
TALLINN UNIVERSITY OF TECHNOLOGYDOCTORAL THESIS11/2020

Hash-Based Server-Assisted Digital
Signature Solutions

AHTO TRUU

TALLINN UNIVERSITY OF TECHNOLOGYSchool of Information TechnologiesDepartment of Software Science
The dissertation was accepted for the defence of the degree of Doctor of Philosophy (Computer Science) on 28/04/2020
Supervisor: Prof. Ahto Buldas

Department of Software Science
School of Information Technologies
Tallinn University of Technology
Tallinn, Estonia

Opponents: Ass. Prof. Andreas Hülsing
Eindhoven University of Technology
Eindhoven, Netherlands
Ass. Prof. Elena Andreeva
Technical University of Denmark
Lyngby, Denmark

Defence of the thesis: 28/05/2020, Tallinn
Declaration:Hereby I declare that this thesis, my original investigation and achievement, submitted forthe doctoral degree at Tallinn University of Technology, has not been submitted for anyacademic degree elsewhere.

Ahto Truu
signature

Copyright: Ahto Truu, 2020ISSN 2585-6898 (publication)ISBN 978-9949-83-546-1 (publication)ISSN 2585-6901 (PDF)ISBN 978-9949-83-547-8 (PDF)

TALLINNA TEHNIKAÜLIKOOLDOKTORITÖÖ11/2020

Räsifunktsioonidel põhinevad serveri
toega digitaalse signeerimise lahendused

AHTO TRUU

To Enok,who introduced me to computing.

To Piret,who has suffered the consequences.

Contents

List of Publications . 9
Author’s Contributions to the Publications . 10
1 Introduction . 111.1 Background and Motivation . 111.2 Approach and Summary of Results . 11
2 Related Work . 132.1 Hash-Based Signatures . 132.2 Server-Assisted and Interactive Signatures . 132.3 Non-Repudiation and Cryptographic Time-Stamping . 14
3 Preliminaries. 153.1 Notation . 153.2 Security Framework . 153.3 Hash Functions . 153.4 Hash Trees and Hash Chains . 173.5 Hash-Then-Publish Time-Stamping. 183.6 Digital Signatures . 19
4 Time-Stamped Scheme with Time-Bound Keys . 214.1 Description of the Scheme. 214.2 Security of the Scheme . 224.3 Implementation Considerations . 234.4 Discussion . 24
5 Blockchain-Backed Scheme with One-Time Keys . 275.1 Design of the Scheme . 275.2 Description of the Scheme. 285.3 Implementation Considerations . 305.4 Discussion . 31
6 Time-Stamped Scheme with One-Time Keys . 336.1 Forward-Resistant Tags . 336.2 Description of the Scheme. 356.3 Discussion . 36
7 Application: Efficient Log Signing . 397.1 Related Work . 397.2 Description of the Scheme. 407.3 Security of the Scheme . 417.4 Implementation Considerations . 427.5 Discussion . 43
8 Conclusions and Outlook . 45
References . 47

7

Acknowledgements . 53
Abstract . 55
Kokkuvõte . 56
Appendix 1: Publication I . 57
Appendix 2: Publication II . 75
Appendix 3: Publication III . 93
Appendix 4: Publication IV . 107
Curriculum Vitae . 125
Elulookirjeldus . 128

8

List of Publications
The thesis is based on the following publications, referred to by Roman numbers.
Publication I: A. Buldas, R. Laanoja, and A. Truu. A server-assisted hash-based signaturescheme. In NordSec 2017, Proceedings, volume 10674 of LNCS, pages 3–17. Springer,2017
Publication II: A. Buldas, R. Laanoja, and A. Truu. A blockchain-assisted hash-based sig-nature scheme. In NordSec 2018, Proceedings, volume 11252 of LNCS, pages 138–153.Springer, 2018
Publication III: A. Buldas, D. Firsov, R. Laanoja, H. Lakk, and A. Truu. A new approach toconstructing digital signature schemes (short paper). In IWSEC 2019, Proceedings,volume 11689 of LNCS, pages 363–373. Springer, 2019
Publication IV: A. Buldas, A. Truu, R. Laanoja, and R. Gerhards. Efficient record-level key-less signatures for audit logs. In NordSec 2014, Proceedings, volume 8788 of LNCS,pages 149–164. Springer, 2014

9

Author’s Contributions to the Publications
Publication I: I was the lead author, contributing the primary idea andmost of thewriting.
Publication II: I contributed the authenticated data structure and the protocol for auditingthe server’s behavior, and some of the writing.
Publication III: My contribution was technical work on the proofs of forward-resistance ofthe proposed tag schemes, and some of the writing.
Publication IV: I contributed most of the writing, the specifications of the aggregationand extraction algorithms, and also the technical specification not included in theacademic paper, but underlying the reference implementation described in the paper.

10

1 Introduction
1.1 Background and Motivation
In any modern society, one would be hard pressed to find a field of activity where impor-tant decisions would not be made based on digital data, documents, or messages. It istherefore vital to verify that the information has not been tampered with, before relyingon it in such a manner. Digital signatures are the core technology for ensuring integrityand authenticity of electronic information.All the digital signature schemes in wide use today (RSA [71], DSA [40], ECDSA [52])are known to be vulnerable to quantum attacks by Shor’s algorithm [77]. While the bestcurrent experimental results are still toy-sized [59], it takes a long time for new crypto-graphic schemes to be accepted and deployed, so it is of considerable interest to look forpost-quantum secure alternatives already now. These considerations triggered the Post-Quantum Cryptography project, announced by NIST in December 2016 [64].Error-correcting codes, lattices, andmulti-variate polynomials have been used as foun-dations for proposed replacement schemes [7]. However, these are relatively complexstructures andnewconstructions in cryptography, so require significant additional scrutinybefore gaining trust.Hash functions, on the other hand, have been studied for decades and are widely be-lieved to be quite resilient to quantum attacks. The best currently known quantum resultsagainst hash functions are usingGrover’s algorithm [46] to find a pre-image of a given k-bitvalue in 2k/2 queries instead of the 2k queries needed by a classical attacker and its adap-tation by Brassard et al. [10] to find a collision in 2k/3 instead of 2k/2 queries. To counterthese attacks, it would be sufficient to deploy hash functions with correspondingly longeroutputs when moving from pre-quantum to post-quantum setting. The crucial point isthat the attack costs remain exponential even for quantum adversaries.Another advantage of hash function based schemes is the minimization of assump-tions. It has been shown that secure digital signatures can exist if and only if one-wayand second pre-image resistant hash functions exist [74]. As the signature schemes westudy in the following depend on the hash function having additional properties, they areformally not based on minimal assumptions. However, all real-life deployments that weare aware of implement the hash-then-sign model that relies on a collision resistant hashfunction in addition to a signature scheme. Therefore, it can be argued that in practice,collision resistance should also be counted among the minimal assumptions.
1.2 Approach and Summary of Results
In this work, we propose the BLT family of signature schemes (named after the initialsof the inventors) built from hash functions as the sole underlying cryptographic primi-tive. We analyze most of the proposed schemes formally, providing security reductions toproperties of hash functions.The proposed schemes are really templates that can be instantiatedwith different hashfunctions. A benefit of this approach is that when the security of one hash function be-comes insufficient (whether by advances in cryptoanalytic techniques or in computingpower, or a combination of the two), we can replace the hash function with a strongerone and the security of the new instantiation of the signature scheme follows from thesecurity of the replacement hash function.We start by reviewing related work in Chapter 2 and then outlining the security defini-tions and properties of hash functions and hash trees in Chapter 3.In Chapter 4 we describe the schemewe call BLT-TB (for “time-bound”) that essentially

11

consists of authenticating messages with one-time keys pre-bound to fixed time slots andproving correct usage of these keys by time-stamping the authenticators. We prove thescheme to be 2k/2−1-secure under the assumption that the hash function with k-bit out-puts behaves like a random oracle. While this puts quite a high requirement on the hashfunction, the security level of the scheme is very close to the principal upper bound of
2k/2 common to all signature schemes able to signmessages of arbitrary length. Themaindrawback of the scheme is the need to pre-generate keys for all possible signing times,which can be prohibitive for constrained devices, such as smart cards.In Chapter 5 we propose a way to reduce the key generation costs for personal devicesthat are used only occasionally. The BLT-BC scheme (for “blockchain”)makes the keys one-time and uses a blockchain-backed validator (perhaps implemented as a consensus-basedcluster) to enforce the one-time property of the signing keys. Thus, the scheme tradessavings on the client side against higher requirements on the supporting service, both inthe trust placed on the service and also the computing resources required to operate it.In Chapter 6 we propose another way to relax the requirement to pre-bind the keys totime by developing the concept of forward-resistant tags. We prove that the combinationof a forward-resistant tag system and a backdating-resistant time-stamping service yieldsan unforgeable signature scheme. We then propose several forward-resistant tag systems,in particular some that allow dynamic binding of keys to time, and derive their securityproperties from those of the underlying hash function. Based on that, we then definethe BLT-OT (for “one-time”) signature scheme where each key can be used just once, butat the time of keyholder’s choosing. The resulting scheme has competitive performanceboth as a one-time scheme and also as a component of a many-time scheme.All these signature schemes depend on access to a time-stamping service and are thusinherently server-supported. On one hand this comes with the need to critically trust anexternal service for the security of the signatures and the restriction that signing is onlypossible on-line. On the other hand, most practical deployments of digital signatures inopen systems need to track key revocations and are on-line even when the underlying sig-nature scheme theoretically supports off-line signing and the server-supported nature ofour schemes also provides a natural choke point for implementing instant key revocationand possibly enforcing other kinds of usage policies as well.In Chapter 7 we apply hash function based techniques to efficient signing of audit logs.We propose a scheme where log records are signed in batches to reduce computationaland storage overhead, but can be proven (and the proofs verified) individually, withoutleaking any information about the contents of other records in the log.A limitation of the current work, in particular considering the motivation of quantumthreats, is that the security proofs are done in classical setting. Formal analysis in quan-tum setting is hindered, among other difficulties, by the fact that our signature schemesdepend on time-stamping and there is currently no well-defined notion of back-dating re-sistance of time-stamping in quantum setting. There is hope, however, that the collapsingproperty [82, 81, 35] of hash functions could be useful in moving to quantum setting.

12

2 Related Work
2.1 Hash-Based Signatures
The earliest signature scheme constructed from hash functions is due to Lamport [37].His scheme, as well as the refinements proposed in [61, 42, 39, 12, 49], are one-time: theyrequire generation of a new key pair and distribution of a new public key for eachmessageto be signed.Merkle [61] introduced the concept of hash treewhich aggregates a (potentially large)number of inputs into a single hash value so that any of the inputs can be linked to it with acompact proof. This allowed combining N instances of a one-time signature scheme intoan N-time scheme. This approach has been further studied in [34, 73, 36]. A commondrawback of these constructs is that the whole tree has to be built at once.In [62], Merkle proposed a method to grow the tree gradually as needed. However, toauthenticate the lower nodes of the tree, a chain of one-time signatures (rather than ofmuch smaller hash values) is needed, unless the scheme is used in an interactive environ-ment and the recipient keeps thepublic keys already delivered as part of earlier signatures.This multi-level approach has subsequently been refined in [58, 11, 14, 13, 50, 51].A complication with the N-time schemes is that they are stateful: as each of the one-time keys may be used only once, the signer has to keep track of them. If this informationis lost (for example, when a previous state is restored from a backup or when multipleconcurrent processes use the same key), key re-use may result in a catastrophic securityloss. Perrig [66] proposed a few-time scheme where a private key can be used to signseveral messages, and the security level decreases gradually with each additional use.Bernstein et al. [8] combined the optimized few-time scheme of [70] with the multi-level tree of [13] to obtain a stateless scheme that uses keys based on a pseudo-randomschedule, making the risk of re-use negligible even without tracking the state.
2.2 Server-Assisted and Interactive Signatures
In server-assisted schemes, signers can’t produce signatures on their own, but have to co-operate with servers. The two main motivations for such schemes are: (a) performance:costly computations can be offloaded from an underpowered signing device (such as asmart card) to a more capable server; and (b) security: risks of key misuse can be reducedby either keeping the keys in a server environment (which can presumably be managedbetter than an end-user’s personal computer) or by having the server perform additionalchecks as part of the signature generation protocol.An obvious solution would be to just let the server handle the asymmetric-key opera-tions based on requests from the signers [68]. In this case the server has to be completelytrusted, but it’s not immediately clear whether that is in fact less secure than letting theend-users manage their own keys [30].To reduce the need to trust the server, Asokan et al. [5] proposed a method whereasymmetric-key operations are performed by a server, but a user can prove the server’smisbehavior when presented with a signature that the server created without the user’srequest. However, such signatures appear to be valid to a verifier until challenged by thesigner. Thus, this protocol is usable in contexts where a dispute resolution process exists,but unsuitable for applications with immediate and irrevocable effects, such as authen-tication for access control purposes or committing transactions to append-only ledgers.This also applies to later improvements of the approach in [9, 45].Several methods have been proposed for outsourcing the more expensive computa-tion steps of specific signature algorithms, notably RSA, but most early schemes have

13

subsequently been shown to be insecure. In recent years, due to increasing computa-tional power of handheld devices and wider availability of hardware-accelerated imple-mentations, attention has shifted to splitting keys between end-user devices and back-endservers to improve the security of the private keys [33, 18].Interactive signature protocols were first considered by Anderson et al. [2]. They pro-posed a protocol, where, once bootstrapped, a message is preceded by publishing thehash of the message and each message is authenticated by accompanying it with a secretwhose hash was published together with an earlier message. Although the verificationis limited to a single party, the protocol is shown to be a signature scheme according toseveral definitions. Similar concept was used in [67] to authenticate parties who are con-stantly communicating with each other. Due to this, it has the same inflexibility of notsupporting multiple independent verifiers.
2.3 Non-Repudiation and Cryptographic Time-Stamping
An important property of digital signatures as an alternative to hand-written ones [41]is non-repudiation, i.e. the possibility to use the signature as evidence against the signer.Solutionswhere trusted third parties are (technically) able to sign on behalf of their clientsare not desirable for non-repudiation, because clients may use that argument to fraudu-lently call their signatures into question. Therefore, solutions where clients have personalsignature devices are preferable to those relying entirely on trusted parties.Another real-world complexity is key revocation. Without such capability clients mayfraudulently claim that their private keys were stolen and someone else may create signa-tures in their name. With revocation tracking, signatures created before a key revocationevent can be treated as valid, whereas signatures created afterwards can be consideredinvalid. Usually this is implemented using cryptographic time-stamping and certificate sta-tus distribution services. No matter the implementation details, this can’t be done with-out online services, whichmeans thatmost practical deployments of digital signatures areactually server-supported.Cryptographic time-stamps prove that some data existed before a particular time. Theproof can be a statement that the data hash existed at a given time, cryptographicallysigned by a trusted third party.Haber and Stornetta [47] made the first steps towards trustless time-stamping witha scheme where each time-stamp would include some information from the immedi-ately preceding one and a reference to the immediately succeeding one. Benaloh and deMare [6] proposed to increase the efficiency of hash-linked time-stamping by operating inrounds, where messages to be time-stamped within one round would be combined intoa hierarchical structure from which a compact proof of participation could be extractedfor each message. The aggregation structures would then be linked into a linear chain.Buldas et al. [27, 26, 28] proposed a series of time-stamping schemes based on binarylinking that allowed any two tokens to be ordered in time, even if they were issued withinthe same aggregation round.The security of hash-then-publish time-stamping schemes has been proven in a verystrong model where the service provider does not have to be trusted [31, 29, 20, 21],making them particularly suitable for our use-case. Note that it is possible to providesuch a service efficiently and in global scale [19].

14

3 Preliminaries
3.1 Notation
In the following, {0,1}k denotes the set of k-bit strings and {0,1}∗ the set of bit-stringsof arbitrary (finite) length.We will write h : {0,1}∗→{0,1}k to mean a general hash function mapping arbitrary-length inputs to fixed-length outputs and h : {0,1}m → {0,1}k to mean a hash functionrestricted to fixed-length inputs.We will also write h(x1,x2) or h(x1,x2, . . . ,xn) to mean the result of applying h to abit-string encoding the pair (x1,x2) or the tuple (x1,x2, . . . ,xn), respectively.

We will use x $← D to mean that x is obtained by sampling from the distribution D(sampled uniformly randomly in case D is a set) and y←C(x) to mean that y is obtainedas the output of (possibly probabilistic) computationC on input x.We will useAC(·) to denote thatA has oracle access toC. This means thatA canmakequeries to the public interface ofC, but has no access to implementation ofC.We will write Pr
[
E
] for the probability of the event E happening and Pr

[
P : E

] for theprobability of the event E happening assuming the pre-condition P.
3.2 Security Framework
In the following sections, we analyze the security levels of the proposed signature schemesby relating them to the security properties of the underlying hash function.As most security attacks are probabilistic, we will use a slight generalization of Luby’stime-success ratio [56] to express the resilience of cryptographic schemes as the relation-ship of the probability that an attackwill succeed to the amount of resources the adversarycan spend on the attack:
Definition 1. A cryptographic scheme is S-secure if no adversary can break the securityproperties of the scheme with probability greater than or equal to ρ

S , where ρ representsthe computational resources available to the adversary.
The resources represented by ρ are computation time and memory. The total resourcebudget of the adversary is ρ = α · time+β ·memory, where α and β are the costs of aunit of computation time and a unit of memory, respectively.The notion of S-security is equivalent to the condition that every adversary with suc-cess probability δ and computational resources ρ has ρ/δ > S. This means that the costof an attack is measured by the ratio ρ/δ , which is motivated by the following thoughtexperiment: if the benefit to be gained from a successful attack is γ , the attack is econom-ically viable if the expected outcome δ · γ exceeds the cost ρ , i.e. if γ > ρ/δ . Hence, theratio ρ/δ can be considered as a “market-driven” limit on the cost of the attack.
3.3 Hash Functions
In general, a hash function h maps arbitrary-sized input data to fixed-size output values:

h : {0,1}∗→{0,1}k .

Even though some actual hash functions technically are defined only for inputs up to aspecific length, these limits are so high that for all practical purposes the functions can beconsidered unlimited.Hash values are often used as representatives of data that are either too large or tooconfidential to be used directly. For example, in the hash-then-publish time-stamping
15

model, a hash value of a document is published to establish evidence of the existence ofthe document without disclosing its contents. Likewise, in the hash-then-sign model, adocument’s hash value is signed instead of the document itself.To facilitate such uses, cryptographic hash functions are expected to have several ad-ditional properties, such as one-wayness (it’s infeasible to reconstruct the input from theoutput), second pre-image resistance (it’s infeasible to change the input so that it stillmaps to the same output), and collision resistance (it’s infeasible to find two distinctinputs mapping to the same output). These have received extensive formal treatmentin [72, 3, 4], from which we summarize the minimum needed for our purposes.
Definition 2 (One-way function). A function f : D→ R is S-secure one-way if every f -inverting adversaryA using computational resources ρ has success probability

Pr
[
x $← D, x′←A(f (x)) : f (x′) = f (x)

]
<

ρ

S
.

The one-wayness property models a hash function’s ability to keep the confidentiality ofthe inputs. There is a natural upper bound of 2k on the one-wayness of a hash functionwith k-bit outputs: assuming uniform distribution of outputs, a randomly generated x′ willmap to the desired valuewith probability 2−k and an adversary that can afford to generate
2k random inputs and evaluate the function on all of them is expected to find a match. (Ifthe function has non-uniform output distribution, the probability of the attacker findinga match grows faster, so 2k is still an upper bound.)
Definition 3 (Second pre-image resistant function). A function f : D→ R is S-secure sec-ond pre-image resistant if every adversary A using computational resources ρ to find asecond pre-image of a given input has success probability

Pr
[
x $← D, x′←A(x) : x′ 6= x, f (x′) = f (x)

]
<

ρ

S
.

The second pre-image resistance models the strength of the hash values as commitmentssecure against attackers trying to replace or modify the inputs after the commitment. Inother words, onemight say that the second pre-image resistancemodels a hash function’ssecurity against post-commitment attacks by second or third parties. The second pre-image resistance of a hash function with k-bit outputs is also bounded by 2k.
Definition 4 (Collision resistant function). A function f : D→ R sampled from a family
F is S-secure collision resistant if every collision-finding adversaryA using computationalresources ρ has

Pr
[

f $← F, (x1,x2)←A(f) : x1 6= x2, f (x1) = f (x2)
]
<

ρ

S
.

The collision resistance models the strength of the hash values as commitments secureagainst malicious users trying to prepare multiple inputs that would all match the samecommitted output, or in other words, security against pre-commitment attacks by firstparties. The upper bound for the collision resistance of a hash function with k-bit outputsis 2k/2: in a set of randomly generated inputs, the probability of any one pair forming acollision is 2−k; as the number of pairs grows quadratically with the size of the set, an ad-versary that can generate 2k/2 inputs and check for duplicates in the set of correspondingoutputs is expected to find a matching pair.
Definition 5 (Random oracle). A random oracle Ω : D→ R is a function picked uniformlyrandomly from all the functions D→ R.

16

Hash functions are often viewed as random oracles to model the unpredictability of theiroutputs. A random oracle achieves the upper bounds for one-wayness, second pre-imageresistance and collision resistance.
Definition 6 (Undetectable function). A function f : D→ D is S-secure undetectable ifevery detecting adversaryA using computational resources ρ has:

∣∣∣Pr
[
x $← D : A(x) = 1

]
−Pr

[
x $← D : A(f (x)) = 1

]∣∣∣< ρ

S
.

This property is essentially the one-shot version of the unpredictability of random oracles.We will also need to rely on this property for iterated hash functions:
Lemma 1. If f : D→ D is S-secure undetectable, then f n =

n times︷ ︸︸ ︷
f ◦ f ◦ . . .◦ f is at least S

n -secure undetectable.
The proof is given in [15] which is an extended version of Publication III.
3.4 Hash Trees and Hash Chains
Introduced by Merkle [61], a hash tree is a tree-shaped data structure built using a 2-to-1hash function h : {0,1}2k→{0,1}k. The nodes of the tree contain k-bit values. Each nodeis either a leaf with no children or an internal node with two children. The value x of aninternal node is computed as x← h(xl ,xr), where xl and xr are the values of the left andright child, respectively. There is one root node that is not a child of any node. We willuse r← T h(x1, . . . ,xN) to denote a hash tree whoseN leaves contain the values x1, . . . ,xNand whose root node contains r.

r = h(x1,2,x3,4)

x1,2 = h(x1,x2)

x1 x2

x3,4 = h(x3,x4)

x3 x4

r

x1,2 x3,4

x3 x4

Figure 1: The hash tree T h(x1, . . . ,x4) and the corresponding hash chain x3 r.

In order to prove that a value xi participated in the computation of the root hash r, it issufficient to present values of all the sibling nodes on the unique path from xi to the rootin the tree. For example, to claim that x3 belongs to the tree shown on the left in Figure 1,one has to present the values x4 and x1,2 to enable the verifier to compute x3,4← h(x3,x4),
r← h(x1,2,x3,4), essentially re-building a slice of the tree, as shown on the right in Figure 1.We will use x c r to denote that the hash chain c links x to r in such a manner.Intuitively, it seems obvious that if the function h is collision-resistant, the existence ofsuch a chain whose output equals the original r is a strong indication that x was indeedthe original input. However, this result was not formally proven until 25 years after thehash tree construct was proposed [31, 34].A binary tree with N leaves has N−1 internal nodes, so it takes N−1 evaluations ofthe hash function to compute the root hash value of the tree. In a balanced binary tree,the distance of any leaf from the root is log2 N, thus log2 N hash function evaluations areneeded to verify a hash chain extracted from such a tree.

17

The cost of extracting hash chains depends on how much of the tree is cached. If thewhole tree is kept (causing a storage overhead of N − 1 hash values in addition to theleaves), the hash chain for any leaf can be extracted with no additional hash functionevaluations. If nothing is kept, the whole tree has to be re-populated, at the cost of N−1hash function evaluations.Various trade-offs between these extremes are possible. For example, if the internalnodes halfway between the root and the leaves are kept (an overhead of approximately√
N fixed hash values), the hash chain for any leaf can be extracted by re-populating twosub-trees at the total cost of 2

√
N hash function evaluations.Assuming the chains are extracted consecutively for all leaves in the left-to-right order,there are several more efficient dynamic algorithms, such as the one by Szydlo [79] thatkeeps only 3log2 N nodes of the tree and spends 2log2 N hash function evaluations perchain extraction.

3.5 Hash-Then-Publish Time-Stamping
Following Buldas and Saarepera [31], we model the hash-and-publish time-stamping ser-vice as consisting of a repositoryR and an aggregation layer S (Figure 2). We consider therepository R to be an ideal object that works as follows:

• The time t is initialized to 1, and all the cells Ri to⊥.• The query R.time is answered with the current value of t.• The query R.get(t) is answered with Rt .• On the request R.put(x), first Rt ← x is assigned and then t← t +1.
The aggregation layer S operates in fixed-duration rounds. During each round, S collectsclient requests. At the end of the round, S aggregates the received requests x1, . . . ,xNinto a hash tree r← T h(x1, . . . ,xN), queries t via a call to R.time, commits the root r ofthe hash tree via R.put(r), and finally returns to each client the hash chain a linking thatclient’s input x to the committed root r.

C

x

(t
,x

a t
r t
)

(x, t,at)

S
t

rt
R

r t

V

Figure 2: Interactions in the hash-then-publish time-stamping between the clientC, the aggregationservice S, the ideal repository R, and the verifierV .

A verifier V , receiving an input x and a time-stamp (t,at), first obtains rt by querying
R.get(t) and then checks that the hash chain at links the input x to rt .To simplicfy presentation, we count time in aggregation rounds of the time-stampingservice and use the expression “at time t” to mean “during aggregation round t”.The security of such schemes can be proven in a model where only the repository Ris assumed to operate correctly and the service S does not have to be trusted. We refer

18

to [31, 29, 20, 21] for detailed analyses, including the requirements on the hash function
h used by S in the general setting, and list our assumptions case by case in the proofs inthe following sections.
3.6 Digital Signatures
A signature scheme consists of a triple (Gen,Sig,Ver) of algorithms, where:

• Gen is a probabilistic key-generation algorithm that, given as input a security pa-rameter k, produces a secret key sk and a public key pk.• Sig is a signature-generation algorithm that, given as input the secret key sk and amessage m, produces a signature σ ← Sig(sk,m).• Ver is a verification algorithm that, given as input a signature σ , a message m, andthe public key pk, returns either 0 or 1, such that
Ver(Sig(sk,m),m,pk) = 1

whenever (sk,pk)← Gen(1k).
Goldwasser et al. [44] proposed a framework for studying security of signature schemeswhere the attackers have various levels of access to signing oracles and various require-ments on what they need to achieve for the attack to be considered successful (and thescheme broken). As the highest security level, they defined the concept of existentialunforgeability where an attacker should be unable to forge signatures on any messages,even nonsensical ones.They also defined the chosen-message attackwhere the attacker can submit a numberof messages to be signed by the signing oracle before having to come upwith a forged sig-nature on a newmessage, and in particular, as the one giving the attacker themost power,the adaptive chosen-message attackwhere the attackerwill receive each signature imme-diately after submitting the message and can use any information gained from previoussignatures to form subsequent messages.
Definition 7 (Existential unforgeability). A signature scheme is S-secure existentially un-forgeable against adaptive chosen-message attacks if any adversary using computationalresources ρ , having access to a signer’s public key p and to a signing oracle S to obtainsignatures σ1← S(m1), . . . , σn← S(mn) on adaptively chosen messages m1, . . . , mn, canproduce a newmessage-signature pair (m,σ) such that m 6∈ {m1, . . . ,mn}, but σ is a validsignature on m, with probability less than ρ/S.

19

4 Time-Stamped Scheme with Time-Bound Keys
We now have the foundations to start describing and analyzing our proposed new signa-ture schemes.The principal idea of our first scheme is to have the signer commit to a sequence ofkeys so that each key is assigned a time slot when it can be used to sign messages and willtransition from a signing key to a verification key once the time slot has passed.Signing itself then consists of time-stamping the message-key pair in order to provethat the signing operation was performed at the correct time.
4.1 Description of the Scheme
More formally, the procedures for key generation, signing, and verification are as follows.
Key Generation. To prepare to sign messages at times 1, . . . ,T , the signer:

1. Generates T unpredictable k-bit values as signing keys: (z1, . . . ,zT)← G(T,1k).2. Binds each key to its time slot: xi← h(i,zi) for i ∈ {1, . . . ,T}.3. Aggregates the key bindings into a hash tree: p← T h(x1, . . . ,xT).4. Publishes the root hash p as the public key.
The resulting data structure is shown in Figure 3 and its purpose is to be able to extract
hash chains ci such that h(i,zi)

ci p for i ∈ {1, . . . ,T}.
p

x1,2

x1

1 z1

x2

2 z2

x3,4

x3

3 z3

x4

4 z4

Figure 3: Computation of the public key for T = 4: z1, . . . ,z4 are the private keys.

Signing. To sign message m at time t, the signer:
1. Uses the appropriate key to authenticate the message: y← h(m,zt).2. Time-stamps the authenticator: sends y to the time-stamping service and receives

in response at such that y
at rt , where rt is the root hash of the aggregation treebuilt by the time-stamping service for the aggregation round t. We assume the roothash is committed to in some reliable way, such as broadcasting it to all interestedparties, but place no other trust in the service.3. Outputs the tuple (t,zt ,ct ,at), where t is the signing time, zt is the signing key fortime slot t, ct is the hash chain linking the binding (t,zt) to the signer’s public key

p, and at is the hash chain from the time-stamping service linking the message-keypair (m,zt) to the round commitment rt .
Note that the signature is composed and emitted after the time-stamping step, whichmakes it safe for the signer to release the key zt as part of the signature: the time-stampingaggregation round t has ended and any future uses of the key zt can no longer be stampedwith time t.

21

Verification. To verify that the message m and the signature s = (t,z,c,a) match thepublic key p, the verifier:
1. Checks that z was committed as signing key for time t: h(t,z) c p.
2. Checks that m was authenticated with key z at time t: h(m,z) a rt .

