
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Keijo Lass 153021IASM

FIRMWARE UPGRADE SOLUTION FOR
TALTECH SELF-DRIVING CAR

CONTROLLERS

Master’s Thesis

Supervisor: Mairo Leier

PhD

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Keijo Lass 153021IASM

TALTECHI ISESÕITVA AUTO
KONTROLLERITE TARKVARA

UUENDAMINE

Magistritöö

Juhendaja: Mairo Leier

PhD

Tallinn 2019

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Keijo Lass

02.01.2019

3

Abstract

This thesis presents the current trends and state of the art in automotive firmware upgrad-
ing. As a case study, a solution for upgrading the controllers on the Tallinn University
of Technology self-driving vehicle was proposed. The goal is to provide a foundation
upon which the fully remote firmware upgrading solution can be built. From the software
design perspective, the developed code is to be modular and portable between the con-
trollers. As a result, a script for preparing the final binary image was devised, along with
memory partitioning schemes and portable bootloaders for the controllers and host side
scripts to carry out the upgrading process. The developed transport protocol for upload-
ing the firmware to the controllers is independent of communication mediums and offers
reliable transfers.

This thesis is written in english and is 47 pages long, including 6 chapters, 26 figures,
and 4 tables.

4

Annotatsioon
TALTECHI ISESÕITVA AUTO KONTROLLERITE

TARKVARA UUENDAMINE

Seoses pidevalt suureneva mikrokontrollerite kasutusega tänapäeva autotööstuses tekib
vajadus tõhustada tarkvara uuendamise protsesse. Töös on uuritud autotööstuse püsivara
uuendamise praegust tehnilist taset ning trende.

Lõputöö rakenduslik osa on teostatud Tallinna Tehnikaülikooli isesõitva auto projekti
raames, ning põhieesmärgiks on välja töötada lahendus sõidukil olevate mikrokontrol-
lerite püsivara uuendamiseks. Tarkvara arithektuuri vaatenurgast on loodavas lahenduses
oluline keskenduda modulaarsusele ja koodi taaskasutatavusele, et vajadusel oleks või-
malikult lihtne kontrollereid süsteemi lisada, ära võtta või muuta. Uuenduste peale-
laadimiseks on vaja välja arendada rakenduslik kiht, mis ei sõltuks füüsilisest ja transpordi
kihist. Arendatav protokoll peab olema veakindel, ning olema suuteline toime tulema
paketikadude ning andmeside katkestuste korral.

Lõputöö tulemusena valminud tarkvara on alustalaks tulevikus kogu süsteemi täielikult
kaug-uuendatavaks muutmisel. Esmase sammuna loodi kompileeritud koodi järeltöötlus
skript, mis valmistab ette lõpliku mälutõmmise. Töö ühe osana vaadeldakse alglaaduri
eripärasi sardsüsteemides, ning implementeeritakse üks võimalikest variantidest. Ühtlasi
pakutakse välja meetod kontrolleri mälu sektsioneerimiseks. Samuti valmis tarkvara uue
püsivara pealelaadimiseks kontrolleri ja ka peaarvuti (host) jaoks. Välja pakutud protokoll
uuenduste transpordiks osutus töökindlaks ning kiiruselt võrreldavaks eelnevalt kasutusel
olnud viisile kontrollerit uuendada programmaatoriga.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 47 leheküljel, 6 peatükki,
26 joonist, 4 tabelit.

5

List of Abbreviations

CAN Controller Area Network

CPU Central Processing Unit

CRC Cyclic Redundancy Check

ECU Electronic Control Unit

EEPROM Electrically Erasable Programmable Read-Only Memory

FOTA Firmware Over the Air

FSM Finite State Machine

HAL Hardware Abstraction Layer

IAP In-Application Programming

ICE In-Circuit Emulator

IDE Integrated Development Environment

JTAG Joint Test Action Group

MSP Main Stack Pointer

OS Operating System

OTP One-Time Programmable Memory

PC Program Counter

RAM Random Access Memory

ROM Read-Only Memory

ROS Robot Operating System

RTOS Real-time Operating System

RWW Read-While-Write

SHA-1 Secure Hash Algorithm 1

6

SPI Serial Peripheral Interface

TCP Transmission Control Protocol

UART Universal Asynchronous Receiver-Transmitter

UDP User Datagram Protocol

VTOR Vector Table Offset Register

7

Table of Contents

1 Introduction . 11
1.1 Motivation . 11
1.2 Objectives . 12
1.3 Thesis organization . 12

2 Background . 13
2.1 Iseauto project . 15

2.1.1 Technical overview . 16
2.1.2 Low level controllers . 17

3 Firmware preparations . 19
3.1 Metadata placement . 19
3.2 CRC-32 . 21
3.3 Commit hash . 21
3.4 Appending the bootloader . 22

4 Bootloader . 23
4.1 Memory partitioning . 23

4.1.1 Dual banking . 27
4.2 Embedded bootloader . 28
4.3 Custom bootloader . 28
4.4 Vector table . 30

5 Upgrading . 31
5.1 RTOS Task . 31
5.2 Updater module . 32
5.3 Transfer protocol . 33

5.3.1 Reliability . 35
5.3.2 Physical layers . 37
5.3.3 Protocol frames . 38

5.4 Results . 41
6 Conclusion . 44
References . 45
Appendix 1 – Flash module organizations . 48
Appendix 2 – Source code repositories . 50

8

List of Figures

1 Final design of the Iseauto bus [16] . 16
2 Architecture of the vehicle control system [17] 17
4 Example: (a) using GCC attributes, (b) placing the section in linker file . . 19
5 Packing metadata into the vector table 20
6 Release binary file layout . 22
7 Typical memory partitioning schemas: (a) Single application, (b) Two

applications . 24
8 Two partition schema update time flow 25
9 Controllers flash memory layout: (a) Drive controller, (b) Master controller 26
10 Three partition updating time flow . 26
11 RWW in Flash memory single bank versus dual bank [27] 27
12 Bootloader sequence flowchart . 29
13 Updating software hierarchy . 31
14 Decoupling of the task and communication system 32
15 Updater module state machine diagram 33
16 Drive controller successful update sequence 34
17 Error control: lost acknowledgement . 35
18 Error control: lost data frame . 36
19 Error control: host unavailable . 36
20 CAN base frame format . 37
21 CAN frame identification field for the update messages 39
22 Version query and acknowledgement frames 39
23 Initialization and acknowledgement frames 40
24 Data and acknowledgement frames . 40
25 Finish and acknowledgement frames . 40
26 Data rate via CAN bus across different cache sizes 42

9

List of Tables

1 Key features of low level controllers . 18
2 Protocol frame field encodings . 38
3 Communication medium data rate comparison 41
4 Test cases . 43

10

1 Introduction

Starting from the late 1990s, the car manufacturers have started to integrate more and
more controllers into the vehicles, thus rapidly increasing the amount of software com-
ponents used in the automotive industry each year. Around the same time, the mechanics
started to use diagnostic testing tools to install software updates for the Electronic Con-
trol Units (ECU) [1]. Growing size of the software poses challenges for delivering the
updates, often requiring multiple decentralized ECUs to be updated at once, demanding
more coordination, time and bandwidth than before.

Modern trend for automotive manufacturers is to perform the diagnostics and firmware
updates remotely and over the air, minimizing the costs and customer inconvenience.
According to estimates, 75% of the cars shipped worldwide by the year 2020, will have
some form of wireless connectivity [2]. As such, the connected vehicle becomes part of
the ever growing Internet of Things, and the manufacturers are adapting the paradigm
shifts and methods to deal with quality issues, frequently changing requirements and the
vast amount of data pouring in from the deployed vehicles.

1.1 Motivation

This thesis topic was proposed by the Iseauto [3] research group in order to accelerate the
deployment of new firmware on the vehicle’s self-developed controllers. Currently, the
update process involves physically attaching the Joint Test Action Group (JTAG) cables
to individual controllers and uploading the binary via the controller manufacturer’s pro-
vided tools. The update is carried out by the member of the software team, which means
traveling to the vehicles location. The In-Application Programming (IAP) of the low-level
controllers is the first foundation for the further automation of the firmware updating.

The goal of the remote updating is to speed up the process of developing the newest soft-
ware for the controllers, while giving the option to roll back to previous stable releases at
any time. Given that the project is still in its development stages, the design has aimed for
modularity and reusability. Having the modular design perspective in mind for updating
protocol and software, allows adding, removing and changing the underlying hardware in
the future, with minimal efforts required from the software team.

11

1.2 Objectives

The goal of this thesis is to develop a solution for firmware upgrading the vehicle’s low-
level controllers via the host computer. In order to achive this, the topic is divided into
subtasks as following:

� Research state of the art in automotive firmware upgrading

� Develop necessary tools and scripts to prepare the compiled binary for upgrading

� Establish a memory partitioning scheme suitable for fail-proof updating process

� Create a modular bootloaders for controllers used in this project

� Develop a transfer protocol for upgrading, independent of the communication links
or controllers currently used

� Test and verify the reliability and the performance of the developed solution

1.3 Thesis organization

This thesis is divided into six chapters, and the sections are divided as follows:

Chapter 2 presents background information on some of the challenges and current state of
the art of firmware upgrading in the automotive industry. Also the overview of the Iseauto
project, hardware and software tools used in this thesis is given.

