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Annotatsioon

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 45 leheküljel, 10 peatükki, 17
joonist, 5 tabelit.

Viimastel aastatel on kasvanud tehisnärvivõrkudel baseevuvate algoritmide kasutamine ob-
jektide tuvastamisel piltidel ja videos. Kasutades erinevaid kiirendeid on algoritme võima-
lik kõrgelt paralleliseerida, tehes võimalikuks nende tuvastuskiiruse suurendamise. Käesol-
evas lõputöös kasutatakse Xilinx’i universaalset FPGA’l baseeruvat kiirendit, nimega
"Deep learning Processing Unit", mille kasutamisel ei pea disainer omama kõrgel tasemel
teadmisi riistvaralisest disainist.

Käesoleva lõputöö eesmärgiks on demonstreerida, kuidas saab Xilinx’i poolt välja antud
tarkvaraarendustööriistadega teostada "You Only Look Once" (YOLO)-nimelist objektitu-
vastus tarkvara kiirendamist FPGA abil, kasutades selleks Xilinx’i Deep Neural Network
Development Kit (DNNDK) arenduskeskkonda.

Peamiseks motivaatoriks lõputöö valmimisel oli asjaolu, et mitmed ülikoolid, kaasaar-
vatud Tallinna Tehnikaülikool, kasutavad oma õppeprotsessides Avneti arenduskomplekte,
nimega ZedBoard". Neid kasutatakse peamiselt riistvaralähedase programmeerimise ja
kiipsüsteemide disainimise õpetamiseks.

Tulemuseks valmis süsteem, mis kasutab eelnevalt mainitud metoodikaid, et efektiivselt
kiirendada YOLO tööd. Lisaks lahenduse kirjeldusele on välja toodud samm-sammuline
juhend antud süsteemi koostamiseks ja käivitamiseks etteantud vahenditega. Oluliseks
tulemuseks saadi, et süsteem töötas kiirendatult "ZedBoard" peal. Keskmiseks ühe pildi
töötlusajaks oli 1.5 sekundit, mis ei lase seda lahendust kasutada enamiku reaalajaliste
lahenduste juures. Peatükk 7 sisaldab arvutuslikku selgitust, mille abil saab ennustada, kui
palju ujuvkomaarvutusi on vaja sooritada ühe pildi hindamiseks.

Käesolevat lahendust saab edasi arendada, suurendades selle töökindlust ja lisades tähen-
davaid funktsioone vastavalt kasutaja vajadustele ja soovidele. Täiendavad ettepanekud on
välja toodud 9. peatükis.
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Abstract

The thesis is in English and contains 45 pages of text, 10 chapters, 17 figures, 5 tables.

In recent years there has been an increase in using convolutional neural networks for
solving object detection and classification problems. By using different accelerators it
is possible to rapidly speed up inference and training with these algorithms. Xilinx has
created an universal deep learning processing unit, called DPU, which is configurable
hardware Intellectual Property (IP) used in multiple FPGA-based systems. The DPU offers
high performance without the need for developers to have an expertise in hardware design.

This thesis is a proof of concept of running You Only Look Once (YOLO) artificial neural
network based object detection algorithm on Avnet ZedBoard using Xilinx’s Deep neural
Network Development Kit (DNNDK).

One of the main motivations for this thesis is to provide useful material for educational
purposes. This thesis also includes guide on replicating a proposed solution.

One of the big obstacles was to reconfigure many aspects to make the proposed solution
more functional, because given algorithm is designed to be run on more computationally
capable platforms, e.g. Zynq R© Ultrascale and Zynq R© Ultrascale+ platforms from Xilinx.

The main result is a working object detection algorithm running on Avned ZedBoard
development platform, which are used in many universities. Solution uses programming
tools provided by Xilinx to implement inference acceleration on artificial neural networks
in different applications. This makes the proposed solution easy to modify, improve and
deploy.

In order to implement the given solution for academic purposes there is some further de-
velopment that can be done, mainly evolving system stabilisation and integrating different
aspects into a single project. Ideas and proposals for further development and modifications
are provided in the chapter 9.
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1. Introduction

This thesis is a proof of concept, including tutorial on running YOLOv3 object detection
algorithm on Avnet ZedBoard.

Running artificial neural networks on different types of hardware-based accelerators is
a topic extensively discussed in many years [1]. Artificial neural networks are widely
used for object detection and classification tasks. Contests are being held where object
detection algorithms compete against each other annually. One of the examples are COCO
dataset [2] based competitions where in recent years a new object detection has been
risen amongst others that delivers higher detection speed with comparable accuracy results
to other widely used neural networks, called You Only Look Once (YOLO)[3]. To the
best knowledge of the author this relatively new object detection algorithm has not been
currently implemented in courses in Tallinn University of Technology.

1.1 Motivation

Many universities worldwide are using different development boards for rapid prototyping
and as a practice tools for students to learn on. For example Tallinn University of Tech-
nology uses Avnet ZedBoards in course "System-on-chip design" [4] to educate students
about basics of system-on-chip designs, architectures, internet integration and many more.

YOLOv3 [3] is relatively new and moderately discussed object detection algorithm used in
many fields. There will be more information about its usages in chapter 2. The research
amount of implementing YOLO on FPGA is lower considered to the rest of research with
given algorithm. There is a lot more research that can be achieved, especially implementing
YOLO on student-friendly platforms. YOLO algorithm on Avnet Zedboard could be used
in educational purposes. The proposed solution would help students more efficiently
understand how artificial neural networks can be accelerated on FPGA and therefore how
different applications can be accelerated on hardware basis.
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1.2 Problem formulation

The main objective of this thesis was to briefly analyze Xilinx’s Vitis Unified Software
Platform and use it to accelerate inference of YOLOv3 artificial neural network using
Avnet Zedboard. If this can not be done as stated, an alternative solution must be searched
to implement a result as similar as possible. Main aspect for alternative solution would be
ease of use from widely used developing tools and environment. If solution is found, it
should be analyzed and its results should be compared to similar solutions.

1.3 Contribution of Hypothesis

The initial hypothesis for proposed solution was as follows: Vitis AI can be used to
easily deploy neural network applications accelerated by DPU without the need to modify
hardware designs. Test will be done on YOLOv3 artificial neural network model on
Zedboard to prove its ease of use and simplicity. If Vitis AI works as assumed it means
accelerating inference of artificial networks has never been so easy and can be used to
rapidly speed up prototyping of new embedded solutions which require real time image
and video processing.

1.4 Thesis organization

This thesis is formulated in following chapters:

� Background chapter briefly lists some similar solutions that have been previously
proposed. Each solution contains short analysis from author about feasibility of
using those solutions to solve current problem. This provides a brief overview what
has been done previously.

� Early experimental chapter describes workflow and early experimental part of thesis
before final solution was found. There is also a list of tools that was meant to be
used for finding the solution, but were neglected with reasons given.

� Used tools chapter lists and explains all the main tools that were used in the solution.
� Thesis solution explains the proposed solution and how it works and gives an

overview of its structure.
� Guide chapter provides guide for everyone with required tools to have an ability to

replicate given solution and implement YOLOv3 artificial neural network on Avnet
Zedboard.

� The analysis chapter explains how proposed solution was analysed and what were
the experimental results.

2



� Conclusion takes the main analysis results and provides a quick overview about
these.

� Future work points out what could be improved in proposed solution.

3



2. Background

This chapter mainly lists and explains the earlier attempts running YOLO on similar
platforms. The task was to find similar solutions to current problem description. The
closest one was found where YOLOv2 CNN was implemented on ZedBoard using custom
accelerator[5].

YOLO as an object detection algorithm can be widely used in various applications, e.g.
automatic detection of Melanoma[6], fire hotpots detection on CCTV using given algorithm
for high buildings evacuation [7], pedestrian detection [8], traffic counting systems [9] and
real-time face detection [10]. These examples show that YOLO is widely capable object
detection system that can also be used in resource-constrained environments, making idea
of accelerating its inference on FPGA highly feasible.

