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INTRODUCTION AND MOTIVATION

Recent research and development in the field of Internet of Things (loT) remarkably
changed the entire scenario of the integration of the physical domain with internet-
based computer networks. In particular, 10T is concerned with the interconnection and
integration between computers and so-called smart devices (“things”). Back in 2008, the
U.S. National Intelligence Council’s forecast was that “by 2025 Internet nodes may reside
in everyday things —food packages, furniture, paper documents, and more” [1]. This
trend in the emergence of loT, including wireless sensor networks (originally known as
‘smart dust’), has since then been confirmed; recent reports indicate that “The global
Internet of Things (loT) market is projected to grow from $2.99T in 2014 to $8.9T in
2020, attaining a 19.92% compound annual growth rate (CAGR).” [2].

Generally, the term 10T can be seen as building upon the concept of wireless sensor
network (WSN). They can sense data and then gather it, and afterwards send it to the
network via a sink (also known as gateway) [3]-[6]. Significantly, WSN is considered as
one of the enabling technologies for the realization of the loT. These low power devices
are essentially miniaturized radio communication units with some physical quantity
measurement capabilities. They are applicable in a very wide range of scenarios,
including but not limited to, e-health, environment, industry, military, etc. However, the
life span of the WSNs nodes depends on their energy storage capacity (e.g. battery
source), and this limited energy is one of the most significant constraints for the
successful deployment of IoT/WSN applications.

The incredible growth of the loT provides solutions to various problems. At the same
time, the IoT raises some concerns as well; for instance, in [7] it is expressed that the
global electricity consumption of loT devices had exceeded 615 TWh in 2013 and that
this demand will further increase up to 1140 TWh by 2025, which will be the 6% of the
total electricity consumption in the world. In addition, based on statistics [7], it is
expected that there will be 23 billion battery-powered loT devices in 2025. Thus, the
production of batteries for the loT will put an extra load of 2 TWh in 2025.

Given these challenges, energy harvesting (EH), also known as energy scavenging, has
recently gained strength in the fields of renewables and sustainability, especially in the
context of fully autonomous WSNs nodes with application to the IoT.

In relation to the above, EH is one of the explored solutions for powering WSN nodes
and/or for extending their life span. EH is a process that extracts energy from one source
(typically from the environment) and converts it to another type (in our context, electric
energy) [8]. There are numerous energy-harvesting technologies proposed in the
literature such as radio-frequency (RF), thermal, vibration, thermoelectric, piezoelectric,
wind, and solar [9]-[10]. Generally, solar energy harvesting is more efficient than the
other technologies. Research has shown that energy harvesting is not capacity—limited
as compared to non-rechargeable batteries; thus, WSN nodes can potentially operate
for a very long time [11]. EH can be used either as an alternative to batteries or other
energy storage sources (such as super-capacitors) or cascaded with them and is highly
beneficial [12]. Besides, for further increasing the life-span of WSN nodes, various
solutions have been presented in the literature; for instance, energy-aware protocols
and duty-cycling [13]-[16], task scheduling, transient computing (Publication 2), energy
prediction (Publication 3), data prediction [17], and mobility cut down the power usage,
if such solutions have sufficiently low overheads [18]. In Chapter 1 of this PhD thesis, the
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author gives a general introduction of a typical WSN node and its architecture;
thereafter, the author discusses the energy harvesting technologies and the related
modeling and the contribution in terms of the hybrid energy-harvesting model.

Transient computing (TC) is an emerging approach that can be used to deal with the
intermittent nature of EH. The fundamental idea behind TC is to stop (in the ideal case,
to pause) and to restart (in the ideal case, to resume) the WSN node activities depending
on the available energy. This approach can even eliminate the battery energy source and
drive WSN nodes directly from the energy harvester. This kind of approach is especially
suitable for applications which do not require 24/7 monitoring or that are tolerant to
delays and/or errors. In this work, a TC mechanism has been implemented by means of
a non-volatile microcontroller. In short, in case of low energy, a WSN node stops
operating and saves an image of its configuration and data. Afterwards, if energy is again
available then the image is restored and the node proceeds operating. Nevertheless,
such autonomous (battery-less) devices bring new dynamics and challenges to
programmers and computer architects [19], in particular regarding the various ways of
the backup process depending on the application requirements, e.g. when to save the
microcontroller state/data and how much of that state/data to save [20]-[23]. In the
literature, TC mechanisms exploit two main types of non-volatile memory technologies,
namely flash or more recently ferroelectric RAM (FRAM). In addition, two types of TC
approaches have been proposed in the literature, namely hardware-driven and
software-driven [24]-[27].

As of today, the most power hungry component is still the radio’s chip of the WSNs
node (Publication 4). Thus, appropriate power and energy management of the WSNs
node’s operations, especially of the radio transmission/reception based on the
estimated energy availability could be the most effective way of saving energy.
Therefore, the accuracy and the robustness of the prediction model are essential when
the operations of WSNs node are optimized and rely on the estimated energy [26]. Thus,
energy prediction is expected to be a precious tool to estimate the energy available in
the near future and to guide WSN nodes to make decisions related to their operations.
To turn this assumption into reality, numerous estimation approaches have been
proposed in the literature. However, their accuracy and reliability is still questionable.
Typically, solar and wind are uncontrollable sources of energy, thus their accurate
prediction is quite challenging, especially for longer time-period horizons.

There has been approaches for TC and prediction models proposed in the literature
on an individually basis. This PhD work presents a novel idea that combines these two
modalities simultaneously to improve the system performance and link quality. For this,
in Chapter 2 the author firstly assesses the practical feasibility of energy harvesting
combined with TC on an FRAM-based WSN node. Next, the author describes the
proposed linear energy model (LINE-P). Finally, the author presents the joint
implementation of TC and LINE-P in a peer-to-peer network. The results show that the
implementation of combined modalities improves the system performance (node), the
link quality, and increases communication stability by 50%.

Apart from that, this PhD work is based on four other contributions, namely, i)
‘FYPSIM’ a system-level framework which allows the rapid exploration of design
alternatives; ii) ‘LINE-P’ a mathematical modeling of dual energy sources which is highly
accurate, adaptable and of low complexity in terms of computational power;
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iii) ‘Adaptive LINE-P’, i.e. an extension of LINE-P; iv) a compression technique that
reduces the memory overheads by approximately 75% in a wireless node.

It is noted that most of the existing prediction models are somewhat limited because
they consider a fixed weighting parameter [26] based on the shorter time-period horizon
[8], [26]-[30]. Thus, in Chapter 3 of this PhD thesis, the author addresses such issues by
proposing Adaptive LINE-P. This proposed model is based on variable-length time slots
(in contrast to [31]) and considers an adaptive weighting parameter depending upon the
energy profiles (in contrast to [26]). The accuracy of the estimation results yielded by
the proposed model is up to 90%. Furthermore, the author proposes a compression
method that reduces the energy profiles by 4 and reduces the memory overhead in the
WSN node by 50%.

The problem statement and research questions related to the above are formulated
in what follows.
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PROBLEM STATEMENT AND RESEARCH QUESTIONS

Over the last few years, significant research advances have been made in the field of TC
and EP under the umbrella of EH. However, these advances have mostly been done
independently from each other. Thus, there are still various open issues that need to be
addressed, specifically in the context of autonomous WSN nodes. In relation to above,
the major issues addressed in this work are:

Firstly, identifying suitable energy harvesting mechanisms to power the WSN nodes;
secondly, dealing with the intermittent nature of EH sources (including power loss) by
means of the simultaneous exploitation of EH and TC; and thirdly managing the available
energy and in turn reducing the adverse effects of power losses by means of EP in
addition to EH and TC.

More specifically, this research work seeks to answer the following four main
research questions:

1. How to rapidly evaluate the feasibility of existing and emerging energy
harvesting technologies in the context of WSNs/loT and what kind of models
are sufficient to enable the above?

2. How to combine and implement the concepts of EH and TC in WSN nodes and
what are the practical possibilities and limitations of such a joint approach?

3. How to design an EP model that can be used with several types of EH sources
and how to reduce its computational overhead so that it can be implemented
on a resource-constrained WSN node? In addition, how to further improve the
EP model in terms of adaptability and reduced memory overhead?

4. How to combine and exploit EH, TC, and EP to make the best use of the
available energy, i.e., control the quality of service of the application executing
on a WSN network that include a WSN node solely powered by EH?

In the following author have identified the novelty in this PhD work.

STATEMENT OF NOVELTY

A first novel aspect in this PhD work is the proposed FYPSIM framework, which enables
to rapidly determine the feasibility of EH sources for WSN nodes.

