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Abstract

Pyha -

Object-Oriented Hardware Description Language

The task of implementing digital signal processing systems on hardware is often carried out by
using high-level tools, such as MATLAB to HDL converter. However, these tools can easily cost
over tens of thousands of euros, making them unusable for reproducible research and open source
designs. Other high-level tools are mostly based on ’C’, which is not suitable for modeling and
prototyping purposes. Given the limitations and drawbacks of existing solutions, this thesis pro-
poses Pyha, a new Python based hardware description language aimed at simplifying DSP hard-
ware development in an open-source manner. Pyha raises the abstraction level by suggesting the
object-oriented programming model and provides fixed-point type support. In addition, this work
makes an effort to simplify the testing process of hardware systems by providing better simulation
interface for unit-testing and debugging capabilities in Python domain.

The thesis is in English and contains 39 pages of text, 5 chapters, 24 figures.



Annotatsioon

Pyha -

Pythonil põninev objektorienteeritud riistvarakirjelduskeel

Digitaalse signaalitööstuse süsteemide riistvara loomiseks kasutatakse enamasti kõrgetasemelisi
tööriistu, nagu näiteks ’MATLAB HDL Coder’. Need tööriistad pakuvad küll kõrget produktiiv-
sust aga võivad maksta kümneid tuhandeid eurosid, mille tõttu pole need lahendused kasutatavad
reprodutseeritava teadustöö ning avatud lähetkoodiga projektide jaoks. Enamus alternatiivseid la-
hendusi põhineb ’C’ keelel, mis ei sobi modellerimiseks ega prototüüpimiseks. Vastavalt alter-
natiivse lahenduste puudustele, pakub see lõputöö välja Python programmeerimiskeelel põhineva
riistvarakirjelduskeele, nimega Pyha, mille eesmärk on lihtsustada digitaalsete süsteemide aren-
damist. Lahendus põhineb avatud lähtekoodil. Pyha põnineb objektorienteeritud programmeer-
imisel ning toetab püsikomaarve. Lisaks on lihtsustatud riistvara testimimine, tänu lihtsustatud
simulatsioonide jooksutamise liidesele, võimalik on Pythoni domeenis programmi silumine.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 39 leheküljel, 5 peatükki, 24 joonist.
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Chapter 1

Introduction

The most commonly used tools today for designing digital hardware are VHDL and SV (Sys-
temVerilog). SV is aggressively promoted by the big EDA (electronic design automation) com-
panies (Cadence, Mentor, Synopsys) along with UVM (Universal Verification Methodology). In
2003, Aart de Geus, Synopsys CEO, stated that SV will replace VHDL in 10 years [1]. It is true
that tool vendors have stopped improving VHDL support, but advancements are being made in the
open source community e.g. VHDL-2017 standard [2]. In addition, active development is done for
the open source simulator GHDL [3], Open Source VHDL Verification Methodology (OSVVM)
[4] and unit-testing library VUnit [5]. All of these advancements aim to ease the verification
aspects while the synthesis part has mostly stayed the same for the past 10 years.

Numerous projects exist that propose to use higher level HDL (hardware description language), in
order to raise the abstraction level. For example, MyHDL turns Python into a hardware description
and verification language [6], or C𝜆aSH [7], purely Haskell based functional language developed
at University of Twente. Recently Chisel [8] has been gaining some popularity, it is an hardware
construction language developed at UC Berkeley that uses Scala programming language, providing
functional and object-oriented features.

On the other front, HLS (high-level synthesis) tools aim to automate the refinement from the
algorithmic level to RTL (register-transfer level) [9]. Lately the Vivado HLS, developed by Xilinx,
has been gaining popularity. As of 2015, it is included in the free design suite of Vivado (device
limited). The problem with HLS tools is that they are often promoted as direct C to RTL tools
but in reality often manual code transformations and guidelines are needed, in order to archive
reasonable performance [10].

The DSP (digital signal processing) systems can be described in previously mentioned HLS or
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HDL languages, but the most productive way is to use MATLAB/Simulink/HDLConverter flow,
which allows users to describe their designs in Simulink or MATLAB and use HDL convertible
blocks provided by MATLAB or FPGA tool vendor [11].

1.1 Problem statement

There is no doubt that MATLAB based workflow offers a highly productive path from DSP models
to hardware. However, these tools can easily cost over tens of thousands of euros and often FPGA
vendor tools are required, which adds additional annual cost [11]. Using these tools is not suitable
for reproducible research and is completely unusable for open source designs. Thus, the designers
must turn to alternative design flows; for example [12] provides a hardware implementation of an
ADS-B (automatic dependent surveillance – broadcast) receiver. First, they did the prototyping in
the MATLAB environment, the working model was then translated to C for real-time testing and
fixed-point modeling. Lastly, the C model was manually converted to VHDL.

Given the limitations and drawbacks of existing solutions, this thesis proposes Pyha, a new Python
based hardware description language aimed at simplifying DSP hardware development in an open-
source1 manner. Pyha raises the RTL design abstraction level by enabling sequential and object-
oriented style. DSP systems can be built by using the fixed-point type and semi-automatic conver-
sion from floating point. In addition, this work makes an effort to simplify the testing process of
hardware systems by providing better simulation interface for unit-testing.

The basis of Pyha is Python, a general purpose programming language that is especially well
suited for rapid prototyping and modeling. Python has also found its place in scientific projects
and academia by offering most of what is familiar from MATLAB, free of charge. Scientists
are already shifting from MATLAB to Python in order to conduct research that is reproducible and
accessible by everyone [13]. Fig. 1.1 shows the popularity comparison (based on Google searches)
of Python, MATLAB and C. As can be seen, Python is the only language with positive slope, soon
Python will be the most popular programming language in the world (currently Java).

