduled to run
may decide to give access to other processes that could run [16].
Usually, Cisco IOS images are 32 bits with the ELF file format. These have been
developed to run on MIPS-based or PowerPC-based hardware [16]. In the Cisco IOS
image, the ELF file format has changed so as to hide information in case of illegal access;
for example, in the ELF header part, you cannot find meaningful flags such as a hardware
flag that could help you determine the current image hardware architecture (MIPS or
PowerPC). We can say that this could be Cisco's method of protection for preventing the
Cisco IOS image from being dissembled.

3.2. Cisco ASA Software Architecture
The Cisco ASA hardware is a black box appliance, which means it does not have any
standard input/output; we can just have access to the serial port to the software CLI
interface that is a limited command line. Moreover, the hardware architecture is
Intel, which means in the case of proper BIOS and standard input/output we could install
standard OS in it[31] [32].
The Cisco ASA image uses embedded OS architecture, which means it uses DOS/MBR
boot sector; once firewall starts, the image extracts Linux file system in the RAM.
Everything is packed and integrated inside the image file, and it does not have standard
image format like embedded Linux image format. As mentioned, the Cisco ASA software
runs on a Linux-embedded system, which has some drawbacks. First of all, based on
Linux host, we could study Linux OS vulnerabilities to apply in ASA software. Moreover,
there is no versioning for hardware, which means we can upload ASA software in all
ASA hardware without limitation, which we have on the Cisco router. The Cisco ASA
software images are 32 bits with the image file format. These have been developed to run
on Intel hardware. In the Cisco ASA software image, the image file format has changed
so as to hide information in case of illegal access; it might be Cisco's method of preventing
illegal access to the Cisco ASA software image[27].

3.3. Overview of Cisco IOS Attack Methods

24

There is a wide variety of attack methods that put the Cisco IOS security at risk. Some of
them are related to the Cisco IOS functionality, and some of them are related to human
mistakes or third-party devices. In this paper, we will discuss the security risks in which
the Cisco IOS is involved. First of all, we can point out the design failure in embedded
OS attacks like buffer overflows and cross site scripting. In addition, Cisco has a limited-
resources issue that could be shown in the memory-corruption technique to attack it;
memory corruption is the most common bug in the Cisco IOS [12]. Finally, based on the
Felix study, we can categorize the Cisco IOS attacks into three categories: protocol-based
attacks, functionality attacks, and binary exploitations [33], which are discussed in the
following.
3.3.1. Protocol-based attacks
Protocol-based attacks are a well-known attack method. It requires that the attackers
participate in the network, and they need to talk to the protocol that the router uses. This
means the attacker should have a layer 2 access to the network. There are some popular
attacks in this category such as ARP poisoning (also known as the Man-in-the-Middle)
and DNS poisoning (also known as DNS spoofing).
3.3.2. Functionality attacks
In most cases, functionality attacks are related to the human factor. For example, people
use still weak passwords on the Cisco IOS. Below, you can find the most popular
functionality attacks:

 Weak passwords
 Weak SNMP communities
 Telnet access

3.3.3. Binary exploitation
Binary exploitation on Cisco has not been seen on published exploits, but that does not
mean that there has not been a case of binary exploitation on Cisco. It means attackers
do not like to publish it. We can put this kind of attack into two subcategories:

 Service vulnerabilities(HTTP, FTP, and TFTP)

25

 Protocol vulnerabilities(OSPF and BGP)
3.3.4. Binary Modification (SYNful Knock Attack)
There is a common misunderstanding about exploitation. Most of the time, when we are
talking about exploitation, people think it is a remote exploit. However, remote
exploitation is a way to deliver an exploit code to target a device remotely. On the other
hand, we could deliver an exploit code to target locally.
In this section, we will discuss binary modification, which is one of the binary
exploitation types. First of all, with the binary modification method, we can modify a
binary file that is running on a device, and then, we can replace it with the original binary
file. Moreover, we can implant malicious code in the binary file to open a remote access
to the infected device in which the binary file is running, for example. In addition to that,
in the embedded systems like routers, there is no file integrity checking system. Then, we
can upload our modified binary file with malicious code in the layer 3 device. Finally,
without leaving any footprints in security devices like a firewall, antivirus, or IDS/IPS,
we can deliver malicious code into a binary file such as the Cisco IOS image.
In this paper, we will talk about a binary modification of the Cisco IOS image that is
called SYNful Knock attack. First of all, let's have a look at some of the cyber security
experts' ideas about the SYNful Knock attack:
“Cybersecurity experts including DeWalt claim that only a select group of nations with
cyber intelligence capabilities are capable of sophisticated attacks on network equipment
such as routers. The countries include China, Israel, Britain, Russia and the United
States.”[34]
“As I wrote then, this is very much the sort of attack you‘d expect from a government
eavesdropping agency. We know, for example, that the NSA likes to attack routers. If I
had to guess, I would guess that this is an NSA exploit.”[11]
“But the nature and flexibility of the tool says pretty clearly it‘s not garage-based hackers
messing around with personal details and such. That‘s not to say such people couldn‘t do
it, it‘s just that they wouldn‘t likely do it this way. This sounds like a nation state, and the
two biggest suspects would be the NSA and the Chinese, depending on the flavor of your
own personal paranoia.”[35]

26

“In fact, it is suspected that a nation state could be behind the attack, given the
sophistication required to reverse engineer the ROMmon image and the effort of installing
it without a zero-day.”[36]
SYNful Knock attacks are a new attack method that has put all security devices at risk of
the bottleneck. Nowadays, most countries spend a significant part of their IT budgets on
securing the IT infrastructure [37], but SYNful Knock attacks could squash all budgets
for investing in network security. As a matter of fact, a SYNful Knock attack can discard
all safety criteria because everything goes through the network devices. Also, this attack
aims to compromise layer 3 network devices or even security appliances. Moreover, this
is why it could be a hot security topic in cyber security domains in regard to studying it
so as to clarify the side effects of a SYNful Knock attack at the national level. In this
paper, we will talk about an offensive aspect of SYNful Knock attacks such that attackers
seek to get more recognition for the devastating consequences of their actions. Let us
imagine that an attacker deploys a SYNful Knock attack in a nation's core router. As a
result, the attacker could get all the digital data from that country. For example,
Estonia[38], which relies on digitalization, could be targeted. It would be vulnerable to
this kind of attack.

3.4. Overview of Cisco ASA Software Attack Methods
As well as the Cisco router, we can apply following attacks methods to the Cisco ASA
device, which we mentioned in a detailed way.

 Protocol-based attacks
 Functionality attacks
 Binary exploitation
 Binary Modification (SYNful Knock Attack)

Until today, we have not found a binary modification (SYNful Knock attack) case on the
Cisco ASA device, and in this study, we are focusing on this attack method to deploy on
the Cisco ASA firewall.

27

3.5. Attack Model
In this section, we are going to describe SYNful Knock attack scenarios and their results.
First of all, in the (Table 2) we illustrated SYNful knock attack vulnerability risk analyze.

Table 2 SYNful knock attack vulnerability risk analyze

 SYNful Knock Attack

Business Asset All network traffic data of parties

Information System Asset Firewall, Router

Security criterion CIA triad (Confidentiality, integrity, and availability)
of network traffic data.

Risk Highly skilled hacker/team, national intelligence
service can deliver infected OS to the target system
via social engineering methods, send desired network
data to C&C later to use data mining techniques to
extract valuable information by taking advantage of
the lack of integrity checksum control of Cisco OS.
This kills CIA triad of network traffic data

Impact Network data is not available, or its integrity and
confidentiality are not liable.

Event Highly skilled hacker/team, national intelligence
service can deliver infected OS to the target system
via social engineering methods, send desired network
data to C&C later to use data mining techniques to
extract valuable information by taking advantage of
the lack of integrity checksum control of Cisco OS.

