
A Symbolic Approach to
Model-based Online Testing

MARKO KÄÄRAMEES

P R E S S

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C79

Dissertation was accepted for the defence of the degree of Doctor of Philosophy in
Computer Science on November 5, 2012

Supervisors: Prof. Jüri Vain, PhD
Chair of General Informatics, Dept. of Computer Science
Tallinn University of Technology, Tallinn, Estonia

Michael Reichhardt Hansen, PhD
Department of Informatics and Mathematical Modeling
Technical University of Denmark, Lyngby, Denmark

Opponents: Prof. Keijo Heljanko, D. Sc.
Department of Information and Computer Science
School of Science
Aalto University, Espoo, Finland

Margus Veanes, PhD
Research in Software Engineering (RiSE) Group
Microsoft Research, Redmond, USA

Defence of the thesis: November 28, 2012

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology has not been
submitted for any academic degree.

/Marko Kääramees/

ää

(publication)
(PDF)

Copyright: Marko K ramees, 2012
ISSN 1406-4731
ISBN 978-9949-23-386-1
ISBN 978-9949-23-387-8

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology
Department of Computer Science

INFORMAATIKA JA S TEHNIKAC79ÜSTEEMI

Mudelipõhine -testimine
kasutades sümbolarvutust

online

MARKO KÄÄRAMEES

A B S T R A C T

Testing and test development is a significant part of the software devel-
opment process. Model-Based Testing (MBT) provides a means for sys-
tematic and formal description of various aspects of an Implementation
Under Test (IUT), enabling automated test generation and thus facilitation
of test suite management and accommodation of changes to the IUT or the
requirements. As it is infeasible to attempt to cover all possible behaviours
and aspects of the IUT with tests, certain significant test purposes are se-
lected by the test engineer.

Non-deterministic control structures and data components provide a
powerful means of abstraction for high level modelling of complex sys-
tems, at the expense of making automated test generation more challeng-
ing. Non-determinism in the model does not allow pre-computation of a
set of fixed test cases that are guaranteed to achieve the test purpose in the
general case. Online model-based testing where test inputs are computed
from the model and outputs fed back to the tester at the time of testing
provides an approach where testing non-deterministic systems is possi-
ble. One of the restrictions to more widespread use of online model-based
testing is the relatively high computational overhead at runtime.

In this thesis we develop a fully-fledged approach that addresses the
computational overhead issue of online testing by pre-computation of test
strategies based on the model and a formally specified test purpose. The
proposed method allows the model of the IUT to be formalised as an
Extended Finite State Machine over different first-order background the-
ories. Both reachability and coverage oriented test purposes can be ex-
pressed using constraints attributed to edges of the model, called traps.
We show how a testing strategy can be represented symbolically by a set
of constraints and generated from the model and test purpose offline us-
ing symbolic backwards reachability analysis. The strategy can be used
in online testing for efficient test input generation that guides the IUT to-
wards fulfilment of the test purpose. The method is supported by the latest
achievements of Satisfiability Module Theories (SMT) solver technology.

Finally we demonstrate the feasibility of the method on three case-
studies. A case-study originating from an industrial software project per-
forms reasonably in online test generation.

5

K O K K U V Õ T E

Testimine ja testide väljatöötamine moodustab märkimisväärse osa tark-
varaarenduse protsessist. Mudelipõhine testimine võimaldab kirjeldada
süstemaatiliselt ja formaalselt testitava süsteemi erinevaid aspekte, au-
tomatiseerida testide genereerimist ja hõlbustada testilugude haldamist
ning kohandamist nõuete või testitava süsteemi muutumisel. Kuna süstee-
mi kõikvõimalike käitumiste testimine ei ole praktikas enamasti võimalik,
siis valib testiinsener mõned olulisemad testi eesmärgid, mida püütakse
testimise käigus saavutada.

Mittedeterministlike andmekomponentidega mudeleid kasutades saab
keerulisi süsteeme modelleerida abstraktsel ja üldisel tasemel, kuid reegli-
na vaid testide genereerimise keerukuse hinnaga. Mittedeterminismi esine-
mine mudelis ei võimalda üldjuhul leida fikseeritud hulka testi stsenaa-
riume, mis garanteerivad testi eesmärgi täitmise. Mudelipõhine online-
testimine, kus testi sisendid leitakse mudeli ja testimise ajal süsteemilt
testrile saadetava väljundi alusel, võimaldab ka mittedeterministlike süs-
teemide testimist. Üheks oluliseks takistuseks online-testimise vahendite
laiemalt kasutusele võtmisel on senini olnud nende suur arvutusjõudluse
vajadus testimise ajal.

Käesolevas väitekirjas arendame välja meetodi online-testimiseks, kus
suure arvutusmahu probleemi lahendamiseks leiame enne testimist mude-
li ja testi eesmärgi alusel testimisstrateegia. Meetod võimaldab modelleeri-
da testitavaid süsteeme laiendatud lõpliku olekuautomaadiga üle erinevate
esimest järku taustateooriate. Mudeli üleminekutele lisatavate kitsenduste-
ga on võimalik formaliseerida nii katvuse kui saavutatavuse tüüpi testi
eesmärke. Näitame, kuidas on võimalik esitada testimisstrateegiat kitsen-
duste süsteemina ja seda genereerida sümbolarvutusel põhineva tagur-
pidi saavutatavusanalüüsiga. Selline strateegia on kasutatav efektiivseks
testide sisendi genereerimiseks online-testimise ajal, nii et süsteemi juhi-
takse testi eesmärkide täitmise suunas. Väljapakutud testide genereerimi-
se meetod tugineb Satisfiability Module Theories (SMT) lahendajate teooria
uutele tulemustele ja tehnilistele realisatsioonidele.

Väljapakutud meetodi kasutatavust demonstreerime kolme eksperimen-
di näitel. Tööstuspartnerilt pärineva eksperimendi tulemused näitavad pii-
savat jõudlust testide online-genereerimisel.

7

A C K N O W L E D G E M E N T S

I am grateful to everybody who has encouraged, advised, supported, and
helped me in the process of completing this thesis. This would not have
been possible without you. You have helped me to learn a lot during the
process about myself, all of you, and how things are set in the world.

I would like to sincerely thank my supervisor Prof. Jüri Vain for pro-
viding the inspiring topic, insightful comments, and being supportive in
every possible way during all the years we have worked together.

The core of this thesis was written while visiting the Embedded Sys-
tems Engineering section at Technical University of Denmark in 2011. I
am particularly thankful to my second supervisor Michael R. Hansen for
his guidance in formulating the ideas and explaining these in an under-
standable way. His humble but apposite questions have caused me on
several occasions to put aside the work on which I have spent several
days and dig into important problems for weeks. His support at the right
moments has been crucial in completing the thesis. I am also thankful to
Aske Brekling for a good company and help in conducting experiments. It
was a privilege to be a part of the inspiring research community at DTU.

I am thankful to my colleagues at Tallinn University of Technology and
in the projects where I have participated. The discussions with Juhan
Ernits, Kullo Raiend, Andres Kull, Danel Ahman, and Maili Markvardt
have been very important in developing the ideas presented in this thesis.
I am especially thankful to James Chapman, Prof. Tarmo Uustalu, and
Prof. Kuldar Taveter for their comments and support.

I am grateful to my opponents, Prof. Keijo Heljanko and Margus Veanes
for the time and hard work they invested in reading my thesis, their in-
sightful comments and constructive criticism.

I would like to acknowledge the organisations and projects that have
supported my research and the development of the ideas presented here:
Tallinn University of Technology, ELIKO Competence Centre, the project
“Synthesis of model based reactive planners for nondeterministic and dis-
tributed systems” supported by Estonian Science Foundation, the project
“Formal Methods in Distributed systems” funded by the Estonian Min-
istry of Education and Research, and the ITEA project "Deployment of
Model-Based Technologies to Industrial Testing" (D-MINT) supported by
Enterprise Estonia.

9

There have been many friends standing by my side and taking over
some of my duties. Thank you Edda, Lea, Kalle, Taavi, Johannes, Vilver,
Erki, Valjo, and Brigitta. Finally, I am most thankful to my dear wife Kar-
men for endless support and beloved kids Arpad, Marten, and Adeele for
understanding and for the time they could not but deserved to spend with
me. Above all, I am thankful to God, the ultimate source of everything.

10

C O N T E N T S

i thesis 17

1 introduction 19

1.1 Software testing 19

1.2 Model-based testing 21

1.3 Objective of the thesis 24

1.4 Related work 24

1.5 Overview of the thesis 28

2 overview of the method 29

2.1 IUT and its model 29

2.2 Test requirements 31

2.3 Offline model analysis 32

2.4 Online testing of non-deterministic systems 32

2.5 Background theories 35

3 a formal framework 37

3.1 Logical framework 37

3.1.1 Syntax of the first-order language 38

3.1.2 Semantics of the first-order language 39

3.1.3 Theories 40

3.2 Model of the IUT 41

3.2.1 Syntax of I/O-EFSM 41

3.2.2 Interaction transition system 44

3.2.3 Output-observability 47

3.2.4 Relation to Labelled Transition Systems of IOCO-testing
theory 48

3.3 Summary 50

4 test specification 53

4.1 Testing process 53

4.2 Conformance 54

4.3 Test purpose 57

4.4 Test generation using model-checking 59

4.5 Summary 60

5 symbolic testing strategy 63

5.1 Symbolic state representation 63

5.2 Pre-image of a symbolic state 64

5.3 Symbolic representation of reachability 67

11

contents

5.4 Reachability analysis 67

5.4.1 General idea of the reachability analysis 68

5.4.2 Reachability of traps 70

5.4.3 Description of the reachability analysis algorithm 73

5.5 Summary 78

6 execution of symbolic testing strategy 79

6.1 Testing procedure in general 79

6.2 Trap selection 82

6.2.1 Distance estimation 85

6.3 Input selection 86

6.4 Alternative heuristic input selection 91

6.5 Summary 92

7 implementation and tools 93

7.1 Testing strategy generation with the ERPT tool 93

7.2 Simplification 94

7.3 Test execution 97

7.4 Potential improvements to the implementation 97

8 case studies 99

8.1 Triple-counter case study 99

8.2 Inres protocol case study 101

8.3 Industrial case study: billing system 108

8.4 Summary 109

9 conclusions and future work 111

ii publications 127

12

A C R O N Y M S

API Application Programming Interface

EFSM Extended Finite State Machine

ERPT Extended Reactive Planning Tester

FSM Finite State Machine

GLAS Guarded Labelled Assignment System

IOCO Input Output Conformance

IOTS Input Output Transition System

IUT Implementation Under Test

I/O-EFSM Input/Output Extended Finite State Machine

LTS Labelled Transition System

MBT Model-Based Testing

MDE Model-Driven Engineering

RPT Reactive Planning Tester

SAT Boolean Satisfiability Problem

SMT Satisfiability Modulo Theories

STS Symbolic Transition System

13

L I S T O F S Y M B O L S

Symbol Description Page

A arity function 37

α assignment function 39,44

C set of models fo first order language 40

D domain of a model 39

E l→S promising outgoing edges 74,87

ε missing (refused) input or output 42

F , f set of functions, a function 37

I interpretation function 39

M model of first order language 39

P , p set of predicates, a predicate 37

Σ signature of first order language 37

TΣ theory over signature Σ 40

τ, t set of terms, a term 38

Φ, φ, ϕ set of formulas and a formula 38

∧,∨,→,¬ propositional connectives 37

∃, ∀ quantifiers 37

[[]]M,α valuation function 39

� satisfiability relation 39

A set of interactions 44

C constraint 63

C+
l→S weakest reachability constraint 67

C0
l→S shortest run reachability constraint 67

C
g
e→S guarding constraint 67

D type (domain) predicate 41

E set of edges of automaton 41

g a guard of an edge 41

15

acronyms

Symbol Description Page

I, i set of input labels, an input label 41,44

L, l set of locations of automaton, a location 41

M automaton 41,59

O, o set of output labels, an output label 41,44

Q queue 74

S , s set of states, a state 44

S,(l, C) symbolic state 63

T set of transitions 44

Tr, tr, (e, C) set of traps, a trap 58

U a list of updates of an edge 41

v actual parameter (value) 44

X, x, y a set of variables, a variable 37, 41

Xa, Xi, Xo, Xs sets of auxiliary, input, output, state variables 41

iLabel input label 66

Pre() pre-image 64

wp() weakest pre-condition 65

16

Part I

T H E S I S

1
I N T R O D U C T I O N

Software is increasingly pervasive and the extent to which we depend on
software in our everyday lives continues to grow. A modern car includes
more than 100 microprocessors for controlling all kind of functions from
fuel injection to playback of MP3s. It is difficult to find a new washing
machine or refrigerator without an embedded computer-based controller.
Many of us are carrying devices with us that have computing power com-
parable to that a supercomputer had 30 years ago. Supermarkets, banks
and gas stations are not able to operate when their IT systems fail. The
IT systems we are surrounded by can make some aspects of the life much
more efficient (e.g. submitting a pre-filled tax return online), cheaper (e.g.
free international video calls) or safe (e.g. traction control in cars), but it
also means that finding faults in software becomes more important. Faults
in software can be mere irritations such as temporarily being unable to ac-
cess a service, but they can also cause material damage or even endanger
lives. Space agencies have lost their missions due to software bugs (Ariane
5, Mars Climate Orbiter). A radiation therapy device (Therac-25) has given
a lethal dose of radiation to many patients. A soviet duty officer avoided
nuclear war by acting against protocol when the faulty alert system gave
a false alert of approaching missiles in 1983. Although some aspects and
components of software can be formally and rigorously verified, industry
relies largely on testing to assure the reliability of the hardware and soft-
ware. It is not uncommon that half of the software development budget is
spent on testing.

1.1 software testing

An apposite definition of testing is given in [1]:

Testing is an activity performed for evaluating product qual-
ity, and for improving it, by identifying defects and problems.

19

introduction

Software testing consists of the dynamic verification of the
behaviour of a program on a finite set of test cases, suitably
selected from the usually infinite executions domain, against
the expected behaviour.

Four keywords are emphasized in the definition above:

• Dynamic: The real execution of the implementation is involved. Dy-
namic verification is in contrast to and is complemented by static
methods like code inspection and static analysis. The outcome of the
execution may not be known beforehand, because of non-determi-
nism being involved.

• Finite: Only a finite number of finite tests can be executed. Testing is
not exhaustive in contrast to formal verification. The finite set of test
cases cannot guarantee that there are no flaws in the system under
test.

• Selected: The finite set of tests should be selected from the potentially
infinite set according to some criteria, purpose or requirements to
support the goal of the testing in the best way.

• Expected: The tester must be able to conclude whether the observed
output is expected or not. This is a question of having a test oracle.

White-box and black-box testing

There is no universal approach or method for testing. Different methods
of testing are applied at different phases of development and have differ-
ent objectives. The testing methods and uses are typically divided in to
white-box and black-box testing methods. White-box testing means that
the internals (source code) of the system is known and the tests are de-
veloped using that knowledge. The white-box approach can be applied
on different levels known as unit testing, integration testing, and system
testing. These levels are for testing modules separately, testing modules
together, and testing the whole system respectively. In the case of black-

box testing no knowledge of the implementation or the internals of the
system is assumed. The functionality of the system as seen at the inter-
face is tested for conformance to requirements, specification or reference
implementation. We focussing on black-box testing in this thesis.

20

1.2 model-based testing

Figure 1.1: Model-based testing

Test objective

Testing may have different objectives like regression testing, performance
testing, stress testing, security testing, functional testing and others [1]. Re-
gression testing is used for checking that the behaviour and functionality
of the unchanged aspects of the system did not change during the modifi-
cations. Performance testing is used to check if the system meets the per-
formance requirements. Stress testing is used to examine the behaviour of
the system when the maximum intended load is exceeded. These objec-
tives are orthogonal to functional or conformance testing, which is used
to assure that the system does what is expected by the specification. We
are focussing on conformance testing in this thesis.

1.2 model-based testing

Model-Based Testing (MBT) is a method where the tests and test oracle are
derived from a formal model of the Implementation Under Test (IUT) and
test purpose. The main application field of MBT is black-box functional
testing [62], but it has been used in white-box [40], regression [14] and
other types of testing. In model-based testing one can automate the test
or tester generation that usually needs a lot of manual work. A good
example of the benefits of model-based testing can be found in [30]. The
general view of model-based testing is illustrated in Figure 1.1.

Model of the IUT

A model of the IUT is a formal finite representation of the possibly infi-
nite set of acceptable input-output behaviours of the IUT. The model may
originate from the specification, abstraction or other sources and may have
different internal structure than the IUT. There are a wide variety of formal
specification formalisms. A good overview of the classes of formalisms is

21

introduction

provided in [47]. We concentrate more on automata and transition based
modelling formalisms. Finite State Machine (FSM) are widely used for
modelling the control flow of the systems that communicate to the envi-
ronment. An FSM consists of locations (states) and edges (transitions) that
have an associated input and output symbols. In order to model a system
which has both control and data parts (e.g., communication protocols), an
extension is needed. Such systems are represented using an Extended Fi-
nite State Machine (EFSM) model. An EFSM has internal state variables in
addition to locations and the transitions depend and change the value of
the variables. EFSMs provide a means of representing very large or infinite
state spaces and sets of possible behaviours in a compact form.

An EFSM is deterministic if the state and input determine the next transi-
tion and state unambiguously and it is non-deterministic otherwise. Non-
determinism of the model of the IUT can arise from several sources. It
may be that the IUT has some non-deterministic aspects due to, for ex-
ample, a multi-threaded or distributed implementation. The model can
also represent the requirements given in the specifications that allow free-
dom of different implementations and such freedom is expressed as non-
determinism. Non-determinism may also emerge from abstraction of
some aspects of the system. For the model builder non-determinism can
be a useful tool but it places much greater demands on the test genera-
tion tool. Many of the available model-based testing tools assume that the
model is deterministic. The main problem lies in the fact that it is not
possible to compute a fixed set of test cases that achieve the test purpose
based on the non-deterministic model. It is necessary to decide the inputs
and parameters given to the IUT during testing.

Test purpose and goals

The model specifies a very large or infinite set of possible behaviours. It
is not feasible to run tests on the real IUT for all possible behaviours. It
means that a test purpose is needed in addition to the model to select which
kinds of behaviours should be tested.

The test purpose may originate from the requirements in the informal
specification. The test purpose may also originate from the general ap-
proach of finding as many faults as possible and be expressed as some
kind of coverage criteria [27]. The coverage criteria are usually given in
MBT using the elements of the model, e.g. transition, state, or border value
coverage.

22

1.2 model-based testing

Fulfilling the purpose of test may involve many tests or subtasks. We
call such subtasks test goals. A test purpose may consist of many test
goals. For instance, a test goal may correspond to a test case and a test
purpose to a test suite in the testing of deterministic systems. Test goals
are formally specified in MBT as test scenarios, states, or transitions to be
reached in the model or elements of the model that have to be covered.

Test verdict

The testing process needs some way to evaluate if the observed behaviour
of the IUT is correct. This is called the test oracle problem. Some pre-
defined criteria or even human expertise is used in the manual testing for
that purpose. In the case of MBT, the test oracle can be derived from the
model. It is formalised as conformance relation between the model and
the IUT. A test fails whenever a non-conforming behaviour is observed.
The formal definition and discussion about conformance is given in Sec-
tion 4.2.

Tester

In the context of MBT we mean under the term tester some testing engine
that forms an artificial environment for the IUT. It uses a test suite in
some representation (e.g., tests, test script, or test strategy) and is able to
supply inputs to the IUT, observe outputs, evaluate the conformance of
the behaviour, give verdicts, and fulfil the test purpose in this way. One
common approach is to generate a test suite of test scripts. Every script
is a sequence of inputs and expected outputs with the ability to give a
verdict depending on the actual run of the test. This is called offline test
generation and is suitable for deterministic systems. Such scripts can be
generated from deterministic models.

The things are different when the model is non-deterministic. It even
does not matter if the IUT is actually deterministic and the non-determinism
in the model is caused by abstraction or loose specification. It is neither
possible nor feasible to generate such linear test scripts in this case, be-
cause the reaction of the IUT is not known beforehand and the tester’s
behaviour for every reaction should be included in the script. This may
cause infeasible or infinite branching. It may be possible to express the
behaviour of the tester as an automaton. This approach of tester gener-
ation has close relations to controller synthesis. Another possibility is a
game-theoretic approach, where the testing is viewed as a game between

23

introduction

the tester and the IUT. The tester needs a strategy to achieve its goal and
tester generation boils down to strategy generation. In any case, the linear
test cases cannot be pre-computed from a non-deterministic model and
the actual inputs sent to the IUT should be generated on-the-fly depend-
ing on the reactions of the IUT. This is also known as online testing. In
the following we treat online testing and on-the-fly testing to be equivalent
terms.

1.3 objective of the thesis

The main objective of the thesis is to develop a model based testing ap-
proach for efficient online testing based on the (possibly non-determinis-
tic) model of the IUT and a test purpose. More specifically:

• A formalism suitable for modelling the IUT that supports test gener-
ation.

• A method to specify test purposes that are rich enough to represent
both scenarios and structural coverage criteria.

• A method for offline analysis of the model to generate a testing strat-
egy that can be used for efficient online testing.

• Empirical evaluation of the feasibility of the method in case-studies.

1.4 related work

Along with spreading the ideas of Model-Driven Engineering (MDE) the
MBT as constituent of MDE has become one of the dominant approaches to
constructive test design. Since the focus of thesis is model-based online
testing of non-deterministic systems we do not endeavour to comprehen-
sive overview of MBT in general, but refer to surveys [63, 3, 9] and books
[62, 11, 73] written on the subject. We focus on earlier results specifically
related to model-based test generation for non-deterministic FSM/EFSM

and related models.

The EFSM model has been widely studied and many methods for test
data generation are proposed [46, 51, 56, 43]. The complication with
EFSM models is that paths can be infeasible due to the variable inter-
dependencies among the actions and conditions. There is no input data
that can cause an infeasible path to be traversed. While the feasibility of
paths is undecidable in general, there are techniques that handle them

24

1.4 related work

in certain special cases [28, 23, 31, 13]. Also the methods of heuristic
search are used for discovering feasible paths [43, 20, 72]. Many impor-
tant theoretical results of MBT are based on EFSM related modelling for-
malisms and semantic frameworks like Labelled Transition System (LTS)
[59], Symbolic Transition System (STS) [26] and Guarded Labelled Assign-
ment System (GLAS) [67]. For instance, conformance between the model
and the IUT is defined as a Input Output Conformance (IOCO) relation
and other related relations in [59] lifted to symbolic setting of STS in [26]
and shown to be closely related to alternating simulation relation in [67].
We base our notation of conformance on alternating simulation relation.

An important aspect to be dealt with test generation for non-determinis-
tic systems is the proportion between online and offline generation activ-
ities. Due to the non-deterministic nature of the model of the IUT test
sequences cannot be synthesized fully in advance (offline). The test gen-
eration procedure can derive the test inputs including the values of data
parameters only one by one online depending on the current state of the
IUT and the target state set by the test goal. Thus, in online testing it is not
required to explore the whole state space of the model of the IUT any time
the test stimulus is generated. Instead, the decisions about the next actions
are made by observing the current output of the IUT locally [60]. However,
online test execution requires more run-time resources for interpreting the
model and choosing the most relevant test stimulus. The taxonomy of on-
line testing methods is based on how the test purpose is defined, how the
test stimuli are selected on-the-fly, and what is the planning effort behind
each choice.

The test purpose can be stated in a very abstract way when applying the
IOCO [59, 10] relation. Usually the conformance relation is tested using
either a completely random or heuristic driven state space exploration
algorithm. A test stimulus at a given state is selected randomly from
the set of stimuli having uniform distribution of preference to trigger a
next transitions of the IUT model. Random choice has been used in the
early TorX tool [7], Uppaal-Tron [35, 48], and also in the on-the-fly testing
mode of SpecExplorer [54, 70]. In [24] the transition probabilities directed
input selection method is introduced to TorX. More restrictive are the test
goal-directed exploration algorithms that reduce the total number of states
to be explored in a model. The goal-directed approach is stronger than
random exploration in the sense of providing guidance towards a certain
set of the IUT execution sequences that cover so called test goal items (e.g.,
states or transitions in the IUT model). The goal-directed approach was
introduced in [25, 44], used in testing tool elaborated in [18] and later

25

introduction

used in TorX [61] and TGV [41]. Uppaal Cover [35] specifies observer
automata for specifying test goals.