4.2 Security of the Scheme
To formalize our security assumptions, we introduce three oracles:

• Wemodel the publishing of the root hashes of the time-stamping aggregation treesas the oracle R that allows each rt to be published just once.• The signing oracle S will compute the message authenticators at any time, but willrelease only the keys that have already expired for signing (transitioned to verifica-tion keys).• We model the hash function h as a random oracle using the lazy sampling tech-nique: every time h is queried with a previously unseen input, a new return valueis generated by uniform random sampling from {0,1}k; when h is queried with apreviously seen input, the same value is returned as the first time.

A(x1, . . . ,xT)

(m,(t,z,c,a))

S(z1, . . . ,zT)

s
i
g
(m

,t
)

h(
m
,z

t)

g
e
t
(t
)

(z
t,

c t
)
/⊥

h R

p
u
t
(r
)

g
e
t
(t
)

r t
/⊥

Figure 4: The adversary’s interactions with the oracles: S is the signing oracle producing messageauthenticators and releasing private keys no longer valid for signing; h is the hash function modeledas a random oracle; R is the repository of round commitments of the time-stamping service.

The adversaryA will be interacting with the oracles as shown in Figure 4 with the goal ofproducing a forgery.
To model the fact that the signer needs to keep secret only the keys z1, . . . ,zT , we ex-plicitly initialize the adversary with x1, . . . ,xT . Note that the verification rule still assumesthat the verifier has access only to the signer’s public key p, which means the adversaryis not limited to presenting hash chains that were actually extracted from T h(x1, . . . ,xT).Also note that we leave the aggregation process of the time-stamping service fully un-der the adversary’s control; only the repositoryR needs to be trusted to operate correctly.
As normally signing message m in our scheme involves first calling S.sig(m, t), thencommitting to R the root of a hash tree that includes the return value, and then calling

S.get(t), we formalize the forgery condition by demanding that the adversary can’t makethe two S calls in that order:
22

Definition 8 (Forgery of a server-assisted signature). The pair (m,σ) produced by an ad-versary is a successful forgery ifσ is a valid signature onm, but the adversary did notmakethe calls S.sig(m, t), S.get(t), in that order, for any t ∈ {1, . . . ,T}.
Theorem 1. Our signature scheme, when instantiated with a hash function h : {0,1}2k→
{0,1}k modeled as a random oracle, is at least 2k/2−1-secure existentially unforgeableagainst adaptive chosen-message attacks.
The proof, which is given in Publication I, is a hybrid argument by case analysis: we firstassume that the adversary does not call S.get(t) and establish an upper bound on theprobability that it could succeed in creating a forgery; we then show that an adversarythat does call S.get(t) would not gain any advantage from calling S.sig(m, t) after that;we then assume as an alternative case that the adversary indeed did not call S.sig(m, t)and establish an upper bound on the probability of a successful forgery in this case; finally,we obtain our result as an upper bound on the sum of these two success probabilities.
4.3 Implementation Considerations
Key Generation. In the description of the scheme we assumed that the signing keys
z1, . . . ,zT are unpredictable values drawn from {0,1}k, but left unspecifiedhow theymightbe generated in practice.Obviously they could be generated as independent truly random values, but this wouldbe rather expensive and also would necessitate keeping a large number of secret valuesover a long time. It would be more practical to generate them pseudo-randomly from asingle random seed s. There are several known ways of doing that:

• Iterated hashing: zT ← s, zi−1← h(zi) for i ∈ {2, . . . ,T}.
This idea of generating a sequence of one-time keys from a single seed is due toLamport [55] and has also been used in the TESLA protocol [67]. Implemented thisway, our schemewould also bear some resemblance to theGuy Fawkes protocol [2].
Note that the keys have to be generated in reverse order, otherwise the earlier keysreleased as signature components could be used to derive the later ones that arestill valid for signing. To be able to use the keys in the direct order, the signer wouldhave to either remember them all, re-compute half of the sequence on average, orimplement a traversal algorithm such as the one proposed by Schoenmakers [76].

• Counter hashing: zi← h(s, i) for i ∈ {1, . . . ,T}.
With a hash function behaving as a random oracle, this scheme would generatekeys indistinguishable from truly random values, but we are not aware of any strongresults on the security of practical hash functions when used in this mode.

• Counter encryption: zi← Es(i) for i ∈ {1, . . . ,T}.
The signing keys are generated by encrypting their indices with a symmetric blockcipher using the seed as the encryption key. This is equivalent to using the cipherin the counter mode as first proposed by Diffie and Hellman [38]. The security ofthis mode is extensively studied for all practical block ciphers. Another benefit ofthis approach is that it can be implemented using standard hardware security mod-ules where the seed is kept in protected storage and the encryption operations areperformed in a security-hardened environment.

23

Time-Stamping. As already mentioned, we side-step the key state management prob-lems [60] common for most N-time signing schemes by making the signing keys not one-time, but time-bound instead. This in turn raises the issue of clock synchronization.We first note that even when the signer’s local clock is running fast, premature keyrelease is easy to prevent by having the signer verify the time-stamp on h(m,zt) beforereleasing zt .The next issue is that the signer needs to select the key zt before computing h(m,zt)and submitting it to time-stamping. If, due to clock drift or network latency, the time inthe time-stamp received does not match t, the signature can’t be composed. To counterclock drift and stable latency, the signer can first time-stamp a dummy value and use theresult to compare its local clock to that of the time-stamping service.To counter network jitter, the signer can compute themessage authenticators h(m,zt ′)for several consecutive values of t ′, submit all of them in parallel, and compose the sig-nature using the components whose t ′ matches the time t in the time-stamps received.Buldas et al. [19] have shown that with careful scheduling the latency can be made stableenough for this strategy even in an aggregation network with world-wide scale.Finally, we note that time-stamping services operating in discrete aggregation roundsare particularly well suited for use in our scheme, as they only return time-stamps oncethe round is closed, thus eliminating the risk that a fast adversary could still manage toacquire a suitable time-stamp after the signer has released a key.
4.4 Discussion
Performance. In the following estimates, we assume the use of SHA-256 [63], a common256-bit hash function. On small inputs, a moderate CPU core can perform about a millionSHA-256 evaluations per second.1 We also assume a signing key sequence containing onekey per second for a year, for a total of a bit less than 32 million, or roughly 225 keys.Using the techniques described above, generation of T signing keys takes T applica-tions of either a hash function or a symmetric block cipher. Aggregating them into a publickey takes 2N−1 hashing operations. Thus, the key generation in our example takes about100 seconds on a single core (and is well parallelizable if either of the counter-based gen-erator mechanisms is used).The resulting public key consists of just one hash value. In the private key, only theseed s has to be kept secret. The signing keys z1, . . . ,zT can be erased once the public keyhas been computed, and then re-generated as needed for signing.The hash tree T h(x1, . . . ,xT) presents a space-time trade-off. It may be kept (in regularunprotected storage, as it contains no sensitive information), taking up 2N−1 nodes, orabout 1 GB, and then the key authentication hash chains can be just read from the treewith no additional computations needed. Alternatively, one can use a hash tree traversalalgorithm, such as the one proposed by Szydlo [79], to keep only 3log2 N nodes of the treeand spend 2log2 N hash function evaluations per chain extraction, assuming all chains areextracted consecutively.The size of the signature (t,zt ,ct ,at) is dominated by the two hash chains. The keyauthentication chain consists of log2 N hash values, for a total of about 800 B for our 1-year key sequence. The time-stamping chain consists of log2 M hash values, where M isthe number of requests received by the time-stamping service in the round t. Assumingthe use of the KSI service described in [19] operating at its full capacity of 250 requests perround, this adds about 1600 B. Thus we can expect signatures of less than 3 kB.

1As reported by OpenSSL 1.0.2 speed test on a laptop with 2.3 GHz Intel Core i5 CPU.
24

As the verification means re-computation of the hash chains, it amounts to less than ahundred hash function evaluations.We will compare the performance of this scheme to the state of the art in Section 6.3.
Security Model. The security model of our scheme is markedly different from that ofthe “standalone” schemes. The correct operation of the repository R backing the time-stamping service is critical for the unforgeability of the signatures. An adversary that cantamper with the contents of R could back-date time-stamps and thus reuse keys alreadyreleased as components of legitimate signatures to create forgeries.There are practical ways to mitigate this risk. For example, the repository could bebased on a data structure where each record includes a hash value of the preceding oneand new records could be added by consensus among multiple independently operatednodes, essentially implementing a distributed robust public transaction ledger [43].This, however, poses additional engineering challenges when deploying the scheme inpractice.Also the verifiers of signatures need to be able to authenticate the responses receivedfrom the repository when they query the round commitments.

25

5 Blockchain-Backed Scheme with One-Time Keys
The signing keys in the scheme proposed in the previous chapter are really not one-time,but rather time-bound: every key can be used for signing only within a specific time in-terval. For that reason, we will refer to the scheme as BLT-TB (for “time-bound“) in thefollowing.The architecture of the BLT-TB scheme can be modeled as interactions between thefollowing parties (Figure 5, left):

• The signerwhouses trusted functionality in secure deviceD tomanage private keys.• Server S that aggregates key usage events from multiple signers in fixed-lengthrounds and posts the summaries to append-only repository R.• VerifierV who can verify signatures against the signer’s public key p and the roundsummaries rt obtained from the repository.
Note that S andR together implement a hash-then-publish time-stamping service whereneither the signer nor the verifier needs to trust S; onlyR has to operate correctly for thescheme to be secure.
5.1 Design of the Scheme
One-Time Keys. The design of BLT-TB incurs quite a large overhead as keys must be pre-generated even for time periods when no signatures are created. To avoid this inherentinefficiency, we now propose to spend the keys sequentially, one-by-one, as needed.As the first idea, we could have the signer time-stamp each signature, just as in BLT-TB.In case of a dispute, the signature with the earlier time-stamp would win and the laterone would be considered a forgery. This would obviously make verification very difficult,but more importantly would give the signer a way to deny any signature: before signing adocument d with a key z, the signer could use the same key to privately sign some dummyvalue x; when later demanded to honor the signature on d, the signer could show thesignature on x and declare the signature on d a forgery.To prevent this, we assign every signer to a designated server which allows each key tobe used only once. A trivial solution would be to just trust the server to behave correctly.This would still not achieve non-repudiation, as the server could collect spent keys andcreate valid-looking signatures on behalf of the signer.
Validating the Server’s Behavior. If either the signer or the server published all signingevents, including the key index for each one, then the server could not reuse keys andwould not have to be treated as a trusted component. This would be quite inefficient,though, because of the amount of data that would have to be distributed and processedduring verification, and would also leak information about the signer’s behavior.To avoid publishing all transactions, we use spent key counters both at the signer andthe server side and an authenticated data structure for validating that the server ever onlyincreases the counter values.If proofs of correct operation were included in signatures, verifiers could reject signa-tures without valid proofs. This approach would have quite large overhead, however, asthe verifiers would have to be able to validate the counters throughout their entire life-time. Other parties who could perform such validation are the repository, the signers, orindependent auditors. Both signers and auditors could only discover a forgery after thefact, not early enough to avoid creation of forged signatures.A promising idea is to validate the server’s correct operation by the repository itself.We require the server to provide a proof of correctnesswith each update to the repository.

27

The repository accepts the update only after validating the proof and then broadcasts theaccepted root hashes. Because signatures are verified based on published root hashes inthe repository, forgery by temporarily decrementing key usage counters is prevented.

D

y
=

h(
m
,z

t)

a t
=

y

r t

(m, t,zt ,ct ,at)

S
rt

R

r tr t

V D

y
=

h(
m
,z

i)

a t
=
(y
,i
)

r t

(m, i,zi,ci, t,at)

S
(P,r)

Rv
rt

R

r tr t

V

Figure 5: Interactions in BLT-TB (left) and BLT-BC (right): the signer uses the trusted device D tomanage private keys; the server S aggregates client requests and posts round commitments to therepository R, which both the signing device D and the verifier V query for the commitments; inBLT-BC, the repository has an additional validation layer Rv checking the proofs of correct operationaccompanying the commitments before accepting them for inclusion in the repository.

5.2 Description of the Scheme
Our proposed new scheme, which we will refer to as BLT-BC (for “blockchain”), consists ofthe following parties (Figure 5, right):

• The signer uses trusted device D to generate keys and then sign data, as in BLT-TB.• The server S assists signers in generating signatures. S keeps a counter of spent keysfor each signer and sends updates to the repository.• The repository performs two tasks. The validation layer Rv verifies the correctnessof each operation of S before accepting it and periodically commits the summaryof current state to a public append-only storage layer R.• The verifierV is a relying party who verifies signatures, as in BLT-TB.
r

·

·

· ·

h(i,y)

i y

·

·

· ·

·

· ·
Figure 6: Server tree, showing the last key index i and the corresponding message authenticator yof the second client only.

The server maintains a hash tree with a dedicated leaf for each client (Figure 6). The valueof the leaf is computed by hashing the pair (i,y) where i is the index of the last spent key
28

and y is the last message received from the client (as detailed in Signing below).Each public key must verifiably have just one leaf assigned to it. Otherwise, the servercould set up multiple parallel counters for a client, increment only one of them in re-sponse to client requests, and use the others for forging signatures with keys the signerhas already used and released.One way to achieve that would be to have the server return the shape (that is, thedirections to move to either the left or the right child on each step) of the path from theroot of the tree to the assigned leaf when the client registers for service, and the client toinclude that shape when distributing its public key to verifiers. Another option would beto use the bits of the public key itself as the shape. Because most possible bit sequencesare not actually used as keys, the hash tree would be a sparse one in this case.
Setup: Signer. To prepare to sign up to N messages, the signer:

1. Generates N unpredictable k-bit signing keys: (z1, . . . ,zN)← G(N,1k).2. Binds each key to its sequence number: xi← h(i,zi) for i ∈ {1, . . . ,N}.3. Aggregates the key bindings into a hash tree: p← T h(x1, . . . ,xN).4. Registers the public key p with the server S.
The data structure giving the public key is similar to the one in the BLT-TB scheme (Fig-ure 3), and also has the same purpose: to be able to extract the hash chains ci linking theprivate key bindings to the public key: h(i,zi)

ci p for i ∈ {1, . . . ,N}.
Setup: Server. Upon receiving registration request from a signer, the server dedicates aleaf in its tree and sets i to 0 and y to an arbitrary value in that leaf.
Signing: Signer. Each signer keeps the index i of the next unused key zi in its state. Tosign message m, the signer:

1. Uses the current key to authenticate the message: y← h(m,zi).2. Sends the authenticator y to the server.3. Waits for the server to return the hash chain at linking the pair (i,y) to the new
published summary rt : h(i,y)

at rt .4. Checks that the shape of the received hash chain is correct and its output valuematches the authentic rt acquired directly from the repository.5. If validation succeeds then outputs the tuple (i,zi,ci, t,at), where i is the key index,
zi is the i-th signing key, ci is the hash chain linking the binding (i,zi) to the publickey p, and at is the hash chain linking (i,y) to the published rt .6. Increments its key counter: i← i+1.

Signing: Server. Upon receiving request y′ from a signer, the server:
1. Extracts the hash chain a linking the current state of the client record (i,y) to the

current root r of the server tree: h(i,y) a r.2. Updates the client’s record from (i,y) to (i′ ← i+ 1,y′) and computes the corre-sponding new root hash r′ of the server tree.3. Submits the tuple (i,y,a,r,y′,r′) to the repository for validation and publishing.4. Waits for the repository to end the round and publish rt .5. Uses the state of its hash tree corresponding to the published rt to extract and re-turn to all clients with pending requests the hash chains at linking their updated
(i′,y′) records to the published rt : h(i′,y′)

at rt .
29

Signing: Repository. The validation layer Rv of the repository R keeps as state the cur-rent value r∗ of the root hash of the server tree. Upon receiving the update (i,y,a,r,y′,r′)from S, the validator verifies its correctness:
1. The claimed starting state of the server treematches the current state of Rv: r = r∗.2. The claimed starting state of the signer record agrees with the starting state of theserver tree: h(i,y) a r.3. The update of the client record increments the counter: i′← i+1.4. The new state of the server tree corresponds to just this one change: h(i′,y′) a r′.5. If all the above checks pass, Rv updates its own state accordingly: r∗← r′.

Note that the hash chain a is the same in the verification of the starting state of the signerrecord against the starting state of the server tree and in the verification of the new stateof the signer record against the new state of the server tree. This ensures no other leavesof the server tree can change with this update.
Rv operates in rounds. During a round, it receives updates from the server, validatesthem, and updates its own state accordingly. At the end of the round, it publishes thecurrent value of its state as the new round commitment rt in the append-only storage R.

Verification. To verify that the message m and the signature s = (i,z,c, t,a) match thepublic key p, the verifier:
1. Checks that z was committed as the i-th signing key: h(i,z) c p.2. Retrieves the commitment rt for the round t from repository R.3. Checks that the use of the key z to compute the message authenticator y← h(m,z)

matches the key index i: h(i,y) a rt .
Note that the signature is composed and sent to verifier only after the verification of rt ,which makes it safe for the signer to release the key zi as part of the signature: the serverhas already incremented its counter i so that only zi+1 could be used to produce the nextvalid signature.
5.3 Implementation Considerations
Server-Supported Signing. The model of server-supported signing is a higher-level pro-tocol not directly comparable to traditional signature algorithms like RSA. The model hassome useful properties:

• It is possible to create a server-side log of all signing operations, so that in caseof either actual or suspected key compromise there is a complete record, makingdamage control and forensics manageable.• Key revocation can be implemented by setting the client’s counter to some sentinel“infinite” value, and the server can also return a proof of this update after it hasbeen committed to the repository.• The server can add custom attributes, and even trusted attributes which can’t beforged by the server itself: cryptographic time-stamp, address, policy ID, etc.
Finally, in scenarios where non-repudiation must be provided, all traditional schemes andalgorithms must be supplemented with some server-provided functionalities like crypto-graphic time-stamping.
Blockchain-Backed Repository. The proposed scheme dictates that the repository musthave the following properties:

30

• Updates are only accepted if their proof of correctness is valid.• All commitments are final and immutable.• Commitments are public, and their immutability is publicly verifiable.
Tominimize trust requirements on the repository, we propose to re-use the patterns usedfor creating blockchains. We do not consider proof-of-work, focusing on byzantine faulttolerant state machine replication model.Instead of full transactions, we record in the blockchain only aggregate hashes repre-senting batches of transactions. This provides two benefits: (1) the size of the blockchaingrows linearly in time, in contrast with the usual dependency on the number of transac-tions and storage size of transaction records; and (2) recording and publishing only aggre-gate hashes ensures privacy.When implemented as a distributed robust public transaction ledger [43], no singlecomponent of the repository needs to be trusted.
Scalable Architecture. Although presented above as a list of components, envisionedreal-life deployment of the scheme is hierarchical, as shown in Figure 7.

R

rt

R1
. . . Rn

S1
. . . Sn

D11

. . .
D1m

. . .
Dn1

. . .
Dnm

Figure 7: A scalable deployment architecture for BLT-BC: each client device Di j is served by a desig-nated server Si audited by validation cluster Ri; round commitments from all validation clusters areaggregated into a meta-commitment by the repository R.

The topmost layer is a distributed cluster of blockchain consensus nodes, each possiblyoperated by an independent “permissioned” party. The blockchain can accept inputs frommultiple signing servers, each of which may in turn serve many clients. Because of thishierarchical nature the scheme scales well performance-wise. In terms of the amount ofdata, as stated earlier, the size of blocks and the number of blocks does not depend onthe number of clients and number of signatures issued.
5.4 Discussion
Performance. The efficiency of the new scheme for both signers and verifiers is at leaston par with the state of the art.The performance considerations for key generation andmanagement on the client sideare similar to the BLT-TB scheme (Section 4.3), except the number of private keys requiredis much smaller (assuming 10 signing operations per day, just 3650 keys are needed for ayear, compared to the 32 million keys in BLT-TB) and the effort required to generate andmanage them, which was the main weakness of BLT-TB, is also correspondingly reduced.Like in BLT-TB, the size of the signature in the new scheme is also dominated by thetwo hash chains. The key sequencemembership proof contains log2 N hash values, which

31

is about 12 for the 3650-element yearly sequence. The blockchain membership proofhas log2 K hash values, where K is the number of clients the service has. Even when thewhole world (8 billion people) signs up, it’s still only about 33 hash values. Conservativelyassuming the use of 512-bit hash functions, the two hash chains add up to less than 3 kBin total.Verification of the signature means re-computing the two hash chains and amounts toabout 45 hash function evaluations.Admittedly, the above estimates exclude the costs of querying the blockchain to ac-quire the committed rt that both the signer and the verifier need. However, that is com-parable to the need to access a time-stamping service when signing and an OCSP (OnlineCertificate Status Protocol) responder or a CRL (Certificate Revocation List) when verifyingsignatures in the traditional PKI (Public-Key Infrastructure) setup.
SecurityModel. The trusted repositoryR and its implications for the security model aresimilar to the BLT-TB scheme (Section 4.4).In BLT-BC, the validation layer Rv is also critical for security, which obviously increasesthe trust base. As discussed in previous chapter for the repository R, the security risks ofintroducing another trusted component into the system can be somewhat mitigated byimplementing Rv as a distributed consensus cluster, but this adds additional engineeringchallenges and upkeep costs.While the scheme also introduces state on the client side, this is mostly a usabilityconcern and not a significant security risk. If a client loses track of its state and tries tore-use a key, the server will block the signing attempt.

32

6 Time-Stamped Scheme with One-Time Keys
Both the BLT-TB and BLT-BC signature schemes prevent other parties from misusing keysby making each key expire immediately after a legitimate use.In BLT-BC, this is achieved by having a server track the first use of each key and provethe correctness of its operation through an auditing and publishing mechanism. Thus thesecurity of BLT-BC rests on the reliability of the auditors and the publishing channel.In BLT-TB, each key is explicitly bound to a time slot at the key-generation time andexpires automatically when that time slot passes. The legitimate use of a key is proven bytime-stamping the message-key pair at the correct time and the security of the schemerests on the resilience of the time-stamping service against back-dating attacks, which isarguably a much smaller trust base.
6.1 Forward-Resistant Tags
Tag Systems. To combine the efficiency of the one-time keys of BLT-BC with the smallertrust base of BLT-TB, we can note that back-dating resistance of the time-stamp alreadyprevents any attackers from moving the key usage events back in time. Thus, it would besufficient for the key binding to only prevent it from being moved forward. Based on thisobservation, we introduce the concept of forward-resistant tags.
Definition 9 (Tag system). By a tag systemwemean a triple (Gen,Tag,Ver) of algorithms,where:

• Gen is a probabilistic key-generation algorithm that, given as input the tag range
T , produces a secret key sk and a public key pk.• Tag is a tag-generation algorithm that, given as input the secret key sk and an inte-ger t ∈ {1, . . . ,T}, produces a tag τ ← Tag(sk, t).• Ver is a verification algorithm that, given as input a tag τ , an integer t, and thepublic key pk, returns either 0 or 1, such that

Ver(Tag(sk, t), t,pk) = 1

whenever (sk,pk)← Gen(T) and 1≤ t ≤ T .
The above definition of a tag system is quite similar to that of a signature scheme consist-ing of procedures for key generation, signing, and verification. The fundamental differenceis that a signature binds the use of the secret key to a message, while a tag binds the useof the secret key to a time.
Definition 10 (Forward-resistant tag system). A tag system (Gen,Tag,Ver) is S-secureforward-resistant if every tag-forging adversary A using computational resources ρ hassuccess probability

Pr
[
(pk,sk)← Gen(T), (τ, t)←ATag(sk,·)(pk) : Ver(τ, t,pk) = 1

]
<

ρ

S
,

whereAmakes one oracle call Tag(sk, t ′) with 1≤ t ′ < t.
The restriction forA tomake just one oracle call stems from the fact that the very purposeof a tag system is to bind the use of the secret key to a specific time.Informally, in order to implement a forward resistant tag system, we have to bind eachtag to a time t so that the tag can’t be re-bound to a later time. As already mentioned,this notion could be seen as dual to time-stamping that prevents back-dating.

33

Induced Signature Scheme. We can now formalize the signature scheme induced by atag system and a time-stamping repository.
Definition 11. A tag system (Gen,Tag,Ver) and a time-stamping repository R induce aone-time signature scheme as follows:

• The signer SR(m) queries t←R.time, creates τ←Tag(sk, t), storesR.put((m,τ)),and then returns (τ, t) as the signature.• The verifier VR(m,(τ, t),pk) queries x← R.get(t), and checks that x = (m,τ) and
Ver(pk, t,τ) = 1.

We use the simplistic model of the time-stamping service (omitting the aggregation layer)for convenience of formal analysis. A more refinedmodel would make the security reduc-tions really complex. For example, even for a seemingly trivial change, whereR publishesa hash h(m,τ) instead of just (m,τ), one needs non-standard security assumptions about
h such as non-malleability. In this section, we try to avoid these technicalities and focuson the basic logic of the tag-based signature scheme.
Definition 12 (Existential unforgeability of one-time signatures). A one-time signaturescheme is S-secure existentially unforgeable if every forging adversary A using compu-tational resources ρ has success probability

Pr
[
(pk,sk)← Gen(T), (m,σ)←ASR,R(pk) : VR(m,σ ,pk) = 1

]
<

ρ

S
,

whereAmakes only one S-query and not with m.
Theorem 2. If the tag system is S-secure forward-resistant then the induced one-timesignature scheme is (almost) S-secure existentially unforgeable.
The proof, which is given in Publication III, is by reduction: we assume an adversary A ableto forge signatures and construct an adversary B able to forge tags, by having B simulatethe repository R for A and use the data from interceptedR-calls to produce a forged tag.

The BLT-TB Tag System. To simplify the analysis, we omit the aggregation of individualtime-bound keys into a hash tree, and model the essence of the BLT-TB signature schemeas a tag system as follows:
• The secret key sk is a list (z1, . . . ,zT) of T unpredictable values.• The public key pk is the list (f (z1), . . . , f (zT)), where f is a one-way function.• The tagging algorithm Tag(z1, . . . ,zT ; t) outputs zt .• The verification algorithm Ver, given as input a tag τ , an integer t, and the publickey (x1, . . . ,xT), checks that 1≤ t ≤ T and f (τ) = xt .

Theorem 3. If f is S-secure one-way, then the BLT-TB tag system is S
T -forward-resistant.

The proof, which is given in Publication III, is again by reduction: we assume a tag-forgingadversary A and construct an f -inverting adversary B by making a call to A with a BLT-TBpublic key where a randomly selected component has been replaced with the target hashvalue; if the adversary A succeeds, then with probability 1
T it found a pre-image of thetarget value and thus B also succeeds.

34

The BLT-OT Tag System. We now define the BLT-OT tag system (inspired by Lamport’sone-time signatures [37]) as follows:
• The secret key sk is a list (z0, . . . ,z`−1) of `= dlog2(T +1)e unpredictable values.• The public key pk is the list (f (z0), . . . , f (z`−1)), where f is a one-way function.• The tagging algorithm Tag(z0, . . . ,z`−1; t) outputs an ordered subset (z j1 , . . . ,z jm)of components of the secret key sk such that 0 ≤ j1 < .. . < jm ≤ `− 1 and 2 j1 +
. . .+2 jm = t.• The verification algorithm Ver, given as input a sequence (z j1 , . . . ,z jm), an integer t,and the public key (x0, . . . ,x`−1), checks that:1. f (z j1) = x j1 , . . . , f (z jm) = x jm ; and2. 0≤ j1 < .. . < jm ≤ `−1; and3. 2 j1 + . . .+2 jm = t; and4. 1≤ t ≤ T .

Theorem 4. If f is S-secure one-way, then the BLT-OT tag system is S
` -forward-resistant.

The proof is very similar to Theorem 3 and given in [15] which is an extended version ofPublication III.
The BLT-W Tag System. We now define the BLT-W tag system (inspired by Winternitz’sidea [62] for optimizing the size of Lamport’s one-time signatures) as follows:

• The secret key sk is an unpredictable value z.• The public key pk is f T (z), where f is a one-way function.• The tagging algorithm Tag(z; t) outputs the value f T−t(z).• The verification algorithm Ver, given as input a tag τ , an integer t, and the publickey x, checks that 1≤ t ≤ T and f t(τ) = x.
Theorem 5. If f is S1-secure one-way, S2-secure collision resistant, and S3-secure un-
detectable, then the BLT-W tag system is min(S1,S2,S3)

2·T -secure forward-resistant.
The proof is similar to Theorem 3 and given in [15], an extended version of Publication III.
6.2 Description of the Scheme
The signature scheme induced by the BLT-OT tag system according to Definition 11 wouldcome with the requirement that the signer must know in advance the time at which itsrequest reaches the time-stamping service. This is hard to achieve in practice, in particularfor personal signing devices such as smart cards that lack built-in clocks. To overcome thislimitation, we construct the BLT-OT one-time signature scheme as follows.
Key Generation. Let ` be the number of bits that can represent any time value t whenthe signature may be created (e.g. `= 32 for POSIX time up to year 2106). The private keyis generated as sk = (z0, . . . ,z`−1), where zi are unpredictable values, and the public keyas pk = h(X), X = (x0, . . . ,x`−1), xi = f (zi), where h is a second pre-image resistant hashfunction and f a one-way function.
Public Key Distribution. To aid instant key revocation, also the identity IDc of the clientand the identity IDs of the designated time-stamping service should be distributed alongwith the public key (within the public key certificate in a typical PKI-like setup). Uponreceiving a revocation notice, the service stops serving the affected client, and thus it isnot possible to generate signatures using revoked keys.

35

Signing. To sign a message m, the client:
1. Gets a time-stamp St on the record (m,X , IDc) from the time-stamping service des-ignated by IDs.2. Extracts the `-bit time value t from St and creates the listW = (w0, . . . ,w`−1), where• wi = zi if the i-th bit of t is 1, or• wi = xi = f (zi) otherwise.
3. Disposes of the private key (z0, . . . ,z`−1) to prevent its re-use.4. Emits (W,St) as the signature.