Furthermore, in order to deploy accurate and reliable energy predictors, the
proposed LINE-P and Adaptive LINE-P prediction models bring significant benefits to the
design and implementation of WSN nodes. The author proposes both energy prediction
and energy profile compression methods as well as FYPSIM (simulator) tool in the
domain of WSN nodes.

In particular, the author illustrates that utilizing the proposed multiple energy
sources based algorithms and compression technique increases the WSN node
performance and prolong its life by harvesting the energy from the environment and
making best use of it thanks to the accurate estimates, as well as reduces the memory
overheads by around 75%. Furthermore, the combination of EH with TC and EP improves
the reliability and link quality, as illustrated for a peer-to-peer wireless communication.

The work that has been conducted in relation to the above questions has resulted in
the contributions that are summarized in what follows.
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CONTRIBUTION OF THIS PhD THESIS

The contributions described in this PhD thesis and detailed in the appended publications
comprises five parts:

A.

A system-level framework, named FYPSim, has been designed and implemented.
FYPSim provides support for modelling not only various single EH technologies
(solar, thermal, RF, etc.) but also hybrid EH technologies, a feature lacking in most
WSN frameworks. Experiments conducted with FYPSim illustrate how the
framework can be used to evaluate various EH sources (indoor solar, airflow, and
RF) for powering WSN nodes from different vendors (Dresden AVR, Atmel
ATmega, SenseNode, and WiSense) under varying activity rates.

The feasibility to operate WSN nodes without energy storage has been
evaluated by means of an experimental setup. The setup comprises various EH
sources (RF, solar, thermal, or hybrid) and several wired and wireless sensor
nodes; TC has been implemented on a non-volatile node (FRAM-based). Among
other things, the experimental results show that EH combined with TC in the
non-volatile WSN node is indeed feasible thanks to the implementation of
Texas Instrument’s Compute Through Power Loss mechanism that allows
pausing and resuming the node’s operation depending on the available energy.

A new EP model, LINE-P (for Linear Energy Prediction), has been proposed and
evaluated. LINE-P builds upon sampling and approximation theory and features
a so-called symmetrical kernel. LINE-P is suitable for dual EH sources and
various data time intervals, as opposed to previous models that are only
recommended for a particular data time interval. LINE-P also enables
adjusting/resizing the kernels, which makes it compatible with solar powered
WSNs, a feature generally lacking in existing solar-based prediction models. The
simulation results on real-life energy datasets show that the prediction
accuracy is up to ca. 98% for LINE-P for solar energy, and up to ca. 96% for wind-
based prediction, while keeping the computational overheads acceptable.

A TC-based scheme used to reduce the adverse effects of power losses in WSN
nodes that operate solely on EH has been proposed and implemented. LINE-P EP
model (contribution C. above) is integrated in the scheme to manage the energy by
allowing firing communication tasks only if sufficient and stable energy is predicted.
The scheme has been evaluated for a peer-to-peer wireless setup. The results
illustrate that the combined TC and EP modalities require only 15% of the node’s
memory and that the LINE-P (Case-ll)’s accuracy is up to 98% for consistent weather
and up to 90% for inconsistent weather. In addition, the results illustrate that the
proposed approach yields an average receiving rate up to 94.6%.

The last contribution is Adaptive LINE-P that addresses the fixed weighting
parameter issue, found in most EP models, by calculating adaptive weighting
parameters based on the stored energy profiles. In addition, a profile
compression method is proposed to reduce the memory requirements. The
simulation results on real-life energy datasets indicate that Adaptive LINE-P
accuracy is up to 90-94% and that the profile compression method can reduce
memory overheads by 50%.
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The above contributions are reflected in the appended research papers, as shown in
Table 1.

Table 1. Relation between the research papers and the contributions

Contribution Paper | Paper i Paper Il Paper IV PaperV
v v
A
v v
B
v v
C
v v
D
v
E
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THESIS OUTLINE

This PhD thesis comprises an introduction, three chapters and a conclusion.
Chapter 1

This chapter describes the general architecture of a WSN node and its operations.
Afterwards, EH technologies are discussed. Finally, the proposed hybrid EH modelling
and framework are introduced (they are described in further details in Publication 1).

Chapter 2

This chapter introduces the concept of TC and its various types, as well as the related
state-of-the-art. This chapter discusses the various energy prediction models along with
the related state-of-the-art, based on the different time-period horizons. Further details
about EP, the assessment of the proposed model, and the results can be found in
Publications 2 and 3. In addition, the chapter introduces the combined implementation
of TC and EP; further details can be found in Publication 4.

Chapter 3

This chapter describes Adaptive LINE-P, i.e. the extension of the LINE-P model, which
addresses the fixed parameter-weighting factor by proposing an adaptive weighting
factor based on the stored energy profile. Thereafter, the author discusses the energy
profile compression technique which provides a solution for explicitly low memory
sensor node. Further details can be found in Publication 5.

The last chapter comprises various points, namely a conclusion of the PhD work, a
summary of the claims, and a few suggestions for future work.
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1. WIRESLESS SENSOR NODES AND EH MODELLING

This chapter gives a general overview of a typical WSN node and its architecture,
afterwards presents some background information on EH technologies, and then
introduces the author’s contribution regarding the modelling of EH and in particular
hybrid EH.

Regarding EH modelling, various simulators have been proposed in the literature to
explore the feasibility of an EH-powered WSN before its actual deployment. Thus, this
chapter also discusses the comparison between the proposed framework named FYPSim
and WSN simulators. Further detailed information relevant to the main contribution can
be found in Publication 1.

With the advent of the 10T, the design and implementation of WSNs and WSN nodes
is getting a lot of attention from both the scientific community and the industry, in
particular with respect to their energy efficiency. Generally, a sensor node can be seen
as a small embedded system or electronic component that contains various elements
such as a microcontroller, an RF module, an energy storage device (if needed), a power
management mechanism (hardware circuit and/or software function), a possible energy
harvester, and the sensor itself (e.g. for temperature, humidity, etc.), as generically
represented in Figure 1. The basic function of the sensor node lies in data acquisition,
data processing and data communication. Usually, a sensor node is implemented on a
resource-constrained platform; it has limited computational power, memory, battery
capacity, and communication bandwidth.

ENERGY ENERGY
HARVESTER STORAGE

POWER
MANAGEMENT

SENSOR
TEMPERATURE MICROCONTROLLER TRANSCEIVER
HUMIDITY

Figure 1. Generic block diagram of a wireless sensor node.

A single sensor node only performs basic tasks (sense and transmit the data). The
combination of multiple such sensor nodes, together with central node(s) such as a
coordinator and gateway constitutes a wireless sensor network [3]-[4], [32]-[33], as
shown in Figure 2.

19



Sens e 4— Office Network —p 44— Remote Control —
= 1501 Nodes e equi 1
Teangee atur e m 2 Detector et

Husnidity, Light Control

4—— GLoOWPAN —»

%

Sensor Nodes i
==
=8 \
2 | Tapee . = Application Server Office gateway ¥
(-] Humnidiry, Lighe =3 .
1?.. - Network
Power switches with Analyzer
l Energy meters
Voltage, Curyent
L= = = e s = Frequency, Fawer,
S TgIgIgEOgiICigng e

Figure 2. The concept of wireless sensor network [36].

Research in WSNs include many issues ranging from the development of the node’s
hardware, the protocol design, to the energy management [34]. WSNs are a key enabler
for a vast range of applications, ranging for instance from environmental monitoring to
healthcare [3]. WSNs significantly gained strength and more attention in the field of
healthcare applications, especially in terms of fully autonomous devices.

An example of the latter is the next-generation sensor nodes for mHealth, which
include so-called biostamps [35], i.e. thin and stretchable tattoo-like sensors that can
replace bulky traditional sensors. Such biostamps are used for measuring e.g. body
temperature, UVA/B exposure, lactate, pH, and glucose levels. In order to make these
convenient and autonomous, they should feature both wireless communication and, of
special interest for this work, energy harvesting capabilities such as the flexible
thermoelectric generator (TEG) shown in Figure 3.

Figure 3. Prototype of a flexible thermoelectric generator (TEG). Source: North Carolina State
University’s Centre for Advanced Self-Powered Systems of Integrated Sensors [37].