Further advancement of test goal specification has been introduced in
NModel [69, 68] where the IUT model presented as a model program can
be composed with test scenario models to restrict the sets of test sequences.
An “anti-ant” [52] based algorithm of reinforcement learning [70] is used
to cover specified test sequences in the model program, dynamic approach
of DART system [29], inserted assertions [44], path fitness [20], etc. are
applied for guiding the exploration of the IUT state space. Game-theoretic
approach is used for generating winning strategies for achieving the test
goal in non-deterministic models [54] and implemented in AsmL tester
tool. The generated strategies do not take the infeasibility of the paths
and data-communication into account. An efficient method for generating
a winning strategy for achieving a goal in timed automaton is presented
in [12]. Similar method could be used for test strategy generation for a
single reachability goal, but not for coverage based testing purposes. The
extreme of guiding the selection of test stimuli is exhaustive planning
by solving at each test execution step a full constraint system set by the
test purpose and test planning strategy. For instance, the witness trace
generated by model checking provides a selection of the next test stimulus.
The critical issue in the case of explicit state model checking algorithms is
the size and complexity of the model leading to the explosion of the state
space, specially in cases such as "combination lock" or deep nested loops
in the model [31]. Therefore, model checking based approaches are used
mostly in offline test generation.

The Reactive Planning Tester (RPT) synthesis method of [66] is online
testing approach that combines structural test coverage criteria with reac-
tive online planning strategy. The test purpose is defined using simple
boolean trap variable assignments associated the IUT model transitions.
The reactive planning strategy is synthesised and partially evaluated of-
fline. At each step of concrete test run the state vector is assumed to be
fully observable that allows evaluation of strategy constraints and calcu-
late the explicit value of gain function that determines locally optimal test
inputs. The main limitation of RPT approach is that it is applicable for
output-observable non-deterministic EFSM models only with the assump-
tion that all transition paths are feasible and variables have finite domains.

26

1.4 related work

Novelty of the contribution

The main contribution of this thesis is a MBT approach for efficient online
testing based on a test purpose and an EFSM model with limited non-
determinism. Novelty of the contribution lies in the following:

• Model-based test generation for EFSM (Section 3.2) models with in-
feasible paths and non-determinism, that is constrained by the con-
dition of output-observability that is a key prerequisite for efficient
model-based online testing

• Test purpose specification using trap predicates that are a generaliza-
tion of boolean trap variables introduced in [31] (Section 4.3). Trap
predicates and auxiliary variables enable to specify both scenario
and structural coverage type of test purposes, both on control struc-
tures and data components.

• Test generation is divided to offline testing strategy generation and
online explicit test data generation phases as in [66, 65], but the nov-
elty proposed in the thesis is that the strategy generation is carried
out and represented completely symbolically (Chapter 5) avoiding
the need of constraining the data components to finite domains and
converting the model to FSM representation.

• The proposed online procedure for test data generation is based
on the symbolic test strategy that avoids expensive analysis of the
model during the test run and achieves model coverage or feasible
path to the test goals with close to optimal length (Chapter 6). The
test generation is optimized to covering all goals in case the test pur-
pose consists of a set of goals, e.g. in the case of achieving some
coverage.

• Demonstration of the feasibility of symbolic reachability analysis us-
ing algebraic simplifications and quantifier elimination procedures
that are supported by contemporary Satisfiability Modulo Theories
(SMT) solvers (Subsection 5.4.3, Section 7.2).

27

introduction

1.5 overview of the thesis

The rest of the thesis is organized as follows:

chapter 2: We give a quick overview of the MBT approach proposed in
the thesis by an example of a vending machine.

chapter 3: We define a formal framework for modelling the IUT, the
syntax and semantics of the Input/Output Extended Finite State
Machine and the first order logic it is based on. In addition, we
explore the similarities and differences of Input/Output Extended
Finite State Machine (I/O-EFSM) to related formalisms.

chapter 4: We elaborate on testing, conformance, test purpose, goals
and coverage. Traps are defined for formal specification of the test
goals. A simple method is presented that can be used for generating
tests from deterministic models using traps.

chapter 5: We show how the testing strategy can be represented by
constraints and distance measures. The symbolic representation of
the sets of states is defined and reachability analysis explained.

chapter 6: The testing procedure using the symbolic test strategy is
explained in details.

chapter 7: We describe the overall workflow and tools used in the im-
plementation of the method.

chapter 8: The feasibility of the method is demonstrated on three case-
studies from different backgrounds. One of the case studies is an
academic example to demonstrate the properties of the proposed
method. The second case study is a communication protocol used
also in other approaches of MBT and the third is a billing application
from an industrial project.

chapter 9: The chapter summarises the results of the work presented
in this thesis and discusses directions for future research.

28

2
O V E RV I E W O F T H E M E T H O D

In this chapter we give an overview of the method proposed in this thesis.
The sections of the overview correspond roughly to the following chapters.
We illustrate the method on the simple example of a latte vending machine
without going to the details presented in the following chapters.

We start from an informal set of specifications and develop a model and
corresponding test goals. Then we show the generated result of the model
exploration and how the data is used during online testing.

The test generation is divided into two main phases – computation-
ally expensive model analysis yielding a test strategy and computation-
ally efficient test input generation based on the strategy. The division
is motivated mainly by the need to be able to test the systems with a
non-deterministic model of the IUT. Test inputs cannot be pre-computed
for non-deterministic systems and must be generated on-the-fly during
testing. They depend on the actual state of the system. The test strat-
egy generated during the model analysis enables to find a suitable input
based on local data, deeper model exploration is not needed. The method
is motivated by, but not limited to, the non-deterministic systems and can
be applied for the deterministic systems and models as well.

2.1 iut and its model

The tests are generated from the model of the IUT and the set of test goals.
The model gives a black-box view of the IUT at the testing interface. The
goals of the test are specified as a set of reachability tasks on the model.
The formal definition of modelling and test goal specification formalism
can be found in Chapter 4. We illustrate the method on a simple example
of testing a controller of a latte vending machine.

The following specification and model are simplified and do not reflect
many important aspects of a realistic vending machine. It can also be
viewed as an abstraction of a vending machine with only some interesting

29

overview of the method

Figure 2.1: Extended Finite State Machine

Figure 2.2: Model of latte vending machine

aspects modelled. The informal specification consists of some require-
ments:

1. The vending machine should be able to collect different coins.

2. It should deliver latte when the amount of money equal to the pre-
defined price is given. The controller should start grinding after
receiving the money and brewing after that.

3. Brewing should not start if there is no cup present.

4. If an amount of money exceeding the price is given, then it can
either return all the coins or give latte. The choice is left to the
implementation.

5. No change is given if latte is brewed for an amount of money ex-
ceeding the price to simplify the logical and mechanical design of
the vending machine.

The model is given as an EFSM. The elements of EFSM are presented
in Figure 2.1 and defined in Section 3.2. Here we explain the modelling
formalism based on the specification example of the vending machine
depicted in Figure 2.2. The model consists of state variables (e.g., sum for
the amount of money inserted), locations attributed by labels (l0, l<, l≥),
and directed edges connecting the locations. The edges are labelled with:

input to be received to make a transition. It may be without parameters
(e.g., cup) or with parameter (e.g., coin(val)), where the parameter val
represents the value of the coin

30

2.2 test requirements

guard condition (e.g., sum > Price) that must evaluate to true for being
able to take a transition over the edge. The constant Price denotes
some predefined value here.

update (e.g., sum := sum+ val) that defines how the values of the state
variables change because of the transition

output (e.g., grind,msg(sum)) sent by the transition.

The behaviour of the automaton can be understood so that it starts from
location l0 and waits for a coin. The next transition is deterministic and
depends on the value of the coin. If the value of the coin is equal to
the price grinding starts. Then from the location l≥ latte is served if the
cup is present. If the value of the coin received in the initial location
does not equal to the price, the automaton moves to the location l< where
more coins can be collected until the sum is greater or equal to the price.
There is a non-deterministic reaction possible in case sum > Price. The
automaton can make a transition to l0 or l≥. Although it is not possible to
control the choice, the outcome determines which choice was taken. This
is called output observability and we assume the models have such property.

There are some more concrete restrictions on the model. For the vend-
ing machine model we assume that all the variables are of type integer,
sum is non-negative, Price is 20, and only coins with values 1, 5 and 20

are available.

2.2 test requirements

Our aim is to generate tests that cover the whole model in some sense or
at least visit some crucial elements of the model. To achieve this we model
the goals of the test by traps. A trap is a pair of a transition and a predicate
on state variables and input parameters. The test goal modelled by a
trap is satisfied when the transition is taken with the associated predicate
satisfied as a pre-condition. The discussion about the specification of the
goal of the testing is in Chapter 4, traps are formally defined in Section
4.3.

We have three test goals in our example expressed by three traps:

1. Test that the machine is able to brew latte

2. Test that it can take several smaller coins before brewing latte

3. Test if it is possible to get latte if coins with total value more than
the price (20) are given

31

overview of the method

Figure 2.3: Model of vending machine with traps

The traps can be attributed to the edges as assignments of the trap pred-
icates to special Boolean valued trap variables. Finding a test can also be
seen as finding a run on the automaton that evaluates the trap variable to
true. The model augmented with traps is depicted in Figure 2.3.

2.3 offline model analysis

Our aim is to analyse the model augmented with traps and generate a test
strategy that can guide the testing process towards the uncovered traps.
The generated strategy consists of constraints and distance measures at-
tributed to the edges and locations. The components of the strategy and
the method to find these is provided in Chapter 5. The strategy can be
viewed as signs that help us to choose a right direction with appropriate
input parameters. The simplified strategy for reaching trap2 and trap3 is
depicted in Figure 2.4

The constraints are generated by backwards breath-first symbolic analy-
sis of the model starting from the condition associated with the trap. The
process ends when a fixpoint or the allowed depth of the exploration is
reached. The constraints are simplified during the process to keep the size
of the constraints under control. Simplification is the most computation-
ally demanding and critical part of the work, taking more than 95% of
the resources usually. The detailed description of the model exploration
procedure is given in Chapter 5.

2.4 online testing of non-deterministic systems

The testing process simulates the model in parallel to driving the IUT.
It checks if the behaviour of the IUT conforms to the model during the
process and drives the process using the strategy so that all the goals

32

2.4 online testing of non-deterministic systems

Figure 2.4: Test strategy for reaching trap3

Table 2.1: online input generation for vending machine example

Step Goal Input Output State Covered

1 trap2 coin(5) msg(5) (l<, sum = 5)

2 trap2 coin(1) msg(6) (l<, sum = 6) trap2

3 trap3 coin(20) msg(26) (l<, sum = 26)

4 trap3 coins (l0, sum = 26)

5 trap3 coin(1) msg(1) (l<, sum = 1)

6 trap3 coin(20) msg(21) (l<, sum = 21)

7 trap3 grind (l≥, sum = 21)

8 trap3 cup latte (l0, sum = 21) trap1, trap3

(traps) are covered one after another. The aim is to minimize the length
of the test for covering all the goals. The verdict “failure” with trace is
given when a non-conforming behaviour is found and “success” if all the
goals are covered with conforming behaviour. A formal definition and
discussion about conformance is in Section 4.2. The detailed description
of the testing process and subtasks involved is in Chapter 6.

The test procedure for a non-deterministic model selects the next test
goal and input on-the-fly depending on the state of the system. The next
test goals and inputs are selected by solving the constraints for input pa-
rameters using a constraint solver.

A simplified view of the steps of the online testing process are shown
in Table 2.1. The column Goal describes which trap is selected as the next

33

overview of the method

goal. An optimal approach would be to cover trap2 first and then trap3

together with trap1. The Input and Output columns describe interactions
between the tester and the IUT. The State column describes the state of
the model after the interaction and the last columns shows what traps are
covered.

Every row of the table describes one interaction with the IUT. There are
no non-conforming interactions present and we can conclude that the test
was successful and all the goals were covered. At first trap2 is taken as
a goal. A value is selected for input parameter val from the set of possi-
ble values {1, 5, 20}, such that the guarding constraint val < 20 is satisfied.
Value 5 is selected and communicated to the IUT as the parameter of input
coin(5) and output msg(5) is expected back from the IUT. Any other re-
sponse would be regarded as non-conforming behaviour. The only possi-
ble result of the simulation of the model with the input and output shown
is the location l< and state variable sum having value 5.

The second step results in covering trap2. Any possible value is suit-
able for the constraint val ≥ 20 and lets assume that the value 1 was
selected. The goal changes to trap3 after that step. The only enabled
guard is still the self-loop of the location l<. The guarding constraint
sum ≤ 20∧ sum+ val > 20 for reaching trap3 is a little more complex. Solv-
ing it in the state sum = 6 means that a substituted constraint
6 ≤ 20∧ 6+ val > 20 should be solved and the only possible solution is
val = 20.

Non-deterministic behaviour is possible in the step 4. The state
(l<, sum = 26) allows both returning to l0 and progressing to l≥. Lets as-
sume that the IUT chooses the first option and returns all the coins. The
tester should be able to cope with such a deviation from the planned
path and the strategy starts to guide the process again from the location
l0. The steps 5 and 6 are similar to steps 1 and 3, except a different so-
lution is found and a coin with value 1 is inserted. There is again a
non-deterministic choice made by the IUT for step 7. Lets assume that
the desirable choice is done this time and the brewing process starts with
grinding. The last step covers both traps trap1 and trap3. This happened,
because the trap with stronger condition was chosen as a goal. Other-
wise, if a latte had been served for amount 20, then trap3 have been left
uncovered.

34

2.5 background theories

2.5 background theories

The example is used on models expressed by EFSM with linear constraints
and updates, but the method is not limited to this. It can be applied to dif-
ferent background theories as well. The theoretical limitation is the ability
to calculate the weakest preconditions of the updates and to check satis-
fiability and solve the constraints in the test strategy. This constrains the
theories to those where the SMT problem is decidable. The ability to elim-
inate existential quantification and simplify the constraints is important
for the feasibility of the satisfiability check and model generation, but no
normal forms or other strict requirements are placed on the simplification.

The set of possible background theories is limited to the theories sup-
ported by Boolean Satisfiability Problem (SAT) and SMT solvers from the
practical point of view. This includes FSM models and Binary Decision
Diagram (BDD) based symbolic representation and EFSM models with in-
teger or real arithmetic, linear or non-linear functions, arrays, bit-vectors,
and many algebraic data types. Using higher level theories complicates
the elementary steps of satisfiability check and simplification. But it helps
to express the same properties in a more concise and natural way on the
other hand. Also the applicability of theory-specific higher level simplifi-
cation may help to cope with much larger state spaces. The typical exam-
ple is to use integers with inequalities and arithmetical operations instead
of bit vectors. The feasibility of the test generation for a concrete model
depends on the structure of the model and tools available to support the
decision procedures in the chosen background theory.

35

3
A F O R M A L F R A M E W O R K

We define a formal framework for modelling an IUT in this chapter. In
model based testing approach the tests are generated from a formal model
of an IUT and test goals. In Section 3.2 we propose a formalism of paramet-
rised Input/Output Extended Finite State Machine (I/O-EFSM). We extend the
formalism of EFSM used for test generation in [65] by data communication
in form of input/output parameters, infinite domains of state variables
and relaxing condition of path feasibility. The approach is inspired by
Statecharts [33, 16] and other similar formalisms of Mealy style input/out-
put and extended finite state machines [56, 43] where the communication
takes place in interactions consisting of input and output. This kind of
approach is common in game theory [5, 71] and the generation of testing
strategy can be viewed also as finding a winning strategy of a two-player
game. We also define a property of output-observability of I/O-EFSM that
can be viewed as limited non-determinism and is a useful property for
more efficient test generation.

Parts of the model, test goals and results are expressed in the logical
framework of a first-order theory which will be described in the following
section. For a more detailed description we refer to [39]. The procedures
of test generation introduced in Chapters 5 and 6 are based on the con-
cepts of the logical framework developed in this chapter.

3.1 logical framework

We use a first-order language over a set of variables X and a signature
Σ = (P ,F ,A), where P is a set of predicate symbols, F is a set of function
symbols, andA is the arity function that assigns a natural number to every
element of P and F .

37

a formal framework

3.1.1 Syntax of the first-order language

The language includes propositional connectives ∧,∨,→,¬, quantifiers ∃, ∀,
terms τ, and formulas Φ.

Definition 3.1. The set of well-formed terms τ is defined inductively as
follows:

• a variable is a term: x ∈ τ, for all x ∈ X,

• an application of a function to a sequence of terms is a term:
f (t1, . . . , tn) ∈ τ, where f ∈ F , ti ∈ τ, i ∈ [1, n], and A(f) = n

Definition 3.2. The set of well-formed formulas φ is defined inductively as
follows:

• true and false are formulas

• an application of a predicate to a sequence of terms is a formula:
p(t1, . . . , tn) ∈ Φ, where p ∈ P , ti ∈ τ, and A(p) = n;

• a Boolean combination of formulas is a formula: φ ∧ ϕ, φ ∨ ϕ, φ →

ϕ,¬φ ∈ Φ, where φ, ϕ ∈ Φ

• formula with a variable bound by a quantifier is a formula: ∃x :
φ, ∀x : φ ∈ Φ, where φ ∈ Φ, x ∈ X

Moreover:

constant is the function with arity 0

ground term is the term, which does not include variables; a ground for-

mula is the formula including only ground terms

quantifier free formula is the formula, which does not include quanti-
fiers

free variable is the variable in the formula, that is not bound by any
quantifier

sentence is a formula with no free variables

38

3.1 logical framework

3.1.2 Semantics of the first-order language

The semantics of the first-order language is defined using a model M =

(D, I) and variable assignment α. The domain D is a non-empty set.
The interpretation I assigns a function fM : Dn 7→ D to each function
f ∈ F with arity A(f) = n and a relation pM ⊆ Dn to each predicate
p ∈ P with arity A(p) = n. An assignment function α assigns an element
xα ∈ D to every variable x ∈ X. An assignment update α[x 7→ d] denotes an
assignment α′, where α′(x) = d and α′(y) = α(y) for all variables y ∈ X,
such that y 6= x, i.e. α′ is an assignment which is the same as α except that
x is mapped to d.

Definition 3.3. The interpretation of terms is given as a valuation function
[[]]M,α : Dn 7→ D defined recursively as follows:

• [[x]]M,α = α(x) for all x ∈ X

• [[f (t1, . . . , tn)]]M,α = fM([[t1]]
M,α, . . . , [[tn]]M,α) for all f ∈ F with

A(f) = n and ti ∈ τ

Definition 3.4. The interpretation of the formulas is given as a satisfiability

relation M, α � φ (a formula φ is satisfied or true in the model M under
the assignment α) and defined recursively as follows:

• M, α � true

• M, α 2 false

• M, α � p(t1, . . . , tn) iff ([[t1]]
M,α, . . . , [[tn]]M,α) ∈ pM for all p ∈ P

with A(p) = n and ti ∈ τ

• M, α � ¬φ iff M, α 2 φ

• M, α � φ ∨ ϕ iff M, α � φ or M, α � ϕ

• M, α � φ ∧ ϕ iff M, α � φ and M, α � ϕ

• M, α � ∃x : φ iff M, α[x 7→ d] � φ for some d ∈ D

• M, α � ∀x : φ iff M, α[x 7→ d] � φ for all d ∈ D

Definition 3.5. An assignment ν to the variables x is a partial satisfying
assignment for ϕ if

ν � ∃y : ϕ

where y is the free variables of ϕ that are not in x.
I.e., a partial assignment for ϕ is a assignment that is extensible to a

satisfying assignment for ϕ.

39

a formal framework

A formula φ is satisfiable if there is a model M and assignment α, such
that M, α � φ. Otherwise the formula is unsatisfiable. If the formula φ

is satisfiable, so is its existential closure ∃~x : φ, where ~x is the set of free
variables in φ.

A formula φ is valid (written as � φ), if for all models M and assign-
ments α it holds that M, α � φ. The universal closure ∀~x : φ of a formula φ

is valid iff its negation is not satisfiable 2 ¬φ.

3.1.3 Theories

A first-order theory T over signature Σ is a set of first-order sentences over
Σ. The theory T fixes a class of models C (sometimes called intended

models) in which the sentences are true: M ∈ C iff M, α |= ψ for all ψ ∈ T

and α. A formula φ is said to be satisfiable modulo T if it is satisfiable
in this class of models, i.e., if there is a model M ∈ C and assignment α

such that M, α |= φ. We write also α � φ to denote that the formula φ

is satisfied under a (partial) assignment α when we can assume that the
background theory is known and the theory determines a single model
M.

Example 3.1. The theory of Presburger arithmetic (also called linear inte-
ger arithmetic) is a first-order theory over signature

({≤}, N∪{+,−}, {〈≤7→ 2〉 , 〈n 7→ 0〉 , 〈+ 7→ 2〉 , 〈− 7→ 2〉}),

where n ∈ N. It consists of all true sentences in the model given by
N as the carrier and the usual arithmetic interpretation of ≤,+,− and
numerical constants. In the assignment α = [x 7→ 5][y 7→ 7] the term x + y

is interpreted as 12 ∈ D as follows

[[x + y]]M,α = [[x]]M,α +M [[y]]M,α = α(x) + α(y) = 5 + 7 = 12

The sentence 5 ≤ 7∧ ∀x : ∃y : x + 1 ≤ y is true in the intended model and
hence belongs to the theory, because there exists a number y = x + 1 ∈ N

for any other natural number x ∈ N. But the sentences ∀x : ∃y : ¬x ≤ y

and ∃y : ∀x : x ≤ y are false and do not belong to the theory, because
all the natural numbers in N are greater or equal to 0 and none is bigger
than any other natural number in the interpretation of ≤.

In the context of the current work we consider the theories for which
the SMT (Satisfiability Modulo Theories) problem is decidable and also an
efficient decision procedures and solvers are available. The other impor-

40

3.2 model of the iut

tant feasibility aspect is the availability of the efficient existential quantifier
elimination and algebraic simplification procedures.

3.2 model of the iut

Test generation needs the IUT to be represented by a formal model. We
propose a formalism of Input/Output Extended Finite State Machine (I/O-

EFSM) for that purpose.

3.2.1 Syntax of I/O-EFSM

We define a model of an IUT using a parametrized Input/Output Extended

Finite State Machine I/O-EFSM(TΣ) over the first-order theory TΣ.

Definition 3.6. Input/Output Extended Finite State Machine (I/O-EFSM(TΣ))
M (also called automaton) over a first order theory TΣ is a tuple
(L, l0, X, D, I, O, E), where

• L is a finite set of locations, l0 ∈ L is an initial location;

• X is a set of variables, consisting of the disjoint sets of state variables

Xs, input variables Xi, output variables Xo, and auxiliary variables Xa;

• D ∈ TΣ(X) is a well-formed formula of the theory that specifies the
domain of the variables. The predicate D is needed to constrain the
value domain of variables, because the automaton is defined over
single-sorted language;

• I is a set of input labels including symbol ε for a missing input. Every
input label i ∈ I may have an associated n-tuple of input variables
xi ∈ Xn

i called formal parameters par(i) = xi. |par(i)| = n is a natural
number denoting the number of parameters of the label.
|par(ε)| = 0;

• O is a set of outputs including symbol ε for a missing output. Every
output label o ∈ O may have an associated n-tuple of output vari-
ables xo ∈ (Xo ∪ Xs)n called formal parameters par(o) = xo. The
state variables can be used as formal parameters of output also.
|par(o)| = n is a natural number denoting the number of param-
eters of the label. |par(ε)| = 0;

• E is a finite set of edges. An edge e ∈ E is a tuple (l, i(xi), o(xo), g, U, l′),

written also as l
i(xi)/o(xo)[g]U
−−−−−−−−→ l′ where

41

a formal framework

– l ∈ L is the source location

– l′ ∈ L is the target location

– i(xi) is an input port where i ∈ I is an input label and xi = par(i)

are its formal parameters

– o(xo)is an output port where o ∈ O is an output label and
xo = par(o) are its formal parameters

– g is a well-formed formula of the theory TΣ(Xs ∪ Xi) over the
state and input variables named guard.

– U is a list of updates in the form x1 := expr1, . . . , xn := exprn,
where xi ∈ Xs ∪ Xo ∪ Xa and expri ∈ τ is a well-formed term of
TΣ(Xs ∪ Xi) or xi ∈ Xa and expri ∈ τ is a well-formed term of
TΣ(Xs ∪ Xi ∪ Xa).

We use locations and edges on the syntactic level of the automaton, whereas
corresponding terms state and transition are used on the semantic level and
defined in the next section. This may differ from some other approaches.

The theory TΣ determines the allowed types of the variables, operators
and functions in the guards and updates. The theory may restrict vari-
ables to Booleans, reals, integers, arrays or other algebraic data types and
operations to linear arithmetic, finite structures and so on. The different
theories differ in expressive power, complexity of the solver procedures
and tool support. We present the method of test generation independently
of the theory chosen, but we require that the SMT (Satisfiability Modulo
Theories) problem is decidable for the used formulas and chosen back-
ground theories. In the mixed theories, where the variables can belong
to different types we assume that the predicates defining the type (e.g.,
Int(x), Set(x)) are part of the theory and can be used in D to constrain
the possible values.

The symbol ε refers to a missing or refused action (input or output). It is
considered as an intentional behaviour from the party (tester or IUT) and
understood as such by the other party. It can model a predefined timeout
in case the decision is made based on the action or a mere fact that the
other party made an internal unobservable action in case of deterministic
behaviour. The actual interpretation depends on the application and state.
Thus ε can be taken as a legal action symbol, even if the real communica-
tion is not taking place. An ε output is considered to be received when no
output is received in the process where some output is expected. The ε

action assumes that it is possible to model and interface an IUT such that
the possible race conditions, because of the communication delays, buffer-
ing, system load and scheduling do not interfere with the testing process.