1 Repository: https://github.com/gasparka/pyha
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Fig. 1.1: Programming language popularity [14]. Python 15.1%, C 6.9%, MATLAB 2.7%

1.2 Structure of the thesis

After gaining the context and problem statement in the current chapter, Section 2 presents the
proposed hardware description language Pyha. Next, Section 3 develops the object-oriented VHDL
model and deals with the problem of converting Python to VHDL. Section 4 shows how Pyha can
be used to implement medium complexity DSP systems and gives a comparison to existing tools.
Section 5 concludes this thesis and suggest ideas for future work. The related work is introduced
and discussed throughout this thesis, thus no specific literature review chapter has been included.
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Chapter 2

Hardware design with Pyha

This chapter introduces the main contribution of this thesis, Pyha - a tool to design digital hardware
in Python. The fist half of the chapter demonstrates how basic hardware constructs can be defined,
using Pyha. Follows the introduction to fixed-point type.

Note: The examples in the first half of this chapter are based on integer types in order to
reduce complexity.

2.1 Introduction

Conventional HDL languages promote concurrent and entity oriented models which can be confus-
ing for software developers. In this thesis, Pyha has been designed as a sequential object-oriented
language, that works directly on Python code. Using a sequential design flow is much easier to
understand and is equally well synthesizable as shown in this thesis. Object-oriented design helps
to better abstract the RTL details and ease design reuse.

For illustration purposes, Listing 2.1 shows an example Pyha design. The main function has been
chosen as a top level entry point, other functions can be used as pleased.
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Listing 2.1: Simple combinatory design, implemented in Pyha

class Basic(HW):

def main(self, x):

a = x + 1 + 3

b = a * 314

if a == 9:

b = 0

return a, b

One of the contributions of this thesis is a sequential OOP VHDL model which is used to simplify
conversion from Pyha to VHDL. The example of the VHDL conversion is shown in Listing 2.2.
The OOP VHDL model is developed and examined in Section 3.

Listing 2.2: The main funciton of Listing 2.1 converted to OOP VHDL

procedure main(self:inout self_t; x: integer; ret_0:out integer; ret_

→˓1:out integer) is

variable a: integer;

variable b: integer;

begin

a := x + 1 + 3;

b := a * 314;

if a = 9 then

b := 0;

end if;

ret_0 := a;

ret_1 := b;

end procedure;

Fig. 2.1 shows the synthesis result. The a output is formed by adding ‘1’ and ‘3’ to the x input.
Next the a signal is compared to 9; if equal, b is outputted as 0, otherwise b = a * 314. This
complies exactly with the Python and VHDL descriptions.
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Fig. 2.1: Synthesised RTL of Listing 2.2 (Intel Quartus RTL viewer)

One aspect of hardware design that Pyha aims to improve is testing. Conventional testing flow
requires the construction of testbenches that can be executed using simulators.

Pyha has been designed so that the synthesis output is behaviourally equivalent to the Python run
output, this means that Pyha designs can use all the Python debugging tools. Fig. 2.2 shows a
debugging session on the Listing 2.1 code, this can drastically help the development process.

Fig. 2.2: Debugging using PyCharm (Python editor)

Furthermore, unit testing is accelerated by providing simulate(dut, x) function, that runs
the following simulations without any boilerplate code:

• Model: this can be any Python code that fits as an high level model;

• Pyha: like Listing 2.1, Python domain simulation;

• RTL: simulation in VHDL domain, Pyha model is converted to VHDL;

• GATE: synthesises the VHDL code, using Intel Quartus, and simulates the resulting gate-
level netlist.

This kind of testing function enables test-driven development, where tests can be first defined for
the model and fully reused for later RTL implementation. Listing 2.3 shows an example unit test
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for the Basic() module. Python assert statements can be used for unit test development.
Pyha also provides assert_simulate(dut, expected, x) function that automatically
compares the output list to the expected list.

Listing 2.3: Unit test for the Basic module

x = [1, 2, 3, 4, 5, 6, 7, 8]

dut = Basic()

y = simulation(dut, x) # y contains result of all simulations

# assert something

2.2 Sequential logic

The way how registers are inferred is a fundamental difference between the HDL and HLS lan-
guages. HDL languages leave the task to the designer, while HLS languages automate the process.
In this work, Pyha has been designed to follow the HDL language approach, because this simplifies
the conversion to VHDL. Extensions can be considered in future editions.

In conventional programming, state is usually captured by using class variables which can retain
values between function calls. Inspired from this, all the class variables in Pyha are handled as
registers.

2.2.1 Accumulator example

Consider the design of an accumulator (Listing 2.4); it operates by sequentially adding up all the
input values of every successive function call.

Listing 2.4: Accumulator implemented in Pyha

class Acc(HW):

def __init__(self):

self.acc = 0

def main(self, x):

self.next.acc = self.acc + x

return self.acc
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The class structure in Pyha has been designed so that the __init__ function shall define all the
memory elements in the design, the function itself is not converted to VHDL, only the variables are
extracted. For example __init__ function could be used to call scipy.signal.firwin()
to design FIR filter coefficients, initial assignments to class variables are used for register ini-
tial/reset values.

The self.next.acc = ..., simulates the hardware behaviour of registers i.e. the delayed
assignment. In general, this is equivalent to the VHDL <= operator. Values are transferred from
next to current before the main call. In Pyha each call to the main function can be considered
as an clock edge.

The synthesis results displayed in the Fig. 2.3 shows the adder and register, that is the expected
result for accumulator.

Fig. 2.3: Synthesis result of Listing 2.4 (Intel Quartus RTL viewer)

One inconvenience is that every register on the signal path delays the output signal by 1 sample,
this is also called pipeline delay or latency. The delay can be seen from Fig. 2.4, where hardware
related simulations are delayed by 1 sample as compared to the software model.

Fig. 2.4: Simulation of the Acc module, input is a random integer [-5;5]. Hardware simulations
are delayed by 1, caused by the register

Pyha reserves a self._delay variable, that hardware classes can use to specify their delay.
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Simulation functions read this variable to compensate the simulation outputs. Setting the self.
_delay = 1 in the __init__ function would shift the hardware simulations left by 1 sample,
so that all the simulation would be exactly equal. This functionality is useful for documenting the
delay of modules and simplifies the development of unit-tests.

2.2.2 Block processing and sliding adder

A common technique required to implement DSP systems is block processing, i.e. calculating
results on a block of input samples. Until now, the main function has worked with a single input
sample, registers can be used to keep history of samples, so that block processing can be applied.

For example, consider an algorithm that outputs the sum of last 4 input values. Listing 2.5 shows
the Pyha implementation, it works by keeping history of 4 last input samples and summing them
for output.

