

TALLINN UNIVERSITY OF TECHNOLOGY
SCHOOL OF ENGINEERING
Department of Electrical Power Engineering and Mechatronics

CALCULATING THE VOLUME OF BULK
MATERIALS USING MODERN PORTABLE DEVICES

PUISTEMATERJALI MAHU ARVUTAMINE KAASAEGSETE
KAASASKANTAVATE SEADMETE ABIL

MASTER THESIS

Student: ZAHEER IQBAL

Student code: MAHM 195990

Supervisor: Researcher, Dr. Dmitry Shvarts

Tallinn 2021

2

(On the reverse side of title page)

AUTHOR’S DECLARATION

Hereby I declare, that I have written this thesis independently.

No academic degree has been applied for based on this material. All works, major

viewpoints and data of the other authors used in this thesis have been referenced.

“.......” 20…..

Author:

/signature /

Thesis is in accordance with terms and requirements

“.......” 20….

Supervisor: ….........................

/signature/

Accepted for defence

“.......”....................20… .

Chairman of theses defence commission: ...

 /name and signature/

3

Non-exclusive License for Publication and Reproduction of
GraduationTthesis¹

I, Zaheer Iqbal (name of the author) (date of birth: 5th October 1981) hereby

1. grant Tallinn University of Technology (TalTech) a non-exclusive license for my thesis

“Calculating the volume of the bulk materials using modern portable devices”

“Puistematerjali mahu arvutamine kaasaegsete kaasaskantavate seadmete abil”,

 (title of the graduation thesis)

Supervised by

Researcher, Dr. Dmitry Shvarts,

 (Supervisor’s name)

1.1 reproduced for the purposes of preservation and electronic publication, incl. to be
entered in the digital collection of TalTech library until expiry of the term of
copyright;

1.2 published via the web of TalTech, incl. to be entered in the digital collection of

TalTech library until expiry of the term of copyright.

1.3 I am aware that the author also retains the rights specified in clause 1 of this
license.

2. I confirm that granting the non-exclusive license does not infringe third persons'
intellectual property rights, the rights arising from the Personal Data Protection Act or
rights arising from other legislation.

¹ Non-exclusive Licence for Publication and Reproduction of Graduation Thesis is not valid during
the validity period of restriction on access, except the university`s right to reproduce the thesis
only for preservation purposes.

______________ (signature)

______________ (date)

4

Department of Electrical Power Engineering and Mechatronics

THESIS TASK

Student: Zaheer Iqbal

Study programme: MSc

main speciality: Mechatronics

Supervisor(s): Researcher, Dr. Dmitry Shvarts

Consultants: ……………………………………………………………..(name, position)

…………………………………………………………………………………… (company, phone, e-mail)

Thesis topic:

(in English) Calculating the volume of the bulk materials using modern

portable devices

(in Estonian) Puistematerjali mahu arvutamine kaasaegsete kaasaskantavate

seadmete abil

Thesis main objectives:

1. To propose a solution for bulk volume calculation using cell phone

2. Experimentation and Evaluation of different Photogrammetric techniques

3. Development of an android application for calculation of bulk volumes.

Thesis tasks and time schedule:

No Task description Deadline

1. Literature review 30th November 2020

2. Introduction Chapter 20th December 2020

3. Experimental results and Optimization 28th February 2021

4. Application Development 30th April 2021

5. Thesis Defense 1st June 2021

Language: ………… Deadline for submission of thesis: “.......”.........20….a

Student: ……………………..……........ “.......”………….....................20….a

 /signature/

Supervisor: ………………… …………………….. “.......”......................20….a

 /signature/

Consultant: ………………… …....................... “.......”......................20….a

 /signature/

Head of study programme: …………… “.......”......................20…..a

 /signature/

5

Terms of thesis closed defence and/or restricted access conditions to be formulated on

the reverse side

6

TABLE OF CONTENTS

PREFACE ... 8

LIST OF ABBREVIATIONS .. 9

1. INTRODUCTION ... 11

1.1. Overview .. 11

1.2. Motivation .. 12

1.3. Objective .. 12

1.4. Thesis Structure .. 13

2. LITERATURE REVIEW .. 14

2.1. Close Range Photography .. 14

2.2. Volumetric APP ... 15

2.3. SfM-Patched Based Multi View Stereo System ... 16

2.4. Orthogonal Imaging ... 18

2.5. 3D Modelling and Reconstruction ... 18

2.6. Structured Light Vision ... 21

2.7. RGB-D Camera ... 22

2.8. Simultaneous Localization and Mapping (SLAM) 23

2.9. Other Approaches ... 24

2.10. Summary of literature review ... 27

3. METHODOLOGY ... 29

3.1. Development Environments and Platforms .. 29

3.1.1. Android Studio ... 29

3.1.2. OpenCV ... 30

3.2. Android Camera API .. 30

3.3. Segmentation ... 30

3.3.1. HOG Descriptors ... 31

3.3.2. Convolutional Neural Networks ... 32

3.3.3. U - Net .. 33

3.3.4. Transfer Learning ... 34

3.3.5. Dataset for image segmentation .. 34

7

3.3.6. Data Augmentation .. 34

3.3.7. Color Based Image Segmentation ... 35

4. DEVELOPMENT OF THE SOLUTION .. 36

4.1. List of Equipment .. 36

4.2. List of Software tools and libraries .. 37

4.3. Programming Languages ... 37

4.4. Setting up Development Environment. .. 37

4.5. Setting up Image Processing in Android Studio. 39

4.6. Image Acquisition ... 40

4.7. Creation of Dataset .. 42

4.8. Augmented Dataset ... 43

4.9. Segmentation Algorithm .. 45

4.9.1. Training the Model with small dataset ... 46

4.9.2. Training the Model with large dataset .. 47

4.10. HSV Range Selection .. 48

4.11. Android App Development .. 51

4.12. App Flow chart ... 54

4.13. Volume Calculation and Evaluation of Result 55

5. DISCUSSION ... 58

5.1. Limitations ... 58

5.2. Justification of the work completed. ... 59

5.3. Future directions on the thesis work ... 60

5.4. Summary .. 61

5.5. Kokkuvõte .. 63

LIST OF REFERENCES ... 65

APPENDICES ... 69

Application Code .. 69

Segmentation Tool Code .. 77

LIST OF FIGURES .. 78

8

PREFACE

The thesis topic is very appealing for enthusiasts in computer vision and image

processing. The main attraction of the thesis topic is its endless room for further

exploration and numerous current applications in digital transformation. The thesis work

comprises over process involved in developing Android Application for calculating the

volume of bulk materials through image processing. The work includes number of

approaches and techniques used to build a system compatible for portable devices

keeping the computational budget and accuracy in view. Each step of the whole

development process is described in details and can be productive for readers interested

in Android development and computer vision.

Dr Dmitry Shvarts and Prof. Mart Tamre has performed a remarkable work on the

subject, in 2014. This work remained the prime inspiration for the researcher for further

exploration on the subject.

I would like to express heartfelt gratitude to Professor Mart Tamre and Department of

Electrical Power Engineering and Mechatronics for accepting me in Master Studies and

providing me such a significant study experience.

I would like to specially thank my father for all his support in my educational endeavors.

I would like to thank Dr Dmitry Shvarts under whose supervision this thesis work is

completed, whose constant availability and determined guidance has made it possible

to accomplish all the challenging tasks.

9

LIST OF ABBREVIATIONS

3D-Three Dimensional

GmbH-Gesellschaft mit beschränkter Haftung

CIE-International Commission on Illumination

ROI-Region of Interest

CRP-Close-range photogrammetry

SfM- Structure from motion

PMVS-Patched Based Multi View Stereo

UAV-Unmanned Air vehicle

DTM-Demographic Transition Model

DEM-Digital Elevation Mode

RTK-Real Time Kinematic

RGB-Red Green Blue

POI-Poin of Interest

SLV-Structured Light Vision

CCS-Camera Coordinate System

CNN-Convolution Neural Network

FCNN-Fourier Convolution Neural Network

RGBD-Red Green Blue Depth (Imaging)

SLAM-Simultaneous Localization and Mapping

USDA-United States Department of Agriculture

TIN-Triangulated Irregular Network

RMSE-Root Mean Square Error

GCP-Ground Control Points

CP-Check Point

Lidar-Light Detection and Ranging

GPS-Global Positioning System

INS-Inertial Navigation System

RANSAC-RANdom SAmple Consensus

SDK-Software Development Kit

MUSEFood- Multi sensor based food volume estimation

FCN-Fully convolutional networks

MLS-Maximum Length Sequence

SIFT-Scale Invariant Feature Transform

PSR-Poisson Surface Reconstruction

SGM-Semi Global Matching

10

API-Application Programming Interface

App-Aplication

IDE-Integrated Development Environment

HSV Hue Saturation and Value

ML-Machine Learning

APK-Android Package

11

1. INTRODUCTION

1.1. Overview

Volume measurement of bulks i.e pile of timber, heap of pipe lengths, and other similar

commodities is of crucial importance for several industries which include storage,

logistics, transportations and construction companies and many other similar

businesses. An accurate, convenient and inexpensive estimation of such irregular

shaped bulk items can lead to more efficient shipping and avoid inefficient costing at

several stages throughout whole shipment track. There are numerous other applications

in businesses like mining, construction, timber, surveying etc., which require bulk

volume calculation on every step. Incorrect volume estimation can lead to under loading

and can require additional transportation movements to shift the same amount of

material, hence reducing profitability.

There are several solutions available in the market for calculation of bulk material

volumes but the accurate ones are with a higher cost and require some dedicated

hardware i.e special cameras, laser projectors, UAV etc. Computational needs for these

solutions are also high and together with special equipment, it sources inconvenient

use.[1]

In this thesis, a solution is proposed based on a close-range photogrammetry by

portable devices i.e mobile phone camera, for the calculation of the log pile volume.

The system segments the material of interest in the scene. An android application is

developed using modern CameraX API to capture the image of log piles. Object

segmentation approaches are discussed in detail to be integrated with the application

to localize the region of interest. The extracted regions were then processed with

OpenCV for android to get the on-screen area and subsequently the volume. Onscreen

pixel based volume is then converted into matric units to be displayed on application

screen.

The system workflow consists following major steps,

• Image Acquisition

• ROI Segmentation

• Feature Extraction

• Perspective Transformation of pixel space to physical space (Matric Units)

• Volumetric Calculation

12

It is a difficult task to make an image suitable for feature extraction. Before getting

features, various image pre-processing techniques like resizing, normalization,

brightness adjustments etc. are applied on the acquired image. The image size and

optimization need to be kept for mobile GPUs to reduce the processing time and make

computationally intensive computer vision algorithms feasible for a mobile device.

Success of the result is measured with the degree of accuracy of volumes calculated

with the proposed system. As a model case a pile of timber is practiced for volume

calculations and the result are compared with conventional manual measurement

procedure.

1.2. Motivation

It will not be untrue if we term Image processing as the most prominent domain which

comes under computer vision discipline. The importance of computer vision can easily

be estimated with keeping in mind the problems it solves. Image processing through

computer vision makes the bridge between real world and digital world. We are in an

era where digital transformation is running at an unprecedented pace. Image processing

plays an important role in almost all AI applications from attendance systems to self-

driving vehicles. Smart phone technologies are also developing in a fast pace to support

us in numerous fields ranging from children education to health monitoring systems for

elderly people.

The author is passionate about exciting, contemporary and fast developing fields of

knowledge. The topic for thesis work was chosen for its wide span of coverage from

image processing to android application development. The motive behind selection of

the topic was to discover new techniques and technologies which can be utilized in a

wider extent in course of educational and professional endeavors.

1.3. Objective

The main objective of this thesis work is to propose a solution to calculate bulk volume

measurement with help of mobile device. To develop an android App capable of

extracting the desired object/objects from an image with image processing and machine

13

learning techniques. Analyze the image and extract the required information, perform

calculations and present the result in form of calculated volume. Following course of

action is followed to achieve the objectives of the thesis work.

• Review of literatures and available solutions for bulk volume measurement on

mobile devices

• Review of all the possible approaches.

• Finalizing the approach on basis of performance indicators

• Development of the resources and software tools

• Development of Android App

• Testing and evaluation

1.4. Thesis Structure

Description of contents of all the sections in this thesis are summarized as bellow to

give a preview to the reader of this document.

Chapter 1 covers Overview of the this work along with motivation behind this work,

Objectives and thesis structure are also described in this chapter.

Chapter 2 contains the review of researches related to the topic of this thesis. A brief

description of the selected solutions on the addressed problem is also included in this

chapter. In the end of this chapter all reviews are summarized.

Chapter 3 is about all the techniques and methods used in this work. It covers different

stages of the thesis work and approaches considered for developing the solution.

Chapter 4 comprises the details on development of the solution. All the steps for

creating an optimum solution are described in details.

Chapter 5 provides the discussion on the complete project achievements, limitations,

Future work suggestions and directions. This chapter also includes thesis summary both

in English and Estonian Languages.

14

2. LITERATURE REVIEW

This Chapter describes the existing solutions, problems and research performed on the

measurement of bulk materials through photogrammetry techniques.