42

3.2 model of the iut

Figure 3.1: Mouse double-click

Figure 3.2: I/O-EFSM model of vending machine

A testing theory with buffered input-output is considered in [57]. An ε

input is useful for modelling double-click like behaviour as in Figure 3.1.

Example 3.2. The formal definition of the vending machine introduced in
Chapter 2 and depicted in Figure 3.2 is a follows:

L = {l0, l<, l≥}

l0 = l0

Xs = {sum}

Xi = {val}

Xo = ∅

Xa = ∅

D = Int(sum) ∧ Int(val) ∧ sum ≥ 0∧ val ∈ {1, 5, 20} ∧ Price = 20

I = {coin, cup, ε}

O = {msg, coins, grind, latte, ε}

par(k) = {〈coin 7→ 1〉 , 〈cup 7→ 0〉 , 〈msg 7→ 1〉 , 〈coins 7→ 0〉 ,)

〈grind 7→ 0〉 , 〈latte 7→ 0〉 , 〈ε 7→ 0〉}

E = {(l0, coin(val), msg(sum), val 6= Price, sum := val, l<), }

(l0, coin(val), grind, val = Price, sum := val, l≥),

(l<, coin(val), msg(sum), true, sum := sum + val, l<),

(l<, ε, coins, sum > Price, , l0), (l<, ε, grind, sum ≥ Price, , l≥),

(l≥, cup, latte, true, , l0)

43

a formal framework

Please note that if we restrict the theory TΣ to pure Presburger arith-
metic (Example 3.1), then ≤ is the only comparison predicate defined and
we should rewrite all comparisons that use some other predicate in terms
of ≤ . E.g. the correct domain predicate D would be following in that
case:

D = (val ≤ 1∧ 1 ≤ val) ∨ (val ≤ 5∧ 5 ≤ val) ∨ (val ≤ 20∧ 20 ≤ val)

and 20 substituted for Price in all other formulas.

The input variables Xi and output variables Xo are not considered as
part of the state of an automaton, but an implicit environment. The up-
date functions are not allowed to assign values to input variables and the
behaviour of the automaton does not depend on the value of output and
auxiliary variables. The auxiliary variables are not allowed to occur in
the guards and right hand of the assignments to state variables and do
not affect the behaviour of the automaton because of that. They may be
regarded as dependent or history variables and used for specifying test
goals. The difference of auxiliary and output variables is that the output
variables do not belong to the state and have a value only during the tran-
sition. The main function of the output variables is to give a possibility
to calculate a value based on the state variables that is revealed on the
interface. But the state can be revealed directly also. For instance in the
example above the variable sum is a state and not output variable although
it is used as a parameter to output port msg.

Furthermore, the following functions are defined on edges
e = (l, i(xi), o(xo), g, U, l′):

source(e) = l is the source location of the edge

target(e) = l′ is the target location of the edge

guard(e) = g is the guard of the edge

in(l) ⊆ E is the set of incoming edges {e′|e′ ∈ E and target(e′) = l}

out(l) ⊆ E is the set of outgoing edges {e′|e′ ∈ E and source(e′) = l}

3.2.2 Interaction transition system

We define an interaction transition system ITS(TΣ) for describing the seman-
tics of an I/O-EFSM(TΣ) (L, l0, X, D, I, O, E).

44

3.2 model of the iut

Definition 3.7. An interaction transition system ITS(TΣ) is a tuple (S , A, T)

where:

• S is a set of states. A state s ∈ S is a pair (l, α) of a location l ∈ L and
assignment α of the variables in Xs ∪Xa. The assignment satisfies the
domain of the variables α � D.

• A is a set of interactions. An interaction a ∈ A is a pair (i(vi), o(vo))

of an input and output action. An input action i(vi) consists of an
input label i ∈ I and a tuple of actual parameters (values) (vi) =

(v1, . . . , vn), when n = |par(i)| > 0. An output action is defined in
the same way. (ε, ε) denotes a transition without interaction.

• T ⊆ S × A × S is a set of transitions. We use a notation

(l, α)
(i(vi),o(vo))
−−−−−−→ (l′, α′) or s

a
−→ s′ for (s, a, s′) ∈ T. A transition

(l, α)
(i(vi),o(vo))
−−−−−−→ (l′, α′) ∈ T if there is an edge l

i(xi)/o(xo)[g]U
−−−−−−−−→ l′ and

– if i 6= ε, an input action i(vi) is received.

– the transition is enabled, meaning that the conjunction of the
guard and domain is satisfiable α′′ |= g∧D in an assignment α′′

where the input variable assignments are updated by the input
parameters α′′ = α[x1 7→ v1]...[xn 7→ vn] for each xi ∈ par(i).

– the assignment α′ in the target state is the result of applying the
updates U = [x1 := t1, . . . , xn := tn] to the assignment α′′ , such
that α1 = α′′, αi+1 = αi[xi 7→ [[ti]]

M,αi] for i = 1 . . . n, and α′ is
αn+1 restricted to Xs ∪ Xa

– if o 6= ε, an output action o(vo) is sent, where the parameters
vo = (v1, . . . , vn) correspond to the assignment of output vari-
ables vo = [[xo]]M,αn+1 for xo ∈ par(o).

By input action we mean a pair of input label and assignment of input
parameters. The output action is a pair of output label and assignment of
output variables.

We consider a transition to be atomic although it contains several in-
ternal sub-states for receiving an input, updating state variables one after
another and sending an output. The semantics is defined in this way to
enable modelling of atomic interactions. Modelling one-way interaction
where only input or output is present and transitions without interaction
are possible also by using ε as a symbol of implicit action.

The input and output variables have an assigned value only during
transitions and can be regarded as local to transition. A state is defined
by the partial assignment α to state and auxiliary variables.

45

a formal framework

Definition 3.8. A run of the automaton is a sequence of states 〈s1, . . . , sk〉,
so that the states are related by the transition relation si

a
−→ si+1 for all

the states i = 1 . . . k− 1. A feasible run starts from the initial state (l0, α0),
where the initial assignment α0 of the variables is defined by their type,
e.g., all numerical variables are initialized to 0, Booleans to f alse, sets to
∅ and so on. No special construction for initialization is defined, but it is
always possible to model initialization by a single edge leaving from the
initial location. The length of a run |〈s1, . . . , sk〉| = k− 1 is the number of
transitions in it. An automaton is not well-defined if it has a feasible run
with infinite number or consequent (ε, ε) actions.

Definition 3.9. An observable behaviour of an automaton is a finite sequence
〈a1, . . . , ak〉 of interactions of some feasible run, from where unobservable
(ε, ε) transitions are removed. The (ε, ε) transition is unobservable, when
it follows to (∗, ε) or precedes to (ε, ∗) interaction, i.e. it is observable
only when it follows to the real output and precedes to the real input. A
sequence of (ε, ε) transitions is observable as a single (ε, ε) interaction.
O(M) is the set of all observable behaviours of automaton M. O(M)

has a prefix inclusion property:

〈a1, . . . , ak, ak+1〉 ∈ O(M) =⇒ 〈a1, . . . , ak〉 ∈ O(M), for all k > 1

Example 3.3. Two runs of the automaton depicted in Figure 3.2 are

〈(l0, sum 7→ 0), (l<, sum 7→ 5), (l<, sum 7→ 25), (l0, sum 7→ 25)〉

〈(l0, sum 7→ 0), (l<, sum 7→ 5), (l<, sum 7→ 25), (l≥, sum 7→ 25)〉

with the following corresponding observable behaviours

〈(coin(5), msg(5)), (coin(20), msg(25)), (ε, coins)〉

〈(coin(5), msg(5)), (coin(20), msg(25)), (ε, grind)〉

The runs differ only by the location of the last state and different output
in the last interaction.

46

3.2 model of the iut

3.2.3 Output-observability

The output-observability or observability is a well-know term in the con-
trol theory, but also used in connection to using EFSMs and FSMs in the
testing [56, 71]. The intuitive meaning is that the internal state of the au-
tomaton is detectable by its external behaviour, i.e. by knowing the initial
state and the sequence of input and output actions. The output observ-
ability property gives one to one correspondence between the run and
observable behaviour of the automaton. It does not mean that the internal
state of the IUT is detectable, but that the relevant part of the state of the
IUT what determines the observed behaviour is modelled by an unique
state of the model. We require in the following that the model of the IUT

is given as an output observable I/O-EFSM.

Definition 3.10. An ITS and I/O-EFSM is output-observable iff for all states
(l, α), such that l ∈ L,α |= D and input action i(vi), such that i ∈ I, vi |= D

it holds that

• if there are two transitions with the same source state and input

action (l, α)
(i,o′)
−→ (l′, α′) and (l, α)

(i,o′′)
−→ (l′′, α′′) the output action dis-

tinguishes the destination states (l′, α′) 6= (l′′, α′′) =⇒ o′ 6= o′′.

• if there is a sequence of transitions with consequent ε output and

input (l′′′, α′′′)
(i,ε)
−→ (l, α) and (l, α)

(ε,o)
−→ (l′′, α′′) then there is no tran-

sition (l, α)
(i′,o′)
−→ (l′, α′) such that l′ 6= l′′ ∨ α′ 6= α′′ that can lead

to different state. The ε-input action following to ε-output action is
chosen deterministically based on the state.

It follows from the output-observability that the combination of source
state, input and output actions of a transition identifies the next state of
the IUT unambiguously.

The output-observability could be defined in the level of syntax, seman-
tics or behaviour. We have chosen the semantic level as a compromise
between the expressibility of the model and possibility of static checking.
The following example illustrates the difference.

Example 3.4. The automaton in Figure 3.3

• is not syntactically output-observable. It would need a different out-
put label on one of the alternative edges.

• is semantically output-observable if D =⇒ x > 2 ∧ u > 2. I.e. it is
possible to check in the background theory that 2 D ∧ x + u = x ∗ u.

47

a formal framework

Figure 3.3: Output-observability

• is behaviourally output-observable if D =⇒ u > 2. I.e. for reach-
able states (l1, α) it is possible to show that α 2 D ∧ x + u = x ∗ u.

The model of the vending machine in the examples is also output-
observable.

Output-observability can be viewed as limited (one step) non-
determinism. We have found this to be a useful and practical subclass
of automaton both from the perspective of modelling and test genera-
tion. The testing procedure described in Section 6.1, specially the simu-
lation part is based on the output-observability assumption. The output-
observability property of the model enables us to relax the input-
enabledness requirement on the IUT as discussed in Section 4.2. We have
defined the I/O-EFSM in Mealy style to be able to define and build output-
observable models intuitively. We elaborate on the consequences and rela-
tions to other formalisms in Section 3.2.4.

3.2.4 Relation to Labelled Transition Systems of IOCO-testing theory

The LTS of IOCO-testing theory [59] and its extension to STS with data vari-
ables [26] form a well established semantic framework for model-based
testing. We do not base our work on these results as Mealy style EFSM and
labelled transition systems form a close, but a separate tradition of mod-
elling and there are some subtle differences in the semantics. The goal of
the subsection is to give an overview and intuition of the differences of
the paradigms without going to formal details.

The main difference is that a transition of LTS can have either an input
or an output associated with it, but not both. An STS [26] can be defined
to correspond to an I/O-EFSM by splitting each edge to two elements of
the STS switch relation with an intermediate location between the input
and output action. An non-deterministic output-observable I/O-EFSM with
corresponding the STS is depicted in Figure 3.4. It is easy to see why the
output-observability can be characterized as one step non-determinism.
It is non-deterministic for input, but determined if input and output are

48

3.2 model of the iut

Figure 3.4: I/O-EFSM and STS

taken as one interaction. The other semantic difference is that the scope of
the input and output variables is global for the STS, but local to transition
for I/O-EFSM.

Quiescence

The quiescence defined for STS framework is a central term in the IOCO-
testing theory. It is defined as a property of a state, where no output or
internal transition is possible, i.e. all the outgoing transitions require an
input. The LTS model is augmented with δ-loops for such states to denote
that quiescence is observable in these states. E.g. the initial and final states
of Figure 3.4 are quiescent. The δ-transitions are included in the suspension

traces that express the observable behaviours. If the IUT is found to be qui-
escent during the testing then the observation of δ-transitions is assumed
and the current state of the specification model is restricted to quiescent
states or concluded that the IUT is non-conforming if no quiescent state is
reachable with the observed suspension trace. This is a kind of implicit
quiescence derived from the absence of output.

There is no need for adding δ-loops into the model in case of output-
observable I/O-EFSMs. All the states without outgoing ε-input transition
can be considered quiescent, where the system is waiting for the next
input. The consequences of observing quiescence is taken into account
directly in the testing procedure explained in Chapter 6. There is no need
to constrain the set of states using the observation of quiescence, because
the output-observability of the model constrains it to single state anyway.
And observing quiescence when real output is expected (no ε-output al-
lowed) is considered to be a non-conforming behaviour. In addition, the
I/O-EFSM offers a possibility to model explicit quiescence in form of ε-
input and ε-output, so that the IUT and tester can (non-deterministically)
choose if they send the action other party is waiting for or refuses to send
and delivers quiescence. This is another form of limited non-determinism
that an output-observable I/O-EFSM offers. ε-output can be modelled by a

49

a formal framework

non-deterministic τ-switch and ε-output by a special input symbol in STS

model [26].

Composition

An important property of LTS based formal models is the well-defined
parallel composition. It is known that it is difficult to define a natural
parallel composition for Mealy style EFSM based models [38, 69]. Actually
there are at least two different ways a parallel synchronous composition
have been used in the context of model-based testing.

One is to synchronize on the transitions with the same label and inter-
leave all other transitions. One application of that kind of composition
is used for defining conformance in the parallel composition of an imple-
mentation and specification [59, 67]. Another application is composing the
model of the IUT to the scenario automata to constrain the set of possible
behaviours during the test and guard the testing towards a goal [69, 40].
This kind of parallel composition is applicable to I/O-EFSM models when
taking the whole interaction as a single label. The synchronization to only
input or output actions is more problematic. This kind of composition
reduces non-determinism and also preserves output-observability if the
hiding of actions is not used.

The second kind of parallel composition is handshake synchronization
for composing the model from components, e.g., the parallel composi-
tion of timed automata for testing with Tron [35] originating from CSP
[36] style synchronization mechanism. Inputs and outputs are synchro-
nized to each other and hidden from the product of the composition. This
kind of composition is problematic for Mealy style EFSMs and the output-
observability would be not preserved also because of hiding the labels.

3.3 summary

We have defined a formal framework for model-based testing in this chap-
ter including first order language and I/O-EFSM over a first order theory
with its syntax and semantics. Also the output-observability property
of the model of the IUT was defined that requires an internal state of
the model to be uniquely detectable by observing its I/O-behaviour. It
is assumed in the following chapters that the models have the output-
observability property. Also the meaning, possibilities to observe, cause
and represent the quiescence were discussed.

The I/O-EFSM formalism is proposed for feasible coverage oriented
model-based testing of IUTs with structural coverage oriented test pur-

50

3.3 summary

poses. The property of output-observability is motivated by the possibility
of efficient online test generation and evaluation that cannot be avoided
for non-deterministic models. Restricting models by output-observability
is a compromise between the expressibility of non-determinis-
tic behaviours and feasibility of the test generation. I/O-EFSMs provide
an intuitive way for building such models. Defining a generic semantic
framework as LTS, STS and GLAS models [59, 26, 67] is not an intention
of this thesis. Our approach is oriented to support feasibility and prac-
tical usability of MBT processes, with the main focus on automated test
generation and execution.

51

4
T E S T S P E C I F I C AT I O N

The model of the IUT is a black-box view of the system that expresses
the behaviour of the IUT on the observable testing interface. This model
could come from expectations, requirements, design or concrete knowl-
edge about the implementation, but the origin of the model is not im-
portant for our approach. The relation of the IUT, model and tester is
described in Section 4.1. The goal is to test if the IUT behaves as specified
by the model. This is formalized as a conformance relation in Section 4.2.
Testing often presumes more targeted traversal of the IUT model than just
a random walk. In Section 4.3 we propose a concept of traps to express
such goals. The use of traps is presented also in [42, 64]. We extend the
traps used for test goal specification in [65] by trap conditions for being
able to express data-dependent conditions more naturally. Finally a sim-
ple approach for using model-checking for testing scenario generation is
show in Section 4.4.

4.1 testing process

Execution of a test means that an IUT and a tester run in parallel and
communicate through input-output actions. The tester acts as an artificial
environment to the IUT generating input actions and analysing output ac-
tions. Many approaches [59, 35, 66] share the view that a test case or test
suite is generated as an automaton or a collection of automata and its out-
puts connected to the inputs of the IUT and vice versa. We do not produce
test automaton, but generate the test stimuli and check the response of the
IUT on-the-fly. So it is better to think of a tester as conformance checking
engine that generates input, receives output from the IUT and simulates
the same input and output on the model as depicted in Figure 4.1. Similar
approach is used also in [26] and other frameworks where tests are gen-
erated from the non-deterministic models with data components to avoid
generating infeasibly large or infinite tester automatons.

53

test specification

Figure 4.1: Testing process

The communication is captured in interactions that are pairs of an input
and output actions, where one of those may be missing. Every interaction
corresponds to a transition of the model of the IUT. The tester is usually
responsible for initiating the interaction by giving an input. Based on the
output (or absence of the output) it can finish the test giving a test verdict
or initiate the next interaction. The test verdict “passed” is given when the
test purpose is achieved and resulting behaviour conforms to the model
(is an observable behaviour of the model). The test verdict “failed” is
given when the behaviour does not conform to the model. Also a verdict
“inconclusive” may be given when a timeout is associated to the testing
process and the test purpose is not achieved before the timeout. More
detailed description of the testing process is described in the Chapter 6.

4.2 conformance

The goal of the testing process is to confirm that the IUT (implementation)
conforms to the model (specification), at least to the extent covered by
the tests or to show a behaviour of the IUT that does not conform to the
model. A comprehensive overview of different conformance relations and
the definition of the well-known IOCO relation is given in [59] and its
lifting to STS with data components in [26]. It has been shown in [67] that
the IOCO relation can be viewed as an alternating simulation [4] relation.

The intuitive meaning of the alternating simulation relation between
the model and implementation is that the model can accept only inputs
the implementation can accept and implementation can produce only out-
puts that the model can produce illustrated in Figure 4.2. The implemen-
tation and model are in the alternating simulation relation when all the
behaviours where the input is chosen by the model and output by the
implementation are possible for both. The rationale behind the relation
is that the specification may contain more (non-deterministic) freedom of

54

4.2 conformance

Figure 4.2: Alternating simulation relation

Figure 4.3: Observable behaviours of M and I

reactions to the same input and the specification may be incomplete and
does not specify any reaction to some unspecified input. We define the
conformance relation between an IUT and model based on the idea of al-
ternating simulation of the observable behaviours.

Example 4.1. Let us have a model M with one location l and two edges

l
i/o
−→ l and l

i/o′′
−−→ l and an implementation I with observable behaviours

represented by regular expressions ((i, o)|(i′, o′))∗. The fragment of ob-
servable behaviours of both are depicted in Figure 4.3. Although the left-
most behaviour is the only one common to both, we can say that the
implementation I conforms to model M because they are in alternating
simulation relation. But the relation does not hold other way round. The
formal definition of the conformance is given in the following definition.

Definition 4.1. Let O(M) and O(I) be the sets of all finite observable
behaviours of model M and implementation I, i is an input action, o, o′

are output actions, ω is a sequence of interactions. An implementation I

conforms to model M, denoted by I 4 M iff the following conditions are
satisfied for all 〈ω, (i, o)〉 ∈ O(M) ∪O(I)

55

test specification

〈ω, (i, o)〉 ∈ O(M) ∧ 〈ω〉 ∈ O(I) =⇒ ∃o′ :
〈

ω, (i, o′)
〉

∈ O(I)

〈ω, (i, o)〉 ∈ O(I) ∧ 〈ω〉 ∈ O(M) =⇒ 〈ω, (i, o)〉 ∈ O(M) ∨

∀o′ :
〈

ω, (i, o′)
〉

/∈ O(M)

The conditions apply only to the behaviours with a common prefix up
to the last interaction (e.g. b1, b2, ba, bb in the previous example). The
rest of the behaviours are restricted implicitly through the prefix inclu-
sion property and other properties of the output observable behaviours
given in Definition 3.9. The first condition formalizes that the implemen-
tation must accept as input what is possible according to the model after
〈ω〉. The implementation is not forced to be able to give the same output.
For instance the pair of behaviours b2, ba in Figure 4.3 satisfies the first
condition. On the other hand, the second condition formalizes that the
model should be able to produce the same output as implementation if
the inputs match (e.g. b1 because of ba) or the behaviour with the input
is unspecified in the model and there is no following interaction with the
same input (e.g. no matching behaviour for bb).

We need only the set of observable behaviours defined for the IUT and
nothing about its internal structure for defining conformance. The observ-
able behaviours should have the same form and properties as for I/O-EFSM

model given in Definition 3.9. This is actually all we have in the case of
black-box testing, we cannot assume any knowledge of the internals of
the IUT. This is different with the definitions of IOCO [59] and alternating
simulation relation on GLASs [67], where the IUT is assumed to be repre-
sented by some kind of LTS. The LTSs must not be directly related to the
IUT, but are used as finite representations of possible infinite sets of traces
(behaviours). We avoid the assumption and define conformance directly
on observable behaviours.

The defined conformance relation is not identical to IOCO, but very sim-
ilar. One of the reasons is in the modelling formalism and modelling of
quiescence discussed in Section 3.2.4. The other difference is the require-
ments in the IOCO testing theory that an IUT must be represented by an
Input Output Transition System (IOTS). An IOTS is an LTS with disjoint sets
of input and output labels and being input-enabled for all input labels in
all states. It is not quite clear why the requirement of input-enabledness
is needed. One way to understand it is that the IUT cannot avoid receiving
an arbitrary input in any state and it should react to it somehow, e.g. by
quiescence (no observable reaction), responding with some output, giving
exception, exploding or in some other way. On the other hand, it seems

56

4.3 test purpose

a little too strong requirement, because a tester should not give arbitrary
input in every situation. A theoretical reason for input-enabledness is that
the LTS model does not constrain non-determinism and the testing proce-
dure keeps track of the set of states that are consistent with the current
trace and where the IUT can be at the moment. That implies that any of
the inputs possible from any consistent state may be sent to the IUT and it
must be ready to react to it. Being able to accept any input that is possi-
ble according to the model (specification) at every given state is a weaker
condition than input-enabledness. This is what an IOCO test generation
algorithm must assume and alternating simulation relation requires. As
we require in general that the models are output-observable, it is possi-
ble to constrain the set of consistent states to a single state and the IUT

must be able to accept only the inputs of the transitions having this state
as a source. One benefit of output-observability is the possibility of not
requiring too much robustness from the IUT.

The definition of the conformance relation suggest a simple basic test-
ing algorithm. After the test run resulting in observable behaviour ω and
acceptable both to model and the IUT, a new input is generated what is
consistent with the possible behaviours of the model. Then the output is
expected what is consistent with the behaviour of the IUT. The second con-
dition suggests to check if the interaction generated is also consistent with
the model. The process continues from where it was. The second disjunct
of the second condition will never be satisfied in the testing process, be-
cause the input is never generated that is inconsistent to the model. This
basic algorithm is common to many testing frameworks. The essential
question is how the input is selected from the potentially large set in each
iteration. The tester should be able to choose an input in infinitely many
different states in case the data variables are involved and from infinite
many inputs in case the input has data parameters. The testing can be
random or goal-driven depending on how the selection of input is carried
out. A method for goal-driven testing is one of the main contributions of
the thesis.

4.3 test purpose

The goal of testing is to give some certainty that an IUT conforms to its
specification. Testing cannot be used to show conformance in general,
because it would need an infinite or infeasible amount of tests executed
on the IUT. Testing can be regarded also as a means of checking non-
conformance, because a single test can reveal it. Thus, a test purpose in

57

test specification

addition to the model is needed to increase the testers chance to find the
potential non-conforming behaviours. The test purpose can be give in the
form of coverage criteria or test requirement.

A coverage criteria helps to distribute the parts of the IUT model cov-
ered by test cases more evenly. The typical structural coverage criteria
cover all edges, pairs of edges or border conditions of the constraints in-
volved. Although the coverage seems like an even distribution, it is usual
that covering some elements of the coverage is much more difficult than
other elements and the IUT needs guidance to traverse the elements with
minimal exploration effort avoiding unnecessary parts of the model [66].

Another approach is an additional specification of test requirements. A
standard can be given as a general model of operation and lot of specific
requirements that must be met, e.g. “every packet sent should be resent
if an acknowledgement is not received”. One way of formalizing the test
requirements is to build an additional partial model, so called scenario
model that is composed with the specification to reduce non-determinism
and possible behaviours into a manageable set [40, 41]. Another approach
to formalize the requirement is to express it by a reachability condition
over the elements of the specification.