Vulnerability Lack of integrity checksum control of Cisco OS

28

Thread Highly skilled hacker/team, national intelligence
service can deliver infected OS to the target system
via social engineering methods, send desired network
data to C&C later to use data mining techniques to
extract valuable information.

Thread Agent Highly skilled hacker/team, national intelligence
service, etc.

Attack Method Deliver infected OS to the target system via
social engineering methods. Send desired network data to C&C. Use data mining techniques to extract
valuable information.

Security Requirements Implementation of integrity checksum control of
Cisco OS.

As we mentioned before, a SYNful Knock attack is a kind of binary modification method
that requires broad practical knowledge in open source, reverse engineering,
PowerPC/x86 Assembly language, Cisco Networking, and Shellcoding to deploy the
attack. In addition to it, working with these topics sometimes is confusing for individuals,
and it requires a lot of time to overcome an issue that is integrated with some of that
knowledge. In attack scenarios, we will follow some steps that are mentioned below:

3.6. Preparing testing environment
We need a testing environment to check our work. In a short time, we could do it in a real
router device, but it requires roughly an hour to upload a modified image in a Cisco router
to see the result. For a testing environment, we need tools that are described below:

 Dynamips-gdb-mod[39]: It gives a possibility to run the Cisco IOS in a virtual
environment, but as well as Dynamips, we need a debugging mode, so we should
use the dynamips-gdb-mod version of it.

 PowerPC version of Linux[40]: we need this to check the PowerPC assembly
language code that we are going to implant in the Cisco IOS image.

29

 Disassembler: We would prefer to use an open-source version of the disassembler
called Radare2[41]. Moreover, the main purpose of using the disassembler is to
follow up on the assembly code for putting a malicious code in the IOS image.

3.6.1. Extraction of router/firewall operating system
In this section, we need to check the existing Cisco IOS hash checksums because, after
changing the image, we can calculate new hashes to change the originals. Basically, in
Cisco router hardware, there is a hash-checking system that does not allow us to load
modified Cisco IOS images with incorrect hashes; on the other hand, we can load it into
Dynamips because that is the virtual environment and does not have hash-checking
mechanisms. In addition to that, we should unzip Cisco IOS images with an application
such as WinRAR[42]. Finally, we should change the ELF header flag to PowerPC to run
it in Dynamips.
3.6.2. Analyzing the decompressed Image using the disassembler
We might use a decent disassembler to analyze the IOS image assembly code so as to
find a function to manipulate it. We use Radare2 for this matter. Moreover, we need to
find read-only data in the image file so as to change it with our malicious code[3].
3.6.3. Pack everything and deliver to victim devices
As we mentioned before, to pack a modified IOS image, you should calculate new hashes,
and if everything is correct, you may upload the modified image to the real router and get
the result; otherwise, you may get an error message in Cisco's ROMMON mode that
means you could not calculate the valid hashes.
You may act as an insider[43] or use social engineering[44] methods to deliver a modified
IOS image to the victim. As we mentioned earlier, we are working on local binary
exploitation; that means my study is about deploying a rootkit on the Cisco IOS image so
as to challenge its security with a SYNful Knock attack.

30

4. Implementation of SYNful Knock Attack in Cisco
Router IOS Image
In the content of this chapter, the implementation of the Cisco router's IOS image's
compromisation will be described. This block will contain information about technical
methods and tools that have been used to apply this attack. The content of the chapter is
divided into the six following parts:

 The first part describes all the tools and environments that are needed. The second
part describes the professional techniques of the unpacking process for the binary
image.

 In the third part, the Cisco IOS image analyzing process will be covered, which
could come up to have a clear picture of the IOS's code structure.

 The fourth section describes the modification process of the Cisco IOS image,
which is a necessary part of image modification.

 In the next section, we will be faced with the whole repacking process, which is
important to create an IOS image for running on the Cisco router hardware.

 Finally, we will go through the bypassing of the Cisco IOS integrity checking
system mechanisms, which can help us to run an IOS image on the router without
any issue.

In this chapter, we use Grid32 Security team whitepaper [45] to apply the same attack on
the different IOS version, and also we improve their whitepaper to have straightforward
guidance for implementation of SYNful knock attack on the Cisco IOS image.

4.1. Prepare the test environment
In content of this section, the author will concentrate on describing and the installation of
using tools. There are some categories of tools for implementation a part like Linux,
digital forensics, virtualization, and debugging. We need a testing environment to check
our work. In a short time, we could do it in a real router device, but it requires roughly an
hour to upload a modified image in a Cisco Router and to see the result. For a testing
environment, we need tools that are described below:

31

4.1.1. The Disassemblers
In this study, the author uses two different disassemblers: Radare2 [41] and IDA Pro .
The Radare2 would be preferred to use because it is an open-source version of the
disassembler, and the IDA Pro also has a community version beside it has quite handy
GUI. Moreover, the main purpose of using the disassembler is to follow up on the
assembly code for putting malicious code in the IOS image. Radare2 (r2) is a framework
for reverse-engineering and analyzing. It has a set of tools that can be used collectively
or separately. In this study, we will use it as a disassembler and debugger to patch
programs and convert numbering systems. In the below, all Radare2 tools are described:

 r2: Hexadecimal editor, disassembler and debugger.
 radiff2: Binary diffing utility
 rabin2: We will use it to get information about ELF/PE/MZ and CLASS files.
 rarun2: Running programs with a different environment.
 rafind2: Hexadecimal editor.
 rahash2: Hashing utility.
 rax2: Converter numbering systems.
 ragg2-cc: Shellcode compiler in CC.
 ragg2: Compiler for x86-32/64 and ARM environment
 rasm2: Assemble and disassemble files or hex pair strings.
 r2agent: Limited web interface for radare2.

For installation of radare2, there are two options: install from source code and pre-
compile version. In the following, the pre-compile version in Ubuntu 16.04 is introduced
[46].

32

Table 3 radare2 installation in Ubuntu 16.04

apt-get install radare2 libradare2-0.9.6:amd64 libradare2-0.9.6-dbg:amd64
libradare2-common libradare2-dev radare2-plugins

For installation of IDA Pro, it pretty straightforward, like the Windows software
installation process, and it is not a big deal [47].
4.1.2. Dynamips-GDB-Mod
Dybamips-gdb-mod gives a possibility to run the Cisco IOS in a virtual environment;
however, as well as needing Dynamips, we need a debugging mode, so we should use the
dynamips-gdb-mod version of it. For installation, we could use standard source code from
github (https://github.com/Groundworkstech/dynamips-gdb-mod) and compile it.
4.1.3. Binutils / Essentials
The GNU Binary Utilities are a couple of programming tools for creating libraries, object
files, and assembly codes. In this study, we need these tools for implementation and
testing purposes. For example, the "objdump" command gives a possibility to copy a
specific part of a binary file with a wide variety of options. As far as the author's working
on PowerPC and multiarch architectures, it requires installing the PPC, multiarch, and
GNU versions of Binutils. The build-essential package contains a set of tools for building
a Linux package.
4.1.4. QEMU
Since we are going to work on PPC architecture, it requires installing the PPC version of
Linux because of the purposes involved. For this matter, the author would install QEMU
to emulate and virtualize the PPC version of Linux on it.

4.2. Unpacking process
In the content of this part, the author will demonstrate profoundly concerning the
technical side of modifying a Cisco IOS image. The following topic will be covered in
this section:

33

 Unpacking process: We are going to explain the IOS binary file structure and
demonstrate unpacking techniques, how to modify ELF headers, how to find
magic numbers, and how to find md5 checksums.