In journal Article "Design and implementation of YOLOv2 Accelerator Based on
Zynq7000 FPGA Hetereogeneous Platform" by Chen, Chenchai Zhilei, Xia Jun from
Jiangnan University, China there was a successful attempt to implement custom accelerator
for running YOLOv2 convolutional neural network on ZedBoard. Their experimental
results show that the performance of 30.15GOP/s was obtained from ZedBoard. In given
solution a YOLOv2’s workload was rated 29.47GOP on ZedBoard and interference time
for single pass was measured 1.13442897 seconds. [5]. This was until this day one of
the few articles found in which any version of YOLO neural network is implemented
on ZedBoard. This provides good source for comparison with Xilinx’s solution. In
comparison to current requirements this solution is not sufficient, because for YOLOv2 a
custom accelerator was designed, making usability of this processing unit very limited:
it only runs YOLOv2. Current solution needs to be more universal, making available to
inference different convolutional neural networks in a more beginner friendly approach.
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In article by Hiroki Nakahara and Masayuki Shimoda and Shimpei Sato there was sim-
iliar attempt accelerating YOLOv3 convolutional neural network on different hardware
platforms. Tested solution was proposed mixed-precision YOLOv2 on the Xilinx Zynq
UltraScale+ MPSoC zcu102 evaluation board, which has the Xilinx Zynq R© UltraScale+
MPSoC FPGA. [11]. Compared to ZedBoard this system is more capable on computing
performance (274,080 vs 53,200 LUTs; 2,520 vs 220 DSP). The results were successful
and measured 28ms inference time on a single picture while consuming 4.5W of electrical
power. Is was not shown what was computational performance of proposed solution so that
could only be estimated from workload of implemented CNN model and execution time.

5



3. Early Experiments and Results

The current chapter explains early experimental stages of this thesis and explains why
initial task description changed and how proposed solution was found. The main part
consists of brief explanations about Vitis and Vitis AI and their influence on finding
proposed solution.

3.1 Vitis

Vitis, also called Vitis Unified Software Platform is a software platform by Xilinx that en-
ables the development of embedded software and accelerated applications on heterogenous
Xilinx platforms including FPGA’s, SoCs, and ACAPs. It provides unified programming
model for accelerating Edge, Cloud and Hybrid computing applications. Providing em-
bedded programming versatility never seen before, Vitis could become tool to improve
development flow and speed of embedded and accelerated applications. It integrates high-
level frameworks, making able to use C, C++ or Python to develop hardware accelerated
applications. It also has low-level API’s to more control over implementation if needed.
[12]

Vitis was inspected because as of during development of thesis (April 2020) Vitis was
released less than year ago and analysis, whether it can be used to simplify development
flow on Avnet Zedboard, was not completed. It was found out that Vitis itself was not
designed for AI inference on Xilinx hardware platforms. Nonetheless, it is still a viable
platform to use while developing other applications. It must be noted that currently Vitis
does not have "out-of-the-box" support for Avnet Zedboard and is meant to be operated on
more modern platforms like Zynq R© UltraScale+. There are workarounds around the web
that enable to use Vitis with Zedboard, if needed. One of those workarounds are posted in
Digilent Technical Forums [13].
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3.2 Vitis AI

Vitis AI is a development platform for AI inference on Xilinx hardware platforms. It mainly
consists of optimized IP (DPU), tools, libraries, models and example designs. As claimed
in their website Vitis AI is designed with high efficiency and ease of use in mind[12].

Vitis AI uses dockers to deliver its tool to developers, making installing software more
convenient compared to its previous version, DNNDK. Development flow in Vitis AI
consists of running previously written shell scripts in predetermined succession.

Vitis AI is said to support Avnet Zedboard, but at launch (Vitis AI 1.0), it only supports
ZCU102, ZCU104, U200, U250 platforms . There is a high probability that Vitis AI will
have full support for Avnet Zedboard in upcoming year (2020-2021) [14]. For the time
being, it is recommended to use Xilinx DNNDK to develop and run hardware-accelerated
object classification applications on Zedboard [15]. Therefore, decision was made to use
DNNDK to find proposed solution for the given task. More information about DNNDK
can be read in the upcoming section 4.1.1.

3.3 Resnet-50 on ZedBoard

One of the first steps was to make sure DNNDK can be used to run DPU accelerated
applications on Avnet ZedBoard. This is claimed to work by Xilinx in its long form answer
record, named "73058 : Resnet-50 CNN application implemented on ZedBoard using
Vivado and Petalinux 2019.2" [16]. After attempts of following the guide the result was
successful and Resnet-50 worked as intended. This meant YOLOv3 could in theory be
implemented as well.

DNNDK supports 2 deep learning frameworks: Tensorflow and Caffe[17]. Since YOLOv3
is not written in Caffe deep learning framework like Resnet-50 has been, it was necessary
to convert it. Xilinx provides guide and tools to convert models from Darknet to Caffe,
including different versions of YOLO [18]. This guide also provides tools to compile
Caffe models to DPU, but lacks functionality to compile to ZedBoard. The problem was
solved by using compiler that was previously proved to work with Resnet-50 provided by
DNNDK. Information how to setup tools can be found at guide section 6.1.

7



3.3.1 YOLOv3 on Zedboard

To get YOLOv3 running on Zedboard with provided tools, emphasis was to modify as
little as possible. In first attempts to convert YOLOv3 to Caffe and compile to application
readable hardware configuration file (.elf) it was found that YOLO uses LeakyReLu as
activation function in many of its layers and default hardware configuration of DPU on
ZedBoard does not support it. LeakyReLu is a type of activation function used widely
in different YOLO network models, more info in 4.2. LeakyReLu could be enabled by
turning on its functionality in hardware configuration of DPU IP. This finally enabled the
use of YOLOv3 on Zedboard as intended. More information of solution can be found in
chapter 5.

8



4. Used Tools and Prototyping Environment

This chapter describes tools that were used to implement proposed solution. Under each
tool there is a brief explanation about its background and how it was used in proposed
solution.

4.1 Xilinx

Xilinx is a technology company offering wide range of computer hardware and software
solutions and is primarily known for supplying programmable logic devices. [19] It was
founded in Silicon Valley in 1984 and is currently supplying its products globally. Xilinx
provides of most of the tools used in this solution.

4.1.1 Deep Neural Network Development Kit

Xilix Deep Neural Network Development Kit is a predecessor of currently released Vitis
AI including tools to develop applications that are able to use hardware acceleration for
convolutional neural network inference. It provides a unified solution for deep neural net-
work inference applications by providing pruning, quantization, compilation, optimization,
and runtime support. [17]. It includes optimized tool chains for speeding up development,
lightweight programming API’s. It is also advertised by Xilinx to be easy-to-use with
gradual learning curve. There are currently 2 main frameworks that are natively supported
by DNNDK: Tensorflow and Caffe. Models from other frameworks must be converted for
use in DNNDK[17].

4.2 YOLO

YOLO is an object detector algorithm[3]. Compared to standard object detection algorithms
YOLO being an artificial neural network detects and classifies all objects on a image in
a single pass, hence the name YOLO "You only look once". This architecture claims to
work really fast compared to competing neural networks like RetinaNet-50 while retaining
similar precision as competitors[3]. YOLOv3 is an incremental step forward bringing new
features to the algorithm and optimizing its performance [3].

9



YOLOv3 in most of its convolutional layers uses LeakyRelu functions as its activation
layer. LeakyRelu "A unit employing the rectifier is also called a rectified linear unit ReLU"
is an activation function used in artificial neural networks. It has a raw output when input
is greater than 0 and 0.01input when input is less than 0 [20].

YOLOv3 is a well studied and publicised object detection algorithm and therefore it was
chosen for the current solution. In addition, it is open source and easily customisable.
More information on usages of YOLO in chapter 2.