2.1. Close Range Photography

A remarkable work on the subject was performed by Researcher Dmitry Shvarts and

Prof. Mart Tamre, ‘BULK MATERIAL VOLUME ESTIMATION METHOD AND SYSTEM FOR

LOGISTIC APPLICATIONS”, 9th International DAAAM Baltic Conference “INDUSTRIAL

ENGINEERING” April 2014, Tallinn, Estonia.[2] This publication remains the prime

inspiration for the researcher for further exploration on the subject.

In this research, Bulk material volume assessment if performed with machine vision

technology and smart algorithms on a mobile device. The study was carried out in 2014

and the method was discussed on the example of the timber volume estimation.

Color is considered as the basic key for segmentation but due to outdoor application,

the colors were not homogenous, the developers came with a new solution to the

problem and used Chromaticity instead. Chromaticity is an objective description of the

quality of a color regardless of its brightness. The study proposes feature extraction

considering the chromaticity in term of two characteristics: hue and saturation. The two

commonly known are HSV (Hue Saturation Value/Brightness) and CIE LCh (CIE stands

for “International Commission on Illumination”, and Lxcxh means L – Lightness, c –

Chroma or “saturation”, h- Hue).

Range of hue (H) and saturation values (S) that correspond to the timber are used to

separate the object i.e timber from the background. The resulting logical image still had

noises. Many pixels outside the timber were classified as a timber due to holes, dirt and

shadows from the nearby logs. Researchers eliminated the remaining noise by

morphological opening and closing operation with a small kernel.

The developed algorithm was tested on the phone SONY XPERIA GO with a 5Megapixel

camera and 512 MB of RAM. The image was taken by standard Android application. The

main window of the application asks the user to enter the timber length manually and

then to load the timber image. Some object of the known size in the scene is used for

calibration at the same distance from the camera as the ROI.

15

Another study uses digital close range photogrammetric method for volume

determination. [3] The test was conducted on a physical model and actual object. The

result of the calculated volume from close range photogrammetry data was compared

with the conventional method to examine the accuracy of computation. It is found that

better land surface representation can give good accuracy of volume generation which

depends on number of elements including Three dimensional coordinates of the target

point, point distribution and interpolation methods. The total volume of target points is

the measure of whole surface with respect the reference surface. The preferred accuracy

can be achieved when the objects are measured accurately from classical photographs

or from digital images captured from a short distance.

Close-range photogrammetry (CRP) applications mostly have a working distance of less

than 300 m between object and camera. It is the reconstruction of object at the same

time from several images and the images are captured from different viewpoints. The

best possible viewpoint is used to obtain suitable geometry of intersecting rays and

strong network. The determination of the 3D coordinates from a definite point is

achieved through the intersection of two or more straight lines in bundle adjustment

process. 3D coordinate determination through photogrammetry is based on the

collinearity equation, which states that object point, camera projective center and image

point lie on a straight line.

2.2. Volumetric APP

APD Volumetric App, a stand-alone native Android application enables the smartphone

to calculate the volume of the substance in a container through image analysis. [4]

Using pixel ratios, a much more accurate estimation of the remaining liquid can be

made. This allows the rapid quantification of the contents without the need of volumetric

cylinders, especially when dealing with very minute quantities. With this app, more

accurate estimations to keep track of reagents for logistics, leisure, and operations, can

be performed in an easily streamlined and convenient manner.

The research published in 2017 purposes for measuring the volume of reagents in

laboratories. The application was developed using the Eclipse IDE, it estimates the

remaining reagent volume after taking a close image of the substance in the container,

A user-defined cropped image is used for the auto-calculation of content space from the

known maximum volume of the container. The volume calculation is achieved by

16

calculating the pixels to volume ratio as the volume of the whole container is known.

This gives volume of the single pixel and by multiplying with the pixels of the substance.

The volume calculations can be determined by pixel and highly depends on the

outlining/cropping process the researchers proposed the use of smartphone pen with

the soft round ball at the end, or Specialized pens that are present in Microsoft Surface

Pro series, Samsung Tablets, and Samsung Galaxy Note series to outline the images in

order to maintain the accuracy of the measurement. Photos taken from above or below

liquid meniscus level can cause parallax errors that will produce inaccurate estimates.

This application also has the very specific use with higher user intervention in calculating

the quantity/volume. It works only with the content of round-bottomed or cylindrical

objects such as beakers, test tubes, and microfuge tubes as these are the typical shapes

in biomedical research labs.

There are several mobile phone applications which already exist with the tag name of

calculating volume e.g “Calculator bulk materials”, “Volume Calculator” by swartland

Apps, these applications give volume of regular shapes only with maximum user

intervention. “Measurement Master” by Robert Bosch Power tools Gmbh, is another

example picked on the basis of ranking, the application is specifically designed for civil

engineering perspective and interior designing, most of functions require additional

hardware i.e laser range finder, thermal camera etc. “Surface and Volume

Measurement” by Web Dream is also a popular solution but the applicability is limited

and accuracy is not guaranteed.

2.3. SfM-Patched Based Multi View Stereo System

Research carried out by Zhang Chunsen and Zhang Qiyuanpaper proposed volumetric

calculation [1] for large heap of coal by using DJI M600 six-rotor UAV equipped with a

Sony ILCE6000 camera.

The 24.3 MP digital camera obtains the target high resolution, large overlapped images

taken from an angle and then these images are processed based on the SfM-Patched

Based Multi View Stereo Vision. Feature extraction is done through feature matching

and point cloud matching based on PMVS. Then, image control points are introduced

into bundle adjustment for obtaining the precise coordinates in the ground coordinate

system. Finally, the DTM method is used to calculate the volume of the heap after doing

point cloud segmentation.

17

This paper combines the technical compensations of UAV and SfM-PMVS to study the

use of drone-equipped digital cameras to collect tilt images of the TX01 coal pile in

Tongchuan (China). Based on the collected images, a dense 3D point cloud of the coal

pile was acquired using a motion recovery structure and a multi-view stereoscopic vision

method. The ground image point was adjusted to obtain the accuracy of the point cloud

in the ground measurement.

A method proposed in another research to estimate volume of large wood accumulation

using Structure from Motion (SfM) photogrammetry through UAV.[5] The method aims

to develop accurate 3D models of prototype LW accumulations. To endorse optimum

overlap for high quality digital DEM reconstruction, the acquired datasets comprised 72

and 120 images taken from an angle.

Images were taken from positions 2 meters above ground. Large number of images

acquired to get as much as possible details through 360 degrees movement of UAV

around the wood accumulates. Commercially available SfM software package,

Pix4DMapper was used for processing including point matching and point cloud

generation and adjusting internal and external camera parameters.

Large Wood accumulation was separated from the rest of the point cloud model using

manual segmentation tools in CloudCompare. Explicit triangulation methods and

modelling of the point cloud is used for surface reconstruction.

The researchers used three meshing approaches, a simplified mesh model based on

Delaunay triangulation, Delaunay triangulation with Voronoi filtering in CloudCompare,

PSR Poisson Surface Reconstruction in MeshLab. All meshes were filtered for extracting

isolated pieces in MeshLab, for appropriate volumetric computation of the generated 3D

Large Wood accumulation models. Volumes for the 3D point cloud and mesh models

were computed through two software workflows: a predefined Pix4D tool ‘Volumes’, and

CloudCompare’s ‘Compute 2.5D Volume’ tool. The method is a detailed work and used

for accurate volume measurements and 3D modelling along with that for higher number

of datasets the computational needs are very huge.

18

2.4. Orthogonal Imaging

In this research paper published in 2017, a new method for volume estimation is

proposed. The technique estimates the volume of food products from three orthogonal

images without explicit 3D reconstruction of the shape of product. [6] The proposed

approach makes no detailed assumption about the shape of the object, except that it is

convex, axially symmetric, and axially aligned.

The study was conducted on eight different fruits and vegetables and eight artificial

objects with known volume (sphere, cube, cylinder, etc). Three-image acquisition

systems were used to capture the images, the objects were carefully positioned to follow

the assumptions of axial alignment. PointGrey and Flea2 RGB color cameras with 8 mm

lens were used in the experiments. Camera angles were set to be orthogonal and there

was a uniform back ground behind the object in order to extract the POI.

To convert the outline information from image coordinates in pixels to real-world

coordinates in units of length, one of the three cameras was selected as reference,

(e.g., the camera providing the x - z projection). Distance of camera to the center of

the object is then measured, images from the other cameras are also rescaled for

calculation to simulate the setup that all cameras are placed at equal distances. The

method has of a very specific scope, Food objects studied is limited to spherical and

ellipsoidal shapes photographed under ideally arrange conditions.

2.5. 3D Modelling and Reconstruction

The study published in 2017 introduces method consists in photographic recording of

one or two ends of the log pile following by image processing with uniquely designed

software to calculate the volume of log pile. [7] The software performs the automatic

detection of visible borders of each image, following recovery of the log pile 3-D

structure and measurement of its volume in the end are performed during the

processing.

Two coordinate systems are introduced to describe the geometric model of the camera:

pixel system (Xi,Yi) according to the photogrammetry theory, Hence the digital image

is processed the measuring unit is pixel and spatial coordinate system (X,Y,Z). Transit

19

between coordinate systems which determines the connection of pixel and three-

dimensional

𝑋𝑋𝑖𝑖 = �𝑓𝑓
𝑍𝑍
� .𝑋𝑋 (2.1)

𝑌𝑌𝑖𝑖 = �𝑓𝑓
𝑍𝑍
� .𝑌𝑌 (2.2)

X,Y,Z – spatial dimension and distance to the object, Xi,Yi – pixel dimension of the

object image and f – focal distance of the camera lens. A known volume object is used

for calibration and is required to be located in the abuts plane and visible for detecting

by the software. Reconstruction of the 3D coordinates of the logs is achieved by one or

two images of the log pile ends. It is necessary to determine the one-to-one

correspondence of the abut from the one end of the pile to the abut from the other so

the both ends of the log would be assigned. The researcher here applies the Information

about orientation and stem taper for achieving maximum accuracy, In case of one image

the remaining parameters are assumed for the other end of the pile. The 3D model

rendering is implemented with DirectX API. The method gives relatively good

measurements fulfilling the required industrial standards.

Another research paper discusses the generation of a Three Dimensional model by

taking views of the object from different angles. [8] Image acquisition is done using a

single digital camera and turn table. Camera calibration is done using the images of

checkerboard pattern. Camera calibration gives the intrinsic and extrinsic parameters

of a camera. These camera parameters are used to calculate the camera matrix. Camera

matrix gives the relation between image reference frame and world reference frame.

Each view captured of the object is segmented. The silhouettes are obtained from the

segmented images of object. Visual hull is formed by the silhouettes and camera

projection matrix information using space carving algorithm. Finally, the 3D Model of

the object is constructed. The camera used is a Kodak-PixPro, FZ51 60-Megapixels

braced on a tripod. The camera is so adjusted that the maximum view of object can be

seen in the image, the object is placed in the center of a rotatable platform. The camera

parameters can be used to calculate projection matrix. Projection matrix is the link

between world and image coordinates. The camera parameters are used as functions

of entries of the projection matrix. 3D modelling methodology is applied using sequence

of images of the object rotating about single axis. Fundamental matrix computation is

used for deriving camera projection matrix. The Space Carving Algorithm for

photometric reconstruction is used.

20

Carving is done on the initial bounding volume by all the camera views. The voxel-based

3D modelling gives volume in the form of number of voxels remaining after carving. To

convert the volume in matric unit like, multiply the residual voxel count by three-

dimensional calibration factor. This factor represents the equivalence between the

number of voxels and one centimeter. The proposed method is able to calculate the

volume just 1% to 2% error. The application of the method is limited to geometrical

shaped objects with a very close range and specially arranged hardware.

A non-contact volume measurement method for irregular objects is proposed in a

research paper based on 3D reconstruction technology, with use of linear laser

camera.[9] The line-surface model of laser surface and feature points are first

established in a camera coordinate system. The point cloud coordinates of measured

object are calculated using the geometric measurement principle and transformed into

the world coordinate system from the camera coordinate system. The differential object

point cloud is obtained by subtracting the reconstructed model from the initial

background model, and the object volume is calculated by integrating the differential

depth point cloud data. To extract accurate center of light stripe, truncated Gaussian

distribution is used as a fitting algorithm. The measurement error was less than 4.5%

at the distance of 2 meters. The experimental results show that the proposed method

can accurately reconstruct 3D objects and accurately measure the irregular objects

volume.

The laser projects a light beam to the object, and the stripe of light is deformed by the

changes of depth of object surface. Then the distorted light stripe is captured by camera

and measured to the depth (h) of a light stripe. The pattern measures the information

of a light stripe at a time and it can get three-dimensional information of object because

of the movement of object. The line-surface model calculated by optical plane

calibration is used to establish the relative position of the camera and the laser. After

triangulation, the method fitting the light stripe by truncated normal distribution is used.

The collected stripe images of object are pre-processed and the center coordinates of

stripe are extracted. The calibration parameters are used to convert the center

coordinates of stripe to the world coordinate system, and the real three-dimensional

coordinates of the object are obtained to calculate the volume.