We model the purpose of the test by a set of traps associated with the
edges of the specification automaton. The term is also used with a dif-
ferent meaning in [41] for the states associated to test verdicts. The use
of traps is similar to [65], but we lift the meaning to I/O-EFSM models for
being able to handle conditions on state variables.

Definition 4.2. A trap tr is a pair (etr, Ctr) where etr ∈ E is an edge and
constraint Ctr is a formula of TΣ(Xi ∪ Xs ∪ Xa). The set of all traps is

denoted by Tr. A trap is covered if a transition (l, α)
(i(vi),o(vo))
−−−−−−→ (l′, α′) is

taken over edge etr and α [xi 7→ vi] |= Ctr.

The trap predicate Ctr expresses a pre-condition that must be satisfied
before the edge etr is used for a transition. There can be many traps
associated to the same edge. Under the test goal we mean a single trap
and the test purpose the set of all traps given.

Defining traps in this way allows one to express the goals of a test in
connection to the edges. The edges are the primary structural elements
of the model because the communication interactions are related to edges.
The edge associated to a trap determines the source location where the
edge is taken, but the state of the system depends also on variables. The
trap predicate Ctr is used to specify the valuation of variables and input
parameters before the edge is taken. For instance the guard of the edge

58

4.4 test generation using model-checking

e may constrain that the input parameter j must be non-negative (j ≥

0). One may want to test that the IUT behaves correctly when the border
condition is satisfied and add a trap (e, j = 0). The purpose of border
condition coverage can be achieved by having a trap for every border
condition. Full transition coverage can be formalized by associating a trap
with condition true to every edge.

Some usual test purposes may be difficult to formalise by the simple
set of traps alone, e.g. “pass a transition at least 3 times” or “take the
transition A followed by the transition B”. An additional auxiliary counter
of history variables can be used to record some aspects of the history of
test execution to model such properties. Introducing auxiliary variables
does not change what runs are feasible in the model. This concept of
traps together with auxiliary variables is powerful enough to test all the
reachability properties.

The model should specify the correct behaviours only. The safety prop-
erties and general assertions in the form “free coffee is never served” or
“it never happens that the lift is moving and the doors are open” is usu-
ally not a goal of testing, but functional verification of a model. If such
a behaviour is present in the model, the model can be considered wrong
in respect to the safety requirements. If such a behaviour is present in
the IUT, but not in the model, a test set with a good coverage will hope-
fully reveal a non-conforming behaviour. For example in case of testing
a lift controller an output “close doors” is not received where the model
expects this.

4.4 test generation using model-checking

Model-checking is used for generating tests in different contexts, by ex-
tracting test cases from the traces of the model-checking. This is best
suited to deterministic models, because it allows to generate a finite test
case and no expensive computations are needed during the test run. We
do not use the following process directly, but use it to demonstrate how
the model-checking could be used in our setting. To formalize the test
purpose the model of the IUT is augmented by trap variables as done also
in [66].

A tester is generated based on a model M = (L, l0, X, D, I, O, E) of the
IUT and the set of traps Tr representing the test purpose. An augmented
model MTr = (L, l0, X ∪ XTr, D, I, O, ETr) is generated such that

• XTr consists of a Boolean variable xtr for every trap tr ∈ Tr. The
variables are auxiliary XTr ⊆ XTr

a .

59

test specification

Figure 4.4: Automata augmented with trap variables

• ETr is generated from E by augmenting the update Utr of the edge
etr = (ltr, itr, otr, gtr, Utr, l′tr) ∈ E associated to every trap tr = (etr, Ctr)

by adding xtr := Ctr ∨ xtr to the beginning of the update sequence.

• we assume that all the augmented variables xtr are initialized to
false.

The resulting augmented model evaluates a trap variable to true whenever
a transition is taken that covers the trap. The test generation can be viewed
as finding a feasible run in an augmented model MTr that evaluates all the
Boolean variables xt ∈ XT to true.

Example 4.2. The tree requirements that the vending machine in Figure
3.2 is able to (1) brew latte, (2) accept more than one coin and (3) brew latte
when the amount of coins inserted exceeds price. These requirements can
be formalized as traps (l≥ → l0, true), (l< → l<, true) and (l≥ → l0, sum >

Price). The resulting augmented automata is depicted in Figure 4.4.

4.5 summary

In this chapter we presented testing a tester as an environment that com-
municates to the IUT purposefully following a test purpose. The test oracle
simulates the same communication on the model and gives verdicts if the
test purpose is satisfied or the IUT is not conforming to the model. Test-
ing can not be used for confirming that the IUT conforms to the model in
general, because it would need an infinite amount of testing. It can assure
that non-conforming behaviour was not detected while the behaviour of
the IUT covered the test purpose. A test purpose is used to guide the
IUT to the behaviours and corner cases and restrict the potentially infinite
amount of behaviours to those that demonstrate some feature of the sys-
tem. We use traps associated with the edges of the model to formalize

60

4.5 summary

such test purposes. Counter-example traces generated by model-checking
can be used to derive tests to check the test purpose. It is possible to gen-
erate finite and deterministic test suites for deterministic models, but it is
inefficient for non-deterministic systems, because extensive time-bounded
modelchecking would be needed during the actual testing. We will pro-
pose a method for generating a symbolic test strategy in the following
chapter, that can be used as efficient online test planning strategy for effi-
cient guiding of the testing process towards satisfying the test purpose.

61

5
S Y M B O L I C T E S T I N G S T R AT E G Y

The goal of the chapter is to demonstrate how a symbolic test strategy
can be found that is a prerequisite for on-the-fly generation of concrete
tests to cover the test goals in efficient way. The strategy is symbolic and
operates on the sets of states represented by predicates (constraints). The
strategy generation involves analysis of the model by backwards symbolic
reachability analysis. This avoids expensive analysis during the actual
testing time so that the test control decisions made on-the-fly can be based
on the local data and the test strategy generated offline. The method is
also presented in [42, 64].

We start by defining the meaning of symbolic state representation in Sec-
tion 5.1. Pre-image calculation is introduced as the basic building block
for performing the reachability analysis in Section 5.2. The symbolic rep-
resentation of reachability relation is introduced in Section 5.3 and in the
algorithms of reachability analysis explained in Section 5.4. Section 5.4.2
explains the reachability analysis in the context of test goals represented
by traps.

The temporal direction of the notation and expressions follows the order
of reasoning and computation in the current chapter. It is opposite to the
direction of the edges and the run of the automaton, because the analysis
is done backwards. So the current location l is the target and l′ is the
source of an edge e = l′ −→ l, C′ is the pre-image of C and so on.

5.1 symbolic state representation

In Section 3.2.2 we defined a state as a pair (l, α) of a location and assign-
ment to state and auxiliary variables. In the following we will represent
symbolic state S ≡ (l, C) by a pair of a location l and constraint C and its
interpretation I is a set of states (l, α), such that α � C:

(l, C)I
def
= {(l, α)|α � C}

63

symbolic testing strategy

Figure 5.1: Symbolic states

The constraint C is a formula of chosen background theory with free vari-
ables from the state and auxiliary variable sets Xs ∪ Xa. This enables sym-
bolic representation of the data component of the state, the discrete con-
trol structure represented by locations is handled explicitly. The Figure 5.1
represents a fragment of an automaton with two locations l and l′. (l, D)

represents the largest possible symbolic state associated to the location l,
where D is a predicate denoting the domain of the variables. (l, Cs) and
(l, Cw) are different symbolic states.

A symbolic state (ls, Cs) is a sub-state of a symbolic state (lw, Cw), iff ls = lw

and Cw is weaker than Cs, expressed formally as � Cs ⇒ Cw . It holds in
that case that (ls, Cs)I ⊆ (lw, Cw)I. For instance Cw is weaker than Cs in
Figure 5.1. This reduces the set inclusion of symbolic states to validity
checking. Validity checking can be reduced to satisfiability checking, such
that the problem can be solved by an appropriate SMT or SAT solver. Cw

is weaker than Cs if and only if ¬(Cs =⇒ Cw) is not satisfiable. It is
equivalent to (l, Cs)I\(l, Cw)I = ∅.

We do not assume any normal form for the constraints in representa-
tion of the symbolic states. The procedures used do not need to check the
equivalence of two constraints and the set inclusion checking is reduced
to the satisfiability problem. However, it is important from the practical
point of view that the constraints are as concise as possible. Fast heuristic
simplification methods are used for that purpose to have close to optimal
tradeoff between the complexity of simplification and complexity result-
ing from the more complex representation of the constraints. More details
about the simplification methods used are presented in Section 7.2.

5.2 pre-image of a symbolic state

The set of states from where a state is reachable by one transition is called
a pre-image of the state. Repeated application of the pre-image finding
procedure locates the set of states from where the target state is reachable

64

5.2 pre-image of a symbolic state

Figure 5.2: Pre-image

in finite number of steps. We use the backward reachability analysis based
on pre-image calculation for finding the testing strategy.

Definition 5.1. Let s be a state, S a symbolic state and (S, A, T) an inter-
action transition system. A pre-image for a state s ≡ (l, α) and symbolic
state S ≡ (l, C) is defined as follows:

Pre(s)
def
= {s′|∃a ∈ A : s′

a
−→ s ∈ T}

Pre(S)
def
= {s′|∃a ∈ A, s ∈ SI : s′

a
−→ s ∈ T}

An example of pre-images is shown in Figure 5.2. The pre-image of the
state s is the set {s1, s2}. The pre-image of the symbolic state (l, C) is the
set (l1, C1)

I ∪ (l2, C2)I.
These definitions of pre-image in the semantic domain are not very

constructive. We can give the constructive definition of the pre-image
predicate on the syntactic level of an I/O-EFSM in terms of the weakest pre-
condition of the predicate transformer semantics of the guarded command
language [21]. An update of an edge of an I/O-EFSM can be regarded as a
sequence of assignments and the weakest pre-condition of the update can
be calculated by a sequence of substitutions.

Definition 5.2. Let U ≡ [x1 := expr1; . . . ; xn := exprn] be an update and C

a constraint. The weakest pre-condition is defined using the substitution
of all free occurrences of the variables xi by the expression expri.

65

symbolic testing strategy

wp(U, C)
def
= C[exprn/xn] . . . [expr1/x1]

The pre-image involves many locations in general. We define more fine-
grained pre-images in respect to edges and locations of the automaton.

Definition 5.3. Let (l, C) be a symbolic state and e ≡ (l′, i(xi), o(xo), g, U, l)

be an edge of the I/O-EFSM(TΣ) where target(e) = l. An edge pre-image

Pre((l, C), e) of a symbolic state (l, C) is a constraint over free variables
from Xs ∪ Xa ∪ Xi ∪ {iLabel}.

Pre((l, C), e)
def
=wp(U, C) ∧ g ∧ (iLabel = i) ∧ D

The special variable iLabel encodes an input label that triggers the edge
e when enabled by a guard g. The conjunction with the domain constraint
D means that the valuation of the variables should satisfy also the do-
main restrictions often called the domain invariant for the transition to be
enabled.

We will use the following distributivity property later.

Lemma 5.1. Let (l, C) be a symbolic state such that C is a disjunction of two

constraints C ≡ C1 ∨ C2 then it holds for an edge pre-image that

Pre((l, C1 ∨ C2), e) ≡ Pre((l, C1), e) ∨ Pre((l, C2), e)

Proof. The proof reduces to the distributivity of substitution over logical
connectives, because the substitution is done on the level of free variables.
Let e ≡ (l′, i(xi), o(xo), g, [x1 := expr1; . . . ; xn := exprn], l) in the following:

Pre((l, C1 ∨ C2), e)

≡De f 5.3 wp([x1 := expr1; . . . ; xn := exprn], C1 ∨ C2) ∧

g ∧ (iLabel = i) ∧ D

≡De f 5.2 (C1 ∨ C2)[exprn/xn] . . . [expr1/x1] ∧ g ∧ (iLabel = i) ∧ D

≡ (C1[exprn/xn] . . . [expr1/x1] ∨ C2[exprn/xn] . . . [expr1/x1]) ∧

g ∧ (iLabel = i) ∧ D

≡De f 5.2,5.3 Pre((l, C1), e) ∨ Pre((l, C2), e)

66

5.3 symbolic representation of reachability

5.3 symbolic representation of reachability

We can say that a state s is reachable from another state s′ if there is a run
〈s′, . . . , s〉. A symbolic state S is reachable from the symbolic state S′ if
there is some state s ∈ S for every state s′ ∈ S′ such that s is reachable
from s′.

We express the reachability of a symbolic state by the set of constraints
and distance measures. The constraints are chosen so that they can be
used both for checking reachability and encoding the runs. The result of
the reachability analysis of a symbolic state S gives a set of constraints and
distance measures for every location and edge of the automaton, namely:

• a weakest reachability constraint C+
l→S ∈ TΣ(Xs) with associated length

L+
l→S ∈ N for every location l. C+

l→S represents a symbolic state
(l, C+

l→S) for which there is a run to some state in S with length no
more than L+

l→S.

• a shortest run reachability constraint C0
l→S ∈ TΣ(Xs) with associated

length L0
l→S ∈ N for every location l. C0

l→S represents a symbolic
state (l, C0

l→S) for which there is a run with length L0
l→S to some

state in S and there is no run from (l, α′) to S that is shorter than
L0

l→S.

• a guarding constraint C
g
e→S ∈ TΣ(Xs ∪ Xi ∪ {iLabel}) for every edge e.

C
g
e→S represents a symbolic state and input for which the edge e is

the initial transition of a shortest path to state S.

The constraints are used for guiding the test data generation process and
it is described in detail in Section 6.3.

The constraints are related to each other. It is shown by Lemma 5.2 that
C+

l→S is weaker than C0
l→S and by Lemma 5.3 that if any symbolic state S is

reachable from location l with C+
l→S being true then a guarding constraint

C
g
e→S of one of the edges leaving from l is satisfiable identifying the first

edge on the path from the current state to S.

5.4 reachability analysis

The goal of the reachability analysis of a symbolic state is to construct a
set of constraints for each location of the model as described in Section
5.3. The procedure has similarities to the winning strategy generation in
the game theory [5, 12, 54] due to the interactive nature of the model. It
is also close to the bounded symbolic model-checking [6, 8], but more
information is recorded than just reachability.

67

symbolic testing strategy

Figure 5.3: Reachability analysis

5.4.1 General idea of the reachability analysis

The reachability constraints are constructed by backwards breath-first prop-
agation of the constraints starting from the symbolic state S. The basic
idea of the computation is shown in Figure 5.3. The computation starts
from the given symbolic goal state S and propagates backwards over all
edges leading to the state. This gives the initial guarding constraints for
the edges entering to location l and reachability constraints for the neigh-
bouring locations. The reachability constraint on the neighbouring loca-
tion constitutes a symbolic state. The reachability of the symbolic state
is propagated further. The reachability constraints on the same location
resulting from the propagation along the different paths are combined to-
gether by disjunction (or union of the symbolic states determined by the
constraints). The guarding constraints on the edges serve as signs that
associate a subset of the reachable symbolic state (l′, C+

l′→S) to the edge
with shortest run to target symbolic state S.

The abstract version of the reachability constraints calculation is given
as Algorithm 5.1 and a more detailed version as Algorithm 5.2.

The algorithm takes three arguments, a target symbolic state S, initial
location l0 and bound to the number of iterations. It generates a constraint
C+

l→S for every location and constraints Ce→S and C
g
e→S for every edge of

the automaton. Constraints Ce→S are regarded as intermediate results and
not returned finally.

The main loop of the algorithm (line 2–17) propagates the constraints by
one transition further from the target state S at each iteration. When the
loop has iterated for L times then the constraints express the reachability
of S in L transitions. The loop has three termination conditions:

• The parameter bound is an upper limit to the number of iterations
of the while loop. It is used for the bounded reachability analysis,
when it is important to limit the process and the following termina-
tion conditions do not apply.

68

5.4 reachability analysis

Algorithm 5.1 Reachability constraint generation
Reachable(S, l0, bound)

1: initialize constraints C+
l→S, C+

e→S, C
g
e→S for all l, e to f alse

2: while L < bound and not f ixpoint [and not reachable from (l0, α0)]
do

3: L←L+ 1
4: for all edges e do

5: Ce→S ← Pre((target(e), C+
target(e)→S

), e)

6: C
g
e→S ← C

g
e→S ∨ (Ce→S ∧ ¬C+

source(e)→S
)

7: end for

8: f ixpoint ← true
9: for all locations l do

10: C+′

l→S ←
∨

e∈out(l) ∃xi, iLabel : Ce→S

11: if C+′

l→S 6= C+
l→S then

12: f ixpoint ← f alse

13: C+
l→S ← C+′

l→S
14: L+

l→S ← L
15: end if

16: end for

17: end while

18: return all C+
l→S, C

g
e→S,L+

l→S

69

symbolic testing strategy

• Reaching the smallest fixpoint, when none of the constraints C+
l→S

are updated during the execution of the body of the while loop. It
is detected by the condition on line 11. Reaching the fixpoint means
that the resulting constraints express the maximal set of symbolic
states from where the target state S is reachable.

• The initial state condition is added if it is enough to check if the goal
state S is reachable from the initial state (l0, α0). This condition can
be used in case the test purpose consists of single goal. The strategy
generated this way may not be sufficient for many goals, because
the reachability from arbitrary state is important, e.g. from the state
were the previous goal was achieved. Reachability from the initial
state can be detected by checking if α0 |= C+

l0→S holds.

The body of the while loop is divided into two phases. At first the con-
straints for edges are updated (lines 4–7) and then the constraints for lo-
cations are updated (lines 9–16). The constraints Ce→S are updated (line
5) to edge pre-image of the reachability constraint on the target location
of e. The guarding constraint C

g
e→S is weakened (line 6) by the states from

where the reachability of S was discovered in the current step through
edge e. This is denoted by the constraint (Ce→S ∧ ¬C+

source(e)→S
). The sym-

bolic states of the location of source(e) for which the edge e is the first
transition of the shortest run to S are collected in C

g
e→S in this way.

The reachability conditions are propagated from edge constraints to lo-
cation constraints (lines 9–15). A new version of the location constraint
C+′

l→S is a disjunction of all the constraints of the outgoing edges where
the inputs are hidden by the existential quantification of input variables
(line 10). The inputs are hidden because we are free to choose input in
the testing process. The reachability of a location depends only on the
valuation of the state variables. When the new version of the location con-
straint is not equivalent to the previous version, the conclusion is made
that the process is not converged to the fixpoint and the location constraint
is updated (line 12).

5.4.2 Reachability of traps

We are interested in reachability of traps in the context of test strategy
generation and it is defined through the reachability of the pre-image of
the trap. The pre-image of a trap is a symbolic state from where the trap
transition can be taken so that the trap condition is satisfied before the
transition and domain constraints are not violated in the target location.

70

5.4 reachability analysis

Definition 5.4. Let tr = (etr, Ctr) be a trap, where etr =

(l′, i(xi), o(xo), g, U, l) is the edge the trap is associated with. The pre-
image of the trap tr is defined as follows

Pre(tr)
def
=∃xi, iLabel : Ctr ∧ Pre((l, D), etr)

For a trap tr we define similar reachability constraints C0
l→tr, C+

l→tr, C
g
e→tr

and distance measures L0
l→tr,L

+
l→tr as follows:

C0
l→tr

def
= C0

l→Pre(tr)

C+
l→tr

def
= C+

l→Pre(tr)

C
g
e→tr

def
= C

g

e→Pre(tr)

L0
l→tr

def
= L0

l→Pre(tr) + 1

L+
l→tr

def
= L+

l→Pre(tr)
+ 1

Example 5.1. We demonstrate the calculation of the test strategy on the
example of the vending machine controller introduced in Chapter 2. The
intermediate and final results of the strategy calculation are given in Table
5.1. Table 5.2a shows how the constraints C+

l→tr associated to locations and
the Table 5.2b shows how the constraints C

g
e→tr associated to edges are

generated for trap3. Table 5.2c shows the resulting distance measures for
all traps. The model of the vending machine controller is repeated here
for convenience.

Row 0 of the table has the default values f alse or the pre-image of the
trap as explained in Section 5.4.2. Rows 1–4 correspond to the iteration of
the main loop of the reachability algorithm (Algorithm 5.1). The last row
(*) is the result of the fixed point calculation that is returned as the result
of the algorithm. Only the changes are shown in the tables, an empty
space denotes that nothing was changed for the particular constraint in
that step. The results are generated by our prototype implementation,
but further simplified by hand for an equivalent, but more concise, rep-
resentation. Particularly the components of the domain constraint D are
removed, because the constraints should be always used in conjunction to
D. We use a shorthand notation for denoting edges: e0,< denotes the edge
l0 −→ l< and e<,< denotes the self-loop at location l<.

The constraints in the Table 5.2a correspond to the constraints of the
symbolic states from where the trap is reachable in row# + 1 transitions.

71

symbolic testing strategy

Table 5.1: Symbolic test strategy

C+
l≥→trap3 C+

l<→trap3 C+
l0→trap3

0 sum > 20 f alse f alse

1 sum > 20

2 sum ≥ 1

3 true true

4 true

* true true true

(a) Constraints and distances associated to loca-
tions

C
g
e≥,0→trap3 C

g
e<,≥→trap3 C

g
e<,<→trap3 C

g
e0,<→trap3

0 iLabel = cup f alse f alse f alse

∧sum > 20

1 iLabel = ε∧

sum > 20

2 iLabel = coin∧

sum + val > 20∧ sum ≤ 20

3 iLabel = coin∧ iLabel =

((sum + val > 20∧ sum ≤ 20)∨ coin ∧ val > 0

(sum + val > 0∧ sum < 1))

4 iLabel = cup

* iLabel = cup iLabel = ε∧ iLabel = coin∧ iLabel =

sum > 20 ((sum + val > 20∧ sum ≤ 20)∨ coin ∧ val > 0

(sum + val > 0∧ sum < 1))

(b) Constraints associated to edges

tr L0
l≥→tr L0

l<→tr L0
l0→tr L+

l≥→tr L+
l<→tr L+

l0→tr

trap1 1 2 2 1 4 4

trap2 3 1 2 3 1 2

trap3 1 2 4 5 4 4

(c) Distance measures for all traps

72

5.4 reachability analysis

E.g. sum > 20 for C+
l<→trap3 means that trap3 is reachable from the sym-

bolic state (l<, sum > 20) with two transitions. The guiding constraints
in Table 5.2b give more concrete strategy to drive the IUT to the trap. The
corresponding constraint iLabel = ε ∧ sum > 20 can be used to conclude
that the right thing to do in such state is to provide input ε, that means
to avoid any input, particularly inserting more coins. The constraints for
the edges e0,≥ and e<,0 remain f alse, because there is no state from where
these edges would be preferable to other alternative edges for reaching
trap3.

The distances in the Table 5.2c show both the minimal L0
l→tr and the

maximal L+
l→tr distance to trap from that location. E.g. the optimal run

from the initial location to the trap3 has length 4. The maximal (minimal)
distance is equal to row#+ 1 of the last (first) update of the corresponding
constraint.

5.4.3 Description of the reachability analysis algorithm

The more detailed algorithm introduced as Algorithm 5.2 in this section
refines the basic idea presented in Section 5.4.1 in many directions to make
it computationally feasible. The most notable refinements are:

• selection of the constraints that need to be propagated

• propagation only the relevant parts of the constraints

• simplification of the constraints to have a more concise representa-
tion

• reduction of equivalence checking to satisfiability checking

The constraints C+ expressing reachability are weakened in each iteration
of the algorithm by the disjunct C∆, i.e. C+′ = C+ ∨ C∆. Using the dis-
tributivity of Pre stated in Lemma 5.1, it suffices to find the pre-image of
the disjunct C∆ for finding the pre-image of C+′ , provided that we have
found the pre-image of C+ in the previous iterations. So the main idea
of the algorithm is to propagate the disjuncts C∆ and it is usually more
efficient than propagating the full constraints.