4.3 Zedboard

Avnet ZedBoard is a development kit developed for designers interested in exploring
designs using the Xilinx Zynq-7000 all programmable SoC. The board contains all the
necessary interfaces and supporting functions to enable wide range of applications. This
board is efficient for rapid prototyping and proof-of-concept development [21].

Digilent offers Academic pricing of its products for many customers. Zedboard is widely
used in academic studies and prototyping because of its comparatively low price and high
availability for various institutions [22].

Figure 1. Top down view of Avnet ZedBoard (source: Avnet)

10



4.4 User hardware

This lists hardware that the thesis solution was developed and tested on. All of the necessary
tools were also installed on this configuration. This information can be used for reference
when porting to another system.

4.4.1 Host PC

Host PC used in this process was desktop PC. Its main specifications include:

� Processor: Intel I7-7700K
� RAM: 16GB DDR4
� Storage device: 1TB Samsung EVO 860 SATA SSD
� Operating system: Ubuntu 18.4.3 LTS

11



5. Thesis solution

This chapter describes overall behaviour and structural characteristics of proposed solution.
Most of the work is based on code samples provided by Xilinx, manuals by Xilinx and
community forum posts at Xilinx Community Forums.

The proposed solution is a complex system based on structure provided by Xilinx Deep
Neural Network Development Kit (DNNDK) [17] meant to be used on Avnet Zedboard [23].
This description further explains proposed system in hardware, software and application
aspects.

The framework used in this solution is based on DNNDK framework. To illustrate, here is
figure of DNNDK toolchain.

Figure 2. DNNDK Toolchain (Owner: Xilinx)

12



5.1 Hardware

Solution uses Avnet Zedboard to run YOLOv3 artificial neural network on. Zedboard has
Zynq R© 7020 System-on-chip in addition Dual-Core ARM Cortex-A9 processing system,
512MB DDR3 (32 x 128), 256 Mb Qspi Flash, 53200 LUT’s and 106400 Flip-Flops [23].
FPGA is using mostly standard connections regarding processing system to essential inputs
and outputs of system. The most notable difference is to use Xilinx Deep Processing Unit
(DPU) to accelerate inference of YOLOv3 artificial neural network. The DPU used in
this project is from sample system provided with Xilinx’s guide 73058: "ResNet-50 CNN
application implemented on a ZedBoard using Vivado and PetaLinux 2019.2" with small
modifications [16]. The Parameters of DPU must be changed using Vivado design suite
to use this with YOLOv3. "To use this design a Tcl script has been made that generates
the Block diagram, the wrapper and the constraints file in Vivado design suite" [16]. It is
also notable that DPU clock frequency is not a theoretical maximum of Z7020, which is
200MHz, but is 90MHz, because of excessive power demand that is not properly provided
by the Zedboard. The 90MHz DPU frequency is recommended by Xilinx guide 73058
[16].

Here are listed parameters of DPU configuration used in this project:

Table 1. DPU parameters in Vivado

Parameter Value
DPU Cores 1

Arch of DPU B1152

Usage low

Channel augmentation enabled

AveragePool enabled

Conv: Relu Relu6
LeakyRelu

Softmax cores: 0

13



5.2 Software

Solution is built by following guidelines and structures provided by Xilinx DNNDK,
mainly in guide 73058 [16, p. 3], running on Petalinux configured for this application.
Petalinux is configured in a way that compiling applications on Zedboard is made possible.
Petalinux configuration is explained further in these steps:

� Initial configuration. Project is initialized by .bsp file provided by Xilinx’s guide
73058 [16, p. 3] which configures initial parameters, for example configuring device
tree to include DPU and adding the DNNDK library.

� "Configuring the Petalinux project with hardware design"[16, p. 3]. This can be
done with argument –get-hw-description more information can be read in guide
section.

� Configuring Petalinux project by modifying list of packages that will be installed on
Petalinux. This gives an ability to compile applications on Petalinux itself.

� Configuring rootfs. Petalinux now has many additional packages in it. This makes
it running on RAMDisk not feasible because of the low amount of overall system
memory on Avnet Zedboard. Therefore rootfs is located on a separate partition on
SD card making possible to store additional packages, applications and even images
under test.

After successful configuration, Petalinux can be built and exported to SD card. SD card
can be plugged in Zedboard and tested for successful build of Petalinux. If configuration
is working as intended, the Petalinux configured project can be saved to .bsp file making
sharing and reusing Petalinux projects much easier [16, p. 8].

There are some additional configurations that must be done if applications that require
acceleration from DPU are needed to be compiled on target. Although DNNDK as a
library is installed via Petalinux, the tools for compiling applications are not, making
incomplete installation of DNNDK on Zedboard. Runtime libraries work and precompiled
applications work as intended. Additional libraries must be copied from DNNDK tools to
target for compiling. More information about this is found in chapter 6.2.

5.3 Application

Using YOLOv3 in this solution was mainly accomplished by running the application that
uses DPU for accelerating inference of a neural network. The application is based on the
sample that was provided by Vitis AI guide which was about converting Darknet models
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to Caffe to Xilinx DNNDK. In this solution user application was written in C++ and uses
common and specialized libraries to accomplish its tasks. One of the most specialized
and important library is dnndk.h which adds functionality to communicate with DPU.
DPU initialization, image acquisition, preprocessing, postprocessing and recording of
the results is done in application and can be easily modified by changing source files on
target device and recompiling application on Zedboard [18]. It is also possible to cross
compile applications [17]. Inference of YOLOv3 is run on DPU, meanwhile application
waits for DPU for an output of output layers. Output signal is sent by DPU as an interrupt

to main processing system. Interrupt handling is done by DPU driver on Petalinux. To
visualize image classification an output text was added to the application which prints a
name of a detected object class onto a result image, located currently in the top left corner
of detection - this functionality was not present in the sample solution.

Application uses .elf file that is specifically compiled for running YOLOv3 on DPU
with previously mentioned configuration. This .elf file contains information of a neural
network to simulate and how a neural network should behave. The file is sent to DPU for
initialisation and is compiled by Deep Neural Network Compiler [17].

The sample code from Vitis Edge-AI tutorial was initially designed to process both pictures
and video files. Since current objective was to focus on image recognition part of the
application the video part of it was unedited. As the video part was untested on Zedboard
with current configuration, it may not perform as it was supposed to. Nevertheless, image
recognition part of the application is tested and its results are analyzed in analysis part of
this thesis.

5.4 Behavioural notes during Experimentation

During experimentation with larger sets of images a behaviour was noted in which de-
vice freezes (becomes unable to respond) and resets itself. After restart system behaves
normally again. This is probably caused because of the memory remapping in Petalinux
configuration: there might appear a situation in which encapsulated applications share
the same overlapping memory space, making possible to rewrite each other’s data. If
this occurs, kernel detects error and reboots. During experimental stage this problem had
many repair attempts by author, but none successful. Therefore, as in current solution this
behaviour can occur, the probability of the error was measured around 3% during each
image pass.
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6. Guide

This chapter contains mostly step-by-step guide on how to get YOLOv3 up and running on
Avnet Zedboard using Xilinx DNNDK. This tutorial is divided into 2 main parts: tools
and system. Copying large amounts of other tutorials into here is a decision based on
combining all existing tutorials into single document that can be used from setting up the
environment to running application on Zedboard.

6.1 Getting tools to run

This section is shorter than the later one, because most of the documentation for installing
development tools are documented by the providers. It is possible to install and start using
these tools without the use of this guide, however, here are some remarks author has made
while installing named tools for the first time. To see what hardware platform solution was
made and tested on, refer to 4.4.1.

6.1.1 Vivado 2019.2 HLx edition

Installation of Vivado HLx edition 2019.2 is well documented and installation instructions
can be found at [24]. In this sample only Vivado is required when selecting which software
to install.