Verification. To verify the signature (W,St) on themessagem against (pk, IDc, IDs), theverifier:
1. Extracts time t from the time-stamp St .2. Recovers the list X = (x0, . . . ,x`−1) by computing

• xi = f (wi) if the i-th bit of t is 1, or• xi = wi otherwise.
3. Checks that the computed X matches the public key: h(X) = pk.4. Checks that St is a valid time-stamp issued at time t by service IDs on the record

(m,X , IDc).
Using the reduction techniques from previous sections to formally prove the security ofthis optimized signature scheme is complicated by both the iterated use of f and themoreabstract view of the time-stamping service, and is left as future work.
6.3 Discussion
The BLT-TB scheme works well for powerful devices that are constantly running and havereliable clocks. These are not reasonable assumptions for personal signing devices such assmart cards, which have very limited capabilities and are not used very often. Generatingkeys could take hours or even days of non-stop computing on such devices. This is clearlyimpractical, and also wasteful as most of the keys would go unused.The BLT-OT scheme proposed in Section 6.2 solves these problems at the cost of intro-ducing state on the client side. As the scheme is targeted towards personal signing de-vices, the statefulness is not a big risk, because these devices are not backed up and alsodo not support parallel processing. The benefit in addition to improved efficiency is thatthe device no longer needs to know the current time while preparing a signing request.Instead, it can just use the time from the time-stamp when composing the signature.
Performance as One-Time Scheme. When implemented as described in Section 6.2, thecost of generating a BLT-OT key pair is ` random key generations and `+1 hashing opera-tions, the cost of signing `+1 hashing operations and one time-stamping service call, andthe cost of signature verification at most `+ 1 hashing operations and one time-stampverification. In this case the private key would consist of ` one-time keys and the publickey of one hash value, and the signature would contain ` hash values and one time-stamptoken. The private storage size can be optimized by generating the one-time keys fromonetrue random seed using a pseudo-random generator. Then the cost of signing increasesby ` operations, as the one-time keys would have to be re-generated from the seed beforesigning. This version is listed as BLT-OT in Table 1.Winternitz’s idea [62] for optimizing the size of Lamport’s one-time signatures [37] canalso be applied to BLT-OT. Instead of using one-step hash chains zi→ h(zi) = xi to encode

36

Table 1: Efficiency of hash-based one-time signature schemes. We assume 256-bit hash functions,32-bit time values, and time-stamping hash-tree with 33 levels. Times are in hashing operations andsignature sizes in hash values. TS in BLT schemes stands for the time-stamping service call.
Scheme Key gen. time Sig. time Ver. time Sig. sizeLamport 1 025 1 024 513 256Winternitz (w = 4) 1 089 1 088 1 021 68BLT-OT 65 64 + TS 33 + 33 32 + 33BLT-W (w = 2) 65 64 + TS 49 + 33 16 + 33

single bits of t, we can use longer chains zi → h(zi)→ . . .→ hn(zi) = xi and publish thevalue hn− j(zi) in the signature to encode the value j of a group of bits of t. When encodinggroups of w bits of t in this manner, the chains have to be n = 2w steps long. This reducesthe size of the signature by w times, but increases the costs of key generation and signing
by a bit less than 2w−1

w times and the cost of verification by a bit less than 2w−1
w times. Notethat forw= 2, only the verification cost increases by about 50%! Also note that in contrastto applying this idea to Lamport’s signatures, in BLT-W no additional countermeasures areneeded to prevent an adversary from stepping the hash chains forward: the time in thetime-stamp takes that role. This version is listed as BLT-W in Table 1.To compare BLT-OT signature sizes and verification times to other schemes, we alsoneed to estimate the size of hash-trees built by the time-stamping service. Even assumingthe whole world (8 billion people) will use the time-stamping service in every aggregationround, an aggregation tree of 33 layers will suffice. We also assume that in all schemesone-time private keys will be generated on-demand from a single random seed and publickeys will be aggregated into a single hash value. Therefore, the key sizes will be the samefor all schemes and are not listed in Table 1.

Performance as Many-Time Scheme. A one-time signature scheme is not practical byitself. Merkle [61] proposed aggregating multiple public keys of a one-time scheme usinga hash tree to produce so-called N-time schemes. Assuming 10 signing operations perday, a set of 3 650 BLT-OT keys would be sufficient for a year. The key generation costswould obviously grow correspondingly. The change in signing time would depend on howthe hash tree would be handled. If sufficient memory is available to keep the tree (whichdoes not contain private key material and thus may be stored in regular memory), the

Table 2: Efficiency of hash-based many-time signature schemes. We assume key supply for at least3 650 signatures, 256-bit hash functions, 32-bit time values, and time-stamping hash-tree with 33levels. Times are in hashing operations and signature sizes in hash values. TS in BLT schemes standsfor the time-stamping service call.
Scheme Key gen. time Sig. time Ver. time Sig. sizeXMSS 897 024 8 574 1 151 79SPHINCS ca 16 000 ca 250 000 ca 7 000 ca 1 200BLT-TB ca 96 000000 50 + TS 25 + 33 25 + 33BLT-OT-N 240 900 64 + TS 45 + 33 44 + 33BLT-W-N (w = 2) 240 900 64 + TS 61 + 33 28 + 33

37

authenticating hash chains for individual one-time public keys could be extracted with noextra hash computations. Signature size and verification time would increase by the 12additional hashing steps linking the one-time public keys to the root of the aggregationtree. This scheme is listed as BLT-OT-N in Table 2, where we compare it with the followingschemes:
• XMSS is a stateful scheme like BLT-OT-N; the values in Table 2 are computed by taking

N = 212 = 4096 and leaving other parameters as in [13];• SPHINCS is a stateless scheme and can produce an indefinite number of signatures;the values in Table 2 are inferred from [8] counting invocations of the ChaCha12cipher on 64-byte inputs as equivalent to hash function evaluations;• The values for BLT-TB in Table 2 are inferred from Section 4.4.
SecurityModel. Like those of BLT-TB and BLT-BC, the securitymodel of BLT-OT also relieson the repository R for the unforgeability of the signatures. This is in contrast with XMSSand SPHINCS, both traditional “standalone” signature schemes.Unlike BLT-BC, management of client-side state to track spent keys is a real securityconcern for BLT-OT. Indeed, even using a private key just twice may in the worst case leakall key components and give an adversary an easy opportunity to forge signatures on anychosen messages at any chosen time in the future. Although this is not necessary withcorrect private key management, an external service similar to the validation layer of BLT-BC may in fact provide a useful safety net to reduce this risk. Such state managementconcerns also apply to XMSS, while SPHINCS, being a stateless scheme, is not affected.A weakness of the BLT family compared to XMSS and SPHINCS is the higher require-ments that the BLT schemes place on the underlying hash function. The unforgeabilityproof for BLT-TB signature scheme in Chapter 4 assumes the hash function models a ran-dom oracle, which is a very high bar.The forward-resistance proofs of BLT-TB and BLT-OT tag systems given in Section 6.1only assume one-wayness from the underlying hash function, but these proofs cover onlya small part of the whole signature scheme. Extending the security proofs to completesignature schemes while keeping the assumptions minimal is likely to require changes inthe definitions of the schemes.For example, the plain hash trees aggregating the one-time or time-bound key pairsinto a many-time key set will likely have to be replaced by more complicated constructs,like has already been done in XMSS and SPHINCS. How such hardening will affect theperformance of the signature schemes remains to be determined by future research.

38

7 Application: Efficient Log Signing
In this chapter, wewill slightly change the subject and take a look at applying hash functioncryptography to protecting the integrity and authenticity of logs.Increasingly, logs from various information systems are used as evidence andwith that,the requirements on maintenance and presentation of the log data are growing. Integrityand authenticity—confidence that the log has not been tampered with or replaced withanother—are obvious requirements in this context.As information systems usually log all their activities sequentially, often the details ofthe relevant transactions are interspersed with other information in a log. To protect theconfidentiality of unrelated events, it is desirable to be able to extract records from thesigned log and still prove their integrity.An example of such a case is a dispute between a bank and a customer. On one hand,the bank can’t just present thewhole log, as the log contains also information about trans-actions of other customers. On the other hand, the customer involved in the disputeshould have a chance to verify the integrity of the relevant records.Hence, an ideal log signing scheme should have the following properties:

• The integrity of the whole log can be verified by the owner of the log: no recordscan be added, removed or altered undetectably.• The integrity of any record can be proven to a third party without leaking any infor-mation about the contents of any other records in the log.• The signing process is efficient in both time and space.• The extraction process is efficient in both time and space.• The verification process is efficient in both time and space.
7.1 Related Work
Schneier and Kelsey [75] proposed a log protection scheme that encrypts the records usingone-time keys and links themusing cryptographic hash functions. The scheme allows bothfor verification of the integrity of thewhole log and for selective disclosure of the one-timeencryption keys. However, it needs a third party trusted by both the logger and the verifierand active participation of this trusted party in both phases of the protocol.Holt [48] replaced the symmetric cryptographic primitives used in [75]with asymmetricones and enabled verification without the trusted party. However, his scheme requirespublic-key signatures on individual records, which adds high computational and storageoverhead to the logging process. Also, the size of the information required to prove theintegrity of one record is at least proportional to the square root of the distance of therecord from the beginning of the log. Other proposed amendments [78, 1] to the protocolfrom [75] have similar weaknesses.Kelsey et al. [53] proposed a log signing scheme where records are signed in blocks, byfirst computing a hash value of each record and then signing the sequence of hash values.This enables efficient verification of the integrity of the whole block, significantly reducesthe overhead compared to having a signature per record, and also removes the need toship the whole log block when a single record is needed as evidence. But still the size ofthe proof of a record is linear in the size of the block. Also, other records in the same blockare not protected from the informed brute-force attack discussed in Section 7.2.Ma and Tsudik [57] constructed a logging protocol which provides so-called forward-secure stream integrity, retaining the provable security of the underlying primitives. Theyalso proposed a possibility to store individual signatures to gain better granularity, at thecost of extra storage overhead.

39

7.2 Description of the Scheme
A computational process producing a logmay, in principle, run indefinitely and thus the logas an abstract entity may not have a well-defined beginning and end. In the following, wemodel the log as an ordered sequence of blocks, where each block in turn is an orderedsequence of records. Many practical logging systems work this way, for example in thecase of syslog output being sent to a log file that is periodically rotated.

x0 m1

IV

x1

r1

rec1

m2

IV

x2

r2

rec2

m3

IV

x3

r3

rec3

m4

IV

x4

r4

rec4

m5

x1,2 x3,4

xroot

Figure 8: Log aggregation using a hash tree with interlinks and blinding masks: reci are the logrecords; ri are the hash values of the records; IV is the random seed; mi are the blinding masks; xiare leaves and xa,b are internal nodes of the hash tree; xroot is the value to be signed.

Hash Tree Aggregation. To reduce the size of the evidence for a single record comparedto [48] and [53], the records can instead be aggregated using a hash tree.
Blinding Masks. The hash chain extracted from the hash tree for one leaf contains thevalues of other nodes. A cryptographic hash function can’t be directly reversed to learnthe input value from which a hash value in the chain was created. However, a typical logrecord may contain insufficient entropy to make that argument—an attacker who knowsthe pattern of the input could exhaustively test all possible variants to find the one thatyields the hash value actually in the chain and thus learn the contents of the record. Toprevent this kind of informed brute-force attack, a blinding mask with sufficient entropycan be added to each record before aggregating the hash values.Generating cryptographically secure random values is expensive. Also, when an inde-pendent random mask would be used for each record, all these values would have to bestored for later verification. It is therefore much more efficient to derive all the blindingmasks from a single random seed, as in the data structure shown on Figure 8.
The Scheme. The steps to aggregate records rec1, . . . ,recN for signing are as follows:

1. The seed IV is generated as a k-bit random value.2. Each record is hashed: ri← h(reci).3. For each record, a blinding mask is computed and applied: mi← h(xi−1, IV),
xi← h(mi,ri).4. The blinded record hashes are aggregated into a hash tree: r← T h(x1, . . . ,xN).5. The root hash r is signed.

40

7.3 Security of the Scheme
The security properties of hash trees in protecting the integrity of inputs is already wellstudied in the context of hash-then-publish time-stamping (Section 3.5). In particular, theuse of a collision resistant hash function is sufficient to protect the integrity of aggregatedrecords if the length of the hash chains accepted is restricted [31, 29], and the require-ments on the hash function are higher if unbounded aggregation is desired [31, 21].In this section we focus on confidentiality: that the integrity proof for any record doesnot leak any information about the contents of any other records. To formalize the privacy-preserving property, we adapt the concept of indistinguishability under chosen-plaintextattack (IND-CPA), originally proposed by Luby [56] for symmetric encryption schemes.
Definition 13 (Content concealing log signing). A log signing scheme is S-secure IND-CPAcontent concealing if every detecting adversary A = (A1,A2) using computational re-sources ρ has advantage δ < ρ

S in the following attack scenario:
1. The first stageA1 of the adversary chooses a position i and a list of records rec1, . . . ,

reci−1, reci+1, . . . , rec`, as well as two test records rec0
i , rec1

i and an advice string a.
2. The environment sets x0← 0k, picks randomly IV $←{0,1}k and b $←{0,1}, assigns

reci← recb
i and for every j ∈ {1, . . . , `} computes: m j← f (IV,x j−1), r j← h(rec j),and x j← f (m j,r j).3. The second stageA2 of the adversary, given as input the advice string a and the listsof hash values x1, . . . , x`, and m1, . . . , mi−1, mi+1, . . . , m`, tries to guess the value of

b by outputting the guessed value b̂.
The advantage ofA is defined as δ = 2

∣∣Pr
[
b̂ = b

]
− 1

2

∣∣.
We give the proof of the content concealing property of our signing scheme under theassumption that the hash function used models a pseudo-random function family. Infor-mally, the assumption means that a 2-to-1 hash function f : {0,1}2k → {0,1}k can beassumed to behave like a random function Ω : {0,1}k→{0,1}k when the first half of theinput is a randomly chosen secret value.
Definition 14 (Pseudo-random function family). A two-argument function f : D1×D2→Ris an S-secure pseudo-random function family if every adversary A using computationalresources ρ to distinguish between a restriction of f fixing its first argument to a randomlychosen value r and a true random oracle Ω : D2→ R has success probability

∣∣∣Pr
[
r $← D1 : A f (r,·) = 1

]
−Pr

[
AΩ(·) = 1

]∣∣∣< ρ

S
.

Theorem6. If f is an S-secure pseudorandom function family, then our log signing schemeis S
4 -secure IND-CPA content concealing.

The proof, which is given in Publication IV, is game-based: we define three games wherethe first one is the attack game against our aggregation scheme, the second one is at-tacking a version of the scheme where the blinding masks are independently generatedrandom values, and in the third one the input to the second stage of the adversary doesnot depend on b; we then show that the difference of success probabilities between thefirst and second game is bound by the indistinguishability of f from a pseudo-randomfunction family, and the same for the second and third game; we then obtain our resultas the sum of these two success probabilities.
41

7.4 Implementation Considerations
Canonical Binary Trees. As our log signing scheme only signs the root value of the aggre-gation hash tree, it is crucial to build the tree in a deterministic manner so that a verifierwould be able to construct the exact same tree as the signer did. To achieve the loga-rithmic size of the integrity proofs of the individual records, the tree should not be overlyunbalanced. Thus, we define the canonical binary treewith n leaves (shown for n = 11 onFigure 9) to be built as follows:

1. The leaves are laid out from left to right (square nodes on the figure).2. The leaves are collected into perfect binary trees from left to right, making eachtree as big as possible using the leaves still available (adding the white circles onthe figure).3. The perfect trees aremerged into a single tree from right to leftwhichmeans joiningthe two smallest trees on each step (adding the black circles on the figure).

Figure 9: A canonical binary tree: 11 leaves (squares) grouped into three perfect trees (white circles)and merged into a single tree with minimal height (black circles).

A useful property of canonical trees is that they can be built on-line, as the leaves arrive,without knowing in advance the eventual size of the tree, and keeping in memory onlylogarithmic number of nodes (the root nodes of the perfect binary trees constructed sofar). Such on-line algorithms both for aggregating a sequence of records and also for ex-tracting a hash chain linking a specific input record to the root of the tree are given inPublication III.
Performance. Aggregating a log record for signing with our scheme incurs four hashfunction evaluations on average: one to hash the record itself, one to generate the blindingmask, one to apply the blinding mask to the record hash, and amortized one evaluationto link the record into the hash tree.Storage overhead depends on whether the record and tree hashes are stored or re-computed on demand, hash algorithm output size, and log block size. In case of 256-bytelog records and 32-byte hash values, the storage overhead is about 12% for keeping therecord hashes and about 25% for keeping the tree hashes. The storage overhead causedby signatures themselves is negligible in practical scenarios.There are two potential benefits to be gained from storing the hashes. The first oneis resilience to small localized changes in the signed log data (whether the changes aremalicious or accidental). If only the block-level signatures are kept, the hash tree has tobe re-built for signature verification and a mismatch between the newly computed roothash and the signature only indicates that something has changed in the data. If, on theother hand, the record hashes or the tree hashes (or both) are kept and they happen tobe intact (which is likely in case of accidental data decay), the integrity of those recordsthat have indeed not changed can still be proven by first verifying the integrity of the

42

Table 3: Storage, runtime and verification feature trade-offs (N is log block size).
Characteristic No hashes kept Record hashes Tree hashesSigningPer-record storage none 1 hash value 2 hash valuesPer-record computation 4 hashings 4 hashings 4 hashingsPer-block storage 1 signature value 1 signature value 1 signature valuePer-block computation 1 signing 1 signing 1 signingMemory O(logN) O(logN) O(logN)Whole log verificationReport granularity block record recordTime O(N) O(N) O(N)Memory O(logN) O(logN) O(logN)Record proof extractionPer-record storage O(logN)* O(logN)* O(logN)*Time O(N) O(N) O(logN)Memory O(logN) O(logN) O(1)Record proof verificationReport granularity record record recordTime O(logN) O(logN) O(logN)Memory O(1) O(1) O(1)
* It’s O(logN) asymptotically, but in practice often the O(1) signature size dominates over the O(logN) hash chainsize. For example, for the 3600-byte signatures and 32-byte hash values used in the case study in Publication III, thesignature size exceeds the hash chain size for all N < 2100.

stored hashes against the signature and then comparing the records one by one againstthe respective hashes.If the tree hashes are kept in a data structure that allows efficient access to individ-ual hash values, the integrity proofs for individual records can be extracted without theneed to re-build the tree, and also without the need to access the underlying records. Inaddition to increased efficiency, the latter property also improves confidentiality.Table 3 summarizes the performance of our log signing scheme and the trade-offs be-tween the hash storage policies.
7.5 Discussion
While using hash trees to aggregate data before signing is not new, we are not awareof previous applications in logging context. Aside from application case study, we con-tributed a method for generating multiple blinding masks from a single random value toachieve blinding that is provably as good as using independently generated randommasks.Compared to previous log signing schemeswith selective disclosure, ourmethod offersimprovements as follows: unlike [75], or schemedoes not require a trusted third party; theproof of integrity of a record is O(logN) in our scheme, compared to O(

√
N) in [48] and

O(N) in [53]; while the asymptotic complexities are not directly comparable, based on theperformance comparison table provided in [57], where the best-case signer computationcost is 5.55 ms per log record (albeit on slightly weaker hardware than in our experiment),we can estimate that our scheme is faster by two to three orders of magnitude.

43

8 Conclusions and Outlook
We have proposed several hash-based server-assisted digital signature schemes. A noveldesign element of the schemes is their reliance on time-stamping service as an inherentcomponent. The performance of the new schemes is very competitive, as indicated inTables 1 and 2, but the reliance on time-stamping service adds dependence on a security-critical external component.The BLT-TB scheme described in Chapter 4 is suitable for use in server applications thatneed to produce a lot of signatures. The scheme features efficient signing and verificationand small signatures. Only the key generation is quite expensive, but still tolerable onfull-sized computers. The scheme also requires the signer to have a reliable clock anddirect network access, which are reasonable assumptions for servers. A benefit is thatthe scheme is stateless in the sense that the key to be used is determined by the signingtime and thus the signer does not need to explicitly track spent keys and also access tothe private key does not need to be synchronized in a parallel execution environment.In contrast, the BLT-OT scheme described in Chapter 6 is suitable for personal signingdevices that are used only occasionally. In addition to small signatures and efficient signingand verification, also key generation costs are relatively low. The price for this efficiencyis the introduction of state on the client side. However, as typically personal key manage-ment devices, such as smart cards and USB tokens, are not backed up and do not supportmulti-processing, the risks related to managing key state are significantly reduced.A weakness of the formal analysis of the tag-based schemes in Chapter 6, in particularcompared to the analysis in Chapter 4, is the simplistic modeling of the time-stampingservice. Some progress towards addressing this issue has been made in [17].Another limitation of the present work is that the formal security reductions are donein classical setting and post-quantum security of the schemes is supported only indirectly,by referring to the quantum resilience of hash functions in general.Formal analysis in quantum setting is hindered, among other difficulties, by the factthat our signature schemes depend on time-stamping and there is currently no well-defined notion of back-dating resistance of time-stamping in quantum setting. There ishope, however, that the collapsing property [82, 81, 35] of hash functions could be usefulin moving to quantum setting.We also proposed a privacy-protecting hash-function based aggregation mechanismfor efficient signing of audit logs. An interesting avenue for future work in that applicationis to augment the aggregation with an evolving key mechanism so that an attacker whohas gained control of a system would not be able to re-sign any logs after they have beentampered with.

45

References
[1] R. Accorsi. BBox: a distributed secure log architecture. In EuroPKI 2010, Proceedings,volume 6711 of LNCS, pages 109–124. Springer, 2011.
[2] R. J. Anderson, F. Bergadano, B. Crispo, J.-H. Lee, C. Manifavas, and R. M. Needham.A new family of authentication protocols. Operating Systems Review, 32(4):9–20,1998.
[3] E. Andreeva, G. Neven, B. Preneel, and T. Shrimpton. Seven-property-preservingiterated hashing: ROX. In ASIACRYPT 2007, Proceedings, volume 4833 of LNCS, pages130–146. Springer, 2007.
[4] E. Andreeva andM. Stam. The symbiosis between collision and preimage resistance.In IMACC 2011, Proceedings, volume 7089 of LNCS, pages 152–171. Springer, 2011.
[5] Asokan, G. Tsudik, and M. Waidner. Server-supported signatures. Journal of Com-puter Security, 5(1):91–108, 1997.
[6] J. Benaloh and M. de Mare. Efficient broadcast time-stamping. Technical report,Clarkson University, 1991.
[7] D. J. Bernstein, J. Buchmann, and E. Dahmen, editors. Post-Quantum Cryptography.Springer, 2009.
[8] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Pa-pachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn. SPHINCS: Practi-cal stateless hash-based signatures. In EUROCRYPT 2015, Proceedings, Part I, volume9056 of LNCS, pages 368–397. Springer, 2015.
[9] K. Bicakci and N. Baykal. Server assisted signatures revisited. In CT-RSA 2004, Pro-ceedings, volume 2964 of LNCS, pages 143–156. Springer, 2004.
[10] G. Brassard, P. Høyer, and A. Tapp. Quantum cryptanalysis of hash and claw-freefunctions. In LATIN’98, Proceedings, volume 1380 of LNCS, pages 163–169. Springer,1998.
[11] J. A. Buchmann, L. C. Coronado García, E. Dahmen, M. Döring, and E. Klintsevich.CMSS—An improved Merkle signature scheme. In INDOCRYPT 2006, Proceedings,volume 4329 of LNCS, pages 349–363. Springer, 2006.
[12] J. A. Buchmann, E. Dahmen, S. Ereth, A. Hülsing, and M. Rückert. On the security ofthe Winternitz one-time signature scheme. IJACT, 3(1):84–96, 2013.
[13] J. A. Buchmann, E. Dahmen, and A. Hülsing. XMSS—A practical forward secure signa-ture scheme based onminimal security assumptions. In PQCrypto 2011, Proceedings,volume 7071 of LNCS, pages 117–129. Springer, 2011.
[14] J. A. Buchmann, E. Dahmen, E. Klintsevich, K. Okeya, and C. Vuillaume. Merkle signa-tures with virtually unlimited signature capacity. In ACNS 2007, Proceedings, volume4521 of LNCS, pages 31–45. Springer, 2007.
[15] A. Buldas, D. Firsov, R. Laanoja, H. Lakk, and A. Truu. A new approach to construct-ing digital signature schemes (extended paper). Cryptology ePrint Archive, Report2019/673, 2019. https://eprint.iacr.org/2019/673.

47

[16] A. Buldas, D. Firsov, R. Laanoja, H. Lakk, and A. Truu. A new approach to constructingdigital signature schemes (short paper). In IWSEC 2019, Proceedings, volume 11689of LNCS, pages 363–373. Springer, 2019.
[17] A. Buldas, D. Firsov, R. Laanoja, andA. Truu. Verified security of BLT signature scheme.In ACM SIGPLAN CPP 2020, Proceedings, pages 244–257. ACM, 2020.
[18] A. Buldas, A. Kalu, P. Laud, and M. Oruaas. Server-supported RSA signatures for mo-bile devices. In ESORICS 2017, Proceedings, Part I, volume 10492 of LNCS, pages315–333. Springer, 2017.
[19] A. Buldas, A. Kroonmaa, and R. Laanoja. Keyless signatures’ infrastructure: How tobuild global distributed hash-trees. In NordSec 2013, Proceedings, volume 8208 ofLNCS, pages 313–320. Springer, 2013.
[20] A. Buldas and R. Laanoja. Security proofs for hash tree time-stamping using hashfunctions with small output size. In ACISP 2013, Proceedings, volume 7959 of LNCS,pages 235–250. Springer, 2013.
[21] A. Buldas, R. Laanoja, P. Laud, and A. Truu. Bounded pre-image awareness and thesecurity of hash-tree keyless signatures. In ProvSec 2014, Proceedings, volume 8782of LNCS, pages 130–145. Springer, 2014.
[22] A. Buldas, R. Laanoja, P. Laud, and A. Truu. Bounded pre-image awareness and thesecurity of hash-tree keyless signatures. In ProvSec 2014, Proceedings, volume 8782of LNCS, pages 130–145. Springer, 2014.
[23] A. Buldas, R. Laanoja, andA. Truu. Keyless signature infrastructure and PKI: Hash-treesignatures in pre- and post-quantum world. IJSTM, 23(1/2):117–130, 2017.
[24] A. Buldas, R. Laanoja, and A. Truu. A server-assisted hash-based signature scheme.In NordSec 2017, Proceedings, volume 10674 of LNCS, pages 3–17. Springer, 2017.
[25] A. Buldas, R. Laanoja, and A. Truu. A blockchain-assisted hash-based signaturescheme. In NordSec 2018, Proceedings, volume 11252 of LNCS, pages 138–153.Springer, 2018.
[26] A. Buldas and P. Laud. New linking schemes for digital time-stamping. In ICISC’98,Proceedings, pages 3–14. KIISC, 1998.
[27] A. Buldas, P. Laud, H. Lipmaa, and J. Villemson. Time-stamping with binary linkingschemes. In CRYPTO’98, Proceedings, volume 1462 of LNCS, pages 486–501. Springer,1998.
[28] A. Buldas, H. Lipmaa, and B. Schoenmakers. Optimally efficient accountable time-stamping. In PKC 2000, Proceedings, volume 1751 of LNCS, pages 293–305. Springer,2000.
[29] A. Buldas andM. Niitsoo. Optimally tight security proofs for hash-then-publish time-stamping. InACISP 2010, Proceedings, volume6168 of LNCS, pages 318–335. Springer,2010.
[30] A. Buldas and M. Saarepera. Electronic signature system with small number of pri-vate keys. In 2nd Annual PKI Research Workshop, Proceedings, pages 96–108. NIST,2003.

48

[31] A. Buldas and M. Saarepera. On provably secure time-stamping schemes. In ASI-ACRYPT 2004, Proceedings, volume 3329 of LNCS, pages 500–514. Springer, 2004.
[32] A. Buldas, A. Truu, R. Laanoja, and R. Gerhards. Efficient record-level keyless sig-natures for audit logs. In NordSec 2014, Proceedings, volume 8788 of LNCS, pages149–164. Springer, 2014.
[33] J. Camenisch, A. Lehmann, G. Neven, and K. Samelin. Virtual smart cards: How tosign with a password and a server. In SCN 2016, Proceedings, volume 9841 of LNCS,pages 353–371. Springer, 2016.
[34] L. C. Coronado García. Provably Secure and Practical Signature Schemes. PhD thesis,Darmstadt University of Technology, Germany, 2005.
[35] J. Czajkowski, L. G. Bruinderink, A. Hülsing, C. Schaffner, and D. Unruh. Post-quantumsecurity of the sponge construction. In PQCrypto 2018, Proceedings, volume 10786of LNCS, pages 185–204. Springer, 2018.
[36] E. Dahmen, K. Okeya, T. Takagi, and C. Vuillaume. Digital signatures out of second-preimage resistant hash functions. In PQCrypto 2008, Proceedings, volume 5299 ofLNCS, pages 109–123. Springer, 2008.
[37] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. Inf. Theory,22(6):644–654, 1976.
[38] W. Diffie andM. E. Hellman. Privacy and authentication: An introduction to cryptog-raphy. Proc. IEEE, 67(3):397–427, 1979.
[39] C. Dods, N. P. Smart, andM. Stam. Hash based digital signature schemes. In Cryptog-raphy and Coding, Proceedings, volume 3796 of LNCS, pages 96–115. Springer, 2005.
[40] T. ElGamal. A public key cryptosystem and a signature scheme based on discretelogarithms. IEEE Trans. Inf. Theory, 31(4):469–472, 1985.
[41] European Commission. Regulation no 910/2014 of the European Parliament and ofthe Council of 23 July 2014 on electronic identification and trust services for elec-tronic transactions in the internal market and repealing directive 1999/93/EC (eIDASregulation). Official Journal of the European Union, L 257:73–114, 2014.
[42] S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures. J. Cryptology,9(1):35–67, 1996.
[43] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysisand applications. In EUROCRYPT 2015, Proceedings, Part II, volume 9057 of LNCS,pages 281–310. Springer, 2015.
[44] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure againstadaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.
[45] V. Goyal. More efficient server assisted one time signatures. Cryptology ePrintArchive, Report 2004/135, 2004.
[46] L. K. Grover. A fast quantummechanical algorithm for database search. In 28th ACMSTOC, Proceedings, pages 212–219. ACM, 1996.