Chapter 3 lays out the necessary steps needed in order to prepare the final binary before
uploading to the controllers.

Chapter 4 describes the bootloading and memory partitioning techniques used in this
thesis.

Chapter 5 presents the updating protocol and the software modules inside the controllers
created to handle the said protocol. It also discusses the designed transfer protocol
which is described from the perspectives of performance and reliability. This chapter
also presents the performance measurements and reliability experiment.

Finally, Chapter 6 summarizes the thesis.

12

2 Background

Up until recently, the automobile manufacturers rarely updated the software on already
sold cars and only did so in the most urgent of cases. This usually means, that a man-
ufacturer issues a recall and provides the dealers with a new firmware release from the
appropriate ECU supplier. The firmware distribution to the dealers is slow and costly
process and the download to the vehicle is a manual process, which cannot be scaled due
to the rather expensive specialized equipment needed. The update itself is rather slow,
depending on the module size and serial protocol used – dealers are usually charging 1-2
hours of labor for the process. In 2016, the manufacturers and suppliers paid almost $11.8
billion in claims and recorded $10.3 billion in warranty accruals in the U.S. alone. That
in total is an estimated 26% increase over the previous year. The number of recalls related
to electronic and electrical systems have risen nearly 30% per year since 2013. [4]

To mitigate the recall costs, the upcoming trend is to provide Firmware Over the Air
(FOTA) as a service, which optimizes the cost and enhances the user experience. The
update could be performed at the dealership or at the customer location. The updates at the
dealership could offer a more controlled environment and faster problem solution in case
of any errors and thus, address the reliability and liability concerns of the manufacturers.
The possible FOTA advantages include:

� Central firmware package management by the manufacturer – no need to distribute
the updates to the dealership, which reduces time to market for new updates

� Parallel updating – since the process is independent of dealerships, the updates can
be executed on many cars at once

� Shorter development cycles – since the updates could be deployed more times, it
reduces the time the vehicle is operated under faulty conditions

� Forced updates – in case of safety related issues, the owners cooperation is not
paramount

� Better user experience – even if the FOTA is still performed at the dealership be-
cause of the controlled environment, the update time is minimal and cost effective.
[5]

13

The wireless updating does come with its own set of problems, one of them being security
concern. Multiple methods for the FOTA have been proposed over the past decade. One of
the earliest works, [6] proposes a generic mechanism for wireless update for the telematics
and infotainment unit. In [7] Dennis et al. presented safety-security ECU classification,
which assists in designing security for remote diagnostics and FOTA. In their follow up
[8], a lightweight protocol was introduced, providing data integrity, data authentication,
and data confidentiality. Security requirements were analyzed in [9] and it was shown,
that the existing methods for FOTA do not address many aspects of security and a new
framework was proposed, consisting of trusted portal issuing updates with verification
code and a vehicle with virtualized control and functional systems.

The cost of the wireless update has also been under investigation. Up until now, manu-
facturers have used over the air updates over cellular network, which become expensive
as the number of cars produced increases [10]. This is also true for the solution offered
by Tesla, currently the only manufacturer providing remote updates, using mainly 3G and
Wi-Fi [11]. Since the update procedures usually involve flashing the entire firmware over
an existing firmware in an ECU, the updates can be slow and expensive. To solve that,
[12] proposed method called delta flashing, which only flashes the changes between the
old and the new firmware. The results showed that the time of re-flashing of the unit can
decrease up to 90%. In order to deal with large number of ECUs, [13] introduced a sys-
tem based on the IEEE 802.11s mesh standard, which showed that such a system could
be used during the vehicle development or during the maintenance work.

In order to face these existing challenges, AUTOSAR [14], the global standardization
consortium for automotive software architectures has launched an AUTOSAR Adaptive
Platform. The goal is to provide developers a stable interface for Operating System (OS)
and communication middleware for data exchange with local and remote applications.
The core of the platform is the OS based on the subset of POSIX, which provides all the
expected functionalities of the operating system, while preserving typical features orig-
inated in deeply embedded systems like safety, determinism and real-time capabilities.
Currently AUTOSAR has both pros and cons. Overhead on run-time and memory due
to standardized architecture causes increasing cost. OS, runtime environment and some
other services are mandatory, even if a small system does not need all of their functional-
ities. The specifications of timing and test are still under development [15].

14

2.1 Iseauto project

Iseauto [3] is the first Estonian self-driving vehicle, developed in Tallinn University of
Technology in cooperation with Silberauto AS and ABB AS. The vehicle is designed to
take the role of last-mile transportation, operating mainly on the university’s campus. The
work on the project began on the January 2017 and officially ended in October 2018, and
was divided into four stages: preliminary research, software development, body assembly
and system tuning/testing of the self-driving car [16].

Building a self-driving vehicle is a multidisciplinary collaboration, involving mechanical
and electrical engineering, mechatronics, electronics, computer systems and software en-
gineering. The aim of the project for the university, was to increase competence in the
self-driving vehicles and to get students involved in these fields, by assigning research
topics and hands-on practical engineering tasks. This helps to structure the know-how
about autonomous vehicles and self-driving algorithms at the university, while providing
valuable practical experience for future engineers in Estonia. Also, the collected datasets
provide a valuable asset for the evaluation of various sensors in local environmental set-
tings [17]. Integration of the project work into the studies took place in two main ways:
final theses and project courses. As a result, at the time of of writing this thesis, ten final
theses (4 B.Sc and 6 M.Sc theses) [16], where the students examine various aspects of the
Iseauto self-driving car have been published.

15

2.1.1 Technical overview

The final design of the bus relied on the Mitsubishi i-MiEV chassis (depicted in the Figure
1). All the molds and panels are specifically designed for the project by Silberauto. For
sensing the environment two lidars are placed on both sides on top of the bus, third lidar
in the middle of the car one meter above the ground, and cameras near the front and
rear bumper. The outputs of the two are merged together to help map the environment
around the bus and detect objects. For assistance with detecting objects up close, multiple
ultrasonic sensors are placed around, and short distance radar, under the bus. All the
sensor data is gathered in the main computer (host) which runs Robot Operating System
(ROS), an open source middleware, which contains libraries and tools, used to create
robot applications [18].

Figure 1. Final design of the Iseauto bus [16].

For controlling the bus itself and returning feedback to the host, the set of low-level con-
trollers are used: a master controller, and the drive controller. The master controller is
handling the communication with ROS and the Controller Area Network (CAN) network
with other controllers and the i-Miev ECU. The drive controller is responsible for con-
trolling breaks, steering, gearbox and throttle control. Set of body controllers handle car
lights, climate control, ultrasonic sensors etc. The safety controller monitors the activ-
ity on the CAN bus and has the emergency break capabilities. The full architecture of the
system is shown in Figure 2. As of writing this thesis, only master and the drive controller
have been developed and deployed.

16

LiDARs Cameras

Host PC
ROS & Autoware

Master Controller

Drive Controller

Driver

Current
sensor

Driver

Gear
signal

Gas pedal
signal

Body controllers

Safety controller

Relay/Break
actuator

i-MiEV ECUSteering
motor

Handbreak
actuator

Break
actuator

Emergency
STOP

Main battery
disconnect

Ultrasonic
sensors

Lights

RTK- GNSS IMUSensors

AI &
Self-driving

Low-level control

i-MiEV

PWM ADC PWM DI/O DAC

CAN3

CAN1

CAN2

ETH

Wireless
network module

5G

Remote server

Manual
remote control

Figure 2. Architecture of the vehicle control system [17].

2.1.2 Low level controllers

The low level (master and the drive) controllers are both 32-bit microcontrollers based
on the Arm® Cortex®-M processors, manufactured by STMicroelectronics. The mas-
ter controller is STM32F767ZI [19], with Cortex-M7 core and 2MB of non-volatile
flash memory and 512KB of Random Access Memory (RAM). The drive controller is
STM32F407VG [20], with Cortex-M4 core and 1MB of flash memory and 192KB of
RAM. Both of the controllers are more than capable of servicing CAN bus peripherals
and performing any additional data processing before transferring data between the dif-
ferent nodes. The main features of the low level controllers are presented in Table 1.

17

Table 1. Key features of low level controllers.

Feature STM32F767 (Master) STM32F407 (Drive)

CPU Core ARM Cortex-M7 ARM Cortex-M4

Flash memory 2 MB 1 MB

Non-volatile memory 512 KB SRAM 192 KB SRAM

Max clock frequency 216 MHz 168 MHz

Communication peripherals 4 x I2C
4 x UART
6 x SPI
3 x CAN
USB 2.0 Full speed
10/100 Ethernet

3 x I2C
4 x UART
3 x SPI
2 x CAN
USB 2.0 Full speed
10/100 Ethernet

Packaging LQFP144 LQFP100

Neither of the microcontrollers are designed for automotive industry purposes. The cho-
sen chips offer more general purpose peripherals than a special purpose automotive chip
would, they do not offer additional safety features such as ECC memory, built in hard-
ware self-tests, additional supply voltage and temperature sensors, and are not meant to
run in extreme temperature ranges. The reason for picking these controllers were much
more pragmatic – both of the controllers are sold as part of the development boards and
were already available for the developers. Also the software team had previous experi-
ence with the said controllers and development tools. Since the solution proposed for
ISEAUTO project did not have to scale to mass production, spending time on choosing
the perfect controller, and then learning new tools and environments would have delayed
the actual development too much.