Typically, sensor nodes are powered by a battery source; if the battery becomes
depleted, the node will not be able to operate (so-called “dead” from a wireless
communication perspective). Although batteries can be replaced or recharged, this is
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quite often an expensive, time consuming and sometimes nearly impossible task,
especially for large-scale networks or remote application (e.g. glacier or in space).
Despite some improvements in battery technologies during the past few years, energy
is still the biggest constraint when designing and operating WSNs node. Therefore,
different techniques and various ways of reducing the energy consumption have been
proposed in the literature to increase the lifetime of the nodes. Nevertheless, providing
additional energy to the nodes remains highly desirable and can be achieved by means
of EH. In an EH-powered WSN node, the energy source (e.g. solar, thermal, etc.) can be
connected to the rechargeable battery or super capacitor or, in some cases, be used to
directly WSN node (a.k.a. autonomous or battery-less WSN node). However, one of the
significant drawbacks of EH is that such sources typically (although not always) exhibit
intermittent patterns, e.g. changing weather conditions will impact the energy collected
by means of a solar panel.

1.1 Energy Harvesting and WSN nodes

Nowadays EH is getting more and more popular among the researchers and in the
industry since it provides additional energy which can solve, or at least alleviate, the
capacity issue of battery sources. EH extracts the energy from the environment or other
mechanisms and converts that energy into electric energy. EH plays a vital role to extend
the lifetime of WSN nodes; an example of a WSN node architecture including EH
capabilities is shown in Figure 4.
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Battery manager

RF 4
direct supply —f» Sensor node

Figure 4. Block diagram of energy harvesting architecture in a WSN node [41].

Wind turbine

As can be seen in Figure 4, one or several energy sources can be used; the latter case
is known as hybrid EH. The bold lines in the figure represent the energy paths. In one
path, energy flows from the energy harvester(s) through a power conditioner and
battery manager block before reaching the energy storage. The energy then flows
through a power manager that delivers it to the WSN node. In another path, the energy
flows directly to the WSN sensor node.

The harvested energy is dependent upon the efficiency of the harvester, its
orientation (if solar), location, or some other aspects such as weather, time or machine
activity [38]. Generally, EH is an explored technology and is successfully deployed in
many applications, especially where size does not matter [39]. Furthermore, in some
application, EH provides directly power to sensor node with no power source (battery)
[40], as also indicated by the direct supply path in Figure 4.
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However, EH is intermittent in nature [41], and thus, completely relying on EH could
be the cause of disruptions or delays in the application’s operations. While this is not
acceptable in time critical applications, it may be acceptable in others (e.g. in delay
tolerant networks).

Given the above, three issues of special interest have been explored in this work.
The first one is that of evaluating the feasibility of using a single or hybrid EH source for
powering a given WSN. This issue and the related EH modelling is further discussed in
this chapter (Section 1.3) and in Publication 1.

The second one is that of managing power losses due to the intermittent nature of
EH, especially when used as the sole energy source. This issue is further discussed in
Chapter 2 and Publications 3 and 4.

The third one, illustrated by the dashed box and dashed lines in Figure 4, is that of
predicting the available energy to better control the WSN node operations. This issue is
also further discussed in Chapter 2 and Publications 3 to 5.

However, before looking more closely to the above issues, various EH technologies are
briefly introduced in Section 1.2.

1.2 Energy Harvesting Technologies

Numerous EH technologies exist, but this chapter covers only the most relevant ones in
the context of WSN nodes such as solar, thermal, wind, RF and acoustic. These EH driving
low power embedded devices are discussed in several survey papers such as [42].
EH and renewable energy have a wide range of potential applications. For example,
various EH WSNs have implemented in the past like Trio [43] and Prometheus [44].
Figure 5 shows different types of energy harvesting technologies.
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Figure 5. Overview of the numerous energy harvesting technologies.

1.2.1 Photovoltaic (PV) EH is the process of converting incoming photons from sources
such as outdoor or ambient (indoor) light into electricity. A PV energy harvester consists
of semiconducting materials: n-type and p-type. Typically, PV EH provides higher power
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output as compared to other harvesting technologies; it is applicable also for the large-
scale WSN networks. However, it is light or environment dependent. The power
efficiency depends upon the material and orientation as well [45]. Some prototypes of
PV harvester are presented in [46]-[48].

1.2.2 Thermal EH is the process of creating electric energy from a temperature
difference using a thermoelectric generator (TEG). A TEG is a thermopile formed by
p-type and n-type semiconductor, placed between a hot and a cold plate and
connected in series [49].

1.2.3 Wireless EH

RF energy harvesting is the process of converting electromagnetic waves into electricity
by means of a rectifying antenna, or rectenna. Energy can be harvested from either
ambient RF power from sources such as radio and television broadcasting and mobile
phone transmitters and microwave or from EM (electromagnetic) signals generated at
a specific wavelength. Another possible solution is to use a dedicated RF transmitter to
generate power as per the requirements. However, the RF efficiency depends on the
distance and between the RF transmitter and the harvester. In particular, a useful
application of RF EH is to wake up sensor nodes from deep sleep state upon request (aka
wakeup node). Examples of implementations of wireless energy harvesting techniques
for WSNs are available in [50]-[52].

1.2.4 Wind EH is the process of converting energy from wind into electrical energy. A
(small size) wind turbine is used to power WSN nodes. However, efficient design of
small-scale wind energy harvester is still an ongoing research effort. Some examples of
wind energy harvesting designed for WSNs are available in [53]-[54].

1.2.5 Acoustic EH is the method that transform the higher and continuous acoustic
waves from the environment into electrical energy through a transducer. The received
acoustic emissions may be of the type longitudinal transverse, bending and hydrostatic
waves from low to high frequencies [55]. Usually, it is used where power is not
available, for e.g. remote areas [56, 55]. However, the efficiency of harvester acoustic
power is low [41].

1.2.6 Hybrid EH is the combination of two or more harvesting technologies, for example
solar (PV) with RF and thermal or the other way around. The main idea behind hybrid
EH is to use uncorrelated energy sources that can complement one another so as to
increase the probability of uninterrupted energy supply. However, the power
management of each harvester consume energy itself.

Literature on EH systems is still largely related to extensive simulation studies. Most of
the works focus on the system building, efficiency and viability of EH mechanisms [57].

Evaluating the WSNs node behaviour, network performance and practical feasibility,
can be carried out via a WSNs simulator (framework). In what follows, a comparative
analysis of WSNs simulators is briefly discussed.

In addition, the author proposed a hybrid model for energy harvesting (RF, solar,
thermal) based on combined ambient (indoor) energy sources. The author also
proposed a battery management circuit, with low power current consumption, which is
cascaded with the energy storage device and the energy harvester. The detailed
description of the author’s contribution can be found in Publication 1.
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cascaded with the energy storage device and the energy harvester. The detailed
description of the author’s contribution can be found in Publication 1.

1.3 WSNs Simulator

The author proposed a system-level framework (testbed) designed to rapidly evaluate
the operating feasibility of the WSNs node based on various functionality of simulator,
for instance, WSNs nodes power consumption, practicability with single and hybrid
energy harvester (a feature is lacking in other simulators), energy prediction models and
energy storage support. In relation to the above, Table 2 shows the comparison between
the proposed framework and the state-of-the-art. The following table illustrates that
only GreenCastalia, WSNSim and HarvWSNet provide the source code, [58] in order to
evaluate the WSNs node behaviour, network performance and practical feasibility,
before working on the WSNs node implementation. On the contrary, the proposed
FYPSim covers the aspects which are required for the coarse-grain but rapid exploration
of design alternatives.

Table 2. lllustration of the supported features in selected WSN simulators.

Tools Code Energy Storage Hybrid Power Compression
Availability | Prediction Harvester Consumption technique
Model
Models model model
v v v v
Green
Castalia
[59]
v v
SensEH
[60]
v v v
WSNSim
[61]
v v
[62]
v v
[63]
v v v v
Harvws
Net [64]
v v
[65]
v v
[66]
v v v v v
FYPSim
(This
work)
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exploration of design alternatives and thus relatively coarse-grain models of the
harvesters are used.

As an example, let’s consider a RF-EH that converts higher AC voltages to DC voltages
at short distances. A model for an RF to DC voltages is as follows:

V =2 [GantA /410 d (2Re [Zrec).Prs (14Qi?) V2~ V5] (1)

where V is the DC output voltage, Gant is the gain of the antenna, d is the distance, Re
[Zrec] is the reactance, Prf is the power, Qrf is the quality factor and VF is the forward
voltage.

Other energy harvester models, such as solar and thermal, used in FYPSim have been
discussed in Publication 1 (Appendix A).

In addition, FYPSIM includes a hybrid energy harvesting setup model, which is lacking
in most WSN simulators. For this, the author proposed a hybrid energy-harvesting model
with a single power management circuit.

More information about the hybrid EH circuit and the above model and the battery
management system can be found in Publication 1.