49

[47] S. Haber and W. S. Stornetta. How to time-stamp a digital document. J. Cryptology,3(2):99–111, 1991.
[48] J. E. Holt. Logcrypt: forward security and public verification for secure audit logs. InProceedings of the 2006AustralasianWorkshops onGrid Computing and e-Research,pages 203–211. Australian Computer Society, 2006.
[49] A. Hülsing. W-OTS+—Shorter signatures for hash-based signature schemes. InAFRICACRYPT 2013, Proceedings, volume7918 of LNCS, pages 173–188. Springer, 2013.
[50] A. Hülsing, L. Rausch, and J. A. Buchmann. Optimal parameters for XMSS MT. InCD-ARES 2013, Proceedings, volume 8128 of LNCS, pages 194–208. Springer, 2013.
[51] A. Hülsing, J. Rijneveld, and F. Song. Mitigating multi-target attacks in hash-basedsignatures. In PKC 2016, Proceedings, Part I, volume 9614 of LNCS, pages 387–416.Springer, 2016.
[52] D. Johnson, A. Menezes, and S. A. Vanstone. The elliptic curve digital signature algo-rithm (ECDSA). Int. J. Inf. Sec., 1(1):36–63, 2001.
[53] J. Kelsey, J. Callas, and A. Clemm. Signed syslog messages. IETF RFC 5848, 2010.
[54] M. Keren, A. Kirshin, J. Rubin, and A. Truu. MDA approach for maintenance of busi-ness applications. In ECMDA-FA 2006, Proceedings, volume 4066 of LNCS, pages40–51. Springer, 2006.
[55] L. Lamport. Password authentification with insecure communication. Commun.ACM, 24(11):770–772, 1981.
[56] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton UniversityPress, 1996.
[57] D. Ma and G. Tsudik. A new approach to secure logging. ACM Transactions on Stor-age, 5(1):2:1–2:21, 2009.
[58] T. Malkin, D. Micciancio, and S. K. Miner. Efficient generic forward-secure signatureswith an unbounded number of time periods. In EUROCRYPT 2002, Proceedings, vol-ume 2332 of LNCS, pages 400–417. Springer, 2002.
[59] E. Martín-López, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien. Ex-perimental realization of Shor’s quantum factoring algorithm using qubit recycling.Nature Photonics, 6(11):773–776, 2012.
[60] D. A.McGrew, P. Kampanakis, S. R. Fluhrer, S.-L. Gazdag, D. Butin, and J. A. Buchmann.State management for hash-based signatures. In SSR 2016, Proceedings, volume10074 of LNCS, pages 244–260. Springer, 2016.
[61] R. C. Merkle. Secrecy, Authentication and Public Key Systems. PhD thesis, StanfordUniversity, 1979.
[62] R. C. Merkle. A digital signature based on a conventional encryption function. InCRYPTO’87, Proceedings, volume 293 of LNCS, pages 369–378. Springer, 1987.
[63] NIST. Secure hash standard (SHS). FIPS 180-4, 2001.
[64] NIST. Post-quantum cryptography. https://www.nist.gov/pqcrypto, 2016.

50

[65] M. Opmanis, V. Dagienė, and A. Truu. Task types at Beaver contests. In ISSEP2006, Proceedings, pages 509–519. Institute of Mathematics and Informatics, Vil-nius, Lithuania, 2006.
[66] A. Perrig. The BiBa one-time signature and broadcast authentication protocol. InACM CCS 2001, Proceedings, pages 28–37. ACM, 2001.
[67] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. The TESLA broadcast authenticationprotocol. CryptoBytes, 5(2):2–13, 2002.
[68] T. Perrin, L. Bruns, J. Moreh, and T. Olkin. Delegated cryptography, online trustedthird parties, and PKI. In 1st Annual PKI Research Workshop, Proceedings, pages 97–116. NIST, 2002.
[69] T. Poranen, V. Dagienė, Åsmund Eldhuset, H. Hyyrö, M. Kubica, A. Laaksonen, M. Op-manis, W. Pohl, J. Skūpienė, P. Söderhjelm, and A. Truu. Baltic olympiads in informat-ics: Challenges for training together. In Olympiads in Informatics: The InternationalConference joint with the XXI International Olympiad in Informatics, Proceedings,pages 112–131. Institute of Mathematics and Informatics, Vilnius, Lithuania, 2009.
[70] L. Reyzin and N. Reyzin. Better than BiBa: Short one-time signatures with fast signingand verifying. In ACISP 2002, Proceedings, volume 2384 of LNCS, pages 144–153.Springer, 2002.
[71] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signaturesand public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.
[72] P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Definitions, impli-cations, and separations for preimage resistance, second-preimage resistance, andcollision resistance. In FSE 2004, Revised Papers, volume 3017 of LNCS, pages 371–388. Springer, 2004.
[73] P. Rohatgi. A compact and fast hybrid signature scheme for multicast packet authen-tication. In ACM CCS’99, Proceedings, pages 93–100. ACM, 1999.
[74] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In22nd ACM STOC, Proceedings, pages 387–394. ACM, 1990.
[75] B. Schneier and J. Kelsey. Secure audit logs to support computer forensics. ACMTransactions on Information Systems Security, 2(2):159–176, 1999.
[76] B. Schoenmakers. Explicit optimal binary pebbling for one-way hash chain reversal.In FC 2016, Revised Selected Papers, volume 9603 of LNCS, pages 299–320. Springer,2017.
[77] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-rithms on a quantum computer. SIAM Review, 41(2):303–332, 1999.
[78] V. Stathopoulos, P. Kotzanikolaou, and E. Magkos. A framework for secure and ver-ifiable logging in public communication networks. In Proceedings of the First Inter-national Conference on Critical Information Infrastructures Security, pages 273–284.Springer, 2006.
[79] M. Szydlo. Merkle tree traversal in log space and time. In EUROCRYPT 2004, Pro-ceedings, volume 3027 of LNCS, pages 541–554. Springer, 2004.

51

[80] A. Truu and H. Ivanov. On using testing-related tasks in the IOI. In Olympiads inInformatics: The International Conference joint with the XX International Olympiadin Informatics, Proceedings, pages 171–180. Institute ofMathematics and Informatics,Vilnius, Lithuania, 2008.
[81] D. Unruh. Collapse-binding quantum commitments without random oracles. In ASI-ACRYPT 2016, Proceedings, Part II, volume 10032 of LNCS, pages 166–195. Springer,2016.
[82] D. Unruh. Computationally binding quantum commitments. In EUROCRYPT 2016,Proceedings, Part II, volume 9666 of LNCS, pages 497–527. Springer, 2016.

52

Acknowledgements
Neither this thesis nor the underlying research work would have been possible withoutthe generous support I have received from many parties over the years.First and foremost, I’m indebted to my advisor Ahto Buldas from whom I have learnedmost of what I know about cryptographic research.Next I thank my colleagues in GuardTime; in addition to my co-authors Risto Laanoja,Henri Lakk and Denis Firsov, discussions with Hema Krishnamurthy, Risto Alas, AndresOjamaa, Andres Kroonmaa and Peeter Omler haven given many useful insights.I also appreciate the efforts of management of GuardTime in supporting a dedicatedresearch group in a relatively small enterprise.As the vice-dean of research at IT Faculty of Tallinn University of Technology, MaarjaKruusmaa has done an enormous job at modernizing the whole Ph.D. program and atpushing the students towards graduation.I’m grateful for the scholarship funded by Estonian Information Technology Foundationand Skype Technologies that I received during my first year of graduate studies and thefinancial support from the European Regional Development Fund through the Estoniansmart specialization program NUTIKAS.I would also like to thank the reviewers Andreas Hülsing and Elena Andreeva whosecomments on the pre-print of this thesis helpedme significantly improve the presentationof the material for publication.Finally, I owe special gratitude to my wife Piret who has not only tolerated my erraticschedule over all these years, but also patiently proof-readmost ofmywritings. Obviously,any remaining mistakes are my own responsibility, as indeed were the ones she did find.

53

Abstract
Hash-Based Server-Assisted Digital Signature Solutions
Digital signatures are one of the cornerstones of a modern information society. All thesignature schemes in wide use today (RSA, DSA, and ECDSA) are known to be vulnerableto quantum attacks, so it is of interest to look for post-quantum secure alternatives.In thiswork, we consider signature schemes built fromhash functions, which arewidelybelieved to bemuchmore resilient to quantum attacks. We propose several such schemesand analyze their security in terms of security properties of the underlying hash function.A novel design element of the schemes is their reliance on time-stamping as an inherentcomponent.One of the proposed schemes is particularly suitable for use in server applications thatneed to produce a lot of signatures. The scheme features efficient signing and verificationand small signatures. Only the key generation is relatively expensive, but still tolerable forfull-sized computers. A benefit for the scheme is that it’s stateless: the key to be used isdetermined by the signing time and thus the signer does not need to explicitly track spentkeys and also access to the private key material does not need to be synchronized in aparallel execution environment.Another scheme is optimized for personal signing devices that are used only occasion-ally. In addition to small signatures and efficient signing and verification, also key gener-ation costs are relatively low. The price for this efficiency is the introduction of state onthe client side. However, typically personal key management devices, such as smart cardsand USB tokens, are not backed up and do not support multi-processing, and thus therisks related to managing key state are significantly reduced.We also propose a hash-function based aggregation scheme for efficient yet privacy-protecting signing of audit logs. The scheme allows log records to be signed in largebatches to reduce the computational and storage overheads, but at the same time theintegrity of any record can be proven without leaking any information about the contentsof other records in the log.

55

Kokkuvõte
Räsifunktsioonidel põhinevad serveri toega digitaalse signee-
rimise lahendused
Turvalised ja usaldusväärsed digiallkirjad on üks tänapäeva infoühiskonna nurgakive. Sa-mas on teada, et kõik praegu laialt kasutatavad digiallkirjade skeemid (RSA, DSA ja ECDSA)muutuvad praktiliste kvantarvutite saabumisel parandamatult ebaturvaliseks. Seega tulebotsida alternatiivseid lahendusi.Räsifunktsioonid on praeguste teadmiste kohaselt kvantrünnetele märksa vastupida-vamad. Käesolevas töös pakumegi välja mitu räsifunktsioonidel põhinevat digiallkirjadeskeemi ja uurime nende turvaomadusi. Uuritavate skeemide ühine uudne element on aja-tembelduse kasutamine allkirjaskeemi komponendina.Üks uutest skeemidest on sobiv kasutamiseks serverirakendustes, kus on vaja andapalju allkirju. Pakutud skeemi tugevused on signeerimise ja verifitseerimise algoritmideefektiivsus ja signatuuride väiksus. Võtmete genereerimine on üsna töömahukas, aga täis-mõõdulistele arvutitele siiski jõukohane. Skeem on ka olekuvaba: iga uue signatuuri loo-miseks kasutatav võtmekomponent on üheselt määratud signeerimise ajaga; seega polevaja pidada arvet selle üle, millised võtmekomponendid on juba ära kasutatud; samuti po-le rööpsüsteemides vaja võtmekomponentide kasutust erinevate protsesside vahel sünk-roonida.Teine pakutud skeemonoptimeeritud rakendamiseks personaalsetes signeerimissead-metes, mida kasutatakse vaid aeg-ajalt. Ka selles skeemis on signatuurid väikesed ningsigneerimine ja verifitseerimine efektiivsed. Lisaks on selles skeemis ka võtmete generee-rime märksa odavam, kuid see on saavutatud olekuvabadusest loobumise hinnaga. Olekuhaldusega seotud riske maandavad selles kontekstis asjaolud, et personaalseid signee-rimisseadmeid (näiteks kiipkaarte ja USB krüptopulki) ei varundata ja need ei toeta karööptöötlust.Lisaks pakume välja räsifunktsioonidel põhineva agregeerimisskeemi logide efektiiv-seks kuid privaatsust säilitavaks signeerimiseks. Arvutus- ja salvestusmahtude kokkuhoiukssigneeritakse logikirjeid suurte pakkidena; samas on võimalik üksikute kirjete terviklusttõestada ilma teiste kirjete sisu lekitamata.

56

Appendix 1

Publication IA. Buldas, R. Laanoja, and A. Truu. A server-assisted hash-based signaturescheme. In NordSec 2017, Proceedings, volume 10674 of LNCS, pages 3–17.Springer, 2017

57

A Server-Assisted Hash-Based Signature Scheme

Ahto Buldas1, Risto Laanoja1,2, and Ahto Truu1,2(B)

1 Tallinn University of Technology, Akadeemia tee 15a, 12618 Tallinn, Estonia
2 Guardtime AS, A.H. Tammsaare tee 60, 11316 Tallinn, Estonia

ahto.truu@guardtime.com

Abstract. We present a practical digital signature scheme built from
a cryptographic hash function and a hash-then-publish digital time-
stamping scheme. We also provide a simple proof of existential unforge-
ability against adaptive chosen-message attack (EUF-ACM) in the ran-
dom oracle (RO) model.

1 Introduction

All the digital signature schemes in use today (RSA [42], DSA [22], ECDSA [30])
are known to be vulnerable to quantum attacks by Shor’s algorithm [46]. While
the best current experimental results are still toy-sized [35], it takes a long time
for new cryptographic schemes to be accepted and deployed, so it is of consid-
erable interest to look for post-quantum secure alternatives already now. Error-
correcting codes, discrete lattices, and multi-variate polynomials have been used
as foundations for proposed replacement schemes [4]. However, these are rel-
atively complex structures and new constructions in cryptography, so require
significant additional scrutiny before gaining trust.

Hash functions, on the other hand, have been studied for decades and are
widely believed to be quite resistant to quantum attacks. The best currently
known quantum results against hash functions are using Grover’s algorithm [25]
to find a pre-image of a given k-bit value in 2k/2 queries instead of the 2k queries
needed by a classical attacker, and Brassard et al.’s modification [7] to find a
collision in 2k/3 instead of 2k/2 queries. To counter these attacks, it would be
sufficient to deploy hash functions with correspondingly longer outputs when
moving from pre-quantum to post-quantum setting.

2 Related Work

The earliest digital signature scheme constructed from hash functions is due
to Lamport [19,31]. Merkle [37] introduced two methods for reducing the key
sizes, one proposed to him by Winternitz. The Winternitz scheme has subse-
quently been more thoroughly analyzed and further refined by Even et al. [23],

This research was supported by the European Regional Development Fund through
the Estonian smart specialization program NUTIKAS.

c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 3–17, 2017.
https://doi.org/10.1007/978-3-319-70290-2_1

4 A. Buldas et al.

Dods et al. [21], Buchmann et al. [9], and Hülsing [27]. All of these schemes are
one-time, and require generation of a new key pair and distribution of a new
public key for each message to be signed.

Merkle’s arguably most important contribution in [37] was the concept of
hash tree, which enables a large number of public keys to be represented by a
single hash value. With the hash value published, any one of the N public keys
can be shown to belong to the tree with a proof consisting of log2 N hash values,
thus combining N instances of a one-time scheme into an N -time scheme. Buldas
and Saarepera [16] and Coronado Garćıa [17] showed the aggregation to be secure
if the hash function used to build the tree is collision resistant. Rohatgi [43] used
the XOR-tree construct proposed by Bellare and Rogaway [3] to create a variant
of hash tree whose security is based on second pre-image resistance of the hash
function instead of collision resistance. Dahmen et al. [18] proposed a similar
idea with a more complete security proof.

A drawback of the above hash tree constructs is that the whole tree has to be
built at once, which also means all the private keys have to be generated at once.
Merkle [38] proposed a certification tree that allows just the root node of the tree
to be populated initially and the rest of the tree to be grown gradually as needed.
However, to authenticate the lower nodes of the tree, a chain of full-blown one-
time signatures (as opposed to a chain of sibling hash values) is needed, unless
the protocol is used in an interactive environment where the recipient keeps the
public keys already delivered as part of earlier signatures. Malkin et al. [34]
and Buchmann et al. [8,11] proposed various multi-level schemes where the keys
authenticated by higher-level trees are used to sign roots of lower-level trees to
enable the key sets to be expanded incrementally.

Buchmann et al. [10] proposed XMSS, a version of the Merkle signature
scheme with improved efficiency compared to previous ones. Hülsing et al. [28]
introduced a multi-tree version of it. Hülsing et al. [29] described a modification
hardened against so-called multi-target attacks where the adversary will succeed
when it can find a pre-image for just one of a large number of target output
values of a hash function.

A risk with the N -time schemes is that they are stateful : as each of the one-
time keys may be used only once, the signer will need to keep track of which
keys have already been used. If this state information is lost (for example, when
a previous state is restored from a backup), keys may be re-used by accident.

Perrig [39] proposed BiBa which has small signatures and fast verification,
but rather large public keys and slow signing. Reyzin and Reyzin [41] proposed
the HORS scheme that provides much faster signing than BiBa. These two are
not strictly one-time, but so-called few-time schemes where a private key can
be used to sign several messages, but the security level decreases with each
additional use. Bernstein et al. [5] proposed SPHINCS, which combines HORS
with XMSS trees to create a stateless scheme that uses keys based on a pseudo-
random schedule that makes the risk of re-use negligible even without tracking
the state.

A Server-Assisted Hash-Based Signature Scheme 5

3 Our Contribution

We propose a signature scheme with a hash function as its sole underlying
primitive. At the time of writing, XMSS and SPHINCS are the state of the
art in the stateful and stateless hash signature schemes, respectively, so these
are what new schemes should be measured against.

XMSS has fast signing and verification, and small signatures, but requires
careful management of key state [36]. Our scheme has comparable efficiency, but
the private key to be used is determined by signing time, which removes the risk
of accidental roll-backs. Also, a single private key can be used to sign multiple
messages simultaneously, so no synchronization is required when the scheme is
deployed in multi-threaded or multi-processor environments.

SPHINCS has small keys and efficient verification, but quite large signatures
and rather expensive signing. Our scheme requires orders of magnitude less com-
putations for signing and produces signatures roughly a tenth the size.

A more general feature is that each signature produced by our scheme is
inherently time-stamped. Most other schemes require time-stamping as a sep-
arate step after signing to handle key expirations, key revocations, and time-
limited signing authority. Due to the time-stamping component, our scheme is
necessarily server-assisted. While this may look like a disadvantage, it may in
fact be beneficial in enforcing various key usage policies and limiting damage in
case of a key leakage. For these reasons, even the technically off-line schemes are
usually deployed within on-line frameworks in practice.

4 Preliminaries

Hash Trees. Introduced by Merkle [37], a hash tree is a tree-shaped data struc-
ture built using a 2-to-1 hash function h : {0, 1}2k → {0, 1}k. The nodes of
the tree contain k-bit values. Each node is either a leaf with no children or an
internal node with two children. The value x of an internal node is computed
as x ← h(xl, xr), where xl and xr are the values of the left and right child,
respectively. There is one root node that is not a child of any node. We will use
r ← Th(x1, . . . , xN) to denote a hash tree whose N leaves contain the values
x1, . . . , xN and whose root node contains r.

Hash Chains. In order to prove that a value xi participated in the computation
of the root hash r, it is sufficient to present values of all the siblings of the nodes
on the unique path from xi to the root in the tree. For example, to claim that
x3 belongs to the tree shown on the left in Fig. 1, one has to present the values
x4 and x1,2 to enable the verifier to compute x3,4 ← h(x3, x4), r ← h(x1,2, x3,4),
essentially re-building a slice of the tree, as shown on the right in Fig. 1. We will
use x

c� r to denote that the hash chain c links x to r in such a manner.
Intuitively, it seems obvious that if the function h is one-way, the existence

of such a chain whose output equals the original r is a strong indication that x
was indeed the original input. However, this result was not formally proven until
25 years after the hash tree construct was proposed [16,17].

6 A. Buldas et al.

r = h(x1,2, x3,4)

x1,2 = h(x1, x2)

x1 x2

x3,4 = h(x3, x4)

x3 x4

r

x1,2 x3,4

x3 x4

Fig. 1. The hash tree T h(x1, . . . , x4) and the corresponding hash chain x3 � r.

Hash-Then-Publish Time-Stamping. The general idea of time-stamping informa-
tion by publishing its hash value was used already by Galilei and Hooke in the
XVII century. In more modern cryptographic times, Haber and Stornetta [26]
were the first to propose time-stamping a sequence of records by having each of
them contain the hash of the previous one, in a manner that was later popular-
ized as the blockchain structure. Bayer et al. [2] proposed using hash trees to
aggregate the inputs in batches and then linking the roots of the trees instead of
individual records. The most recent results on security bounds of such schemes
are by Buldas et al. [13–15].

5 Description of the Scheme

The principal idea of our signature scheme is to have the signer commit to a
sequence of keys such that each key is assigned a time slot when it can be used
to sign messages and will transition from signing key to verification key once the
time slot has passed.

Signing itself then consists of time-stamping the message-key pair in order to
prove that the signing operation was performed at the correct time. For simplicity
of presentation, we count time in aggregation rounds of the time-stamping service
and use the expression “at time t” to mean “during aggregation round t”.

More formally, the classic triple of procedures for key generation, signature
generation, and signature verification [24] is as follows:

Key Generation. To prepare to sign messages at times 1, . . . , N , the signer:

1. Generates N signing keys: (z1, . . . , zN) ← G(N, k).
We assume the keys are unpredictable values drawn from {0, 1}k.

2. Binds each key to its time slot: xi ← h(i, zi) for i ∈ {1, . . . , N}.
3. Computes the public key p by aggregating the key bindings into a hash tree:

p ← Th(x1, . . . , xN).

The resulting data structure is shown in Fig. 2 and its purpose is to be able to
extract hash chains ci ← h(i, zi) � p for i ∈ {1, . . . , N}.

A Server-Assisted Hash-Based Signature Scheme 7

p

x1,2

x1

1 z1

x2

2 z2

x3,4

x3

3 z3

x4

4 z4

Fig. 2. Computation of public key for N = 4.

Signing. To sign message m at time t, the signer:

1. Uses the appropriate key to authenticate the message: y ← h(m, zt).
2. Time-stamps the authenticator: at ← y � rt.

Here rt is the root hash of the aggregation tree built by the time-stamping
service for the aggregation round t. We assume the root is committed to in
some reliable way, such as broadcasting it to all interested parties, but place
no other trust in the service.

3. Outputs the tuple (t, zt, at, ct), where t is the signing time, zt is the signing
key for time slot t, at is the hash chain from the time-stamping service linking
the key usage to rt, and ct is the hash chain linking the binding of zt and
time slot t to the signer’s public key p.

Note that the signature is composed and emitted after the time-stamping step,
which makes it safe for the signer to release the key zt as part of the signature:
the aggregation round t has ended and any future uses of the key zt can no
longer be stamped with time t.

Verification. To verify that the messagem and the signature s = (t, z, a, c) match
the public key p, the verifier:

1. Checks that z was committed as signing key for time t: h(t, z)
c� p .

2. Checks that m was authenticated with key z at time t: h(m, z)
a� rt .

6 Security Proof

Goldwasser et al. [24] proposed a framework for studying security of signature
schemes where the attackers have various levels of access to signing oracles and
various requirements on what they need to achieve for the attack to be considered
successful (and the scheme broken).

As the highest security level, they defined the concept of existential unforge-
ability (EUF) where an attacker should be unable to forge signatures on any
messages, even nonsensical ones.

They also defined the chosen-message attack where the attacker can submit
a number of messages to be signed by the oracle before having to come up with
a forged signature on a new message, and in particular, as the one giving the

8 A. Buldas et al.

attacker the most power, the adaptive chosen-message attack (ACM) where the
attacker will receive each signature immediately after submitting the message
and can use any information gained from previous signatures to form subsequent
messages.

Luby [33] defined the time-success ratio as a way to express the resilience
of a cryptographic scheme against attacks as the relationship of the probability
that the attack will succeed to the computation time the attacker is allowed to
spend.

We will now combine these notions to define and prove the security of our
signature scheme.

Definition 1. A signature scheme is S-secure existentially unforgeable against
adaptive chosen-message attacks (EUF-ACM), if any T -time adversary, having
access to a signer’s public key p and to a signing oracle S to obtain signatures
s1 ← S(m1), . . . , sn ← S(mn) on adaptively chosen messages m1, . . . , mn, can
produce a new message-signature pair (m, s) such that m �∈ {m1, . . . ,mn}, but s
is a valid signature on m, with probability at most T/S.

Oracle S (signing oracle)

Query Sig(m, t):
return h(m, zt)

Query Get(t):
If c ≥ t then:

return (zt, xt � p)
else:

return ⊥

Oracle R (repository)

Initialize:
c ← 0

Query Put(r):
c ← c+ 1
rc ← r

Query Get(t):
If c ≥ t then:

return rt
else:

return ⊥

Fig. 3. The oracles used in the security condition.

To formalize our security assumptions, we introduce three oracles:
We model the publishing of the root hashes of the time-stamping aggregation

trees as the oracle R (Fig. 3, right) that allows each rt to be published just once.
The signing oracle S (Fig. 3, left) will compute the message authenticators

at any time, but will release only the keys that have already expired for signing
(transitioned to verification keys).

We model the hash function h as a random oracle using the lazy sampling
technique: every time h is queried with a previously unseen input, a new return
value is generated by uniform random sampling from {0, 1}k; when h is queried
with a previously seen input, the same value is returned as last time.

The adversary A will be interacting with the oracles as shown in Fig. 4 with
the goal of producing a forgery.

A Server-Assisted Hash-Based Signature Scheme 9

A(x1, . . . , xN)

(m, (t, z, a, c))

S(z1, . . . , zN)

S
i
g
(m

,t
)

h
(m

,z
t
)

G
e
t
(t
)

(z
t
,c

t
)
/
⊥

h R

P
u
t
(r
)

G
e
t
(t
)

r t
/
⊥

Fig. 4. The adversary’s interactions with the oracles.

To model the fact that the signer needs to keep secret only the keys z1, . . . , zN ,
we explicitly initialize the adversary with x1, . . . , xN . Note that the verification
rule still assumes that the verifier has access only to the signer’s public key p,
which means the adversary is not limited to presenting hash chains that were
actually extracted from Th(x1, . . . , xN).

Also note that we leave the aggregation process of the time-stamping service
fully under the adversary’s control; only the repository R needs to be trusted to
operate correctly.

As normally signing message m involves first calling S.Sig(m, t), then com-
mitting to R the root of a hash tree that includes the return value, and then
calling S.Get(t), we formalize the forgery condition by demanding that the adver-
sary can’t make the two S calls in that order:

Definition 2. The pair (m, s) produced by an adversary is a successful forgery if
s is a valid signature on m, but the adversary did not make the calls S.Sig(m, t),
S.Get(t), in that order, for any t ∈ {1, . . . , N}.

Theorem 1. Our signature scheme, when instantiated with a hash function
h : {0, 1}2k → {0, 1}k indistinguishable from a random oracle, is at least 2(k−2)/2-
secure existentially unforgeable against adaptive chosen-message attacks by any
T -time adversary.

Proof. We will directly show an upper bound on the success probability of the
adversary in the forgery game F (Fig. 5).

Assume that the adversary does not call S.Get(t). To win the game F, he must

produce t, z, c such that h(t, z)
c� p. For that, the output of the last step of

the chain computation must equal the root of the tree Th(x1, . . . , xN). Let’s
now consider the inputs to that step. If they equal the corresponding children
of the root of the tree, we can repeat the reasoning for the second last step and
the corresponding node of the tree, and so on. As we walk a finite chain and

10 A. Buldas et al.

Game F (forgery)

(z1, . . . , zN) ← G(N)
xi ← h(i, zi) for i ∈ {1, . . . , N}
p ← Th(x1, . . . , xN)

(m, (t, z, a, c)) ← Ah,S,R(x1, . . . , xN)

If A did not call S.Sig(m, t), S.Get(t),

but h(t, z)
c� p and h(m, z)

a� rt
then:

return 1
else:

return 0

Fig. 5. The forgery game.

simultaneously traverse a finite tree from the root towards leaves, one of the
following events must eventually happen:

1. We run out of the chain at the same time we run out of the tree. This means
the adversary has found t and z such that xi = h(t, z) for some i ∈ {1, . . . , N}.
If i �= t, then the adversary has found a second pre-image for the xi originally
computed as h(i, zi). With h being a random oracle, the probability of a
T -time adversary achieving that for any given i is ≤ T/2k. If i = t, then
the adversary may have found a second pre-image for xt, with probability
≤ T/2k, or may have guessed zt, also with probability ≤ T/2k. Thus the
total probability of h(t, z) matching a leaf of the tree is πA,1 ≤ (N + 1)T/2k.

2. We run out of the chain before we run out of the tree. This means h(t, z)
matches one of the internal nodes of the tree, say x. This can be the case in
two ways:
(a) The left child of x contains t and the adversary uses the right child of x

as z. The probability of any given node having the given value t is 1/2k.
As there are N − 1 candidate nodes and N possible values of t, the total
probability is ≤ (N − 1)N/2k.

(b) The adversary has found a second pre-image for x. The probability of a
T -time adversary achieving that for any given node is ≤ T/2k. As the
adversary has N − 1 nodes as potential targets for such a hit, the total
probability is ≤ (N − 1)T/2k.

Thus the total probability of h(t, z) matching an internal node of the tree is
πA,2 ≤ (N − 1)(N + T)/2k.

3. We run out of the tree before we run out of the chain. This means that the
adversary has found a pre-image for one of the 2N values {1, z1, . . . , N, zN}.
The probability of that is πA,3 ≤ 2NT/2k.

4. We encounter a hash step where the output of the step equals an internal
node in the tree, say x, but the inputs of the step do not match the children
of x. This means the adversary has found a second pre-image for x. The
probability of that is πA,4 ≤ (N − 1)T/2k.