Listing 2.5: Sliding adder algorithm, implemented in Pyha

class SlidingAdder(HW):

def __init__(self):

self.shr = [0, 0, 0, 0] # define list of registers

self.y = 0 # output register

def main(self, x):

# add new 'x' to list, throw away last element

self.next.shr = [x] + self.shr[:-1]

# add all elements in 'shr'

sum = 0

for x in self.shr:

sum = sum + x

# register the output

self.next.y = sum

return self.y

The self.next.shr = [x] + self.shr[:-1] implements an ‘shift register’, because
on every call it shifts the list contents to the right and adds new x as the first element. Sometimes
the same structure is used as a delay-chain, because the sample x takes 4 updates to travel from

10



shr[0] to shr[3]. This is a very common element in hardware designs. Fig. 2.5 shows the
synthesis results.

Fig. 2.5: Synthesis result of Listing 2.5 (Intel Quartus RTL viewer)

This design can be made generic by changing the __init__ function to take the window length
as a parameter (Listing 2.6), so that SlidingAdder(window_len=4) would add 4 last ele-
ments, while SlidingAdder(window_len=6) would add 6.

Listing 2.6: Generic sliding adder, window_len controls the shr list length

class SlidingAdder(HW):

def __init__(self, window_len):

self.shr = [0] * window_len

...

This design has a few issues when the window_len is increased (Fig. 2.6). First, every stage
requires a separate adder which increases the resource cost, this also forms a long critical path
which in turn decreases the maximum clock rate of the design.

Fig. 2.6: Synthesis result of SlidingAdder(window_len=6), the red line shows the critical
path (Intel Quartus RTL viewer)

Conveniently, the algorithm can be optimized to use only 2 adders, no matter the window length.
Listing 2.7 shows that instead of summing all the elements, the overlapping part of the previous
calculation can be used to significantly optimize the algorithm.
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Listing 2.7: Optimizing the sliding adder algorithm by using recursive implementation

y[4] = x[4] + x[5] + x[6] + x[7] + x[8] + x[9]

y[5] = x[5] + x[6] + x[7] + x[8] + x[9] + x[10]

y[6] = x[6] + x[7] + x[8] + x[9] + x[10] + x[11]

# optimized way to calculate by reusing previous results (recursive)

y[5] = y[4] + x[10] - x[4]

y[6] = y[5] + x[11] - x[5]

Listing 2.8 gives the implementation of the optimal sliding adder; it features a new register sum,
that keeps track of the previous output.

Listing 2.8: Optimal sliding adder, implemented in Pyha

class OptimalSlideAdd(HW):

def __init__(self, window_len):

self.shr = [0] * window_len

self.sum = 0 # register to remember the 'last' sum

self._delay = 1

def main(self, x):

self.next.shr = [x] + self.shr[:-1]

# add new 'x' to sample and subtract the delayed 'x'

self.next.sum = self.sum + x - self.shr[-1]

return self.sum

Fig. 2.7 shows the synthesis result. Now the critical path is 2 adders, no matter the window_len.
In addition, notice how the shr is just a stack of registers to delay the input signal.
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Fig. 2.7: Synthesis result of OptimalSlideAdd(window_len=4) (Intel Quartus RTL
viewer)

2.3 Fixed-point designs

DSP systems are commonly described in floating-point arithmetic, which are supported by all con-
ventional programming languages. Floating-point arithmetic can also be used in RTL languages,
but the problem is high resource usage [15]. The alternative is to use fixed-point numbers, that
work with integer arithmetic. Another benefit of fixed-point numbers is that they can map to
FPGA DSP blocks, thus providing higher clocks speed and reduced resource use1.

The common workflow is to experiment and write model using the floating-point arithmetic, then
convert to fixed-point for hardware implementation. One contribution of this thesis is the imple-
mentation of fixed-point class for the Python domain.

2.3.1 Fixed-point support in Pyha

In this work, Pyha has been designed to support signed fixed-point type by providing the Sfix
class. The implementation maps directly to the VHDL fixed-point library [17]2, that is already
known in the VHDL community and proven to be well synthesizable.

Sfix class works by allocating bits to the left and right side of the decimal point. Bits to
the left determine the integer bounds (sign bit is implicit), while the right bits determine the
minimum resolution of the number. For example, Sfix(left=0, right=-17) represents a
number between [-1;1] with resolution of 0.000007629 (2^-17). Listing 2.9 shows a few exam-
ples on how reducing the right reduces the number precision.

1 Some high-end FPGAs also include floating-point DSP blocks [16]
2 https://github.com/FPHDL/fphdl.
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Listing 2.9: Example of Sfix type, more bits give better accuracy

>>> Sfix(0.3424, left=0, right=-17)

0.34239959716796875 [0:-17]

>>> Sfix(0.3424, left=0, right=-7)

0.34375 [0:-7]

>>> Sfix(0.3424, left=0, right=-4)

0.3125 [0:-4]

The default and recommended fixed-point type in Pyha has been chosen to be Sfix(left=0,
right=-17), because it can represent normalized numbers and fits into FPGA DSP blocks [18]

[15]. Keeping block inputs and outputs in the normalized range can simplify the overall design
process. More details about the fixed-point implementation can be found in Section A.

2.3.2 Converting sliding adder to fixed-point

Consider converting the sliding window adder (developed in Section 2.2.2) to a fixed-point imple-
mentation. This requires changes only in the __init__ function (Listing 2.10).

Listing 2.10: Fixed-point sliding adder, the rest of the code is identical to the one in Section 2.2.2

def __init__(self, window_size):

self.shr = [Sfix()] * window_size # lazy type

self.sum = Sfix(left=0) # always resize left to 0

The first line sets self.shr to store Sfix() elements, this is a lazy statement as it does not
specify the fixed-point bounds i.e. it will take bounds from the first assignment to the self.shr
variable. The Sfix(left=0) forces left to 0 bits, while the fractional part is determined by
the first assign. One problem with the VHDL fixed-point library is that the designer is constantly
forced to resize the value to desired format, this thesis has automated this step i.e. every assign
to fixed-point variable is resized to the initial format, the bounds may be taken from the assigned
value if initial value is lazy.