21

2.6. Structured Light Vision

The proposed system consists of a novel 2x2 laser line grid projector, a sensor, and

software modules.[10] Laser-modulated images of boxes are used for volume

measurement. For laser-modulated images, deep learning model is proposed by using

a holistically nested edge detection network to extract edges. A calibration method for

the line-structured light projector is used. The method uses information that is extracted

from the structure edges of the measured boxes, which can only be computed when at

least two of their faces are projected by the laser projector. The detailed workflow is

listed as

• System parameters are obtained first by using calibration method

• The visual sensor connected to a portable device is used. Two images of any two

adjacent faces of the box are achieved. The four modulated laser bands should

intersect the four edges of the box face.

• The system will process the collected images and then obtain the box length,

width, and height. Finally, the system calculates the volume of the measured

box.

The projection from a 3D point P(Xw, Yw, Zw) in the WCS to a 2D image point p(u, v)

in the image plane is expressed by the following equation [10]

𝜌𝜌 �
𝑢𝑢
𝑣𝑣
1
� = �

α δ 𝑢𝑢˳ 0
0 ꞵ 𝑣𝑣˳ 0
0 0 1 0

� � 𝑅𝑅 𝑇𝑇
𝑂𝑂𝑇𝑇 1� �

𝑋𝑋𝑤𝑤
𝑌𝑌𝑤𝑤
𝑍𝑍𝑤𝑤
�

(2.3)

𝐴𝐴 = �
α δ 𝑢𝑢˳
0 ꞵ 𝑣𝑣˳
0 0 1

�
′

, 𝑅𝑅 = �
𝑟𝑟1 𝑟𝑟2 𝑟𝑟3
𝑟𝑟4 𝑟𝑟5 𝑟𝑟6
𝑟𝑟7 𝑟𝑟8 𝑟𝑟 9

� , 𝑇𝑇 = �
𝑇𝑇𝑥𝑥
𝑇𝑇𝑦𝑦
𝑇𝑇𝑧𝑧
�

Where T and R represent the translation vector and rotation matrix from the coordinate

system to the CCS, respectively. α and ꞵ are the scale factors in u and v axes of the

camera, respectively, and δ is the skew of the two image axes. ρ is a nonzero factor,

and (u˳, v˳) is the principal point. The rotation matrix R and translation vector T, which

translate to a 3D point Pc (xc, yc, zc) in the CCS, encapsulate the camera orientation

and position. The method employs FCNN which has addressed the problem of detecting

edge and object boundaries in natural images. The method successfully provides

volume of boxes with accuracy but the applicability is limited to the defined shaped

boxes with utilization of specialized hardware for laser projector.

22

Another paper proposes a dynamic volume measurement system based on the line

structured light vision sensor.[11] Light strip center is extracted with the Steger

algorithm and then method of Zhengyou Zhang calibration is used to obtain camera

intrinsic parameters. Light plane equation in the camera coordinate system is obtained

by calibrating the light plane by rotation matrix, translation matrix and homographic

matrix obtained from internal parameters. By solving the simultaneous equations three

dimensional coordinates are calculated and 3D point clouds are obtained. By integration

of the 3D point cloud information, volume of the object is calculated.

In the proposed method, light stripes coordinate information in the image and the light

plane equation is used to reconstruct 3D model to calculate the volume. The system

consists of a high-definition camera, a processing platform, a transmitting station and

a laser projector. Realtime three-dimensional coordinates of the light spot are

constructed with the captured image. Distance between the obtained point and the

material is calculated with the horizontal integration, and the volume can also be

obtained with the vertical integration. Laser stripes in the image in the width direction

are symmetrical and occupy more than one pixel similar to the Gauss distribution.

Steger method is used to extract the center of light stripe. To reduce the number of

computations, only the effective area of the interception of the light stripe center is

extracted.

The 3D coordinates of the light stripe in the measurement range are obtained by using

the reconstruction method without the measured object on the measurement platform.

Then the object is placed on the platform which deforms the light stripes then again,

the 3D coordinated are obtained and the distance is calculated by the distance formula.

Gray point industrial camera, a 650nm laser, a 100mW red word laser projector, and a

25mm board grid calibration target is used for the method.

2.7. RGB-D Camera

This paper presents a potato volume measurement method based on RGB-D camera.

[12] An RGB-D camera established based on binocular stereo vision was used in this

method. The method was developed to measure volume of potatoes and built utilizing

an image processing algorithm for depth images. The experiment was conducted with

the depth image collection and volume detection of 120 potatoes.

23

The sampled potatoes were divided into regular shaped and irregular shape group. As

per the results of the method the prediction error of normal potatoes was 9%; the

prediction error of irregular potatoes was 30%. A depth camera supports a ranging

function and has the ability to measure the features in the 3-dimensional space as

compared with conventional RGB Camera. The range image generated by the depth

camera can display the distances to points in a scene with reference to a specific point,

and also shows the pixel values corresponding to the distances. These distances can be

converted to matric units with employing adequate calibration techniques with better

accuracy levels. The depth camera also has the functionality to record the distance of

object from the camera lens in a 16 bit integer matrix format.

Binocular Stereos Vision sees one scene from two different viewpoints. With the help of

principle of triangulation, the information of depth is calculated by the disparities. A

known volume cube is used to calibrate the camera. The system calculated distance

from camera for different points on the potato surface with binocular vision. Then grey

scale image is used to calculate grey value of each point in order to calculate height of

each point on the potato surface. To measure the volume of potato, an algorithm is

used to integrate the top-bottom volume acquired from potato depth images.

2.8. Simultaneous Localization and Mapping (SLAM)

Another method utilizes specialized simultaneous localization and mapping (SLAM), a

modified version of convex hull algorithm, and a 3D mesh object reconstruction

technique.[13] This paper explores the feasibility of applying SLAM techniques for

continuous food volume measurement with a monocular wearable camera. Food

detection and segmentation part was performed using convolution neural network

(CNN). Once the food volume is measured by the wearable device, the data can be

fused with USDA national nutrient database for further dietary analysis. The visual SLAM

framework can be divided into four parts including visual odometry, loop closure, back-

end optimization and mapping. Visual odometry aims to estimate the camera’s position

by analyzing the feature points on the captured image between different views, in order

to compute the trajectory of the moving camera.

Loop closure is the process of recognizing the location which has been previously

captured in order to correct the drift trajectory of the camera. Back-end optimization

processes information from visual odometry and loop closure, Once obtained the

optimized camera’s trajectory, mapping is used to build an environment map through

24

captured image sequence. Convex hull algorithm is used for 3D reconstruction which

fits best with SLAM. Apple iPhone 6 plus and a 4k wearable action camera have both

been used for data collection to explore the possibility of continuous food volume

measurement.

In the process of capturing video data, target object has been placed on a black

background. A Rubik cube has been designed as a scale reference for calibration. With

the use of the statistical outlier filter, the point completion technique and the multiple

convex hull algorithm, the proposed technique can get a performance with an overall

accuracy of 83%.

2.9. Other Approaches

Another study focusses on estimating the volume of stockpile using UAV [14] and

comparing with terrestrial laser scanner for planning purpose, data collection, data

processing and calculating volume of stockpile. From the obtained data, height of

surface points of stockpile volume is interpolated to form a triangle known as

Triangulated Irregular Network (TIN).

A UAV method was used to collect aerial photo data after a proper flight planning and

the terrestrial laser scanner was used to collect the data from the ground. Ground

control points (GCPs) and checkpoints (CPs) established to obtain a tie point with

georeferenced and improve the relative orientation. The study produced DEM digital

elevation model and contour for the volume measurements. The quality of the dense

cloud high parameters been applied and moderate depth filtering. The volume extract

from the UAV is compared to data from laser scanner to determine the accuracy and

capability of the data and instrument.

Another research paper presents a volume measurement approach of the sand carrier

using unmanned aerial vehicle (UAV) imagery.[15] The fine detailed surfaces of the

sand carriers are reconstructed from dense point clouds derived by UAV-based mapping.

Then, the volume of sand is calculated by the differential method, which multiplies the

height difference between the UAV-derived 3D surfaces of the vessel and sand by the

resolution of these surfaces. The study was carried out on 10 sand carriers based on

the result the absolute values of the relative deviation between the calculated volume

and the reference volume was approximately 2%.

25

A Study for volume calculation of collected lunar soil proposed method is designed to

fully use the sensors already installed as there was no additional installation position for

volume measurement equipment. [16] The designed method is based only on a single

camera. It uses a sequence of images of the collection area captured by the camera

mounted on the acquisition arm to accurately reconstruct the terrain of the collection

area surface before and after soil acquisition. Then, bi-temporal dense point clouds are

reconstructed. Based on the area of change associated with soil collection, the

constructed dense point clouds are compared according to the topographic

characteristics of the area to estimate the volume of soil collected. The proposed method

is stable and reliable and can meet the requirements of actual measurement tasks.

In a research for measuring package volume with multi source vision Kinect sensor.[17]

The foreground segmentation and the algorithm of minimum area bounding rectangle

are used to compute the package dimensions. The height of package is obtained by

background subtraction method. Finally, the package volume is calculated by

integration method. The experimental results show that the relative error is less than

4.10%, which improves the efficiency and accuracy of package volume measurement.

The method has the features of noncontact and non-stop run. It can be adapted to

different applications. The method requires only one Kinect sensor the camera

parameters are calculated by using MATLAB Camera Calibration Toolbox. Calibrating

process was implemented to achieve the intrinsic matrix and extrinsic parameters of

the color camera of Kinect. The image processing part includes image registration and

target region segmentation. The registration of image pairs was pre-processed firstly

by using relative functions provided in Kinect for Windows Software Development Kit

(SDK). The color images are transformed to grey images, and then the grey images are

turned into binary images by finding the optimum global threshold which is obtained by

using Otsu algorithm. The morphology operations used to remove the noise in the

image.

In a research paper, microscopic imaging is used to explore the structure of atomizing

sprays.[18] Image processing technique is developed to extract volumetric information

without a need for matching. The spray is visualized using high speed long-distance

microscopy from two perpendicular angles. The developed internal script employs the

principle of image discretization, where each image is divided into a number of slices

and the individual slice from each camera is matched to compute the liquid volume

fraction in each image. The volume of individual objects is calculated based on their

planar area and orientation. An error analysis is performed using dozens of three-

dimensional virtual models of fragment like shapes with known volume.

26

A research paper introduces MUSEFood [19] to calculate food volume using data

collected from multiple sensors on smartphones. MUSEFood uses FCN and utilizes shape

information of food containers through multi-task learning structures, resulting in more

accurate and faster image segmentation. Researchers used the MLS ranging instead of

using reference objects, which improves the convenience of use and achieves higher

food volume estimation accuracy. The whole task of food volume estimation is divided

into three steps: Sensing, Data Processing and Data Aggregation. Smartphone camera

is used to take images. The speaker of the smartphone emits Maximum Length

Sequence of a specific length while the user is taking photos. Then the microphone

receives the echo of the signal. For data processing, the food in the image is segmented

from background. The echo signal is analyzed to calculates the vertical distance from

the smartphone lens to the food. In Data Aggregation, processed data from images and

sound waves are combined to build food model and finally estimate food volume.

A work aimed to estimate volume of tomato varieties grown in Turkey, by image

processing techniques was performed in 2018.[20] It uses five different images of a

tomato captured by high resolution digital cameras. Volume of the fruit is calculated by

estimating horizontal and vertical distance of captured images. The results are validated

with experimental results. The main purpose of this study was to make fast and cheap

determination of the fruit quality evaluation process without damaging the fruit and

making it ready for packaging. The volume of each tomato was calculated by considering

ellipsoid shapes. The components of the system consist of five high resolution cameras

connected to a PC via USB port, a 50 Watt LED light source, and a sample holder. Each

tomato was placed at the center of the field of view and five RGB color images

(1280×960 resolution) were captured and saved in jpg format. The tomato was

segmented from the background using simple thresholding method combined with

morphological operations in each image.

Morphological operations like dilation and filling of holes were performed on images to

improve the segmentation. Otsu thresholding was used to binarize image and then

remaining noises was removed. Outline of tomato was determined by edge detection

functions such as Sobel, Canny.

27

Figure 2.1 Illustration of volume calculation by considering object as an axisymmetric.

The objects were modelled as a sum of conical frustums. The major dimension axis of

the object and pixel height are taken as the z-axis and 1, respectively [21]

The experiment results showed that Canny edge detection methods provided better

results compared with Sobel operator. Major and minor axis of each captured image

were determined by built in function (region props). Euclidian distance of vertical and

horizontal distances of images were calculated and compared with region props function

output. Binary image was divided into pixels. The vertical and horizontal dimensions of

tomato were measured using a caliper and the calibration factor was calculated as the

ratio of the dimension in centimeters and the number of pixels. Calibration factor of

vertical and horizontal axis was used for volume calculation.

2.10. Summary of literature review

Estimation of bulk volumes have been a topic of interest of researchers due to its

applicability in engineering and businesses. With the growth of technology, the methods

and approaches of bulk volume estimations are also growing. The target of new

techniques always remains to achieve maximum ease of use and minimum cost with

accuracy.

Numerous methods were reviewed for this thesis. Some of the limitations of the current

techniques are listed below in order to get a better direction for current thesis work.

• All bulk volume measurement solutions require high computaional need in order

to achieve better accuracy.

28

• Volume calculation solution through mobile devices involve substantial user

intervention.