6.1.2 Deep Neural Network Development kit

Deep Neural Network Development Kit (DNNDK) can be installed using quick start guide
included with DNNDK guide (UG1327) [17]. This guide covers most of aspects installing
DNNDK on host PC successfully, however, there are come remarks author points out to
viewer which might make installation process easier. In quick start chapter, only "Setting
up Host" part is necessary. Setting up ZedBoard will be done in next section of this guide
6.2.
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6.1.3 Petalinux

Petalinux installation guide is written in "Petalinux Tools Documentation Reference Guide"
[25]. Refer to this guide for installation: guide is well written and also has tips on
troubleshooting while encountering any common issues while installing the Petalinux
tools.

Setting up Petalinux working environment as guide suggests mainly launching a settings.sh

or settings.csh script which also checks for Petalinux tools installation. Author points out
that this script applies Petalinux tools path variables to only current terminal session and
will not work in separate terminal window. In order to permanently add Petalinux Tools,
these paths must be included in $PATH variable in Linux environment.

6.1.4 Edge AI tools for converting YOLOv3 to Caffe and DNNDK

This subsection is composed of many software packages that are needed in order to
successfully convert YOLOv3 to Caffe and use shell scripts written to ease this process for
developer.

It is important for the author to emphasise that the instructions may not be absolute for this
installation. The hardware configuration 4.4.1 used in this project was prone to multiple
errors due to the lack on instructions given officially by Xilinx [18]. Therefore, it is
recommended to install the additional dependencies which might be missing in the current
version of official installation guide. This might change as the official version improves.

Here is the list of official perquisites for the converter:

� Ubuntu OS 14.04 or 16.04. For more information, see chapter 1 in the DNNDK
User Guide UG1327[17].

� DNNDK tools and image for evaluation boards (zcu102 used in this example). For
more information, see Xilinx AI Developer Hub.

� Python 2.7 and its virtual environments for Ubuntu OS.
� The official YOLOv3 network model trained with COCO dataset is available in

YOLO homepage [26]. Download the yolov3.weights file (around 248 MB) and
place it in the 0_model_darknet folder.

Ubuntu OS was mentioned 16.04 in Official list, but Ubuntu 18.04 works as well in this
application. Some additional dependencies that author noted were missing when trying to
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compile Darknet and Caffe:

� libprotobuf-dev profobuf compiler. These can be installed with following terminal
commands:

sudo ap t−g e t i n s t a l l l i b p r o t o b u f −dev p r o t o b u f−
↪→ c o m p i l e r

sudo ap t−g e t i n s t a l l l i b a t l a s −base−dev

These are necessary for handling larger data amounts.

For further installation, refer to guide provided by Xilinx [18]. If encountered with
problems during installation it is recommended to search for answers in Xilinx community
forums at https://forums.xilinx.com.

6.2 Getting YOLO onto ZedBoard

This section and its subsections describe typical development flow on how to set up
ZedBoard and how to get YOLOv3 running on ZedBoard. This guide is an extension of
Xilinx’s guide 73058 [16] with some additional steps noted. The Xilinx’s guide 73058
itself is also copied here as stated in the introduction of this chapter. Each subsection has
its perquisites indicating what user must have done or obtained prior following this guide.

Below is a simplified illustration of development workflow of getting YOLOv3 onto
ZedBoard.
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Figure 3. Simplified view of development flow in proposed solution

6.2.1 Hardware

Hardware design subsection uses tutorial from Xilinx’s guide 73058. here will be copies
of original guide with additions if needed. Perquisites of this subsection:

� Vivado Design suite 2019.2 HLx Edition (any edition works)

The Hardware design is simplified by a Tcl script that generates the Block Diagram, the
wrapper, and the constraints file. Finally, it generates the bitfile.

1. Download the file Resnet50_ZedBoard_2019_2.zip. This contains the Tcl script and
the DPU IP.

2. Extract the archive
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t r e e −L 2

3. Open Vivado 2019.2 and change the directory to HW_ZedBoard. This will be the
new working directory.

4. In the Vivado Tclconsole run the following:

cd p r o j e c t _ p a t h / Resnet50_ZedBoard / p l

s o u r c e . / s c r i p t s / Resne t50_ZedBoard . t c l

The Script will open a new project, create the Block Diagram and configure the Zynq
microprocessor.

5. Before continuing with original guide, Modification to DPU must be made for it to
run YOLOv3. Select DPU IP by double clicking on it. On the active window (Re-
customize IP) make sure the DPU configuration is as seen on following illustration.

Figure 4. Screenshot of DPU configuration used in this project.

6. Run “Generate Bitstream” to run the synthesis, then run the implementation and
generate the configuration file. If you open the BD you should see the following as
is in figure 5.

7. It is now possible to export the Hardware (with bitfile included) and procees with
Petalinux flow.
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Figure 5. Screenshot of block diagram of hardware configuration used in this project

6.2.2 Software

This subsection covers Petalinux installation, SD card preparation, setting up Zedboard and
starting Petalinux to check if the installation was successful. By the end of this subsection
the user should get Petalinux booted up and running on Zedboard successfully.

Perquisites for this subsection:

� Petalinux and its perquisites are installed and configured on host computer. For
installation, refer to 6.1

� User has knowledge of basic operations with Zedboard. If not, refer to Zedboard
Getting Started Guide [27].

The following section is mostly copied from Xilinx’s guide 73058 with additional com-
ments and additions from author. For reference, please refer to Xilinx’s guide 73058 and
its references [16]. For overall explanation of software section, refer to 5.2.

Petalinux project creation from resnet50_zedboard.bsp

� Download Resnet-50 package from Xilinx homepage and extract it to desirable
location on host PC. Package can be found in following link: https://www.
xilinx.com/support/answers/73058.html For this solution a package,
named "Resnet50_ZedBoard_2019_2.zip" was used.

� Setting up two useful variables:

cd < p a t h _ t o _ w o r k i n g _ d i r e c t o r y >

export TRD_HOME=$ ( pwd )

export PET_PROJ=" r e s n e t 5 0 _ z e d b o a r d "

� Creating the Petalinux project:
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cd $TRD_HOME/ apu / r e s n e t 5 0 _ z e d b o a r d _ b s p /

p e t a l i n u x−c r e a t e − t p r o j e c t −s r e s n e t 5 0 _ z e d b o a r d . bsp

↪→ −n $PET_PROJ −−f o r c e

� Configure the PetaLinux project with the HW design

cd $TRD_HOME/ apu / r e s n e t 5 0 _ z e d b o a r d _ b s p / $PET_PROJ /

p e t a l i n u x−c o n f i g −−ge t−hw−d e s c r i p t i o n =$TRD_HOME/ p l /

↪→ p r j / z e d b o a r d −− s i l e n t c o n f i g

NOTE! Before continuing with official guide from Xilinx an additional configuring
must be done to reconfigure Petalinux to run YOLOv3.
Adding additional packages to Petalinux:

– In current terminal, type

p e t a l i n u x−c o n f i g −c r o o t f s

A window is opened where user can choose what packages can be installed
on Petalinux. All necessary and desired packages must be selected before
building Petalinux project. Recommended packages for running and compiling
YOLOv3 application in Petalinux:
∗ filesystem packages -> devel –> make
∗ filesystem packages -> libs -> gtk+, gtk3+, opencv
∗ filesystem packages -> misc -> packagegroup-core-buildessential, packagegroup-

self-hosted, xserver-common
Save changes and close Petalinux rootfs config window.

Figure 6. Petalinux Root filesystem configuration window.

– During the experimentation with various configurations of YOLOv3 on Zed-
board it was found that YOLOv3 required more DMA memory than provided
by default. So it is necessary to increase DMA contiguous memory allocator.
For this, insert:

p e t a l i n u x−c o n f i g −c k e r n e l
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After that a Petalinux kernel configuration menu will appear in a separate
terminal window or tab, as shown in figure 7.

Figure 7. Petalinux kernel configuration main menu.