Synthesis results in Fig. 2.8 show that inputs and outputs are now 18-bits wide, this is due the
use of default fixed-point type. Another main addition is the saturation logic, which prevents the
wraparound behaviour by saturating the value instead. Wraparound related bugs can be very hard
to find, thus it is suggested to keep saturation logic enabled when the overflows are possible.
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Fig. 2.8: RTL of fixed-point sliding adder, default fixed-point type (Intel Quartus RTL viewer)

The simulate function in Pyha has been designed to automatically convert floating-point inputs
to fixed-point, the same goes for outputs. This way the unit-test can be kept simple, Listing 2.11
gives an example.

Listing 2.11: Pyha enables testing of fixed-point design with floating-point numbers

dut = OptimalSlidingAddFix(window_len=4)

x = np.random.uniform(-0.5, 0.5, 64) # random signal in [-0.5, 0.5]

→˓range

y = simulate(dut, x) # all outputs are floats

# assert or plot results

The simulation results shown in Fig. 2.9, show that the hardware related simulations differ from
the model. This is because the model is implemented in floating-point arithmetic while hardware
typing is limited to [-1;1] range. Notice that the mismatch starts when the value rises over 1.0.

Fig. 2.9: Simulation results of fixed-point sliding sum, input is random signal in [-0.5; 0.5] range

2.4 Summary

This chapter has demonstrated the major features of the proposed tool and the motivation behind
them. It was shown that Pyha is an sequential object-oriented programming language based on
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Python. It falls in the category of behavioral languages, meaning that the output of Python program
is equivalent to the output of the generated hardware. Pyha provides simulate functions to
automatically and without any boilerplate code run model and hardware related simulations, this
helps the design of unit-tests. In addition, Pyha designs are fully debuggable in Python ecosystem.
Class variables are used to define registers, this has been inspired by traditional programming
languages. DSP systems can be implemented by using the fixed-point type. Pyha has ‘semi-
automatic’ conversion from floating point to fixed point numbers. Verifying against floating point
model accelerates the design process.
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Chapter 3

Synthesis

The majority of the hardware related tools end up converting to either VHDL or SystemVerilog,
because these are supported by the synthesis tools. Generally the higher level language is converted
to very low level VHDL/ SV code, resulting in a complex conversion process and unreadable code
for a human.

This thesis tests an alternative path by contributing the sequential object-oriented (OOP) program-
ming model for VHDL. The main motivation is to use it as a conversion target for higher level
languages. Major advantages are that the conversion process is simple and the output VHDL is
readable and structured.

VHDL has been chosen over SV because it is a strict language and forbids many mistakes during
compile time. SV on the other hand is much more permissive, for example allowing out-of-bounds
array indexing [19]. In the future both could be supported.

Fig. 3.1: Process of converting Pyha to VHDL.

Fig. 3.1 shows the process of converting Pyha to VHDL. This relies heavily on the final VHDL
model (Section 3.1). The process of type inference and syntax conversion is described in Section
3.2.
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3.1 Structured, Object-oriented style for VHDL

Structured programming in VHDL has been studied by Jiri Gaisler in [20]. He showed that com-
binatory logic is easily described by functions with sequential statements and proposed the ‘two-
process’ design method, where the first process is used to describe combinatory logic and the
second process describes registers. This thesis contributes to the ‘two process’ model by adding an
object-oriented approach, which allows fully sequential designs, easier reuse and removes the one
clock domain limitation.

The basic idea behind OOP is to strictly define functions that can perform actions on some group
of data. This idea fits well with hardware design, as ‘data’ can be thought of as registers, and
combinatory logic as functions that perform operations on the data. VHDL has no direct support
for OOP but it can still be used by grouping data in record (same as C struct) and passing it as
parameter to functions. This is essentially the same way how C programmers do it.

Listing 3.1 demonstrates pipelined multiply-accumulate (MAC), written in OOP VHDL. Recall
that all the items in the self_t record are expected to synthesise as registers.
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Listing 3.1: OOP style multiply-accumulate in VHDL

type self_t is record

mul: integer;

acc: integer;

coef: integer;

end record;

procedure main(self: inout self_t; a: in integer; ret_0: out integer)

→˓is

begin

self.mul := a * self.coef;

self.acc := self.acc + self.mul;

ret_0 := self.acc; -- return via 'out' argument

end procedure;

The synthesis results (Fig. 3.2) show that a functionally correct MAC has been implemented. How-
ever, in terms of hardware, it is not quite what was wanted. The data model specified 3 registers,
but only the one for acc is present, and even that is not placed on the critical path.

Fig. 3.2: Unexpected synthesis result of Listing 3.1, self.coef=123 (Intel Quartus RTL
viewer)

3.1.1 Defining registers with variables

The previous section made a mistake of expecting the registers to work exactly in the same way
as ‘class variables’ in traditional programming languages. In reality the difference is that registers
have delayed assignment i.e. they take value on next clock edge (or in this case, function call).
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VHDL defines a special ‘signal assignment’ operator for this kind of delayed assignment, that can
be used on VHDL signal objects like a <= b. These objects are hard to map to higher level
languages and have limited usage in VHDL structured code constructs.

Conveniently, the signal assignment can be mimicked with two variables, to represent the next
and current values. The signal assignment operator sets the value of next variable. On the next
simulation delta, all the signals are updated i.e. next written to current. This way of writing
sequential logic has been previously suggested by Pong P. Chu in his VHDL book [21] and is also
used in MyHDL signal objects [22].

Adapting this style for the MAC example is shown in Listing 3.2; the data model now includes the
nexts member, that should be used to write register values.

Listing 3.2: Data model with next, in OOP-style VHDL

type next_t is record -- new record to hold 'next' values

mul: integer;

acc: integer;

coef: integer;

end record;

type self_t is record

mul: integer;

acc: integer;

coef: integer;

nexts: next_t; -- new element

end record;

procedure main(self: inout self_t; a: integer; ret_0: out integer) is

begin

self.nexts.mul := a * self.coef; -- assigns to self.nexts

self.nexts.acc := self.acc + self.mul; -- assigns to self.nexts

ret_0 := self.acc;

end procedure;

VHDL signal assignment automatically updates the signal values, this has to be done manually
when using the two variable method. Listing 3.3 defines the new function update_registers,
taking care of this task.
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Listing 3.3: Function to update registers, in OOP-style VHDL

procedure update_register(self: inout self_t) is

begin

self.mul := self.nexts.mul;

self.acc := self.nexts.acc;

self.coef:= self.nexts.coef;

end procedure;

Note: Function ‘update_registers’ is called on clock raising edge, while the ‘main’ is called as a
combinatory function.