The Algorithm 5.2 refines the more abstract algorithm 5.1. The overall
structure is similar consisting of initialization (lines 1–6) and the main loop
(lines 7–34) with sub-loops updating the edge and location constraints re-
spectively. Not all the edges and locations are considered at each iteration,

73

symbolic testing strategy

Algorithm 5.2 Reachability constraint generation
Reachable(S, l0, bound)

1: initialize all constraints C0
l→S, C+

l→S, C
g
e→S for all l, e to f alse

2: initialize all distances L0
l→S,L+

l→S for all l to 0
3: (l, C) ← S
4: C0

l→S ← C+
l→S ← C∆

l→S ← C
5: L←0
6: Q ← {l}
7: while L ≤ bound and Q 6= ∅ [and α0 |= C+

l0→S]) do

8: L←L+ 1
9: for all edge e do

10: C∆

e→S ← f alse
11: end for

12: for all (edge e = (l′, i(xi), o(xo), g, U, l) such that target(e) ∈ Q)
do

13: C∆

e→S ← Pre((l, C∆

l→S), e)
14: if SATTΣ(C∆

e→S ∧ ¬C+
l′→S) then

15: C
g
e→S ← Simplify(C

g
e→S ∨ (C∆

e→S ∧ ¬C+
l′→S))

16: E l′→S ← E l′→S∪ {e}
17: Q′ ← Q′ ∪ {l′}
18: end if

19: end for

20: for all location l′ ∈ Q′ do

21: C∆

l′→S ← Simplify(
∨

e∈E l′→S
∃iLabel, xi : C∆

e→S)

22: C+
l′→S ← Simplify(C+

l′→S ∨ C∆

l′→S)
23: if C+

l′→S is more compact than C∆

l′→S then

24: C∆

l′→S ← C+
l′→S

25: end if

26: L+
l′→S ← L

27: if C0
l′→S = f alse then

28: C0
l′→S ← C+

l′→S
29: L0

l′→S ← L+
l′→S

30: end if

31: end for

32: Q ← Q′

33: Q′← ∅

34: end while

35: for all location l and edge e do

36: simplify and return all constraints C0
l→S, C+

l→S, C
g
e→S, distance mea-

sures L0
l→S,L+

l→S , and promising outgoing edges E l→S .
37: end for

74

5.4 reachability analysis

but only those that that have the pre-condition changed in the previous it-
eration. The set of locations that have their constraint changed is handled
by the queue Q. An empty queue denotes that a fixed point is reached.

The constraints are propagated only for edges that have the target loca-
tion in Q (line 12). The change C∆

e→S of the edge constraint is calculated
based on the change C∆

l→S of the target location (line 13). The change is
propagated further only when it includes some states that are not found
reachable in the source location l′ of the edge. It is checked using the
satisfiability check modulo the background theory TΣ (line 14). If the new
reachable states are found, the guarding constraint C

g
e→S is updated, the

edge is added to the set of promising outgoing edges E l′→S from l′ and l′ is
added to the queue Q′ of the locations with updated constraints.

Procedure Simplify() is used to apply algebraic simplification to the ar-
gument formula and yield an equivalent, but more concise and simple
formula. Lot of repeating structure occurs usually in the constraints be-
cause of the iterative nature of the algorithm, and the simplification helps
to reduce the complexity of handling the constraints. No normal form is
assumed for the constraints. The constraints C∆

l′→S associated with the lo-
cations include also existential quantifiers because of the input hiding. It
is guaranteed for many background theories (e.g., linear arithmetic) that
the quantifiers can be eliminated. The simplification also applies the quan-
tifier elimination procedures where applicable to get a quantifier free for-
mulae. The simplification is the crucial procedure for achieving feasibility
of the method. It is discussed more extensively in Section 7.2.

The constraints are only updated for the locations in Q′ that have addi-
tional state(s) reachable. At first, the change C∆

l′→S is found (line 21) and
then the main reachability constraint C+

l′→S is updated (line 22). It hap-
pens sometimes that the full constraint simplifies to more concise result
than the change. The change is replaced by the full constraint in that case
(line 24) to use it for further propagation. The shortest run constraints
C0

l′→S and distance measures L0
l′→S are recorded also when the location

occurs first in the reachability analysis (lines 27–29). Both are later used
in estimation of the distance between the traps (Subsection 6.2.1).

Lemma 5.2. It holds that C0
l→S ⇒ C+

l→S. C+
l→S is weaker than C0

l→S.

Proof. C+
l→S is updated once in every iteration of the main while loop and

C0
l→S in one iteration of the loop when the location l is considered. There

are two possibilities:
C0

l→S ⇔ C+
l→S when C+

l→S gets a value first time around (line 22), the
same value is assigned to C0

l→S (line 28) and this is the only time C+
l→S is

updated.

75

symbolic testing strategy

C0
l→S ⇒ C+

l→S when C+
l→S is weakened to C+

l′→S ∨ C∆

l′→S (line 22) on the
subsequent iterations.

Lemma 5.3. If the symbolic state S is reachable from the state (l′, α), such that

α |= C+
l′→S then the guarding constraint C

g
e→S of at least one of the edges e ∈

out(l) is satisfiable α |= C
g
e→S.

Proof. Let us assume that for a state (l′, α) that α 2 C+
l′→S is true in the

beginning of an iteration of the while loop and α |= C+
l′→S at the end. The

argument for the iteration goes as follows:

α |= C∆

l′→S on line 22, because C+
l′→S is weakened by C∆

l′→S;

α |= ∃iLabel, xi : C∆

e→S for some e ∈ E l′→Son line 21;

α |= C∆

e→S for some e ∈ E l′→Son line 21, because αis a

partial assignment (Definitions 3.7, 3.5);

α |= C
g
e→S for some e ∈ E l′→Son line 15, because

α |= C∆

e→S and α 2 C+
l′→S.

The status of α |= C+
l′→S and α |= C

g
e→S will not change from that point

until the end of the algorithm, because both are only weakened at each
iteration.

Example 5.2. We demonstrate constraint calculation in details for one it-
eration of the main loop of the algorithm from the state where row #1 of
the Example 5.1 has been calculated. The values of the main variables of
the algorithm are as follows

Q = {l<}, C0
l<→trap3 = C+

l<→trap3 = C∆

l<→trap3 = (sum > 20)

The constraint for edge e<,< (self-loop) is found by calculating a pre-
image (line 13):

C∆
e<,<→trap3 ← Pre((l, C∆

l<→trap3), e<,<)

C∆
e<,<→trap3 ← wp(update(e<,<), C∆

l<→trap3) ∧ guard(e<,<) ∧

(iLabel = coin) ∧ D

C∆
e<,<→trap3 ← (sum > 20)[sum + val/sum] ∧ true ∧ (iLabel = coin) ∧ D

C∆
e<,<→trap3 ← sum + val > 20∧ (iLabel = coin) ∧ D

76

5.4 reachability analysis

After finding the pre-image, we check that it contains some states that
are not contained in the constraint of the source location C+

l<→trap3. It is

done by checking satisfiability of C∆
e<,<→trap3 ∧¬C+

l<→trap3 (line 14) and that
turns out to be true:

sum + val > 20 ∧ (iLabel = coin) ∧ D ∧ ¬(sum > 20) has a satisfying
assignment < sum 7→ 5, val 7→ 20, iLabel 7→ coin > and the first version of
guarding constraint for e<,< is found (line 15):

C∆
e<,<→trap3 ← sum + val > 20∧ (iLabel = coin) ∧ D ∧ sum ≤ 20

Similar procedure for e0,< results an unsatisfiable constraint. The largest
possible value of val allowed by D is 20 and it is in contradiction to the
rest of the formula:

C∆
e0,<→trap3 ← val > 20∧ (iLabel = coin) ∧ D

C∆
e0,<→trap3 ← f alse

and the guarding constraint C
g
e0,<→trap3 is not updated. When updating the

location constraint for l< the disjunction of changes of the edges leaving
the location is found and inputs hidden. e<,< is the only leaving edge
with updated constraint. The result is found by quantifier elimination
and simplification (line 21,22). Quantifier elimination is easy in that case,
because there is only one value of iLabel that satisfies the formula and
three possible values for val allowed by D:

C∆

l′<→trap3 ← ∃val, iLabel : sum + val > 20∧ sum ≤ 20∧

(iLabel = coin) ∧ D

C∆

l′<→trap3 ← (sum + 1 > 20∨ sum + 5 > 20∨ sum + 20 > 20) ∧

sum ≤ 20

C∆

l′<→trap3 ← sum > 0∧ sum ≤ 20

C+
l<→trap3 ← sum > 20∨ (sum > 0∧ sum ≤ 20)

C+
l<→trap3 ← sum > 0

The full constraint C+
l<→trap3 (line 23) turns out to be more compact

than the change C∆

l<→trap3 after simplification and is taken as the basis for
further propagation (line 24).

77

symbolic testing strategy

The example demonstrates the power of symbolic representation. Al-
though the set of represented states “grows” and formulas are combined
and grow during the computation, the final result may be as compact as
the initial data if the algebraic simplification procedures are able to dis-
cover the possible ways to simplify the generated formulas.

5.5 summary

In this chapter we have shown how a symbolic test strategy, that helps
to cover the IUT test goals can be be represented and automatically gener-
ated. The test strategy is represented by predicates that relate the states
to reachable traps and inputs that help to guide the IUT towards the traps.
Also the estimates of the distances to traps are found to help to decide the
reasonable order of covering the traps. The strategy generation is achieved
by backwards reachability analysis through constraint propagation start-
ing from the trap constraints. All the analysis is done on the syntactic level
of I/O-EFSM avoiding the use of general semantic definition of pre-image
with existential quantification. The pre-images are found through weakest
pre-condition calculation by substitution instead. The decision about the
need to continue propagation is reduced to satisfiability check. Algebraic
simplifications are used during the process for compacting the symbolic
representation and eliminating existential quantification rising from input
hiding.

The test strategy generation can also be viewed as finding a winning
strategy of the game between the tester and the IUT where the covering
of a trap is taken as a goal. This kind of game-theoretic view have been
successfully applied for model-based testing [5, 54, 12] It is shown in [12]
that a clever combination of forward and backward analysis yields a win-
ning strategy with optimal effort. It could also be applied to our case also
if we have to find a strategy from the initial state to a trap, because the
forward analysis need a set of initial states as a starting point. But we
have to guide the IUT to traps from other traps or from arbitrary states be-
cause of non-deterministic behaviour and that makes the use of forward
analysis complicated. The strategy should also support choosing the right
parameters for inputs. The issues of applying the strategy are discussed
in the next chapter.

78

6
E X E C U T I O N O F S Y M B O L I C T E S T I N G S T R AT E G Y

Non-determinism in the model, infinite state space and branching pre-
vents pre-computation of a fixed set of tests for a test purpose. Concrete
test inputs should be found on-the-fly depending on the current state and
behaviour of the IUT. Test strategy discussed in Chapter 5 is used for
efficient test planning to satisfy the timing expectations of the tester. It
is usually assumed that the tester is fast, to be able to produce the next
stimulus faster than it takes to communicate to and respond to the IUT.

Each online planning step consists of selecting a next trap to cover, ex-
plained in Section 6.2, selecting input, explained in Section 6.3, simulation
of the interaction on the model and decision on the conformance of the
observed behaviour, explained in the Section 6.1. The overall test execu-
tion process is illustrated in Figure 6.1. The method is concisely presented
in [42, 64]. An alternative method for input selection presented in [2] is
briefly described in Section 6.4.

6.1 testing procedure in general

The goal of the testing procedure is to achieve the highest possible cover-
age of the traps with minimal effort. The measure of effort is usually the

Figure 6.1: Tester components

79

execution of symbolic testing strategy

time spent for achieving coverage, that depends on the number of inter-
actions and time of performing each interaction step, including the time
for generating the next stimuli. There is a tradeoff as thorough planning
could result in shorter test sequences. The best balance is dependent on
the system and can be tuned by different parameters.

The testing procedure interacts with the IUT during the process and is
thus carried out on an explicit state and in forward direction differently
from the reachability analysis, presented in Chapter 5. The testing proce-
dure Testing(s0, traps), presented as Algorithm 6.1, starts from an initial
state s0 and a set of traps that specify the test goal. One step of test execu-
tion consist of several stages:

1. selecting the trap to be covered next (line 3);

2. selecting the input that leads towards the trap (line 5);

3. sending the input to the IUT and observing the output (line 6);

4. simulating the behaviour on the model (line 8);

5. evaluating the result of the simulation (lines 9–19)

The trap selection stage may not be performed at each step. The goal
of the trap selection is to determine what trap to approach next so that all
the uncovered traps could be covered with minimal effort. This kind of
planning may be expensive and is avoided if possible. The trap selection
can be avoided and the process stays in the inner repeat loop (lines 4–
20) when the testing process approaches the selected trap according to
the test strategy. The loop ends when the trap is covered (trap /∈ traps

condition on line 20) or the process deviates from the intended behaviour
(e 6= ebest condition on line 20) because of non-determinism. The deviation
can lead the IUT to the state from where the estimation of the distance to
the planned trap increases and thus the trap selection is initiated again.
The details of trap selection are described in Subsection 6.2.

It is possible that the trap selection procedure returns no trap. That
result is denoted by ∅. This can happen when none of the uncovered
traps are reachable or in the case when only the bounded symbolic test
strategy analysis have been carried out and none of the traps are "visible"
from current state within the bound. The tester switches to “walk around”
mode without a certain goal, in hope to reach a state where some trap
gets “visible”. This situation is discussed in the section 6.3.

The next stage after the trap selection is the input generation (line 5)
that leads the IUT towards the trap. The input with its parameters are

80

6.1 testing procedure in general

Algorithm 6.1 online test procedure
Testing(s0, traps)

1: s ← s0

2: while traps 6= ∅ do

3: trap ← Select-Trap(traps, s)
4: repeat

5: (input, ebest) ← Select-Input(trap, s)
6: output ← Communicate-IUT(input)
7: log ← log ∪ (input, output)
8: (e, s′) ← Simulate(s, input, output)
9: if s′ = ∅ then

10: Test-Failed, log
11: end if

12: (l, α) ← s
13: s ← s′

14: for all tr ∈ traps do

15: (etr, Ctr) ← tr
16: if (e = etr and (α ∪ input) � Ctr) then

17: traps ← traps \ {tr}
18: end if

19: end for

20: until e 6= ebest or trap /∈ traps
21: end while

22: Test-Passed

81

execution of symbolic testing strategy

generated by solving the relevant reachability constraints. In addition to
the input an edge is returned that is the initial transition of the shortest
run to the trap from the current state. The generated input is guaranteed
to enable the edge, but some other rival edges may also be enabled by the
given input. The details of the input generation procedure are provided
in the Section 6.3.

The actual test interaction stage is performed through the Communicate-
IUT(input) procedure (line 6). This involves all the issues of interfacing
to the IUT that are usually solved by the special test adapter. It also in-
volves the implementation of ε actions, which are associated with system-
dependent timeout. It means that when the goal is to communicate an ε

input, it may be assumed that it is “sent” after the timeout has expired
and when no actual output is received during the timeout after the input
has sent, then an ε output is assumed to be “received”.

The conformance of the observed behaviour of the IUT is checked by
simulating the behaviour on the model. The simulation results an unique
state because of the output-observability assumption on the model or an
empty result if the output is non-conforming. The testing is stopped and
non-conformance notification with a test log returned (line 9–11) in that
case. The simulation procedure is basically the simulation of all possible
transitions from the state s with generated input and checking which one
conforms to the observed output. The resulting state s′ and edge e that
the transition corresponds to, are returned as the result.

Finally, the check if any of the traps was covered with the last transition
is done (lines 14–19). Covering of the trap is checked (line 13) by com-
paring if the transition taken corresponds to the edge associated with the
trap and checking if the trap condition was satisfied before the last tran-
sition. The satisfiability check checks if the assignments α and input of
the state and input variables satisfy the trap condition Ctrap. The covered
traps are removed from the set of uncovered traps and new trap selection
procedure is initiated.

6.2 trap selection

The online planning during test execution consists of repetitive selection
of a trap to be reached next and thereafter guiding the IUT towards the
trap until all the traps are covered. The overall goal is to minimize the
time and number of interactions with the IUT for covering all the traps.
The trap selection procedure Select-Trap(uncovered_traps, s) (used in Al-
gorithm 6.1, line 2) should return a trap that needs to be approached

82

6.2 trap selection

next. Generally, to determine the order of traversing traps may involve
complex planning. The task of finding an optimal ordering is unsolv-
able for non-deterministic models and would involve exponentially more
symbolic test strategy analysis steps than for deterministic models in gen-
eral case, thus making it infeasible. We propose an heuristic greedy ap-
proach Select-Trap-k-Greedy(uncovered_traps,state,k) where the tradeoff
between the complexity of the analysis and optimality is tuned by the pa-
rameter k. The approach tries to minimize the number of test interactions
for covering next k traps. The closest trap is selected in case of k = 1 and
a greedy shortest ordering is chosen if k is larger. The distance between
the traps is estimated based on the distances given by the symbolic test
strategy. The overall idea of the approach presented as Algorithm 6.2 is
that a sequence of traps is constructed starting with each of the uncovered
traps and k − 1 of the remaining traps are appended in greedy (closest
first) manner. The initial trap of the shortest overall distance is chosen as
the next trap.

Although the preferred sequence of traps is found, no final decision is
done for the whole sequence. Only the next trap is taken and returned as
the short-term goal. The trap planning process is repeated after the trap
is covered and it may turn out that some other trap will be chosen as the
next goal, because the analysis will be carried out based on the actual state
information instead of the estimation of reachability and distance between
the traps.

Example 6.1. A model depicted in Figure 6.2 with traps (e2, true), (e3, true)

and l1 as the current location. The outcome depends on the value of k. In
case k = 1 the trap (e3, true) is chosen, because it is closer. In case k > 1
the trap (e2, true) is chosen, because it results in a shorter overall test with
length (number of interactions) 3, comparing to the alternative (e3, true)

with overall test length 4. There are no state variables and guards that
interfere to the control flow in the example.

The procedure Select-Trap-k-Greedy(uncovered_traps,state,k) presented
as Algorithm 6.2 returns the preferred trap next_trap to be covered next,
given the set uncovered_traps, current state, and parameter k. The proce-
dure consists of two nested loops. The outer loop (lines 3–17) consider all
the members of the uncovered_traps as the best trap. The inner loop (lines
7–12) adds up to k− 1 traps to the sequence in greedy manner.

The outer loop considers only those traps in the uncovered_traps that
are found reachable from the current state (l, α). It is checked if the reach-
ability constraint C+

l→trap is satisfiable in the current assignment α of the
state variables (line 3). The satisfiability checking is actually a pure eval-

83

execution of symbolic testing strategy

Figure 6.2: Trap ordering

Algorithm 6.2 Trap selection
Select-Trap-k-Greedy(uncovered_traps,state,k)

1: (l, α) ← state
2: min ← ∞

3: for all trap ∈uncovered_traps and α |= C+
l→trap do

4: traps ← uncovered_traps \ {trap}
5: loc ← target(trap)
6: len ← distance(l, trap)
7: for j ← 2 to min(k, |traps|) do

8: tr ← closest_trap(loc, traps)
9: len ← len + distance(loc, tr)

10: loc ← target(tr)
11: traps ← traps \ {tr}
12: end for

13: if len < min then

14: min ← len
15: next_trap ← trap
16: end if

17: end for

18: next_trap

84

6.2 trap selection

uation in that case, because there are no free variables left in C+
l→trap after

the assignment is substituted. In the case where there are no traps found
to be reachable an empty value ∅ is returned.

Next, the variables traps (set of uncovered traps except the one chosen
for the first trap), loc (target location of the first trap associated transition),
and len (length of the test from the current location to the first trap) are
initialized (line 4–6) for the inner loop.

6.2.1 Distance estimation

The distance between a location and trap given by the function
distance(l, trap) is an estimate based on the values L+

l→trap and L0
l→trap.

The values denote the length of the longest and shortest run from the
location l to the trap found during the symbolic test strategy analysis.
L0

l→trap can be used as the distance if C0
l→trap is satisfiable in the current

state. Otherwise we know that there is a run leading to the trap no longer
than L+

l→trap whenever C+
l→trap is satisfiable in the current state, but the ac-

tual length of the run is not known. The simplest strategy for estimating
the distance is to use the arithmetic mean of L+

l→trap and L0
l→trap, but it

is possible to use also only maximal value or some other more complex
function. It would be possible to keep the information of the exact length
in the symbolic analysis, but it would make the constraints much more
complex and thus more difficult to handle.

It is possible that there is more than one trap with a different data
condition associated with the same edge. It is not possible to always
foresee if many traps can be covered together, it is possible when the
condition of one of the traps is weaker than another. We can say that (l, Cs)

covers (l, Cw) iff Cs =⇒ Cw. In that case the distance from the stronger
trap to weaker trap is 0, because the weaker trap is always covered at the
same time with the stronger.

The distance expresses the number of transitions (and interactions) that
must be taken to reach a trap. Execution of different transitions may have
very different costs in real systems, e.g., reset may be very complicated,
expensive or time-consuming. It is possible to add weights to the edges
of the model. It would need some modification of the symbolic analy-
sis where the breath of the breath first traversal is based on weights and
also summing up the weights in the distance calculation. The addition
of weights does not change anything crucial in the whole method and is
omitted in the current work for the sake of clarity.

85

execution of symbolic testing strategy

The inner loop (lines 7–12) implements the repetitive greedy choice of
next trap in the sequence based on the distance discussed above. The func-
tion closest_trap(loc, traps) is a simple minimization procedure for find-
ing the closest trap to location loc amongst the traps not in the sequence.
Finding the shortest sequence instead of the greedy estimate would re-
quire solving the NP-complete Asymmetric Travelling Salesman Problem
(ATSP). There is no sense to put so much effort into this problem, because
the distances are estimates anyway and there is no guarantee that the next
trap is reachable from the actual target state of the covered trap although
it is reachable from the target location. For instance the distance to the
next trap tr from the target location l is no more than L+

l→tr only if the
actual target state belongs to the symbolic state (l, C+

l→tr), but it may not
be the case.

The current initial trap is finally recorded (line 13–16) if prefixes the
shortest overall trap ordering.

6.3 input selection

Every testing step involves a decision on what input to send to the IUT to
drive it towards the test goal. The decision is made based on the current
state and the trap chosen to be covered next. The result of the procedure
is the input that is sent to the IUT and an edge of the model the input is
related to. This is the stage where the actual data generation or selection
is done.

The returned input is an assignment to the input variables. The assign-
ment is relative to the input port that is determined by iLabel and to the
formal parameters associated with the input port determined by the value
of the iLabel.

The input generation presented as Algorithm 6.3 has three different
methods for handling different situations. The main method is able to
generate a deterministic test step (line 4–7) with single allowed reaction
from the IUT or a non-deterministic step (line 8–11) in which case the IUT

can behave differently than planned, i.e. the IUT can react to the input in
several ways and it is not controllable by the tester. The third alternative
is considered (line 13) for the case when the goal trap is undefined.

The input generation for deterministic and non-deterministic steps are
similar except for the constraints used. The input generation involves
checking if a suitable input exists for any of the promising edges in E l→trap

leaving the location l. The promising edge E l→trap is an edge which is a
prefix of the shortest run to the trap trap for some state of l. The existence

86

6.3 input selection

Algorithm 6.3 Input selection algorithm
Select-Input(trap, state)

1: if trap is defined then

2: (l, α) ← state
3: input ← ∅

4: while input = ∅ do

5: select e in E l→trap

6: input ← Solve-Constr(α, C
g
e→trap ∧

∧

r∈rivals(e)
¬guard(r))

7: end while

8: while input = ∅ do

9: select e in E l→trap

10: input ← Solve-Constr(α, C
g
e→trap)

11: end while

12: else

13: (input, e) ← Alternative-Select-Input(state)
14: end if

15: (input, e)

of an input is found by solving a corresponding constraint in the current
assignment α of the state variables. The Solve-Constr(α, C) procedure
substitutes the state variables occurring free in C with their values in α

and solves the resulting constraint. If there exists a satisfying assignment
to the input variables occurring free in the substituted constraint then
the solution is returned as an input. The constraint may have (infinitely)
many solutions. Any of the solutions is equally good for reaching the trap.
Any SMT solver that supports the chosen background theory and is able
to return a satisfying model can be used as a solver to find an input. It
is possible to define other data-dependent coverage criteria in addition to
control structure based criteria expressed by traps, e.g. boundary criteria
[45]. A more specific constraint solving strategy should be used in that
case to get the boundary or corner values as input. It is also advisable
to use anti-ant strategy [52] to avoid the same solution if possible when
solving the same constraint in the same state repeatedly.

The solution to deterministic input generation constraint
C

g
e→trap ∧

∧

r∈rivals(e)
¬guard(r) is not guaranteed to exist and it may be the

case that there is no deterministic run to cover the trap. The determinis-
tic constraint specifies an input that drives the IUT towards the trap and
does not enable any rival transition (other transitions leaving from the
same location and having non-disjoint guard). Then, the condition for a

87

execution of symbolic testing strategy

non-deterministic path C
g
e→trap is used instead and it should be solvable,

because the trap selection procedure involved a test of α |= C+
l→trap and

thus the guarding constraint C
g
e→trap for at least one e ∈ E l→trap must be

satisfiable.
There may be also situations where none of the traps are set as a goal

and an alternative strategy for input generation must be used (line 13),
because none of the guarding constraints of the edges are satisfiable. It
may happen because of several reasons. One possibility is that none of the
uncovered traps are reachable from the current state and there is actually
nothing that can be done with any strategy about this situation. This may
happen in non-connected models where reset is not explicitly specified.
But it is possible and quite usual for more complex models that only the
bounded reachability analysis is done on the model. It does not mean
in that case that the traps are unreachable, they are just “out of sight”.
The alternative strategy should suggest some input that helps to “walk
the trap” and there is non-zero probability that the test path gets close
enough to some trap so that the generated bounded test strategy could
take over and direct the process to the trap.