– Navigate Petalinux kernel configuration into section device drivers -> generic
driver options -> DMA contiguous Memory Allocator and make sure mentioned
option is selected with "*".
In next section: Size in Mega Bytes select it and set number to 128. In this
demo 128MB is sufficient to store all necessary temporary information that
YOLOv3 requires.

– Now Petalinux installation will be so large in size that making it to boot on
RAMDisk becomes unfeasible. Alternative solution is to configure Petalinux
rootfs to mount onto SD card itself. For that, insert:

p e t a l i n u x−c o n f i g

A Petalinux main configuration screen will appear, like shown in figure 8.

Figure 8. Petalinux configuration window.

– Navigate in menu and select EXT (SD/eMMC/QSPI/SATA/USB) in Image
packaging configuration -> root filesystem type.
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– In order to create filesystem as ext4 type we will need to add ext4 into root
filesystem formats in Image packing configuration -> root filesystem formats.
Type "ext4" at the end of existing line as shown in figure 9.

Figure 9. Petalinux Root filesystem configuration formats window.

� Build the Petalinux project. Insert:

p e t a l i n u x−b u i l d

This process could take several minutes.
� Create BOOT.BIN and image.ub for the SD card:

cd $TRD_HOME/ apu / r e s n e t 5 0 _ z e d b o a r d _ b s p / $PET_PROJ /

↪→ images / l i n u x

p e t a l i n u x−package −−boo t −− f s b l z y n q _ f s b l . e l f −−u−
↪→ boo t u−boo t . e l f −−f pga sys tem . b i t −−f o r c e

cp BOOT. BIN image . ub $TRD_HOME/ SDcard

� Preparing SD card. Guide on preparing SD card for booting Petalinux is copied
from Chatura Niroshan’s web article "Installing Ubuntu on Xilinx ZYNQ-7000 AP
SoC Using Petalinux". For reading straight from the source, please visit the address
according to citation [28]. For same purposes as why most of 73058 is copied here,
the mentioned tutorial will also be written here. All credit for this refers to the
original author.

"This can be easily done with GParted application for Linux. In Ubuntu, open a
terminal and type following command to start GParted.

sudo g p a r t e d

If gparted is not installed, you can install it using the following command.

sudo ap t−g e t i n s t a l l \ emph{ GPar ted }

Connect the SD card to the PC using SD card reader and start GParted using above
command. Follow the steps below to prepare the SD card.

– Select the SD card in GParted.
– Make sure its unmounted and delete the partition of the SD card so that it

displays ‘unallocated’ in GParted.
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– Right click the unallocated space and create a new partition with following set-
tings. Free Space Proceeding (MiB): 4, New Size (MiB): 512, File System:
FAT32, Label: BOOT. Don’t change other settings and click Add to finish.

– Right click the remaining unallocated space and create a new partition with
following settings. Free Space Proceeding (MiB): 0, Free Space Follow-
ing(MiB): 0, File System: ext4, Label: rootfs. Don’t change other settings
and click Add to finish.

– Apply all changes to create the partitions." [28]
� Copying contents from host PC to SD card.

– Copy BOOT.bin and image.ub from $TRD_HOME/sdcard into BOOT partition
on SD Card.

– Unmount second partition of SD card (do not eject card from reader yet).
– Copy contents from file

$TRD_HOME/apu/resnet50_zedboard_bsp/$PET_PROJ/images/linux/rootfs.ext4
into second partition on SD card. This can be done with command:

sudo dd i f =$TRD_HOME/ apu /

↪→ r e s n e t 5 0 _ z e d b o a r d _ b s p / $PET_PROJ / images

↪→ / l i n u x / r o o t f s . e x t 4 o f = / dev / sdc2

NOTE! Make sure the selected destination partition corresponds to SD card’s
partition. This command could overwrite entire system partitions if used wrong.
To make sure proper partition is selected, insert:

l s b l k

to list all partitions available on host PC.
– Open GParted, select proped device from top right. When listing all partitions

on SD Card a single partition might note an error message. Select this partition,
right click on it and select check.

– Apply changes to check for filesystem errors. This will extend SD Cards second
partition to full extent making possible to use all this space on Zedboard.

– SD Card is now ready to unmount and eject from system.

To make sure the tutorial in this subsection has been completed successfully, Petalinux
installation should be checked on Avnet ZedBoard.

To check successful booting capability of Petalinux:

� Make sure Zedboard is configured as stated in Zedboard getting started guide: [27,
p. 11]
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� If Zedboard is turned on, connect to Zedboard via USB_UART. Step by step guide
can be found at [27, p. 11] for host machine running Microsoft Windows 7 or newer
or [27, p. 36] for host machine running Linux. In this experiment a Linux host was
used and after Zedboard is configured, a single command was used:

sudo picocom −b 115200 / dev / ttyUSB0

Note that device name varies by host and devices used. If Petalinux installation is
successful a login screen appears in terminal, as shown in figure 10.

Figure 10. Screenshot of terminal shortly after Petalinux has successfully booted greeting
with login screen.

For logging in, the default username is "root" and password is "root".
� It is recommended to use sftp for more intuitive file transfer between host and device.

In Linux this can be done by using file manager, like Nautilus, and inserting:

s f t p : / / root@IP_ADDRESS

Note that IP_ADDRESS shall correspond to IP address set to Zedboard and network
connection between host and device has been established.

When connection to the Zedboard is successful it is also important to check if DPU has
been detected by the Petalinux kernel. For detection insert:

d e x p l o r e r −w

To view DPU signature information for selected board [17, p. 25]. If DPU is detected
correctly then terminal output should look something like in figure 11:
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Figure 11. DPU Signature Viewed on Zedboard with DExplorer

It is necessary to include additional DNNDK library in order to compile YOLOv3 appli-
cations on Zedboard after the Zedboard has started. Here are steps to install additional
dnndk.h libraries into Petalinux on Zedboard:

� Copy xilinx_dnndk_v3.1/ZedBoard folder and its contents into root filesystem on
Zedboard.

� Copy contents of /path_to_folder/ZedBoard/pkgs/lib into /usr/lib folder. Some files
already exist at the destination folder, feel free to skip duplicate files.

� Copy contents of /path_to_folder/ZedBoard/pkgs/include into usr/include/dnndk

folder. Folder /usr/include/dnndk must be created in this path

Resnet-50 is a suitable sample to check if application compiling can be done on Avnet
ZedBoard. Navigate into /path_to_folder/ZedBoard/samples/resnet/ folder and insert:

make

If make is successful without any errors then Zedboard is configured and ready to compile
and run YOLOv3. Resnet-50 can be run by inserting:

. / r e s n e t 5 0 p a t h \ _ t o \ _image / image . j p g

It should try to detect and classify objects as seen in figure 12.
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Figure 12. Resnet-50 output after running object detection on provided sample image.

6.2.3 Application

This subsection covers converting YOLOv3 from Darknet to Caffe framework and applica-
tion compilation on Zedboard and DPU configuration file compilation on host PC. By the
end of this subsection it is possible to run YOLOv3 application on Zedboard, accelerated
with Xilinx DPU. This subsection is mostly work of author with some sections from other
guides from Xilinx.

Perquisites for this subsection:

� Previous subsections are completed (hardware and software) and Petalinux is running
able to run on Zedboard.

� Xilinx DNNDK is installed on host PC and Zedboard
� Prequisites for Edge AI tutorial "YOLOv3 Tutorial: Darknet to Caffe to Xilinx

DNNDK" are completed[18].

This guide consists of sections divided into subsections. The guide can be completed by
following steps below:

� Creating hardware description file for DNNQ.
This can be done by using dlet utility.