Synthesising the revised code shows that the pipelined MAC has been implemented (Fig. 3.3). The
coef variable is not synthesised to register as it is determined to be constant.

Fig. 3.3: Synthesis result of the revised code (Intel Quartus RTL viewer)

3.1.2 The OOP model

The OOP model, developed in this thesis, consists of the following elements:

• Record for ‘next’,

• Record for ‘self’,

• User defined functions (like ‘main’),

• ‘Update registers’ function,

• ‘Reset’ function.

VHDL supports ‘packages’, that can be used to group all these elements into common namespace.
Listing 3.4 shows the template package for VHDL ‘class’. All the class functionality is now in
common namespace.
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Listing 3.4: Class template for OOP style VHDL

package MAC is

type next_t is record

...

end record;

type self_t is record

...

nexts: next_t;

end record;

-- function prototypes

end package;

package body MAC is

procedure reset(self: inout self_t) is

...

procedure update_registers(self: inout self_t) is

...

procedure main(self:inout self_t) is

...

-- other user defined functions

end package body;

The ‘reset’ function sets the initial values for registers. Listing 3.5 shows a reset function for the
MAC circuit. Note that the hardcoded self.nexts.coef := 123; could be replaced with
VHDL package generics.
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Listing 3.5: Reset function for MAC, in OOP-style VHDL

procedure reset(self: inout self_t) is

begin

self.nexts.coef := 123;

self.nexts.mul := 0;

self.nexts.sum := 0;

update_registers(self);

end procedure;

The hardcoded self.nexts.coef := 123; could be replaced with package generic, for ex-
ample coef. Then each new package could define a new reset value for it (Listing 3.6).

Listing 3.6: Initialize new package MAC_0, with ‘coef’ 123

package MAC_0 is new MAC

generic map (COEF => 123);

3.1.3 Use cases

This section demonstrates how instances of VHDL ‘classes’ can be applied for design reused. Con-
sider an example that consists of two MAC instances and aims to connect them in series (Listing
3.7). In main,

Listing 3.7: Series MACs in OOP-style VHDL

type self_t is record

mac0: MAC_0.self_t; -- define 2 MACs as part of data model

mac1: MAC_1.self_t;

nexts: next_t;

end record;

procedure main(self:inout self_t; a: integer; ret_0:out integer) is

variable out_tmp: integer;

begin

MAC_0.main(self.mac0, a, ret_0=>out_tmp); -- MAC_0 -> MAC_1

MAC_1.main(self.mac1, out_tmp, ret_0=>ret_0); -- MAC_1 -> output

end procedure;
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The synthesis result shows that two MACs are connected in series, see Fig. 3.4.

Fig. 3.4: Synthesis result of Listing 3.7 (Intel Quartus RTL viewer)

Connecting two MACs instead in parallel can be done with a simple modification to main function
to return both outputs (Listing 3.8).

Listing 3.8: Main function for parallel instances, in OOP-style VHDL

procedure main(self:inout self_t; a: integer; ret_0:out integer; ret_

→˓1:out integer) is

begin

MAC_0.main(self.mac0, a, ret_0=>ret_0); -- return MAC_0 output

MAC_1.main(self.mac1, a, ret_0=>ret_1); -- return MAC_1 output

end procedure;

Two MAC’s are synthesized in parallel, as shown in Fig. 3.5.

Fig. 3.5: Synthesis result of Listing 3.8 (Intel Quartus RTL viewer)

Multiple clock domains can be easily supported by updating registers at different clock edges. By
reusing the parallel MACs example, consider that MAC_0 and MAC_1 are specified to work in
different clock domains. For this, only the top level process must be modified (Listing 3.9), the
rest of the code remains the same.
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Listing 3.9: Top-level for multiple clocks, in OOP-style VHDL

if (not rst_n) then

ReuseParallel_0.reset(self); -- reset everything

else

if rising_edge(clk0) then

MAC_0.update_registers(self.mac0); -- update on 'clk0' edge

end if;

if rising_edge(clk1) then

MAC_1.update_registers(self.mac1); -- update on 'clk1' edge

end if;

end if;

Synthesis results (Fig. 3.6) show that registers are clocked by different clocks. The reset signal is
common for the whole design.

Fig. 3.6: Synthesis result with modified top-level process, MACs work in different clock domains
(Intel Quartus RTL viewer)

3.2 Converting Python to VHDL

Tools like MATLAB feature an complex conversion process that requires ‘understanding’ of the
source code. Tools must perform major transformations to turn source code into VHDL. This thesis
proposes to use simple conversion from Python to VHDL, that requires no majord transformations;
this is made possible by the OOP VHDL model that allows easy mapping of Python constructs to
VHDL. Even so, the conversion process poses some challenges like type inference and syntax
conversion, that are investigated in this chapter.
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3.2.1 Type inference

One of the significant differences between Python and VHDL is the typing system. Python uses
dynamic typing i.e. types are determined during code execution, while VHDL is statically typed.
This poses a major problem for conversion, as the missing type information in Python sources
must be somehow inferred in order to produce VHDL code. A naive way to tackle this problem
is to try inferring the types directly from code, for example clearly the type of ‘a = 5‘ is integer.
However, typically the task is more complex; consider Listing 3.10 as an example, no types can be
inferred from this code.

Listing 3.10: What are the types of self.coef, a and local_var?

class SimpleClass(HW):

def __init__(self, coef):

self.coef = coef

def main(self, a):

local_var = a

An alternative is to follow the definition of dynamic typing and execute the code, after what the
value can be inspected and type inferred. Listing 3.11 shows this method applied on the class
variable, the Python function type() can be used to query the variable type.