A Server-Assisted Hash-Based Signature Scheme 11

So, the total success probability of a T -time adversary who does not call S.Get(t)
is πA ≤ πA,1+πA,2+πA,3+πA,4 ≤ (N+1)T/2k+(N−1)(N+T)/2k+2NT/2k+
(N − 1)T/2k < (N2 + 5NT)/2k.
Assume now that the adversary does call S.Get(t). Then we can, without loss of
generality, also assume that

– he calls S.Get(t) only after committing rt, as before that S.Get(t) would
always return ⊥, which would provide no useful information;

– he calls S.Get(t) only once, as all additional calls to S.Get(t) would return
the same result, which would provide no new information;

– he never calls S.Sig(m, t), as he is not allowed to call S.Sig(m, t) before
calling S.Get(t) according to the security condition, but after calling S.Get(t)
he already has zt and can compute h(m, zt) directly with no need to call the
signing oracle any more.

Finally, we can also assume that in order to win the game F, the adversary must
produce m and a such that h(m, zt)

a� rt. Indeed, if the adversary wins the game

with h(m, z)
a� rt where z �= zt, then he has not used the information gained

from the S.Get(t) call and thus could not have done any better than without the
call, a case we have already analyzed.

Let H be the set of h-calls y ← h(x1, x2) the adversary made before commit-
ting rt. As the adversary is T -time, we have |H| ≤ T . Consider now the h-calls

to be made during the computation of h(m, zt)
a� rt:

1. If all the calls are in H, then the adversary must have called h(m, zt) before
committing rt and thus also before learning zt from the call to S.Get(t). This
means that the adversary guessed zt. The probability of a T -time adversary
achieving that is πB,1 ≤ T/2k.

2. If none of the calls are in H, then there are two possibilities:
(a) The value rt was not returned from any of the calls in H. This means

the adversary was able to find a pre-image of rt after committing it, the
probability of which is ≤ T/2k.

(b) The value rt was returned by some call in H. Since the chain a is com-
puted entirely using calls not in H, the inputs of the final step of the
computation represent a second pre-image of rt. The probability of a
T -time adversary achieving that is also ≤ T/2k.

Thus the total probability of the adversary finding a chain entirely outside of
H is πB,2 ≤ 2T/2k.

3. Some, but not all of the calls are in H. Let’s examine, among the calls that
are not in H, the one made last during the computation of the chain. Let it
be y ← h(x1, x2). Again, there are two possibilities:
(a) The value y was not returned from any of the calls in H. However, the

next step in a is already a call in H. This means that y is among the
inputs of calls in H and the adversary was able to find a pre-image of it.
The probability of the adversary achieving that for any given y is ≤ T/2k.
As there are 2|H| possible values of y, the total probability is ≤ 2|H|T/2k.

(b) The value y was returned by some call in H. Since the call y ← h(x1, x2)
is not in H, the adversary must have found a second pre-image of y. The
total probability of that over all available values of y is ≤ |H|T/2k.

12 A. Buldas et al.

Thus the probability of the adversary finding a chain entering intoH is πB,3 ≤
3|H|T/2k ≤ 3T 2/2k.

Hence the total success probability of a T -time adversary who calls S.Get(t) is
πB ≤ πB,1 + πB,2 + πB,3 ≤ T/2k + 2T/2k + 3T 2/2k = (3T + 3T 2)/2k.

Summary. If the adversary does not call S.Get(t), he can win the forgery game
F with probability πA < (N2 + 5NT)/2k. If he does call S.Get(t), he can win
with probability πB ≤ (3T + 3T 2)/2k. Overall, he can win with probability
π = max(πA, πB).

Since generating the N keys z1, . . . , zN and making the 2N − 1 calls to h to
compute x1, . . . , xN and Th(x1, . . . , xN) is something the signers are expected
to do routinely, we can assume that N ≪ T . Already with N < T/10, we have
πA < (N2 +5NT)/2k < (T 2/100+ T 2/2)/2k < T 2/2k. With T > 10N ≥ 10, we
have T 2 > 3T and thus πB ≤ (3T + 3T 2)/2k < 4T 2/2k.

Therefore, π = max(πA, πB) < 4T 2/2k, or T 2/π > 2k−2. As π ≤ 1, we also
have (T/π)2 ≥ T 2/π, which yields the claim T/π > 2(k−2)/2.

7 Practical Considerations

Key Generation. In the description of the scheme we assumed that the signing
keys z1, . . . , zN are unpredictable values drawn from {0, 1}k, but left unspecified
how they might be generated in practice. Obviously they could be generated
as independent truly random values, but this would be rather expensive and
also would necessitate keeping a large number of secret values over a long time.
It would be more practical to generate them pseudo-randomly from a single
random seed s. There are several known ways of doing that:

– Iterated hashing: zN ← s, zi−1 ← h(zi) for i ∈ {2, . . . , N}.
This idea of generating a sequence of one-time keys from a single seed is due
to Lamport [32] and has also been used in the TESLA protocol by Perrin
et al. [40]. Implemented this way, our scheme would also bear some resem-
blance to the Guy Fakes protocol by Anderson et al. [1]. Note that the keys
have to be generated in reverse order, otherwise the earlier keys released as
signature components could be used to derive the later ones that are still
valid for signing. To be able to use the keys in the direct order, the signer
would have to either remember them all, re-compute half of the sequence
on average, or implement a traversal algorithm such as the one proposed by
Schoenmakers [45].

– Counter hashing: zi ← h(s, i).
With a hash function behaving as a random oracle, this scheme would gen-
erate keys indistinguishable from truly random values, but there does not
appear to be much research on the security of practical hash functions when
used in this mode.

– Counter encryption: zi ← Es(i).
The signing keys are generated by encrypting their indices with a symmet-
ric block cipher using the seed as the encryption key. This is equivalent to

A Server-Assisted Hash-Based Signature Scheme 13

using the block cipher in the counter mode as first proposed by Diffie and
Hellman [20]. The security of this mode is extensively studied and well under-
stood for all common block ciphers. Another benefit of this approach is that it
can be implemented using standard hardware security modules where the seed
is kept in a protected storage and the encryption operations are performed
in a security-hardened environment.

Time-Stamping. As already mentioned, we side-step the key state management
problems [36] common for most N -time signing schemes by making the signing
keys not one-time, but time-bound instead. This in turn raises the issue of clock
synchronization.

We first note that even when the signer’s local clock is running fast, prema-
ture key release is easy to prevent by having the signer verify the time-stamp on
h(m, zt) before releasing zt. This is how the condition c ≥ t of the signing oracle
S in Fig. 3 should be implemented in practice.

The next issue is that the signer needs to select the key zt before computing
h(m, zt) and submitting it to time-stamping. If, due to clock drift or network
latency, the time in the time-stamp received does not match t, the signature
can’t be composed. To counter clock drift and stable latency, the signer can first
time-stamp a dummy value and use the result to compare its local clock to that
of the time-stamping service.

To counter network jitter, the signer can compute the message authenticators
h(m, zt′) for several consecutive values of t′, submit all of them in parallel, and
compose the signature using the components whose t′ matches the time t in the
time-stamps received. Buldas et al. [12] have shown that with careful scheduling
the latency can be made stable enough for this strategy even in an aggregation
network with world-wide scale.

Finally, we note that time-stamping services operating in discrete aggre-
gation rounds are particularly well suited for use in our scheme, as they only
return time-stamps once the round is closed, thus eliminating the risk that a fast
adversary could still manage to acquire a suitable time-stamp after the signer
has released a key.

Efficiency. In the following estimates, we assume the use of SHA-256, a common
256-bit hash function. On small inputs, a moderate laptop can perform about a
million SHA-256 evaluations per second. We also assume a signing key sequence
containing one key per second for a year, or a total of a bit less than 32 million,
or roughly 225 keys.

Using the techniques described above, generation of N signing keys takes N
applications of either a hash function or a symmetric block cipher. Binding them
into a public key takes 2N − 1 hashing operations. Thus, the key generation in
our example takes about 100 seconds.

The resulting public key consists of just one hash value. In the private key,
only the seed s has to be kept secret. The signing keys z1, . . . , zN can be erased
once the public key has been computed, an then re-generated as needed for sign-
ing. The hash tree Th(x1, . . . , xN) presents a space-time trade-off. It may be
kept (in regular unprotected storage, as it contains no sensitive information),

14 A. Buldas et al.

taking up 2N − 1 nodes, or about 1GB, and then the key authentication hash
chains can be just read from the tree with no additional computations needed.
Alternatively, one can use a hash tree traversal algorithm, such as the one pro-
posed by Szydlo [47], to keep only 3 log2 N nodes of the tree and spend 2 log2 N
hash function evaluations per chain extraction, assuming all chains are extracted
consecutively.

The size of the signature (t, zt, at, ct) is dominated by the two hash chains.
The key authentication chain consists of log2 N hash values, for a total of about
800 B for our 1-year key sequence. The time-stamping chain consists of log2 M
hash values, where M is the number of requests received by the time-stamping
service in the round t. Assuming the use of the KSI service described in [12]
under its theoretical maximum load of 250 requests, this adds about 1 600 B.
Thus we can expect signatures of less than 3 kB.

As the verification means re-computing the hash chains, it amounts to less
than a hundred hash function evaluations.

8 Conclusions and Outlook

We have presented a simple and efficient digital signature scheme built from a
hash function and a hash-then-publish time-stamping scheme. Considering that
the existence of hash functions is a necessary pre-condition for the existence of
digital signatures [44], one could argue our scheme is based on minimal assump-
tions. However, there is still much room for improvement in both theoretical and
practical aspects.

Current security proofs are given in the random oracle model and in the
classical setting. It would be desirable to prove the security also in the standard
model and in the quantum setting, in particular taking into account the effects of
quantum-oracle access to the hash function [6] and possible quantum interactions
between the aggregation and the hash chain extraction phases of time-stamping,
as these are all under the adversary’s control.

It would also be good to reduce, or at least defer, the key generation costs,
perhaps by adopting some of the incremental tree generation approaches, and to
develop a version of the scheme suitable for personal signing devices like smart
cards and USB dongles. These devices, in addition to having significantly less
memory and computational power, also lack several functional qualities of the
full-sized computers: they are powered on only intermittently, and do not have
on-board real-time clocks or independent network communication capabilities.

References

1. Anderson, R.J., Bergadano, F., Crispo, B., Lee, J.-H., Manifavas, C., Needham,
R.M.: A new family of authentication protocols. Oper. Syst. Rev. 32(4), 9–20
(1998)

A Server-Assisted Hash-Based Signature Scheme 15

2. Bayer, D., Haber, S., Stornetta, W.S.: Improving the efficiency and reliability of
digital time-stamping. In: Capocelli, R., De Santis, A., Vaccaro, U. (eds.) Sequences
II, Proceedings. LNCS, vol. 9056, pp. 329–334. Springer, Heidelberg (1992). doi:10.
1007/978-1-4613-9323-8 24

3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS 1993, Proceedings, pp. 62–73. ACM (1993)

4. Bernstein, D.J., Buchmann, J.A., Dahmen, E. (eds.): Post-Quantum Cryptography.
Springer, Heidelberg (2009). doi:10.1007/978-3-540-88702-7

5. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 15

6. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry,
M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-25385-0 3

7. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380,
pp. 163–169. Springer, Heidelberg (1998). doi:10.1007/BFb0054319

8. Buchmann, J.A., Coronado Garćıa, L.C., Dahmen, E., Döring, M., Klintsevich, E.:
CMSS – an improved Merkle signature scheme. In: Barua, R., Lange, T. (eds.)
INDOCRYPT 2006. LNCS, vol. 4329, pp. 349–363. Springer, Heidelberg (2006).
doi:10.1007/11941378 25

9. Buchmann, J.A., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the security
of the Winternitz one-time signature scheme. IJACT 3(1), 84–96 (2013)

10. Buchmann, J.A., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure
signature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-25405-5 8

11. Buchmann, J.A., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle
signatures with virtually unlimited signature capacity. In: Katz, J., Yung, M. (eds.)
ACNS 2007. LNCS, vol. 4521, pp. 31–45. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-72738-5 3

12. Buldas, A., Kroonmaa, A., Laanoja, R.: Keyless signatures’ infrastructure: how to
build global distributed hash-trees. In: Nielson, H.R., Gollmann, D. (eds.) NordSec
2013. LNCS, vol. 8208, pp. 313–320. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41488-6 21

13. Buldas, A., Laanoja, R.: Security proofs for hash tree time-stamping using
hash functions with small output size. In: Boyd, C., Simpson, L. (eds.) ACISP
2013. LNCS, vol. 7959, pp. 235–250. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39059-3 16

14. Buldas, A., Laanoja, R., Laud, P., Truu, A.: Bounded pre-image awareness and the
security of hash-tree keyless signatures. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K.,
Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 130–145. Springer, Cham
(2014). doi:10.1007/978-3-319-12475-9 10

15. Buldas, A., Niitsoo, M.: Optimally tight security proofs for hash-then-publish time-
stamping. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp.
318–335. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14081-5 20

16. Buldas, A., Saarepera, M.: On provably secure time-stamping schemes. In: Lee,
P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 500–514. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-30539-2 35

16 A. Buldas et al.

17. Coronado Garćıa, L.C.: Provably secure and practical signature schemes. Ph.D.
thesis, Darmstadt University of Technology, Germany (2005)

18. Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital signatures out of second-
preimage resistant hash functions. In: Buchmann, J.A., Ding, J. (eds.) PQCrypto
2008. LNCS, vol. 5299, pp. 109–123. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-88403-3 8

19. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

20. Diffie, W., Hellman, M.E.: Privacy and authentication: an introduction to cryp-
tography. Proc. IEEE 67(3), 397–427 (1979)

21. Dods, C., Smart, N.P., Stam, M.: Hash based digital signature schemes. In: Smart,
N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer,
Heidelberg (2005). doi:10.1007/11586821 8

22. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)

23. Even, S., Goldreich, O., Micali, S.: On-line/Off-line digital signatures. J. Cryptol.
9(1), 35–67 (1996)

24. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

25. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th
ACM STOC, Proceedings, pp. 212–219. ACM (1996)

26. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. J. Cryptol.
3(2), 99–111 (1991)

27. Hülsing, A.: W-OTS+ – shorter signatures for hash-based signature schemes. In:
Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol.
7918, pp. 173–188. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38553-7 10

28. Hülsing, A., Rausch, L., Buchmann, J.A.: Optimal parameters for XMSSMT .
In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES
2013. LNCS, vol. 8128, pp. 194–208. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40588-4 14

29. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49384-7 15

30. Johnson, D., Menezes, A., Vanstone, S.A.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

31. Lamport, L.: Constructing digital signatures from a one way function. Technical
report, SRI International, Computer Science Laboratory (1979)

32. Lamport, L.: Password authentification with insecure communication. Commun.
ACM 24(11), 770–772 (1981)

33. Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton Univer-
sity Press, Princeton (1996)

34. Malkin, T., Micciancio, D., Miner, S.: Efficient generic forward-secure signatures
with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002). doi:10.1007/
3-540-46035-7 27

35. Mart́ın-López, E., Laing, A., Lawson, T., Alvarez, R., Zhou, X.-Q., O’Brien, J.L.:
Experimental realization of Shor’s quantum factoring algorithm using qubit recy-
cling. Nat. Photonics 6(11), 773–776 (2012)

A Server-Assisted Hash-Based Signature Scheme 17

36. McGrew, D., Kampanakis, P., Fluhrer, S., Gazdag, S.-L., Butin, D., Buchmann,
J.A.: State management for hash-based signatures. In: Chen, L., McGrew, D.,
Mitchell, C. (eds.) SSR 2016. LNCS, vol. 10074, pp. 244–260. Springer, Cham
(2016). doi:10.1007/978-3-319-49100-4 11

37. Merkle, R.C.: Secrecy, authentication and public key systems. Ph.D. thesis, Stan-
ford University (1979)

38. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). doi:10.1007/3-540-48184-2 32

39. Perrig, A.: The BiBa one-time signature and broadcast authentication protocol.
In: ACM CCS 2001, Proceedings, pp. 28–37. ACM (2001)

40. Perrig, A., Canetti, R., Tygar, J.D., Song, D.: The TESLA broadcast authentica-
tion protocol. CryptoBytes 5(2), 2–13 (2002)

41. Reyzin, L., Reyzin, N.: Better than BiBa: short one-time signatures with fast sign-
ing and verifying. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384,
pp. 144–153. Springer, Heidelberg (2002). doi:10.1007/3-540-45450-0 11

42. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

43. Rohatgi, P.: A compact and fast hybrid signature scheme for multicast packet
authentication. In: ACM CCS 1999, Proceedings, pp. 93–100. ACM (1999)

44. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: 22nd ACM STOC, Proceedings, pp. 387–394. ACM (1990)

45. Schoenmakers, B.: Explicit optimal binary pebbling for one-way hash chain rever-
sal. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 299–320.
Springer, Heidelberg (2017). doi:10.1007/978-3-662-54970-4 18

46. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

47. Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-24676-3 32

Appendix 2

Publication IIA. Buldas, R. Laanoja, and A. Truu. A blockchain-assisted hash-based signa-ture scheme. In NordSec 2018, Proceedings, volume 11252 of LNCS, pages138–153. Springer, 2018

75

A Blockchain-Assisted Hash-Based
Signature Scheme

Ahto Buldas1, Risto Laanoja1,2, and Ahto Truu1,2(B)

1 Tallinn University of Technology, Akadeemia tee 15a, 12618 Tallinn, Estonia
2 Guardtime AS, A. H. Tammsaare tee 60, 11316 Tallinn, Estonia

ahto.truu@guardtime.com

Abstract. We present a server-supported, hash-based digital signature
scheme. To achieve greater efficiency than current state of the art, we
relax the security model somewhat. We postulate a set of design require-
ments, discuss some approaches and their practicality, and finally reach a
forward-secure scheme with only modest trust assumptions, achieved by
employing the concepts of authenticated data structures and blockchains.
The concepts of blockchain authenticated data structures and the pre-
sented blockchain design could have independent value and are worth
further research.

1 Introduction

Buldas, Laanoja, and Truu [14] recently proposed a new type of signature scheme
(which we will refer to as the BLT scheme in the following) based on the idea of
combining one-time time-bound keys with a cryptographic time-stamping ser-
vice. The scheme is post-quantum secure against known attacks and the integrity
of the signatures does not depend on the secrecy of any keys. However, the keys
have to be pre-generated for every possible signing time slot and this creates
some implementation challenges. In particular, key generation on smart-cards
would be prohibitively slow in real-world parameters.

In order to avoid the inherent inefficiency of pre-assigning individual keys to
every time slot, we propose ways to spend such keys sequentially, one-by-one, as
needed. This approach is particularly useful for real-world use-cases by human
end-users where signing is performed in infrequent batches, e.g. paying monthly
bills, and vast majority of the time-bound keys would go unused.

Sequential key use needs more elaborate support from the server. In particu-
lar, it is necessary to keep track of spent keys by both the signer and the server,
and to avoid successful re-use of the spent keys. We will observe some ways to
manage these keys sequentially and finally reach a solution where the server does
not have to be trusted.

The proposed signature scheme can be considered practical. It provides for-
ward security, non-repudiation of the origin via efficient revocation; there are no

This research was supported by the European Regional Development Fund through
the Estonian smart specialization program NUTIKAS.

c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 138–153, 2018.
https://doi.org/10.1007/978-3-030-03638-6_9

A Blockchain-Assisted Hash-Based Signature Scheme 139

known attacks by quantum computers; it comes with “free” cryptographic time-
stamping. Key and signature sizes and computational efficiency are comparable
with state-of-the-art hash-based signature schemes. The scheme is stateful and
maximum number of signatures created using a set of keys is determined at the
key-generation time. Like other non-hierarchical hash-based signature schemes,
the key generation time becomes noticeable when more than ∼220 signatures
have to be created using a set of keys.

The rest of the paper is organized as follows. In Sect. 2 we survey the state of
the art in hash-based signature schemes, server-assisted signature schemes, and
authenticated data structures. In Sect. 3 we define the design goals and outline
the reasoning that led us to the new scheme. In Sect. 4 we specify the design of
the new scheme and in Sect. 5 provide some notes on implementation. We wrap
up with conclusions in Sect. 6.

2 Related Work

2.1 Hash-Based Signatures

The earliest signature scheme constructed from hash functions is due to Lam-
port [22,30]. His scheme, as well as the refinements proposed in [7,23,24,27,33],
are one-time: they require generation of a new key pair and distribution of a
new public key for each message to be signed.

Merkle [33] introduced the concept of hash tree which aggregates a large
number of inputs into a single root hash value so that any of the N inputs
can be linked to it with a proof consisting of log2 N hash values. This allowed
combining N instances of a one-time signature scheme into an N -time scheme.
This approach has been further studied in [17,19,21,39]. A common drawback
of these constructs is that the whole tree has to be built at once.

Merkle [34] proposed a method to grow the tree gradually as needed. How-
ever, to authenticate the lower nodes of the tree, a chain of one-time signatures
(rather than a sequence of sibling hash values) is needed, unless the scheme
is used in an interactive environment and the recipient keeps the public keys
already delivered as part of earlier signatures. This multi-level approach has
subsequently been refined in [6,8,9,28,29,32].

A complication with the N -time schemes is that they are stateful : as each
of the one-time keys may be used only once, the signer has to keep track of
them. If this information is lost (for example, when a previous state is restored
from a backup), key re-use may result in a catastrophic security loss. Perrig [35]
proposed a few-time scheme where a private key can be used to sign several
messages, and the security level decreases gradually with each additional use.

Bernstein et al. [3] combined the optimized few-time scheme of [38] with the
multi-level tree of [8] to create SPHINCS, a stateless scheme that uses keys based
on a pseudo-random schedule, making the risk of re-use negligible even without
tracking the state.

140 A. Buldas et al.

2.2 Server-Assisted Signatures

In server-assisted schemes the signer has to co-operate with a server to produce
a signature. The two main motivations for such schemes are: (a) performance:
costly computations can be offloaded from an underpowered signing device (such
as a smart-card) to a more capable computer; and (b) security: risks of key misuse
can be reduced by either keeping the keys in a server environment (which can
presumably be managed better than an end-user’s personal computer) or by
having the server perform additional checks as part of the signature generation
protocol.

An obvious solution is to just have the server handle all asymmetric-key
operations based on requests from the signers [37]. In this case the server has to
be completely trusted, but it’s not clear whether that is in fact less secure than
letting end-users manage their own keys [16].

To reduce the need to trust the server, Asokan et al. [2] proposed and others
in [4,25] improved methods where asymmetric-key operations are performed by
a server, but a user can prove the server’s misbehavior when presented with
a signature that the server created without the user’s request. However, such
signatures appear to be valid to a verifier until challenged by the user. Thus,
these protocols are usable in contexts where a dispute resolution process exists,
but unsuitable for applications with immediate and irrevocable effects, such as
authentication for access control purposes.

Several methods have been proposed for outsourcing the more expensive
computation steps of specific signature algorithms, notably RSA, but most early
schemes have subsequently been shown to be insecure. In recent years, probably
due to increasing computational power of handheld devices and wider availability
of hardware-accelerated implementations, attention has shifted to splitting keys
between end-user devices and back-end servers to improve the security of the
private keys [10,18].

2.3 Interactive Signature Protocols

Interactive signature protocols, either by interaction between parties or with an
external time-stamping service, were considered by Anderson et al. [1]. They
proposed the “Guy Fawkes Protocol”, where, once bootstrapped, a message is
preceded by publishing the hash of the message and each message is authenti-
cated by accompanying it with a secret whose hash was published together with
an earlier message. Although the verification is limited to a single party, the
protocol is shown to be a signature scheme according to several definitions. The
broadcast commitment step is critical for providing non-repudiation of origin.
Similar concept was first used in the TESLA protocol [36], designed to authen-
ticate parties who are constantly communicating with each other. Due to this,
it has the same inflexibility of not supporting multiple independent verifiers.

Buldas et al. [14] presented a generic hash-based signature scheme which
depends on interaction with a time-stamping service. In the following we call
this scheme the BLT scheme. The principal idea of the scheme is to have the

A Blockchain-Assisted Hash-Based Signature Scheme 141

signer commit to a sequence of secret keys so that each key is assigned a time
slot when it can be used to sign messages and will transition from signing key
to verification key at the end of the time slot. In order to prove timely usage of
the keys, a cryptographic time-stamping service is used. It is possible to provide
suitable time-stamping service [11] with no trust in the service provider [12,13],
using hash-linking and hash-then-publish schemes [26]. Signing then comprises
of time-stamping the message-key commitment in order to prove that the signing
operation was performed at the correct time.

2.4 Authenticated Data Structures

An authenticated data structure is a data structure whose operations can be
performed by an untrusted prover (server) and the integrity of the results can
be verified efficiently by a verifier. We do not follow the less general 3-party
model where trusted clients modify data on an untrusted server, and the query
responses are accompanied with proof of correct operation based on server’s data
structure [40].

Authenticated data structures in the sense used here were first proposed for
checking the correctness of computer memory [5]. Thorough analysis of appli-
cations in the context of tamper-evident logging was performed in [20]. The
concept found its practical use-case in PKI certificate management: first pro-
posed as “undeniable attesters” [15], where PKI users receive attestations of
their certificates’ inclusion in or removal from the database of valid certificates,
and then the “certificate transparency” framework [31], which facilitates public
auditing of certification authority operations.

3 Approach

3.1 Preliminaries

Hash Trees. Introduced by Merkle [33], a hash tree is a tree-shaped data struc-
ture built using a 2-to-1 hash function h : {0, 1}2k → {0, 1}k. The nodes of
the tree contain k-bit values. Each node is either a leaf with no children or an
internal node with two children. The value x of an internal node is computed
as x ← h(xl, xr), where xl and xr are the values of the left and right child,
respectively. There is one root node that is not a child of any node. We will use
r ← Th(x1, . . . , xN) to denote a hash tree whose N leaves contain the values
x1, . . . , xN and whose root node contains r.

Hash Chains. In order to prove that a value xi participated in the computation
of the root hash r, it is sufficient to present values of all the siblings of the nodes
on the unique path from xi to the root in the tree. For example, to claim that x3

belongs to the tree shown on the left in Fig. 1, one has to present the values x4

and x1,2. This enables the verifier to compute x3,4 ← h(x3, x4), r ← h(x1,2, x3,4),
essentially re-building a slice of the tree, as shown on the right in Fig. 1. We will
use x

c� r to denote that the hash chain c links x to r in such a manner.

142 A. Buldas et al.

r = h(x1,2, x3,4)

x1,2 = h(x1, x2)

x1 x2

x3,4 = h(x3, x4)

x3 x4

r

x1,2 x3,4

x3 x4

Fig. 1. The hash tree Th(x1, . . . , x4) and the corresponding hash chain x3 � r.

3.2 The BLT Signature Scheme

We start from the BLT scheme [14] with the following parties (Fig. 2):

– The signer who uses trusted functionality in secure device D to manage pri-
vate keys.

– Server S that aggregates key usage events from multiple signers in fixed-length
rounds and posts the summaries to append-only repository R.

– Verifier V who can verify signatures against the signer’s public key p and the
round summaries rt obtained from the repository.

D

y
=

h
(m

,z
t
)

a
t
=

y
�

r t

(m, t, zt, ct, at)

S
rt

R

r t

rt

V

Fig. 2. Components of the BLT signature scheme.

Note that S and R together implement a hash-and-publish time-stamping
service where neither the signer nor the verifier needs to trust S; only R has to
operate correctly for the scheme to be secure.

Key Generation. To prepare to sign messages at times 1, . . . , T , the signer:

1. Generates T unpredictable k-bit signing keys: (z1, . . . , zT) ← G (T, k).
2. Binds each key to its time slot: xt ← h(t, zt) for t ∈ {1, . . . , T}.
3. Computes the public key p by aggregating the key bindings into a hash tree:

p ← Th(x1, . . . , xT).

The purpose of the resulting data structure (Fig. 3) is to be able to extract the

hash chains ct linking the private key bindings to the public key: h(t, zt)
ct� p

for t ∈ {1, . . . , T}.

A Blockchain-Assisted Hash-Based Signature Scheme 143

p

x1,2

x1

1 z1

x2

2 z2

x3,4

x3

3 z3

x4

4 z4

Fig. 3. Computation of public key for N = 4.

Signing. To sign message m at time t, the signer:

1. Uses the appropriate key to authenticate the message: y ← h(m, zt).
2. Time-stamps the authenticator by submitting it to S for aggregation and

getting back the hash chain at linking the authenticator to the published
summary: y

at� rt.
3. Outputs the tuple (t, zt, ct, at).

Note that the signature is composed and emitted after the time-stamping step,
which makes it safe for the signer to release the key zt as part of the signature:
the aggregation round t has ended and any future uses of the key zt can no
longer be stamped with time t.

Verification. To verify the message m and the signature s = (t, z, a, c) with the
public key p and the aggregation round summary rt, the verifier:

1. Checks that z was committed as signing key for time t: h(t, z)
c� p .

2. Checks that m was authenticated with the key z at time t: h(m, z)
a� rt .

3.3 Desired Properties

The components of BLT can in fact be used to create a variety of signing schemes.
In the following we draft some of them and explain the necessary compromises
compared to the ideal properties:

– Early forgery prevention: it is better to block revoked or expired keys at
signing time (so that signature can’t be created) than to leave key status
detection to verification time; the least desired is a scheme where forgery is
detected only eventually during an audit.

– Minimal number and resource requirements of trusted components: these have
to be implemented using secure hardware or distributed consensus which are
both expensive.

– Minimal globally shared data: authenticated distribution is expensive.
– Well-defined security model: assumptions, root of trust, etc.
– Efficiency: many signers, few servers, single shared root of trust.
– Privacy: signing events should ideally be known only to verifiers.

Note that providing higher-level properties like key revocation and proof of sign-
ing time almost certainly requires some server support.

144 A. Buldas et al.

3.4 Design of the Proposed Scheme

One-Time Keys. The signing keys in BLT are really not one-time, but rather
time-bound: every key can be used for signing only at a specific point of time.
This incurs quite a large overhead as keys must be pre-generated even for time
periods when no signatures are created. The schemes discussed below use one-
time keys sequentially instead.