First of all, we need to download the Cisco IOS image from the Cisco download
center. To do this, we should purchase the IOS from Cisco. The author uses the Linux
"unzip" command to extract the IOS image (Figure 1). Supposedly, there are a couple of
things in the output of the command. These items are described below:

 Archive: Orginal file name is mentioned.
 warning [c2600-i-mz.123-9.bin]: This section included valuable data information

of checksums for the compressed and uncompressed images, which is needed for
future steps. This "16772 extra bytes" part says that there are 16,772 bytes of the
additional header that consists of checksums. Later, we will use them for
a few reasons [45].

 inflating: Extracted file name is mentioned.

Figure 1 unzip command output

In this section, the author will explain IOS binary file structure. This explanation may help
us to understand some exclusive terminology in this area. IOS binary files have eight
parts that are mentioned in the section below:

 Elf header: The ELF header consists of information about the binary file,
such as machine type and program headers, that are important in the modification
process.

 SFX: The SFX is code in the Cisco IOS boot procedure that copies memory and
unpacks the image. In this section, the checksum of the IOS image is stored.

 Magic number(0xfeedface): The magic number shows the identify, a file format
that, for the Cisco IOS image file, is 0xfeedface.

34

 PKzip data: It identifies PKZipped header data.
 Uncompressed image size:
 Compressed image size:
 Compressed image checksum:
 Uncompressed image checksum:

There are a couple of concepts necessary to know about them.
First, it is a ZIP file that it has some headers on it; all ZIP programs can find those headers
since they can extract ZIP files. Secondly, it is an ELF header that consists of data about
characteristics of the binary file, like its platform. Moreover, the SFX data included size
variable and ZIP data. Finally, once we use the unzip command, we can unzip a version
of the IOS image that requires changing some header data to run it on the Dynamips and
disassembler. For this matter, it requires editing ELF headers; the author would use
the "HTE" application, which is a professional file viewer, editor, and analyzer.
First of all, copy C2600-I-.BIN to C2600-I-.BIN.radar2, then open up C2600-I-
.BIN.radar2 with "HTE," and say OK to the warning :(Figure 2) it says the file does not
have supported machine type.

Figure 2 hte warning

35

Then select mode option -> elf/header (Figure 3) and change machine value that is 002b
(SPARC v9 64-bit) to 0014 (PowerPC) because we are going to test it in the PPC
environment and Cisco router 2600 series uses PowerPC architecture, then save. Now we
are able to load C2600-I-.BIN.radar2 file into radare2 disassembler for analyzing
purposes.

Figure 3 ELF/header

There are now three IOS images:
 c2600-i-mz.123-9.bin: The original version of IOS image.
 C2600-I-.BIN: The unpacked version of IOS image.
 C2600-I-.BIN.radar2: The modified headers version of the IOS image for loading

in the disassembler.
Now we are going to check some vital data inside the image which are needed for
the packing process. These data include the magic number, uncompressed image size,
compressed image size, compressed image checksum, and uncompressed image
checksum, which we should change because our rootkit changes original IOS size and
checksums. First of all, let's see the original data inside the "c2600-i-mz.123-9.bin"
image; it requires opening the file with the HT editor and finding the magic number of
Cisco IOS "fe ed fa ce" which is unique for Cisco IOS image. As (Figure 4) shows,
the magic number after the data is followed by [45]:

36

 01 25 89 54: The uncompressed image size.
 00 74 60 1b: The compressed image size.
 3b d9 c9 fe: The compressed image checksum.
 e8 1c 4d 2e: The uncompressed image checksum.

Figure 4 magic number and checksums

The information above is necessary to manipulate the IOS image. To verify the data in
(Figure 4) we used "ll" command (Figure 5), and, in (Figure 6) the calculation
is performed with Rax2 (radare2 base converter).
.

Figure 5 ll command output for IOS

37

Figure 6 IOS size hex calculation to decimals

As shown in (Figure 1) there is an extra 16772-byte warning that is matched with "calc
7626779 - 7643552" command output.
All checksums are calculated with data in ZIP format, which means they are compressed.
We should consider extra bytes in our calculations for this matter requires having two
copies of the IOS image, one without header and one with header (Figure 7). The two
files are needed to create a new IOS image. We are going to use the "DD" command to
copy the IOS header and IOS without the header. In the first "DD" command (Figure 7),
we separated the header from the image, and the second command copied the header and
required four bytes more due to the size of the compressed and uncompressed images plus
the compressed image's checksum data (each of them is one byte). So, finally, in the
output, there are two files:
c2600-i-mz.123-9.bin.header: The IOS header(16772) plus four bytes.
c2600-i-mz.123-9.bin.no_header: The IOS image without the header.

Figure 7 dd command output

Until now, we created some files that are mentioned the below:
 c2600-i-mz.123-9.bin: The original IOS image file that holds the multiple headers

and the zip data.

38

 c2600-i-mz.123-9.bin.no_header: This file contains just the ZIP data.
 c2600-i-mz.123-9.bin.header: This file contains just the headers.
 C2600-I-.BIN: The unzip version of IOS image
 C2600-I-.BIN.radar2: The unzipped version of the IOS image in which we

changed the e_machine flag for loading it in the disassembler.
To sum up the unpacking process, we started with the original IOS image unzipping
task, and then we got extra bytes info and unzipped the version of IOS. Also, we changed
the e_machie flag of the unzipped version of the IOS image for loading in the
disassembler. Moreover, we managed to find the magic number and checksum size in the
original IOS image because they are needed for future changes. Additionally, we copied
the headers and ZIP data to separated files. Finally, in next step, we are going to use our
findings in the analysis process.

4.3. Analyzing process
In the content of this section, the author describes methods and techniques for the binary
analyzing phase that are potentially needed to find a function in the Cisco IOS for
manipulation purposes. The following topic will be covered in this section:

 Analyzing process: In this section, the author demonstrates how to find a specific
function in the binary file and its relations with other functions; finally, we are
going to come up with a concrete solution to overcome modification of IOS
challenge.

First of all, we are going to look into radare2/IDA Pro disassemblers; it is important to
know how to use them since radare2 is a CLI-based disassembler. Then we are going to
find some proper functions inside the Cisco IOS image by using some clues that can be
detected through the Cisco command line prompt information.
Radare2 is one of the best disassemblers because it is open source and supports lots of
platforms; also, in comparison with the expensive commercial solution, it has plenty of
extra features like Patches generation, Shellcode compilation, and Writing/patching
opcodes which we need in this study. For installation, the author would prefer to install

39

from a standard Linux repository, for example the Ubuntu repository. Radare2 has well-
developed documentation, but some of the handy commands are mentioned below:

 radare2 -w [filename]: open file in write mode
 aaa: it analyzes the binary file
 V: Enter to virtual mode
 N: Moving to different sections
 P/T: change view mode in hexadecimal and assembly
 /c [string]: search string
 pd: Disassembles one instruction

IDA Pro (Interactive Disassembler) is the most popular disassembler that works on
various platforms, and it has a very user-friendly interface. As a next step, we load C2600-
I-.BIN.radar2 in IDA Pro; it already has the e_machine flag changed to PPC
(0014). Usually, this step is time and resource consuming; the time to load C2600-I-
.BIN.radar2 depends on computer power, but it might be loaded at most in an hour. Once
it has loaded, we will save it as a project in IDA Pro to eliminate future loading time.
There are a few things to know about loading C2600-I-.BIN.radar2 file in IDA Pro. First,
the file should be loaded in IDA Pro 32-bit because Cisco IOS image uses a 32-bit CPU
architecture. Moreover, while opening the file, the processor value should be set to
PowerPC Big-Endian [PPC] (Figure 8).

Figure 8 IDP Pro processor selection

40

In this section, we are going to examine the Cisco IOS regarding the bay passing
authentication of it and implant a new password in the IOS file to use it as a master key
without having it in the configuration file. For this matter, it requires having some clues
from Cisco router CLI; we are going to run it in the Dynamips, which we already have
patched it with the GDB feature. First of all, run the C2600-I-.BIN.radar2 file in
Dynamips; the first shell (Figure 9) represents usage of the Dynamips, and the second
shell shows Telnet to the router with the entering of the wrong password. Since we entered
the wrong password, we can see the "% Bad passwords" warning, and that is the first clue
for the investigation on an IOS image in the IDA Pro.