Listing 3.11: Solving the problem for class variables

>>> dut = SimpleClass(coef=5)

>>> dut.coef

5

>>> type(dut.coef)

<class 'int'>

This solves the problem for class values. Unfortunately, this method is not applicable for the local
variables of functions, because these only exist in the stack. This problem has been encountered
before in [23], which proposes to modify the Python profiling interface in order to keep track of
function local variables. It has been decided to apply this method in Pyha; an example is shown in
Listing 3.12.
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Listing 3.12: Solving the problem for local variables

>>> dut.main.locals # locals are unknown before call

{}

>>> dut.main(1) # call function

>>> dut.main.locals # locals can be extracted

{'a': 1, 'local_var': 1}

>>> type(dut.main.locals['local_var'])

<class 'int'>

In sum, this method requires the execution of the Python code before types can be inferred. The
main advantage of this is very low complexity. In addition, this allows the usage of ‘lazy’ fixed
point types as shown in Section 2.3. This method can also be used to keep track of all the values
a variable takes, which enables automatic conversion from floating-point to fixed-point. The code
execution needed for conversion is automated in the simulate functions by running the Python
domain simulation.

3.2.2 Syntax conversion

Python provides tools that simplify the traversing of source files, like abstract syntax tree (AST)
module, that works by parsing the Python file into a tree structure, which can then be modified.
Using AST for syntax conversion is known to work but it has very low abstraction level, thus most
of the time resulting in complex conversion process. RedBaron [24] is a recent high-level AST
tool, that aims to simplify operations with Python source code; unlike AST, it also keeps the code
formatting and comments.

RedBaron parses the source code into rich objects, for example ‘a = 5‘ would result in an
AssignmentNode. Nodes can be overwritten to change some part of the behaviour. For exam-
ple, the AssignmentNode can be modified to change = to := and add ; to the end of statement.
Resulting in a VHDL compatible statement ‘a := 5;‘. This simple modification turns all the
assignments in the code to VHDL style assignments.

Listing 3.13 shows a more complex Python code that is converted to VHDL (Listing 3.14), by
Pyha. Most of the transforms are obtained by the same method described above. Some of the
transforms are a bit more complex, like return statement to output argument conversion.
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Listing 3.13: Python function to be converted to VHDL

def main(self, x):

y = x

for i in range(4):

y = y + i

return y

Listing 3.14: Conversion of Listing 3.13, assuming integer types

procedure main(self:inout self_t; x: integer; ret_0:out integer) is

variable y: integer;

begin

y := x;

for i in 0 to (4) - 1 loop

y := y + i;

end loop;

ret_0 := y;

end procedure;

3.3 Summary

This chapter has shown that Pyha achieves synthesizability by converting the Python code to
VHDL. The sequential object-oriented VHDL model is one of the contributions of this thesis,
it has been developed to provide simpler conversion from Python to VHDL, enabling almost direct
conversion from Python the VHDL by using RedBaron based syntax transformations. Type infor-
mation is acquired trough the simulation. Pyha provides simulate functions that automate the
simulation and conversion parts.

The conversion process is one of the advantages of Pyha, compared to other similar tools. The
process has low complexity and produces well formatted and readable VHDL. In addition, syntax
conversion could be easily extended to support other conversion targets like SystemVerilog or C.
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Chapter 4

Case studies

This chapter demonstrates that Pyha is already usable for real designs. First, an moving average
filter is designed, that is later reused for the linear-phase DC removal filter. Pyha has also been
used in bigger designs such as frequency-shift keying demodulator, this work is not included in
this thesis due due to the time constrains. Last section of this chapter provides an comparison of
Pyha to other related tools.

4.1 Moving average filter

The moving average (MA) is the easiest digital filter to understand and use. It is optimal filter
for reducing random noise while retaining a sharp step response [25]. In communication systems,
MA is widely used as an matched filter for rectangular pulses. Fig. 4.1 shows an example of
applying MA filter to reduce noise on harmonic signal. Higher window length (averaged over
more elements) reduces more noise but also increases the complexity and delay of the filter (MA
is a special case of FIR filter [25]).

Fig. 4.1: Moving average filter applied on noisy signal, coded in Listing 4.1
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Good noise reduction performance can be explained by the frequency response of the MA filter
(Fig. 4.2), showing that it is a low-pass filter. The passband width and stopband attenuation are
controlled by the window length.

Fig. 4.2: Frequency response of the moving average filter, coded in Listing 4.1

The MA filter is implemented by sliding sum, that is divided by the sliding window length. The
division can be carried out by a shift operation if divisor is a power of two. In addition, division
can be performed on each sample instead of on the sum, that is (a + b) / c = a/c + b/

c. This guarantees that the sum is always in the [-1;1] range and no saturation logic is needed.
Listing 4.1 shows the MA filter implementation in Pyha. It is based on the sliding sum, that was
implemented in Section 2.3.2. Minor modifications are commented in the code.

Listing 4.1: MA implementation in Pyha

class MovingAverage(HW):

def __init__(self, window_len):

# calculate power of 2 value of 'window_len', used for division

self.window_pow = Const(int(np.log2(window_len)))

# 'overflow_style' turns the saturation off

self.sum = Sfix(0, 0, -17, overflow_style=fixed_wrap)

self.shr = [Sfix()] * window_len

self._delay = 1

def main(self, x):

# divide by shifting

div = x >> self.window_pow

self.next.shr = [div] + self.shr[:-1]

self.next.sum = self.sum + div - self.shr[-1]

return self.sum
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Fig. 4.3 shows the synthesized result of this work; as expected it looks very similar to the sliding
sum RTL schematics. In general, shift operators are hard to notice on the RTL schematics because
they are implemented by routing semantics.

Fig. 4.3: RTL view of moving average (Intel Quartus RTL viewer)

Fig. 4.4 shows simulation results of MA filter used for matched filtering. The plot in (a) shows
digital input signal that is corrupted by noise. Plot (b) shows that the MA with a window length
equal to the number of samples per symbol can recover (optimal result) the signal from the noise.
Next the signal could be sampled to recover bit values (0.5=1, -0.5=0).