• As far as accuracy is concerned, only photogrammetry does not serve the

purpose, additional technologies are also incorporated to facilitate the

measurement for example, laser, Lidar, structured lighting, acoustic echo, etc.

• Camera calibration is always a challenge to achieve volumetric measurement

through imaging.

• Extraction of ROI from an image typically depends on lighting conditions

• Accurate Volumetric Calculation through imaging depends on camera position

and orientation information at the time of image capture which is difficult to

achieve in mobile portable devices.

All problems stated above need further exploration. In this thesis the study is conducted

to develop a solution to compute volume of bulk materials on Android devices with better

accuracy and minimum user intervention.

29

3. METHODOLOGY

The chapter will cover the explanation of methods and approaches which have been

implemented to design the solution for Bulk Volume Calculation.

3.1. Development Environments and Platforms

Development Environments and platforms used in this work are described below.

3.1.1. Android Studio

Android Studio is the official IDE for Android operating system [22] built on JetBrains'

IntelliJ IDEA software and designed specifically for Android App development. It is

available for download on Windows, macOS and Linux based operating. It has replaced

formerly used Eclipse Android Development Tools (E-ADT) as the primary IDE for native

Android application development.

Android Studio supports the programming languages Java, C++ and Android Studio 3.0

or later supports Kotlin. Android Studio features Android Emulator tool which can be

installed by selecting the Emulator component from SDK tools. The Emulator simulates

Android devices with almost all the functionalities of physical mobile device on your

computer. This makes it very convenient to check the application with all device models

and API levels without needing to have these devices physically available.

Android version and hardware characteristics of the android device used as emulator is

specified through AVD Manager in Android Studio. Several devices and models can be

added in the AVD manager and user can select from these models while testing the App.

In the same way the App can be run and tested on a physical device by connecting it

with computer system running the Android Studio. The connection can be made through

USB Cable. There are several tools also available to connect the Physical Android Device

with Android Studio with an over the air connection.

30

3.1.2. OpenCV

OpenCV stands for Open-Source Computer Vision is the most widely used Library for

image processing applications. It is a computer vision and machine learning software.

OpenCV has more than 2500 optimized algorithms, including conventional image

processing computer vision and state-of-the-art machine learning algorithms. These

algorithms are widely used in image classification, objects detection, face detection,

motion and action detection in videos, camera and moving object tracking, 3D model

extraction, image stitching, 3D point cloud production, image correlation and

preprocessing for augmentation reality applications. OpenCV has more than 47

thousand users and more than 18 million downloads [23].

3.2. Android Camera API

The process of Bulk Volume Calculation begins with acquisition of image of object for

further processing to extract the parameters. The Android framework support three

main APIs to enable various functionalities of on device cameras. The three APIs name

Camera, Camera2 and CameraX. We have used CameraX API which is a Jetpack support

library. It provides a consistent and easy-to-use API surface that works across most

Android devices, with backward-compatibility to Android 5.0 (API level 21).

CameraX is most recent and includes all features of predecessor APIs along with

resolving device compatibility issues reported in previous APIs. CameraX API reduce the

amount of code needed for adding camera capabilities to the application. CameraX API

can provide all capabilities of Android preinstalled camera App. Optional add-ons can

enable the app with additional effects including HDR.

3.3. Segmentation

After capturing the image, we need to extract the Region of Interest from the image.

The process of extracting the object of interest is termed as segmentation in image

processing. There are several segmentation techniques used for wide range of machine

learning and AI applications.

https://sourceforge.net/projects/opencvlibrary/files/stats/timeline?dates=2001-09-20+to+2019-01-30

31

HOG Descriptors

Convolutional Neural Networks

Color Filtering

3.3.1. HOG Descriptors

Histograms of oriented gradients is one of the methods used for image segmentations.

It works on an indicative description characterizing the shape of the object. At start,

this method was used for the detection of people in images, later studies demonstrated

its effectiveness for a range of classification and segmentation problems. HOG

decomposes an image into small regions called cells, i.e 8x8 pixels. Then for each cell

it computes a histogram of oriented gradients, the result is normalized with a block-

wise pattern and a descriptor for each cell is created.

Figure 3.1 Input Image with Standard HOG Features with a cell size of eight pixels

The feature representation method Histogram of Oriented Gradients (HOG) is used with

Support Vector Machines (SVM). Feature extraction from the object image is conducted

by using HOG. Identity of the object is sorted through the learning process of SVM

classifier. There are some limitations of the approach of segmentation through HOG

Features enlisted bellow.[24]

• Hough transformation leads to the huge computational cost

• Algorithms have a high sensitivity to the noise and distortion of the target objects

32

Due to the reported weaknesses the author decided not to proceed with segmentation

through HOG features.

3.3.2. Convolutional Neural Networks

Convolutional Neural Network also abbreviated as ConvNet is a class of deep neural

network which is most commonly used for image processing. It extracts features directly

from pixel images. CNN is also able to recognize patterns or features which are new to

the system in case if it resembles to one of the patterns included in the training of the

model.

CNN requires small amount of pre-processing as compared to other image classification

and segmentation algorithms. The network is able to optimize the filters through

automated learning. CNN needs less human intervention in feature extraction which is

a prominent advantage.

Figure 3.2 Basic Structure of Convolutional Neural Network [25]

Deep learning algorithm simplifies the process of feature extraction through a multi-

layer convolutional neural network (CNN). CNN aims to transform the high dimension

input image into low dimension but higher in accuracy semantic output.

Numbers of deeper and more complicated networks are developed to provide higher

accuracy in computer vision applications, such as classification, detection and

segmentation. As the accuracy increases the computational cost of implementation also

increases. The proposed solution is aimed to be implemented on mobile devices the

computational budget for the application was taken into consideration.

33

3.3.3. U - Net

After careful review of related work on image segmentation the author selected U-Net

for creating a CNN Model for Image Segmentation. U-Net is a Convolutional Neural

Network which has the advantage of low computational cost and can be trained with

small dataset and offers a better accuracy. It was initially developed for biomedical

image segmentation at the Computer Science Department of the University of

Freiburg.[26]

Figure 3.3 U-net architecture (example for 32x32 pixels in the lowest resolution).[26]

Figure 3.3 explains the basic structure of U-Net architecture. each blue box corresponds

to a multi-channel feature map. The number of channels is denoted on top of the box.

The width and height of image is provided at the lower left edge of the box. Copied

feature maps are represented by the white boxes. The colored arrows in the figure

denote operations described in lower right corner of the figure.

34

3.3.4. Transfer Learning

Transfer Learning is applied when there for training a model with relatively smaller data

set. A pretrained model trained with larger dataset is used to train the new model.

Transfer Learning is a Machine Learning technique in which a model developed for one

task is re-used on a second related task.

In this thesis work a pre-trained MobileNetV2 is used as the encoder for the UNet

architecture. MobileNets is considered one of the most efficient networks for mobile and

embedded vision applications. MobileNet architecture uses depth wise separable

convolutions to build light weight deep neural networks.[27]

The MobileNetV2 used in this work is trained on the ImageNet dataset which is a large

visual database designed for visual object recognition software research purpose and

comprise over more than 14 million hand-annotated images. We have integrated the

pre-trained MobileNetV2 with the U-Net to work with smaller dataset to have an efficient

network architecture.

3.3.5. Dataset for image segmentation

Segmentation accuracy altogether depends on segmentation algerithm and size of the

training data set. Nevertheless, the collection of a large training data set with ground

truths is a challanging task. In the proposed work author has adressed this challange

with selection of U Net algorithym which has its popolarity for better accuracy with

smaller datasets and Data set enhancement techniques such as Data Augmentation.

3.3.6. Data Augmentation

Arrangement of large number of images for our dataset is a time-consuming task. To

overcome the limitations of small datasets we have used Data augmentation technique

to increase the number of images and their perspective ground truths. Data

Augmentation improves the performance of segmentation model in which set of

transformations are applied in data space and/or feature space on both the image and

the segmentation map. Typical transformations include flipping, rotation, scaling,

cropping and projections. Data augmentation enhances the generalization and

35

decreases the chances of overfitting. Data augmentation has shown up to 20%

improvement in model performance in some small datasets.[28]

3.3.7. Color Based Image Segmentation

In digital Image processing the image is processed using pixel values. Each pixel of the

image can be classified through some basic characteristics. Color space is one the

prominent attribute of pixel value in mid level image processing techniques such as

segmentation. Color space can also describe the ways in which human color vision can

be modeled. The basic form of image representation in computer vision is RGB Color

space. There are many color spaces like BGR, NTSC, YCbCr, HSV, CMY, CMYK and HSI.

An RGB image can be converting it into any other color space by means of any

transformative functions.

RGB (Red, Green, and Blue) is I x J x 3 array of color pixels. These three color

components can be understood as a stack of three individual layers. Every pixel of an

RGB image will have a red layer, blue layer and green layer that will result in a RGB

image. Value of each color in RGB can be range from 0 to 255. where (0,0,0) is

representation of black and (255,255,255) represents white.

HSV stands for Hue, Saturation and Value. This color space is considered as closest to

RGB color space and humans color sensations and perception. Hue is the dominant

observed color. Saturation is the amount of white light varying with hue. Value is the

intensity or brightness. HSV values are in range of Hue (0..359°), Saturation (0..100%)

and Value(0..100%).

The HSV color space is different from RGB color space because it separates out the

Intensity (luminance) from the color information (chromaticity). Difference in Hue of a

pixel is visually more prominent as compared to that of the Saturation. For each pixel

Hue or Intensity is chosen as dominant feature based on its Saturation value. RGB

features blurs the distinction between two visually separable colors by changing the

brightness. While, the HSV based segmentation is more efficient to determine the

intensity and shades near the edges of an object which sharpens the boundaries

retaining the color information of each pixel. [29]

36

4. DEVELOPMENT OF THE SOLUTION

This Chapter includes the details about experiments and procedures involved in the

development of proposed solution. All major steps are described in this chapter along

with stoppers and bottlenecks.

4.1. List of Equipment

The aim of the study is to provide a solution that will work on commonly available mobile

devices without need of specialized hardware. The work was conducted with following

physical devices along with Virtual devices available in AndoidStudio.

• For Testing

 Specification
Make and Model SAMSUNG GALAXY A10
RAM 2GB
CPU 2x1.6 GHz Samsung Exynos 7884 Octa-core Cortex-A73
GPU Mali-G71 MP2
CAMERA 13 MP, f/1.9, 28mm (wide), AF

LED flash, panorama, HDR
DISPLAY 6.2 inches IPS LCD

16M colours
720 x 1520 pixels

OS Android 9.0 (Pie)

• For Testing

 Specification
Make and Model SAMSUNG GALAXY A21S
RAM 3GB
CPU 2 GHz Octa-core MediaTek Helio P35 (MT6765)
GPU Mali-G52
CAMERA 48MP Samsung ISOCELL GM2 (S5KGM2) 1/2.0" sensor with Quad

Bayer color filter.
DISPLAY 6.5 inches PLS TFT LCD 16M colors

720 x 1600 pixels
OS Android 10

37

• For Development

 Specification
Make and Model HP Probook

RAM 8GB DDR4

CPU Intel Core i5

Diskspace 320 GB

OS Windows 10

4.2. List of Software tools and libraries

Android Studio 4.2

Anaconda

Adobe Photoshop

OpenCV

TensorFlow

Keras

Albumentations

4.3. Programming Languages

Python

Java

4.4. Setting up Development Environment.

After finalizing the approach next step comes to setup an environment for android App

development. Following are the major steps in detail. Android Studio is downloaded and

installed. Android Studio Development Environment User Inface can be seen in figure

4.1.

38

Figure 4.1 Android Studio IDE Interface.

During installation process the user is asked to include Virtual Android devices, virtual

devices were used as emulators to test some of the functionalities in this work. Almost

all available Android device emulators are available in Android Studio which can be

configured through AVD Manager.

Figure 4.2 AVD Manager and Android Virtual Device Emulator

39

Virtual device setup also required VTx enabled in BIOS setup. Figur 4.2 shows AVD

Manager and Bulk Volume Calculation App running in Emulator on Pixel 2 API 29 Android

Phone. After setting up the required environment in the system the App development

was started in Java.

4.5. Setting up Image Processing in Android Studio.

The very first thing for the App was to install the library for image processing. As

described earlier I used OpenCV. The OpenCV library for android needs to be

downloaded and imported as module in Android studio after which dependency is added

in project structure. For calling the OpenCV library within the App, there are two

available options.

• BaseLoaderCallBack

• Static Initialization

BaseLoaderCallBack required OpenCV Manager download when running the App. On

running the App the user is asked to install the OpenCV manager application to run the

App, problem here is that the OpenCV manager for android is no more available on

Google Play Store, the only option is to download the APK from https://sourceforge.net/.