Figure 9 running Dynamips and Telnet

With these finding in the Cisco CLI authentication, we need to come back to the IDA Pro
to check the finding out. (Figure 10) shows "% Bad passwords" string in the IDA Pro
string search windows, the result shows string is in the read the only data section at
.rodata:80E2F9B4 "Password:" and, after that ".rodata:80E2F9C0 "% Bad passwords,"
data located, this information are an entry to find the authentication function in the IOS.
Following the "Password: " XREF value (# DATA XREF: sub_803E3070+38o), we can
see the authentication function in the graph overview (Figure 11), which gives a better
view.

41

Figure 10 % Bad passwords

Figure 11 "Password: " XREF value

First, we are going to bypass the authentication condition; for this matter, the solution is
that we should redirect the false state of the condition (password is wrong) to the true
state.
Now, looking at the loc_803E30A4: function. It loads the high byte of the "Password:"
string into r27 and. in the next function, loc_803E30AC: the low byte of the "Password: "
string, is stored in r6. Finally, if r3 is NOT equal to zero, the code instruction jumps to
the .text:803E30D8 address, which has this "addi r3, r1, 0x70+var_68" code, and next
function calls "bl sub_803AC0BC" when it returns in case "r3" is not equal to zero;
then, the instruction gets out of the function (Figure 11). The plan is like that to change
"bne loc_803E309C" to "beq loc_803E309C," which means we are going to
change "branch if not equal" to "branch if equal." In the simple explanation, we are going
to change the wrong password condition to true to have the password function output
always true, since the output of the password function always is true in any case. We
could log in with any strings to the Cisco router.

42

Figure 12 Start address of code

4.4. Modification Process
In this chapter, the author will demonstrate the technical side of modifying a Cisco IOS
image. The following topics will be covered in this section:

 Modification Process: In this part, we are going to write a function or modify the
current function to change a fundamental part of the IOS structure. First of all, we
must learn PPC assembly language; then, there is a requirement to write a new
function or modify a current function in PPC assembly language; and
finally, we have to check the modified version of the IOS in the virtual
environment.

In the PowerPC assembly language, the "bne" instruction has a "0x40" opcode, and
the "beq" instruction has a "0x41" opcode. First of all, we must find the address of
the "bne" instruction and change it to "beq." To do this, we already know the ELF entry
point is "0x80008000," and with an object dump command we can find the starting point
of code (Figure 12). That is "0x60" according to the line number 60 information.
Moreover, we know the "bne" code information through IDA Pro: that is
".text:803E30EC bne loc_803E309C". Finally, with a simple calculation,
we can find the address of the bne command in the binary file (Figure 13) which is
3DB14C.

43

Figure 13 Calculation to find bne address

To enable the EXEC command mode, we need to follow the same process: first, find the
"% Bad secrets" string in IDA Pro, and, then, find the bne
command. The result is the following:
.text:80C82294 bne loc_80C82248
 0x80C82294 - 0x80008000 + 0x60 = 0xc7a2f4
In the end, there are two addresses with bne instructions (0x40 opcode). We will change
them to beq = 0x41 to bypass the Cisco router user EXEC and enable the EXEC mode
(Figure 14).

Figure 14 bne chnaged to beq instruction

So far, we have a modified Cisco IOS image so it does not have the proper password
authentication function. We can login and enable modes that accept any password because
the condition checking the password is always true. To summarize, we must follow these
steps to bypass the authentication function in Cisco IOS images:

 Unzip the IOS image.
 Change the e_machine flag in Elf header to 0014 to load the image in the IDA Pro

disassembler.

44

 Find the password function for the user and enable the EXEC mode. Moreover,
find the exact "IF" condition of password checking.

 Find the code and ELF file entry addresses for calculation of the exact address of
the "bne" condition.

 Find the "bne" and "beq" opcodes (0x40 and 0x41).
 Change "bne" to a "beq" instruction.
 Run the modified IOS image in the Dynamips emulator to see the result.

Currently, we have modified the Cisco IOS image to bypass the password authentication
mechanisms for the user and enable modes. We can test it in the Dynamips emulator, but
it is not possible to run it on the Cisco router hardware so far because it has wrong
checksums in the image file, which the Cisco router hardware could detect it (Figure 15).
In the next step, we are going to investigate bypassing the checksum mechanism in the
Cisco router hardware and add a new function in the IOS image file for rootkit purposes.

Figure 15 Cisco router checksums error

4.5. Repacking Process
In content of this chapter, the author will demonstrate in extreme detail the technical side
of repacking the Cisco IOS image. The following subject will be covered in this section:

45

 Repacking Process: In this content, the author will cover the repacking process.
There is a challenge to solve the Cisco IOS integrity mechanism, which checks for
IOS modification attacks. We could identify integrity data inside the IOS file and
edit it with new parameters to ditch the integrity-checking mechanism.

Currently, we have the "C2600-I-.BIN_Login_Passowrd_Bypassed" image that already
has no proper user and exec modes password checking system; this means we can log in
to VTY and enable modes with any password. In this part, we are going to repack the
"C2600-I-.BIN_Login_Passowrd_Bypassed" image for running on the Cisco router
hardware. First, we must zip "C2600-I-.BIN_Login_Passowrd_Bypassed;" we could use
zip applications, but they have overhead on the file. We can use the following python
code (Figure 16) to eliminate extra overhead.

Figure 16 zip image

4.6. Bypassing Cisco IOS integrity checking system mechanisms
In this section, the author will cover how to bypass the Cisco IOS integrity checking
system mechanisms.
From the repacking section, we have the "C2600-I-.BIN_Login_Passowrd_Bypassed"
and "C2600-I-.BIN_Login_Passowrd_Bypassed.zip" files which we are going to work on
to manipulate the checksums of the files running on the Cisco router hardware. First of
all, we have to calculate the following values from files (Figure 17):

 Uncompressed Image Size
 Compressed Image Size
 Compressed Image Checksum

46

 Uncompressed Image Checksum

Figure 17 Calculate checksums

Finally, we have the following information as checksums:
 0x01258954 Uncompressed Image Size
 0x0073fcbb Compressed Image Size
 0xa0e4e1bb Compressed Image Checksum
 0xea1c4d2e Uncompressed Image Checksum

In the first step, we should copy the headers file (which we already created from the
original IOS image) (Figure 7)) into a new file, then add the four checksums' value, and
finally copy the zip file into it (Figure 18).

Figure 18 create a file to run on the Cisco router hardware

In the end, we must upload the "FinalModifiedVersion.bin" file into a Cisco router
(Figure 19) to check whether it works in hardware or not; in the case of an error, we
might double check the last parts from creating the zip file. As can be seen in the real
hardware, we can log in with any password into the user and enable modes.

47

Figure 19 Upload IOS to router

48

5. Implementation of SYNful Knock Attack in Cisco ASA
Firewall
In the content of this chapter, the implementation of a SYNful Knock attack on the Cisco
ASA firewall will be described. This block will contain information about technical
background tools that have been used and all the attack plans. Prepare the test
environment section containing information about the test bed and tools that are needed
to deploy a SYNful Knock attack on the ASA firewall. Moreover, in the unpacking
process, the author describes unpacking techniques in the Cisco ASA OS, which is an
entirely different technique than the Cisco router IOS repacking process. In the third
section, we will analyze the Cisco ASA OS from the architectural view to find a way to
compromise its functionality. In the modification process, we are going to modify our
findings in the analysis processes to apply on the binary files. Finally, we will find a
technique to repack the modified version of the Cisco ASA OS and upload it in the Cisco
ASA hardware; afterward, we will propose a technique to bypass the hash integrity
checking system in the Cisco ASA hardware and software parts.