Fig. 4.4: Moving average as matched filter. (b) noisy input signal, (a) averaged by 16, Pyha
simulations
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4.2 Linear-phase DC removal Filter

This section demonstrates how the object-oriented nature of Pyha can be used for simple design
reuse by chaining multiple MA filters to implement linear-phase DC removal filter.

Direct conversion (homodyne or zero-IF) receivers have become very popular recently especially
in the realm of software defined radio. There are many benefits to direct conversion receivers, but
there are also some serious drawbacks, the largest being DC offset and IQ imbalances [26]. DC
offset looks like a peak near the 0 Hz on the frequency response. In time domain it manifests as a
constant component on the harmonic signal.

In [27], Rick Lyons investigates the use of moving average algorithm as a DC removal circuit.
This works by subtracting the MA output from the input signal. The problem of this approach is
the 3 dB passband ripple. However, by connecting multiple stages of MA’s in series, the ripple can
be avoided (Fig. 4.5) [27].

Fig. 4.5: Frequency response of DC removal filter (MA window length is 8)

The algorithm is composed of two parts. First, four MA’s are connected in series, outputting the
DC component of the signal. Second, the MA’s output is subtracted from the input signal, thus
giving the signal without DC component. Listing 4.2 shows the Pyha implementation.

Listing 4.2: Linear-phase DC removal filter, implemented in Pyha

class DCRemoval(HW):

def __init__(self, window_len):

self.mavg =

[MovingAverage(window_len), MovingAverage(window_len),

MovingAverage(window_len), MovingAverage(window_len)]

self.y = Sfix(0, 0, -17)

self._delay = 1
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def main(self, x):

# run input signal over all the MA's

dc = x

for mav in self.mavg:

dc = mav.main(dc)

# dc-free signal

self.next.y = x - dc

return self.y

This implementation is not exactly following that of [27]. They suggest to delay-match the step 1
and 2 of the algorithm, but since the DC component is more or less stable, this can be omitted.

Fig. 4.6 shows that the synthesis generated 4 MA filters that are connected in series, output of the
chain is subtracted from the input.

Fig. 4.6: Synthesis result of DCRemoval(window_len=4) (Intel Quartus RTL viewer)

In a real application, one would want to use this component with a larger window_len. Here 4
was chosen to keep the synthesis result simple. For example, using window_len=64 gives much
better cutoff frequency (Fig. 4.7); FIR filter with the same performance would require hundreds of
taps [27].

Fig. 4.7: Comparison of frequency response, it depends on window_len parameter

This implementation is also very light on the FPGA resource usage (Listing 4.3).
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Listing 4.3: Cyclone IV FPGA resource usage for DCRemoval(window_len=64), (Intel
Quartus synthesis report)

Total logic elements 242 / 39,600 ( < 1 % )

Total memory bits 2,964 / 1,161,216 ( < 1 % )

Embedded Multiplier 9-bit elements 0 / 232 ( 0 % )

Fig. 4.8 shows the simulation results for input signal with DC component of +0.5, the output of the
filter starts countering the DC component until it is removed.

Fig. 4.8: Simulation of DC-removal filter in the time domain, all the simulations are considered
equal

4.3 Comparison to similar tools

Traditional HDL languages like VHDL and SV work on large number of concurrent statements
and processes that are connected with signals. This is known as event-based style, when some
signal changes it may trigger the execution of processes. The reasoning behind this model is
that it models exactly how the hardware works. However, the major downside is implementation
and readability complexity. The sequentially executed programming style, proposed in this thesis,
is much more familiar for software programmers and, as shown in this thesis, results in the same
hardware outcome. This work also raises the abstraction level by opening up the Python ecosystem
for hardware developers. In addition, the simulations functions provided by Pyha greatly increase
the testing productivity and enable test-driven development.

MyHDL is a hardware description language that is also based on Python, but works in the same
event-driven way as VHDL/SV. The convertible subset of MyHDL is limited to function based
designs, this work proposes object-oriented design method, that is much easier to understand for
software developers and eases the design reuse. In general the synthesizable subset of MyHDL
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is limited, it has been found that the tool is more useful for high-level modeling purposes [28].
MyHDL also does not implement fixed-point type support, thus it is not oriented on DSP designs.

The MATLAB based DSP to HDL tools work on similar abstraction levels as Pyha i.e. code
execution is sequential, but user input is required on the placement of registers. Pyha support
object-oriented designs while MATLAB is function based like MyHDL. Working with registers
and reusing the design is simpler in Pyha. The Simulink flow is based mostly on connecting
together already existing blocks. As shown in this chapter, Pyha blocks can be connected easily
and in purely Pythonic way. MATLAB also offers an floating-point to fixed-point conversion tool
(for additional 10000$ [29]). Pyha matches this with semi-automatic conversion by supporting
lazy vector bounds, the conversion process is suitable for future implementation of fully automatic
conversion.

The C based high level synthesis tools try to turn the behaviour model directly to the RTL level
i.e. they automatically infer the register placements and concurrency. However, there are studies
that suggest that the productivity gain of these tools is equivalent to the advanced HDL languages
like MyHDL or Chisel [30] [31]. This is because more often the C algorithm must be modified
(and annotated) to suite the hardware [32] [10]. On the other hand there are also studies that
find the HLS tools to be the only way forward [33], the truth is probably somewhere between.
These tools ara mainly gaining popularity, because they appeal to designers coming from software
development. This is also the case for Pyha, as it uses pure Python classes and functions. In general
the Python based flow provides much higher abstraction than C, also Python is better suited for
modeling purposes.
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Chapter 5

Conclusion

The task of implementing DSP systems on hardware is often carried out by using high level tools,
such as MATLAB. However, these tools are costly, thus not available for everyone and unsuitable
for open-source designs. Other high-level tools are mostly based on ‘C’, which is not reasonable
for modeling purposes. Given the limitations and drawbacks of existing solutions, this thesis has
proposed Pyha, a new Python based hardware description language aimed at simplifying DSP
hardware development in an open-source manner.

Overview of main features of Pyha have been given and shown that the proposed tool is usable for
describing hardware components. It was also demonstrated that Pyha supports fixed-point types
and semi-automatic conversion from floating point types. Pyha also provides good support for unit
test and enables debugging of hardware designs in Python ecosystem.