As the first idea, we can have the signer time-stamp each signature, just as
in the basic BLT scheme; in case of a dispute, the signature with the earlier
time-stamp wins and the later one is considered a forgery. This obviously makes
verification very difficult and in particular gives the signer a way to deny any
signature: before signing a document d with a key z, the signer can use the same
key to privately sign some dummy value x; when later demanded to honor the
signature on document d, the signer can show the signature on x and declare
the signature on d a forgery.

To prevent this, we assign every signer to a designated server which allows
each key to be used only once. A trivial solution would be to just trust the
server to behave correctly. This would still not achieve non-repudiation, as the
server could collect spent keys and create valid-looking signatures on behalf of
the signer.

Situation can be improved with trusted logging and auditing. If either the
signer or the server published all signing events, including the key index for each
one, then the server could not reuse keys and would not have to be treated
as a trusted component. This would be quite inefficient, though, because of
the amount of data that would have to be distributed and processed during
verification, and would also leak information about the signer’s behavior.

Validating the Server’s Behavior. In this section we discuss some ways to
avoid publishing all transactions while still not having to trust the server. As a
common feature, we use spent key counters both at the signer and the server
side. The server periodically creates hash trees on top of its set of counters and
publishes the root hashes to a public repository.

If we could assume no collaboration between the server and any verifier, the
server would not learn the keys and thus could not produce valid signatures. This
is quite unrealistic, though. We must assume that signatures can be published,
and the server may have access to spent keys. So, we must eliminate the attack
where the server decrements a spent key counter for a client from k to i < k,
signs a message using captured zi, and then increments the counter back to k.

On assumption that the server and (other) signers do not cooperate mali-
ciously, a “neighborhood watch” could be a solution: all signers observe changes
in received hash chains and in committed roots and request proofs from the
server that all changes were legitimate (i.e. that key counters of signers assigned
to neighboring leaves were never decreasing). This approach would only detect
forgeries but not block them, and also would not give very strong guarantees: it
is not realistic to exclude malicious cooperation between the server and some of
its clients.

A Blockchain-Assisted Hash-Based Signature Scheme 145

The concept of authenticated data structures could be used for checking
the server. If proofs of correct operation were included in signatures, verifiers
could reject signatures without valid proofs. This approach would have quite
large overhead, however, as the verifiers would have to be able to validate the
counters throughout their entire lifetime. Other parties who could perform such
validation are the repository, the signers, or independent auditors. Both signers
and auditors could only discover a forgery after the fact, not early enough to
avoid creation of forged signatures.

Pre-validation by the Repository. A promising idea is to validate the server’s
correct operation by the repository itself. We require the server to provide a proof
of correctness with each update to the repository. The repository accepts the
update only after validating the proof. Accepted root hashes are made immutable
using cryptographic techniques and widely distributed. Because signatures are
verified based on published root hashes in the repository, forgery by temporarily
decrementing key usage counters is prevented.

This solution has most of the desired properties from Sect. 3.3: it is efficient,
as the amount of public data (the blockchain) grows linearly in time, indepen-
dent of the number of signers or their activity; there is reasonably low number
of trusted components; the blockchain, including its input validation is forward
secure; server’s forgery attempts will be prevented at signing time; it is not neces-
sary to have a long-term log of private data. The repository can be implemented
as a byzantine fault tolerant distributed state machine, so we do not have to
trust a single party. We describe this scheme in more detail in the following.

4 New Signature Scheme

4.1 Components

Our proposed scheme (Fig. 4) consists of the following parties:

– The signer uses trusted device D to generate keys and then sign data. We
assume there is an authenticated way to distribute public keys. We also
assume the connection between D and S and the connection between D and
R use authenticated channels implemented at another layer of the system (for
example, using pre-distributed HMAC keys).

– Server S assists signers in generating signatures. S keeps a counter of spent
keys for each signer and sends updates to the repository.

– The repository performs two tasks. The layer Rv verifies the correctness of
each operation of S before accepting it and periodically commits the summary
of current state to a public append-only repository R.

– Verifier V is a relying party who verifies signatures.

The server maintains a hash tree with a dedicated leaf for each client (Fig. 5).
The value of the leaf is computed by hashing the pair (i, y) where i is the spent
key counter and y is the last message received from the client (as detailed in
Sect. 4.3).

146 A. Buldas et al.

D
y

=
h
(m

,z
i
)

a
t
=

(y
,i

)
�

r t

(m, i, zi, ci, t, at)

S
(P, r)

Rv
r

R

r t

rt

V

Fig. 4. Components of the new signature scheme.

Each public key must verifiably have just one leaf assigned to it. Otherwise,
the server could set up multiple parallel counters for a client, increment only one
of them in response to client requests, and use the others for forging signatures
with keys the signer has already used and released.

One way to achieve that would be to have the server return the shape (that
is, the directions to move to either the left or the right child on each step) of the
path from the root of the tree to the assigned leaf when the client registers for
service, and the client to include that shape when distributing its public key to
verifiers. Another option would be to use the bits of the public key itself as the
shape. Because most possible bit sequences are not actually used as keys, the
hash tree would be a sparse one in this case.

rt

·

·

· ·

h(i, y)

i y

·

·

· ·

·

· ·

Fig. 5. Server tree for round t, showing key counter and input of the second client only.

4.2 Initialization

Signer. To prepare to sign up to N messages, the signer:

1. Generates N unpredictable k-bit signing keys: (z1, . . . , zN) ← G (N, k).
2. Binds each key to its sequence number: xi ← h(i, zi) for i ∈ {1, . . . , N}.
3. Computes the public key p by aggregating the key bindings into a hash tree:

p ← Th(x1, . . . , xN).
4. Registers with the server S.

A Blockchain-Assisted Hash-Based Signature Scheme 147

The data structure giving the public key is similar to the one in the original
BLT scheme (Fig. 3), and also has the same purpose: to be able to extract the

hash chains ci linking the private key bindings to the public key: h(i, zi)
ci� p for

i ∈ {1, . . . , N}.
Server. Upon receiving registration request from a signer, the server dedicates
a leaf in its tree and sets i to 0 and y to an arbitrary value in that leaf.

4.3 Signing

Signer. Each signer keeps the index i of the next unused key zi in its state. To
sign message m, the signer:

1. Uses the current key to authenticate the message: y ← h(m, zi).
2. Sends the authenticator y to the server.
3. Waits for the server to return the hash chain at linking the pair (i, y) to the

new published summary rt: h(i, y)
at� rt.

4. Checks that the shape of the received hash chain is correct and its output
value matches the authentic rt acquired directly from the repository.

5. If validation succeeds then outputs the tuple (i, zi, ci, t, at), where i is the key
index, zi is the i-th signing key, ci is the hash chain linking the binding of the
key zi and its index i to the signer’s public key p, and at is the hash chain
linking (i, y) to the published rt.

6. Increments its key counter: i ← i+ 1.

Server. Upon receiving request y′ from a signer, the server:

1. Extracts the hash chain a linking the current state of the client record (i, y)

to the current root r of the server tree: h(i, y)
a� r.

2. Updates the client’s record from (i, y) to (i′ ← i + 1, y′) and computes the
corresponding new root hash r′ of the server tree.

3. Submits the tuple (i, y, a, r, y′, r′) to the repository for validation and pub-
lishing.

4. Waits for the repository to end the round and publish rt.
5. Uses the state of its hash tree corresponding to the published rt to extract

and return to all clients with pending requests the hash chains at linking their
updated (i′, y′) records to the published rt: h(i

′, y′)
at� rt.

Repository. The validation layer Rv of the repository R keeps as state the
current value r⋆ of the root hash of the server tree. Upon receiving the update
(i, y, a, r, y′, r′) from S, the validator verifies its correctness:

1. The claimed starting state of the server tree must match the current state of
Rv: r = r⋆.

2. The claimed starting state of the signer record must agree with the starting
state of the server tree: h(i, y)

a� r.
3. The update of the client record must increment the counter: i′ ← i+ 1.

148 A. Buldas et al.

4. The new state of the server tree must correspond to changing just this one
record: h(i′, y′)

a� r′.
5. If all the above checks pass, Rv updates its own state accordingly: r⋆ ← r′.

Rv operates in rounds. During a round, it receives updates from the server,
validates them, and updates its own state accordingly. At the end of the round,
it publishes the current value of its state as the new round commitment rt in
the append-only public repository R.

Note that the hash chain a is the same in the verification of the starting
state of the signer record against the starting state of the server tree and in the
verification of the new state of the signer record against the new state of the
server tree. This ensures no other leaves of the server tree can change with this
update.

4.4 Verification

To verify that the message m and the signature s = (i, z, c, t, a) match the public
key p, the verifier:

1. Checks that z was committed as the i-th signing key: h(i, z)
c� p.

2. Retrieves the commitment rt for the round t from repository R.
3. Checks that the use of the key z to compute the message authenticator y ←

h(m, z) matches the key index i: h(i, y)
a� rt.

Note that the signature is composed and sent to verifier only after the verification
of rt, which makes it safe for the signer to release the key zi as part of the
signature: the server has already incremented its counter i so that only zi+1

could be used to produce the next valid signature.

5 Discussion

5.1 Server-Supported Signing

The model of server-supported signing is a higher-level protocol and is not
directly comparable to traditional signature algorithms like RSA. To justify use-
fulness of the model, we will nonetheless highlight some distinctive properties:

– It is possible to create a server-side log of all signing operations, so that in the
case of either actual or suspected key leak there is a complete record, making
damage control and forensics manageable.

– Key revocation is implemented as blocking the access by the server, thus
no new signatures can be created after the revocation, making key life-cycle
controls much simpler. Note that the server can naturally record the revoca-
tion by setting the client’s counter to some sentinel “infinite” value, and also
return a proof of the update after it has been committed to the repository.

– The server can add custom attributes, and even trusted attributes which can’t
be forged by the server itself: cryptographic time-stamp, address, policy ID,
etc.

A Blockchain-Assisted Hash-Based Signature Scheme 149

– The server can perform data-dependent checks, such as transaction validation,
before allowing a signing. Note that normally the server receives only a hash
value of the data, and the signed data itself does not have to be revealed.

Finally, in scenarios where non-repudiation must be provided, all traditional
schemes and algorithms must be supplemented with some server-provided func-
tionalities like cryptographic time-stamping.

5.2 Implementation of the Repository

The proposed scheme dictates that the repository must have the following
properties:

– Updates are only accepted if their proof of correctness is valid.
– All commitments are final and immutable.
– Commitments are public, and their immutability is publicly verifiable.

To minimize trust requirements on the repository, we propose to re-use the pat-
terns used for creating blockchains. We do not consider proof-of-work, focusing
on byzantine fault tolerant state machine replication model.

Instead of full transactions, we record in the blockchain only aggregate hashes
representing batches of transactions. This provides two benefits: (1) the size of
the blockchain grows linearly in time, in contrast with the usual dependency on
the number and storage size of transactions; and (2) recording and publishing
only aggregate hashes provides privacy. Such a blockchain design is an interesting
research subject by itself.

A blockchain validates all transactions before executing them. An exam-
ple of such validation is double-spending prevention in crypto-currency specific
blockchains. We validate correctness proofs presented by signing servers. Such a
model—where authenticated data structures are validated by a blockchain—is
another potential research subject of independent interest.

The repository, when implemented as a byzantine fault tolerant blockchain,
does not have trusted components.

5.3 Practical Setup

Although presented above as a list of components, envisioned real-life deploy-
ment of the scheme is hierarchical, as shown on Fig. 6.
The topmost layer is a distributed cluster of blockchain consensus nodes, each
possibly operated by an independent “permissioned” party. The blockchain can
accept inputs from multiple signing servers, each of which may in turn serve many
clients. Because of this hierarchical nature the scheme scales well performance-
wise. In terms of the amount of data, as stated earlier, the size of blocks and
the number of blocks does not depend on the number of clients and number of
signatures issued.

The system assumes that the certification service assigns each signer a dedi-
cated signing server and a dedicated leaf position in this server’s hash tree.

150 A. Buldas et al.

R

rt

S1

. . .
Sn

D11

. . .

D1m

. . .

Dn1

. . .

Dnm

Fig. 6. A scalable deployment architecture for the new scheme.

5.4 Efficiency

The efficiency of our proposed signature scheme for both signers and verifiers is
at least on par with the state of the art.

The considerations for key generation and management on the client side
are similar to the original BLT scheme [14], except the number of private keys
required is much smaller (assuming 10 signing operations per day, just 3 650 keys
are needed for a year, compared to the 32 million keys in BLT) and the effort
required to generate and manage them, which was the main weakness of BLT,
is also correspondingly reduced.

Like in the original BLT scheme, the size of the signature in our scheme is also
dominated by the two hash chains. The key sequence membership proof contains
log2N hash values, which is about 12 for the 3 650-element yearly sequence. The
blockchain membership proof has log2K hash values, where K is the number of
clients the service has. Even when the whole world (8 billion people) signs up,
it’s still only about 33 hash values. Conservatively assuming the use of 512-bit
hash functions, the two hash chains add up to less than 3 kB in total.

Verification of the signature means re-computing the two hash chains and
thus amounts to about 45 hash function evaluations.

Admittedly, the above estimates exclude the costs of querying the
blockchain to acquire the committed rt that both the signer and the verifier
need. However, that is comparable to the need to access a time-stamping service
when signing and an OCSP (Online Certificate Status Protocol) responder when
verifying signatures in the traditional PKI setup.

6 Conclusions and Outlook

We have proposed a novel server-assisted signature scheme based on hash func-
tions as the sole underlying cryptographic primitive. The scheme is computation-
ally efficient for both signers and verifiers and produces small signatures with
tiny public keys.

Due to the server-assisted and blockchain-backed nature, the scheme provides
instant key revocation and perfect forward security without the need to trust
the server or any single component in the blockchain.

A Blockchain-Assisted Hash-Based Signature Scheme 151

Formalizing and proving the security properties of the scheme in composition
with different implementation architectures of the blockchain consensus is an
interesting future research topic.

The concept of a blockchain containing only aggregate hashes of batches of
transactions instead of full records and the notion of a blockchain based on pre-
validation of correctness proofs of transactions before admitting them to the
chain could both be of independent interest.

References

1. Anderson, R.J., Bergadano, F., Crispo, B., Lee, J.-H., Manifavas, C., Needham,
R.M.: A new family of authentication protocols. Oper. Syst. Rev. 32(4), 9–20
(1998)

2. Asokan, N., Tsudik, G., Waidner, M.: Server-supported signatures. J. Comput.
Secur. 5(1), 91–108 (1997)

3. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 15

4. Bicakci, K., Baykal, N.: Server assisted signatures revisited. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 143–156. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24660-2 12

5. Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness
of memories. Algorithmica 12(2–3), 225–244 (1994)

6. Buchmann, J., Coronado Garćıa, L.C., Dahmen, E., Döring, M., Klintsevich, E.:
CMSS – an improved Merkle signature scheme. In: Barua, R., Lange, T. (eds.)
INDOCRYPT 2006. LNCS, vol. 4329, pp. 349–363. Springer, Heidelberg (2006).
https://doi.org/10.1007/11941378 25

7. Buchmann, J.A., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the security
of the Winternitz one-time signature scheme. IJACT 3(1), 84–96 (2013)

8. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure sig-
nature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5 8

9. Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle
signatures with virtually unlimited signature capacity. In: Katz, J., Yung, M. (eds.)
ACNS 2007. LNCS, vol. 4521, pp. 31–45. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-72738-5 3

10. Buldas, A., Kalu, A., Laud, P., Oruaas, M.: Server-supported RSA signatures for
mobile devices. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017.
LNCS, vol. 10492, pp. 315–333. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66402-6 19

11. Buldas, A., Kroonmaa, A., Laanoja, R.: Keyless signatures’ infrastructure: how
to build global distributed hash-trees. In: Riis Nielson, H., Gollmann, D. (eds.)
NordSec 2013. LNCS, vol. 8208, pp. 313–320. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-41488-6 21

12. Buldas, A., Laanoja, R.: Security proofs for hash tree time-stamping using hash
functions with small output size. In: Boyd, C., Simpson, L. (eds.) ACISP 2013.
LNCS, vol. 7959, pp. 235–250. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39059-3 16

152 A. Buldas et al.

13. Buldas, A., Laanoja, R., Laud, P., Truu, A.: Bounded pre-image awareness and the
security of hash-tree keyless signatures. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K.,
Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 130–145. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12475-9 10

14. Buldas, A., Laanoja, R., Truu, A.: A server-assisted hash-based signature scheme.
In: Lipmaa, H., Mitrokotsa, A., Matulevičius, R. (eds.) NordSec 2017. LNCS,
vol. 10674, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70290-2 1

15. Buldas, A., Laud, P., Lipmaa, H.: Accountable certificate management using unde-
niable attestations. In: Proceedings of the 7th ACM Conference on Computer and
Communications Security, pp. 9–17. ACM (2000)

16. Buldas, A., Saarepera, M.: Electronic signature system with small number of pri-
vate keys. In: 2nd Annual PKI Research Workshop, Proceedings, pp. 96–108. NIST
(2003)

17. Buldas, A., Saarepera, M.: On provably secure time-stamping schemes. In: Lee,
P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 500–514. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30539-2 35

18. Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: Virtual smart cards: how to
sign with a password and a server. In: Zikas, V., De Prisco, R. (eds.) SCN 2016.
LNCS, vol. 9841, pp. 353–371. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44618-9 19

19. Coronado Garćıa, L.C.: Provably secure and practical signature schemes. Ph.D.
thesis, Darmstadt University of Technology, Germany (2005)

20. Crosby, S.A., Wallach, D.S.: Efficient data structures for tamper-evident logging.
In: Proceedings of the 18th USENIX Security Symposium, pp. 317–334. USENIX
(2009)

21. Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital signatures out of second-
preimage resistant hash functions. In: Buchmann, J., Ding, J. (eds.) PQCrypto
2008. LNCS, vol. 5299, pp. 109–123. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-88403-3 8

22. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

23. Dods, C., Smart, N.P., Stam, M.: Hash based digital signature schemes. In: Smart,
N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer,
Heidelberg (2005). https://doi.org/10.1007/11586821 8

24. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. J. Cryptol.
9(1), 35–67 (1996)

25. Goyal, V.: More efficient server assisted one time signatures. Cryptology ePrint
Archive, Report 2004/135 (2004). https://eprint.iacr.org/2004/135

26. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. J. Cryptol.
3(2), 99–111 (1991)

27. Hülsing, A.: W-OTS+ – shorter signatures for hash-based signature schemes. In:
Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol.
7918, pp. 173–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38553-7 10

28. Hülsing, A., Rausch, L., Buchmann, J.: Optimal parameters for XMSSMT . In:
Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013.
LNCS, vol. 8128, pp. 194–208. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40588-4 14

A Blockchain-Assisted Hash-Based Signature Scheme 153

29. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49384-7 15

30. Lamport, L.: Constructing digital signatures from a one way function. Technical
report, SRI International, Computer Science Laboratory (1979)

31. Laurie, B., Langley, A., Kasper, E.: Certificate transparency. RFC 6962, RFC
Editor, June 2013

32. Malkin, T., Micciancio, D., Miner, S.: Efficient generic forward-secure signatures
with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-46035-7 27

33. Merkle, R.C.: Secrecy, authentication and public key systems. Ph.D. thesis, Stan-
ford University (1979)

34. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

35. Perrig, A.: The BiBa one-time signature and broadcast authentication protocol.
In: Proceedings of the ACM CCS 2001, pp. 28–37. ACM (2001)

36. Perrig, A., Canetti, R., Tygar, J.D., Song, D.: The TESLA broadcast authentica-
tion protocol. CryptoBytes 5(2), 2–13 (2002)

37. Perrin, T., Bruns, L., Moreh, J., Olkin, T.: Delegated cryptography, online trusted
third parties, and PKI. In: Proceedings of the 1st Annual PKI Research Workshop,
pp. 97–116. NIST (2002)

38. Reyzin, L., Reyzin, N.: Better than BiBa: short one-time signatures with fast sign-
ing and verifying. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384,
pp. 144–153. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45450-
0 11

39. Rohatgi, P.: A compact and fast hybrid signature scheme for multicast packet
authentication. In: Proceedings of the ACM CCS 1999, pp. 93–100. ACM (1999)

40. Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.)
ESA 2003. LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-39658-1 2

Appendix 3

Publication IIIA. Buldas, D. Firsov, R. Laanoja, H. Lakk, and A. Truu. A new approach toconstructing digital signature schemes (short paper). In IWSEC 2019, Pro-ceedings, volume 11689 of LNCS, pages 363–373. Springer, 2019
An extended version of this paper is available asA. Buldas, D. Firsov, R. Laanoja, H. Lakk, and A. Truu. A new approach toconstructing digital signature schemes (extended paper). Cryptology ePrintArchive, Report 2019/673, 2019. https://eprint.iacr.org/2019/673

93

A New Approach to Constructing Digital
Signature Schemes

(Short Paper)

Ahto Buldas1, Denis Firsov1,2, Risto Laanoja1,2, Henri Lakk2,
and Ahto Truu1,2(B)

1 Tallinn University of Technology, Akadeemia tee 15a, 12618 Tallinn, Estonia
2 Guardtime AS, A. H. Tammsaare tee 60, 11316 Tallinn, Estonia

ahto.truu@guardtime.com

Abstract. A new hash-based, server-supported digital signature scheme
was proposed recently in [7]. We decompose the concept into forward-
resistant tags and a generic cryptographic time-stamping service. Based
on the decomposition, we propose more tag constructions which allow
efficient digital signature schemes with interesting properties to be built.
In particular, the new schemes are more suitable for use in personal sign-
ing devices, such as smart cards, which are used infrequently. We define
the forward-resistant tags formally and prove that (1) the discussed con-
structs are indeed tags and (2) combining such tags with time-stamping
services gives us signature schemes.

1 Introduction

Recently, Buldas, Laanoja, and Truu [7] proposed a new type of digital signature
scheme (which we will refer to as the BLT scheme in the following) based on the
idea of combining one-time time-bound keys with a time-stamping service. A
limitation of the BLT scheme is the fact that keys are pre-generated and have to
be used at their designated time-slots only. On practical parameters the number
of keys is rather large, which would make key generation on resource-constrained
platforms prohibitively slow.

BLT scheme prevents other parties from misusing keys by making each key
expire immediately after a legitimate use. First, each key is explicitly bound to a
time slot at the key-generation time, and keys would automatically expire when
their designated time-slots passed. Second, the legitimate use of a key is proven
by time-stamping the message-key pair. Back-dating a new pair (a new message
with an already used key) would allow a signature to be forged. Therefore, the
hash-then-publish time-stamping [12] that avoids key-based cryptography and
trusted third parties is particularly suitable for the scheme.

This research was supported by the European Regional Development Fund through
the Estonian smart specialization program NUTIKAS and by the research measure of
the Estonian IT Academy programme.

c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 363–373, 2019.
https://doi.org/10.1007/978-3-030-26834-3_21

364 A. Buldas et al.

Based on this observation, we generalize and decompose the scheme into two
functional components: forward-resistant tags and a cryptographic time-stamping
service. As the forward-resistant tag is a novel construct, we define it formally
and prove that the BLT scheme is indeed an instance of forward-resistant tag-
based schemes. We then propose other forward-resistant tag systems, prove their
security, and observe that the resulting new signature schemes are efficient and
have some interesting properties.

2 Related Work and Background

Due to space constraints, we refer the reader to either [7] or the extended
e-print [4] for overview of related work on hash-based signatures, server-
assisted signatures, and interactive signature protocols.

Non-Repudiation. An important property of digital signatures (as an alter-
native to hand-written ones) [10] is non-repudiation, i.e. the possibility to use
the signature as evidence against the signer. Solutions where trusted third par-
ties are (technically) able to sign on behalf of their clients are not desirable
for non-repudiation, because clients may use that argument to fraudulently call
their signatures into question. Therefore, solutions where clients have personal
signature devices are preferable to those relying entirely on trusted parties.

Another real-world complexity is key revocation. Without such capability
clients may (fraudulently) claim that their private keys were stolen and someone
else may have created signatures in their name. With revocation tracking, sig-
natures created before a key revocation event can be treated as valid, whereas
signatures created afterwards can be considered invalid. Usually this is imple-
mented using cryptographic time-stamping and certificate status distribution
services. No matter the implementation details, this can not be done without
online services, which means that most practical deployments of digital signa-
tures are actually server-supported.

Cryptographic Time-Stamping. Cryptographic time-stamps prove that data
existed before a particular time. The proof can be a statement that the data
hash existed at a given time, cryptographically signed by a trusted third party.
Haber and Stornetta [12] made the first steps towards trustless time-stamping
by proposing a scheme where each time-stamp would include some informa-
tion from the immediately preceding one and a reference to the immediately
succeeding one. Benaloh and de Mare [1] proposed to increase the efficiency of
hash-linked time-stamping by operating in rounds, where messages to be time-
stamped within one round would be combined into a hierarchical structure from
which a compact proof of participation could be extracted for each message. The
aggregation structures would then be linked into a linear chain. The security of
linking-based hash-then-publish schemes has been proven in a very strong model
where even the time-stamping service provider does not have to be trusted [6,8],
making them particularly suitable for our use-case. It is possible to provide such
service efficiently and in global scale [5].

A New Approach to Constructing Digital Signature Schemes 365

3 Forward-Resistant Tags

Definition 1 (Tag system). By a tag system we mean a triple (Gen,Tag,Ver)
of algorithms, where:

– Gen is a probabilistic key-generation algorithm that, given as input the tag
range T , produces a secret key sk and a public key pk.

– Tag is a tag-generation algorithm that, given as input the secret key sk and
an integer t ∈ {1, . . . , T}, produces a tag τ ← Tag(sk, t).

– Ver is a verification algorithm that, given as input a tag τ , an integer t, and
the public key pk, returns either 0 or 1, such that Ver(Tag(sk, t), t, pk) = 1
whenever (sk, pk) ← Gen(T) and 1 ≤ t ≤ T .

The above definition of a tag system is somewhat similar to that of a signature
scheme consisting of procedures for key generation, signature generation, and
signature verification [11]. The fundamental difference is that a signature binds
the use of the secret key to a message, while a tag binds the use of the secret
key to a time.

Definition 2 (Forward-resistant tag system). A tag system (Gen,Tag,Ver)
is S-forward-resistant if every tag-forging adversary A using computational
resources ρ has success probability

Pr
[
(pk, sk) ← Gen(T), (τ, t) ← ATag(sk,·)(pk) : Ver(τ, t, pk) = 1

]
<

ρ

S
,

where A makes one oracle call Tag(sk, t′) with 1 ≤ t′ < t.

The restriction for A to make just one oracle call stems from the fact that the
very purpose of a tag system is to bind the use of the secret key to a specific
time. Informally, in order to implement a forward resistant tag system, we have
to bind each tag to a time t so that the tag can’t be re-bound to a later time.
This notion could be seen as dual to time-stamping that prevents back-dating.

The resources represented by ρ are computation time and memory. The total
resource budget of the adversary is ρ = α · time + β · memory, where α and β
are the costs of a unit of computation time and a unit of memory, respectively.

Security proofs of the proposed tag systems will be based on the following
definitions of basic cryptographic properties of functions:

Definition 3 (One-way function). A function f : D → R is S-secure one-
way (S-OW in short) if every f-inverting adversary A using computational
resources ρ has success probability

Pr
[
x ← D,x′ ← Af(·)(f(x)) : f(x′) = f(x)

]
<

ρ

S
.

Definition 4 (Collision resistant function). A function f : D → R is S-
secure collision resistant (S-CR) if for every collision-finding adversary A using
computational resources ρ:

Pr
[
x1, x2 ← Af(·) : x1 �= x2, f(x1) = f(x2)

]
<

ρ

S
.

366 A. Buldas et al.

Definition 5 (Undetectable function). A function f : D → D is S-secure
undetectable (S-UD) if for every detecting adversary A using computational
resources ρ:

∣∣∣Pr
[
x ← U : A(x) = 1

]
− Pr

[
x ← U : A(f(x)) = 1

]∣∣∣ < ρ

S
,

where U generates random values uniformly from D.

Lemma 1. If f : D → D is S-UD, then fn is S
n -UD. (Proof in the e-print [4].)

In the following, we will consider general hash functions f : {0, 1}⋆ → {0, 1}k
mapping arbitrary-length inputs to fixed-length outputs. We will write f(x1, x2)
or f(x1, x2, . . . , xn) to mean the result of applying f to a bit-string encoding the
pair (x1, x2) or the tuple (x1, x2, . . . , xn), respectively.

Cryptographic Time-Stamping. We model the ideal time-stamping service
as a trusted repository R that works as follows:

– The time t is initialized to 1, and all the cells Ri to ⊥.
– The query R.time is answered with the current value of t.
– The query R.get(t) is answered with Rt.
– On the request R.put(x), first Rt ← x is assigned and then the value of t is

incremented by 1.

This is done for the sake of simplicity. It turns out that refining the model of
the time-stamping service would make the proofs really complex. For example,
even for a seemingly trivial change, where R publishes a hash h(m, τ) instead of
just (m, τ), one needs non-standard security assumptions about h such as non-
malleability. In this paper, we try to avoid these technical difficulties and focus
on the basic logic of the security argument of the tag-based signature scheme.

Definition 6 (Induced signature scheme). A tag system (Gen,Tag,Ver)
and a time-stamping repository R induce a one-time signature scheme as fol-
lows:

The signer SR(m) queries t ← R.time, then creates τ ← Tag(sk, t), stores
R.put((m, τ)), and returns σ = (τ, t).

The verifier V R(m, (τ, t), pk) queries x ← R.get(t), and checks that x =
(m, τ) and Ver(pk, t, τ) = 1.

Definition 7 (Existential unforgeability). A one-time signature scheme is
S-secure existentially unforgeable (S-EUF) if every forging adversary A using
computational resources ρ has success probability

Pr
[
(pk, sk) ← Gen(T), (m,σ) ← ASR,R(pk) : V R(m,σ, pk) = 1

]
<

ρ

S
,

where A makes only one S-query and not with m.