The development environments provided by STMicroelectronics are free of charge: Sys-
tem Workbench [21] toolchain is an Integrated Development Environment (IDE) based
on the Eclipse [22] which supports full range of STM32 microcontrollers and allows to
compile, program and visually debug the program using the ST-Link in-circuit debug-
ger [23], which is included on the development board. In conjunction with the IDE, the
STM32CubeMX [24] is a graphical software configuration tool, is used to generate the
controllers clock tree, peripherals and middleware stacks initialization code. The gener-
ator significantly reduces the development time, which otherwise would be spent on the
peripheral drivers setup.

18

3 Firmware preparations

After compiling the firmware code, numerous actions can be carried out with the resulting
binary file. This is usually called the post-build processing. The tasks can include, for ex-
ample, encrypting the firmware, performing checksums and adding additional versioning
and build information (metadata). This can also include running automatic tests, auto-
matic version control operations and much more. The post-build program is commonly
a shell or batch script and is usually designed to execute after every time, the developer
builds the project.

3.1 Metadata placement

In order to store, and later retrieve the post-build information from the binary, the memory
allocated for this information needs to be linked to a known address. One of the ways to
achieve this, is to use compiler specific function attributes, to create a user defined section.
This section is later referred to in a linker script, instructing the linker, how to place this
particular section in the memory. The full example of this method is presented in Figure
4.

/* metadata.c */
typedef struct {

uint32_t crc;
uint32_t hash;

} metadata_t;

metadata_t metadata
__attribute__ ((section

(".metadata")))
__attribute__ ((used))={

.crc = 0xFFFFFFFF ,

.hash = 0xFFFFFFFF
};

/* linker.ld */
.isr_vector :
{

/* Vector table*/
. = ALIGN (4);
KEEP (*(. isr_vector))
. = ALIGN (4);

...

/*Our metadata */
*(. metadata)

} >FLASH

Figure 4. Example: (a) using GCC attributes, (b) placing the section in linker file.

The metadata structure is assigned to appear in special section (".metadata") in the source
file (metadata.c) with the help of compiler keyword __attribute__(section). The other at-
tribute "used" informs the compiler that the variable is to be retained in the object file,
even if it is unreferenced, in order to avoid optimizing it out. The section can then be

19

used in the linker file (linker.ld) to map it in the desirable location in the memory. The
main advantage of this method, is that the location of the data can be arbitrary, for ex-
ample some controllers have internal an Electrically Erasable Programmable Read-Only
Memory (EEPROM) memory sections, where the settings and metadata could be stored.

Alternatively, if the address of this data is not required to be somewhere specific, as in
some other memory area (EEPROM, or any external memory chip), the top of the vector
table could be used instead. This provides a known location – somewhere at the begin-
ning of the binary, depending on the size of the vector table. In short, the metadata is
placed after the last interrupt vector in the vector table structure (shown in Figure 5). This
technique is used, for example, in Texas Instruments Tiva (formerly known as Stellaris)
series controllers, for storing Cyclic Redundancy Check (CRC) information. The first two
words are set markers 0xFF01FF02 and 0xFF03FF04. This way, external parser tools can
locate the start address of the data. After that, the fields of the metadata follow. In this
project, three 32-bit words are used for information storage, but technically, the memory
size is the only limitation on the amount of data stored there. The word 0xFFFFFFFF is a
placeholder value, this information is filled in later by the binary parser tools.

/* startup.s */
g_pfnVectors:

.word _estack /* Stack pointer */

.word Reset_Handler

.word NMI_Handler

...

.word 0xFF01FF02 /* Prefix 0 */

.word 0xFF03FF04 /* Prefix 1 */

.word 0xFFFFFFFF /* Image length */

.word 0xFFFFFFFF /* CRC32 */

.word 0xFFFFFFFF /* Git hash */

.word 0xFFFFFFFF /* Reserved */

.word 0xFFFFFFFF /* Reserved */

.word 0xFFFFFFFF /* Reserved */

Figure 5. Packing metadata into the vector table.

20

3.2 CRC-32

CRC is widely used error-checking code in data transmission systems based on polyno-
mial manipulations using modulo arithmetic. The motivation to use CRC in firmware
binary, is to check for either transmission errors, flash memory write errors and integrity
of the flash memory over time. The algorithm and polynomial used has to be identical
when first calculating the value after building and on the device later calculating the image
again.

CRC result is calculated over the whole binary image, except for the 32-bit CRC32 word,
stored in the vector table. This field is skipped, because when the first calculation is done
by the binpack, the field contains placeholder value 0xFFFFFFFF. After the calculation,
the field is replaced with the correct CRC result for the firmware binary. All the subse-
quent CRC’s that are calculated inside the controllers, ignore this particular word as well.
This word is later used to compare the result with the calculated check result.

For calculating the first CRC value and storing it into the binary, the Binpack tool is used.
Binpack is simple, open source command line tool, supplied by Texas Instruments, as a
part of the Tiva Firmware Development Package. Binpack takes a binary file input which
contains structure described in Figure 5, calculates the firmware image checksum using
CRC-32 algorithm and finally overwrites the placeholder value in the binary with the CRC
result. Image length is also stored alongside with the CRC result.

3.3 Commit hash

Git is a distributed version control system used primarily for source code management.
Since its release in 2005, it has become the most used source code management tool [25].
Since it is easy to get started with Git on all operating systems and because the software
team had previous experience with it, the natural choice was to use it on ISEAUTO project
as well.

With Git, each commit has a digital signature associated with it, calculated using the
Secure Hash Algorithm 1 (SHA-1) hashing function. Embedding the commit hash into the
binary gives developers simple way to track firmware version on the device, without going
through the trouble of version labeling each iteration. This proves to be very convenient,
especially in the early development phase, when the code changes are very frequent. The

21

commit message acts as a minuscule release note, making it even faster to look up changes
made to the devices firmware on the field.

In order to embed the commit hash into the binary, a small modification to the Binpack

tool, described in Section 3.2 was made. Since the parser already took a binary and
found the right location for the CRC and image length field, adding the extra hash field
to replace the original reserved field was trivial. The parser now takes extra input flag
and hash value. It should be noted, that the short SHA-1 hash is used, because of the
32-bit word allocation in metadata field. In most projects, using the short hash should be
sufficient to avoid collisions [26, p. 217].

3.4 Appending the bootloader

For the release binaries, which are flashed onto the empty chips with In-Circuit Emulator
(ICE), it is necessary to program at least two images at the right locations – bootloader and
the application. This process could be done in two steps: load the bootloader onto the chip
at the correct address and then do the same for the application. This is cumbersome and
potentially more time consuming, when mass producing the devices. In order to simplify
this process, one of the last steps of the post build can be concatenating the application and
the bootloader images. For this to work correctly, the location of the correct bootloader
binary has to be passed into the script as a parameter. Also the correct amount of padding
has to be inserted between the bootloader and the application, in order to place application
start at the right memory address. For this, the application start address is also required by
the script to calculate the padding. The padding bytes used are of value 0xFF. The figure
6 illustrates the release binary layout.

Bootloader
Padding

Application

Application start address
- Bootloader size

Binary
image

Figure 6. Release binary file layout.

22

4 Bootloader

When the microcontroller is powered on, before the main application of that device is
run, small application is executed before it. This application is called the bootloader.
For larger systems, the task of the bootloader is to initialize the low level peripherials
and setup system for the OS kernel. In embedded systems, the bootloader typically has
two main functions: provide an updating mechanism via any communication peripheral
available, and handle application integrity errors, with CRC for example.

Bootloaders usually come with two specific constraint: size and location. In embedded
firmware, the program size is always a consideration. Since for mass production, it is
usually prefered to save a few cents per unit, and flash size corresponds directly with
the cost of the microcontroller. This means that bootloader should be kept as small as
possible to reserve space for the main application. They also commonly run in Read-
Only Memory (ROM), One-Time Programmable Memory (OTP), EEPROM or in flash
memory-protected area, which means that the bootloader itself can not be overwritten.
Therefore great care must be taken, when implementing the bootloader, because any bugs
present in code will remain in there for the whole product life-cycle.

4.1 Memory partitioning

Every microcontroller has some kind of on-chip non-volatile memory, flash technology
being the most prevalent. Although the memory is often presented to the programmer as
a one big chunk, it is wiser to divide the memory into distinct sections. When mapping
out the device memory, it is important to know, how the memory is organized internally.
Typically the memories are divided into blocks (sectors) consisting of multiple pages.
Memory organizations for both chips used in this project are shown in Appendix 1.