This causes inconvenience for the user or worse can be the case if the user is with

limited knowledge of mobile device operations. After reviewing several examples I used

the static initialization of OpenCV. This method does not require any additional

installation after installing the main Application.

https://sourceforge.net/

40

Figure 4.3 OpenCV BaseLoaderCallBack Initialization

Figure 4.4 OpenCV Static Initialization log messages

4.6. Image Acquisition

Very first stage of Application Activity is to capture an Image. To capture an image in

any device involves use of built-in Camera. The permissions are needed for any

application to use such resources in Android platform. We specified the permissions in

Manifest xml file.

static {
 if (!OpenCVLoader.initDebug())
 Log.d("ERROR", "Unable to load OpenCV");
 else
 Log.d("SUCCESS", "OpenCV loaded");
}

41

Figure 4.5 Camera and Storage Permissions specified in Manifest.xml

When the App checks the required permissions on start if the permissions are not

already granted “ActivityCompat.requestPermissions” method is called and the

user sees a dialog to allow the permissions shown in emulator in figure 4.2. After having

all permissions, the app loads its first screen layout.

Figure 4.6 Application User Interface Image Capture Screen.

As can be seen in the Figure 4.6 the first layout/screen of the App comprises over a

camera view and a capture button. The user is required to take the picture of object

(log pile). After capture button is clicked an onClickListener captures the camera view

and the user is provided with the second screen. This screen gives user two options

Accept or Reject the Captured image. On clicking the Accept the preview image is send

for further processing. While on reject option clicked the current camera view is resumed

back and the user can take another image.

<uses-permission android:name="android.permission.CAMERA" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"
/>

42

Figure 4.7 Image Capture Accept / Reject Option

After image acquisition next step is to segment and extract the onscreen area of desired

object. For segmentation with CNN based approach we needed a dataset of images to

train our model. Next section will describe the process of dataset creation.

4.7. Creation of Dataset

Once the image of the scene is acquired through Camera API we need to extract the

localization of object of interest within our image through segmentation. A small date

set of 100 images (256 x 256) is developed for this thesis which was later increased to

several folds through data augmentation. The images are arranged through wood

photography and online resources. The masked label for each image was created with

Adobe Photoshop.

43

Figure 4.8 Images from dataset created for this thesis work (top row original images ,

bottom row perspective label masks)

4.8. Augmented Dataset

From the dataset of 100 images developed for this thesis, 600 images were created

through data augmentation. The Augmentation is performed with Albumentations which

is a Python library for image augmentation. The transformations used for augmentation

were CenterCrop, Rotation, Grid Distortion, Vertical and horizontal Flip

Figure 4.9 Transformation performed during Augmentation with Albumentations.

aug = CenterCrop(128, 128, p=1.0)

aug = RandomRotate90(p=1.0)

aug = GridDistortion(p=1.0)

aug = HorizontalFlip(p=1.0)

aug = VerticalFlip(p=1.0)

44

 Original Center Cropped Rotate 90

 Grid Distorted Horizontal Flip Vertical Flip

Figure 4.10 Augmentation result of the original Image.

 Original Center Cropped Rotate 90

 Grid Distorted Horizontal Flip Vertical Flip

Figure 4.11 Augmentation result of the Masked label.

45

4.9. Segmentation Algorithm

As described in chapter no 3 we have used U-Net architecture with pre-trained

MobileNetV2 as the encoder to achieve the segmentation. MobileNets is computer vision

model for TensorFlow which is used for acheiving high accuracy on mobile device or

embedded application. MobileNetV2 is a very effective feature extractor for

segmentation and object detection. MobileNetV2 provides a very efficient mobile-

oriented model that can be used as a base for many visual recognition tasks.

The segmentation model is developed in python using TensorFlow. TensorFlow is an

open-source library for development and training of ML models. TensorFlow Lite is a

product in the TensorFlow ecosystem which is used to run TensorFlow models on mobile

devices. It provides on device machine learning inference with low latency and a small

binary size at low computational cost. A Machine Learning model developed in tensor

flow can be saved as tflite model which can be imported and integrated in mobile

applications.

For Python development in this work Anaconda platform is used. Anaconda simplifies

package management and deployment. Several environments can be configured on the

same machine each comprising different packages according to the projects need. In

Anaconda Jupyter Notebook After importing required libraries and functions we set some

hyper parameters for training the model.

IMAGE_SIZE = 256
EPOCHS = 10
BATCH = 8
LR = 1e-4

The dataset i.e images and masks are loaded with Load data function and are split into

three.

• Training dataset

• Validation dataset

• Testing dataset

In this work I have used 80, 10, 10 ratio. The images and maskes are loaded and

normalize by dividing with 255.

46

encoder = MobileNetV2(input_tensor=inputs, weights="imagenet",
include_top=False, alpha=0.35)

MobileNetV2 is used as encoder pretrained on ImageNet dataset. Output of the encoder

is fed to U-Net architecture and following Keras functions are used in the decoder.

UpSampling2D

Conv2D

Batch Normalization

ReLu Activation,

Sigmoid Activation

4.9.1. Training the Model with small dataset

First we trained the model with small dataset of 100 images and their perspectives

masks.

Figure 4.12 Training and validation, Loss and Accuracy plot for small dataset

Figure 4.13 Model performance on small dataset from left to right Original Image,

Perspective mask and Model output.

47

The model performance graph shows that with small dataset of 100 images the U-Net

model after 10 epochs was able to achieve the training accuracy 0.8757 and loss was

reduced to 0.1977. The data set was split with under mentioned ratio.

Training data: 80
Validation data: 10
Testing data: 10

4.9.2. Training the Model with large dataset

Data augmentation technique was applied to small dataset and 600 images were

produced out of 100 images by applying image transformations. The augmentation of

the data has improved the result which can be seen in the Figure 4.14 and 4.15.

Figure 4.14 Training and validation, Loss and Accuracy plot for large dataset

Figure 4.15 Model performance on large dataset from left to right Original Image,

Perspective mask and Model output.

48

The training accuracy 0.9170 and loss was 0.1281. The data set was split with under

mentioned ratio.

Training data: 480
Validation data: 60
Testing data: 60

After completion of Training, the model was saved as Tensoflow file and then converted

to tflite model for using it in the android application.

4.10. HSV Range Selection

For segmenting the desired object from an image, we developed a tool for extracting

and masking the pixels which correspond to specific object. The HSV features retain the

identity of the colors even at different light intensity levels which makes the HSV-based

features very useful in running segmentation algorithms. Due to the reason, In this work

HSV value are used instead of RGB values for Range selection tool.

RGB to HSV conversion needs special care when working with OpenCV library. OpenCV

value of Hue in HSV color space is different than other photo conversion programs. For

hue value in OpenCV library we need to define it in a range from 0 to 179 while generally

it is taken on a range from 0 to 359 in degrees. HSV color range tool used in this work

comprises over 6 Trackbars denoting the Upper and lower range for H, S and V

respectively.

Figure 4.16 Segmentation tool range boundaries for blue and yellow color used for

experiments.

49

This tool is developed with OpenCV 4.5.2. First, I created the trackbars and set their

initial and maximum values. For Hue the range is set from 0 to 179 and the starting

value for Lower H is 0 and Upper H is 179. For Saturation and Value, the Lower value is

0 and the Upper value is 255. The initial value for Lower of both is 0 and for Upper of

both is 255. Then I set “cv2.getTrackbarPos” for each trackbar to take input defined by

user in the trackbar window. All 6 values are used to set NumPy array to set the

boundaries of the mask output. Original Image, Masked Image and Segmentation result

are displayed in the staked window for comparison.

Figure 4.17 Defining trackbars in color segmentation tool.

In the following experiment, the tool shows the view of hsv transformed image, masked

area corresponding the hsv range between lower and upper limits set by trackbars. User

can adjust the upper and lower limits of HSV to get the only required object in image

completely masked. In the result window the segmented object can be seen. Once the

“in range” values for a particular object are achieved with help of the tool, we can test

these values with similar images having possible objects in the image along with desired

object and the limits can be further adjusted for fine tuning.

cv2.createTrackbar("Lower - H", "Trackbars", 0, 179, trackChanged)

cv2.createTrackbar("Lower - S", "Trackbars", 0, 255, trackChanged)

cv2.createTrackbar("Lower - V", "Trackbars", 0, 255, trackChanged)

cv2.createTrackbar("Upper - H", "Trackbars", 179, 179, trackChanged)

cv2.createTrackbar("Upper - S", "Trackbars", 255, 255, trackChanged)

cv2.createTrackbar("Upper - V", "Trackbars", 255, 255, trackChanged)

50

Figure 4.18 Reference Object HSV image, Mask and Segmentation result

Figure 4.19 Wood logs HSV image, Mask and Segmentation result

Figure 4.20 Trackbars set for Wood logs segmentation

51

After processing an image with wood logs and a reference object we have found

following upper and lower boundaries respectively

Lower limit (90, 146, 162)

Upper limit (114, 255, 255)

Lower limit (11, 97, 39)

Upper limit (21, 255, 255)

These values will be used in the next section for color base segmentation in Bulk Volume

Calculation App.

4.11. Android App Development

In this work Android Studio is used to create the App. A new project was created with

following configuration

Language is set to java. All required libraries were added to the application. As

mentioned earlier we have used CameraX API for capturing the image. OpenCV was

added to dependencies and initialized in the App.

App layout is created which contains a Texture View to show the preview of the camera,

and capture button which allows to capture the image on click. The captured image is

set to be displayed in an Image view.

On receiving a click on the accept button the application segments the image on

provided HSV Values and calculates the pixel values for objects. The user is prompted

to insert the known parameters of the object through a popup window. The captured

image is in the bitmap format, It is converted to Mat for further processing. Following

methods are used for bitmap to mat conversion and to HSV conversion.

compileSdkVersion 28
buildToolsVersion "29.0.0"
minSdkVersion 21
targetSdkVersion 28

Utils.bitmapToMat(capturedBitmap, originalMat);
Imgproc.cvtColor(originalMat, hsvMat, Imgproc.COLOR_RGB2HSV);

52

After converting to HSV the image is segmented with “Core.inRange” function which is

simple thresholding function of OpenCV. In this function the ranges found from

Segmentation tool are fed in parameters and a Mask in created.

After creating the mask, volume can be calculated. I experimented with two methods of

finding volume in pixels, finding contour area and secondly with pixel count. Drawing

contours considers adjacent edges as single contour and when dealing with object like

wood logs we have to consider empty area between logs. Simple drawing contour was

considering the empty area as timber and hence was giving wrong value. Although there

are techniques like method of circle detection with Hough transformation but these are

sensitive to noise and variation in distance of object. Drawing contours was found

effective for reference object because it had a single big contour. For wood logs I used

Pixel count method as shown below.

With the segmentation the only area (pixels) which corresponds to timber is extracted

and a gray scale mask is created on the Area. Counting non zero pixels in the Mat of

this mask gives the correct area in pixels.

Figure 4.21 From left to right- Original image, contour area mask, segmentation mask

Core.inRange(hsvMat, timberlowerRange, timberupperRange, timberMask);

Core.countNonZero(timberMask);

53

Find contour function also makes all the contour visible along with unwanted noise. To

remove the noise contours are filtered on the basis of Contour Area. The area being

measured is also made visible to the user in order to check if the segmentation is correct

or there is a need for taking another measurement. When the App finishes segmentation

and finding surface Area of reference object and measured object, the App requires the

input from user to convert the pixel values to metric units.

Following method is used to call “User Input” fragment to display dialog on screen.

Dialog layout is defined in the xml file under layout folder. The input fields are created

“edit text” in the layout.

The user is asked to provide the surface area of the reference object and the length of

the logs in pile. With the help of user provided information after making calculation the

App displays the surface area of all detected logs and volume of the pile. At this stage

we faced a problem the edit text gets the input as “string” but arithmetic calculations

can not be performed on strings. Following conversion is used.

After getting the “double” values simple arithmetic calculations are performed to find

the volume. Final Calculation is explained in Section 4.13

private void openDialog() {
 UserInputDialog userInputDialog = new UserInputDialog();
 userInputDialog.show(getSupportFragmentManager(), "User Inputs");
}

double length = Double.parseDouble(log_Length);

54

4.12. App Flow chart

Start Activity

Camera Preview

Captured

Image

Draw
Contour

Contour Area

Segment
Inrange

Calculate
Area and
Volume

Show
output on

Screen

Start Camera

Preview

Reject

Accept

RGB to HSV
Apply
Filter

Display Mask on
screen

Show User
Input Dialog

55

4.13. Volume Calculation and Evaluation of Result

Figure 4.22 User Input Dialog for known parameters

After capturing and accepting the image. The dialog box appears on screen which needs

two inputs. Surface Area of the known reference volume and the length of the logs in

the pile being measured. The app was first tested on color circles pasted on a wall. Two

colors were used in this experiment, Blue for reference objects and Yellow for object to

be measured. First we find out the HSV range for these two colors with the help of HSV

color range tool.

BluelowerRange = (50, 91, 54);
BlueupperRange = (116, 255, 174);
YellowlowerRange = (0, 113, 80);
YellowupperRange = (95, 255, 255);

These ranges are set in the App for segmentation. The surface area of the reference

objects was measured with manual method.

56

V = ��
𝑑𝑑𝑖𝑖
2
�
2

l

𝑁𝑁

𝑖𝑖=1

 (4.1)

Equation 4.1 shows the volume calculation for log pile with conventional method, where

V is total volume, i is number of log, d is diameter or average diameter, l is the length

of the log.

Figure 4.23 Final Calculation Experiment Result

Through user input the App has provided the surface area of known object which is blue

circle in this experiment.