The simplest alternative is a random walk strategy. It suffices to generate
an input that satisfies any of the guards of the edges that depart from the
current location. The anti-ant strategy [52] remembers the choices made
and chooses a different edge or input when doing a repeated choice in
the same location or state. Also heuristic strategies based on evolution-
ary algorithms have been studied in [43, 19]. One quite promising idea
complementing the bounded reachability analysis is described in Section
6.4.

Example 6.2. We continue with the example of the vending machine in-
troduced in Chapter 2. We show the details behind the test instance pre-
sented in Table 2.1.

The test generation starts with a goal trap selection. The trap is selected
from the set of reachable traps. Since all the traps are reachable (reachabil-
ity constraints true in Table 5.2a) they are considered in the selection. The
selection is done by iterated greedy selection criteria that is based on the
distances between the traps (Algorithm 6.2). The results of the 3 different
variants compared are provided in the Table 6.1. The distances are taken
from the test strategy presented in Table 5.2c, except the distance from
trap3 to trap1 which is 0 because trap1 is always covered by trap3. The
first distance is from the initial location l0. trap2 is selected as the first
goal to be covered.

88

6.3 input selection

Table 6.1: Trap selection

1. trap distance closest distance closest distance len

trap1 (2+4)/2 trap2 2 trap3 (2+4)/2 8

trap2 2 trap3 (2+4)/2 trap1 0 5

trap3 4 trap1 0 trap2 3 7

Table 6.2 shows one possible test run. The first goal trap2 is covered by
the first two lines. The relevant guiding constraints for trap2 that are not
equal to f alse in the test strategy are the following:

C
g
e0,<→trap2 = (iLabel = coin ∧ val 6= 20)

C
g
e<,<→trap2 = (iLabel = coin)

C
g
e≥,0→trap2 = (iLabel = cup)

The rest of the lines show how the test is driven to trap3. The relevant
constraints are taken from the test strategy for trap3 (Table 5.1). The table
contains the current state with its components (location and variable sum),
the selected edge with the associated guarding constraint, the result of
solving the constraint, and the output generated by the IUT. The input
sent to the IUT is constructed from the solution found and the output
received is used for detecting the state of the model for the next step. The
first step requires that a coin with value not equal to 20 and 5 is selected.
This drives the IUT to the state that is modelled by location l< and sum = 5.
The output corresponds to the model and the process continues with the
next step.

It is worth noticing that the steps 2 and 3 both take the same edge e<,<,
but use different constraint as a basis for input generation. As the goal
of the step 2 is to cover trap2, it does not matter what coin is given. The
goal is changed to trap3 for step 3, and a more complicated constraint is
used to drive the system to the state where sum > 20. The component
sum + val > 20 of the constraint is crucial and the only solution to this
in conjunction with the domain constraint in the current state is < val 7→

20 >.
The guarding constraint for e<,< is not satisfiable any more in case

sum = 26 and the constraint of e<,≥ is used to conclude that the tester
should wait for the reaction giving no input (coin). The IUT has a freedom
to choose to return the coins or give latte and it chooses to give the coins

89

execution of symbolic testing strategy

Table 6.2: online input generation for vending machine example

Step State Edge Guiding Solution Output

loc sum constraint iLabel val

1 l0 0 e0,< iLabel = coin∧ coin 5 msg(5)

val 6= 20∧ D

2 l< 5 e<,< iLabel = coin ∧ D coin 1 msg(6)

3 l< 6 e<,< iLabel = coin∧ coin 20 msg(26)

((sum + val > 20

∧sum ≤ 20)∨

(sum + val > 0

∧sum < 1)) ∧ D

4 l< 26 e<,≥ iLabel = ε∧ ε coins

sum > 20∧ D

5 l0 26 e0,< iLabel = coin∧ coin 1 msg(1)

val > 0∧ D

6 l< 1 e<,< iLabel = coin∧ coin 20 msg(21)

((sum + val > 20

∧sum ≤ 20)∨

(sum + val > 0

∧sum < 1)) ∧ D

7 l< 21 e<,≥ iLabel = ε∧ ε grind

sum > 20∧ D

8 l≥ 21 e≥,0 iLabel = cup ∧ D cup latte

back. The strategy should drive the IUT again from the location l0. This
time a coin with value 1 inserted. It may happen randomly or because of
the anti-ant strategy used. The following four steps form an optimal test
run to the trap and the non-deterministic choice is done in favour of the
test strategy this time. It is possible that the real the IUT does not have
non-deterministic behaviour internally, it may be that we just don’t know
the internal logic and non-determinism is used to abstract it. For instance,
one possible decision that the engineers could have made is that the coins
are given back when the sum of the coins inserted exceeds price by more
than 10%.

90

6.4 alternative heuristic input selection

6.4 alternative heuristic input selection

It is not feasible to generate the symbolic test strategy using fixed point
computations for larger and more complex models. Having only a
bounded strategy can leave the online test data generation in the situa-
tion where the main method of input generation is not applicable, because
none of the traps are “visible” and an alternative method is needed. The
easiest approach in this situation is to fall back to random testing with
possible anti-ant strategy [52]. Another possibility is to add enough traps
so that at least one trap is “visible” from the target location of the covered
trap. The traps can be also ordered by dependences such that the order
of traps to be covered is pre-fixed. This is closer to scenario-based testing
[40, 41]. It is also possible to apply some search-based input generation
approach [19, 43]. We propose an heuristic search-based test generation
that complements and uses the bounded test strategy. This is joint work
with Danel Ahman and we give only an brief overview of the method
here, referring to [2] for the details.

The approach of heuristic reactive planning tester (χRPT) is inspired
by the paradigm of constraint-based local search [34]. The reachability
constraints for all traps evaluate to false in the current state in the situation
where test strategy is not applicable. But it is possible to come up with a
function that gives a measure of violation of the constraint. For instance,
a difference of the values of the left and right hand side in the case of
inequality or the sum of violations in the case of conjunction can be used:

ν(a ≥ b)
def
= abs(min(0, ν(a)− ν(b)))

ν(A ∧ B)
def
= ν(A) + ν(B)

The property of the violation function is that the value is 0 for the valid or
satisfiable constraint and positive otherwise. This gives an heuristic hint
of how far the system is from satisfying a constraint and if a transition
helps to move towards the satisfying state.

For doing a test step some reachability constraints C+
l→tr stronger than

the domain constraint D are selected from the closest locations l. Next, the
possible transitions from the current state are simulated and violations for
all the selected constraints calculated from the simulated states. The input
that leads to the state with the smallest violation is selected and sent to
the IUT. The actual selection of the transition from the potentially infinite
set of possible transitions is done in phases by first selecting the most

91

execution of symbolic testing strategy

promising pairs of constraints and edge(s) of the model by satisfiability
check and then the input parameters are found by solving the constraints
for minimal violation. It is not guaranteed that this approach actually
leads to some state with satisfiable reachability constraint, but it seems to
work quite efficiently at least for the case studies use in [2]. The selection
is backed up by a complex taboo search to avoid the transitions taken in
the same state to avoid loops. This can be viewed as an advanced anti-ant
approach combined with an objective function assisted search.

6.5 summary

In this chapter we demonstrate how the symbolic test strategy is used
for efficient online test planning. The trap ordering is done based on
their distance estimates and inputs are generated by solving the guarding
constraints that encode the test strategy. All the modelling including the
output observability assumption and strategy generation technique are
motivated by the possibility to perform the steps of the online testing
efficiently to cover the test purpose expressed as a set of traps by test runs
of optimal length.

92

7
I M P L E M E N TAT I O N A N D T O O L S

The implementation of tester generation described in Chapters 5 and 6

consists of and uses many tools. The overall workflow on the toolchain
is shown in the Figure 7.1. The workflow moves from the left to the
right. The upper row describes data given and generated, the middle
row describes the main components of the toolchain that implement the
proposed method of test generation and the bottom row shows the rela-
tionship to the external tools used.

The tester generation consists of two stages. At first the testing strategy
is generated by the model explorer as described in Chapter 5. After that
a test script is made that implements the methods described in Chapter
6. Also the model of the IUT, test goals and test strategy are converted to
data structures of the script suitable for efficient test execution. The test
script execution engine interacts with the IUT through the test adapter.

7.1 testing strategy generation with the erpt tool

The model explorer is implemented as a tool Extended Reactive Planning
Tester (ERPT) in Python. It takes a model of the IUT augmented with a set of
test goals and generates a test strategy consisting of all needed constraints
and distance measures. The Z3 SMT solver [17] version 2 was used in the
implementation for satisfiability checks and simplification over ASCII rep-
resentation of constraints in SMT-LIB v1 format. A new implementation
currently under development is connected directly to the Z3 Application
Programming Interface (API) avoiding parsing and a process call overhead
for every invocation of satisfiability check and simplification.

Different tuning options of ERPT are presented in Figure 7.2. The op-
tions -i and -d allow to tune the termination conditions as explained in
Subsection 5.4.1. Different guarding constraints can be generated using
an option -g. The method of test execution explained in Chapter 6 as-
sumes default behaviour with input label and parameters included in the

93

implementation and tools

Figure 7.1: The testing workflow with supporting tools

constraints, but it is possible to use different approaches to online test
execution with different guarding constraints. Inclusion of inputs can be
avoided (-g1) for more efficient strategy generation in the case inputs do
not have data parameters. The distances between traps can be estimated
more precisely (-g3), doing it at the expense of computational complexity
and much more complicated guarding constraints. The options -s and -f

allow to tune the amount of simplification operations applied during the
computation and to final results. The best options for particular models
can be different and require case-by-case tuning.

7.2 simplification

By simplification we mean algebraic manipulation of the initial formula in
such a way that we get an equivalent, but possibly more compact and sim-
pler formula. The simplification involves quantifier elimination, Boolean
and background theory-specific simplification. By a simpler formula we
mean a formula for which satisfiability check and constraint solving are
more efficient.

The ability to simplify the generated constraints to more compact and
quantifier-free representation is crucial to the feasibility of the method.
The size and complexity of the formulae can grow exponentially during
the process and rendering it unmanageable. The algorithms involve re-

94

7.2 simplification

usage: erpt.py [-h] [-i] [-d DEPTH] [-g #] [-t #] [-s #] [-f #] file

Find ERPT constraints

positional arguments:

file input file name

optional arguments:

-h, –help show this help message and exit

-i finish constraint generation when the initial state

is covered

-d DEPTH search depth (default 10)

-g # type of guarding constraints (default 2):

0-none, 1-location, 2-inputs, 3-lengths

-s # guarding constraint simplification during calculation

(default 0): 0-none, 1-changes, 2-full

-f # final constraint simplification (default 1):

0-none, 1-transitions, 2-full

Figure 7.2: Options of the ERPT tool

(benchmark data :extrafuns ((sum Int)(val Int)(ilabel Int))

:formula(

(or (and (>= sum 0)(>= sum 20)(not (<= sum 20)))

(or (exists ((val Int)(ilabel Int))

(and

(and (>= sum 0)

(>= val 1)(<= val 20))

(= ilabel 1)

(and (>= (+ sum val) 0)

(>= (+ sum val) 20)

(not (<= (+ sum val) 20)))

))))))

(a) Input to the simplifier

(>= sum 1)

(b) Output from the simplifier

Figure 7.3: Simplification example

95

implementation and tools

peated satisfiability checking and although modern SMT solver are effi-
cient for large formulae, they benefit from the simplification. It is espe-
cially important for online testing, where the inputs must be generated by
constraint solving in real-time. Instead of applying simplification to the
huge final result, it turns out to be easier and more efficient to simplify
the formulae incrementally by the components used in the construction of
the formula.

We do not rely on normal forms for checking equivalence. It would
cause exponential blow-up of the formulas for the usual normal forms.
The equivalence checking of two formulas can be reduced to one-way im-
plication checking in our case that can be reduced to satisfiability checking.
So it suffices to have some heuristic simplification that reduces the size of
the formulas, but we do not have to put too much effort into simplification
to get a pre-defined form. The overall goal of the simplification step is to
speed up the whole process and to find a good balance between the effort
put into simplification and additional complexity of using less-simplified
formulas in constraint construction, satisfiability checking and solving.

We have experimented with using RedLog [22], the simplifier of the
Duration Calculus modelchecking engine [32] and simplification functions
of Z3 [17]. RedLog did not prove to be very efficient for one task. It is
able to do quantifier elimination, Boolean simplification and conversion to
conjunctive or disjunctive normal form, but does not have a good heuristic
simplification procedures built in for different theories. The simplifier
included in the decision procedure of Presburger arithmetic uses a novel
guarded normal form that avoids exponential blow-up and is efficient for
the formulas generated by Duration Calculus model checker as shown in
[32], but Z3 resulted in better simplifications for the constraints that form
the test strategy.

An example of the use of simplifier using functionality of Z3 is provided
in Figure 7.3. The example is extracted from the debugging output of the
ERPT tool for the model of the latte vending machine and corresponds to
generating the result for C+

l<→trap3 in row number 2 in Table 5.2a. The
upper box shows the input in SMT-LIB v1 format given to the simplifier
and the lower box shows the result.

Z3 has many different modes of simplification and these can be tuned
by many parameters. The modes are basic simplifier, context simplifier
and strong context simplifier, that involves the use of the satisfiability
solver to check if any sub-formula is equivalent to true or false. The later
simplifications are turned on by the parameter “CONTEXT_SIMPLIFIER”
and “STRONG_CONTEXT_SIMPLIFIER” respectively. We achieved the
best tradeoff between simplification and constraint complexity with the

96

7.3 test execution

Z3_set_param_value(cfg, "ELIM_QUANTIFIERS", "true");
Z3_set_param_value(cfg, "ELIM_AND", "false");
Z3_set_param_value(cfg, "STRONG_CONTEXT_SIMPLIFIER", "false");
Z3_set_param_value(cfg, "CONTEXT_SIMPLIFIER", "false");
simplified = Z3_simplify(ctx,formula);
Z3_update_param_value(ctx,"STRONG_CONTEXT_SIMPLIFIER", "true");
Z3_update_param_value(ctx,"ELIM_QUANTIFIERS", "false");
simplified = Z3_simplify(ctx,Z3_simplify(ctx,simplified));
Z3_update_param_value(ctx,"CONTEXT_SIMPLIFIER", "true");
Z3_update_param_value(ctx,"STRONG_CONTEXT_SIMPLIFIER", "false");

simplified = Z3_simplify(ctx,simplified);

Figure 7.4: A fragment of the simplifier code in C using Z3 API

approach where the basic simplification with quantifier elimination was
applied first, then the double application of the strong context simplifica-
tion and finally the context simplification. A fragment of the code used
is depicted in Figure 7.4. The experiments were done using Z3 version
2.x, the new features of strategies and tacticals in the newer versions of
Z3 give even more possibilities to tweak the simplification process. At the
moment, we use a general simplification strategy, but using domain and
application specific simplification could help to increase the feasibility of
the method. We leave this for future research.

7.3 test execution

There are two different test execution environments used in the experi-
ments. One approach generates TTCN-3 scripts and uses TestCast [58] for
executing the test and communicating to the IUT. The external calls to the
Z3 solver are made for satisfiability checks and constraint solving by satis-
fiable model finding. An alternative approach used for implementing the
heuristic online testing described in Section 6.4 uses constraint-based local
search programming environment Comet [34]. The tester is generated as
a Comet script and constraint solver built into Comet is used in that case.

7.4 potential improvements to the implementation

All the tools of the test generation are prototypes. More careful implemen-
tation and the use of parallel programming could improve the results sig-
nificantly. As the solver technology currently undergoes rapid advances,
we expect new opportunities for improving our approach to become avail-

97

implementation and tools

able and further enhance the performance. In addition, many subtasks
of the strategy generation could be done in parallel. Strategy generation
for different traps is independent, also the constraint propagation over
edges inside one propagation step could be made in parallel. This way it
is possible to reduce the time spent on strategy generation significantly.

98

8
C A S E S T U D I E S

We demonstrate the applicability and feasibility of our approach to test
generation using three case-studies. We compare the time it takes to gen-
erate the test strategy, to generate the test that reaches a goal based on the
strategy and using heuristic test generation based on the bounded strat-
egy. The results are compared to random testing with anti-ant strategy
[52] and Uppaal [50] that serves as an efficient explicit state reachability
checker for EFSM models. The timers of Uppaal are not used. Some of the
results of the case studies are presented in [64, 2].

All the tests were not executed against the real IUT, but against a simula-
tion of the IUT model. No non-conformance result could be received in this
way as long as erroneous behaviours have not injected in the IUT model
purposefully. But it gives a better understanding of the performance, be-
cause the delays associated with the adapter, communication and the IUT

are not involved.
The tests were performed on a workstation with 2.8GHz (3.4GHz with

TurboBoost) Intel i7 processor and 8 GB memory. All the tools involved
use a single core at a time. Most of the online test generations are done
using heuristic online tester based on Comet. The tests for all-transitions
and all-pairs-or-transitions are done using TestCast environment running
generated TTCN3 scripts.

8.1 triple-counter case study

The case-study of triple-counter is an artificial model to demonstrate the
tester’s ability to select input and the order of transitions using the testing
strategy in such a way that it leads to the state that is difficult to achieve
randomly.

The Figure 8.1 depicts the model of triple-counter. It has three state
variables x, y, z an input variable i and tree locations. The test goal is to
achieve a state with x = 10, y = 6, and z = 2 in location l1. The transitions

99

case studies

��

��

��

��

����

�� ��

�	

���������	
������

����
�
��
����
������

���������	
������

�
������
���

��
������
���������

���������	
������

�
������
���

��
������
��������

���������	
������

�
������
���

��
��������

���������	
������

�
������������������������������

����� � ����!���

"#$%&"!
�"#'(����

Figure 8.1: Model of triple-counter

Table 8.1: Testing results of triple-counter model

Method time (s) no. of transitions

strategy generation 7.45 11

online test generation 0.05 11

strategy generation, bound=2 0.70 2

χRPT online test generation 0.12 21

Uppaal 0.53 11

Anti-Ant - -

ty and tx are allowed to increase one and decrease other variable, but do
not change the sum of the state variables. The transition tz can increase z

and the initial transition t1 can assign to the value of the input parameter
i to variable x. The optimal strategy seems to assign the intended sum 16

of x and y to x by the initial transition t1, adjust the values of x and y by ty

and increase the value of z by tz. A suitable value for the input parameter
i should be selected at each step.

The results of the different test generation methods and algorithms used
are provided in Table 8.1. An optimal test with 11 transitions was dis-
covered by the strategy generator and concrete test generated on-the-fly.
An optimal trace was found quite fast by explicit-state modelchecker Up-
paal. The difference with Uppaal is that it finds one of the possible non-
deterministic traces with inputs that may result in different reaction when
applied to the IUT. For instance giving input COUNT(3) in location l1 may
trigger also transition tx that deviates from the optimal test trace. RPT on
the other hand gives strategy that is able to cope with the situation in
case of the deviation and is also able to prove a deterministic test, if one
exists, e.g. COUNT(4) to trigger ty. The heuristic online tester was able to

100

8.2 inres protocol case study

���
������������	
�����������

��

�������
���������	����������

������
����������

���

������������	
���������

��

�����	������ 	���������	
��

����
���!�"������

�	���

���

��

��	�

��

��

���

�	

��
�	
#

�

��

�����	������ 	�����

������	����������

����
����$�"��

����
��������
���%&�

���

��

�����������
��
'��

���
��(����&����

���

������������	
����������

��
������)����*����+��

���*
��(�������+��	����������

������
�������������������������

��

����),*
��+����

�
��(���&�--�
���
��(����

�
��(���������

�

����),*
��+���

�
��(�����--�
���
��(���

�
��(����&����

����),*
��+�

���*
��(����������+�

�
��.�
��(���

����--����
���$"�

����
��������
���%&����

��

�����	������ 	����

���*
��(����������+�

����
���$"�

����
��������
���%&����

��

�����	������ 	���������	
��

����
���!�"������

���

������������	
���������

���

��

����),*
��+������	
��

�
��.�
��(���--����
���!�"������

Figure 8.2: Model of Inres protocol

find a non-optimal test with length 23, based on symbolic strategy with
bound = 2. The anti-ant strategy of random testing was not able to reach
the goal. It may be concluded, that even a bounded test strategy with only
small bound can serve as basis for successful heuristic guidance towards
the goal.

8.2 inres protocol case study

The initiator process of Inres protocol [37] case-study is used to illus-
trate many approaches of input generation to EFSM model based testing
[72, 43, 20, 53]. The initiator of the connection-oriented Inres protocol is
responsible for connection establishing and sending data. The IUT consists
of 4 locations, 15 edges, 3 state variables and 1 input variable.

This is a simple model for test generation as can be seen from Table 8.2.
It can be solved also by random Anti-Ant strategy, but the tests generated
are considerably longer.

To illustrate the process of the test generation an excerpt of the con-
straints and distance measures generated by the offline tester synthesis
are presented in Table 8.3. Traps are defined for transitions t0− t6 with
condition true and shown in the column Goal. The constraints and dis-
tance measures are given for a pair of transitions in columns Via and Goal,
i.e. the constraint counter < 4 in the ninth line of the column Cg ∧ guard

is C
g

t2→(t3,true)
∧ guard(t2).

101

case studies

Table 8.2: Testing results of Inres model

Method time (s) no.of transitions

strategy generation 1.86 8

online test generation 0.032 8

strategy generation, bound=2 1.67 2

χRPT online test generation 0.043 8

Uppaal 0.530 8

Anti-Ant (min/avg/max) 0.06/0.35/0.88 17/80/193

The Table 8.4 explains the online tester behaviour for guiding the IUT

towards the trap on transition t3 from the initial state Disconnected. The
data in the table expresses the results of constraint solving done in the
online process. Empty entries mean that there was no need to solve the
corresponding constraints. The column Next expresses the decision of the
transition to be taken next and it always succeeds because of the determin-
istic nature of the model. Two steps similar to step 2 are omitted.

The Table 8.5 demonstrates the use of the generated constraints for guid-
ing the IUT along the path 〈t0; t1; t4; t6; t4; t5〉. This path is particularly dif-
ficult to achieve with random testing [20], but it is straightforward using
the proposed method.

The test purpose of all-transitions is expressed by 15 traps, with one as-
sociated with different edge and having condition true. The offline calcula-
tion of the test strategy took 11.0 seconds and involved 296 simplification
and 738 satisfiability checks. The online testing steps are fast, taking 0.055

seconds on average including trap selection, input data generation, input-
output operations and simulation of the IUT. The resulting sequence of
transitions is given in Table 8.6. Every row includes a sequence of transi-
tions to the next trap and the trap covered. The traps are named according
to the edges they are associated with. The next row continues the transi-
tion sequence from the state after the trap was covered.

The test purpose of all-pairs-of-transitions is expressed by 15 traps for
separate transitions and 48 traps for the pairs of transitions. The offline
calculation of the test strategy took 42.5 seconds and involved 1391 simpli-
fication and 3013 satisfiability checks. The online testing steps took 0.30

seconds in average including trap selection, input data generation, input-
output operations and simulation of the IUT. The resulting sequence of
transitions is given in Table 8.7. The traps for separate transitions are the
same as for all-transitions purpose. The traps for the pairs are named

102

8.2 inres protocol case study

Table 8.3: Excerpt of generated constraints for the Inres Initiator example

Via Goal Cg ∧ guard L L+

t0 t0 true 1 1

t11 t0 false 2 2

t1 t1 true 1 1

t2 t1 false 2 2

t3 t1 false 3 3

t12 t1 false 3 3

t0 t3 true 6 6

t1 t3 false 8 8

t2 t3 counter < 4 2 5

t11 t3 false 7 7

t3 t3 counter ≥ 4 1 1

t12 t3 false 7 7

t4 t4 true 1 1

t13 t4 false 4 4

t5 t5 number = 0 1 1

t6 t5 number = 1 3 3

t7 t5 false 2 2

t8 t5 false 7 7

t9 t5 false 2 2

t10 t5 false 7 7

t14 t5 false 7 7

t5 t6 number = 0 3 3

t6 t6 number = 1 1 1

t7 t6 false 2 2

t8 t6 false 5 5

t9 t6 false 2 2

t10 t6 false 5 5

t14 t6 false 5 5

103

case studies

Table 8.4: Creating a path to reach the transition t3 from the state Disconnected

Step (L, counter, number) Via To Cg input Next

1 (Disconnected,_,_,) t0 t3 true ICONreq t0

t11 t3

2 (Waiting,0,_) t3 t3 f alse

t2 t3 true Timer.timeout t2

t1 t3

t12 t3

...