5.1. Prepare the test environment
In the content of this section, the author will concentrate on the describing and
the installation of using tools. There are some categories of tools for implementation a part
like Linux, digital forensics, and Cisco ASA hardware. As long as there is not a virtual
(emulator) environment for the Cisco ASA firewall, the author will use the Cisco ASA
5505 hardware for part of the testing environment. For a testing environment, we need
tools that are described below:
5.1.1. Linux machine:
We will use a Linux machine as a main module in the test bed because of the following
utilities:

 binwalk: We use it for image files reverse-engineering and extracting the Cisco
ASA firmware.

 dd: This is the most powerful command in Linux for converting and coping files
with specific parameters like the start and end address of data.

49

 hte: This is a fast and light binary editor.
 cpio: This is a tool to copy files to and from archives.
 SCP: This command copies files using the SSH protocol.
 radare2: This is the most powerful open-source reverse-engineering tool.

5.1.2. Disassembler tool
In this study, the author uses two different disassemblers: radare2 (in Linux) and IDA Pro
(in Windows 7). Radare2 has the advantage that it is open-source software, and IDA Pro
has the advantage that it has a community version that has a quite handy GUI. The main
purpose of using the disassembler is to insert malicious code in the IOS image. Radare2
is a framework for reverse-engineering and analyzing. It has a set of tools that can be used
collectively or separately. In this study, we will use it as a disassembler, debugger,
patcher, and converter.
5.1.3. Cisco ASA 5505 hardware:
The main reason why this model was chosen is that it does not have a secure boot module.
The lack of secure boot helps us to copy the modified version of Cisco ASA OS in the
ASA hardware to check the result of the modifications. Moreover, we need to find out
the Cisco ASA hardware checksum mechanism. This means that we could generate
the Cisco ASA version checksum we need to have for bypassing its integrity via hardware
(verify command).

5.2. Unpacking process
In this chapter, the author will propose a new method for the unpacking process of Cisco
ASA Software. In this study, since the author uses the Cisco ASA 5505 hardware and
Cisco ASA 5505 supports ASA Version 9.2, we will evaluate Cisco ASA 9.2 because of
hardware requirements [48]. First of all, the image (Figure 20) shows the original Cisco
ASA software size, md5 checksum, sha512 checksum, and file type features that are
needed later for modification and integrity bypassing processes.

50

Figure 20 ASA Software Features

5.2.1. Unpacking method verification
In this section, the author describes Cisco ASA software unpacking method and
verification of unpacking. We will demonstrate the method with an md5 checksum output
as an audit evidence. For this matter, we use the "binwalk" tool on the Linux machine. As
the "binwalk" (Figure 21) command output shows, there are some files inside the ASA
software binary file, and they have start points of bytes.

Figure 21 binwalk output

In the first line (Figure 21 binwalk output, there is a 4242 start point, which means there
is unknown data from 0 to 4241 bytes. The "binwalk" does not identify the first part of
the file, and the rest of it is clear; for example, the most important part has a start point
from 1501312 bytes and is a compressed version of Cisco's ASA software. We would
propose the following method to split all parts from the original file, and then we would
merge them together to see if the merged version of the software had the same md5
checksum as the original version. With this method, we could rely on our unpacking
process.
The image (Figure 22) shows how we used "binwalk" data to split the original file into
eight pieces. We used the "dd" command with skip and count options to achieve our goal.
With the skip option, we can say that to skip a specific number of bytes, and with count
option, we can manage to identify a specific number of bytes to copy into a new file. The
end image (Figure 22) shows a list of the split file and the original file.

51

Figure 22 Split ASA Software

In the next step, we describe the verification method of the ASA software split. First, we
put together all eight pieces with the "cat" command (Figure 23), and then with the md5
command, we can verify that a file has same md5 checksum, like the original file (Figure
23). Finally, according to our experimental method, we can prove that the unpacking
process works, and we could use it. As a result, both files have the same md5 checksum:
"ba225db6ec2b86a6d284792a631df94e" (Figure 23).

Figure 23 Put split files together

As we mentioned in the "binwalk" command output (Figure 21), there is an important
part of the file that included zip data of the Cisco ASA software. The image (Figure 24)
shows that there is a file with "rootfs.img." Moreover, with "binwalk" command "-e"

52

switch, we could extract it (Figure 24). As a result, we have an extracted version of
the "rootfs.img" file.

Figure 24 "rootfs.img" extraction from binary file

In next step with "file" command, we identified the "rootfs.img" file type. It is a "cpio"
archive file format (Figure 25) In next step with "file" command, we identified
the "rootfs.img" file type. It is a "cpio" archive file format (Figure 25). Finally, we have
extracted version of Cisco ASA software that is Linux OS. At first glance, we discovered
the "asa" folder that has some binary files inside for handling the Cisco ASA firewalling.

Figure 25 Extraction of ASA Linux file system from rootfs.img

To sum up, we have unpacked the version of the Cisco ASA Software, and we have a
method to unpack and repack it. In the next section, we are going to use our finding in
this section for analyzing purposes.

53

5.3. Analyzing process
In the content of this section, the author describes methods and techniques for the Cisco
ASA software analyzing phase that are conceivably needed to find a function in the Cisco
ASA software for manipulation purposes. The following subject will be covered in this
section:

 Analyzing process: In this section, the author demonstrates how to find specific
functions in the Cisco ASA software binary file and its relations with other
functions. Finally, we are going to use the outcome of this section in the
modification of the ASA software challenge.

First of all, we are going to examine the Cisco ASA software with IDA Pro disassembler
software because it is important to find an assembly function that is understandable for
us. Then, we can misuse it in our study. For the starting point, we are going to find some
proper functions inside the Cisco ASA image with some clues that are possible to detect
through the Cisco ASA command line's prompt information. We found some functions
inside the Cisco ASA image that gave us clues to detect the Cisco ASA command line.
In this case, we will use the "enable" command in the CLI to get information about a
condition when the command password is wrong. Then, we could search the output of the
warning message with the disassembler to get a closer look at the "enable" function
assembly code (Figure 26).

Figure 26 Enable command in ASA

When we enter the wrong "enable" password, there are three "Invalid password"
messages followed by "Access denied" messages. We searched these messages in IDA
Pro to get information about the "enable" function (Figure 26).

54

In the unpacking section, we discovered that the firewall process in the ASA firewall
was located in "/asa/bin/lina." To be sure that this file contained the main firewall
processes, we used the Linux "strings" command to seek "Invalid password" and "Access
denied" messages. Some strings about the requested messages as can be seen in (Figure
27). There was evidence that the "lina" file was the main firewalling binary file in the
ASA software. Next, we analyzed it with the disassembler.

Figure 27 ASA's lina file strings command output

The IDA Pro (Interactive Disassembler) is the most popular disassembler that works on
various platforms, and it has a very user-friendly interface. In the next step, we load
"/asa/bin/lina" file in the IDA Pro. Usually, this step is time- and resource-consuming.
Depending on the computer's power, it takes time to load the file, but it might be loaded
in an hour at most. Once it has loaded, we will save it as a project in IDA Pro to eliminate
future loading time consumption. There is a thing to know about loading "lina" files in
the IDA Pro: the file should load in IDA Pro 32bit because the Cisco ASA software image
has a 32bit CPU architecture (Figure 28).

Figure 28 Load lina into IDA Pro disassembler

55

In this section, we are going to check the Cisco ASA software regarding bypassing
enabling its mode authentication and changing the enable command functionality to
accept any password that users are entering whether it is right or wrong password.

Figure 29 IDA String

Figure 30 Enable command output messages in IDA

After enabling command messages (Figure 26) in the Cisco ASA CLI authentication, we
need to come back to the IDA Pro to check the findings out. First of all, from "View - >
open subviews -> Strings" (Figure 29), we can filter all the strings in the "lina" file. Then,
search for "enable command output messages" (Figure 30) and double-click on the
message to go to the read-only data section. By clicking on the XREF (Figure 31) link,
we can see the actual assembly code that uses "Access denied" message (Figure 32).