Experiments have been conducted to explore the behaviours of various sensor nodes
such as Dresden AVR, Atmel Atmega, SenseNode and WiSense, which are evaluated at
three different states i.e. idle, sleep and active modes, and their current consumption
based on the hybrid harvester with battery source and super capacitor.

Four cases, corresponding to various activity rates have been considered; they are
classified into the following way:

CASE A: In this case the nodes are always in the sleep mode, as a result the energy
consumption is minimal. However, the author found that, for the selected hybrid EH
setup, this case is not feasible for Dresden AVR node which has a higher consumption
than the other nodes.

CASE B: In this case, the author changed the scenario and kept the sensor nodes
active for every 1 s out of 60 s, which is applicable in e.g. a health monitoring system,
temperature monitoring, etc. Based on the experimental results (see Publication 1), the
number of feasible combinations is similar to case A; and again Dresden AVR node, with
the selected hybrid EH setup, is not feasible at this activity level due to its higher current
consumption.

CASE C: The author made this case to have more active time than in previous cases,
namely every 1.6 s out of 60 s, which is applicable in more intensive sensing and signal
processing activities. Results (see Publication 1) illustrates that the nodes consume more
energy as compared to the previous cases, and only WiSense node is feasible with the
selected hybrid EH setup.

CASE D: This case can only be considered where continuous monitoring is required
on an e.g. 24/7 basis, which is suitable for extremely critical applications such as
surveillance, disaster monitoring etc. The experiments show that no solution is
appropriate for the selected hybrid EH setup.

An extract of the results found in Publication 1, is given in Table 3.
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Table 3: Hybrid Energy Harvester powered different sensor nodes cascaded with a 3.75V

Supercapacitor.
Sensor Case A Case B Case C Case D
Nodes
Idle =0s Idle =5s Idle =8s Idle =0s
Active =0s Active =5s Active =8s Active =300s
Sleep=300s Sleep=290s Sleep=284s Sleep=0s
Total Time =300s Total Time =300s Total Time =300s Total Time =300s
Dresden Current Current Current Current
AVR Consumption (A) Consumption (A) Consumption (A) Consumption (A)
Idle 3.24 163.13 262.26 3240
Active 97.2 4953.96 7868.01 97200
Sleep -1.5 -4858.26 -7772.31 -97104.3
Atmel Current Current Current Current
ATmega Consumption (A) Consumption (A) Consumption (A) Consumption (A)
Idle 0.19 2.34 3.64 129.6
Active 5.83 70.45 109.22 3888
Sleep 89.86 25.24 -13.52 -3792.3
v v
SenseNode Current Current Current Current
Consumption (A)

Consumption (A)

Consumption (A)

Consumption (A)

0.06 1.85 2.92 142.56
Idle
. 1.94 55.51 87.66 3207.6
Active
93.75 40.18 8.03 -3111.9
Sleep
v v v
WiSense Current Current Current Current
Consumption (A) Consumption (A) Consumption (A) Consumption (A)
0.03 1.38 2.19 81
Idle
. 0.97 41.55 65.90 2430
Active
94.72 54.14 29.79 -2334.3
Sleep
v v v

In conclusion, the author has shown how a designer can estimate and evaluate the
feasibility of hybrid energy harvesting by using FYPSim for various nodes, here cascaded

with a superca

pacitor.
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1.4 Chapter Summary

In this chapter, the author discussed the background and presented the architectural
overview of a generic wireless sensor node, in particular its limited life time due to
energy storage constraints. This lead to discuss a variety of energy harvesting
technologies.

Next, an example of the models used in FYPSim has been presented and the
proposed model for hybrid energy harvesting has been introduced.

Some selected results illustrate how the framework can be used to explore the
feasibility of EH for various WSN nodes.

Publication 1 presents additional EH models and results for both Li-lon battery and
supercapacitor. In addition, the paper also presents a single power management system
for hybrid energy harvester which was designed and simulated with LT spice. The
operating principle of this management system depends on the battery voltage, if it
drops below a threshold then the circuits starts harvesting energy. The details can be
found in the Publication 1.

During this initial phase of the PhD work, the author observed that the concept of TC
was emerging as a potentially valuable approach to deal with some of the challenges
associated with EH. Thus, the focus of the remainder of the work is on TC in combination
with EP, as discussed in the next chapter.
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2. TRANSIENT COMPUTING, LINEAR ENERGY PREDICTION,
AND THEIR JOINT IMPLEMENTATION

This chapter covers the following topics:

e An overview of transient computing, its benefits, constraints, and state-of-the-
art, as well as a summary of the TC implementation initially conducted on a
single WSN node powered by means of EH.

e A brief introduction to energy prediction and related state-of-the-art, a
summary of the proposed linear energy prediction model (LINE-P) which is
based on sampling theory, and finally its comparison with the state-of-the-art
in terms of estimation error, time complexity and space (memory)
requirements.

e Adescription of the proposed mechanism that deploys two modalities (TC and
EP) in a combined way on a non-volatile sensor node (TI MSP430FR5739 +
CC2500), and thereafter the assessment of the performance and link quality of
a peer-to-peer setup powered by means of a solar energy harvester.

2.1 Transient Computing

The concept behind TC is to dynamically stop/pause and restart/resume computation
(and communication) operations depending on the available energy. In the context of
this work, TC is a useful mechanism to deal with power losses that result from either a
depleted battery/supercapacitor and, of special interest, when operating a WSN node
directly from an energy harvester without any energy storage (i.e. no battery or
supercapacitor).

The integration of EH and TC in wireless sensor nodes enables the design of highly
energy constrained, battery-less systems that operate only as a function of their
environment [68, 69]. Thus, TC can not only minimize the size of the sensor node but
also its mass, complexity, and cost [39, 70]. Such TC-enabled battery-less sensor nodes
can also be used in environments where the electrochemical properties of the batteries
are incompatible with safety requirements, such as in certain space applications.

In practice, this concept is enabled by the use of microcontrollers that include non-
volatile memory (e.g. flash or more recently FRAM). When a power loss occurs, the TC
mechanism takes a snapshot (i.e. saves the state and/or data of the microcontroller),
and thereafter, when the power reaches back the operating threshold, the last saved
snapshot is restored and the operation is continued from where it was interrupted [67].
The registers of the microcontroller are saved upon imminent power failure (typically
detected by means of a threshold voltage) and restored when the power is again
available, as shown in Figure 6 [71].
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Figure 6. lllustration of the operation of a transient computing system [67].

In this example, the node hibernates when the supply voltage goes down to VH, i.e.
a snapshot of the state/data of the microcontroller is saved in non-volatile memory
before the supply voltage goes below Vmin. Once the supply voltage goes above VR, the
snapshot is restored and the node goes back to the active mode.

In order to operate TC systems continuously and efficiently, they require sufficient
energy for the executing the tasks. However, in case of low energy the node will be shut
down until energy is again available. The time interval between shut down and wakeup
or vice versa depends on the input power source [39].

In relation to above operations, researchers have identified some challenges in the
design of transiently powered systems [36, 39]:

1. Transient systems are unable to control the time when they are on since this
only depends on the available input power.

2. Between on and off operations, the system is shut down and peripherals are
off. Supposing that the application requires several on and off conditions, the
non-volatile memory (NVM) have to save the system state between the on and
off conditions.

The above challenges are already significant when the TC system includes a single
node. The situation is even more complex when the number of sensor nodes are
expanded and transformed into a WSN or has to performed bi-directional
communication. In Publication 4, the author faced some more challenges while
implementing the peer-to-peer network based on TC (Note: these have been addressed
in the last part of Chapter 2).

1. The WSN node is supposed to update its peer that the communication is no
longer possible in case of low energy and just before the system (node) enters
the shut-down mode.

2. The employed TC mechanism does not directly support the radio configuration
since the registers of the radio chip cannot be directly saved to FRAM.

3. Re-establishing the communication when there is again enough available
energy requires the implementation of an additional mechanism.

The author addresses the above issues by proposing to combine two modalities,
namely TC and EP, to better deal with EH-powered nodes. Moreover, works on EH
systems are often limited to single node networks [57]. Thus, when the nodes are added
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up in a network, they can perform data processing in a more powerful manner [72]. The
author used a peer-to-peer setup for the assessment of the combined TC and EP
approach. The detailed information can be found in Publication 4.

Before going into some of the details of the proposed approach, what follows
summarizes the state-of-the-art of TC.
Mementos was the first TC approach presented by Ransford et al. [21]. It shifts general
computing into an interruptible model which can deal with intermittent power off
phases via a checkpointing mechanism. This mechanism saves and restores the data and
instruction to and from flash memory in case of power fluctuations. However, this
concept increases the overall execution time.