Each device also specifies the memory write and erase granularity. While both controllers
used in this project allow byte, half-word and word write, the minimum flash erase width
is the memory sector. This is because erasing the cell requires higher voltages and to
save the die area, this erasing logic is kept to minimum. In NAND and NOR architecture
flash memory, the erased (default) cell is usually at logic level ’1’. This means that when
writing into the flash memory, bits can be only set to logic ’0’. This means, that before
overwriting any flash area with new data, it must be erased first. Therefore, because

23

erasing can be done per sector, the partitions for bootloader and application area are bound
with the sector sizes.

After setting the partition boundaries, it is time to decide, how to actually divide the
memory into different areas. The most simple way would be to cut it into two areas
for bootloader and application (shown in Figure 7a). This approach has the benefits of
having a separate bootloader for the application image verification before running the
main application. It also leaves most of the memory space to the application image.
However, in this arrangement, it is the bootloaders task to communicate with the outside
world, in order to get the new firmware. Also because there is no dedicated buffer for the
application, before fetching the new firmware, old application has to be erased. This may
leave the system without any firmware, in case of any flash erase or transmission failure.
To counter these failures, the application memory space is split into two parts: main area,
where the current firmware runs from and buffer for the new firmware (Figure 7b). This
buffer can also act as a backup version. The main idea in this setup, is to have a working
firmware present in somewhere in the memory at all times. The downside is that memory
area for the application, which could be scarce resource in cost-driven design, is cut in
half. The upside is that it is possible to designate firmware fetching to the application.

Bootloader

Application
area

Flash
Section A

(a)

Bootloader

Application
area

Backup
and/or
upgrade
area

Flash

Section B

Section A

Equal size

(b)

Figure 7. Typical memory partitioning schemas: (a) Single application, (b) Two applications.

Dividing the memory into two application areas, provides the update module software
the opportunity to verify the new firmware before erasing the old one from the memory.
When the image verification is successful, the bootloader can then erase the old image

24

area and then copy the new firmware to a working memory area. The entire time flow of
an updating process in this configuration can be seen in Figure 8.

t

Bootloader

Old
firmware

Start

Bootloader

New
firmware

New firmware
upload

Bootloader Bootloader

Old
firmware

New
firmware

New
firmware

Update the application

New
firmware

Bootloader

New
firmware

Figure 8. Two partition schema update time flow.

The memory could be divided up even more. Doing so cuts into the maximum individual
image size yet again. Although the two application areas described previously, solve most
of the reliability issues when upgrading the firmware, three partitions for application im-
age introduces more possibilities. For example it is possible to keep one area for ’stable’
firmware and other for more experimental one, which could prove to be useful, especially
in the development phase. Other uses might include storing a factory default firmware
image, or keeping two separate ’modes’ of firmware, which can be chosen from during
the booting phase.

Since in this project, the flash memory is abundant – 2 MB total memory in master con-
troller and 1 MB on drive controller, the usual limitation of the memory size is mostly
irrelevant. At the time of writing, the master controller main application is 79KB (ca 4%
of total memory available) and drive control main application 32KB (ca 3%). Considering
all this, it was decided, to divide the controllers flash memory into four areas: bootloader,
application, backup and upgrade image area. Separate upgrade image area allows to im-
plement IAP while keeping the backup area intact. This ensures that if any failure during
memory erasing or writing occurs, backup version of the firmware can be restored. This
also leaves developers an option to restore previous version quickly when testing. All
memory areas are the same size, except for the bootloader. This limits the program size to
512KB on master controller, and 256KB on drive controller. The final memory is layout
presented in Figure 9.

25

Bootloader
0x08000000

0x0800BFFF

Application
area

Backup
area

Upgrade
area

0x08020000

0x08040000

0x08060000

0x0808FFFF

0x080FFFFF

256 KB

256 KB

256 KB

49 KB

(a)

Bootloader
0x08000000

0x08007FFF

Application
area

Backup
area

Upgrade
area

0x08040000

0x080C0000

0x08140000

0x081BFFFF

0x081F0000

512 KB

512 KB

512 KB

32 KB

(b)

Figure 9. Controllers flash memory layout: (a) Drive controller, (b) Master controller.

Using three partitions means separate buffer for the new firmware, so the backup is not
destroyed while fetching the update. When the new firmware is verified, the old applica-
tion is moved to backup area. Complete time flow of the three partition update is shown
in Figure 10.

t

Bootloader

Old
firmware

Backup

Start

Bootloader

Backup

New
firmware

New firmware
upload

Bootloader Bootloader

Old firmware

Backup

Create a new backup

Bootloader

Backup

Update the application

Old
firmware

Old
firmware

New
firmware

New
firmware

New
firmware

New
firmware

Bootloader

Backup

Figure 10. Three partition updating time flow.

26

4.1.1 Dual banking

Previously, a single bank of memory was partitioned into distinct areas by the program-
mer, but many controllers offer a dual bank structuring on the hardware level. Choosing
this mode alters the sectioning of the memory, basically doubling the number of sectors,
while reducing the total sector size by half. Dual bank mode also supports the dual boot
mode, which is used to select the bank to boot from, by mapping different physical banks
to boot program area. Both of the STM32 devices used in this project support dual bank-
ing and booting.

Using the dual banks mode introduces a Read-While-Write (RWW) capability, that is, to
read one bank, for example, the main application itself, while the other bank is being writ-
ten to (for example buffer for the new firmware). However, it is not possible to execute
an erase or program operation on one bank, while erasing or programming the other bank
(except for a mass erase that erases both banks at the same time). In a single bank mode,
while the flash memory is being written or erased, the Central Processing Unit (CPU) exe-
cution is stalled. For example, when the interrupt arrives during the write/erase operation,
this interrupt is not handled until the flash operation is completed. However, if the dual
banking mode is used, the CPU can execute reading from the other bank without stalling
[27]. RWW differences in single and dual bank mode are demonstrated in the Figure 11.

Write / erase

Write / erase

Read

Read Read Read

Execution stalled

IRQ arrival IRQ execution

Execution stopped

12 CPU cycles

R
RWW in
single bank

RWW in
dual bank

Figure 11. RWW in Flash memory single bank versus dual bank [27].

27

4.2 Embedded bootloader

Both STM32F4 and STM32F7 have their own built in bootloaders located in the sys-
tem memory. These bootloaders have multiple interfaces available for uploading new
firmware. To access the embedded bootloader during the startup of the system, the phys-
ical BOOT pins must be set accordingly. Each of the peripheral has its own firmware
upload protocol. The advantage of using the embedded bootloader is that its already im-
plemented and takes no extra memory space when used. STM also provides PC side
software to upload the new firmware to the device for each peripheral available. The main
disadvantage is that there are no safety features such as CRC, encryption or, as with the
case of STM32F7, no ethernet peripherial available inside the bootloader. Using the on-
board bootloader also means introducing a different mode of operation for updating the
device – the application code cannot run during the upload.

4.3 Custom bootloader

Building custom bootloader gives developer a free reign over the bootloader design.

One of the first considerations, when writing a bootloader, is size. Since in this project,
the IAP route was chosen, no communication peripheral for the software upload has to be
initialized and used, compressing the bootloader size significantly. Only Universal Asyn-
chronous Receiver-Transmitter (UART) is used for debugging purposes. This leaves most
of the bootloader code dealing with flash memory manipulation and CRC calculations.
Because the two devices are very similar, the goal was to share as much as code between
them, as possible. This is achived mostly by using the same control flow and common
utilities – such as CRC algorithm module. For flash operations, the STM Hardware Ab-
straction Layer (HAL) is used, which provides identical interface for both of the devices.
This means that only hardware initialization and memory map of the device has to be
ported from one device to another.

The main task of the bootloader implemented in this project is to perform CRC checking
of the images and move firmware images around the memory. In order to achive the
former, the decision has to be made between using hardware peripheral and software
implementation. Hardware CRC unit is potentially faster and might use less code. With
software CRC, the same code described in Section 3.2 can be reused, which guarantees
the integrity of the calculation result. Because STM32F4 used for drive control, lacked

28

the necessary hardware unit, and to reuse preexisting code as much as possible across
platforms, in this project, the software approach was chosen. Every image area is checked
for image length CRC value and commit hash, placed there by the post-build process
described in Section 3. The calculations are performed again in bootloader and compared
against the ones in binary for every image area. With this information, the correct flash
manipulations can be performed. The full program flow of the implemented bootloader is
presented in Figure 12.

Verify CRC values

New firmware OK ?

Erase new firmware area

Yes

No

Move old firmware
to backup area

Move new firmware
to application areaFirmware OK ?

Yes

No

Backup OK ?

Yes

No
Halt

Power up

Move backup to
firmware area

Backup OK ?
Copy current firmware
to backup areaNo

Jump to application

Yes

Verify CRC values

Figure 12. Bootloader sequence flowchart.

In case the upgrade image is available and the CRC is verified, the upgrading branch
is executed. First the old application is moved into the backup area. This ensures that
if anything happens during the flash writing of the new firmware, we have a working
program available for a version roll back. Second step is to move the new firmware into
the working application area. As a third step, the upgrade area is erased, to prepare the
area for future firmware upgrade. It should be noted, that the every application move
operation includes deletion of the destination area. As a final step of upgrading, the

29

verification of the images is preformed again. Although flash erases and writes are verified
at the byte level by HAL, this form of redundancy can be allowed, because of the CRC
calculation speed. From there on, program continues to execute from where it left of prior
to upgrading. The subsequent checks are for current firmware and backup. If firmware is
corrupt, the backup will be loaded into the firmware area and vice versa. The goal is to
have atleast working version intact while the other area is being erased or written to.