The diameter of the reference object was measured 14 cm which makes the 0.015 m²

Surface Area. Like wise to compare the result we took diameters of Yellow circles and

calculated the surface area with equation 4.1.

Diameters = 0.21, 0.185, 0.19 meters

Surface Area = 0.031, 0.025, 0.028 m²

Total Surface Area calculated with manual method = 0.084 m²

Total Surface Area calculated with Developed App = 0.08 m²

57

Total Volume calculated with manual method = 0.252 m³

Total Volume calculated with Developed App = 0.23 m³

Figure 4.24 Experiment Result Comparison

For ease of understanding we have rounded the outputs in two decimal places and

default measurement unit is meter. From the result it can be seen that the accuracy of

the measurement is quite good.

0,
25

2

0,
23

A C T U A L V O L U M E M E A S U R E D V O L U M E

EVALUATION

58

5. DISCUSSION

In this chapter, the thesis work outcomes are summarized along with limitations of the

work result and future directions on the subject matter. Achieved objectives of the work

are discussed in this section and suggestions are outlined for improvement in accuracy

and convenience in use.

5.1. Limitations

As the thesis topic covers a wide range of researchable and continuously improving

areas the limitations are also copped at a proportional rate. Few of the prominent

limitation are enlisted bellow.

• The Accuracy of the system depends on certain work conditions. The reference

object should be placed in the same vertical plane of wood abuts. The images

should be taken by keeping the camera in upright positions. Images taken from

tilted camera causes reduced accuracy. Maximum accuracy is achieved through

taking image by keeping the pile in center of the screen.

• In Android App development when working with third party applications

unprecedented errors are occurred on which most of the times the official support

platforms also do not have adequate guidance. Online resources on the subject

are insufficient and require years of practice while on the other hand deprecated

classes and unstable updates make the progress even slower. Several issues

escalated on OpenCV and TensorFlow official forums are still unanswered. This

makes development work difficult and one has to give a try to number of

solutions provided by other developers which is time consuming.

• Tensor Flow lite models once generated on python was found to be not working

with the developed Android App due to which the segmentation was performed

on the HSV color-based segmentation in order to demonstrate the working of

later stages of the Application. Although all instructions on the tflite support page

and demo were followed.

• CNN based models for segmentation need larger datasets due to its dependence

of accuracy on the size of dataset. Some of the popular databases for similar

researches include thousands of images i.e The Hawkwood databse consist of

7655 images. [30] In the research work, the author of the study claims that the

59

data set to be publicly available but specified web links are not functional.

Creating such a large dataset along with perspective labeled masks can take

months or even years.

• Testing of such a solution on real scenes with variance in the surrounding was

also a daunting task. It was very difficult to spot such sites near the city with

number of log piles. Nearest presence of such piles was located on Lemeks

Sadamad AS, 45 KM of drive from the university and access into the port area

required special permissions.

• Testing of an Android Application is one of the most important phases of

development. The said Application required camera functionally that’s why

testing on Emulator devices was not very helpful. The testing of the App is

performed based on available sources during which intermittent app crash has

been reported. Although number of such crashes was negligible but stability of

the App requires further work on testing phase.

5.2. Justification of the work completed.

Bulk volume measurement is one of the key activities involved in number of businesses

mentioned briefly in the first chapter of this document. Development of such a solution

to get the bulk volume calculations performed by handheld devices was the main

objective of this thesis work. The author has developed an standalone App for Android

mobile devices which is able to calculate volume of bulk materials with higher accuracy

provided the reference object for measurement and common dimension. The latest

CameraX App is used to develop this solution instead of using “intent” function to use

built-in Camera App within Android platform. The basic aim of using CameraX API was

to make it easier to manipulate the Camera Parameters in the future developments of

the work in order to get high level image processing including stereo imaging and depth

imaging with mobile phone camera.

The image processing in the developed App is performed with OpenCV which is the most

widely used image processing library. Using OpenCV makes it easier for developers to

access many advanced computer vision algorithms used for image and video processing

in 2D and 3D. One of the high-end approaches in the future versions of the App may

include these features and existing Application can be expanded in functionality through

basic knowledge in OpenCV.

60

Two possible approaches are presented for segmentation in the developed App,

Segmentation through tflite U – Net model and segmentation through HSV color range

selector of the object. either of these can be integrated within the App to make it a

novel solution.

5.3. Future directions on the thesis work

As per the opinion of the author the main attraction of the thesis topic is endless room

for improvements in the subject area. Some of the suggestions for future work are listed

bellow

First of All, the segmentation tflite model can be integrated within the App to improve

the accuracy of extracting region of measured objects. The dataset can be expanded by

adding more images of the wood logs. Further classes can be added in the segmentation

model to expand the area of coverage on more objects detected and measured.

The HSV Color range finder can be added in the App as a fragment which will give

additional customization for the App according to the use case. The App HSV lower and

upper color range setting can be made user selected depending on the result of

integrated range selection tool.

Image stitching and panorama can be added in the functionalities in order to get

calculations for larger number of logs. Gyroscope sensor of mobile phone can be

integrated in the app to ensure the orientation of the mobile phone while capturing the

image which will improve the accuracy.

Use of reference object with in the image for pixel to measuring unit (meters) conversion

can be substituted with some other techniques i.e stereo imaging by making research

on cell phone location accuracy with built-in GPS sensors and accelerometer. There are

several techniques of image processing including 3D reconstruction which compute

distance of the object from camera calculated through images taken from different

angles. One of the proposed approaches which needs some detailed research is disparity

mapping between two images taken from same angle one at a position and the other

after taking a step forward towards the target. The distance between camera locations

can be estimated as proportion of person step size to height of the person (As a rough

estimate its about 41 to 45% of ones height). Step size displacement accuracy can be

studied by making experiments with the accelerometer readings.

61

5.4. Summary

Calculating the volume of bulk materials using modern portable devices was the topic

of this master thesis work. There are several approaches available for solving the

problem. A detail review of the existing techniques used for addressing the problem was

carried out in order to finalize the approach. The work was decided to be based on close

range photogrammetry technique to make it applicable for all Android portable devices.

The other available approaches involved use of additional features which are not

available on all portable devices which included use of Augmented Reality and Lidar.

Once the approach is finalized then came the selection of Android Camera API. The

alternative approach was to use Android built-in camera App. In this work I have used

CameraX API which will enable the developer to adjust Camera parameters in further

expansion phases of the Application. Prominent camera features which can play

important role for image processing include manual Focus and Shutter Speed.

The image acquired by Camera is fed to App process where pre processing is performed

and the image undergoes segmentation to extract the region of interest. There are two

segmentation techniques used in this work one relies on Convolutional Neural Network

and the other on Color based segmentation. U-Net algorithm in CNN based method is

used for image segmentation along with MobileNetV2 model trained on ImageNet

dataset at encoder stage. U-Net is known for its better accuracy with small datasets and

MobileNetV2 is known as one of the best approaches for embedded systems and mobile

devices. A data set of 100 images was created for this project along with their

perspective label masks. We first trained the model with 100 images and took the

observations for loss and accuracy. Afterward data augmentation is used to increase the

number of images and masks from 100 to 600. The model is trained again with 600

images and the results were compared. The model was created in python using

Tensorflow library, the model was saved in tflite format for integration in developed

mobile App. After facing issues with integration of the tflite model in the App the parallel

approach was considered for segmentation with color values. After reviewing researches

I concluded to perform the segmentation based on HSV color space considering its better

performance on wide range of variance in illumination. A tool for finding the HSV range

of the reference and measured object was developed. After finding the upper and lower

limit values of the desired objects, the values are set in the developed App for

segmentation.

The android App is developed using OpenCV image processing functionalities. The App

captures the image and segments the area of interest and calculates the surface area

62

in pixels. The user is then prompted to give input values for surface area of the reference

object in the image and length of log piles. A mask on the segmented objects is created

on the output image and the values of the calculated surface area and volumes are

displayed on the screen. The testing of the App is performed on the model objects and

results are compared with manual measurements with conventional methods.

63

5.5. Kokkuvõte

Puistematerjali mahu arvutamine kaasaegsete kaasaskantavate seadmete abil oli selle

magistritöö teema. Probleemi lahendamiseks on mitu lähenemisviisi. Vaatasin

üksikasjalikult läbi olemasolevad võtted lõpliku lähenemisviisi leidmiseks. Töö otsustati

põhineda fotogrammeetria tehnikatel, et see oleks rakendatav peaaegu kõigi

kaasaegsete kaasaskantavate seadmete jaoks. Teised saadaolevad lähenemisviisid

hõlmasid lisa funktsioonide kasutamist, mis pole kõigis kaasaskantavates seadmetes

saadaval. Nende meetodite hulka kuulusid liitreaalsus ja Lidar. Kui lähenemine on lõpule

viidud, valiti Android Camera API. Alternatiivne lähenemine oli kasutada Androidi

sisseehitatud kaamera rakendust. Selles töös olen kasutanud CameraX API-d, mis

võimaldab arendajal kohandada kaamera parameetreid rakenduse edasistes

laiendusetappides. Kaamera fookuse ja säriaja reguleerimine võib pilditöötluses olulist

rolli mängida.

Kaamera omandatud pilt suunatakse rakenduse protsessi, kus toimub eeltöötlus ja pilt

segmenteeritakse huvipakkuva piirkonna eraldamiseks. Selles töös kasutatakse kahte

segmenteerimistehnikat, üks tugineb konvolutsioonilisele närvivõrgule ja teine

värvipõhisele segmenteerimisele. U-Net algoritmi CNN-põhises meetodis kasutatakse

piltide segmenteerimiseks koos MobileNetV2 mudeliga, mis on koolitatud ImageNeti

andmekogumi jaoks kodeerija etapis. U-Net on tuntud oma parema täpsuse poolest

väikeste andmekogumitega ning MobileNetV2 on tuntud kui üks parimaid lähenemisviise

manustatud süsteemide ja mobiilseadmete jaoks. Selle projekti jaoks loodi 100 pildiga

andmekomplekt koos nende maskidega. Esmalt koolitasime mudeli 100 pildiga ja

võtsime vaatlused kaotuse ja täpsuse osas. pärast seda kasutasime andmete

suurendamist, et suurendada piltide ja maskide arvu 100-lt 600-le. Mudelit treenitakse

uuesti 600 pildiga ja tulemusi võrreldi. Mudel loodi Pythonis Tensorflow teeki kasutades,

mudel salvestati tflite-vormingus selle kasutamiseks mobiilirakenduses. Rakenduses

tflite mudeli kasutamisel tekkis probleeme. Proovisin teist värvipõhise segmentimise

meetodit. Pärast uuringute kaalumist jõudsin järeldusele, et teostan segmenteerimist

HSV värviruumi põhjal. parema jõudluse tõttu valguse varieerumisel. Töötati välja

tööriist objekti HSV vahemiku leidmiseks. Pärast värvivahemiku ülemise ja alumise

piirväärtuse leidmist seadsin need väärtused rakenduses segmenteerimiseks.

Androidi rakendus on välja töötatud OpenCV pilditöötlusfunktsioonide abil. Rakendus

hõivab pildi ja segmenteerib huvipakkuva ala ning arvutab pinna pikslites. Kasutajal

palutakse anda sisendväärtused viiteobjekti pindala kohta pildil ja palgihunnikute

pikkus. Segmenteeritud objektidele luuakse mask väljundpildile ning arvutatud pinna ja

64

mahtude väärtused kuvatakse ekraanil. Rakenduse testimine viiakse läbi mudeli

objektidel ja tulemusi võrreldakse tavapäraste meetoditega manuaalsete mõõtmistega.

65

LIST OF REFERENCES

[1] Z. Chunsen and Z. Qiyuan, “Research on Volumetric Calculation of Multi-Vision

Geometry UAV Image Volume,” 2018, doi: 10.1109/EORSA.2018.8598608.

[2] D. Shvarts and M. Tamre, “Bulk material volume estimation method and system

for logistic applications,” in Proceedings of the International Conference of

DAAAM Baltic , 2014, vol. 2014-Janua.

[3] A. M. Samad, N. A. Asri, and A. Ahmad, “The use of digital image for volume

determination using digital close range photogrammetric method,” in

Proceedings - 2012 IEEE 8th International Colloquium on Signal Processing and

Its Applications, CSPA 2012, 2012, pp. 321–324, doi:

10.1109/CSPA.2012.6194742.

[4] I. H. Budianto and S. K.-E. Gan, “APD volumetric app: android app for the

quantification of reagents,” Sci. Phone Apps Mob. Devices, vol. 3, no. 1, 2017,

doi: 10.1186/s41070-017-0019-8.

[5] G. Spreitzer, J. Tunnicliffe, and H. Friedrich, “Using Structure from Motion

photogrammetry to assess large wood (LW) accumulations in the field,”

Geomorphology, vol. 346, 2019, doi: 10.1016/j.geomorph.2019.106851.

[6] J. Chopin, H. Laga, and S. J. Miklavcic, “A new method for accurate, high-

throughput volume estimation from three 2D projective images,” Int. J. Food

Prop., vol. 20, no. 10, 2017, doi: 10.1080/10942912.2016.1236814.