Afterwards, DINO (“Death Is Not an Option”) [24] adds a mechanism which helps
insuring consistency between volatile and non-volatile data even when in the presence
of frequent interrupts. In addition, another novelty in DINO is to use a FRAM-based
microcontroller rather than one based on flash memory. The overhead in terms
execution time lies between 1.8x to 2.7x.

Significantly, Hibernus [20] reduces the number of checkpoints by replacing the
periodic checkpointing by an ad-hoc technique that is triggered only when the supply
voltage decreases below a given threshold. As compared to Mementos, Hibernus
reduces the execution time and energy overheads by 76%-100% and 49%-79%,
respectively.

QuickRecall [25] introduces a new concept that saves all the instructions, data and
state into FRAM (unified approach where the RAM is not used). This potentially reduces
the execution time and energy consumption since no data have to be transferred
between the FRAM and the RAM. QuickRecall can reduce the program execution time
by up to 4.5x as compared to other methods and allows operations to be performed in
short on-time slots of 5 ms (vs. 15 ms in other approaches).

Balsamo et al. [23] developed a new TC method called “power neutral” operation. In
this method, the microcontroller’s frequency is dynamically adapted against the input
power source. Their results illustrates that such a power-neutral method can extend
operations for 4%-88% further with a 21% acceleration in application execution.

Hibernuss++ [67] proposes a dynamic adaptation of the hibernate and restore
thresholds based on the fluctuation in energy and the system load properties. Results
show that Hibernuss++ reduces energy consumption by 16% and accelerate the
application excecution time by 17% as compared to other techniques. However, this
approach requires additional circuitry.

HarvOs [64] is a series of code instrumentation strategies deployed at compile-time
and adapting the execution of the program at run-time as a function of the remaining
energy. The approach allows transiently powered devices to complete a given workload
with 68% fewer checkpoints on average and the number of required checkpoints rests
only 19% far from the ideal solution.

ARM mbed support presented in [73] integrates TC approaches into the mbed OS. It
enables multiplatform and TC as a service above loT application protocols. The paper
illustrates the feasibility of the approach by implementing it on a low power
microcontroller with flash memory operating from only 1 mF additional capacitance.

Bhatti et al. [74] present a selective policy for efficient state retention that
dynamically indicates the unallocated space and only saves to flash memory.
In addition, [75] implements an “Allocated State” policy on different memories, i.e.,
FRAM and Flash. This policy was implemented on both technologies; Figure 7(a) and 7(b)
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illustrate that the cost for saving is proportionally reduced with the size of allocated
memory, as compared to saving the entire memory (up to 85.1% reduction when
memory usage is 18%).
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Figures 7. lllustration of the state of memory with NVM and Flash [74].

Furthermore, by employing this kind of concept on flash memory, it was observed
that it is less effective in terms of saving times and energy, as shown in Figure 8(c) and
8(d), as compared to the case with FRAM (Figure 8(a) and 8(b)); the penalty being largely
due to the erasing process for the flash memory.
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Figure 8: Time and energy overheads between FRAM (a and b) and flash memory (c and d) [74].
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In [75], incremental work in checkpoint is proposed to minimize the size of the
checkpoint updates in the secondary storage. The approach can be categorized in three
different techniques, namely i) records modification in the RAM only, ii) avoid
computational overhead by binding variables to program paths, and updating the
relevant variables, iii) do not require program path to variable binding, rather it
efficiently indicates modified memory locations using a Hash of Hashes (HoH) approach.

In [76], the authors present WISPCAM, a wireless camera that is powered from
harvested RF energy and supports data-transfer from non-volatile memory using RFID.
The system has an energy storage capacity (a 6 mF super capacitor) to enable a single
photo to be shot and stored in NVM. In case of energy failure, the system does not fail
as the photo is stored in NVM and supercapacitor will be charged later again. In relation
to the above, in [77], the authors propose a similar kind of system, which will not
performed until there is at least 80uF energy in the capacitor. Monjolo [78], presents a
similar approach to [76] in home, whereby a current clamp around a main cable harvests
energy via induction and charges a 500 pF capacitor.

Usually, TC is demonstrated on a microcontroller (most of them without wireless
connectivity feature) and the literature still lacks reports on experiments with wireless-
enabled sensor nodes.

TC provides the support for extending the life span of the WSNs without adding an
energy storage device. Thus, this innovative concept effectively reduces the physical size
of the node and alleviates the limited energy capacity constraints. However, TC is more
suitable for those applications where permanent operation or monitoring is not
mandatory.

The combination of EH and TC is still a least explored area. The harvested energy is
intermittent and possibly leaving the node without power and thus TC operates the
node by pausing and resuming its operations depending upon the harvested energy.
The purpose of this section is to share some of experimental results obtained when
three EH sources such as solar, thermal and RF are used to power an FRAM-based node
with a TC mechanism without energy storage, as well as the assessment of the
practicability of TC for WSNs.

In relation to the above, the author selected a FRAM-based microcontroller
(MSP-EXP430FR5739) kit combined with a CC2500 radio chip, both from Texas
Instrument. Thereafter, author modified the CTPL (Compute through Power Loss Utility)
library, in order to implement TC mechanism. In particular, the CTPL library contain
numerous functions for deploying the mechanism, as shown in figure 9 (Publication 2).
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Figure 9: Texas Instrument’s Compute through Power Loss Utility strategy used for implementing
TC (Publication 2).

The block diagram of the experimental setup can be seen in Figure 10, which
illustrates that the microcontroller (MSP430FR5739 kit) is cascaded with either a DC
power supply (non EH mode) or with an energy harvesting kit (DC2080A) and as well as
solar panel (PRT-13781) through selector (switch). Here, the operating principle is that
in case of the voltage goes below a threshold voltage i.e. 2.5V, the ctpl_enterShutdown
() function is triggered and thereafter the state and data of the microcontroller are saved
(Publication 2).
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Figure 10: Block diagram of the experimental setup to implement TC mechanism (Publication 2).

The results illustrates that the solar energy source is able to power and operate the
nodes (see Table 4 Publication 2). However, the RF and TEG module were not satisfying
the power requirements of the nodes (the results can be found in Publication 2).
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Table 4. 1°t and 2™ rows: measured voltage and current for the MSP-EXP430FR5739+CC2500 used
as a transmitter. 3 and 4™ rows: measured voltage and current for the MSP-
EXP430FR5739+CC2500 used as a receiver, with the larger solar panel (13.5 x 11.2 cm).

Casel Caselll Case
(Outdoor Light) (Indoor Light) (Sharp I?mp Indoor
Light)
Light Intensity [LUX] 5.36K 1.46K 9.98K
Voltage [V] and 3.06 3.10 35
Current [mA.] without 246 2.00 216
radio
Voltage [V] and 3.0 3.09 3.5
Current [mA] with 20.0 22.0 22.16
radio
Voltage [V] and 3.0 3.10 3.5
Current [mA] without 2.16 2.00 2.16
radio
Voltage [V] and 2.91 3.09 3.5
Current [mA] with 19.98 22.0 22.16
radio

More information and results can be found in (Publication 2).

Now that the principles of TC have been introduced and that the first contribution
related to EH and TC have been summarized, the discussion moves to the state-of-the-
art related to EP and the proposed linear energy prediction model.

2.2 Energy Prediction and Proposed LINE-P (Linear Energy Prediction)
model

EH, aided by energy prediction (sometimes also referred to as energy estimation), has
led to a service-oriented infrastructure supporting a broad range of applications such as
loT, cyber physical system, by optimizing the energy consumption and balancing the
traffic load to increase the node lifetime.

Some researchers argue that energy prediction is quite a mature topic; however,
only few energy prediction models provide sufficient accuracy, reliability and
robustness. In fact, EP in the context of autonomous WSNss is still a least explored area.
In particular, EP can be considered as an alternate solution [31], which can control
certain operations of the WSNs nodes. The accurate prediction is very essential,
especially in the domain of autonomous WSNs nodes, where operations are dependent
on the estimation of the available energy [26]. EP is quite useful for WSNs that predict
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the energy in the near future over short (a few minutes) and medium (a few hours)
terms, and that thereafter execute the tasks based on the estimated energy, which
minimizes the wastage of energy and reduces the computation overhead [41].

This section discusses various state-of-the-art EP models that have been proposed in
the literature. It is to be noted that among the research community, the two most
popular sources are solar and wind energy harvesters.

The classification of the EP models falls into two categories, i) fixed weighting
parameter based EP models and ii) adaptive EP models that calculate their weighting
parameter based on the stored energy profile.