– Locate top.hwh file. In this project top.hwh can be found at
path_to/Resnet50_ZedBoard_2019_2/pl/prj/zedboard/

zedboard.srcs/sources_1/bd/top/hw_handoff/ .
– Copy the top.hwh to new folder made to desirable location, for example home-

/username/zedboard_hw .
– Navigate to this folder and open command prompt, insert:

d l e t −f t o p . hwh
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This creates new file ending with .dcf extension necessary for deep neural compiler.
If dlet fails and reports stack smashing, relocate file to another location and try again.
If message Generate DPU DCF File filename-dcf successfully is seen on terminal,
then .hwh to .dcf conversion was successful. For more information, refer to Xilinx
DNNDK user guide [17].
NOTE! During each use dlet might crash with "Aborted (core dumped)" printed on
command line. This issue does not provide problems for file conversion and can be
ignored.

� Converting YOLOv3 from Darknet to Caffe.
This part is heavily inspired by Edge AI tutorial "YOLOv3 Tutorial: Darknet to Caffe
to Xilinx DNNDK" Refer to this guide before continuing [18]. If all prequisites
are met and all of the necessary software is installed, a single script will convert
YOLOv3 from Darknet to Caffe.

0 _ c o n v e r t . sh

This script will convert darknet to caffeemodel. Prior executing the script make sure
yolov3.cfg and yolov3.weights files are in
path_to/Edge-AI-Platform-Tutorials-3.1/docs/

/Darknet-Caffe-Conversion/example_yolov3/0_model_darknet folder.
If needed to check whether converter YOLOv3 works as intended
1_test_caffee.sh can be used, for more information, refer to guide provided by Xilinx
[18].

� Quantizing YOLOv3 in caffe network using DECENT.
This step is similar with previous step. By running:

2 _ q u a n t i z e . sh

Xilinx’s DECENT tool will quantize YOLOv3 Caffeemodel and apply pruning,
increasing its performance on DPU with small accurary degradation.
For more information on DECENT, refer to DNNDK guide [17, p. 40].
For more information on the script, refer to tutorial provided by Xilinx [18].

� Compiling YOLOv3 info .elf using DNNC.
Edge AI tutorial [18] provides script to use Deep neural network compiler. For
more rapid development it is better to use shell script provided by Xilinx DNNDK
package.
This script is located at xilinx_dnndk_v3.1/host_x86/models

/caffe/resnet50/dnnc_Zedboard.sh.
There are many scripts in xilinx_dnndk_v3.1/host_x86/models/caffe/resnet50/dnnc

folder corresponding to different board models DNNDK officially supports. In this
project the target board is Avnet ZedBoard so dnnc_Zedboard.sh is used. Before
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launching:
– Copy contents (deploy.caffemodel and deploy.protxt) from prior working direc-

tory in Edge AI tutorial folder to
xilinx_dnndk_v3.1/host_x86/models/caffe/resnet50/decent_output folder. If last
folder does not exist, create one named decent_output.

– Modify dnnc_zedboard.sh as follows.
Replace line 3 from Resnet50 to yolo.
Replace line 7 dnndk_dcf="../../../dcf/ZedBoard.dcf" with path to previously
created .dcf file on host PC.

– Execute script:

dnnc_ZedBoard . sh

This should generate .elf file into dnnc_output folder. If successful the terminal
output will look similar as in figure 13:

Figure 13. Screenshot of terminal shortly after DNNC has completed successfully

� Copying source files from host PC to target device. Extract yolov3_deploy.tar.gz into
desired folder on Zedboard. Recommended to use sftp and graphical file browser for
easy file transfer. Navigate into /path_to/yolov3_deploy/model folder and delete all
content inside of it.

� Compiling and running YOLOv3 application on Zedboard.
To compile application, use terminal to navigate into yolov3_deploy folder on Zed-
board and insert:

make

If successful, no error or warning messages should appear. To test application,
launch it by typing:

. / yo lo c o c o _ t e s t . j p g i

If successful, the result should look something like in figure 14:
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Figure 14. Screenshot of terminal shortly after YOLOv3 application had run successfully

If there is need to see visual output of YOLOv3 from the application, make sure in
main.cc line nr. 443, is written as imwrite("result.jpg", img); and is not commented
out. A result image appears in the same folder as application is executed in.
Here is example image output of YOLOv3 running on ZedBoard with modified
application, showing class names in output images. Detected classes were: per-
son 99.1% confidence; dog 62% confidence; chair 12.4% confidence; sofa 18.1%
confidence.

Figure 15. Test image included in Edge ai toolset with detection boxes from YOLOv3 on
ZedBoard
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7. Analysis

The analysis of the thesis consists of 3 main aspects that are analyzed in this solution:
image measuring and performance and latency. Image measuring part determines if
neural network on Zedboard is able to detect objects. The performance part analyzes how
much application utilizes DPU and its efficiency. The third part displays what is average
measured latency of YOLOv3 on Zedboard.

7.1 Proof of Concept and Accuracy

This section proves that the proposed solution performs as intended and the YOLOv3 is
able to detect and classify objects on pictures. The calculations for mean average precision
(mAp) were done by using ready made open source solution. This solution is made for
evaluation of the object detection problem and is excellent for evaluating object detections
in a simplified way [29]. For this evaluation a sample2 practical example system was used
as a basis.

In order to use this software for evaluation, it is important to set up an evaluation data.
Truth information is located in separate files for each picture in folder /groundtruths.
"In these files each line should be in the format: <class-name> <left> <top> <right>

<bottom>" [29]. The COCO 2017 validation dataset contains 5000 pictures, named "2017
Val images [5K/1GB]" [2]. Due to the time restrictions of the thesis and the size of the
given dataset, a set of 20 pictures were selected randomly from COCO validation dataset.
Those pictures were then captioned by hand and groundtruth files of these pictures were
copied to /groundtruth folders. Additional information of the selected files and their ground
truth information can be found at GitHub page by author [30].

Detection data for evaluation was created accordingly: a shell script was made to run
YOLOv3 application on ZedBoard that iterated all pictures in the specified folder and
inserted detections one at the time into separate files of the /results folder. The contents
were then copied into /detections folder for evaluation.

The sample provided by validation software is designed to calculate mean average precision
for each object class detected in ground truth files. If object class is detected in detection
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files, but has not been mentioned in ground truth files, the mAp will be n/a meaning it
could not calculated. If specified object class is present in ground truth files, but neural
network is unable to detect it, the mAp will be 0. Based on 20 picture sample set the results
were as seen in table 2.

Table 2. Average accuracy values per class:

Class name mAp
apple: 0.666667

backpack: 1.000000

baseball bat: 1.000000

baseball glove: 1.000000

bench: 0.972222

bird: 1.000000

book: 1.000000

bottle: 1.000000

bowl: 1.000000

car: 0.750000

clock: 1.000000

horse: 0.000000

hot dog: 0.666667

person: 0.790208

skateboard: 1.000000

snowboard: 1.000000

sofa: 1.000000

surfboard: 1.000000

tie: 1.000000

train: 1.000000

umbrella: 1.000000

zebra: 1.000000

As seen most of classes are having 100% accuracy based on the results of these pictures.
This leads to an assumption that YOLOv3 is perfectly capable of detecting mentioned
objects from pictures. This is not true, because most of these classes had an occurrence
of 1-3 in this custom made dataset, making it easy for the validation application to output
such high accuracy results. This analysis still prove that YOLOv3 is capable to detect and
classify objects on pictures while running on Avnet ZedBoard.
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7.2 Performance and Latency

One of the tasks was to measure performance and latency of the given system and analyse
its results. These results give overview on how efficiently YOLOv3 performs on Avnet
ZedBoard with the given configuration and what is its performance.

7.2.1 Performance and efficiency

Performance and efficiency are important variables used for measuring artificial neural
networks. These metrics show capabilities of object detection algorithms in action and can
be used to decide use cases in the future.

In this context the performance is regarded as a computational capacity of a processing
unit to perform calculations needed for a single forward pass of a neural network in a fixed
set of time. This is measured in billions floating point operations per second, also named
GFLOP/s or GFLOP/sec.