4.4 Vector table

Vector table contains stack pointer and all the exception handler vectors. Minimum align-
ment for ARM Cortex M-4 and M-7 family is 32 words, enough for up to 16 interrupts
[28][29]. Every vendor configures the top range value depending on the number of pe-
ripherals used. When the processor is reset, the Main Stack Pointer (MSP) is loaded from
the first word of the vector table and the Program Counter (PC) is loaded with second
word, which directs execution to the reset handler. Vector table is fixed at the address
start of the address space (0x00000000), however it could be relocated, using the Vector
Table Offset Register (VTOR).

Since the bootloader is just like any other application, it has its own vector table, which is
linked to address 0x00000000. When device powers up, it continues to execute bootload-
ers reset handler. This also means, when the bootloader uses any peripheral, for example
UART, the interrupt handler address has to be located in the bootloaders vector table. At
the end of the bootloaders execution, before the control is transfered to the application,
the vector table address must be relocated, using VTOR.

30

5 Upgrading

Firmware upgrading consists of two main parts: uploading the new firmware onto the
device, and then physically writing the new firmware into the non-volatile memory. In
many cases, the uploading part is done by the bootloader. This way, the main program
is not executed while the device is being upgraded, and communication peripherals and
flash writing is taken care of inside the bootloader. Another approach is to perform these
operations in application program, while the main application is also being executed – this
is called IAP. In this project a kind of hybrid of the two is implemented, as the uploading
is done by the application and the final relocations of the images by the bootloader.

In the application, the parts responsible for updating the firmware are separated in layers.
The highest layer is Real-time Operating System (RTOS) task, which delegates the data
to the update module. Tasks such as writing to the memory, keeping track of the packets
and relaying the packets to the next node are taken care of in the update module. Updating
software hierarchy in the application is illustrated in the Figure 13.

Hardware

Hardware abstaction layer

Update module

FreeRTOS

Updater RTOS Task

Figure 13. Updating software hierarchy.

5.1 RTOS Task

In this project, the FreeRTOS is used as the RTOS. Benefits of the FreeRTOS include
being free (distributed under MIT license), is portable to many platforms, has small mem-
ory footprint (6K to 12K) and active and large community support [30]. Therefore, the
updater has its own task, that is scheduled to execute by the RTOS when the correct data
arrives to the communication port. The RTOS task is also responsible for tracking the

31

time between the protocol frames, to issue a timeout error if necessary.

The updater task has to be designed independent of the communication peripheral used to
carry out the updating routine. This way, changing or adding the communication channel
is relatively simple and standalone task. To achieve this, the bridge between the task and
the transmission is a queue data structure, where the communication peripheral produces
and pushes the incoming data into the queue and the updater task consumes it. As such,
the RTOS can schedule the tasks separately, depending on the workload of the other tasks
and priorities. The Figure 14 illustrates the interaction between the communication link
and the updater task.

Queue_member

Command : int
Payload_buf : ptr
Payload_size : int

Queue

Communication
peripheral

Updater Task

Figure 14. Decoupling of the task and communication system.

5.2 Updater module

Updater module is controller specific component whose purpose is to:

� Report the versions of the present firmware

� Negotiate the parameters of the updating process

� Store the incoming data in non-volatile memory in correct order

� Transfer the data to the next node, if necessary

� Acknowledge the successful or unsuccessful data transfer

� End the transaction and clean up

To carry out these tasks, the updater has to have some internal states to keep track of
the updating process. Figure 15 illustrates the Finite State Machine (FSM) implemented.

32

After the device is powered on, the module waits for either version query or the initial-
ization frame. If the valid initialization parameters are passed to the module, it is set up
and ready to receive new firmware packets. The received packets are written in the RAM
cache (if allocated), and written into the non-volatile memory when the cache is full or
flushed manually. The packets are received and processed until the final packet is arrived,
at which point the remaining cache is flushed into the main memory, and the module
returns to inactive state after performing a cleanup routine.

READY

INACTIVE

WRITE
CACHE

WRITE
FLASH

Done

Cache full
Done

Init Flush

Data Recieved

Version
query,
Init fail

Version
query

Close

Reset

Figure 15. Updater module state machine diagram.

5.3 Transfer protocol

The updating process has to follow an exact steps in order to successfully deliver the new
firmware image. The internal state machines are designed to first initialize the update, re-
ceive the image frame by frame and finally perform cleanup. These steps are also reflected
in the packet transfer protocol, which is divided into three stages accordingly. The overall
protocol has to be designed such that the data transfer is reliable, fast and is applicable to
any underlying physical communication layer on which the transfer takes place.

33

When updating the devices, all the communication is going to or through the master
controller. Master controller has the information about the other devices ID’s and their
communication peripherals. For updating the drive controller, the master prepares the
arrived frame as a CAN bus message and sends it immediately to the drive controller. The
data frames are further explained in the chapter 5.3.3. A successful transfer between the
host and the drive controller is illustrated in the Figure 16.

Master controllerPC

VERS

VERS_ACK

Initialisation

Data transfer

Drive controller

VERS

INIT INIT

INIT_ACK
INIT_ACK

Write data 0

Finish

Close
connection

Establish
connection

Updater initialized

Updater deinitialized

VERS_ACK
Verify version

Send data 0
DATA_0

DATA_0_ACK

DATA_0

DATA_0_ACK

DATA_n

DATA_n_ACK

DATA_n

DATA_n_ACK

FIN

FIN_ACK

FIN

FIN_ACK

Send end
message

Write data n
Send data n

Verify ACK

Verify ACK

Verify ACK

Figure 16. Drive controller successful update sequence.

34

5.3.1 Reliability

Transferring the data from one node to another requires techniques to prevent errors along
the path. Although the whole image is always accompanied with the CRC, as discussed
previously in Section 3.2, and retrying the whole upgrade process is an option, this is
far from satisfactory. Most of communication standards offer reliable transfers, which is
usually obtained using error detection/correction code, numbering and acknowledging the
packets [31].

The purpose of numbering the packets is to assure the correct ordering of the data. Each
data packet gets a unique sequence number, which is transferred alongside the payload.
This way, when losing a packet or having two packets arrive in the wrong order, the
device which is updated can ignore the frames and not corrupting the new image. This is
illustrated in the figure 17.

Lost ACKSend data n DATA_n
DATA_n

DATA_n_ACK

Write data n

Verify ACK

ACK timeout

Resend data n
DATA_n

DATA_n
Discard data n

DATA_n_ACK

Master controllerPC Drive controller

Figure 17. Error control: lost acknowledgement.

Sequencing the packets coincides with acknowledging the packets by the receiver. For
every frame that is sent out, the sender waits for the receiver to acknowledge it. This
allows to keep track of the time of flight and after a set time, retransmit the frame. Losing
data along the way is mitigated, as illustrated in Figure 18. The downside is considerable
overhead in data frames and lowered transmission rates, because of the acknowledgement
traffic. In case of the CAN bus or Transmission Control Protocol (TCP), the acknowl-
edgements are implemented in the transport protocol, but for example, when using plain
UART, Serial Peripheral Interface (SPI) or even User Datagram Protocol (UDP) protocol,
the acknowledgements have to be implemented in the application layer.

35

Lost data
Send data n DATA_n

DATA_n_ACK

Verify ACK

ACK timeout

Resend data n
DATA_n

DATA_n
Write data n

DATA_n_ACK

Master controllerPC Drive controller

Figure 18. Error control: lost data frame.

Setting timeouts between the packets allows diagnosing a dead connection during the
exchange. Every device has its own timeout counters and the host also sets the limit
on number of packet retransmissions. This way, the updater state machines are not left
hanging in some intermediate state, and the whole updating process can be restarted once
the connection is reestablished, without having the need to power cycle the devices, or
worse, the whole system. One of the possible situations is depicted below, in the Figure
19.

PC unavailable
DATA_n_ACK

DATA_n_ACK

Uninitialize updater
DATA_n+1

DATA_n+1

ERR_ACK
Error - updater
uninitialized

ERR_ACK

Data timeout

Send data n+1

Recover

Restart
update
process

Freeze

VERS

Master controllerPC Drive controller

Figure 19. Error control: host unavailable.

36

5.3.2 Physical layers

The underlying physical layers have a huge impact on the final performance of the up-
dating protocol. Since the goal of the proposed updating protocol was to be independent
of the physical layer, the reliability had to be guaranteed in the upper layer protocol. As
a result, some of the strengths and weaknesses of the used physical protocols are ampli-
fied. The unique frame sequence number, for example, is not a problem for protocols
with larger payloads or dedicated sequence fields, but with small payload protocols such
as CAN bus. The CAN bus is used for communication between the master and the drive
controller, and potentially between any node added to the system in the future develop-
ments. The CAN bus was designed not send large blocks of data, but for large number of
nodes to broadcast many short messages to the entire network [32]. Since CAN protocol
does not include sequence number in their header (depicted in the Figure 20), it has to be
embedded into the payload, which may contain maximum of 8 bytes. To avoid cutting
into the useful data portion too much, the sequence number is allocated one byte, and has
to overflow in every 256 frames. On the upside, the updating command and the device
identification number can be encoded inside the 11 bit identifier field.