Most of the EP models are based on a fixed weighting parameter, here represented
by (a). Normally, this factor is tuned at the beginning of the experiment to ensure the
closest estimation; however, this is the biggest constraint because a tuned parameter
(a) affects the accuracy of the estimation under significant varying conditions, such as
for example, inconsistent weather. Thus, this approach is incompatible with e.g. solar
powered WSNs because each solar panel contains different and unknown series of
parameters such as orientation or even dust [26].

In [28], the authors presented an exponentially weighted moving-average (EWMA)
EP model; it is widely used in solar energy estimation based on an exponentially
weighted moving—average filter [79]. EWMA considers that the harvested energy of the
current day time-slot is identical to the observed energy at the same time on the
previous days. The amount of energy available during the past days is maintained as a
weighted average, in which the contribution of previous data is exponentially decaying.
This algorithm is able to both exploit the periodic cycle in solar energy and to adapt to
seasonal variations, but leads to significant prediction errors in case of inconsistent
weather, i.e., when sunny and cloudy days occur on alternative basis [41].

To address the above issue, Piorno et al. [80] proposed the EP model named
Weather-Conditioned Moving Average (WCMA). In particular, WCMA is estimating with
20% less errors than EWMA, especially in an inconsistent weather.

In [81] the authors proposed a parameterized specification and the computation of
an optimal online controller. In addition, to compute the solution of a linear program
(LP) in a multiparametric fashion and transfer most of the associated overhead to an
offline computation. This approach based on low computational complexity. Evidently,
the actual control action compute in approximately in 2 ms and consume low power.

In [82] the authors compared and discussed various solar energy prediction models.
In particular, author identify that neural network based algorithm is unable to adapt the
changes but the WCMA and EWMA presents much higher performance in terms of
estimation and as well as adaptation. In addition, they required less computation and
memory, in order to implement in WSNs. Simulation results prove that the most efficient
predictors is highly accurate and kept the fluctuations with real profile not more than
10%.

In [83], the authors exploit the EWMA model and proposed and extension which
keeps track of the solar energy observed in the previous days. The presented algorithm
is designed and developed for the short-term varying weather conditions. They
proposed a scaling factor which adjusts the next value. After each slot, scaling calculates
the ratio between the harvested energy during the current timeslot and the estimated
energy for the same timeslot. As a result, the proposed algorithm yields improved
latency and throughput in the network.
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In [84], the authors addressed the issue of EH prediction for real-time embedded
systems (RTES). They contend that accurate estimation of the energy in future is crucial
for RTES, as the performance of optimization techniques is based on harvesting
estimation. Therefore, they investigated three techniques in real time series prediction
(regression analysis, moving average and exponential smoothing) and found that
regression has the best prediction within a time horizon of 1 second. The proposed
model aims is to yield the best system performance with the energy harvesting
constraints. However, although this approach works well, it is not meant for medium-
term prediction horizon-periods.

Generally, it is assumed that the right estimation for the near future energy intake
are available to the system, either by simply looking at the past records [85] or by
utilizing any low computation energy predictors [86]. Information about the behaviour
of energy sources over short and medium time interval is often needed to optimize the
system, and some solutions even rely on it to work well [87].

In [88], the authors presented a new approach that run the sensor node through
solar and wind energy harvesting techniques. They observed that when estimating
energy possibility at timescales between 3 hours to 3 days, using forecasting data
provides better accuracy than if estimating the energy based on previous data. They
explained that the reason for the unsatisfactory performance of traditional predictors is
that the weather patterns are inconsistent. Thus, they developed a model for solar panel
and wind turbine, which converts the weather forecast data into energy predictors. In
addition, they showed the system increased ability as compared to existing strategies.

Although several EP models have been proposed in the literature, there remain a
need to develop a model that would exhibit both sufficient accuracy and low
computational complexity. Thus, the author of this PhD thesis proposed a dual-source
(solar and wind) LINE-P (linear energy prediction) model based on sampling operators.
The aim was to construct a predictor that on the one hand is good for approximation of
smooth trends and on the other hand, it is not so sensitive to fluctuations. In this
approach, the author used some elements of approximation and sampling theory. This
contribution, presented in details in Publication 3, is summarized in what follows.

2.2.1 Mathematical Model of LINE-P (all cases)

Generally, in the literature (see above for some examples), most of the prediction
models as designed for solar or wind energy harvesters as an energy source at two
different time-period horizons, for instance shorter and medium, and they are highly
dependent on the past records. Because of this, their estimation results contain more
errors when rapid changes occur in the weather conditions. On the contrary, the
proposed symmetrical kernel-based LINE-P model estimates the values on three
different data time intervals, namely shorter, medium and longer, and the estimations
errors are less even in inconsistent weather conditions. In addition, LINE-P is compatible
with dual-source (solar and wind) energy harvesters.

This chapter highlights another issue, i.e. most of the prediction models are based
on a fixed weighting factor, which is incompatible with the varying properties (e.g.
orientation) of solar panel powered WSN nodes. The author of this thesis addresses the
above issue by using symmetric kernels, which have simple computation of the dot
product in a potentially infinite dimensional feature space by means on the kernel
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function. In particular, symmetric kernels have a simpler structure than non-symmetric
kernels.

The goal of the author is to develop a generic mathematical model for dual-source
(solar and wind) energy harvester, such as [89]-[90], that estimates energy accurately at
different time intervals. To validate LINE-P estimations, the author used real energy
profiles (data sets) of energy provider companies for photovoltaic panels and wind
turbines, available in [91]-[92], respectively.

LINE-P (Case-l)

The proposed LINE-P (Case-1) model is expressed as follows; note that the detailed
derivation and further two more cases are presented in Publication 3.

The samples f;(I = 1, ..., k) are from the k previous days. The parameter vector b
defines a symmetric kernel and the parameter vector a, where a; =0 fork <0,
generates a one-sided kernel with the corresponding sampling operator

(Sprepinf) () = TRea bif G — k) + X—_p by frG — k) + CDIFpeppa, ()

where the correction term CDIFprgp,.p is in Equation (2),
CDIFprepran1 () = CTprepran (Lk=1akf (k — ) — Xk=1ax (G — k), (2)
with the multiplier CTprgpyp as:
CTerEDLAb = D= b - (3)
LINE-P (Case-Il)

This performs energy prediction based on few samples. In addition, this case is
dependent on only one variable a, as shown in (4).

(SPREDU;af)(/) = Yker & f (G — k). (4)
LINE-P (CASE-II)

The third case is very similar to Case-I, the only difference is in CTprepiir, as shown in
(5) with the multiplier CTprepiirb

ZO=_ by
CTprepiiny = —ka n;) - (5)
k=1"k

What follows presents some of the results related to the evaluation of the
performance of the LINE-P model based on the solar and wind energy profiles against
the state of the art models in terms of : (i) Graphical representations, (ii) Time
complexity, and (iii) Space (memory) requirements. The full set of results can be found
in Publication 3.
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2.2.1.1 Graphical representation (Error comparison of the models for solar energy
profiles)

This subsection provides some results which were not included in Publication 3 due to
space constraints. Typically, mean square error (MSE) and mean absolute error (MAE)
have been considered for comparing the error of each of the models. In order to
evaluate the errors, a solar-based (SDG&E) dataset (see Figure 11 and 12) has been used.
In addition, the author considered a medium interval (61 slots) in 24 hours. Figures 11
and 12 show that LINE-P (all cases) yields the lowest errors as compared to the other
models.
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Mean Square Error between Real data (SDG&E) and All Algorithms for Day1
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Figure 11. Average MSE for 4 days for all prediction models for solar energy.
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Mean Abselute Error between Real data (SDGEE) and All Algorithms for Day1
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Figure 12. Average MAE for 4 days for all prediction models for solar energy.
41



The previous section compared the performance of all models for solar energy; in
what follows, the author compares the performance of LINE-P and Pro-Energy for wind
energy since only Pro-Energy is multi-source (i.e. which can be applied to the wind
profile as well).

2.2.1.2 Graphical representation (Error comparison of the models for wind energy
profiles)

In this assessment, the author used a shorter data interval of 96 slots in 24 hours from
Elia dataset [92]; the results shown in Figure 13 confirm that LINE-P performs better
than Pro-Energy. MSE and MAE are used to compare the prediction errors of Pro-energy
and LINE-P (all cases). The results shown in Figure 13 and 14 are for four consecutive
days (datasets). The results show that in general the prediction errors of LINE-P (all
cases) are lower than that of Pro-Energy, however, WCMA also yield less error on certain
specific cases. Thus, it is concluded that LINE-P (all cases) prediction values are very close
to real data, especially Case-lIl.
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Figure 13. Average MSE for 4 days for Pro-Energy and LINE-P (all cases) for wind energy.
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Figure 14. Average MAE for 4 days for Pro-Energy and LINE-P (all cases) for wind energy.
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2.2.1.3 Time Complexity of the EP models

The time complexity and Big-O notations for all prediction models are compared. ASEA
and EWMA have constant complexity (O(2)), whereas WCMA and Pro-Energy have
quadratic complexities (O(n?) and O((k+1)?), respectively). QL-SEP and LINE-P (all cases)
have linear complexity (O(n) and O(m)).