5 (Waiting,3,_) t3 t3 f alse

t2 t3 true Timer.timeout t2

t1 t3

t12 t3

6 (Waiting,4,_) t3 t3 true Timer.timeout t3

t2 t3

t1 t3

t12 t3

104

8.2 inres protocol case study

Table 8.5: Executing the transition path t0;t1;t4;t6;t4;t5

Step (L, counter, number) Via To Cg input Next

1 (Disconnected,_,_,) t0 t0 true ICONreq t0

t11 t0

2 (Waiting,0,_) t1 t1 true CC t1

t2 t1

t3 t1

t12 t1

3 (Connected,0,1) t4 t4 true IDATreq t4

t13 t4

4 (Sending,0,1) t6 t6 true AK(1) t6

t7 t6

t9 t6

t5 t6

t8 t6

t10 t6

t14 t6

5 (Connected,0,0) t4 t4 true IDATreq t4

t13 t4

6 (Sending,0,0) t5 t5 true AK(0) t5

t7 t5

t9 t5

t6 t5

t8 t5

t10 t5

t14 t5

105

case studies

Table 8.6: All transitions test purpose

transitions traps

t0 t0

t1 t1

t4 t4

t7 t7

t6 t6

t4,t5 t5

t4,t14 t14

t0,t12 t12

t0,t2 t2

t1,t13 t13

t11 t11

t0,t1,t4,t9 t9

t9,t9,t9,t8 t8

t0,t2,t2,t2,t2,t3 t3

t0,t1,t4,t9,t9,t9,t9,t10 t10

106

8.2 inres protocol case study

Table 8.7: All transitions and pairs of transitions

transitions traps transitions traps

t11 t11 t0,t1,t4,t14 t4t14

t0 t0,t11t0 t0 t14t0

t2 t2,t0t2 t1,t4,t7,t9 t7t9

t1 t1,t2t1 t9 t9t9

t4 t4,t1t4 t14 t9t14

t9 t9,t4t9 t0,t1,t4,t7,t6 t7t6

t6 t6,t9t6 t4,t7,t5 t7t5

t4 t6t4 t4,t7,t7 t7t7

t7 t7,t4t7 t7,t7,t8 t8,t7t8

t14 t14,t7t14 t11 t8t11

t11 t14t11 t0,t1,t4,t7,t7,t7,t7,t10 t10,t7t10

t0,t12 t12,t0t12 t11 t10t11

t11 t12t11 t0,t1,t4,t7,t7,t7,t9,t8 t9t8

t11 t11t11 t0 t8t0

t0,t1 t0t1 t12,t0 t12t0

t13 t13,t1t13 t2,t2 t2t2

t11 t13t11 t1,t4,t9,t7 t9t7

t0,t1,t4,t6 t4t6 t6,t4,t9,t5 t9t5

t13 t6t13 t4,t7,t7,t7,t9,t10 t9t10

t0 t13t0 t0 t10,t0

t1,t4,t6,t4,t5 t5,t4t5 t2,t2,t2,t2,t3 t3,t2t3

t4 t5t4 t11 t3t11

t6,t4,t5 t5t13 t0,t2,t2,t2,t2,t3,t0 t3t0

107

case studies

accordingly, e.g. “t0t1” means that a transition over edge t1 was taken
immediately after t0. For formalizing the pair-of-transition goal, an auxil-
iary variable prev was added to the model and updated to the identifier of
edge in every transition. The trap condition then requires a certain transi-
tion to precede the current edge. For instance, a trap “t0t1” is specified as
(t1, prev = t0) in that case.

8.3 industrial case study : billing system

We demonstrate the scalability of the method on industrial case-study of
telecom billing system1. The model describes billing of mobile internet
usage depending on the service used (WAP or general internet) and billing
rules of the contract. The model is created by a test engineer based on the
IUT informal specification. The values of the parameters and constants
used here are different from the actual values of the real system tested.

The model formalises the rules of billing. The rules can give some
bonus usage for using other services, some free usage for a fixed price and
usage dependent price with possible daily limit of the price charged. The
model has 13 locations and 43 edges between them, 1 input variables and
8 state variables, 5 of those having domain [0, 32000] and 1 unconstrained
integer. In average, guards in this model consist of 20 terms connected
by functions and predicates. The model of the billing system is depicted
in Figure 8.3. It is formalized as an Uppaal model for compatibility with
another test generation method. The variable inp can be taken as semantic
variable iLabel, input labels encoded to integers 1-11 and val as an input
parameter with domain [0, 32000].

The test purpose of the results presented in Table 8.8 is to test the situ-
ation where the monthly internet usage limit is exceeded. This includes
many data sessions for exceeding the free and bonus limits and taking
daily limits into account. The shortest path to the trap has 189 transi-
tions found by the symbolic analysis in strategy generation. The results
are presented for generating and using the full strategy that covers the
full path and bounded strategies with different bounds. χRPT online test
generation is used to guide the testing in that case.

The results show that the strategy generation scales with the increase of
the bound reasonably. The dependence is not linear, but feasible in prac-
tice, considering that the involved procedures with Presburger arithmetic
have triple-exponential worst-case complexity. The χRPT approach com-

1 We cannot be more specific about the origin of the case study because of the non-disclosure
agreement involved.

108

8.4 summary

Table 8.8: Results of billing case study

Bound 200 100 20 10 2

Strategy generation time (sec) 1958 1212 136.2 36.3 5.7

Online time (sec) 2.6 6.7 17.4 17.0 153.4

Online test length (transitions) 189 230 255 275 1051

Avg time for test step (sec) 0.014 0.051 0.084 0.063 0.146

plements the bounded strategy generation such that the online procedure
finds shorter test and uses less time with a higher bound strategy and
vice versa. This enables us to find a good balance between the effort of
generating of strategy and online test generation. It also enables to test
the systems with more complex models when the full strategy generation
is not feasible.

Anti-ant and Uppaal were not able to find a test for this model because
of the huge search space. Anti-ant did not complete within 24 hours
of working and Uppaal reached the memory limit in minutes with all
possible different tuning options (depth/breath-first search, state space
reduction techniques) available.

8.4 summary

We showed the feasibility of the method using three case studies in this
chapter. The case studies used are medium sized, but not trivial. The
complexity of a model is not easy to express in terms of the number of
locations, transitions, variables, size of domain or formulas used, because
the actual complexity depends on the interplay of all these factors and the
background theory used. It is possible to construct a small model that
turns out to be too complex for the proposed method of test generation.
We demonstrated on the case-study of Inres protocol that the problem
that has been challenging for other approaches [43, 20] is easy for our
approach. As the case studies show, this kind of test generation from sym-
bolic analysis based test strategy starts to be feasible for practical usage
and this is connected to the great advances in SMT solver development in
the recent years.

109

case studies

NoCharge

LimitExceeded

PricedWapDayStarted
PricedWapDailyLimitExceeded

PricedWapDayContinues

ForFree

ForBonus

Init5Init4Init3Init2Init1Initial

k: int[0,11](inp == 5)

inp:=k,
VACU2:=0,
ACU21:=bonusAmount,
ACU23:=0, VACU26:=0

k: int[0,11]

((inp == 10) &&
(VACU25 > 0) && (wapDL) &&
(VACU2 > 0) &&
(VACU2 < (VDAILYMAX - 1))
)

inp:=k,
SO7:=0

k: int[0,11]
(inp == 11)

inp:=k,
SO7:=1

k: int[0,11],
l: int[1,32000]

(inp == 7)
inp:=k,
vol:=l,
granted:=vol

k: int[0,11](inp == 10)
inp:=k,
SO7:=0

k: int[0,11](inp == 11)

inp:=k,
SO7:=1

k: int[0,11],
l: int[1,32000]

((inp == 7) &&
(SO7 == 1) &&
(vol > freeAmount-ACU23)
)inp:=k,
vol:=l,
granted:=vol,
ACU23:=freeAmount

k: int[0,11]

((inp == 7) && ((freeAmount - ACU23) <= 0) &&
(SO7 == 0) && (VACU25 <= VACU26) &&
(VACU2 < VDAILYMAX)
) inp:=k,

granted:=0

k: int[0,11]

((inp == 7) && (ACU21 <= 0) && ((freeAmount - ACU23) <= 0) &&
(SO7 == 0) && (VACU25 <= VACU26) &&
(VACU2 < VDAILYMAX)
)

inp:=k,
granted:=0

k: int[0,11],
l: int[1,32000]

((inp == 7) && ((freeAmount - ACU23) >= 0) &&
(SO7 == 0) && (VACU25 > 0) && (wapDL) &&
(VACU2 >= VDAILYMAX) && (VACU25 > VACU26) &&
(vol > (freeAmount - ACU23))
)
inp:=k,
vol:=l,
granted:=vol, ACU23:=freeAmount

k: int[0,11],
l: int[1,32000]

((inp == 7) && (ACU21 >= 0) && ((freeAmount - ACU23) >= 0) &&
(SO7 == 0) && (VACU25 > 0) && (wapDL) &&
(VACU2 >= VDAILYMAX) && (VACU25 > VACU26) &&
(vol > (ACU21 + (freeAmount - ACU23)))
)

inp:=k,
vol:=l,
granted:=vol,
ACU21:=0, ACU23:=freeAmount

k: int[0,11],
l: int[1,32000]

((inp == 7) && ((freeAmount - ACU23) >= 0) &&
(SO7 == 0) && (VACU25 > 0) && (wapDL) &&
(VACU2 > 0) && ((VDAILYMAX - VACU2) > 0) &&
((VDAILYMAX - VACU2) < (VACU25 - VACU26)) &&
(vol > ((freeAmount - ACU23) + (VDAILYMAX - VACU2)))
)

inp:=k,
vol:=l,
priced:=(VDAILYMAX - VACU2), granted:=vol,
VACU2:=(VACU2 + priced),
VACU26:=(VACU26 + priced), ACU23:=freeAmount

k: int[0,11],
l: int[1,32000]

((inp == 7) && (ACU21 >= 0) && ((freeAmount - ACU23) >= 0) &&
(SO7 == 0) && (VACU25 > 0) && (wapDL) &&
(VACU2 > 0) && ((VDAILYMAX - VACU2) > 0) &&
((VDAILYMAX - VACU2) < (VACU25 - VACU26)) &&
(vol > ((ACU21 + (freeAmount - ACU23)) + (VDAILYMAX - VACU2)))
)
inp:=k,
vol:=l,
priced:=(VDAILYMAX - VACU2), granted:=vol,
VACU2:=(VACU2 + priced),
VACU26:=(VACU26 + priced), ACU21:=0, ACU23:=freeAmount

k: int[0,11],
l: int[1,32000]

((inp == 7) && ((freeAmount - ACU23) >= 0) &&
(vol > (freeAmount - ACU23)) && (SO7 == 0) &&
(VACU25 > 0) && (wapDL) && (VACU2 > 0) &&
((vol - (freeAmount - ACU23)) < (VACU25 - VACU26)) &&
((vol - (freeAmount - ACU23)) < (VDAILYMAX - VACU2)))
inp:=k,
vol:=l,
priced:=(vol - (freeAmount - ACU23)), granted:=vol,
VACU2:=(VACU2 + priced),
VACU26:=(VACU26 + priced), ACU23:=freeAmount

k: int[0,11],
l: int[1,32000]

((inp == 7) && (ACU21 >= 0) && ((freeAmount - ACU23) >= 0) &&
(vol > (ACU21 + (freeAmount - ACU23))) && (SO7 == 0) &&
(VACU25 > 0) && (wapDL) && (VACU2 > 0) &&
((vol - (ACU21 + (freeAmount - ACU23))) < (VACU25 - VACU26)) &&
((vol - (ACU21 + (freeAmount - ACU23))) < (VDAILYMAX - VACU2))
)

inp:=k,
vol:=l,
priced:=(vol - (ACU21 + (freeAmount - ACU23))), granted:=vol,
VACU2:=(VACU2 + priced),
VACU26:=(VACU26 + priced), ACU21:=0, ACU23:=freeAmount

k: int[0,11],
l: int[1,32000]

((inp == 7) && (ACU21 >= 0) && ((freeAmount - ACU23) >= 0) &&
(vol > (ACU21 + (freeAmount - ACU23))) && (SO7 == 0) &&
(VACU25 > 0) && (wapDL) && (VACU2 == 0) &&
((vol - (ACU21 + (freeAmount - ACU23))) < (VACU25 - (VACU26 + VDAILYSTART))) &&
((vol - (ACU21 + (freeAmount - ACU23))) < (VDAILYMAX - VDAILYSTART))
)

inp:=k, vol:=l,
priced:=(vol - (ACU21 + (freeAmount - ACU23))), granted:=vol,
VACU2:=(priced + VDAILYSTART),
VACU26:=(VACU26 + (priced + VDAILYSTART)), ACU21:=0, ACU23:=freeAmount

k: int[0,11]
(inp == 9)
inp:=k,
bonusAmount:=(bonusAmount + BONUS_INCR),
ACU21:=(ACU21 + BONUS_INCR)

k: int[0,11](inp == 9)

inp:=k,
bonusAmount:=bonusAmount+BONUS_INCR,
ACU21:=(ACU21 + BONUS_INCR)

k: int[0,11](inp == 9)

inp:=k,
bonusAmount:=(bonusAmount + BONUS_INCR),
ACU21:=(ACU21 + BONUS_INCR)

k: int[0,11](inp == 9)
inp:=k,
bonusAmount:=(bonusAmount + BONUS_INCR),
ACU21:=(ACU21 + BONUS_INCR)

k: int[0,11](inp == 5)
inp:=k,
VACU2:=0, ACU21:=bonusAmount,
ACU23:=0, VACU26:=0

k: int[0,11](inp == 5)

inp:=k,
VACU2:=0, ACU21:=bonusAmount,
ACU23:=0, VACU26:=0

k: int[0,11](inp == 5)

inp:=k,
VACU2:=0, ACU21:=bonusAmount,
ACU23:=0, VACU26:=0

k: int[0,11]
(inp == 5)

inp:=k,
VACU2:=0, ACU21:=bonusAmount,
ACU23:=0, VACU26:=0

k: int[0,11]

((inp == 7) &&
!(VACU2 < VDAILYMAX) !
)inp:=k,
granted:=0,
trap_ES2:=true

k: int[0,11],
l: int[1,32000]((inp == 7) &&

!(VACU25 > 0) && (wapDL) &&
!(VACU2 > 0) && (VACU2 < VDAILYMAX) &&
!((VACU25 - VACU26) > 0) &&
!(vol >= (VACU25 - VACU26)) &&
!(vol < (VDAILYMAX - VACU2))
)
inp:=k, vol:=l,
granted:=(VACU25 - VACU26),
VACU2:=(VACU2 + granted), VACU26:=(VACU26 + granted)

k: int[0,11],
l: int[1,32000]

((inp == 7) && (VACU2 == 0) &&
(SO7 == 0) && (VACU25 >= 0) && (wapDL) &&
(vol <= (VACU25 - (VACU26 + VDAILYSTART))) &&
(vol <= (VDAILYMAX - VDAILYSTART))
)
inp:=k, vol:=l, priced:=vol, granted:=priced,
VACU2:=(priced + VDAILYSTART),
VACU26:=(VACU26 + (priced + VDAILYSTART))

k: int[0,11]

(inp == 8)
inp:=k,
VACU2:=0

k: int[0,11]
(inp == 8)
inp:=k,
VACU2:=0

k: int[0,11],
l: int[1,32000]

((inp == 7) &&
(SO7 == 0) &&
(wapDL)
)
inp:=k,
vol:=l,
granted:=vol

k: int[0,11],
l: int[1,32000]

((inp == 7) &&
(vol >= (VDAILYMAX - VACU2)) &&
(SO7 == 0) && (VACU25 > 0) &&
(wapDL) && (VACU2 > 0) &&
(VACU2 < VDAILYMAX) &&!
((VDAILYMAX - VACU2) < (VACU25 - VACU26))
)inp:=k, vol:=l, granted:=vol,
priced:=(VDAILYMAX - VACU2),
VACU2:=(VACU2 + priced),
VACU26:=(VACU26 + priced)

k: int[0,11],
l: int[1,32000]((inp == 7) &&

(SO7 == 0) && (VACU25 > 0) && (wapDL) &&
(VACU2 > 0) && (VACU2 < (VDAILYMAX - 1)) &&
(vol < (VACU25 - VACU26)) &&
(vol < (VDAILYMAX - VACU2)))
inp:=k, vol:=l, priced:=vol,
granted:=priced,
VACU2:=(VACU2 + priced),
VACU26:=(VACU26 + priced)

k: int[0,11],
l: int[1,32000]

((inp == 7) && ((freeAmount - ACU23) >= 0) &&
(vol > (freeAmount - ACU23)) && (SO7 == 0) && (VACU25 > 0) &&
(wapDL) && (VACU2 == 0) &&
((vol - (freeAmount - ACU23)) < (VACU25 - (VACU26 + VDAILYSTART))) &&
((vol - (freeAmount - ACU23)) < (VDAILYMAX - VDAILYSTART))
)inp:=k, vol:=l,
priced:=(vol - (freeAmount - ACU23)), granted:=vol,
VACU2:=(priced + VDAILYSTART),
VACU26:=(VACU26 + (priced + VDAILYSTART)),
ACU23:=freeAmount

k: int[0,11],
l: int[1,32000]

((inp == 6) && ((freeAmount - ACU23) > 0) &&
(vol <= (freeAmount - ACU23)))
inp:=k,
vol:=l,
granted:=vol, ACU23:=(ACU23 + granted)

k: int[0,11],
l: int[1,32000]

((inp == 6) && (ACU21 >= 0) &&
((freeAmount - ACU23) > 0) && (vol > ACU21) &&
(vol <= (ACU21 + (freeAmount - ACU23))))

inp:=k, vol:=l, granted:=vol,
ACU23:=(ACU23 + (granted - ACU21)),
ACU21:=0

k: int[0,11],
l: int[1,32000]

((inp == 6) && (ACU21 > 0) && (vol <= ACU21))
inp:=k,
vol:=l,
granted:=vol, ACU21:=(ACU21 - granted)

k: int[0,11](inp == 5)
inp:=k,
VACU2:=0, ACU21:=bonusAmount, ACU23:=0, VACU26:=0

k: int[0,11]
(inp == 4)

inp:=k

k: int[0,11]
(inp == 3)

inp:=k

k: int[0,11]
(inp == 2)

inp:=k

k: int[0,11]
(inp == 1)

inp:=k

k: int[0,11]
(inp == 0)

inp:=k, SO7:=0,
bonusAmount:=100

Constants:
const int freeAmount = 372;
const bool wapDL = true;
const int VACU25 = 20000;
const int VDAILYSTART = 37;
const int VDAILYMAX = 222;

const int BONUS_INCR = 10;

Variables:
int granted;
int[0,1] SO7;
int[0,1000] bonusAmount;
int[0,32000] ACU2;
int[0,32000] ACU21;
int[0,32000] ACU23;
int[0,32000] ACU26;

int[0,32000] priced;

Figure 8.3: Billing system fragment

110

9
C O N C L U S I O N S A N D F U T U R E W O R K

The goal of the thesis is to provide a method for online test generation
based on a model of system under test and a test purpose. The pro-
posed method involves modelling systems with EFSMs, formalization of
test purpose by a set of traps associated with the edges of the model, off-
line symbolic test strategy generation and online test generation using the
test strategy.

Model-based test generation for non-deterministic models with data is
a difficult task in general. Non-determinism in the model does not permit
the generation of fixed test sequences and our way to solve it is by on-
line test generation. On the other hand, data dependencies in the control
structure require thorough analysis to find feasible runs that cover the test
goal and the efficiency of the online test generation is an important con-
cern. This thesis proposes a computationally feasible method for online
test generation.

The chapter summarizes the work and plans for future developments.

summary

A modelling formalism of output-observable I/O-EFSM as proposed in
Chapter 3 provides an efficient test strategy and test data generation by
limiting the non-determinism allowed in the model. The rigorous defini-
tion and discussion of the benefits and limits of the output-observability
assumption is an important contribution of the thesis. The method pro-
posed is independent of the background first order theory used for ex-
pressing the guards and updates of the I/O-EFSM model introduced in
Chapter 3. It just requires that the SMT problem is decidable for the the-
ory.

The method is designed to check conformance of the IUT to the model
in respect to a test purpose. A test engineer is usually interested in testing
a specific aspects of the IUT or use some coverage criteria on the structural

111

conclusions and future work

elements of the model rather than performing random testing. It is shown
in Chapter 4 how to formalize several different test purposes by a set of
traps and auxiliary variables. The definition of traps and conformance is
given and discussed in relation to alternative approaches. The proposed
method generates a strategy with the purpose of covering all traps of the
test purpose as efficiently as possible.

A symbolic testing strategy is used to guide the online testing process
efficiently. It is shown in Chapter 5 how to represent and generate the
strategy using backwards symbolic analysis of the model. This is the most
resource-intensive part of the proposed method, but it can be carried out
offline prior to the actual testing process. In Chapter 6 we demonstrate
how the symbolic test strategy is used for efficient online test planning.
The trap ordering is chosen based on their distance estimates and inputs
are generated by solving the constraints included in the strategy.

The feasibility of the method is demonstrated on three case studies in
Chapter 8. The proposed method reduces the problem to solving and
simplifying complex algebraic constraints and it is applicable to indus-
trial scale problems only because of the advances made in the SMT solver
technology.

main contributions

The main contribution of this thesis is a MBT approach for efficient on-
line testing based on a test purpose and EFSM model with limited non-
determinism. More specifically:

• Definition of output-observable EFSM (Section 3.2) with limited non-
determinism that is a key prerequisite for efficient model-based on-
line testing.

• Test purpose specification using traps (Section 4.3) and auxiliary
variables that enable to specify both scenario and structural cover-
age type of test purposes.

• A method for symbolic test strategy representation and generation
(Chapter 5). The computationally expensive strategy generation is
carried out offline, making it possible to generate the actual test in-
puts efficiently online.

• A method for efficient online test generation based on the test strat-
egy for achieving feasible path to the test goals with close to optimal
length (Chapter 6).

112

conclusions and future work

• Demonstration of the feasibility of symbolic reachability analysis us-
ing algebraic simplifications and quantifier elimination procedures
that are supported by contemporary SMT solvers.

• Empirical validation of the feasibility of the method using three case-
studies including one model designed by an industrial partner.

author‘s contribution to the publications

The main contribution of this thesis is based on the results of three papers
[65, 42, 2] included in Part II of the thesis.

Author contributed to Paper I [65] as a collaborator in the development
of the ideas first presented in [66], participating in the development of
the case-study environment of Feeder Box Control Unit (FBCU) of the
street lighting subsystem, conducting the case-study, and participating in
writing different parts of the book chapter.

Author was the main contributor of Paper II [42], both in developing
the ideas and writing the paper. This is a concise presentation of the main
ideas elaborated in detail in this thesis.

Paper III [2] is the result of a project made in collaboration with a master
student Danel Ahman. Author of the thesis proposed the problem, idea
of the solution, supervised the project, contributed in developing and per-
forming the case-studies and writing some introductory and general parts
of the paper. The details of the method proposed in the paper and imple-
mentation of the method was conducted by the co-author.

Some of the results of case-studies included in the thesis are published
also in [64]. The copy of the book chapter is not included in the thesis be-
cause of the non-conforming classification of the publication and unsolved
copyright issues.

future work

There are several ideas and problems that arose during the research that
require further investigation.

Output observability is the main restricting assumption in the approach
presented. Relaxation of the assumption could give more freedom in mod-
elling systems and is a pre-requisite for other extensions. On the other
hand, the complexity of offline analysis and online test generation would
rise without the assumption considerably as discussed in Subsection 3.2.3.
Thus it requires further investigation to study ways of relaxing the as-
sumption.

113

conclusions and future work

Composition is an important means both in modelling systems and test
purposes. Extension to composition with a scenario automaton for lim-
iting non-determinism is quite straight forward, but compositional mod-
elling of the IUT is more problematic as discussed in Subsection 3.2.4. Com-
positional modelling would need the relaxation of output-
observability assumption or defining composition operator that preserves
output-observability.

Extension of the modelling formalism to support hierarchical automata
with a formal mapping from UML Statecharts is an extension that we be-
lieve would simplify the evaluation of the method on industrial models.
Some preliminary work has been done to extend the test generation to
models of a simplified version of Hierarchical Timed Automaton (HTA)
[15] without timers. This is a subset of Statecharts with strict and suitably
defined semantics. The preliminary results show that one of the benefits
from hierarchical modelling would be that the local variables in the com-
ponent automaton could be eliminated from the strategy constraints on
higher levels, thus making reasoning more local and resulting in more
compact formulae.

Extending test generation to timed automata or hierarchical timed au-
tomata models would be quite a natural direction of further research. That
would need adding difference logic [55] to the background theory and in-
cluding special simplification procedures for efficient handling of timing
constraints. That would include lifting the results or representing non-
convex regions using Clock Difference Diagrams [49] to the domain of
logical formulae.

The general heuristic simplification procedures provided by external
tools have been used so far. Special simplification methods for constraints
resulting from the test generation could be developed. Also an inter-
face for adding optional domain and example specific simplification rules
could be added.

Test purposes are stated in terms of trap variables and auxiliary vari-
ables. This enables us to specify quite complex properties that include
counters and history variables. It would be useful to give a formal analy-
sis and characterisation of what kind of properties can be encoded in this
way. Also the use of additional automaton composed to the model of the
IUT can be used for test purpose specification if the parallel composition
of automaton is defined.