Workload of an artificial neural network is calculated by counting all floating point opera-
tions needed for a single pass. Single pass means a single image is passed through artificial
neural network at the time. Workload is measured in billion of operations, also named
GOP.

Efficiency in this analysis is regarded as measured computing performance in FLOPS per
energy consumption (in Watts). This value, also called "Energy efficiency", is measured in
“Operations/Second ”per Watt (OPS/W).

7.2.2 Workload calculation

There were difficulties in calculating the workload of YOLOv3 in this thesis, because it
demands some expertise in this field. Workload depends on network model, framework
and application it is running on. Official workload for YoloV3 provided by whitepaper
is 18.7GOP [3]. This workload refers to YOLOv3 on a single forward pass in Darknet
model. Looking at another source presented by Xilinx in 2018, claims YOLOv3 workload
to estimate around 65.25GOP [31, p. 36] when running on DPU, specifications of its
architecture were not noted. Another claim can be taken directly from DNNC which
compiles neural network with its weights to specific architecture and system and estimates
its total workload. From DNNC workload was claimed to be 140.691GOP as seen in figure
13. Due to large differences between each claims one was needed to be taken as a base to
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calculate upon.

In this analysis a DNNC version of workload was chosen because of the following reasons:

1. Workload can depend on platform on which an application is running on, especially
when neural network has been quantized or modified from original. DNNC calculates
workload for DPU with specific architectural parameters.

2. Xilinx provides sample networks for Avnet ZedBoard, notable Resnet-50 model. In
this model a claim of 7.71GOP workload is given to Resnet-50 for a single forward
pass. This claim can be viewed in line 74 of main.cc source file in Resnet-50 sample.
This claim can be checked by running DNNC for same configuration and network
and see if results deviate. As a result DNNC calculated the same workload as was
written to source files of Resnet50 sample. Therefore it can be assumed this compiler
can calculate workload of YOLOv3 as well.

3. Workload was manually calculated for checking purposes. A quantized Caffe
model, which was directly converted from original YOLOv3 model and quantized
using DNNQ. This provides most accurate model for calculating total workload of
YOLOv3 as it will be compiled into DPU. More information on workload calculation
is written below.

Here is an explanation how the workload was calculated to check the results from the
DNNC. To understand convolutions, a well-explained web article by Sumit Saha explains
basics on convolution calculations in an artificial neural networks. [32]. An approximate
result on how to calculate workload can be found by following calculations done below. A
convolution calculation of a single pixel can be simplified as a matrix multiplication of
kernel by given size with corresponding values from weights and depth of input layer and
result matrix summed up into a single value. This workload can be calculated by the given
formula:

Single convolutional workload

nconv = 2(kx)
2zinput (7.1)

Where kx is kernel size and zinput is depth of an input layer. This process is repeated for
every pixel in a single filter and then in every filter. There is also a guide on convolution
arithmetic that explains how output size can easily be calculated [33]. Formula for this is
relationship 6 from given guide and it is described as follows:
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Output size calculation

xout = [
i+ 2p− k

s
] + 1 (7.2)

Where i is size of an input layer, p is convolution padding size, k is convolution kernel
size and s is convolution stride size. As seen in YOLOv3 model provided by quantized
model v3.protxt where width and height of layers are the same, making this architecture
symmetric. Therefore both layer and width can be calculated at once. To calculate total
convolution workload of a single layer this equation can be used:

Convolution calculation workload of single layer

aconv = nfiltersnconv(xout)
2 (7.3)

Where aconv is total convolution workload of single layer and nfilters are number of filters
applied to given layer.

To calculate total workload of an layer, an activation layer also needs to be considered. In
YOLOv3 model an activation layer is Relu, or in other case LeakyReLu, more information
on ReLu’s are chapter 4.2. To summarise a calculation workload for an each pixel is a
single multiplication is done which uses floating point values. The calculation of a total
activation function workload of given layer can be calculated by given formula:

Activation calculation workload

aact = nfilters(xout)
2 (7.4)

To sum up total calculation workload of a single convolutional layer in artificial neural
network this formula can be used:

Total estimated workload of single convolutional layer

atotal = aconv + aact (7.5)

For example, layer1_conv total calculation can be calculated when input size is 608 x
608 and depth 32. Using 3 x 3 kernel with 64 filters with padding size 1 and stride 2
yields to output of 304 x 304 layer with depth of 64. Single convolution workload was 576
operations (OP) and total workload of this layer was calculated 3,412,738,048 OP or 3.41
GOP.
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By calculating total workload of all convolution layers we can get approximate workload
of any convolutional neural network, because vast majority of computationally expensive
workload is in convolutional and activation calculations. Total number of convolutional
layers in YOLOv3 Caffe was counted 75.

There are also many instances in YOLOv3 architecture where 2 layers with the same size
parameters are merged into 1. These layers were detected 27 in Caffe. The calculation
workload for this kind of operation was multiplying dimensions of an input layer, counting
for every addition needed for a single output layer.

When all convolutional layer parameters were added and calculated as described before, a
total estimated workload of YOLOv3 Caffe is 140,056,261,363 GOP which is similar to
result provided by DNNC (140.691GOP). Those differences might come from workload
calculation of upsampling some layers which were not counted in current calculation,
because of a low workload compared to the rest of the algorithm.

All of the calculations for workload can be seen in author’s GitHub page [30].

7.2.3 Performance

Performance can be calculated by dividing workload with execution time. This can be
done both manually (measuring execution time of forward pass and dividing workload
with it) or by automatically using Xilinx’s DPU Profiler feature, called Dsight. Dsight is a
DNNDK performance profiling tool, mainly for neural network model profiling. To use
Dsight a DPU profiling mode must be turned on before running task on DPU. This can be
done by inserting dpuEnableProfiling() before dpuRunTask in YOLOv3 application. More
information about this utility can be found at Vitis AI User guide [34, p. 84]. By running
Dsight on YOLOv3 on Avnet Zedboard following results were acquired:

Table 3. DPU Profiler results running YoloV3 at 90MHz

Class name mAp
Total nodes (workload) in
MOP

140691.89

Memory (MB) 267.38

Execution time (ms) 1504.94

Efficency(%) 90.2

Perf(GOPS) 93.5
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To validate results, a test was taken place on a same system, but with reduced clock speed:
from 90MHz to 50MHz and results can be seen in table 4:

Table 4. DPU Profiler results running YoloV3 at 50MHz

Class name mAp
Total nodes (workload) in
MOP

140691.89

Memory (MB) 267.38

Execution time (ms) 2708.29

Efficency(%) 90.2

Perf(GOPS) 51.9

Measurements with different clock speed were required to determine whether Dsight is
able to detect maximum theoretical performance of DPU with given hardware parameters
or not. The tests above prove that these are correct. In fact it can be further displayed by
table that visualizes maximum theoretical performance of DPU at different clock speeds.
As a reference point a theoretical maximum of 230GOP/sec was used from DPU user
guide [35, p.29] which states this value from Z7020 device (same as on Avnet ZedBoard)
using same DPU configuration (B1152 x 1) at higher clock speed 200MHz.

Table 5. A table showing measured performance and efficiency with different clock speeds

Clock speed
[MHz]

Theoretical maxi-
mum performance
[GOP/s]

Measured perfor-
mance [GOP/s]

efficency

200 230 cannot measure cannot measure

90 103.5 93.5 90.3

50 57.5 51.9 90.26

Performance was measured and result is 93.5GOP/s, power consumption can be read from
power delivery report from Vivado when generating bitstream from project. Another design
was also generated which had only Processing system included. To calculate only DPU
power consumption, it can be done by dividing total CPU power consumption from DPU.
Total CPU power consumption was rated 1.669W. Total combined power consumption was
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rated 3.23W. Efficiency can be calculated using this formula:

η[GOP/S/W ] =
N

Ptotal − Pcpu

(7.6)

η[GOP/S/J ] =
N

(Ptotal − Pcpu) ∗ t
(7.7)

Where N is workload, P is measured power consumption and t is an elapsed time of
inference during single pass. The results are 59.513GOP/s/J or 89.686 GOP/s/W.