Considering both the prediction performance of all models and their respective
complexities, it can be said that the proposed LINE-P approach offers the best trade-off,
i.e. equivalent or better prediction accuracy than the best existing models at a lower
complexity. This means that LINE-P is a good candidate for embedded implementation
on resource-constrained platforms such as WSN nodes/coordinators where CPU usage
and energy consumption are critical.

Table 5. Time Complexity of LINE-P (all cases) and the other prediction models. Note: In some
models, we consider m and k times rather than n times (see Publication 3 for more details).

Prediction Models Time Complexity T(n) | Big-O Notation O(n)
EWMA T(n)=2 0(2)
ASEA T(n)=2 0(2)
WCMA T(n) =k(n?+1) 0o(n?)
Pro-Energy T(n) =(k+1)n O((k +1)?)
QL-SEP T(n) = (4n + 2)q Oo(n)
LINE-P Case-I T(n) = 2(nk +m)+1 O(n)
LINE-P Case-lI T(n)=n O(n)
LINE-P Case-lll T(n)=m(2k+ 1) + 1 O(m)
10000
80007 Pro-Energy O((k+1)?)
__ 6000 >
G
= N
4000 | wemaon?) |
2000 QLSEP and LINE-P (all casesi oO(n)
_____'_________A.—
% 10 20 80 %0 100
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n = number of slots in 24 hours
Figure 15. lllustration of the time complexity of LINE-P (all cases) as compared to the state-of-

the-art.
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2.2.1.4 Comparison of Space (Memory) Requirements

The proposed LINE-P model performs well as compared to the other models in terms of
prediction error, and at the same time has small memory requirements. A higher
number of slots N means higher memory overhead for a given predictor. For instance,
assuming N = 48 and D (previous days) = 20, WCMA requires almost 4 kB of memory to
store the matrix N-D for an energy prediction [34]. On the contrary, LINE-P (Case-I) and
(Case-lll) only require N = 13 and D = 4. Similarly, LINE-P (Case-Il) only requires N = 8 and
D = 1. Thus, LINE-P models’ memory overheads are approximately 90% and 70% lower
than for WCMA and Pro-Energy models, respectively (see Publication 3 for more details).

The above results show that the proposed LINE-P model, especially Case-lll, is up to
90% accurate, has lower time complexity in three different time intervals and requires
less space (memory) than the other EP models.

Now that the proposed LINE-P model has been summarized, the next contribution
of this PhD work is introduced. The remainder of this chapter is organized as follows. In
section 2.3, the author discusses the novel concept of combining the two previous
modalities (TC and EP) simultaneously. Thereafter, their impact on a WSN node and as
well as on peer-to-peer network powered by means of a solar energy harvester is
discussed.

2.3 Combination of Transient Computing and Energy Prediction
Modalities

Generally, with the increasing number of users, WSN nodes, and wireless and wired
traffic, significant research efforts are also required to improve and ensure the quality
of service, quality of experience and reliability of the applications.

In this section, the author summarizes the proposed approach for combining two
different modalities, TC and EP, simultaneously in the context of WSNs for stable and
reliable communication.

The literature discusses and suggests TC and EP as separate modalities in relation to
WSNs; however, and to best of our knowledge, no work exploits TC and EP
simultaneously specifically for WSN nodes; only one work considered this merging
concept as a future work [71]. The main purpose of this part of this work is to deploy
this combined approach and to evaluate its impact in terms of performance, adaptability
and robustness. The remainder of this chapter summarizes the related key issues and
results; the details thereof can be found in Publication 4.

Firstly, the author addresses issues related to the design and implementation of TC
and EP together. Initially, it is needed to decide which energy source and prediction
model to take into consideration. We have shown in Publication 2 that in our setup the
solar energy harvesters is the best to operate the wireless nodes. Moreover, the existing
prediction models are dependent on relatively large amounts of past values; however,
these are unfeasible in real implementations because of the limited memory of the WSN
nodes. Furthermore, another issue is related to the connectivity of the nodes, i.e. how
to re-establish the connectivity of the sensor nodes after a power failure using TC?

In the first part of this thesis, the author assessed the practical feasibility of TC on a
single node by using three energy harvesters (RF, thermal and solar) as detailed in
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Publication 2. As shown in Figure 15, that approach is re-implemented in this part of the
work, but this time both with a programmable power supply for controlled experiments
and a solar panel for real-life experiments. Moreover, one of the three cases of LINE-P,
i.e. Case-ll, has been selected since it performs energy prediction based on a single
variable and less memory space is required for the implementation of the combined TC
and EP. In addition, the author implemented a peer-to-peer setup where the two
modalities are integrated and evaluated in terms of link quality features such as jitter,
packet receiving ratio and energy consumption. The details can be found in Publication
4; the key results are summarized in what follows.

2.3.1 Impact of EP on a TC-based WSN node

In this subsection, the behaviour of the system is evaluated with three cases: without
energy prediction as well as with 5 and 10 minutes energy prediction. LINE-P (Case-Il)
model estimates the next value based on the six previous values (slots). Therefore, a 1-
minute prediction is based on 6-minutes data; similarly, a 5-minutes prediction is based
on the last 30-minutes (half an hour), and a 10-minutes prediction is based on the last
hour, respectively.

Note: In the following figures of this section, the estimated energy and Vcc were
recorded at every 30 seconds by the node. In particular, if the estimated energy goes
above 2.9 V, then the system starts the communication (in the figure, ‘1’ means start
communication), otherwise it stops it (‘0’ means stop communication).

2.3.1.1 Behaviour of the System Without Energy Prediction
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Figure 16. Behaviour of the system without energy prediction (Publication 4).

Figure 16 illustrates that the system performs communication by considering the current
Vcc value. The system is adaptive and sensitive against the fluctuations. For example,
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the communication is stopped at 11:00 and 13:00 although the voltage increases again
just after the loss.

2.3.1.1 Behaviour of the System with a 5-Minutes Energy Prediction
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Figure 17. Behaviour of the system for 5-minutes energy prediction (Publication 4).

Figure 17 shows that the communication time is longer since prediction time is higher.
The voltage drops at 11:00 and 13:00, but despite that, the system continues to
communicate. Therefore, by deploying EP, the system is more robust and stable against
the energy variations; however, the system is less adaptive because the prediction time
is increased.

2.3.1.2 Behaviour of the System with a 10-Minutes Energy Prediction
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Figure 18. Behaviour of the system for 10-minutes energy prediction (Publication 4).
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In this third case, the experiment shows long and stable communication although the
energy prediction is very close to communication threshold and a decrease of a few
millivolts would stop the communication. However, the waiting time for a stable
communication is longer than in the previous case, as shown in Figure 18 at 13:00.
Therefore, this specific case illustrates that for such a long prediction time, the system
is not adaptive enough.

Through the various experiments and observations, the author found that too short
or too long slots are not beneficial for the energy prediction model in order to achieve
stability in the communication. In addition, numerous parameters, for instance
communication threshold, sampling period, prediction time, and the energy harvester
capacity play a vital role to develop a stable system.

2.3.1.3 Evaluation of link quality and reliability of the peer-to-peer Network

The performance of the peer-to-peer setup at certain distances has been assessed by
considering three features, namely jitter, ratio of packets transmission, and energy
consumption. Though ensuring reliability and link quality could be essential in some
applications, in the present environment (temperature monitoring case), this is not very
critical. Tables 6 and 7 show the jitter, average receiving rate and other metrics for the
link quality and system (node) performance; the details can be found in Publication 4.

Table 6. Peer-to-peer setup performance based on the average receiving rate at various
distances (Publication 4).

Distance Jitter Average receiving Power
(m) (ms) rate (%) Consumption
(mw)
0.3 20.9 94.6 66.7
1 20.9 94.6 66.7
3 20.9 94.6 66.9
6 20.9 94.6 70.2

An important observation is that the implementation of both modalities into the
peer-to-peer setup does not affect power significantly; as shown in Tables 6 and 7, the
differences in power consumption of the node is very low. In addition, deploying TC and
LINE-P (Case-Il) model improves the link quality and system stability. The setup’s
performance and reliability is illustrated by the fact that 94.6% packets were received
successfully, as shown in Table 6.
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Table 7. Power consumption of the node without TC and LINE-P modalities at various state
(Publication 4).