[7] A. Kruglov and E. Shishko, “Log pile measurement through 3D modeling,” in

2017 40th International Conference on Telecommunications and Signal

Processing, TSP 2017, 2017, vol. 2017-January, doi:

10.1109/TSP.2017.8075983.

[8] T. R. Jadhav and S. M. Kamble, “Volume measurement of object using computer

vision,” in 2016 IEEE International Conference on Recent Trends in Electronics,

Information and Communication Technology, RTEICT 2016 - Proceedings, 2017,

pp. 1792–1795, doi: 10.1109/RTEICT.2016.7808143.

[9] Y. Sun, T. Yang, X. Cheng, and Y. Qin, “Volume Measurement of Moving

Irregular Objects Using Linear Laser and Camera,” in 8th Annual IEEE

International Conference on Cyber Technology in Automation, Control and

Intelligent Systems, CYBER 2018, Apr. 2019, pp. 1288–1293, doi:

66

10.1109/CYBER.2018.8688302.

[10] T. Peng, Z. Zhang, Y. Song, F. Chen, and D. Zeng, “Portable system for box

volume measurement based on line-structured light vision and deep learning,”

Sensors (Switzerland), vol. 19, no. 18, 2019, doi: 10.3390/s19183921.

[11] J. Li, G. Liu, and Y. Liu, “A dynamic volume measurement system with

structured light vision,” in Proceedings - 2016 31st Youth Academic Annual

Conference of Chinese Association of Automation, YAC 2016, Jan. 2017, pp.

251–255, doi: 10.1109/YAC.2016.7804898.

[12] Y. Long et al., “Potato volume measurement based on RGB-D camera,” IFAC-

PapersOnLine, vol. 51, no. 17, 2018, doi: 10.1016/j.ifacol.2018.08.157.

[13] A. Gao, F. P. W. Lo, and B. Lo, “Food volume estimation for quantifying dietary

intake with a wearable camera,” in 2018 IEEE 15th International Conference on

Wearable and Implantable Body Sensor Networks, BSN 2018, 2018, vol. 2018-

Janua, pp. 110–113, doi: 10.1109/BSN.2018.8329671.

[14] M. A. Tamin, N. Darwin, Z. Majid, M. F. Mohd Ariff, K. M. Idris, and A. Manan

Samad, “Volume Estimation of Stockpile Using Unmanned Aerial Vehicle,” in

Proceedings - 9th IEEE International Conference on Control System, Computing

and Engineering, ICCSCE 2019, Nov. 2019, pp. 49–54, doi:

10.1109/ICCSCE47578.2019.9068543.

[15] H. He, X. Xu, T. Chen, and P. Lu, “Volume measurement of sand carrier using

uav-based mapping,” in ISPRS Annals of the Photogrammetry, Remote Sensing

and Spatial Information Sciences, 2020, vol. 5, no. 3, pp. 19–24, doi:

10.5194/isprs-Annals-V-3-2020-19-2020.

[16] S. Ding, X. Zhang, Q. Yu, L. Li, and J. Wang, “A volume measurement method

for lunar soil collection based on a single monitoring camera,” Sensors

(Switzerland), vol. 18, no. 10, 2018, doi: 10.3390/s18103394.

[17] L. Li, X. Zhuang, L. Chen, B. Liu, and T. Wang, “An adapted vision measurement

method for package volume based on Kinect,” in ICNC-FSKD 2017 - 13th

International Conference on Natural Computation, Fuzzy Systems and

Knowledge Discovery, 2018, pp. 918–922, doi: 10.1109/FSKD.2017.8393399.

[18] G. Singh, A. Kourmatzis, and A. R. Masri, “Volume measurement of atomizing

fragments using image slicing,” Exp. Therm. Fluid Sci., vol. 115, Jul. 2020, doi:

67

10.1016/j.expthermflusci.2020.110102.

[19] J. Gao, W. Tan, L. Ma, Y. Wang, and W. Tang, “MUSEFood: Multi-sensor-based

food volume estimation on smartphones,” in Proceedings - 2019 IEEE

SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted

Computing, Scalable Computing and Communications, Internet of People and

Smart City Innovation, SmartWorld/UIC/ATC/SCALCOM/IOP/SCI 2019, Aug.

2019, pp. 899–906, doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-

SCI.2019.00182.

[20] S. Uluisik, F. Yildiz, and A. T. Ozdemir, “Image processing based machine vision

system for tomato volume estimation,” in 2018 Electric Electronics, Computer

Science, Biomedical Engineerings’ Meeting, EBBT 2018, 2018, pp. 1–4, doi:

10.1109/EBBT.2018.8391460.

[21] T. Y. Wang and S. K. Nguang, “Low cost sensor for volume and surface area

computation of axi-symmetric agricultural products,” J. Food Eng., vol. 79, no.

3, pp. 870–877, 2007, doi: 10.1016/j.jfoodeng.2006.01.084.

[22] Google Android, “Android Studio Features | Android Studio,” Android. 2016.

[23] OpenCv, “OpenCV Library,” OpenCV https://opencv.org/, 2014.

[24] A. V. Kruglov, “Development of the rounded objects automatic detection method

for the log deck volume measurement,” in First International Workshop on

Pattern Recognition, 2016, vol. 10011, doi: 10.1117/12.2242172.

[25] Sumit Saha, “A comprehensive guide to convolutional neural networks,”

Medium, vol. 1, no. 1, 2018.

[26] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for

biomedical image segmentation,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2015, vol. 9351, doi: 10.1007/978-3-319-24574-4_28.

[27] A. G. Howard et al., “MobileNets: Efficient convolutional neural networks for

mobile vision applications,” arXiv. 2017.

[28] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D.

Terzopoulos, “Image Segmentation Using Deep Learning: A Survey,” IEEE

Trans. Pattern Anal. Mach. Intell., 2021, doi: 10.1109/TPAMI.2021.3059968.

68

[29] S. Sural, G. Qian, and S. Pramanik, “Segmentation and histogram generation

using the HSV color space for image retrieval,” in IEEE International Conference

on Image Processing, 2002, vol. 2, doi: 10.1109/icip.2002.1040019.

[30] C. Herbon, K. D. Tonnies, B. Otte, and B. Stock, “Mobile 3D wood pile

surveying,” 2015, doi: 10.1109/MVA.2015.7153101.

69

APPENDICES

Application Code

public class MainActivity extends AppCompatActivity implements
View.OnClickListener, UserInputDialog.UserInputDialogListener {

 private int REQUEST_CODE_PERMISSIONS = 101;
 private int CAMERA_PIC_REQUEST = 99;
 private final String[] REQUIRED_PERMISSIONS = new
String[]{"android.permission.CAMERA",
"android.permission.WRITE_EXTERNAL_STORAGE"};
 TextureView textureView_1;
 public static Bitmap PHOTO = null;
 ImageView bitmapIv;
 LinearLayout layout_b;
 private TextView
textView,textView1,textView2,textView3,textView4,textView5,
textView6,textView7, textView8,textView9,textView10,textView11,textView12,
 textView13,textView14,textView15,textView16,textView17;
 private Bitmap capturedBitmap;
 private Bitmap cannyBitmap;
 private Bitmap sobelBitmap;
 private Bitmap contourBitmap;

 ImageCapture imageCapture;
 ImageAnalysis imageAnalysis;
 Preview preview;
 String timbArea;
 String contourArea0;

 FloatingActionButton captureBtn, btnOk, btnCancel;

 static {
 if (!OpenCVLoader.initDebug())
 Log.d("ERROR", "Unable to load OpenCV");
 else
 Log.d("SUCCESS", "OpenCV loaded");
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.find_volume_1);

 captureBtn = findViewById(R.id.btnCapture);
 btnOk = findViewById(R.id.acceptBtn);
 btnCancel = findViewById(R.id.rejectBtn);
 textView = (TextView) findViewById(R.id.kv_pixels);
 textView1 = (TextView) findViewById(R.id.timber_pixels);
 textView2 = (TextView) findViewById(R.id.kv_surface_area);
 textView3 = (TextView) findViewById(R.id.timber_surface_area);
 textView4 = (TextView) findViewById(R.id.timber_volume);
 textView5 = (TextView) findViewById(R.id.t_view);

70

 textView6 = (TextView) findViewById(R.id.t1_view);
 textView7 = (TextView) findViewById(R.id.t2_view);
 textView8 = (TextView) findViewById(R.id.t3_view);
 textView9 = (TextView) findViewById(R.id.t4_view);
 textView10 = (TextView) findViewById(R.id.log_length);
 textView11 = (TextView) findViewById(R.id.t5_view);
 textView12 = (TextView) findViewById(R.id.t6_view);
 textView13 = (TextView) findViewById(R.id.t7_view);
 textView14 = (TextView) findViewById(R.id.t8_view);
 textView15 = (TextView) findViewById(R.id.t9_view);
 textView16 = (TextView) findViewById(R.id.t10_view);
 textView17 = (TextView) findViewById(R.id.t11_view);

 btnOk.setOnClickListener(this);
 btnCancel.setOnClickListener(this);

 layout_b = findViewById(R.id.llBottom);
 textureView_1 = findViewById(R.id.textureView);
 bitmapIv = findViewById(R.id.ivBitmap);

 if (allPermissionsGranted()) {
 startCamera();
 } else {
 ActivityCompat.requestPermissions(this, REQUIRED_PERMISSIONS,
REQUEST_CODE_PERMISSIONS);
 }
 }

 private void startCamera() {

 CameraX.unbindAll();
 preview = setPreview();
 imageCapture = setImageCapture();
 imageAnalysis = setImageAnalysis();

 CameraX.bindToLifecycle(this, preview, imageCapture, imageAnalysis);
 }

 private Preview setPreview() {

 Rational aspectRatio = new Rational(textureView_1.getWidth(),
textureView_1.getHeight());
 Size screen = new Size(textureView_1.getWidth(),
textureView_1.getHeight()); //size of the screen

 PreviewConfig pConfig = new
PreviewConfig.Builder().setTargetAspectRatio(aspectRatio).setTargetResolution(s
creen).build();
 Preview preview = new Preview(pConfig);

 preview.setOnPreviewOutputUpdateListener(
 new Preview.OnPreviewOutputUpdateListener() {
 @Override
 public void onUpdated(Preview.PreviewOutput output) {
 ViewGroup parent = (ViewGroup)
textureView_1.getParent();
 parent.removeView(textureView_1);

71

 parent.addView(textureView_1, 0);

textureView_1.setSurfaceTexture(output.getSurfaceTexture());
 transform();
 }
 });

 return preview;
 }

 private ImageCapture setImageCapture() {
 ImageCaptureConfig imageCaptureConfig = new
ImageCaptureConfig.Builder().setCaptureMode(ImageCapture.CaptureMode.MIN_LATENC
Y)

.setTargetRotation(getWindowManager().getDefaultDisplay().getRotation()).build(
);
 final ImageCapture imgCapture = new ImageCapture(imageCaptureConfig);

 captureBtn.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View v) {

 imgCapture.takePicture(new
ImageCapture.OnImageCapturedListener() {
 @Override
 public void onCaptureSuccess(ImageProxy image, int
rotationDegrees) {
 Bitmap bitmap = textureView_1.getBitmap();
 capturedBitmap = bitmap;
 cannyBitmap = bitmap;
 sobelBitmap = bitmap;
 contourBitmap = bitmap;
 showAcceptedRejectedButton(true);
 bitmapIv.setImageBitmap(bitmap);
 }

 @Override
 public void onError(ImageCapture.UseCaseError useCaseError,
String message, @Nullable Throwable cause) {
 super.onError(useCaseError, message, cause);
 }
 });

 }
 });

 return imgCapture;
 }

 private ImageAnalysis setImageAnalysis() {

 HandlerThread analyzerThread = new HandlerThread("OpenCVAnalysis");

72

 analyzerThread.start();

 ImageAnalysisConfig imageAnalysisConfig = new
ImageAnalysisConfig.Builder()

.setImageReaderMode(ImageAnalysis.ImageReaderMode.ACQUIRE_LATEST_IMAGE)
 .setCallbackHandler(new Handler(analyzerThread.getLooper()))
 .setImageQueueDepth(1).build();

 ImageAnalysis imageAnalysis = new ImageAnalysis(imageAnalysisConfig);

 imageAnalysis.setAnalyzer(
 new ImageAnalysis.Analyzer() {
 @Override
 public void analyze(ImageProxy image, int rotationDegrees)
{

 final Bitmap bitmap = textureView_1.getBitmap();

 if (bitmap == null)
 return;

 Mat mat = new Mat();
 Utils.bitmapToMat(bitmap, mat);

 Utils.matToBitmap(mat, bitmap);
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 bitmapIv.setImageBitmap(bitmap);
 }
 });

 }
 });

 return imageAnalysis;

 }

 private void showAcceptedRejectedButton(boolean acceptedRejected) {
 if (acceptedRejected) {
 CameraX.unbind(preview, imageAnalysis);
 layout_b.setVisibility(View.VISIBLE);
 captureBtn.hide();
 textureView_1.setVisibility(View.GONE);
 } else {
 captureBtn.show();
 layout_b.setVisibility(View.GONE);
 textureView_1.setVisibility(View.VISIBLE);
 }
 }