Two use cases presented in Section 4 show that the developed solution is already usable on solv-
ing real life problems. First, the moving average filter was implemented and demonstrated as a
matched filter. The second example showed how the object-oriented nature of Pyha can be used
for simple design reuse by developing linear phase DC removal filter.

The comparison to other similar tools (Section 4.3) show that Pyha is an good alternative for com-
mercial tools and provides increased abstraction level compared to other open source tools. Pyha
may appeal to designers coming from software programming as it uses regular Python constructs
and executes in sequential manner.
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5.1 Contributions

The contributions of this thesis are:

• Hardware description, simulation and debugging in Python - this is the main contribution of
this thesis;

• Sequential object-oriented VHDL model - the object-oriented VHDL model was developed
to allow simple conversion from Python to VHDL, it may be useful knowledge to VHDL
programmers that such kind of style is fully synthesizable;

• Method for converting Python to X - this thesis developed an simple way to convert Python
syntax to VHDL, this method could be used for other purposes as well;

• Fixed-point arithmetic library for Python - fixed-point library was developed to support
cycle-accurate simulation with the converted VHDL code, this library can be used to model
fixed-point systems in Python domain;

• Simplified simulation functions - functions that can execute multiple layers of simulations
(Python, RTL, GATE) without any boilerplate code, this contribution significantly improves
the testability of hardware designs.

5.2 Future work

The technical part of Pyha has been developed by the author of this thesis during the period of
one year; while the work is already usable, it could be definitely improved. For example, finishing
the support of automatic conversion from floating-point to fixed-point. The current scope of the
Python simulator has been limited to single clock domain, which is suitable for most DSP systems;
lifting this limitation could make Pyha acceptable for a wider community.

One of the most interesting enhancements would be the extension to the conversion process, to sup-
port some HLS backend (such as VivadoHLS). This would present the designer a choice between
describing the RTL with a VHDL backend or higher-level abstractions with an HLS backend.

Long term work is to implement more DSP blocks in Pyha, so that complex systems could be built
faster. In addition, the tool should also be supported on Windows based systems.
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Appendix A

Fixed-point type details

This appendix provides more information about the fixed-point and complex fixed-point types.
Basics have been covered in Section 2.3. The Sfix type was built in such a way that all the
functions map to the VHDL library [17], so that the conversion process is simple. This has also
allowed to verify the implementation against a known working solution.

Practical fixed-point variables can store only a part of what floating-point value could. Converting
a design from floating-point to fixed-point, opens up a possibility of overflows i.e. the value grows
bigger or smaller than the format can represent. By default Pyha uses fixed-point numbers that
have saturation enabled, meaning that the fixed-point bounds are forced when value goes out of
bounds. Listing A.1 shows some examples of the saturation process.

Listing A.1: Example of saturation, note that Pyha emits warning when the saturation happens

>>> Sfix(2.5, left=0, right=-17)

WARNING:pyha.common.sfix:Saturation 2.5 -> 0.9999923706054688

0.9999923706054688 [0:-17]

>>> Sfix(2.5, left=1, right=-17)

WARNING:pyha.common.sfix:Saturation 2.5 -> 1.9999923706054688

1.9999923706054688 [1:-17]

>>> Sfix(2.5, left=2, right=-17)

2.5 [2:-17]

For some designs the wrap-around behaviour of fixed-point variables could be a feature, for ex-
ample an free running counter, that wraps to 0 when maximum value is reached. For these cases,
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saturation can be disabled as shown on Listing A.2.

Listing A.2: Saturation disabled, values wrap around

>>> Sfix(0.9, left=0, right=-17, overflow_style=fixed_wrap)

0.9000015258789062 [0:-17]

>>> Sfix(0.9 + 0.1, left=0, right=-17, overflow_style=fixed_wrap)

-1.0 [0:-17]

Fig. A.1 shows an comparison of the overflow modes. The input is an sine wave that exceeds the
fixed-point bounds. In general the saturation logic can minimize the damage.

Fig. A.1: Comparison of overflow modes.

Arithmetic operations on fixed-point variables work as usual with an exception of division, that is
not defined as it is almost always unnecessary in hardware. The philosophy of fixed point library
is to guarantee no precision loss happens during arithmetic operations, in order to do this it has
to extend the output format. It is designers job to resize numbers back into optimal format after
operations.

Listing A.3 shows an example, where two numbers of range [-1, 1] are added. Library avoids
the overflow condition by adding one bit to the integer side, thus guaranteeing that overflows are
impossible.
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Listing A.3: Arithmetic rules of fixed-point numbers

>>> Sfix(0.9, 0, -17)

0.9000015258789062 [0:-17]

>>> Sfix(0.9, 0, -17) + Sfix(0.9, 0, -17)

1.8000030517578125 [1:-17]

Fixed-point number can be forced to whatever size by using the resize functionality, Listing A.4
gives an example of this.

Listing A.4: Arithmetic rules of fixed-point numbers

>>> a = Sfix(0.89, left=0, right=-17)

>>> a

0.8899993896484375 [0:-17]

>>> b = resize(a, 0, -6)

>>> b

0.890625 [0:-6]

>>> c = resize(a, size_res=b)

>>> c

0.890625 [0:-6]

Pyha support automatic resizing for registers i.e. all assignments to the selfwill be automatically
resized to the original type of the initial definition in the __init__ function.

Objective of this work was to simplify model based design and verification of DSP to FPGA
models. One frequent problem with DSP models was that they require the use of complex numbers.
In order to unify the interface of the model and hardware model, Pyha supports complex numbers
for interfacing means, arithmetic operations are not defined. That means complex values can be
passed around and registered but calculations must be done on .real and .imag elements, that
are just Sfix objects. Example of complex fixed-point support is shown on Listing A.5.

Listing A.5: Complex fixed-point type

>>> a = ComplexSfix(0.45 + 0.88j, left=0, right=-17)

>>> a

0.45+0.88j [0:-17]

41



>>> a.real

0.4499969482421875 [0:-17]

>>> a.imag

0.8799972534179688 [0:-17]

>>> a = Sfix(-0.5, 0, -17)

>>> b = Sfix(0.5, 0, -17)

>>> ComplexSfix(a, b)

-0.50+0.50j [0:-17]
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