Theorem 1. If the tag system is S-secure forward-resistant then the induced
one-time signature scheme is (almost) S-secure existentially unforgeable.

A New Approach to Constructing Digital Signature Schemes 367

Proof. Having a ρ-adversary ASR,R for the signature scheme, we construct an
adversary BTag(sk,·) for the tag scheme as follows. The adversary B simulates
the adversary A by creating a simulated R of its own. A signing query S(m) is
simulated by making an oracle query τ ← Tag(sk, t), where t is the time value
in the simulated R, and then assigning Rt ← (m, τ).

Every time the simulated A makes (a direct) query R.put(x), B checks
whether x is in the form (m, τ) and Ver(pk, τ, t) = 1, where t is the current
time in the simulated R, and then returns (τ, t) if either: (a) A has never made
any S-calls, or (b) A has made an S-call with m′ �= m.

It is easy to see that one of these events must occur whenever A is successful.
In the first case, B is also successful, because it outputs a correct tag without
making any Tag(sk, ·)-calls. In the second case, the S(m′)-query was made at
t′ < t (as every S-query makes one R.put(·)-query which advances t) and then
also the Tag(sk, t′)-query was made at t′ < t and hence B is successful again.

If the overhead of B in simulating the environment for A is small, the reduc-
tion is tight and thus the signature scheme must indeed be almost as secure as
the underlying tag scheme. ⊓⊔

3.1 The BLT Scheme as a Tag System (BLT-TB)

Ignoring the aggregation of individual time-bound keys into a hash tree, the
essence of the BLT signature scheme proposed in [7] can be modeled as a tag
system as follows:

– The secret key sk is a list (z1, z2, . . . , zT) of T unpredictable values and the
public key pk the list (f(z1), f(z2), . . . , f(zT)), where f is a one-way function.

– The tagging algorithm Tag(z1, z2, . . . , zT ; t) outputs zt.
– The verification algorithm Ver, given as input a tag τ , an integer t, and the

public key (x1, x2, . . . , xT), checks that 1 ≤ t ≤ T and f(τ) = xt.

We will refer to this model as the BLT-TB tag system.

Theorem 2. If f is S-OW, then BLT-TB is an S
T -forward-resistant tag system.

Proof. We assume there’s a tag-forging adversary A and construct an f -inverting
adversary B based on oracle access to A. Since f is S-OW, irrespective of B’s
construction, its success probability δ′ < ρ

S (Definition 3). We construct B to
process the input x = f(z) as follows:

– generate the secret key components zi ← {0, 1}k and compute the corre-
sponding public key components xi = f(zi) for 1 ≤ i ≤ T ;

– uniformly randomly pick an index j ← {1, . . . , T};
– call A on a modified public key to produce a forged tag and its index

(τ, t) ← ATag(sk,·)(x1, . . . , xj−1, x, xj+1, . . . , xT);

– if A succeeded and t = j then return τ , else return ⊥.

368 A. Buldas et al.

By construction, B’s success probability δj = Pr
[
A succeeded∧ t = j

]
. Since the

distribution of x is identical to the distribution of xi, the events “A succeeded”
and “t = j” are independent and thus we have δj = Pr

[
A succeeded

]
·Pr

[
t = j

]
.

Since j was drawn uniformly from {1, . . . , T}, we further have δj = δ · 1
T , where

δ is A’s success probability (Definition 2).
From f being S-OW, we have δ

T = δj ≤ δ′ < ρ
S . Thus, δ < ρ

S/T , and BLT-TB

is indeed an S
T -forward-resistant tag system. ⊓⊔

3.2 The BLT-OT Tag System

We now define the BLT-OT tag system (inspired by Lamport’s one-time signa-
tures [9]) as follows:

– The secret key sk is a list (z0, z1, . . . , zℓ−1) of ℓ = ⌈log2(T +1)⌉ unpredictable
values and the public key pk the list (f(z0), f(z1), . . . , f(zℓ−1)), where f is a
one-way function.

– The tagging algorithm Tag(z0, . . . , zℓ−1; t) outputs an ordered subset
(zj1 , zj2 , . . . , zjm) of components of the secret key such that 0 ≤ j1 < j2 <
. . . < jm ≤ ℓ− 1 and 2j1 + 2j2 + . . .+ 2jm = t.

– The verification algorithm Ver, given as input a sequence (zj1 , zj2 , . . . , zjm),
an integer t, and the public key (x0, x1, . . . , xℓ−1), checks that:
1. f(zj1) = xj1 , . . . , f(zjm) = xjm ; and
2. 0 ≤ j1 < j2 < . . . < jm ≤ ℓ− 1; and
3. 2j1 + 2j2 + . . .+ 2jm = t; and
4. 1 ≤ t ≤ T .

Theorem 3. If f is S-OW, then BLT-OT is an S
ℓ -forward-resistant tag system.

(Proof is very similar to Theorem 2 and available in the e-print [4].)

3.3 The BLT-W Tag System

We now define the BLT-W tag system (inspired by Winternitz’s idea [14] for
optimizing the size of Lamport’s one-time signatures) as follows:

– The secret key sk is an unpredictable value z and the public key pk is fT (z),
where f is a one-way function.

– The tagging algorithm Tag(z; t) outputs the value fT−t(z).
– The verification algorithm Ver, given as input a tag τ , an integer t, and the

public key x, checks that 1 ≤ t ≤ T and f t(τ) = x.

Theorem 4. If f is S1-OW and S2-CR and S3-UD function, then BLT-W is

a min(S1,S2,S3)
2·T -forward-resistant tag system. (Proof is similar to Theorem 2 and

available in the e-print [4].)

A New Approach to Constructing Digital Signature Schemes 369

4 BLT-OT One-Time Signature Scheme

The signature scheme induced by the BLT-OT tag system according to Defini-
tion 6 would require the signer to know in advance the time when its request
reaches the time-stamping service. This is hard to achieve in practice, in partic-
ular for devices such as smart cards that lack built-in clocks. To overcome this
limitation, we construct the BLT-OT one-time signature scheme as follows.

Key Generation. Let ℓ be the number of bits that can represent any time value
t when the signature may be created (e.g. ℓ = 32 for POSIX time up to year
2106). The private key is generated as sk = (z0, z1, . . . , zℓ−1), where zi are unpre-
dictable values, and the public key as pk = f(X), where X = (x0, x1, . . . , xℓ−1),
xi = f(zi), and f is a one-way function.

The public key certificate should contain (a) the public key pk, (b) the
identity IDc of the client, and (c) the identity IDs of the designated time-
stamping service. Recording the identity of the designated time-stamping service
in certificate enables instant key revocation. Upon receiving a revocation notice,
the designated service stops serving the affected client, and thus it is not possible
to generate signatures using revoked keys.

Signing. To sign a message m, the client:

– gets a time-stamp St on the record (m,X, IDc) from the time-stamping ser-
vice designated by IDs;

– extracts the ℓ-bit time value t from St and creates the list W = (w0,
w1, . . . , wℓ−1), where wi = zi if the i-th bit of t is 1, or wi = xi = f(zi)
otherwise;

– disposes of the private key (z0, z1, . . . , zℓ−1) to prevent its re-use;
– emits (W,St) as the signature.

Verification. To verify the signature (W,St) on the message m against the
certificate (pk, IDc, IDs), the verifier:

– extracts time t from the time-stamp St;
– recovers the list X = (x0, x1, . . . , xℓ−1) by computing xi = f(wi) if the i-th

bit of t is 1, or xi = wi otherwise;
– checks that the computed X matches the public key: f(X) = pk;
– checks that St is a valid time-stamp issued at time t by service IDs on the

record (m,X, IDc).

Using the reduction techniques from previous sections to formally prove the
security of this optimized signature scheme is complicated by both the iterated
use of f and the more abstract view of the time-stamping service.

Details of other optimized signature schemes are skipped for brevity. Practical
properties are discussed in the following section.

370 A. Buldas et al.

5 Discussion

The BLT-TB scheme proposed in [7] works well for powerful devices that are
constantly running and have reliable clocks. These are not reasonable assump-
tions for personal signing devices such as smart cards, which have very limited
capabilities and are not used very often. Generating keys could take hours or
even days of non-stop computing on such devices. This is clearly impractical,
and also wasteful as most of the keys would go unused.

The BLT-OT scheme proposed in Sect. 4 solves the problems described above
at the cost of introducing state on the client side. As the scheme is targeted
towards personal signing devices, the statefulness is not a big risk, because these
devices are not backed up and also do not support parallel processing. The
benefit in addition to improved efficiency is that the device no longer needs to
know the current time while preparing a signing request. Instead, it can just use
the time from the time-stamp when composing the signature.

Table 1. Efficiency of hash-based one-time signature schemes. We assume 256-bit hash
functions, 32-bit time values, and time-stamping hash-tree with 33 levels. Times are in
hashing operations and signature sizes in hash values. TS in BLT schemes stands for
the time-stamping service call.

Scheme Key generation Signing time Verification time Signature size

Lamport 1 025 1 024 513 256

Winternitz (w = 4) 1 089 1 088 1 021 68

BLT-OT 65 64 + TS 33 + 33 32 + 33

BLT-W (w = 2) 65 64 + TS 49 + 33 16 + 33

Efficiency as One-Time Scheme. When implemented as described in Sect. 4,
the cost of generating a BLT-OT key pair is ℓ random key generations and
ℓ+ 1 hashing operations, the cost of signing ℓ hashing operations and one time-
stamping service call, and the cost of signature verification at most ℓ+1 hashing
operations and one time-stamp verification. In this case the private key would
consist of ℓ one-time keys and the public key of one hash value, and the signature
would contain ℓ hash values and one time-stamp token. The private storage
size can be optimized by generating the one-time keys from one true random
seed using a pseudo-random generator. Then the cost of signing increases by ℓ
operations, as the one-time keys would have to be re-generated from the seed
before signing. This version is listed as BLT-OT in Table 1.

Winternitz’s idea [14] for optimizing the size of Lamport’s one-time sig-
natures [9] can also be applied to BLT-OT. Instead of using one-step hash
chains zi → h(zi) = xi to encode single bits of t, we can use longer chains
zi → h(zi) → . . . → hn(zi) = xi and publish the value hn−j(zi) in the signature
to encode the value j of a group of bits of t. When encoding groups of w bits of

A New Approach to Constructing Digital Signature Schemes 371

t in this manner, the chains have to be n = 2w steps long. This version is listed
as BLT-W in Table 1. Note that in contrast to applying this idea to Lamport’s
signatures, in BLT-W no additional countermeasures are needed to prevent an
adversary from stepping the hash chains forward: the time in the time-stamp
takes that role.

To compare BLT-OT signature sizes and verification times to other schemes,
we also need to estimate the size of hash-trees built by the time-stamping service.
Even assuming the whole world (8 billion people) will use the time-stamping
service in every aggregation round, an aggregation tree of 33 layers will suffice.
We also assume that in all schemes one-time private keys will be generated on-
demand from a single random seed and public keys will be aggregated into a
single hash value. Therefore, the key sizes will be the same for all schemes and
are not listed in Table 1.

Table 2. Efficiency of hash-based many-time signature schemes. We assume key supply
for at least 3 650 signatures, 256-bit hash functions, 32-bit time values, and time-
stamping hash-tree with 33 levels. Times are in hashing operations and signature sizes
in hash values. TS in BLT schemes stands for the time-stamping service call.

Scheme Key generation Signing time Verification time Signature size

XMSS 897 024 8 574 1 151 79

SPHINCS ca 16 000 ca 250 000 ca 7 000 ca 1 200

BLT-TB ca 96 000 000 50 + TS 25 + 33 25 + 33

BLT-OT-N 240 900 64 + TS 45 + 33 44 + 33

BLT-W-N (w = 2) 240 900 64 + TS 61 + 33 28 + 33

Efficiency as Many-Time Scheme. A one-time signature scheme is not prac-
tical by itself. Merkle [13] proposed aggregating multiple public keys of a one-
time scheme using a hash tree to produce so-called N -time schemes. Assuming
10 signing operations per day, a set of 3 650 BLT-OT keys would be sufficient
for a year. The key generation costs would obviously grow correspondingly. The
change in signing time would depend on how the hash tree would be handled. If
sufficient memory is available to keep the tree (which does not contain private
key material and thus may be stored in regular memory), the authenticating
hash chains for individual one-time public keys could be extracted with no extra
hash computations. Signature size and verification time would increase by the 12
additional hashing steps linking the one-time public keys to the root of the aggre-
gation tree. This scheme is listed as BLT-OT-N in Table 2, where we compare it
with the following schemes:

– XMSS is a stateful scheme, like the N -time scheme built from BLT-OT; the
values in Table 2 are computed by taking N = 212 = 4096 and leaving other
parameters as in [3];

372 A. Buldas et al.

– SPHINCS is a stateless scheme and can produce an indefinite number of
signatures; the values in Table 2 are inferred from [2] counting invocations of
the ChaCha12 cipher on 64-byte inputs as hash function evaluations;

– the values for BLT-TB in Table 2 are from [7].

As can be seen from the table, the performance of BLT-OT as a component in N -
time scheme is very competitive when signing and verification time and signature
size are concerned. Only SPHINCS has significantly faster key generation, but
much slower signing and verification and much larger signatures.

6 Conclusions and Outlook

We have presented a new approach to constructing digital signature schemes
from forward-resistant tags and time-stamping services. We observe that this
new framework can be used to model an existing signature scheme, and also
to construct new ones. The newly derived signature schemes are practical and
it would be interesting to further study their security properties, e.g. present
security proofs in the standard model. The novel concept of forward-resistant
tags has already proven useful, and thus certainly merits further research.

References

1. Benaloh, J., de Mare, M.: Efficient broadcast time-stamping. Technical report,
Clarkson University (1991)

2. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 15

3. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure sig-
nature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5 8

4. Buldas, A., Firsov, D., Laanoja, R., Lakk, H., Truu, A.: A new approach to con-
structing digital signature schemes (extended paper). Cryptology ePrint Archive,
Report 2019/673 (2019). https://eprint.iacr.org/2019/673

5. Buldas, A., Kroonmaa, A., Laanoja, R.: Keyless signatures’ infrastructure: how
to build global distributed hash-trees. In: Riis Nielson, H., Gollmann, D. (eds.)
NordSec 2013. LNCS, vol. 8208, pp. 313–320. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-41488-6 21

6. Buldas, A., Laanoja, R., Laud, P., Truu, A.: Bounded pre-image awareness and the
security of hash-tree keyless signatures. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K.,
Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 130–145. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12475-9 10

7. Buldas, A., Laanoja, R., Truu, A.: A server-assisted hash-based signature scheme.
In: Lipmaa, H., Mitrokotsa, A., Matulevičius, R. (eds.) NordSec 2017. LNCS,
vol. 10674, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70290-2 1

A New Approach to Constructing Digital Signature Schemes 373

8. Buldas, A., Saarepera, M.: On provably secure time-stamping schemes. In:
Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 500–514. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 35

9. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

10. European Commission: Regulation no 910/2014 of the European Parliament and
of the Council of 23 July 2014 on electronic identification and trust services for
electronic transactions in the internal market and repealing directive 1999/93/EC
(eIDAS regulation). Official Journal of the European Union L 257, 73–114 (2014)

11. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

12. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. J. Cryptol.
3(2), 99–111 (1991)

13. Merkle, R.C.: Secrecy, authentication and public key systems. Ph.D. thesis, Stan-
ford University (1979)

14. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

Appendix 4

Publication IVA. Buldas, A. Truu, R. Laanoja, and R. Gerhards. Efficient record-level key-less signatures for audit logs. In NordSec 2014, Proceedings, volume 8788of LNCS, pages 149–164. Springer, 2014

107

Efficient Record-Level Keyless Signatures

for Audit Logs

Ahto Buldas1, Ahto Truu1, Risto Laanoja1, and Rainer Gerhards2

1 Guardtime AS, Tallinn, Estonia
{ahto.buldas,ahto.truu,risto.laanoja}@guardtime.com

2 Adiscon GmbH, Großrinderfeld, Germany
rgerhards@adiscon.com

Abstract. We propose a log signing scheme that enables (a) verification
of the integrity of the whole log, and (b) presentation of any record, along
with a compact proof that the record has not been altered since the log
was signed, without leaking any information about the contents of other
records in the log. We give a formal security proof of the scheme, discuss
practical considerations, and provide an implementation case study.

Keywords: applied security, secure logging, keyless signatures, crypto-
graphic time-stamps, syslog, rsyslog.

1 Introduction

Increasingly, logs from various information systems are used as evidence and also
the requirements on maintenance and presentation of the log data are growing.
Availability is clearly the most important property. If the logs are not available
when needed, any other qualities of the log data don’t really matter. However,
ensuring availability is outside of the scope of the current discussion.

Integrity and authenticity—confidence that the log has not been tampered
with or replaced with another—are also quite obvious requirements, especially
if the log is to be admitted as evidence in legal proceedings. Signing and time-
stamping are standard solutions for proving authenticity and integrity of data.

As information systems usually log all their activities sequentially, often the
details of the relevant transactions are interspersed with other information in a
log. To protect the confidentiality of the unrelated events, it is desirable to be
able to extract records from the signed log and still prove their integrity.

An example of such a case is a dispute between a bank and a customer. On
one hand, the bank can’t just present the whole log, as the log contains also
information about transactions of other customers. On the other hand, the cus-
tomer involved in the dispute should have a chance to verify the integrity of the
relevant records. This feature has been asked for by several European financial
institutions. Similar concerns arise in the context of multi-tenant cloud environ-
ments. Hence, an ideal log signing scheme should have the following properties:

– The integrity of the whole log can be verified by the owner of the log: no
records can be added, removed or altered undetectably.

K. Bernsmed and S. Fischer-Hübner (Eds.): NordSec 2014, LNCS 8788, pp. 149–164, 2014.
DOI: 10.1007/978-3-319-11599-3�9, c© Springer International Publishing Switzerland 2014

150 A. Buldas et al.

– The integrity of any record can be proven to a third party without leaking
any information about the contents of any other records in the log.

– The signing process is efficient in both time and space. (Ideally, there is a
small constant per-record processing overhead and a small constant per-log
storage overhead.)

– The extraction process is efficient in both time and space. (Ideally, a small
constant-sized proof of integrity can be extracted for any record in time
sub-linear in the size of the log.)

– The verification process is efficient in time. (Ideally, it should be running
in time linear in the size of the data to be verified—whether verifying the
whole log or a single record.)

1.1 Related Work

Schneier and Kelsey [14] proposed a log protection scheme that encrypts the
records using one-time keys and links them using cryptographic hash functions.
The scheme allows both for verification of the integrity of the whole log and for
selective disclosure of the one-time encryption keys. However, it needs a third
party trusted by both the logger and the verifier and requires active participation
of this trusted party in both phases of the protocol.

Holt [8] replaced the symmetric cryptographic primitives used in [14] and
enabled verification without the trusted party. However, Holt’s scheme requires
public-key signatures on individual records, which adds high computational and
storage overhead to the logging process. Also, the size of the information required
to prove the integrity of one record is at least proportional to the square root
of the distance of the record from the beginning of the log. Other proposed
amendments [15,1] to the protocol from [14] have similar weaknesses.

Kelsey et al [11] proposed a log signing scheme where records are signed in
blocks, by first computing a hash value of each record in a block and then signing
the sequence of hash values. This enables efficient verification of the integrity
of the whole block, significantly reduces the overhead compared to having a
signature per record, and also removes the need to ship the whole log block
when a single record is needed as evidence. But still the size of the proof of a
record is linear in the size of the block. Also, other records in the same block are
not protected from the informed brute-force attack discussed in Sec. 2.1.

Ma and Tsudik [12] utilised the authentication technique they called FSSA
(Forward-Secure Sequential Aggregate) to construct a logging protocol which
provides forward-secure stream integrity, retaining the provable security of the
underlying primitives. They also proposed a possibility to store individual sig-
natures to gain better granularity, at the expense of storage efficiency.

1.2 Our Contribution

We propose a log signing scheme based on Merkle tree aggregation [13]. While
using Merkle trees to aggregate data before signing is not new, we are not aware
of previous applications in logging context. Aside from application case study,

Efficient Record-Level Keyless Signatures for Audit Logs 151

our main scientific contribution is the method for generating multiple blinding
masks from a single random value to achieve blinding that is provably as good
as using independently generated random masks.

Compared to previous log signing schemes with selective disclosure, our method
offers improvements as follows: unlike [14], or scheme does not require a trusted
third party; the proof of integrity of a record is O(logN) in our scheme, com-
pared to O(

√
N) in [8] and O(N) in [11]; while the asymptotic complexities are

not directly comparable, based on the performance comparison table provided
in [12], where the best-case signer computation cost is 5.55 ms per log record
(albeit on slightly weaker hardware than in our experiment), we can estimate
that our scheme is two to three orders of magnitude faster.

An extended version of the paper with more technical details is available from
the Cryptology ePrint Archive [5].

2 Data Model

We now present the design of a signing scheme that will allow us to achieve
almost all of the goals (there will be some trade-offs on the efficiency goals, but
no compromises on the security goals).

A computational process producing a log may, in principle, run indefinitely
and thus the log as an abstract entity may not have a well-defined beginning
and end. In the following, we model the log as an ordered sequence of blocks,
where each block in turn is an ordered sequence of a finite number of records.
Many practical logging systems work this way, for example in the case of syslog
output being sent to a log file that is periodically rotated.

Signing each record individually would, of course, have very high overhead in
both processing and storage, as signing is quite expensive operation and the size
of a signature may easily exceed the size of a typical log record. More importantly,
it would also fail to fully ensure the integrity of the log as a whole—deletion of
a record along with its signature would not be detected. Signing each log block
as a unit would satisfy all the requirements related to processing of the whole
block, but would make it impossible to prove the integrity of individual records
without exposing everything else in the block.

An improvement over both of the above naive strategies would be to compute
a hash value of each record in a log block and then sign the sequence of hash
values instead of the records themselves (as proposed by Kelsey et al in [11]).
This would ensure the integrity of the whole log block, significantly reduce the
overhead compared to signing each record separately and also remove the need
to ship the whole log block when a single record is needed as evidence. But still
the size of the proof of a record would be linear in the size of the block (and the
latter could easily run into multiple millions of records for a busy system).

2.1 Merkle Trees with Blinding Masks

To further reduce the size of the evidence for a single record, the records can
instead be aggregated using a data structure known as Merkle tree—a binary

152 A. Buldas et al.

x0 m1

IV

x1

r1

rec1

m2

IV

x2

r2

rec2

m3

IV

x3

r3

rec3

m4

IV

x4

r4

rec4

m5

x1,2 x3,4

xroot

Fig. 1. Log signing using a Merkle tree with interlinks and blinding masks: reci are
the log records; ri are the hash values of the records; IV is the random seed; mi are
the blinding masks; xi are leaves and xa,b are internal nodes of the Merkle tree; xroot

is the value to be signed

tree whose leaves are the hash values of the records and each non-leaf node is the
hash value of the concatenation its child nodes. The hash value in the root node
of the tree can then be signed and for each leaf node a compact (logarithmic in
the number of leaves) proof extracted showing that the hash value in the leaf
participated in the computation that led to the signed root hash value. [13]

There are two complications left to be dealt with. The first one is that the
security of such an aggregation scheme against retroactive fabrication of hash
chains can in general be proven only if some restrictions are placed on the hash
chains allowed as participation proofs. Fortunately, just appending the height of
the sub-tree to the concatenated hash values from the child nodes before hashing
is sufficient. This limits the length of the hash chains accepted during verification
and allows for the security of the scheme to be formally proven. [4]

The second complication is that the hash chain extracted from the Merkle tree
for one node contains the values of other nodes. A strong hash function can’t be
directly reversed to learn the input value from which a hash value in the chain
was created. However, a typical log record may contain insufficient entropy to
make that argument—an attacker who knows the pattern of the input could
exhaustively test all possible variants to find the one that yields the hash value
actually in the chain and thus learn the contents of the record. To prevent this
kind of informed brute-force attack, a blinding mask with sufficient entropy can
be added to each record before aggregating the hash values.

Generating cryptographically secure random values is expensive. Also, when
an independent random mask would be used for each record, all these values
would have to be stored for later verification. It is therefore much more efficient to
derive all the blinding masks from a single random seed, as in the data structure
shown on Fig. 1, where each node with incoming arrows contains the hash value
of the concatenation of the contents of the respective source nodes.

Efficient Record-Level Keyless Signatures for Audit Logs 153

3 Security Proof

We now show that the integrity proof for any record does not leak any informa-
tion about the contents of any other records. The security of the scheme against
modification of the log data has already been shown in [4].

We give the proof under the PRF assumption. Informally, the PRF assumption
means that a 2-to-1 hash function h : {0, 1}2n → {0, 1}n can be assumed to
behave like a random function Ω : {0, 1}n → {0, 1}n when the first half of the
input is a randomly chosen secret value r ← {0, 1}n.

Definition 1 (PRF, Pseudo-Random Function Family). By an S-secure
pseudo-random function family we mean an efficiently computable two-argument
function h, such that if the first argument r is randomly chosen then the one-
argument function h(r, ·) (given to the distinguisher as a black box without direct
access to r) is S-indistinguishable from the true random oracle Ω of the same
type, i.e. for any t-time distinguisher D:

Adv(D) =
⎪⎪⎪⎪⎪⎪Pr

[
1 ← Dh(r,·)

]
− Pr

[
1 ← DΩ(·)

]⎪⎪⎪⎪⎪⎪ ≤ t

S
,

where r ← {0, 1}n, h : {0, 1}n × {0, 1}p → {0, 1}m and Ω : {0, 1}p → {0, 1}m.

Note that the PRF assumption is very natural when h is a 2-to-1 hash func-
tion, considering the design principles of hash functions, especially of those con-
structed from block ciphers.

Definition 2 (IND-CPA, Indistinguishability under Chosen-Plaintext
Attack). The log signing scheme is said to be S-secure IND-CPA content con-
cealing, if any t-time adversary A = (A1, A2) has success probability δ ≤ t

S in
the following attack scenario (Fig. 2, left):

1. The first stage A1 of the adversary chooses the position i and a list of records
rec1, . . . , reci−1, reci+1, . . . , recℓ, as well as two test records rec0i , rec

1
i and an

advice string a.

2. The environment picks randomly x0 ← 0n, IV ← {0, 1}n and b ← {0, 1}, as-
signs reci ← recbi and for every j ∈ {1, . . . , ℓ} computes: mj ← h(IV, xj−1),
rj ← H(recj), and xj ← h(mj , rj).

3. The second stage A2 of the adversary, given as input the advice string a and
the lists of hash values x1, . . . , xℓ, and m1, . . . ,mi−1,mi+1, . . . ,mℓ, tries to
guess the value of b by outputting the guessed value b̂.

The advantage of A is defined as δ = 2
∣∣∣Pr

[
b̂ = b

]
− 1

2

∣∣∣.

Theorem 1. If h(IV, ·) is an S-secure pseudorandom function family, then the
log signing scheme is S

4 -secure IND-CPA content concealing.

154 A. Buldas et al.

Game0 or the original attack game:

1. i, rec1, . . . , reci−1, reci+1, . . . , recℓ,
rec0i , rec

1
i , a ← A1

2. x0 ← 0n, IV ← {0, 1}n, b ← {0, 1}
3. reci ← recbi
4. for each j ∈ {1, . . . , ℓ}:

(a) mj ← h(IV, xj−1)
(b) rj ← H(recj)
(c) xj ← h(mj , rj)

5. b̂ ← A2(a, x1, . . . , xℓ,
m1, . . . ,mi−1,mi+1, . . . ,mℓ)

6. if b̂ = b then output 1
else output 0

Game2 or the Simulator S:

1. i, rec1, . . . , reci−1, reci+1, . . . , recℓ,
rec0i , rec

1
i , a ← A1

2. x0 ← 0n, b ← {0, 1}
3. reci ← recbi
4. for each j ∈ {1, . . . , ℓ}:

(a) if ∃k < j : xj−1 = xk−1

then mj ← mk

else mj ← {0, 1}n
(b) rj ← H(recj)
(c) if j = i

then xj ← {0, 1}n
else xj ← h(mj , rj)

5. b̂ ← A2(a, x1, . . . , xℓ,
m1, . . . ,mi−1,mi+1, . . . ,mℓ)

6. if b̂ = b then output 1
else output 0

Fig. 2. The original attack game and the simulator

Proof. Let A be a t-time adversary with success δ. We define three games Game0,
Game1, and Game2, where Game0 is the original attack game, Game2 is a simu-

lator in which the input of A2 does not depend on b and hence Pr
[
b̂ = b

]
= 1

2 in

this game (Fig. 2), and Game1 is an intermediate game, where A tries to break
the scheme with independent random masks (Fig. 3), i.e. the mask generation
steps mj ← h(IV, xj−1) are replaced with independent uniform random choices
mj ← {0, 1}n. However, as mj is a function of xj−1, we will use the same value
for mj and mk in case xj−1 = xk−1. This allows us to view the numbers mj as
outputs of a random oracle Ω and perfect simulation is possible.