Figure 31 XREF value of "Access denied."

56

Figure 32 code section of "Access denied."

Finally, we know there is a ".text:080FB80A js short loc_80FB840" command
that when password is wrong it jumps to "loc_80FB840" address (Figure 33).

Figure 33 enable mode JUMP instruction

In the next section, we are going to find a technique to change the jump command
".text:080FB80A js short loc_80FB840" (Figure 33) functionality. That
means when a user enters the wrong password, it jumps to the password true function to
allow the user to access the "enable" mode environment.

5.4. Modification Process
In this chapter, the author will demonstrate the technical side of modifying a Cisco ASA
software image. The following topic will be covered in this section:

 Modification Process: In this part, we are going to modify the "enable" mode's
authentication function. Afterward, we can authenticate the "enable" mode with
any password.

57

This requires knowledge of x86 assembly because Cisco ASA software
is written in this language. Then, we used process analysis (Figure 33) to modify the
software.
Since we found the jump command in the assembly code was related to the enable mode
authentication function, analyzing it requires knowledge about the jump function's
opcode. In x86 assembly language, the "js" instruction has the opcode "0x78", and
the "JNS" instruction has the opcode "0x79" (Table 4). As mentioned in (Figure 33), there
is a "js" instruction in the enable mode authentication function that controls passwords,
and, when the password is wrong, the CPU instruction jumps to "loc_80FB840." We are
going to change "js" to "jns," meaning that when the password is wrong, the function
jumps to the next function, which is the "enable" mode. (Table 4) shows instruction
synonyms.

Table 4 JS and JNS instruction synonyms [49]
Instruction Description Flags short jump opcodes near jump opcodes
JS Jump if sign SF = 1 78 0F 88
JNS Jump if not sign SF = 0 79 0F 89

In IDA Pro, an entirely different memory and instruction address system was found, and it
does not use the same memory address value as the binary file. We then examined the
exact address of the "js" instruction in the binary file. We need to find the following
elements in the IDA Pro and "lina" file, then with them, we can calculate the exact address
of "js" instruction in the binary file:

 The offset of "js" address location in the IDA Pro The "lina" base base address The code starts point
The offset of "js" address location in the IDA Pro:
Based on the image (Figure 34) , "js" command is " .text:080FB80A js short
loc_80FB840", and the offset of "js" address in the IDA Pro is "080FB80A".
The "lina" file base address:
For finding the "lina" file base address, we can "obj dump" the application to discover it.
For this matter, we could use "obj dump-h as a/bin/lina |less," in which "-h" option
represents summary information from the section headers of the "lina" file (Figure 34).

58

Figure 34 lina file start and base addresses

Based on the (Figure 34) information, LAM value (08048194) represents the logical
memory address.
The code starts point:
Along with the base address of binary file, we can find the starting point of instruction in
the "lina" file through the "obj dump" command. The (Figure 34) shows "File off" value
that is the offset for the beginning of the "lina" file, and it has a "00000194" value.
Finally, we should use a hexadecimal calculator to find the exact address of "js"
instruction in the "lina" binary file (Figure 35).So the location of "js" instruction is
"B380A".

Figure 35 "js" instruction exact address in the binary file

To verify "B380A" address data that is exactly "js" instruction, we can use the "objdump"
command to print out "B380A" address in the assembly code (Figure 36). As the
screenshot shows (Figure 36),), the "B380A" address opcode starts with "78", which
represents "js" instruction in the x86 CPU architecture.

Figure 36 Print "B380A" address with the objdump command

59

Now, we have the exact address of "js" instruction, and we are going to change it to "jns"
instruction. As we know (Table 4) about opcode, we should change 78 to 79 to finish
the modification process.

Figure 37 find command in hte for "js"

Open up the "lina" file using the "hte" application and then find the "B380A" address
(Figure 37). As the image shows (Figure 38) it has a "78" value. Press F4 key to go to
edit mode and change 78 to 79 (Figure 39). Afterwards, press F2 to save the file.

Figure 38 The orginal value of "js"

Figure 39 Change "js" to "jns"

60

Finally, to verify the "B380A" address change, we can use "objdump" command to print
out the "B380A" address in the assembly code (Figure 40). As the screenshot shows
(Figure 40), the "B380A" address opcode starts with "79", which represents the "jns"
instruction in the x86 CPU architecture. The (Figure 40) shows that "js" with "78" opcode
has changed to "jns" with a "79" opcode.

Figure 40 "B380A" address change result

Here, we have modified the Cisco ASA software firewalling module ("lina" file) to
bypass the "enable" mode authentication mechanisms. In the next step, we are going to
analyze the repacking process.

5.5. Repacking Process
In this section, the author will explain in detail the technical side of repacking the Cisco
ASA software image. The following subjects will be covered:

 Repacking Process: In this section, the author will cover the repacking process.
There are challenges involved in Cisco ASA repacking. First, we need to find a technique
to repack the "rootfs.img" file that we unpacked in the unpacking process (Figure 24).
Moreover, we have to find a way to compress the "rootfs.img" file. Finally, it is critical
to replace the new version of the "rootfs.img" file (that is included with modified version
of "lina" file) with the original version in the Cisco ASA software file (asa921-k8.bin)
(Figure 20). To summarize, we should take care of the following steps:

 Repack all directory structures into "rootfs.img" file (Figure 25).
 Compress "rootfs.img" file.
 Replace compress version of "rootfs.img" file with the original version, which is

located inside the Cisco ASA software "asa921-k8.bin" (Figure 20) file.
Repack all directory structures:

61

As we know, the directory structure of ASA software that we unpacked (Figure 25) it has
"cpio" (Figure 25) compress format. Since this is the case, we can use "cpio" Linux
command to repack it again. We would use the "find" command to read all files and
directory and send them to "cpio" command input for compress purposes (Figure 41).

Figure 41 Packing ASA directory structure into rootfs.img

As the image (Figure 41) shows, we used "--format='newc'" option in the "find . | cpio --
format='newc' -o > ../rootfs.img-bypass_enable_mode_auth" command, the main reason
of its usage is that the original version of "rootfs.img" file has "SVR4 with no CRC" type
and with "--format='newc'" option (Figure 42), we can apply the same format to the new
file. Moreover, "--format='newc'" option is the new SVR4 portable format that supports
file systems, having more than 65536 i-nodes (4294967295 bytes) [50].

Figure 42 rootfs.img file type

Since we changed one byte in the "lina" file and did not add any extra data, the size of
edited and original versions of "rootfs are shown.img" files are the same (Figure 41).
Additionally, the md5 checksum result of both files is different because of the instruction
changing "js" to "jns" (Figure 41).
Compress "rootfs.img" file:
As the original version of the "rootfs.img" file has a gzip compressed data file type (Figure
43). It requires using the Linux "gzip" command to compress it with the same format
(Figure 43). In the "gizp" command (Figure 43) we used following options:

62

 -f: Force compression even if the file has multiple links or the corresponding file
already exists.

 -9: Indicates compress better option (best compression).

Figure 43 gzip on rootfs.img file

Finally, we have the "rootfs.img-bypass_enable_mode_auth.gz" file (Figure 43) that
included a compressed version of "rootfs.img", and "rootfs.img" included a modified
version of the "lina" file that is the firewalling module in the Cisco ASA.Moreover, we
changed the "enable" mode authentication function in the "lina" file, which means we can
enter the "enable" mode with any passwords.
Replace "rootfs.img" with the original one inside ASA software:
In this section, we are going to replace the modified version of ASA software with the
original one in the "asa921-k8.bin" file. All steps are mentioned in the following steps:

1. Find the gzip data start and end points in the "asa921-k8.bin" file (Figure 44).
 For the start point of the gzip data, we use the "binwalk -y='gzip' asa921-

k8.bin" where "-y='gzip'" switches identities at the start point of the gizp data,
and, finally, it is 1501312 (Figure 44).