73

 private void transform() {
 Matrix mx = new Matrix();
 float w = textureView_1.getMeasuredWidth();
 float h = textureView_1.getMeasuredHeight();

 float cX = w / 2f;
 float cY = h / 2f;

 int rotationDgr;
 int rotation = (int) textureView_1.getRotation();

 switch (rotation) {
 case Surface.ROTATION_0:
 rotationDgr = 0;
 break;
 case Surface.ROTATION_90:
 rotationDgr = 90;
 break;
 case Surface.ROTATION_180:
 rotationDgr = 180;
 break;
 case Surface.ROTATION_270:
 rotationDgr = 270;
 break;
 default:
 return;
 }

 mx.postRotate((float) rotationDgr, cX, cY);
 textureView_1.setTransform(mx);
 }

 @Override
 public void onRequestPermissionsResult(int requestCode, @NonNull String[]
permissions, @NonNull int[] grantResults) {

 if (requestCode == REQUEST_CODE_PERMISSIONS) {
 if (allPermissionsGranted()) {
 startCamera();
 } else {
 Toast.makeText(this, "Permissions not granted by the user.",
Toast.LENGTH_SHORT).show();
 finish();
 }
 }
 }

 private boolean allPermissionsGranted() {

 for (String permission : REQUIRED_PERMISSIONS) {
 if (ContextCompat.checkSelfPermission(this, permission) !=
PackageManager.PERMISSION_GRANTED) {
 return false;
 }
 }
 return true;
 }

 @Override

74

 public void onClick(View v) {
 switch (v.getId()) {
 case R.id.rejectBtn:
 showAcceptedRejectedButton(false);
 break;

 case R.id.acceptBtn:
 File file = new File(

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_PICTURES),
"" + System.currentTimeMillis() + ".jpg");
 imageCapture.takePicture(file, new
ImageCapture.OnImageSavedListener() {

 @Override
 public void onImageSaved(@NonNull File file) {
 showAcceptedRejectedButton(false);

 Toast.makeText(getApplicationContext(), "Please enter
the values", Toast.LENGTH_LONG).show();
 }

 @Override
 public void onError(@NonNull ImageCapture.UseCaseError
useCaseError, @NonNull String message, @Nullable Throwable cause) {

 }
 });

 findVolume();

 }
 }

 public void findVolume () {
 Mat knownVolumeMask = new Mat();
 Mat originalMat = new Mat();
 Mat hsvMat = new Mat();
 Bitmap src = cannyBitmap;
 Mat knownVolumeCanny = new Mat();
 Mat timberCanny = new Mat();
 Mat hierarchy = new Mat();
 Mat hierarchy1 = new Mat();
 Mat timberMask = new Mat();

 Utils.bitmapToMat(capturedBitmap, originalMat);
 Imgproc.cvtColor(originalMat, hsvMat, Imgproc.COLOR_RGB2HSV);
 Scalar knownVolumelowerRange = new Scalar(50, 91, 54);
 Scalar knownVolumeupperRange = new Scalar(116, 255, 174);
 Scalar timberlowerRange = new Scalar(0, 113, 80);
 Scalar timberupperRange = new Scalar(95, 255, 255);
 Core.inRange(hsvMat, knownVolumelowerRange, knownVolumeupperRange,
knownVolumeMask);
 Core.inRange(hsvMat, timberlowerRange, timberupperRange, timberMask);

 List<MatOfPoint> contourList = new ArrayList<MatOfPoint>();
 List<MatOfPoint> contourList1 = new ArrayList<MatOfPoint>();

75

 Mat kernel = Imgproc.getStructuringElement(Imgproc.MORPH_OPEN, new
org.opencv.core.Size(2, 2));

 Imgproc.dilate(knownVolumeMask, knownVolumeCanny, kernel);
 Imgproc.dilate(timberMask, timberCanny, kernel);

 Imgproc.findContours(knownVolumeCanny, contourList, hierarchy,
Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
 Imgproc.findContours(timberCanny, contourList1, hierarchy1,
Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);

 Mat kvcontours = Mat.zeros(knownVolumeCanny.size(), CvType.CV_8UC3);
 Mat tcontours = Mat.zeros(knownVolumeCanny.size(), CvType.CV_8UC3);
 Mat addcontours = Mat.zeros(knownVolumeCanny.size(), CvType.CV_8UC3);

 StringBuilder kvAreaList = new StringBuilder();
 for (int i = 0; i < contourList.size(); i++) {

 double cont_area = Imgproc.contourArea(contourList.get(i));
 if (cont_area > 500) {
 Imgproc.drawContours(kvcontours, contourList, i, new Scalar(0,
255, 0), -1);
 kvAreaList.append(cont_area);

 double cont_area0 = Imgproc.contourArea(contourList.get(0));
 contourArea0 = Double.toString(cont_area0);
 textView5.setText(contourArea0);
 }
 }
 StringBuilder logAreaList = new StringBuilder();
 for (int j = 0; j < contourList1.size(); j++) {

 double cont_area1 = Imgproc.contourArea(contourList1.get(j));
 if (cont_area1 > 500) {
 Imgproc.drawContours(tcontours, contourList1, j, new Scalar(0,
0, 255), -1);
 logAreaList.append(cont_area1);

 }
 }

 Core.bitwise_or(kvcontours,tcontours,addcontours);
 Imgproc.cvtColor(addcontours, addcontours, Imgproc.COLOR_RGB2RGBA);
 Imgproc.cvtColor(originalMat, originalMat, Imgproc.COLOR_RGB2RGBA);
 int timbpix = Core.countNonZero(timberCanny);
 timbArea = Integer.toString(timbpix);
 textView6.setText(timbArea);

 textView.setText("Known Surface Pixels");
 textView1.setText("Timber Pixels");
 textView12.setText(" pixels");
 textView13.setText(" pixels");

76

 Core.addWeighted(addcontours,0.5,originalMat,1,0,originalMat);

 openDialog();

 Utils.matToBitmap(originalMat, src);
 bitmapIv.setImageBitmap(src);
 }

 private void openDialog() {
 UserInputDialog userInputDialog = new UserInputDialog();
 userInputDialog.show(getSupportFragmentManager(), "User Inputs");
 }

 @Override
 public void applyTexts(String kvSurface, String log_Length) {
 textView7.setText(kvSurface);
 textView11.setText(log_Length);
 textView10.setText("Log Length");
 double param1 = Double.parseDouble(contourArea0);
 double param2 = Double.parseDouble(kvSurface);
 double param3 = Double.parseDouble(timbArea);
 double ratio = ((param3 / param1)*param2);
 double roundOffArea = (double) Math.round(ratio * 100) / 100;
 textView8.setText(Double.toString(roundOffArea));
 double length = Double.parseDouble(log_Length);
 double theVolume = ratio*length;
 double roundOffVolume = (double) Math.round(theVolume * 100) / 100;
 textView9.setText(Double.toString(roundOffVolume));
 textView2.setText("Known Surface Area");
 textView3.setText("Timber Surface Area");
 textView4.setText("Total Volume");
 textView14.setText(Html.fromHtml(" m²"));
 textView15.setText(Html.fromHtml(" m²"));
 textView17.setText(Html.fromHtml(" m³"));
 textView16.setText(" meters");

 }
}

77

Segmentation Tool Code

import cv2
import numpy as np

def trackChanged(x):
 pass

cv2.namedWindow('Trackbars')

cv2.createTrackbar("Lower - H", "Trackbars", 0, 179, trackChanged)
cv2.createTrackbar("Lower - S", "Trackbars", 0, 255, trackChanged)
cv2.createTrackbar("Lower - V", "Trackbars", 0, 255, trackChanged)
cv2.createTrackbar("Upper - H", "Trackbars", 179, 179, trackChanged)
cv2.createTrackbar("Upper - S", "Trackbars", 255, 255, trackChanged)
cv2.createTrackbar("Upper - V", "Trackbars", 255, 255, trackChanged)

img = cv2.imread('C:/Users/ziqbal/anaconda3/envs/image2.jpg')
img = cv2.resize(img, (0,0), fx=0.8, fy=0.8)
imgHsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

while(True):
 low_h = cv2.getTrackbarPos("Lower - H", "Trackbars")
 low_s = cv2.getTrackbarPos("Lower - S", "Trackbars")
 low_v = cv2.getTrackbarPos("Lower - V", "Trackbars")
 up_h = cv2.getTrackbarPos("Upper - H", "Trackbars")
 up_s = cv2.getTrackbarPos("Upper - S", "Trackbars")
 up_v = cv2.getTrackbarPos("Upper - V", "Trackbars")

 lower_range = np.array([low_h, low_s, low_v])
 upper_range = np.array([up_h, up_s, up_v])
 firstMask = cv2.inRange(imgHsv, lower_range, upper_range)
 result = cv2.bitwise_and(img, img, mask=firstMask)
 secondMask = cv2.cvtColor(firstMask, cv2.COLOR_GRAY2BGR)

 cv2.imshow("imgHsv",imgHsv)
 cv2.imshow("firstMask",firstMask)
 cv2.imshow("result",result)
 cv2.imshow("secondMask",secondMask)
 stacked = np.hstack((secondMask,img,result))
 cv2.imshow('Trackbars',cv2.resize(stacked,None,fx=0.5,fy=0.5))

 if cv2.waitKey(1) == 27:

 break

cv2.destroyAllWindows()

78

LIST OF FIGURES

Figure 0.1 Illustration of volume calculation by considering object as an axisymmetric.

[21]

Figure 3.1 Input Image with Standard HOG Features with a cell size of eight pixels

Figure 3.2 Basic Structure of Convolutional Neural Network [25]

Figure 3.3 U-net architecture (example for 32x32 pixels in the lowest resolution).[26]

Figure 4.1 Android Studio IDE Interface.

Figure 4.2 AVD Manager and Android Virtual Device Emulator

Figure 4.3 OpenCV BaseLoaderCallBack Initialization

Figure 4.4 OpenCV Static Initialization log messages

Figure 4.5 Camera and Storage Permissions specified in Manifest.xml

Figure 4.6 Application User Interface Image Capture Screen.

Figure 4.7 Image Capture Accept / Reject Option

Figure 4.8 Images from dataset for the thesis work (top row original images , bottom

row perspective labeled mask)

Figure 4.9 Transformation performed during Augmentation with Albumentations.

Figure 4.10 Augmentation result of the original Image.

Figure 4.11 Augmentation result of the Masked label.

Figure 4.12 Training and validation Loss and Accuracy plot for small dataset

Figure 4.13 Model performance on small dataset from left to right Original Image,

Perspective mask and Model output.

Figure 4.14 Training and validation Loss and Accuracy plot for large dataset

Figure 4.15 Model performance on large dataset from left to right Original Image,

Perspective mask and Model output.

79

Figure 4.16 Segmentation tool range boundaries for blue and yellow color used for

experiments.

Figure 4.17 Defining trackbars in color segmentation tool.

Figure 4.18 Refference Object HSV image, Mask and Segmentation result

Figure 4.19 Wood logs HSV image, Mask and Segmentation result

Figure 4.20 Trackbars set for Wood logs segmentation

Figure 4.21 From left to right- Original image, contour area mask, segmentation mask

Figure 4.22 User Input Dialog for known parameters

Figure 4.23 Final Calculation Result Experiment

Figure 4.24 Experiment Result Comparison

	PREFACE
	LIST OF ABBREVIATIONS
	1. INTRODUCTION
	1.1. Overview
	1.2. Motivation
	1.3. Objective
	1.4. Thesis Structure

	2. LITERATURE REVIEW
	2.
	2.1. Close Range Photography
	2.2. Volumetric APP
	2.3. SfM-Patched Based Multi View Stereo System
	2.4. Orthogonal Imaging
	2.5. 3D Modelling and Reconstruction
	2.6. Structured Light Vision
	2.7. RGB-D Camera
	2.8. Simultaneous Localization and Mapping (SLAM)
	2.9. Other Approaches
	2.10. Summary of literature review

	3. METHODOLOGY
	3.
	3.1. Development Environments and Platforms
	3.1.1. Android Studio
	3.1.2. OpenCV
	3.2. Android Camera API
	3.3. Segmentation
	3.3.1. HOG Descriptors
	3.3.2. Convolutional Neural Networks
	3.3.3. U - Net
	3.3.4. Transfer Learning
	3.3.5. Dataset for image segmentation
	3.3.6. Data Augmentation
	3.3.7. Color Based Image Segmentation

	4. DEVELOPMENT OF THE SOLUTION
	4.
	4.1. List of Equipment
	4.2. List of Software tools and libraries
	4.3. Programming Languages
	4.4. Setting up Development Environment.
	4.5. Setting up Image Processing in Android Studio.
	4.6. Image Acquisition
	4.7. Creation of Dataset
	4.8. Augmented Dataset
	4.9. Segmentation Algorithm
	4.9.1. Training the Model with small dataset
	4.9.2. Training the Model with large dataset
	4.10. HSV Range Selection
	4.11. Android App Development
	4.12. App Flow chart
	4.13. Volume Calculation and Evaluation of Result

	5. DISCUSSION
	5.
	5.1. Limitations
	5.2. Justification of the work completed.
	5.3. Future directions on the thesis work
	5.4. Summary
	5.5. Kokkuvõte

	LIST OF REFERENCES
	APPENDICES
	Application Code
	Segmentation Tool Code

	LIST OF FIGURES