Identifier Data length Data CRC

Start-of-Frame
Identifier extension

Reserved

Remote transmission request CRC delimiter
ACK slot

ACK delimiter

End-of-Frame

Figure 20. CAN base frame format.

As an alternative link between the master and the drive controller, the UART connection
was set up. UART is easy to add to the system, as it requires only two (or possibly
only one) wires to connect between the controllers and both of the controllers have many
UART peripherals available. UART offers low frame overhead, and fast transfer rates, and
is suitable for updating purposes as our transfer protocol will guarantee the data reliability
on the higher layer. One possible downside to using UART is scalability. In case there
will be many controllers added to the system in the future, separate peripherals may run
out. Then some type of master/slave type communication such as SPI could be used
instead. The performance difference between the CAN and UART is further discussed in
the section 5.4.

The connection between the host and the master controller is using Ethernet as its link
layer and, at the time of developing and writing this thesis, the UDP protocol is used

37

for the transport layer. The UDP is a connectionless and unreliable datagram packet
service. Although it provides CRC for data integrity, it has no handshaking mechanism,
data packets are not guaranteed to be in order or to reach their destination at all. The
UDP protocol implementation was in place as a result [33], where the TCP connection
was deemed too slow for ROS messages. In the case of data reliability being important,
using UDP is less than optimal and if the Ethernet as a underlying layer is used at all, the
switch to the TCP stack should be made. Implementing the TCP stack however, was out
of the scope of this thesis. But by using the UDP stack, the data delivery should be faster,
due to the low overhead of the datagram frame and lack of acknowledgements for each
packet. Also, it serves as a good demonstration, that the solution and protocol developed
in this project can and will work with unreliable transport layer, and if necessary, could
be used with any communication stack.

5.3.3 Protocol frames

The updating protocol is initiated by the host machine. Each frame is prefixed with 8-bit
command sequence and 16-bit unique device identification. This allows to extend the
protocol to more than just the 2 devices currently used and also to add more commands if
needed. The 8-bit command and 16-bit identification field’s encodings are shown in the
Table 2.

Table 2. Protocol frame field encodings.

Frame section UDP/UART (Hex) CAN (Hex)

VERS 0xF0 0x100

VERS ACK 0xF1 0x104

INIT 0xF2 0x101

INIT ACK 0xF3 0x105

DATA 0xF4 0x102

DATA_ACK 0xF5 0x106

FIN 0xF6 0x103

FIN_ACK 0xF7 0x107

Master controller ID 0x0001 0x000

Drive controller ID 0x0002 0x008

38

The CAN encodings are different to UDP and UART encodings, because the update com-
mand and the controllers ID are placed inside the 11-bit identifier field (Figure 21). As of
writing this thesis, the communication between the master and the drive controller takes
place on dedicated CAN bus (CAN1, shown in Figure 2), which means it is not necessary
to encode the device ID inside the field. As the bus is dedicated, the acknowledgement
messages do not really need separate encodings either, because the master always knows,
that the messages on CAN1 are from the drive controller. In the current implementation,
all of the CAN messages are divided into message groups, where the lower group number
means higher priority. This solution ables to connect up to 31 slave controllers for each
of the master controller’s CAN peripheral.

Message group Device ID ACK Command

4 bits 4 bits 2 bits1 bit

11 bits

Figure 21. CAN frame identification field for the update messages.

First it sends out an version query to gather information about the firmware in device
under update. The current implementation has the device responding with CRC hashes of
the main application and the backup, but also could be instead returning version numbers
or git hashes as well. The host side compares the versions (possible implementations
include version-hash lookup table) and decides whether to start the upgrading or not. The
version query and acknowledgement frames are illustrated in the Figure 22.

VERS Destination ID

VERS_ACK Source ID Main application CRC hash Backup application CRC hash

8 bits 16 bits

32 bits 32 bits

Figure 22. Version query and acknowledgement frames.

Next up is the initialization packet. The host sets a cache size and the total image that is
going to be sent. The device responds with the desired payload size of the data packet and
an error code, if there are any complications with the initialization packet, otherwise set
to zero. The effects of the cache and data packet size are discussed further in the Section
5.4. Host sent initialization and the receiver acknowledgement frames are illustrated in
the Figure 23. After setting up the receiver, host starts sending the data frames.

39

INIT_ACK

INIT

8 bits 16 bits 32 bits 32 bits

Destination ID

Source ID

Cache size Image size

Payload size Error code

Figure 23. Initialization and acknowledgement frames.

The actual data frames are fairly straight forward. The frame is prefixed with the header,
followed by sequence number of the data packet and then followed by the data. Length
of the data is determined in the previous exchange by the device. Each data frame is ac-
knowledged with the same sequence number as the received packet and an error code, set
to zero if everything went well. Total number of data frames comes out as total image size
divided by the desired packet length. Figure 24 illustrates the data and the corresponding
response frame.

DATA Destination ID

Source IDDATA_ACK Error code

8 bits 16 bits N bits

32 bits

8 bits

Seq num

Seq num

Data

Figure 24. Data and acknowledgement frames.

The last frame sent to the receiver indicates, that all of the data has been sent. Updater
then confirms it with total bytes written and error code. After this, the cleanup routine is
executed, freeing memory and terminating the RTOS task. Final frames are illustrated in
the Figure 25.

FIN Destination ID

Source IDFIN_ACK Total bytes written Error code

8 bits 16 bits

32 bits 32 bits

Figure 25. Finish and acknowledgement frames.

40

5.4 Results

The most important parameters of the updating protocol are the reliability and the speed
of the transfer. The speed is mostly determined by the protocol used. As discussed in
section 5.3.2, some physical layers are better suited to handle large amounts of data than
others. The bandwidth of the physical layer is reflected in the firmware updating measure-
ments. Measurements were carried out on three very different communication mediums:
UDP, which is used between the master controller and the host, CAN, currently the only
communication link between the master controller and drive controller, and UART, an
alternative asynchronous interface between the master and the drive controllers.

The measurement results in the Table 3 are average values across at least 20 successful
transfers, where no errors occurred and no data frames were resent. In order to demon-
strate the importance of the payload size, all available channels were additionally tested
on the CAN bus maximum payload of 7 bytes. The data rate is also measured in ideal
settings: no other traffic, except for the upgrading data is passing through the channels. It
should be noted that the UDP transfers were only made between the host and the master
controller – the data was not passed on to the drive controller, as was the case with CAN
and UART. This means, that the data rate is higher, because the processing only takes
place on the master controller.

Table 3. Communication medium data rate comparison.

Data packet payload

Bytes

Data rate (Bytes per second)

CAN UART (Baud 115200) UART (Baud 406800) UDP

7 667 669 634 1181

128 - 4880 6997 17897

256 - 5482 9072 22783

512 - 5810 10175 27645

1024 - 5863 9597 30814

2048 - - - 32729

As it currently stands, with the best configuration possible, assuming the maximum image
size, the master controller update takes 16.6 seconds (512KB) and 25.2 seconds for the
drive controller (256KB). When using CAN bus, uploading the same size image to the
drive controller would consume about 6 and a half minutes.

41

There are two important parameters determining the speed of the transfer: the baud rate,
at which the data is sent and the payload size – bigger the payload, the less overhead there
is, up to a certain point. The bigger payload assumes bigger data buffer, so the trade-off
between the transfer speed and memory consumption has to be made. With UART, the
optimal packet size is 512 bytes, while with the UDP, it is either 512 or 1024 bytes.

In order to try speed up the transfer for low packet size protocols such as CAN, an addi-
tional volatile memory cache was proposed. This cache stores multiple data frames and
when full, the contents of the cache are written into the flash in one go. In theory, this
eliminates the call overhead for the each flash write routine. The measurements (shown
in Figure 26) were carried out via the CAN bus, using eight different cache sizes and
the control measurements with no cache applied. Each size step was measured at least
fifteen times. As the results indicate, in practice, the speed up is nonexistent or insignif-
icant and does not justify the complexity and the memory overhead it adds to the overall
updating system. It should be noted, that the measurements were carried out independent
to the rest of the system – meaning that the cache might have a bigger impact, when the
main function of the controllers are active, e.g. when the car is driving. The measure-
ments were also carried out when using UART and UDP, where the results were similar,
demonstrating almost no impact on the overall performance. As a result of this, the cache
size parameter in the INIT frame (Figure 23) is left as a reserved field for future use.

0 32 128 256 512 1024 2048 4096 8192
645

650

655

660

665

670

675

Cache size, Bytes

D
at

a
ra

te
,B

yt
e/

se
c

Figure 26. Data rate via CAN bus across different cache sizes.

42

Reliability is as important as performance when it comes to upgrading the system. The
worst case would be running faulty code or crashing due to memory corruption. During
the update, the device is in its most vulnerable state and it is important to identify various
scenarios, which might lead to corrupt image transfer or worse, malfunctioning device.
The devised test cases are presented in the Table 4.