At 200MHz performance can not be read on Zedboard, because ZedBoard does not
provide enough electrical power for Z7020 to power DPU at 200MHz. This was noted in
Xilinx guide 73058 [16]. Efficiency in table 5 are calculated from theoretical maximum
performance and performance measured by Dsight. As seen, efficiency values in table
5 are nearly identical to ones Dsight provided. Provided by results it is safe to say that
DNNDK tools have a knowledge of theoretical maximum performance of DPU in a given
configuration

7.2.4 Latency

Here is a brief explanation of how latency was measured in the proposed solution and what
were the results. Latency is regarded as a total latency of a single image pass on YOLOv3.
The time measurement starts from beginning of the application to the end until results
are displayed in terminal. For this measurement, a std::chrono library was used which is
widely utilized in C++ to measure different time intervals at medium to high accuracy.

To measure accuracy of results, a console application was downloaded from a web article
"The Three clocks" [36]. This article briefly explains how std::chrono measures time and
how it is possible to measure accuracy of time measurement std::chrono provides. For
more explanation, refer to the article [36]. A sample program was downloaded as a source
file and copied to Zedboard. After building and running the application, the results showed
accuracy values of the measuring time in the current system. The accuracy value was
measured 0.001 µs (microseconds). Overall output of the given application is shown below
in figure 16.
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Figure 16. Accuracy of std::chrono time measurement functions on Avnet Zedboard running
Petalinux

A series of tests were made to measure a total latency and a latency of different components
in the software. A single picture was used to measure the duration of each part in YOLOv3
application. Each section had 10 measurements for more consistent results. A median was
taken because of a tendency of some rare deviations from other results. Total latency is
calculated as a sum of all components’ latency in YOLOv3 application.

Below is an explanation of each part and their median latency time:

1. Start to DPULoadKernel (302.725ms): program initialization, image acquisition
from file system to application memory, DPU opening.

2. DPULoadKernel (2038.235ms): in this phase DPU is loaded with YOLOv3 network
model and its weights.

3. RunYolo preprocessing (306.4475ms): setting tensor height and width for image
and image transmission to DPU.

4. RunDPUTask (1507.305ms): Forward pass of image in YOLOv3 in DPU.
5. Postprocess (308.75): post processing of data from output layers of YOLOv3:

calculating detection boxes and constructing result image.
6. program to end (62.901ms): printing results to terminal, closing DPU and freeing

used memory.

Below is a figure 17 visualizing total latency of YOLOv3 single image inference.
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Figure 17. Total Latency of single image YOLOv3 object detection on Avnet ZedBoard

As seen in illustration, total average latency in this solution is 4526.36375 ms which is
over 4.5 seconds. This is considerably long than noted in YOLOv3 documentation, which
states 78 ips (images per second) while performing at 1457 GOP/sec [3]. This visualises
that the original workload is 18.7GOP compared to 140GOP used in proposed solution. In
conclusion, the proposed solution takes more time to calculate mainly because of the lower
performance of DPU on ZedBoard and the high workload of YOLOv3 on ZedBoard.
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8. Conclusions

As seen from analysis results, it can be claimed that YOLO object detection algorithm
can be implemented on Avnet ZedBoard while its inference is being accelerated by DPU.
This solution is still a proof of concept and there are many more parameters that can be
analysed and improved over time.

The 1.507 second inference time and total of 4.526 seconds in latency of a forward pass
in a single image indicates the proposed solution’s inability to detect objects in real-time
applications. Most real-time computer systems require input data from at least several
pictures within a second to successfully make time-critical decisions. This long latency
comes from a high workload of YOLOv3 running on DPU provided by Xilinx. This
problem can be solved by running more lightweight applications than YOLOv3, for
example TinyYOLOv3. Running YOLOv3 on a more computationally capable platform is
also a solution.

The formulas in chapter 7.2.2 provide useful information on calculating workload of
convolution neural networks and can be used in various situations. The calculation results
also indicate DNNC ability to accurately measure workload of artificial neural networks,
which results were then used to calculate performance and efficiency.

The utilization of DPU during inference (90.3%) stayed constant during testing of proposed
system with different clock speeds. This indicates that until 90MHz the only constraints
of inference’s computational performance is limited by computational capability and the
power delivery capacity of Avnet ZedBoard.
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9. Future work

This thesis solution proves the feasibility to run YOLOv3 artificial neural network on
Avnet ZedBoard without developing custom accelerator and using Xilinx’s DPU for this
application. However, the proposed solution is only proof of concept and requires more
work and troubleshooting in order to get more practical results out of it.

Creating a custom dataset of 20 images proves that YOLOv3 on Avnet ZedBoard is able
to detect objects. This does not provide sufficient measuring results of its accuracy. For
this reason, one of the main challenges should be to evaluate the detection accuracy of
YOLOv3 on Avnet ZedBoard. A benchmark with larger set of images must be executed
for more accurate results.

As stated in behavioural notes in chapter 5.4, the particular design had some technical
issues that posed notable usage difficulties. This system will become more stable if the
aforementioned problems get solved. Afterwards, the precision calculations could also be
improved.

Performance calculations were done using utilities provided by Xilinx. These results can
be further evaluated by measuring YOLOv3 performance accelerated by DPU on other
platforms and then comparing results.

To speed up the configuration time of a proposed solution, a sample project can be made
which could contain hardware descriptions, configuration for Petalinux and modifications
for user applications. This makes possible to create a single script which could build and
compile the whole solution ready to upload to SD card and use on Avnet ZedBoard.

If above mentioned suggestions are completed, it will be simpler to implement a practical
solution. Proposed system can be used to rapidly speed up inference in state of the art con-
volutional neural networks in various universities, speeding up research and development
in various fields.
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10. Summary

The initial task of the thesis was to briefly analyse Vitis Unified Software Plaftorm by Xilinx
and use it to accelerate inference of an object detection algorithm on Avnet ZedBoard. An
algorithm, named YOLO, was selected because it is well researched algorithm and is easy
to use and modify.

After the initial experiments author found out that Vitis is not designed for artificial neural
network inference. Vitis AI was experimented next. After some research, author also
found that although Vitis AI is said to support YOLOv3, an actual support was not yet
implemented in the official tools. An older version of Vitis AI software, called Deep
Neural Network Development Kit (DNNDK), was used for inference acceleration on
Avnet ZedBoard.

A solution was found after many attempts that proved satisfactory. The proposed solution
uses Xilinx DNNDK with modified accelerator and Petalinux operating system to run
YOLOv3 object detection algorithm on Avnet ZedBoard. Chapter 4 provides a brief
explanation of all the tools used to implement proposed solution.

Chapter 6 contains is a guide on replicating a proposed solution with tools listed in chapter
4.

The analysis part divided into performance, efficiency and latency. Performance section
describes the calculations that were made to determine workload of YOLOv3 on Avnet
ZedBoard. This proved Xilinx’s Deep Neural Network Compiler (DNNC) ability to
measure workload of artificial neural networks. An utility, called Dsight, was used to
benchmark performance of YOLOv3 on ZedBoard and as a result 93.5GOP/s at 90%
utilization was measured. Efficiency was calculated 89.686 GOP/s/W respectively. Latency
was measured by using std::chrono in user application. Total latency of a single image
pass was measured 4.526 seconds, including DPU initialisation, inference, preprocessing
and post-processing.
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Author pointed out several tasks that could improve the proposed solution, noted in chapter
9. These include solving technical issues and accuracy benchmarking with large set of
images.

The proposed solution can be useful for educational purposes. It can be used for inferencing
different artificial neural networks without the need for a developer to have an expertise in
hardware design. The proposed solution can speed up the development flow for prototyping
new potential systems and solutions.
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