 For finding the position of gzip data end point, again, we use "binwalk"
command with "--raw="\x0B\x01\x64\x00\x00\xb0\x00\x00"" option that
represents the ending point of the gzip data (Figure 44) and, finally, it is
30349664 (Figure 44).

63

Figure 44 gzip data stat and end point

2. Use the "dd" command to replace the edited version of "rootfs.img" file with the
original one in the "asa921-k8.bin" file (Figure 45).

 First, we should find numbers of bytes in the new "rootfs.img-
bypass_enable_mode_auth.gz" file that is 28725874 (Figure 45).

 Then, in the "dd" command, use "conv=notrunc,noerror" that "notrunc" is
for; do not truncate the output file. The "noerror" is for continuing after
reading errors (Figure 45).

Figure 45 copy new rootfs.img with dd command in the ASA software

Currently, we have the "asa921-k8.bin" file in which we implant a new version of
the "lina" file inside it. In this stage, we are done with the repacking process, but, still,
there is an issue with the Cisco ASA checksum mechanism that can identify the modified
version of the ASA software as unoriginal software. In the next section, we are going to
propose a method to ditch the Cisco ASA checksum mechanism.

5.6. Bypassing Cisco ASA integrity checking system mechanisms
In this section, we are going to bypass the checksum mechanism of Cisco ASA. First of
all, we need to upload modified version of Cisco ASA software on the ASA device, and
then we use "verify" command to get the exciting and compute hashes. By now we have

64

embedded and computed hashes, in the next step we should find embedded hash in the
software and replace it with computing hash. For this matter, we could use a hex editor
to find hex value of embedded hash and change it with computing hash which computes
hash is for modified version of software. By following mentioned steps, we can bypass
integrity checking mechanisms in the Cisco ASA hardware. We can say that this
drawback is related to the poor design, lack of encryption and data leak of "verify"
command in the Cisco ASA. In the below, practical steps in the Cisco ASA has
mentioned.
First, copy the edited version of Cisco ASA software in the hardware and set the boot
parameter to the new ASA software (Figure 46).

Figure 46 Upload a new ASA software in ASA hardware

In the next step, use the "verify" command to check the modified version of software
checksum values (Figure 47). As (Figure 47) shows, Embedded Hash and Computed
Hash are different, and there is an error for the modified ASA software checksum;
technically, we cannot use it because of the checksum error.

Figure 47 Verify command in the ASA

As Cisco has a unique checksum algorithm, we can use the verify (Figure 47) command
output to find the Embedded Hash inside the ASA software and replace it with
a Computed Hash to overcome the checksum issue. We then use the "hte" application to
find the Embedded Hash value in the binary file and then replace it with the Computed
Hash value (Figure 48). (Figure 48) shows the Embedded Hash value in the ASA

65

software in the left side, and in the right side, the modified Embedded Hash to Computed
Hash value.

Figure 48 Change ASA's hash value

Finally, upload the new file that has a new hash value in the Cisco ASA hardware. As the
(Figure 49) shows, we ditch the Cisco verify checksum mechanism, and it has the same
value for Embedded Hash and Computed Hash.

Figure 49 Verify command for changed hash ASA software

66

6. Conclusions and Future Work
This chapter contains a summary of our study. In this section, the author will underline
what has been done and what might be subjected to the further develop the topic.

6.1. Conclusions
Our Study represents a new method that allows applying the SYNful knock attack on the
Cisco ASA devices. Representing the SYNful knock attack on the Cisco firewall devices
would be addressed critically of running the embedded system on the networks that would
put the total risk value of our company. Since this is the case, experts commonly think
that with the close source network, security appliances like firewalls could cover
the decent security criteria in the network infrastructure. But, we raised a question: What
if the security device is a network bottleneck?
Our study used the latest state of the art technology to perform, with the advanced
persistent threat, the possible risks at the dark side of the network that even most of the
experts do not think about. In this study, we worked on the offensive aspects of a SYNful
Knock attack that could give security experts ideas on how to prevent such kinds of
attacks. As the results show, this attack method could have potentially devastating
consequences for critical infrastructure.
The solution developed for the SYNful knock attack implementation consists of two parts
that can be used independently. The first part is the Cisco router SYNful knock attack
that has already been done, and there are some papers out there but there is not clear
guideline to apply it, we covered that part in our study. The second part is a novel study
of SYNful knock attack on the Cisco ASA firewall devices. Until today, our study is
a published version in this domain.
To conclude novelty of this study, we have implemented SYNful knock attack in the
Cisco ASA firewall software that this study represents methods and technics to overcome
five steps for applying SYNful knock attack on the Cisco ASA firewall’s software:

1. Unpacking process
2. Analyzing process

67

3. Modification process
4. Repacking process
5. Bypassing Cisco ASA integrity checking system mechanisms

Because of the latest Cisco ASA hardware inaccessibility, unfortunately, we could not
test the result in the most recent version of the device, but according to the Cisco
Company’s information, ASA software can run on all Cisco ASA appliances[48].

6.2. Future work
Due to the fact that the attack solution mechanism includes many steps, future
enhancements are possible in many directions. Firstly, we would work on the other
security appliances like Juniper, F5, and FortiGate to apply the same attack on them. We
believe that it is possible to implant rootkit code in any embedded closed source OS. The
results of this study provides evidence of this. Also, we would work on applying the attack
on real-time OS that is running in the RAM. Real-time OS is a copy of stored OS in the
RAM. When implementing SYNful knock attacks in real-time OS, detecting it would be
challenging because real-time OS does not have any checksum mechanisms, due to RAM
data nature changing over time. Moreover, in our work, we concentrated only on local
attacks. Remote delivery of SYNful knock
attacks, which might add to the danger of the attacks, can be researched in the future.
Also, an application might be developed to implant the attack automatically.

68

References
1. Beaver, K. Ten most common enterprise security mistakes that admins still make.

June 2011 [cited 2016 Nov 12]; Available from:
http://searchenterprisedesktop.techtarget.com/feature/Ten-most-common-
enterprise-security-mistakes-that-admins-still-make.

2. Group, S.R. Cisco’s Dominant Share of Switching & Routers Holds Steady. 2016
[cited 2016 Nov 26]; Available from:
https://www.srgresearch.com/articles/ciscos-dominant-share-switching-routers-
holds-steady.

3. Cui, A., J. Kataria, and S.J. Stolfo, Killing the myth of Cisco IOS diversity. Proc.
of USENIX Worshop on Offensive Technologies, 2011.

4. ZETTER, K. NSA Laughs at PCs, Prefers Hacking Routers and Switches. 2013
[cited 2017 05]; Available from: https://www.wired.com/2013/09/nsa-router-
hacking/.

5. McMillan, R. Hacker writes rootkit for Cisco's routers. 2008 [cited 2017 May];
Available from: http://www.networkworld.com/article/2279517/lan-wan/hacker-
writes-rootkit-for-cisco-s-routers.html.

6. Lindner, F.F. Developments in Cisco IOS Forensics. 2008 [cited 2017 May, 08];
Available from: http://www.recurity-
labs.com/content/pub/RecurityLabs_Developments_in_IOS_Forensics.pdf.

7. Chen, T.M. and S. Abu-Nimeh, Lessons from stuxnet. Computer, 2011. 44(4): p.
91-93.

8. Manap, S., Rootkit: Attacker undercover tools. Personal Communication, 2001.
9. Yew, T.J., et al., Rootkit Guard (RG)-an architecture for rootkit resistant file-

system implementation based on TPM. Pertanika Journal of Science &
Technology, 2013. 21(2): p. 507-520.