Table 4. Test cases.

Description Expected result Actual result

Power up the device flashed
with correct bootloader applica-
tion firmware and backup

Start the application PASS

Power up the device with missing
or faulty application

Load the application from the backup, start the
application

PASS

Power up the device with missing
or faulty backup

Create a new backup from the application, start
the application

PASS

Power up the device with correct
new firmware available

Move the old application code to backup area,
copy new firmware to application area, erase new
firmware buffer area, start the new application

PASS

Power up the device with faulty
new firmware available

Erase the new firmware area buffer, start the old
application

PASS

Power up the device with only
bootloader

Halt the program execution, flash error LED PASS

Report wrong image size in INIT
message

If the size is bigger than available memory space,
do not start upgrading at all. If the size is smaller,
and the end message is sent, the CRC check will
fail. No END message results in timeout.

PASS

Disconnect ethernet cable during
the data transfer

If the cable is connected before set timeout, the
host retries to send the data and transfer will
continue where it left off. If the timeout occurs,
the update has to be started again from the
beginning.

PASS

Disconnect the CAN/UART cable
during the transfer to drive con-
troller

PASS

Stop transfering data from the host The transfer will end with timeout and the upload
has to be started again.

PASS

Send data frame in wrong order Receiver sends the previous ACK again with the
packet sequence number it wants to receive next.

PASS

Hard reset during bootloader
flashing operation execution

Bootloader will CRC check every image and re-
sumes execution.

PASS

43

6 Conclusion

This thesis presents a solution for firmware updating the controllers for the universities
self-driving car project. For distributing the new firmware, the goal was to create a reli-
able and physical layer agnostic transfer protocol. A requirement for fail-safe upgrading
also meant hosting multiple versions at once, which lead to developing bootloaders for
the controllers. The overall programming philosophy of the project was to create modu-
lar building blocks for updating the controllers, flexible enough to endure infrastructure
changes in the future. The work also includes reviwing the current state of upgrading the
firmware in automotive industry, where the biggest challenge today is delivering fast and
reliable updates over the air.

As a result, various software components related to the upgrading of the firmware were
created. First the bootloaders, which are responsible for verifying the controller’s memory
every time the car is started. Bootloaders also manage the available firmware versions so
that the vehcile is guaranteed to recover from nearly all of the faulty memory states.
The main effort went to implementing the transfer protocol mechanisms. In order to
achive reliable and fault safe upgrading, the solution had to pass numerous tests, where
edge cases and erronous situations were introduced. Testing was carried out on three
different physical layers, showing that the developed protocol is portable and reliable on
any medium. Performance wise, the solution can work faster than currently used JTAG,
given the right physical layers. Additionally, post-build scripts to enhance the final image
with necessary metadata and host side scripts to upload the binaries were developed. As
a welcome byproduct of the thesis, the work can also act as a general guide to memory
partitioning and bootloaders in embedded devices.

Future work entails getting the new firmware image onto the host computer remotely,
perhaps via 5G or Wi-Fi. Additional security enhancements can be made via encryp-
tion and signatures to ensure data privacy and authenticity. Finally, as a development
cycle improvement, the binary preparation and upload to the vehicle should be part of the
continuous integration pipeline, going through automated testing and delivery process, in
order to promote better quality of the developed firmware.

44

References
[1] J. Vangelov, “Software Updates in Automotive Electronic Control Units,” in Soft-

ware Update as a Mechanism for Resilience and Security: Proceedings of a Work-
shop, Washington DC, U.S.A: The National Academies Press, 2017.

[2] J. Greenough, THE CONNECTED CAR REPORT: Forecasts, competing technolo-
gies, and leading manufacturers, Jan. 2016. [Online]. Available: https://www.
businessinsider.com/connected- car- forecasts- top- manufacturers-
leading-car-makers-2015-3 (visited on 01/12/2019).

[3] Tallinn University of Technology, Silberauto AS, Iseauto. [Online]. Available:
http://iseauto.ttu.ee (visited on 01/12/2019).

[4] A. M. Michael Held and J. Reaves, The auto industry’s growing recall problem
-— and how to fix it, Jan. 2018. [Online]. Available: https : / / emarketing .
alixpartners . com / rs / emsimages / 2018 / pubs / EI / AP _ Auto _ Industry _
Recall_Problem_Jan_2018.pdf (visited on 01/12/2019).

[5] R. von Stokar, Updating Car ECUs Over-The-Air (FOTA) White paper, Sep. 2011.
[Online]. Available: http://www.eenewsautomotive.com/content/updating-
car-ecus-over-air-fota (visited on 01/12/2019).

[6] G. de Boer, P. Engel, and W. Praefcke, “Generic Remote Software Update for Ve-
hicle ECUs Using a Telematics Device as a Gateway,” in Advanced Microsystems
for Automotive Applications, Berlin, Heidelberg: Springer, 2005, pp. 371–380.

[7] D. K. Nilsson, P. H. Phung, and U. E. Larson, “Vehicle ECU classification based
on safety-security characteristics,” in IET Road Transport Information and Control,
Manchester, UK, May 2008.

[8] D. K. Nilsson, L. Sun, and T. Nakajima, “A Framework for Self-Verification of
Firmware Updates over the Air in Vehicle ECUs,” in 2008 IEEE Globecom Work-
shops, New Orleans, LA, USA, Nov. 2008.

[9] M. Steger, C. Boano, M. Karner, J. Hillebrand, W. Rom, and K. Römer, “SecUp:
Secure and Efficient Wireless Software Updates for Vehicles,” in 2016 Euromicro
Conference on Digital System Design (DSD), Limassol, Cyprus, Aug. 2016.

[10] G. Nelson, “Over-the-air updates on varied paths,” Automotive News, Jan. 2016.
[Online]. Available: http : / / www . autonews . com / article / 20160125 /
OEM06/301259980/over- the- air- updates- on- varied- paths (visited on
01/12/2019).

[11] Tesla support - Software Updates. [Online]. Available: https://www.tesla.com/
support/software-updates (visited on 01/12/2019).

[12] D. Bogdan, R. Bogdan, and M. Popa, “Delta flashing of an ECU in the automotive
industry,” in 2016 IEEE 11th International Symposium on Applied Computational
Intelligence and Informatics (SACI), Timisoara, Romania, May 2016.

[13] M. Steger, M. Karner, J. Hillebrand, W. Rom, E. Armengaud, M. Hansson, C. A.
Boano, and K. Römer, “Applicability of IEEE 802.11s for automotive wireless
software updates,” in 2015 13th International Conference on Telecommunications
(ConTEL), Graz, Austria, Jul. 2015.

[14] Autosar. [Online]. Available: https : / / www . autosar . org/ (visited on
01/12/2019).

[15] D. Kum, G.-M. Park, S. Lee, and W. Jung, “AUTOSAR migration from existing
automotive software,” in 2008 International Conference on Control, Automation
and Systems, Seoul, South Korea, Oct. 2008.

45

https://www.businessinsider.com/connected-car-forecasts-top-manufacturers-leading-car-makers-2015-3
https://www.businessinsider.com/connected-car-forecasts-top-manufacturers-leading-car-makers-2015-3
https://www.businessinsider.com/connected-car-forecasts-top-manufacturers-leading-car-makers-2015-3
http://iseauto.ttu.ee
https://emarketing.alixpartners.com/rs/emsimages/2018/pubs/EI/AP_Auto_Industry_Recall_Problem_Jan_2018.pdf
https://emarketing.alixpartners.com/rs/emsimages/2018/pubs/EI/AP_Auto_Industry_Recall_Problem_Jan_2018.pdf
https://emarketing.alixpartners.com/rs/emsimages/2018/pubs/EI/AP_Auto_Industry_Recall_Problem_Jan_2018.pdf
http://www.eenewsautomotive.com/content/updating-car-ecus-over-air-fota
http://www.eenewsautomotive.com/content/updating-car-ecus-over-air-fota
http://www.autonews.com/article/20160125/OEM06/301259980/over-the-air-updates-on-varied-paths
http://www.autonews.com/article/20160125/OEM06/301259980/over-the-air-updates-on-varied-paths
https://www.tesla.com/support/software-updates
https://www.tesla.com/support/software-updates
https://www.autosar.org/

[16] A. Rassõlkin, R. Sell, and M. Leier, “Development case study of the first estonian
self-driving car, ISEAUTO,” The Journal of Riga Technical University, vol. 14, 1
Jul. 2018.

[17] R. Sell, M. Leier, A. Rassõlkin, and J.-P. Ernits, “Self-driving car ISEAUTO for
research and education,” in Proceeding of the 2018 19th International Conference
on Research and Education in Mechatronics, Delft, The Netherlands, Jun. 2018,
pp. 111–116.

[18] Open Source Robotics Foundation, The Robot Operating System (ROS). [Online].
Available: http://www.ros.org/ (visited on 01/12/2019).

[19] STMicroelectronics, STM32F76xxx and STM32F77xxx advanced Arm®-based 32-
bit MCUs, Reference manual. [Online]. Available: https : / / www . st . com /
content/ccc/resource/technical/document/reference_manual/group0/
96/8b/0d/ec/16/22/43/71/DM00224583/files/DM00224583.pdf/jcr:
content/translations/en.DM00224583.pdf (visited on 01/12/2019).