There are many improvements that could be made in implementation
of the method. Simplification and satisfiability checking using SMT solver
is implemented with text interface in SMT-LIB format at the moment that
causes repeated parsing of the formulae. Implementation using the solver

114

conclusions and future work

API with the internal representation of the formulae would make the im-
plementation much more efficient. Also, the use of version 4 of the Z3

solver with several new options of tuning the simplification process in
conjunction with the use of strategies and tactics in satisfiability checking
and model generation could improve the performance significantly. Such
a new version of test strategy generator is under development currently.
Many subtasks of the strategy generation could be done in parallel thus
reducing the time spent on strategy generation significantly.

Several of the above goals are prerequisites for developing the method
to a level where it could be used for test generation in an industrial setting.

115

B I B L I O G R A P H Y

[1] Alain Abran, Pierre Bourque, Robert Dupuis, James W. Moore, and
Leonard L. Tripp. Guide to the Software Engineering Body of Knowledge

- SWEBOK. IEEE Press, Piscataway, NJ, USA, 2004 version edition,
2004. (Cited on pages 19 and 21.)

[2] Danel Ahman and Marko Kääramees. Constraint-based heuristic on-
line test generation from non-deterministic I/O EFSMs. In Alexan-
der K. Petrenko and Holger Schlingloff, editors, MBT, volume 80 of
EPTCS, pages 115–129, 2012. (Cited on pages 79, 91, 92, 99, and 113.)

[3] Bernhard Aichernig, Willibald Krenn, Henrik Eriksson, and Jonny
Vinter. D 1.2 - State of the art survey - Part a: Model-based test case
generation. Technical report, June 2008. MOGENTES public project
deliverable. (Cited on page 24.)

[4] Luca De Alfaro. Game models for open systems. In Theory and Prac-

tice: Essays Dedicated to Zohar Manna on the Occasion of His 64th Birth-

day, volume 2772 of LNCS, pages 269–289. Springer, 2004. (Cited on
page 54.)

[5] Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Sym-
bolic algorithms for infinite-state games. In Proceedings of the 12th

International Conference on Concurrency Theory, CONCUR ’01, pages
536–550, London, UK, 2001. Springer-Verlag. (Cited on pages 37, 67,
and 78.)

[6] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania.
Bounded model checking of software using SMT solvers instead of
SAT solvers. Int. J. Softw. Tools Technol. Transf., 11(1):69–83, January
2009. (Cited on page 67.)

[7] Axel Belinfante, Jan Feenstra, René G. de Vries, Jan Tretmans, Nico-
lae Goga, Loe M. G. Feijs, Sjouke Mauw, and Lex Heerink. Formal
test automation: A simple experiment. In Proceedings of the IFIP TC6

12th International Workshop on Testing Communicating Systems, pages
179–196, Deventer, The Netherlands, 1999. Kluwer, B.V. (Cited on
page 25.)

117

Bibliography

[8] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan
Zhu. Symbolic model checking without BDDs. In Proceedings of the

5th International Conference on Tools and Algorithms for Construction and

Analysis of Systems, TACAS ’99, pages 193–207, London, UK, 1999.
Springer-Verlag. (Cited on page 67.)

[9] Ed Brinksma and Jan Tretmans. Testing transition systems: An anno-
tated bibliography. In Proceedings of the 4th Summer School on Modeling

and Verification of Parallel Processes, MOVEP ’00, pages 187–195, Lon-
don, UK, 2001. Springer-Verlag. (Cited on page 24.)

[10] Laura Brandán Briones and Ed Brinksma. A test generation frame-
work for quiescent real-time systems. In Proceedings of the 4th inter-

national conference on Formal Approaches to Software Testing, FATES’04,
pages 64–78, Berlin, Heidelberg, 2005. Springer-Verlag. (Cited on
page 25.)

[11] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker,
and Alexander Pretschner. Model-Based Testing of Reactive Systems:

Advanced Lectures (Lecture Notes in Computer Science). Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2005. (Cited on page 24.)

[12] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim Guldstrand
Larsen, and Didier Lime. Efficient on-the-fly algorithms for the anal-
ysis of timed games. In Martín Abadi and Luca de Alfaro, editors,
CONCUR, volume 3653 of Lecture Notes in Computer Science, pages
66–80. Springer, 2005. (Cited on pages 26, 67, and 78.)

[13] Samuel T. Chanson and Jinsong Zhu. A unified approach to proto-
col test sequence generation. In INFOCOM ’93. Proceedings.Twelfth

Annual Joint Conference of the IEEE Computer and Communications Soci-

eties. Networking: Foundation for the Future, pages 106–114. IEEE, 1993.
(Cited on page 25.)

[14] Yanping Chen, Robert L. Probert, and Hasan Ural. Model-based re-
gression test suite generation using dependence analysis. In Proceed-

ings of the 3rd international workshop on Advances in model-based testing,
A-MOST ’07, pages 54–62, New York, NY, USA, 2007. ACM. (Cited
on page 21.)

[15] Alexandre David. Hierarchical Modeling and Analysis of Timed Systems.
PhD thesis, 2003. Uppsala: Mathematics and Computer Science, De-
partment of Information Technology, Sweden. (Cited on page 114.)

118

Bibliography

[16] Alexandre David, Johann Deneux, and Julien d’Orso. A formal se-
mantics for UML statecharts. Technical Report 2003-010, Depart-
ment of Information Technology, Uppsala University, 2003. (Cited
on page 37.)

[17] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An effi-
cient SMT solver. In C. R. Ramakrishnan and Jakob Rehof, editors,
TACAS, volume 4963 of Lecture Notes in Computer Science, pages 337–
340. Springer, 2008. (Cited on pages 93 and 96.)

[18] René G. de Vries. Towards formal test purposes. In G. J. Tretmans
and H. Brinksma, editors, Formal Approaches to Testing of Software 2001

(FATES’01), Aarhus, Denmark, volume NS-01-4 of BRICS Notes Series,
pages 61–76, Aarhus, Denkmark, August 2001. (Cited on page 25.)

[19] Karnig Derderian, Robert M. Hierons, Mark Harman, and Qiang
Guo. Generating feasible input sequences for extended finite state
machines (EFSMs) using genetic algorithms. In Proceedings of the 2005

conference on Genetic and evolutionary computation, GECCO ’05, pages
1081–1082, New York, NY, USA, 2005. ACM. (Cited on pages 88

and 91.)

[20] Karnig Derderian, Robert M. Hierons, Mark Harman, and Qiang Guo.
Estimating the feasibility of transition paths in extended finite state
machines. Automated Software Engineering, 17(1):33–56, 2010. (Cited
on pages 25, 26, 101, 102, and 109.)

[21] Edsger W. Dijkstra. Guarded commands, nondeterminacy and for-
mal derivation of programs. Commun. ACM, 18:453–457, August 1975.
(Cited on page 65.)

[22] Andreas Dolzmann and Thomas Sturm. REDLOG: computer algebra
meets computer logic. SIGSAM Bull., 31(2):2–9, June 1997. (Cited on
page 96.)

[23] Ali Y. Duale and M. Ümit Uyar. A method enabling feasible con-
formance test sequence generation for EFSM models. IEEE Trans.

Comput., 53(5):614–627, 2004. (Cited on page 25.)

[24] Loe M. G. Feijs, Nicolae Goga, and Sjouke Mauw. Probabilities in
the TorX test derivation algorithm. In 2000 – 2 nd Workshop on SDL

and MSC, pages 173– 188. VERIMAG, IRISA, SDL Forum Society, pages
173–188, 2000. (Cited on page 25.)

119

Bibliography

[25] Roger Ferguson and Bogdan Korel. Generating test data for dis-
tributed software using the chaining approach. Inf. Softw. Technol.,
38(5):343–353, 1996. (Cited on page 25.)

[26] Lars Frantzen, Jan Tretmans, and Tim A. C. Willemse. Test genera-
tion based on symbolic specifications. In FATES 2004, number 3395 in

LNCS, pages 1–15. Springer-Verlag, 2005. (Cited on pages 25, 48, 50,
51, 53, and 54.)

[27] Mario Friske, Bernd-Holger Schlingloff, and Stephan Weißleder.
Composition of model-based test coverage criteria. In Holger Giese,
Michaela Huhn, Ulrich Nickel, and Bernhard Schätz, editors, MBEES,
volume 2008-2 of Informatik-Bericht, pages 87–94. TU Braunschweig,
Institut für Software Systems Engineering, 2008. (Cited on page 22.)

[28] Patrice Godefroid. Compositional dynamic test generation. In Pro-

ceedings of the 34th annual ACM SIGPLAN-SIGACT symposium on Prin-

ciples of programming languages, POPL ’07, pages 47–54, New York, NY,
USA, 2007. ACM. (Cited on page 25.)

[29] Patrice Godefroid, Peli de Halleux, Aditya V. Nori, Sriram K. Ra-
jamani, Wolfram Schulte, Nikolai Tillmann, and Michael Y. Levin.
Automating software testing using program analysis. IEEE Software,
25(5):30–37, 2008. (Cited on page 26.)

[30] Wolfgang Grieskamp. Microsoft’s protocol documentation program:
A success story for model-based testing. In Leonardo Bottaci and
Gordon Fraser, editors, TAIC PART, volume 6303 of Lecture Notes in

Computer Science, page 7. Springer, 2010. (Cited on page 21.)

[31] Grégoire Hamon, Leonardo de Moura, and John Rushby. Generating
efficient test sets with a model checker. In SEFM ’04: Proceedings of

the Software Engineering and Formal Methods, Second International Con-

ference, pages 261–270, Washington, DC, USA, 2004. IEEE Computer
Society. (Cited on pages 25, 26, and 27.)

[32] Michael R. Hansen and Aske Wiid Brekling. On tool support for
duration calculus on the basis of Presburger arithmetic. In Carlo
Combi, Martin Leucker, and Frank Wolter, editors, TIME, pages 115–
122. IEEE, 2011. (Cited on page 96.)

[33] David Harel. Statecharts: A visual formalism for complex systems.
Sci. Comput. Program., 8(3):231–274, June 1987. (Cited on page 37.)

120

Bibliography

[34] Pascal Van Hentenryck and Laurent Michel. Constraint-based local

search. MIT Press, 2005. (Cited on pages 91 and 97.)

[35] Anders Hessel, Kim Larsen, Marius Mikučionis, Brian Nielsen, Paul
Pettersson, and Arne Skou. Testing Real-Time systems using UP-
PAAL. In Formal Methods and Testing, pages 77–117. 2008. (Cited on
pages 25, 26, 50, and 53.)

[36] Charles Antony Richard Hoare. Communicating sequential pro-
cesses. Commun. ACM, 21(8):666–677, August 1978. (Cited on
page 50.)

[37] Dieter Hogrefe. OSI formal specification case study: The Inres proto-
col and service. Technical Report 91-012, University of Bern, Switzer-
land, 1991. (Cited on page 101.)

[38] Harry Hsieh, Felice Balarin, Luciano Lavagno, and Alberto L.
Sangiovanni-Vincentelli. Synchronous approach to the functional
equivalence of embedded system implementations. IEEE Trans. on

CAD of Integrated Circuits and Systems, 20(8):1016–1033, 2001. (Cited
on page 50.)

[39] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling

and Reasoning about Systems. Cambridge University Press, New York,
NY, USA, 2004. (Cited on page 37.)

[40] Jonathan Jacky, Colin Campbell, Wolfram Schulte, and Margus
Veanes. Model-Based Software Testing and Analysis with C#. Cambridge
Univ. Press, Leiden, 2008. (Cited on pages 21, 50, 58, and 91.)

[41] Claude Jard and Thierry Jeron. TGV: theory, principles and algo-
rithms: A tool for the automatic synthesis of conformance test cases
for non-deterministic reactive systems. Int. J. Softw. Tools Technol.

Transf., 7(4):297–315, August 2005. (Cited on pages 26, 58, and 91.)

[42] Marko Kääramees, Jüri Vain, and Kullo Raiend. Synthesis of on-line
planning tester for non-deterministic EFSM models. In Leonardo
Bottaci and Gordon Fraser, editors, Testing - Practice and Research Tech-

niques, volume 6303 of LNCS, pages 147–154. Springer Berlin / Hei-
delberg, 2010. (Cited on pages 53, 63, 79, and 113.)

[43] Abdul Salam Kalaji, Robert M. Hierons, and Stephen Swift. A search-
based approach for automatic test generation from extended finite
state machine (EFSM). In TAIC-PART ’09: Proceedings of the 2009

121

Bibliography

Testing: Academic and Industrial Conference - Practice and Research Tech-

niques, pages 131–132, Washington, DC, USA, 2009. IEEE Computer
Society. (Cited on pages 24, 25, 37, 88, 91, 101, and 109.)

[44] Bogdan Korel and Ali M. Al-Yami. Assertion-oriented automated
test data generation. In ICSE ’96: Proceedings of the 18th international

conference on Software engineering, pages 71–80, Washington, DC, USA,
1996. IEEE Computer Society. (Cited on pages 25 and 26.)

[45] Nikolai Kosmatov, Bruno Legeard, Fabien Peureux, and Mark Utting.
Boundary coverage criteria for test generation from formal models. In
Proceedings of the 15th International Symposium on Software Reliability

Engineering, ISSRE ’04, pages 139–150, Washington, DC, USA, 2004.
IEEE Computer Society. (Cited on page 87.)

[46] R. Lai. A survey of communication protocol testing. J. Syst. Softw.,
62(1):21–46, 2002. (Cited on page 24.)

[47] Axel van Lamsweerde. Formal specification: a roadmap. In Proceed-

ings of the Conference on The Future of Software Engineering, ICSE ’00,
pages 147–159, New York, NY, USA, 2000. ACM. (Cited on page 22.)

[48] Kim G. Larsen, Marius Mikučionis, Brian Nielsen, and Arne Skou.
Testing real-time embedded software using UPPAAL-TRON: an in-
dustrial case study. In EMSOFT ’05: Proceedings of the 5th ACM in-

ternational conference on Embedded software, pages 299–306, New York,
NY, USA, 2005. ACM. (Cited on page 25.)

[49] Kim G. Larsen, Justin Pearson, Carsten Weise, and Wang Yi. Clock
difference diagrams. Nordic J. of Computing, 6(3):271–298, September
1999. (Cited on page 114.)

[50] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell.
Int. Journal on Software Tools for Technology Transfer, 1(1–2):134–152, Oc-
tober 1997. (Cited on page 99.)

[51] D. Lee and M. Yannakakis. Principles and methods of testing finite
state machines – a survey. Proceedings of the IEEE, 84(8):1090–1123,
1996. (Cited on page 24.)

[52] Huaizhong Li and Chiou Peng Lam. Using anti-ant-like agents to
generate test threads from the UML diagrams. In Ferhat Khendek
and Rachida Dssouli, editors, TestCom, volume 3502 of Lecture Notes

in Computer Science, pages 69–80. Springer, 2005. (Cited on pages 26,
87, 88, 91, and 99.)

122

Bibliography

[53] Gang Luo, Gregor von Bochmann, and Alexandre Petrenko. Test
selection based on communicating nondeterministic finite-state ma-
chines using a generalized wp-method. IEEE Trans. Softw. Eng.,
20(2):149–162, 1994. (Cited on page 101.)

[54] Lev Nachmanson, Margus Veanes, Wolfram Schulte, Nikolai Till-
mann, and Wolfgang Grieskamp. Optimal strategies for testing non-
deterministic systems. In George S. Avrunin and Gregg Rothermel,
editors, ISSTA, pages 55–64. ACM, 2004. (Cited on pages 25, 26, 67,
and 78.)

[55] Peter Niebert, Moez Mahfoudh, Eugene Asarin, Marius Bozga, Oded
Maler, and Navendu Jain. Verification of timed automata via satisfia-
bility checking. In Proceedings of the 7th International Symposium on For-

mal Techniques in Real-Time and Fault-Tolerant Systems: Co-sponsored by

IFIP WG 2.2, FTRTFT ’02, pages 225–244, London, UK, 2002. Springer-
Verlag. (Cited on page 114.)

[56] Alexandre Petrenko, Sergiy Boroday, and Roland Groz. Confirming
configurations in EFSM testing. IEEE Trans. Softw. Eng., 30(1):29–42,
January 2004. (Cited on pages 24, 37, and 47.)

[57] Alexandre Petrenko, Nina Yevtushenko, and Jia Le Huo. Testing tran-
sition systems with input and output testers. In Proceedings of the

IFIP TC6/WG6.1 XV International Conference on Testing of Communicat-

ing Systems, volume 2644 of LNCS, pages 129–145, Heidelberg, 2003.
Springer. (Cited on page 43.)

[58] Testcast: a TTCN-3 test development and execution platform, 2012.
http://www.elvior.com/testcast/introduction, Retrieved 1. Oct,
2012. (Cited on page 97.)

[59] Jan Tretmans. Model based testing with labelled transition systems.
In Robert M. Hierons, Jonathan P. Bowen, and Mark Harman, editors,
Formal Methods and Testing, volume 4949 of Lecture Notes in Computer

Science, pages 1–38. Springer, 2008. (Cited on pages 25, 48, 50, 51, 53,
54, and 56.)

[60] Jan Tretmans and Ed Brinksma. Côte de Resyste: Automated model
based testing. In M. Schweizer, editor, 3rd PROGRESS Workshop on

Embedded Systems, pages 246–255, Utrecht, 2002. STW Technology
Foundation. (Cited on page 25.)

123

Bibliography

[61] Jan Tretmans and Ed Brinksma. TorX: Automated model-based test-
ing. In A. Hartman and K. Dussa-Ziegler, editors, First European

Conference on Model-Driven Software Engineering, Nuremberg, Germany,
pages 31–43, December 2003. (Cited on page 26.)

[62] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A

Tools Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2007. (Cited on pages 21 and 24.)

[63] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy
of model-based testing approaches. Software Testing, Verification and

Reliability, 22(5):297–312, 2012. (Cited on page 24.)

[64] Jüri Vain, Marko Kääramees, and Maili Markvardt. Dependability and

Computer Engineering : Concepts for Software-Intensive Systems, chap-
ter Online testing of nondeterministic systems with reactive plan-
ning tester, pages 113–150. IGI Global, Hershey, PA, 2011. (Cited
on pages 53, 63, 79, 99, and 113.)

[65] Jüri Vain, Andres Kull, Marko Kääramees, Maili Markvardt, and
Kullo Raiend. Model-Based Testing for Embedded Systems, chapter Re-
active testing of nondeterministic systems by test purpose directed
tester. Computational Analysis, Synthesis, and Design of Dynamic
Systems. CRC Press - Taylor & Francis, 2011. (Cited on pages 27, 37,
53, 58, and 113.)

[66] Jüri Vain, Kullo Raiend, Andres Kull, and Juhan Ernits. Synthesis
of test purpose directed reactive planning tester for nondeterminis-
tic systems. In 22nd IEEE/ACM International Conference on Automated

Software Engineering, pages 363 – 372. ACM Press, 2007. (Cited on
pages 26, 27, 53, 58, 59, and 113.)

[67] Margus Veanes and Nikolaj Bjørner. Alternating simulation and
IOCO. International Journal on Software Tools for Technology Transfer

(STTT), 14(4):387–405, 2012. (Cited on pages 25, 50, 51, 54, and 56.)

[68] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram
Schulte, Nikolai Tillmann, and Lev Nachmanson. Model-based test-
ing of object-oriented reactive systems with Spec Explorer. In Formal

Methods and Testing, volume 4949 of Lecture Notes in Computer Science,
pages 39–76. Springer, 2008. (Cited on page 26.)

[69] Margus Veanes, Colin Campbell, and Wolfram Schulte. Composi-
tion of model programs. In John Derrick and Jüri Vain, editors,

124

Bibliography

FORTE, volume 4574 of Lecture Notes in Computer Science, pages 128–
142. Springer, 2007. (Cited on pages 26 and 50.)

[70] Margus Veanes, Pritam Roy, and Colin Campbell. Online testing with
reinforcement learning. In Klaus Havelund, Manuel Núñez, Grigore
Rosu, and Burkhart Wolff, editors, FATES/RV, volume 4262 of Lecture

Notes in Computer Science, pages 240–253. Springer, 2006. (Cited on
pages 25 and 26.)

[71] Mihalis Yannakakis. Testing, optimizaton, and games. In Logic in

Computer Science, 2004. Proceedings of the 19th Annual IEEE Symposium

on, pages 78–88. IEEE Computer Society, 2004. (Cited on pages 37

and 47.)

[72] Thaise Yano, Eliane Martins, and Fabiano L. de Sousa. MOST: A
multi-objective search-based testing from EFSM. In Proceedings of the

2011 IEEE Fourth International Conference on Software Testing, Verifica-

tion and Validation Workshops, ICSTW ’11, pages 164–173, Washington,
DC, USA, 2011. IEEE Computer Society. (Cited on pages 25 and 101.)

[73] Justyna Zander, Ina Schieferdecker, and Pieter J. Mosterman. Model-

Based Testing for Embedded Systems. Computational Analysis, Synthe-
sis, and Design of Dynamic Systems. CRC Press - Taylor & Francis,
2011. (Cited on page 24.)

125

Part II

P U B L I C AT I O N S

Paper I
Jüri Vain, Andres Kull, Marko Kääramees, Maili Markvardt, and Kullo
Raiend. Model-Based Testing for Embedded Systems, chapter Reactive Testing
of Nondeterministic Systems by Test Purpose Directed Tester. Computa-
tional Analysis, Synthesis, and Design of Dynamic Systems. CRC Press -
Taylor & Francis, 2011. http://dx.doi.org/10.1201/b11321-16

129

Paper II
Marko Kääramees, Jüri Vain, and Kullo Raiend. Synthesis of On-line
Planning Tester for Non-deterministic EFSM models. In Leonardo Bottaci
and Gordon Fraser, editors, Testing - Practice and Research Techniques, vol-
ume 6303 of LNCS, pages 147–154. Springer Berlin / Heidelberg, 2010.
http://dx.doi.org/10.1007/978-3-642-15585-7_14

177

Paper III
Danel Ahman and Marko Kääramees. Constraint-based Heuristic Online
Test Generation from Non-deterministic I/O EFSMs. In Alexander K.
Petrenko and Holger Schlingloff, editors, Proceedings of 7th Workshop
on Model-Based Testing, Tallinn, Estonia, volume 80 of EPTCS, pages
115–129, 2012. http://dx.doi.org/10.4204/EPTCS.80.9

187

DISSERTATIONS DEFENDED AT

TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the
Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility
Impairments – Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-Business.
1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of Cost
Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by
Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods for
Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data
Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis and
Reproduction of Periodic Components of Band-Limited Discrete-Time Signals.
2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops: Behavioral
Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with Relational
Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented
Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of Digital
Systems. 2004.

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in
Maintenance-Free Batteries with Fixed Electrolyte. 2004.

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to Semiconductor
Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication
Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-Aware,
UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based
Complementary JBS Structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja
elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I. 2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum Clique
Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. .
 p-n

 . 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech Recognition.
2006.

32. Erki Eessaar. Relational and Object-Relational Database Management Systems
as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-
impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired Underwater
Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis and
Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of
Nonlinear Systems: ANARX Model Based Approach. 2007.

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case Studies
of Linguistic and Banking Data. 2007.

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit State
Model Checking. 2007.

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering: A
Unified View, Extensions and an Application to Inventory Management. 2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit Based
on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear Information
Processing Methods: Case Studies of Estonian Islands Environments. 2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-Level
Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program
Transformations. 2008.

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model –
Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the
Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components.
2009.

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like
Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children
Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation
Methods and Design Principles. 2009.

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and Synthesis
for Nonlinear Control Systems. 2010.

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of Attack
Trees. 2010.

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User Interfaces.
2010.

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and
Reasoning of Ad-Hoc Network Agents. 2010.

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages. 2010.

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability
Identification Techniques for Synchronous Sequential Circuits. 2010.

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Integrated
Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.
2011.

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-Silicon
Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile
Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance
Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber
Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models. 2011.

66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of Domains,
Requirements and Sofware. 2011.

68. Juri Gavšin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting Algorithms
Using Tree-like Structures and HFSM Models. 2012.

70. Anton Tšertov. System Modeling for Processor-Centric Test Automation.
2012.

71. Sergei Kostin. Self-Diagnosis in Digital Systems. 2012.

72. Mihkel Tagel. System-Level Design of Timing-Sensitive Network-on-Chip
Based Dependable Systems. 2012.

73. Juri Belikov. Polynomial Methods for Nonlinear Control Systems. 2012.

74. Kristina Vassiljeva. Restricted Connectivity Neural Networks based
Identification for Control. 2012.

75. Tarmo Robal. Towards Adaptive Web – Analysing and Recommending Web
Users` Behaviour. 2012.

76. Anton Karputkin. Formal Verification and Error Correction on High-Level
Decision Diagrams. 2012.

77. Vadim Kimlaychuk. Simulations in Multi-Agent Communication System.
2012.

78. Taavi Viilukas. Constraints Solving Based Hierarchical Test Generation for
Synchronous Sequential Circuits. 2012.