10. Bill Hau, T.L., Josh Homan. SYNful Knock - A Cisco router implant 2015 [cited
2017 May]; Available from: https://www.fireeye.com/blog/threat-
research/2015/09/synful_knock_-_acis.html.

11. FireEye. SYNful Knock Attack Against Cisco Routers. September 21, 2015
09/11/2016]; Available from:
https://www.schneier.com/blog/archives/2015/09/synful_knock_at.html.

12. Lindner, F., Attacking Networked Embedded Systems - Defcon. 2003.
13. Lynn, M., The holy grail: Cisco IOS shellcode and exploitation techniques. Black

Hat USA, Las Vegas, NV (July 2005), 2005.
14. Chawdhary, G. and V. Uppal, Cisco IOS Shellcodes. 2007.

69

15. Davis, A., Cisco ios ftp server remote exploit. 2007.
16. Muniz, S., Killing the myth of Cisco IOS rootkits: DIK, 2008. EUSecWest.
17. NotHugs, B. Cisco ASA Appliance WebVPN Cross Site Scripting Vulnerability.

2009 [cited 2017 Apr 04]; Available from:
http://www.securityfocus.com/bid/34307/info.

18. Clemens, D. Cisco ASA/PIX - Appliances Fail to Properly Check Fragmented
TCP Packets. 2009 [cited 2017 Apr 04]; Available from: https://www.exploit-
db.com/exploits/8393/.

19. SpiderLabs, T.s. Cisco ASA Adaptive Security Appliance Clientless SSL VPN
DOM Cross-Site Scripting Vulnerability. 2009 [cited 2017 Apr 04]; Available
from:
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/Cisco-
SA-20090624-CVE-2009-1201.

20. Eduardo, D. Cisco ASA <= 8.x VPN SSL module Clientless URL-list control
bypass. 2009 [cited 2017 Apr 04]; Available from:
http://0day.today/exploit/description/9600#popup_welcome_div.

21. prdelka. Cisco ASA < 8.4.4.6 & 8.2.5.32 - Ethernet Information Leak. 2003 [cited
2017 Apr 04]; Available from: https://vulners.com/exploitdb/EDB-ID:26076.

22. Intelligence, E. Cisco ASA Software IKEv1 and IKEv2 Buffer Overflow
Vulnerability. 2016 [cited 2017 Apr 04]; Available from:
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-
20160210-asa-ike.

23. Group, E. Cisco ASA 8.X - Authentication Bypass (EXTRABACON). 2016 [cited
2017 Apr 04]; Available from: https://vulners.com/exploitdb/EDB-ID:40258.

24. Brokers, S. EPICBANANA Cisco ASA / PIX Privilege Escalation. 2016 [cited
2017 Apr 04]; Available from:
https://packetstormsecurity.com/files/138392/EPICBANANA-Cisco-ASA-PIX-
Privilege-Escalation.html.

25. Dillon, S. Reverse Engineering Cisco ASA for EXTRABACON Offsets -
Authentication Bypass. 2016 [cited 2017 Apr 04]; Available from:
https://zerosum0x0.blogspot.com.ee/2016/09/reverse-engineering-cisco-asa-
for.html.

26. Research, G.S. Cisco ASA: Buffer overflows in WebVPN cifs handling 2017
[cited 2017 Apr 04]; Available from: https://bugs.chromium.org/p/project-
zero/issues/detail?id=998.

27. Stuart-Muirk, A., "Breaking Bricks and Plumbing Pipes: Cisco ASA a Super
Mario Adventure.". 2014: Ruxcon / Kiwicon presentation.

28. http://www.skyfree.org/linux/references/ELF_Format.pdf, Executable and
Linkable Format (ELF). 08.11.2016.

70

29. www.statista.com. Quarterly share of the Ethernet switch market worldwide, from
2011 to 2016, by vendor. 2016 [cited 2017 May]; Available from:
https://www.statista.com/statistics/235289/global-ethernet-switch-revenue-
market-share-by-vendors/.

30. Lindner, F., Cisco IOS router exploitation. Black Hat USA, 2009.
31. NGFW/Firewalls, D.i. ASA and Firepower hardware fact sheet. 2016 [cited 2017

May 15]; Available from:
https://communities.cisco.com/community/technology/security/ngfw-
firewalls/blog/2016/02/02/asa-hardware-facts-sheet.

32. Xu, J. and W. Su, Performance Evaluations of Cisco ASA and Linux IPTables
Firewall Solutions. 2013.

33. Lindner, F., Developments in cisco ios forensics. CONFidence 2.0. 2009.
34. DAS, S. ATTACKERS INFECT CISCO ROUTERS WITH “SYNFUL KNOCK”

BACKDOOR TO STEAL DATA. SEPTEMBER 15, 2015 [cited 09/11/2016;
Available from: https://hacked.com/attackers-infect-cisco-routers-synful-knock-
backdoor-steal-data/.

35. Powell, R. SYNful Knocks On More Cisco Doors. September 22nd, 2015
09/11/2016]; Available from:
http://www.telecomramblings.com/2015/09/synful-knocks-on-more-cisco-
doors/.

36. Muncaster, P. Cisco SYNful Knock Threat Victims Reach 200. 22 SEP 2015
09/11/2016]; Available from: http://www.infosecurity-
magazine.com/news/cisco-synful-knock-threat-victims/.

37. VENTURES, F.T.E.A.C. CYBERSECURITY MARKET REPORT. Q3 2016 [cited
2016 Nov 12]; Available from: http://cybersecurityventures.com/cybersecurity-
market-report/.

38. cristinaribas.net. Estonia, The most digital country in Europe. 2014 [cited 2016
Nov 12]; Available from: http://www.cristinaribas.net/2014/08/04/estonia-the-
most-digital-country-in-europe/.

39. Technologies, G. Dynamips-GDB-Mod. Mar 13, 2013 [cited 2016 Nov 11];
Available from: https://github.com/Groundworkstech/dynamips-gdb-mod.

40. Debian. Debian for PowerPC. 2016 [cited 2016 Nov 12]; Available from:
https://www.debian.org/ports/powerpc/.

41. Radare. Forensics Tool. 2016 [cited 2016 Nov 11]; Available from:
https://github.com/radare/radare2.

42. RARLAB. RAR archiver. 2016 [cited 2016 Nov 11]; Available from:
http://www.rarlab.com/.

71

43. TRIPWIRE. Insider Threats Often Overlooked by Security Experts. 2016 [cited
2016 Nov 12]; Available from: https://www.tripwire.com/state-of-security/risk-
based-security-for-executives/connecting-security-to-the-business/insider-
threats-often-overlooked-by-security-experts/.

44. Rouse, M. DEFINITION social engineering. 2016 [cited 2016 Nov 12]; Available
from: http://searchsecurity.techtarget.com/definition/social-engineering.

45. Security, G. Whitepaper: Writing Cisco IOS Rootkits. October 9, 2015 [cited
2017 Apr 11]; Available from: http://grid32.com/cisco_ios_rootkits.pdf.

46. Oktavianto, D. and I. Muhardianto, Cuckoo Malware Analysis. 2013: Packt
Publishing Ltd.

47. Eagle, C., The IDA pro book: the unofficial guide to the world's most popular
disassembler. 2011: No Starch Press.

48. Cisco. Cisco ASA New Features by Release. 2017 [cited 2017 Apr 06]; Available
from:
http://www.cisco.com/c/en/us/td/docs/security/asa/roadmap/asa_new_features.ht
ml#topic_vlp_lq5_sy.

49. Friedl, S. Intel x86 JUMP quick reference. [cited 2017 Apr 05]; Available from:
http://unixwiz.net/techtips/x86-jumps.html.

50. gnu.org. cpio manual. [cited 2017 Apr 05]; Available from:
https://www.gnu.org/software/cpio/manual/html_node/Options.html.