Game1 or the intermediate game:

1. i, rec1, . . . , reci−1, reci+1, . . . , recℓ, rec
0
i , rec

1
i , a ← A1

2. x0 ← 0n, b ← {0, 1}
3. reci ← recbi
4. for each j ∈ {1, . . . , ℓ}:

(a) if ∃k < j : xj−1 = xk−1

then mj ← mk

else mj ← {0, 1}n
(b) rj ← H(recj)
(c) xj ← h(mj , rj)

5. b̂ ← A2(a, x1, . . . , xℓ,m1, . . . ,mi−1, mi+1, . . . ,mℓ)
6. if b̂ = b then output 1 else output 0

Fig. 3. The intermediate game for the security proof

Efficient Record-Level Keyless Signatures for Audit Logs 155

Distinguisher DΦ
01:

1. i, rec1, . . . , reci−1, reci+1, . . . , recℓ,
rec0i , rec

1
i , a ← A1

2. x0 ← 0n, b ← {0, 1}
3. reci ← recbi
4. for each j ∈ {1, . . . , ℓ}:

(a) mj ← Φ(xj−1)
(b) rj ← H(recj)
(c) xj ← h(mj , rj)

5. b̂ ← A2(a, x1, . . . , xℓ,
m1, . . . ,mi−1,mi+1, . . . ,mℓ)

6. if b̂ = b then output 1
else output 0

Distinguisher DΦ
12:

1. i, rec1, . . . , reci−1, reci+1, . . . , recℓ,
rec0i , rec

1
i , a ← A1

2. x0 ← 0n, b ← {0, 1}
3. reci ← recbi
4. for each j ∈ {1, . . . , ℓ}:

(a) if ∃k < j : xj−1 = xk−1

then mj ← mk

else mj ← {0, 1}n
(b) rj ← H(recj)
(c) if j = i

then xj ← Φ(ri)
else xj ← h(mj , rj)

5. b̂ ← A2(a, x1, . . . , xℓ,
m1, . . . ,mi−1,mi+1, . . . ,mℓ)

6. if b̂ = b then output 1
else output 0

Fig. 4. The distinguishers

Let δi (i = 0, 1, 2) denote the probability that the adversary correctly guessed

the value of b (i.e. b̂ = b) in the game Gamei. Hence, δ2 = 1
2 and δ = 2 |δ0 − δ2|.

We will now show that the games are negligibly close in terms of the adversary’s
advantage, and hence the adversary’s success cannot be considerably higher in
the original attacking game Game0 compared to the simulator S. To show that
Game0 is close to Game1, we define a distinguisherD

Φ
01 (with running time t1 ≈ t)

between Φ = Ω and Φ = h(r, ·) with success at least |δ0 − δ1|. Similarly, to show
that Game1 is close to Game2, we define a distinguisher DΦ

12 (with running time
t2 ≈ t) between Φ = Ω and Φ = h(r, ·) with success at least |δ1 − δ2|.

The distinguisher DΦ
01 is constructed (Fig. 4, left) so that in case of the oracle

h(IV, ·) it perfectly simulates Game0 (the original attacking game), and in case
of the random oracle Ω(·) it perfectly simulates Game1 (where random masks
are used). Hence, Adv(DΦ

01) = |δ0 − δ1|.
The other distinguisher DΦ

12 is constructed (Fig. 4, right) so that in case of
the oracle h(IV, ·) it perfectly simulates Game1, whereas in case of the random
oracle Ω it simulates Game2 (the simulator S). Hence, Adv(DΦ

12) = |δ1 − δ2|, and

δ = 2 |δ0 − δ2| ≤ 2 (|δ0 − δ1|+ |δ1 − δ2|) = 2
(
Adv(DΦ

01) + Adv(DΦ
12)

)

≤ 2

(
t1
S

+
t2
S

)
= 4

t

S
,

and hence the log signing scheme is S
4 -secure IND-CPA content concealing. ⊓⊔

156 A. Buldas et al.

4 Reference Algorithms

We now present reference algorithms for aggregating a log block, extracting
an integrity proof for an individual record, and verifying a record based on
such proof. We also discuss some potential trade-offs where additional security
benefits or runtime reductions could be gained at the cost of increased storage
overhead.

4.1 Canonical Binary Trees

So far we have not specified the shape of the Merkle tree. If the number of leaves
is an even power of two, building a perfect binary tree seems natural, but in
other cases the appropriate shape is not necessarily obvious.

Fig. 5. A canonical binary tree: 11 leaves (squares) grouped into three perfect trees
(white circles) and merged into a single tree with minimal height (black circles)

Of course, it is crucial to build the tree in a deterministic manner so that the
verifier would be able to construct the exact same tree as the signer did. Another
consideration is that to achieve the logarithmic size of the integrity proofs of the
individual records, the tree should not be overly unbalanced. Thus, we define
the canonical binary tree with n leaf nodes (shown for n = 11 on Fig. 5) to be
built as follows:

1. The leaf nodes are laid out from left to right (square nodes on the figure).

2. The leaf nodes are collected into perfect binary trees from left to right, mak-
ing each tree as big as possible using the leaves still available (adding the
white circles on the figure).

3. The perfect trees are merged into a single tree from right to left which means
joining the two smallest trees on each step (adding the black circles on the
figure).

A useful property of canonical trees is that they can be built on-line, as the
leaf nodes arrive, without knowing in advance the eventual size of the tree, and
keeping in memory only logarithmic number of nodes (the root nodes of the
complete binary trees constructed so far).

Efficient Record-Level Keyless Signatures for Audit Logs 157

4.2 Aggregation of Log Records

Algorithm AGGR (Fig. 6) aggregates a block of records into a canonical Merkle
tree for signing or verification. The input description numbers the records 1 . . .N ,
but the value of N is not used and the algorithm can easily be implemented for
processing the records on-line.

The algorithm also enforces the hash chain length limiting as mentioned in
Sec. 2.1. The level of a leaf node is defined to be 1 and the level of a non-leaf
node to be 1 more than the maximum of the levels of its child nodes.

An amortized constant number of hashing operations is needed per record and
the worst-case actual processing time per record is logarithmic in the number of
records in the block, as is the size of the auxiliary working memory needed.
To sign a log block, AGGR could be used in the following manner:

1. A fresh random value is generated for IV .
2. The IV , the last leaf hash value from the previous block, and the log records

of the current block are fed into AGGR.
3. The resulting root hash value is signed and the last leaf hash value from this

block passed on to aggregation of the next block.
4. At the very least the IV and the signature on the root hash value must be

saved for later verification.

Given the above, the way to verify a signed log block is quite obvious:

1. The IV saved during signing, the last leaf hash value from the previous
block, and the log records are fed into AGGR.

2. The re-computed root hash value is verified against the saved signature.

A placeholder value filled with zeros is used for the last leaf hash value of the
previous block in the very first block of the log (when there is no previous block)
or when there has been a discontinuity in the log (for example, when the logging
service has been down).

Although not strictly required in theory, in practice the last leaf hash value of
the previous log block should also be saved along with the IV and the signature.
Otherwise the verification of the current block would need to re-hash the previous
block to obtain the required input, which in turn would need to re-hash the next
previous block, etc. While this would obviously be inefficient, an even more
dangerous consequence would be that any damage to any log block would make
it impossible to verify any following log blocks, as one of the required inputs for
verification would no longer be available.

Considering the negative scenarios in more detail, the only conclusion that
can be derived from a failed verification in the minimal case above would be
that something has been changed in either the log block or the authentication
data. If it is desirable to be able to detect the changes more precisely, either the
record hash values ri or the leaf hash values xi computed by AGGR could be
saved along with the other authentication data. Then the sequence of hash values
could be authenticated against the signature and each record checked against its
hash value, at the expense of small per-record storage overhead.

158 A. Buldas et al.

Algorithm AGGR:

Aggregates a block of records for signing or
verification.

inputs
rec1...N : input records

IV : initial value for the blinding masks

x0: last leaf hash of previous block
(zero for first block)

do
{Initialize block:}
{create empty roots list}
R := empty list
{Process records:}
{add to Merkle forest in order}
for i := 1 to N do

ri := hash(reci)
mi := hash(xi−1, IV)
xi := hash(mi, ri, 1)
{Add xi to the forest as new leaf}
{and update roots list}
t := xi

for j := 1 to length(R) do
if Rj = none then

Rj := t; t := none
else if t �= none then

t := hash(Rj , t, j + 1)
Rj := none

if t �= none then
R := R || t; t := none

{Finalize block:}
{merge forest into a single tree}
root := none
for j := 1 to length(R) do

if root = none then
root := Rj ; Rj := none

else if Rj �= none then
root := hash(Rj , root, j + 1)
Rj := none

outputs
root: root hash of this block (to be
signed or verified)

xN : last leaf hash of this block (for link-
ing next block)

Algorithm EXTR:

Extracts the hash chain for proving or verifying
an individual record.

inputs
rec1...N : input records

pos: position of the object record within the
block (1 . . . N)

IV : initial value for the blinding masks

x0: last leaf hash of previous block (zero for
first block)

do
{Initialize block}
R := empty list; C := empty list
{object record not in any level yet}
ℓ := none
{Process records,}
{keeping track of the object}
for i := 1 to N do

ri := hash(reci)
mi := hash(xi−1, IV)
xi := hash(mi, ri, 1)
if i = pos then

C := C || (right,mi, 0) {compute xi}

{add xi as a right leaf}
ℓ := 1; d := right

{Add xi to the forest as new leaf}
t := xi

for j := 1 to length(R) do
if Rj = none then

if j = ℓ then d := left
Rj := t; t := none

else if t �= none then
if j = ℓ then

if d = right then
S := Rj

else
S := t

C := C || (d, S, 0)
ℓ := j + 1; d := right

t := hash(Rj , t, j + 1)
Rj := none

if t �= none then
if length(R) < ℓ then d := left
R := R || t; t := none

{Finalize block}
root := none
for j := 1 to length(R) do

if root = none then
if j = ℓ then d := right
root := Rj ; Rj := none

else if Rj �= none then
if j ≥ ℓ then

if d = right then
S := Rj

else
S := root

C := C || (d, S, j − ℓ)
ℓ := j + 1; d := right

root := hash(Rj , root, j + 1)
Rj := none

outputs
C: hash chain from the object to the root of
the block

Fig. 6. Algorithms AGGR and EXTR

Efficient Record-Level Keyless Signatures for Audit Logs 159

It should also be noted that when the record hashes are saved, they should be
kept with the same confidentiality as the log data itself, to prevent the informed
brute-force attack discussed in Sec. 2.1.

4.3 Extraction of Hash Chains

Algorithm EXTR (Fig. 6) extracts the hash chain needed to prove or verify the
integrity of an individual record. The core is similar to AGGR, with additional
tracking of the hash values that depend on the object record and collecting a
hash chain based on that tracking.

The output value is a sequence of (direction, sibling hash, level correction)
triples. The direction means the order of concatenation of the incoming hash
value and the sibling hash value. The level correction value is needed to account
for cases when two sub-trees of unequal height are merged and the node level
value increases by more than 1 on the step from the root of the lower sub-tree to
the root of the merged tree. (The step from the lower black node to the higher
one on Fig. 5 is an example.)

Because EXTR is closely based on AGGR, its performance is also similar and
thus it falls somewhat short of our ideal of sub-linear runtime for hash chain
extraction. We do not expect this to be a real issue in practice, as locating the
records to be presented as evidence is typically already a linear-time task and
thus reducing the proof extraction time would not bring a significant improve-
ment in the total time. Also note that the need to access the full log file in this
algorithm is not a compromise of our confidentiality goals, as the extraction pro-
cess is executed by the owner of the log file and only the relevant log records and
the hash chains computed for them by EXTR are shipped to outside parties.

Algorithm Comp:

Re-computes the root hash of a block for verifying a
record

inputs
rec: input record

C: hash chain from the record to the root of block
do

root := hash(rec); ℓ := 0
for i := 1 to length(C) do

{direction, sibling, level correction}
(d, S,L) := Ci

ℓ := ℓ + L+ 1
if d = left then

root := hash(root, S, ℓ)
else

root := hash(S, root, ℓ)
outputs

root: root hash of the block (for verification)

Fig. 7. Algorithm COMP re-computes the root hash of a block for verifying a record

However, it would be possible to trade space for time and extra confidentiality,
if desired. At the cost of storing two extra hash values per record, logarithmic

160 A. Buldas et al.

runtime could be achieved and the need to look at any actual records during
the hash chain extraction could be removed. Indeed, if the hash values from all
the Merkle tree nodes (xi on Fig. 1) were kept, the whole hash chain could be
extracted without any new hash computations. If the values (all of the same
fixed size) would be stored in the order in which they are computed as xi and
Rj in AGGR, each of them could be seeked to in constant time.

4.4 Computation of Hash Chains

Algorithm COMP (Fig. 7) computes the root hash value of the Merkle tree from
which the input hash chain was extracted. The hash chain produced by EXTR
and the corresponding log record should be fed into COMP, and the output hash
value verified against the signature to prove the integrity of the record.

5 Implementation

In this section we outline some practical concerns regarding the implementation
of the proposed scheme for signing syslog messages. Out of the many possible
deployment scenarios we concentrate on signing the output directed to a text
file on a log collector device. (See [7], Sec. 4.1 for more details.)

5.1 General Technical Considerations

Log File Rotation, Block Size. In Sec. 2 we modeled the log as an ordered
sequence of blocks, where each block in turn is an ordered sequence of a finite
number of records, and noted that the case of syslog output being sent to a
periodically rotated log file could be viewed as an instantiation of this model.

We now refine the model to distinguish the logical blocks (implied by signing)
from the physical blocks (the rotated files), because it is often desirable to sign
the records in a finer granularity than the frequency of file rotation. A log file
could contain several signed blocks, but for file management reasons, a signed
block should be confined to a single file. This means that when log files are ro-
tated, the current signature block should always be closed and a new one started
from the beginning of the new file. The hash links from the last record of pre-
vious block to the first record of the next block should span the file boundaries,
though, to enable verification of the integrity of the whole log, however the files
may have been rotated.

Implementations could support limiting the block sizes both by number of
records and time duration. When a limit on the number of records is set and a
block reaches that many records, it should be signed and a new block started.
Likewise, when a duration limit is set and the oldest record in a block reaches
the given age, the block should be signed and a new one started. When both
limits are set, reaching either one should cause the block to be closed and also
reset both counters. Applying both limits could then be useful for systems with
uneven activity. In this case the size limit would prevent the blocks growing too

Efficient Record-Level Keyless Signatures for Audit Logs 161

big during busy times and the time limit would prevent the earlier records in
a block staying unsigned for too long during quiet times. When neither limit is
given, each block would cover a whole log file, as rotating the output files should
close the current block and start a new one in any case.

Record Canonicalization. When log records are individually hashed for sign-
ing before they are saved to the output file, it is critical that the file could be
unambiguously split back into records for verification. End-of-line markers are
used as separators in text-based syslog files and then multi-line records could
not be recovered correctly unless the line breaks within the records are escaped.

Signature Technologies. Once the log blocks are aggregated, the root hash
values have to be protected from future modifications. While it could seem nat-
ural to sign them using a standard public-key signature such as an OpenPGP [6]
or PKCS#7 [10,9] one, these off-line signing technologies do not provide good
forward security in case the logging server is compromised or privileged insid-
ers abuse their access. An attacker could modify the logs and then re-hash and
re-sign all the blocks starting from the earliest modified one, as the signing keys
would be available on the log collector host.

A cryptographic time-stamping service [2] could be used as a mitigation. Note
that a time-stamp generally only provides evidence of the time and integrity of
the time-stamped datum, but not the identity of the requesting party, so a time-
stamp alone would not be sufficient to prevent a log file from another system
being submitted instead of the original one. Therefore, time-stamps should be
used in addition to, not in place of, signatures.

An alternative would be to use the OpenKSI keyless signatures [3] that com-
bine the hash value of the signed datum, the identity of the requesting system,
and the signing time into one independently verifiable cryptographic token. As
verification of keyless signatures does not rely on secrecy of keys and does not
need trusted third parties, they are well-suited when logs are signed for evidence.

5.2 Case Study: rsyslog Integration

The proposed log signing scheme has been implemented in rsyslog, a popular
logging server implementing the syslog protocol and included as a standard
component in several major Linux distributions.

Architecture and Configuration. The rsyslog server has a modular archi-
tecture, with a number of input and output modules available to receive log
messages from various sources and store logs using different formats and storage
engines. Log signing has been implemented as a new optional functionality in
the omfile output module that stores log data in plain text files. When signing
is enabled, the signatures and related helper data items are stored in a binary
file next to the log file. As the data is a sequence of non-human-readable binary

162 A. Buldas et al.

tokens (hash values and signatures), there would be no benefit in keeping it in
a text format. Both files are needed for verification of log integrity. It is the re-
sponsibility of the log maintenance processes to ensure that the files do not get
separated when the log files are archived or otherwise managed. The rsyslog

configuration is specified as a number of sets of rules applied to incoming mes-
sages. The following minimal example configures the server to listen for incoming
messages on TCP port 514 and apply the perftest rules to all of them:

module(load="imtcp")
input(type="imtcp" port="514" ruleset="perftest")
ruleset(name="perftest"){

action(type="omfile" file="/var/log/signed.log" sig.provider="gt")
}

The rules in turn just write all the records to the specified text file with no
filtering or transformations.

Performance. We tested the performance of the implementation on a quad-
core Intel Xeon E5606 CPU. We used 64-bit CentOS 6.4 operating system
and installed rsyslog version 7.3.15-2 from the Adiscon package repository.
There was excess of memory and I/O resources, in all tests the performance
was CPU-bound. Load was generated using the loggen utility which is part of
the syslog-ng 3.5.0 alpha0 package, another syslog server implementation.
We used TCP socket for logging in order to avoid potential message loss and
mimic a real-life scenario with central logging server. We note that UDP and
kernel device interface gave comparable results. The rsyslog configuration was
as shown above: the simplest possible, without any message processing.

Without signing we achieved sustained logging rate of ≈400,000 messages
per second. At this point the rsyslog input thread saturated one CPU core.
Multiple input threads and multiple main queue worker threads allowed us to
achieve slightly better performance. Here and below the average message size was
256 bytes, and the default SHA2-256 hash was used when signing was enabled.

Signed logging rate was constantly higher than 100,000 messages per second.
The limiting factor was the main queue worker thread which saturated one CPU
core. For one signed output file the building of the hash tree can’t be parallelized
in an efficient way, because the order of the log messages must be preserved.
Although possible to configure, multiple parallel worker queues would spend
most of their time waiting for synchronization and total signing performance
would be inferior. Storage of the record hash values and intermediate Merkle
tree hash values did not affect the signing performance significantly. Also, using
different hash algorithms did not have a significant impact.

Aggregating a log message incurs approximately three hash algorithm invo-
cations. Considering that one CPU core can perform roughly one million hash
calculations on small inputs, the log signing performance achieved is reasonably
close to optimal. It should also be noted that the four-fold decrease of throughput
from 400,000 messages per second to 100,000 messages per second is extreme, as
in the baseline scenario no CPU power was spent on filtering the records.

Efficient Record-Level Keyless Signatures for Audit Logs 163

Storage overhead depends on whether the record and tree hashes are stored,
hash algorithm output size, and signature block size. In case of 256-byte log
records and 32-byte hash values, the storage overhead is about 12% for keep-
ing the record hashes and about 25% for keeping the tree hashes. The storage
overhead caused by signatures themselves is negligible in practical scenarios.

Table 1. Storage, runtime and verification feature trade-offs (N is log block size)

Characteristic No hashes kept Record hashes Tree hashes

Signing

Per-record storage none 1 hash value 2 hash values
Per-record computation 3 hashings 3 hashings 3 hashings
Per-block storage 1 signature value 1 signature value 1 signature value
Per-block computation 1 signing 1 signing 1 signing
Memory O(logN) O(logN) O(logN)

Whole log verification

Report granularity block record record
Time O(N) O(N) O(N)
Memory O(logN) O(logN) O(logN)

Record proof extraction

Per-record storage O(logN)* O(logN)* O(logN)*
Time O(N) O(N) O(logN)
Memory O(logN) O(logN) O(1)

Record proof verification

Report granularity record record record
Time O(logN) O(logN) O(logN)
Memory O(1) O(1) O(1)

* Asymptotically it’s O(logN), but in practice, the O(1) signature size dominates over the
O(logN) hash chain size. For example, for 3600-byte signatures and 32-byte hash values used
in our case study, the signature size exceeds the hash chain size for all N < 2100.

6 Conclusions

We have proposed a log signing scheme with good security properties and low
overhead in both computational and storage resources. The integrity of either the
whole log or any record can be verified, and in the latter case also a compact proof
produced without leaking any information about the contents of other records.
The scheme also allows for some flexibility in providing additional verification
features and proof extraction performance gains at the cost of increased storage
overhead, as listed in Table 1.

An interesting direction for future development would be to extend the scheme
for use in configurations where the log is signed at a source device, transported
over one or more relay devices and then stored at a collector device. The current
scheme would be usable only if the relay devices do not perform any filtering of
the records, which is rarely the case in practice.

164 A. Buldas et al.

References

1. Accorsi, R.: BBox: A distributed secure log architecture. In: Camenisch, J., Lam-
brinoudakis, C. (eds.) EuroPKI 2010. LNCS, vol. 6711, pp. 109–124. Springer,
Heidelberg (2011)

2. Adams, C., Cain, P., Pinkas, D., Zuccherato, R.: Internet X.509 public key infras-
tructure time-stamp protocol (TSP). IETF RFC 3161 (2001)

3. Buldas, A., Kroonmaa, A., Park, A.: OpenKSI digital signature format (2012)
4. Buldas, A., Saarepera, M.: On provably secure time-stamping schemes. In: Lee,

P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 500–514. Springer, Heidelberg
(2004)

5. Buldas, A., Truu, A., Laanoja, R., Gerhards, R.: Efficient record-level keyless sig-
natures for audit logs. Cryptology ePrint Archive, Report 2014/552 (2014)

6. Callas, J., Donnerhacke, L., Finney, H., Thayer, R.: OpenPGP message format.
IETF RFC 4880 (2007)

7. Gerhards, R.: The syslog protocol. IETF RFC 5424 (2009)
8. Holt, J.E.: Logcrypt: Forward security and public verification for secure audit logs.

In: Buyya, R., Ma, T., Safavi-Naini, R., Steketee, C., Susilo, W. (eds.) AISW 2006,
pp. 203–211. Australian Computer Society (2006)

9. Housley, R.: Cryptographic message syntax (CMS). IETF RFC 5652 (2009)
10. Kaliski, B.: PKCS#7: Cryptographic message syntax v 1.5. IETF RFC 2315 (1998)
11. Kelsey, J., Callas, J., Clemm, A.: Signed syslog messages. IETF RFC 5848 (2010)
12. Ma, D., Tsudik, G.: A new approach to secure logging. ACM Transactions on

Storage 5(1), 2:1–2:21 (2009)
13. Merkle, R.C.: Protocols for public key cryptosystems. In: IEEE Symposium on

Security and Privacy, pp. 122–134. IEEE Computer Society (1980)
14. Schneier, B., Kelsey, J.: Secure audit logs to support computer forensics. ACM

Transactions on Information Systems Security 2(2), 159–176 (1999)
15. Stathopoulos, V., Kotzanikolaou, P., Magkos, E.: A framework for secure and veri-

fiable logging in public communication networks. In: López, J. (ed.) CRITIS 2006.
LNCS, vol. 4347, pp. 273–284. Springer, Heidelberg (2006)

Curriculum Vitae
1. Personal data

Name Ahto TruuDate and place of birth 27 September 1972, EstoniaNationality Estonian
2. Contact information

Address GuardTime, Küüni 5b, 51004 Tartu, EstoniaPhone +372 5175876E-mail ahto.truu@guardtime.com
3. Education

2015–. . . Tallinn University of Technology, School of Information TechnologiesInformation and Communication Technology, PhD studies1994–1997 University of Tartu, Faculty of Mathematics,Computer Science, MSc studies1990–1994 University of Tartu, Faculty of Mathematics,Computer Science, BSc studies
4. Language competence

Estonian nativeEnglish fluentRussian intermediate
5. Professional employment

2008–. . . GuardTime AS, software architect2017–2019 Tallinn University of Technology, Department of Software Science,research engineer1997–2008 AS Aprote / AS WM-data / AS Logica, software engineer / systems analyst1995 Intergraph Corp (USA), software engineering intern1993–1994 AS MagnumMedical, software developer
6. Voluntary work

1997–. . . Estonian Olympiad in Informatics, member of jury
7. Defended theses

• 2010, Standards for Hash-Linking Based Time-Stamping Systems, M.Sc.Supervisor Prof. Ahto Buldas, Institute of Computer Science, University of Tartu• 2007, Computational Geometry Puzzles, B.Sc.Supervisor Ass. Prof. Rein Prank, Institute of Computer Science, University of Tartu
8. Field of research

• Hash function based cryptography• Authenticated data structures• Provable security

125

9. Scientific work
Papers

1. M. Keren, A. Kirshin, J. Rubin, and A. Truu. MDA approach for maintenance of busi-ness applications. In ECMDA-FA 2006, Proceedings, volume 4066 of LNCS, pages40–51. Springer, 2006
2. M. Opmanis, V. Dagienė, and A. Truu. Task types at Beaver contests. In ISSEP2006, Proceedings, pages 509–519. Institute of Mathematics and Informatics, Vil-nius, Lithuania, 2006
3. A. Truu and H. Ivanov. On using testing-related tasks in the IOI. In Olympiads in In-formatics: The International Conference joint with the XX International Olympiad inInformatics, Proceedings, pages 171–180. Institute of Mathematics and Informatics,Vilnius, Lithuania, 2008
4. T. Poranen, V. Dagienė, Åsmund Eldhuset, H. Hyyrö,M. Kubica, A. Laaksonen,M. Op-manis,W. Pohl, J. Skūpienė, P. Söderhjelm, andA. Truu. Baltic olympiads in informat-ics: Challenges for training together. In Olympiads in Informatics: The InternationalConference joint with the XXI International Olympiad in Informatics, Proceedings,pages 112–131. Institute of Mathematics and Informatics, Vilnius, Lithuania, 2009
5. A. Buldas, R. Laanoja, P. Laud, and A. Truu. Bounded pre-image awareness and thesecurity of hash-tree keyless signatures. In ProvSec 2014, Proceedings, volume 8782of LNCS, pages 130–145. Springer, 2014
6. A. Buldas, A. Truu, R. Laanoja, and R. Gerhards. Efficient record-level keyless sig-natures for audit logs. In NordSec 2014, Proceedings, volume 8788 of LNCS, pages149–164. Springer, 2014
7. A. Buldas, R. Laanoja, and A. Truu. Keyless signature infrastructure and PKI: Hash-tree signatures in pre- and post-quantum world. IJSTM, 23(1/2):117–130, 2017
8. A. Buldas, R. Laanoja, and A. Truu. A server-assisted hash-based signature scheme.In NordSec 2017, Proceedings, volume 10674 of LNCS, pages 3–17. Springer, 2017
9. A. Buldas, R. Laanoja, and A. Truu. A blockchain-assisted hash-based signaturescheme. InNordSec 2018, Proceedings, volume 11252 of LNCS, pages 138–153. Springer,2018
10. A. Buldas, D. Firsov, R. Laanoja, H. Lakk, and A. Truu. A new approach to constructingdigital signature schemes (short paper). In IWSEC 2019, Proceedings, volume 11689of LNCS, pages 363–373. Springer, 2019
11. A. Buldas, D. Firsov, R. Laanoja, and A. Truu. Verified security of BLT signaturescheme. In ACM SIGPLAN CPP 2020, Proceedings, pages 244–257. ACM, 2020

Conference presentations

1. A. Truu, M. Keren. Deploying MDD for Business Application Maintenance. SecondEuropean Workshop ‘From Code Centric to Model Centric Software Engineering:Practices, Implications and Return on Investment’ (C2M), 11 July 2006, Bilbao, Spain
2. A. Truu, H. Ivanov. On Using Testing-Related Tasks in the IOI, Olympiads in Infor-matics: The International Conference Joint with the XX International Olympiad inInformatics, 16–23 August 2008, Cairo, Egypt

126

3. A. Buldas, A. Truu, R. Laanoja, R. Gerhards. Efficient Record-Level Keyless Signaturesfor Logs, NordSec 2014, 19thNordic Conference on Secure IT Systems, 15–17October2014, Tromsø, Norway
4. A. Buldas, R. Laanoja, A. Truu. A Server-Assisted Hash-Based Signature Scheme,NordSec 2017, 22nd Nordic Conference on Secure IT Systems, 8–10 November 2017,Tartu, Estonia
5. A. Buldas, D. Firsov, R. Laanoja, H. Lakk, A. Truu. A New Approach to ConstructingDigital Signature Schemes, IWSEC 2019, 14th International Workshop on Security,28–30 August, 2019, Tokyo, Japan
6. A. Buldas, D. Firsov, R. Laanoja, A. Truu. Verified Security of BLT Signature Scheme,ACM SIGPLAN CPP 2020, 9th ACM SIGPLAN International Conference on CertifiedPrograms and Proofs, 20–21 January, 2020, New Orleans, USA

127

Elulookirjeldus
1. Isikuandmed

Nimi Ahto TruuSünniaeg ja -koht 27.09.1972, EestiKodakondsus Eesti
2. Kontaktandmed

Aadress GuardTime, Küüni 5b, 51004 TartuTelefon +372 5175876E-post ahto.truu@guardtime.com
3. Haridus

2015–. . . Tallinna Tehnikaülikool, infotehnoloogia teaduskond,informatsiooni- ja kommunikatsioonitehnoloogiad, doktoriõpe1994–1997 Tartu Ülikool, matemaatikateaduskond,informaatika, magistriõpe1990–1994 Tartu Ülikool, matemaatikateaduskond,informaatika, bakalaureuseõpe
4. Keelteoskus

eesti keel emakeelinglise keel kõrgtasevene keel kesktase
5. Teenistuskäik

2008–. . . GuardTime AS, tarkvaraarhitekt2017–2019 Tallinna Tehnikaülikool, tarkvarateaduse instituut, insener1997–2008 AS Aprote / AS WM-data / AS Logica, tarkvaraarendaja / süsteemianalüütik1995 Intergraph Corp (USA), tarkvaraarenduse praktikant1993–1994 AS MagnumMedical, tarkvaraarendaja
6. Vabatahtlik töö

1997–. . . Eesti informaatikaolümpiaadi žürii liige
7. Kaitstud lõputööd

• 2010, Räsiahelatel põhinevate ajatemplisüsteemide standardid, M.Sc.Juhendaja prof. Ahto Buldas, arvutiteaduse instituut, Tartu Ülikool• 2007, Arvutusgeomeetria ülesanded “Nupunurgas”, B.Sc.Juhendaja dots. Rein Prank, arvutiteaduse instituut, Tartu Ülikool
8. Teadustöö põhisuunad

• Räsifunktsioonidel põhinev krüptograafia• Autentivad andmestruktuurid• Tõestatav turvalisus
9. TeadustegevusTeadusartiklite, konverentsiteeside ja konverentsiettekannete loetelu on toodud inglis-keelse elulookirjelduse juures.

128