[20] ——, STM32F405/415, STM32F407/417, STM32F427/437 and STM32F429/439
advanced Arm®-based 32-bit MCU, Reference manual. [Online]. Available:
https : / / www . st . com / content / ccc / resource / technical / document /
reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/
DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf (visited
on 01/12/2019).

[21] System Workbench for STM32. [Online]. Available: http://www.openstm32.
org/HomePage (visited on 01/12/2019).

[22] The Eclipse Foundation. [Online]. Available: https://www.eclipse.org/ (vis-
ited on 01/12/2019).

[23] ST-LINK/V2 in-circuit debugger/programmer for STM8 and STM32. [Online].
Available: https://www.st.com/en/development-tools/st-link-v2.html
(visited on 01/12/2019).

[24] STM32Cube initialization code generator. [Online]. Available: https://www.st.
com/en/development-tools/stm32cubemx.html (visited on 01/12/2019).

[25] I. Skerrett, Eclipse community survey 2014. [Online]. Available: https://www.
slideshare.net/IanSkerrett/eclipse-community-survey-2014 (visited on
01/12/2019).

[26] S. Chacon and B. Straub, Pro Git, Second Edition. Apress, 2014. [Online]. Avail-
able: http://link.springer.com/10.1007/978-1-4842-0076-6.

[27] STMicroelectronics, AN4826 Application note: STM32F7 Series Flash memory
dual bank mode. [Online]. Available: https://www.st.com/content/ccc/
resource/technical/document/application_note/group0/d2/bd/77/
e8 / 0d / 3a / 43 / cf / DM00266999 / files / DM00266999 . pdf / jcr : content /
translations/en.DM00266999.pdf (visited on 01/12/2019).

[28] ARM, ARM Cortex-M4 Devices Generic User Guide. [Online]. Available: http:
//infocenter.arm.com/help/topic/com.arm.doc.dui0553a/DUI0553A_
cortex_m4_dgug.pdf (visited on 01/12/2019).

[29] ——, ARM Cortex-M7 Devices Generic User Guide. [Online]. Available: https:
//static.docs.arm.com/dui0646/a/DUI0646A_cortex_m7_dgug.pdf (visited
on 01/12/2019).

[30] FreeRTOS Project, The FreeRTOS™ Kernel. [Online]. Available: https://www.
freertos.org/ (visited on 01/12/2019).

46

http://www.ros.org/
https://www.st.com/content/ccc/resource/technical/document/reference_manual/group0/96/8b/0d/ec/16/22/43/71/DM00224583/files/DM00224583.pdf/jcr:content/translations/en.DM00224583.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/group0/96/8b/0d/ec/16/22/43/71/DM00224583/files/DM00224583.pdf/jcr:content/translations/en.DM00224583.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/group0/96/8b/0d/ec/16/22/43/71/DM00224583/files/DM00224583.pdf/jcr:content/translations/en.DM00224583.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/group0/96/8b/0d/ec/16/22/43/71/DM00224583/files/DM00224583.pdf/jcr:content/translations/en.DM00224583.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
http://www.openstm32.org/HomePage
http://www.openstm32.org/HomePage
https://www.eclipse.org/
https://www.st.com/en/development-tools/st-link-v2.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.slideshare.net/IanSkerrett/eclipse-community-survey-2014
https://www.slideshare.net/IanSkerrett/eclipse-community-survey-2014
http://link.springer.com/10.1007/978-1-4842-0076-6
https://www.st.com/content/ccc/resource/technical/document/application_note/group0/d2/bd/77/e8/0d/3a/43/cf/DM00266999/files/DM00266999.pdf/jcr:content/translations/en.DM00266999.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group0/d2/bd/77/e8/0d/3a/43/cf/DM00266999/files/DM00266999.pdf/jcr:content/translations/en.DM00266999.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group0/d2/bd/77/e8/0d/3a/43/cf/DM00266999/files/DM00266999.pdf/jcr:content/translations/en.DM00266999.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group0/d2/bd/77/e8/0d/3a/43/cf/DM00266999/files/DM00266999.pdf/jcr:content/translations/en.DM00266999.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/DUI0553A_cortex_m4_dgug.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/DUI0553A_cortex_m4_dgug.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/DUI0553A_cortex_m4_dgug.pdf
https://static.docs.arm.com/dui0646/a/DUI0646A_cortex_m7_dgug.pdf
https://static.docs.arm.com/dui0646/a/DUI0646A_cortex_m7_dgug.pdf
https://www.freertos.org/
https://www.freertos.org/

[31] Atmel Corporation, Safe and Secure Bootloader Implementation for SAM3/4, Ap-
plication note. [Online]. Available: http://ww1.microchip.com/downloads/
en/AppNotes/Atmel-42141-SAM-AT02333-Safe-and-Secure-Bootloader-
Implementation-for-SAM3-4_Application-Note.pdf (visited on 01/12/2019).

[32] Texas Instruments, Introduction to the Controller Area Network, Application re-
port. [Online]. Available: http://www.ti.com/lit/an/sloa101b/sloa101b.
pdf (visited on 01/12/2019).

[33] P. Trink, “Autonomous path following on a vehicle using an open source software
autoware,” sup. Ernits, Juhan-Peep, Master thesis, Tallinn University of Technol-
ogy, 2018. [Online]. Available: https://digi.lib.ttu.ee/i/file.php?DLID=
10630&t=1 (visited on 01/12/2019).

47

http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42141-SAM-AT02333-Safe-and-Secure-Bootloader-Implementation-for-SAM3-4_Application-Note.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42141-SAM-AT02333-Safe-and-Secure-Bootloader-Implementation-for-SAM3-4_Application-Note.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42141-SAM-AT02333-Safe-and-Secure-Bootloader-Implementation-for-SAM3-4_Application-Note.pdf
http://www.ti.com/lit/an/sloa101b/sloa101b.pdf
http://www.ti.com/lit/an/sloa101b/sloa101b.pdf
https://digi.lib.ttu.ee/i/file.php?DLID=10630&t=1
https://digi.lib.ttu.ee/i/file.php?DLID=10630&t=1

Appendix 1 – Flash module organizations

Table 1. Flash module organization of STM32F407 [28].

Block Name Block base addresses Size

Main memory

Sector 0 0x0800 0000 - 0x0800 3FFF 16 Kbytes

Sector 1 0x0800 4000 - 0x0800 7FFF 16 Kbytes

Sector 2 0x0800 8000 - 0x0800 BFFF 16 Kbytes

Sector 3 0x0800 C000 - 0x0800 FFFF 16 Kbytes

Sector 4 0x0801 0000 - 0x0801 FFFF 64 Kbytes

Sector 5 0x0802 0000 - 0x0803 FFFF 128 Kbytes

Sector 6 0x0804 0000 - 0x0805 FFFF 128 Kbytes

...

Sector 11 0x080E 0000 - 0x080F FFFF 128 Kbytes

System memory 0x1FFF 0000 - 0x1FFF 77FF 30 Kbytes

OTP area 0x1FFF 7800 - 0x1FFF 7A0F 528 bytes

Option bytes 0x1FFF C000 - 0x1FFF C00F 16 bytes

48

Table 2. Flash module organization of STM32F767 [29].

Block Name
Block base address on AXIM

interface
Sector

Main memory

block

Sector 0 0x0800 0000 - 0x0800 7FFF 32 KB

Sector 1 0x0800 8000 - 0x0800 FFFF 32 KB

Sector 2 0x0801 0000 - 0x0801 7FFF 32 KB

Sector 3 0x0801 8000 - 0x0801 FFFF 32 KB

Sector 4 0x0802 0000 - 0x0803 FFFF 128 KB

Sector 5 0x0804 0000 - 0x0807 FFFF 256 KB

Sector 6 0x0808 0000 - 0x080B FFFF 256 KB

...

Sector 11 0x081C 0000 - 0x081F FFFF 256 KB

Information block

System memory 0x1FF0 0000 - 0x1FF0 EDBF 60 Kbytes

OTP 0x1FF0 F000 - 0x1FF0 F41F 1024 bytes

Option bytes 0x1FFF 0000 - 0x1FFF 001F 32 bytes

49

Appendix 2 – Source code repositories

Source code is controlled with git and the repositories are available via following URLs:

Master controller: git@gitlab.pld.ttu.ee:iseauto/master_controller.git

Drive controller: git@gitlab.pld.ttu.ee:iseauto/drive_controller.git

Bootloaders: git@gitlab.pld.ttu.ee:iseauto/bootloader.git

50

	Introduction
	Motivation
	Objectives
	Thesis organization

	Background
	Iseauto project
	Technical overview
	Low level controllers

	Firmware preparations
	Metadata placement
	CRC-32
	Commit hash
	Appending the bootloader

	Bootloader
	Memory partitioning
	Dual banking

	Embedded bootloader
	Custom bootloader
	Vector table

	Upgrading
	RTOS Task
	Updater module
	Transfer protocol
	Reliability
	Physical layers
	Protocol frames

	Results

	Conclusion
	References
	Appendix Flash module organizations
	Appendix Source code repositories