State Current Power Consumption
Consumption (mW) at Vee = 3V
(mA)
Idle 2 6
Linking 20 60
Communicating 20 60

The experiments illustrate that by adding EP in the TC-based system, the WSN node
can estimate the near future energy and based on that amount the node can take the
decision to operate further or suspend the operation. However, without EP, TC performs
the task based on the instantaneous energy only, neither estimating the availability of
energy nor performing the tasks accordingly for e.g. decreasing energy. In this hardware-
based implementation, the author also observed that if the voltage decreases sharply
for e.g. 4.9 volts/s or more, then the TC mechanism will not be triggered. Similarly, the
energy prediction model has its own limits e.g. in highly inconsistent weather.
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2.4 Chapter Summary

In this chapter, the author has covered the methodologies of TC and EP, including some
background information and state-of-the-art.

The first part explained the TC-based mechanism, its impact and implementation
with various energy harvesters as a source. These detailed in Publication 2 where the
author exploited TI's CTPL API to implement a TC mechanism similar to that of Hibernus [20].

The second part was related to proposed LINE-P (Linear energy prediction) model for
dual source (solar and wind) energy harvester. The author summarized how LINE-P is
based on the sampling theory, and how it estimates the energy on the next time-slots.
This part also highlighted that LINE-P (all cases) is less complex and requires less
information of the past records in order to predict the energy comparatively to the other
energy prediction models. The details can be found in Publication 3.

The third part presented the novel idea that combines the two modalities
simultaneously. In particular, the benefits of this combining concept were illustrated on
a peer-to-peer setup. The details can be found in Publication 4.
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3. ADAPTIVE LINE-P (all cases) AND ENERGY PROFILE
COMPRESSION TECHNIQUE

This chapter covers the following topics:

e The proposed enhancement of LINE-P, named Adaptive LINE-P model, to
address the fixed weighting parameter issue.

e The proposed energy profile compression technique, which can be integrated
in any energy prediction model.

In this chapter, the author recalls the limitation shared by most of the prediction
models such as IPRO-Energy [8], QL-SEP [27], EWMA [28], PRO-Energy [29], ASEA [30],
WCMA [80], and LINE-P (all cases) (Publication 3), i.e., they estimate energy based on a
fixed weighting parameter. Such solutions are not always feasible in practical
deployments since energy harvesters such as solar panels each have a different set of
parameters such as orientation, dust, etc. [26]. Thus, the author suggests an adaptive
weighting factor based on the stored energy profiles. The proposed Adaptive LINE-P
predicts the energy over three different time-period horizons, i.e. shorter, medium and
longer and uses variable-length timeslots. In addition, the proposed model improves the
prediction accuracy and minimizes the error between the harvested energy and stored
profiles as compared to other non- adaptive, adaptive and variable time-slot EP models.

The remainder of this chapter is organized as follows. First, in the next section, the
author discusses the state-of-the-art related to the non-adaptive and adaptive EP
models. The proposed Adaptive LINE-P is discussed in Section 3.1. Thereafter, the
proposed compression technique is presented in Section 3.2. Its integration with
different EP models and their comparative analysis is discussed in Section 3.3. A
conclusion is drawn in Section 3.4 and the chapter summary is given in Section 3.5.

In what follows, the author discusses the state-of-the-art regarding fixed kernel
parameter, variable length time slots and adaptive (a.k.a dynamic) EP models.

3.1 Non-Adaptive Energy Prediction Models
3.1.1 IPro-Energy

IPro-Energy is an extension of the Pro-Energy model. IPro-Energy has two additional
features; first, it uses a weighted profile (WP) technique to counter inconsistent
weather. Second, the model estimates energy with low computational complexity and
as well as relatively small execution time with low storage data [8]. In addition, IPro-
Energy has higher accuracy energy estimation and the implementation of the IPro-
Energy on sensor nodes is expected to be feasible without great effort. The results
presented in [8] indicate that IPro-energy predictions are 78% accurate for the short
term and 50% for medium term prediction horizon.

3.1.2 Pro-Energy-VLT (Variable-length timeslots)

Pro-Energy-VLT is an extension of Pro-Energy which combines energy predictor with
timeslots of variable lengths that increases the robustness of the algorithms. In [95],
the authors proposed a perceptually important point (PIP) technique to calculate the
variable size timeslots such as 30, 60 and 90 minutes, as compared to their original
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design, which was fixed to a 30 minutes data interval [95]. The authors of Pro-Energy —
VLT discussed a case study and assessed the practical feasibility of a hardware
implementation with real-life solar and wind energy profiles and as well as publicy-
available traces. The authors claim that Pro-energy-VLT improves the prediction
accuracy, while reducing the memory and the energy overhead of energy forecasting by
67% and 40%, respectively [95].

3.2 Adaptive Energy Prediction Model

Here, the author discusses the adaptive weighting factor based EP models, which are
dependent on the stored energy profile. Moreover, these EP models are much more
suitable and compatible with e.g. the solar energy harvesters [26].

3.2.1 UD-WCMA

This energy prediction model proposed in the literature [26] is based on the WCMA EP
model but uses a time varying gain parameter G1 (n+1). This gain is adapted depending
on the variations in the reference profiles stored in memory [26]. This approach sums
the information from measured data and stored profiles which represent the energy
patterns in the sensor nodes location to update the prediction model. UD-WCMA vyields
competitive prediction values and with the tuning free parameter makes it very suitable
and robust against the solar harvester parameters such as presence of dust, cast
shadows orientation and cloud cover. For example, the absolute error distribution of
UD-WCMA is characterized by 24W/m2, which is lower than the other schemes.

3.2.2 Proposed Adaptive Linear Energy Prediction Model (Adaptive LINE-P)

The author proposes an adaptive linear energy prediction model which estimates the
energy based on the weather condition rather than using a fixed parameter. The results
presented in Publication 3, and summarized below, show that Adaptive LINE-P is more
accurate, reliable and adaptable as compared to other EP models.

In what follows, the mathematical modelling of Adaptive LINE-P is summarized.

3.3 Sampling Operators

For the uniformly continuous and bounded fe C(R), the generalized sampling series are
given by (t e R; w > 0) as per (6),

S. = B k — k), 6
SN =) f(5)swe—k) (6
we get the classical (Whittaker-Kotel'nikov-) Shannon sampling operator,
sinc — K : — k. 7
5 p)©) =Y f(5)sincue —k) 7)
Letustakew =1landt =j € Zin (8), then
(S = Eie-w fU)s( — k) (8)

3.3.1 Kernels

The general kernel for the sampling operators (6) is defined in the following way.
Definition 1 ([96]) if s: R — C is a bounded function such that

mo(s) = Yjiz-wls(@ — k)| < o (u€R), (9)
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with the absolute convergence uniform on compact subsets of R, and
Yk——wS(u—k) =1(u€R), (10)
now s is said to be a kernel for sampling operators (6).

The main aim is to use the generalized sampling operators (6) for predicting the
signal, where the kernel function s is defined via the Fourier transform of a certain
window function:

Definition 2 A function A € Cy is called a window function for a kernel of a sampling
operator if A(0) = 1 and A(2k) = 0 fork € N.

Further details about the derivation of this aspect of the model can be found in
Publication 5.

3.3.2 Adaptive Predictors

Adaptive predictors are needed because the energy profiles can have different
properties, i.e. with different smoothness, variation, etc. For different types of profiles,
there is a need for different kernels for the sampling operators. In the current approach,
the author uses the following kernels:

e  For smooth profiles, kernels that allow approximation order, estimates via high
order of modulus of smoothness.

e For unstable profiles, kernels that provide a sampling operator with minimal
(close to 1) norm.

Note: The trivial error estimate signal for additive noise isin form ||S,, || ||v ||, where
[1Sw ]| is the operator norm and ||v || is the norm of noise component, i.e. if the operator
norm is equal to 4, then in the worst case, there is a 4-times amplification of the noise
in the predicted energy profile.

To deal with other profiles, a kernel that provides a sampling operator with good
approximation properties and small norm is needed.

In order to choose a predictor kernel, the author uses I[;norms of the prediction
errors of previous estimates.

I;norm

In this section, the author proposes a method for adaptive prediction and uses the
lynorms of the prediction errors. Moreover, the author chooses some kernels, which
generate sampling operators with different properties (approximation order m, norm,
etc.) and compute the predicted values using it.

For predicting the k-th element, the author chooses the kernel for which the [;norm
of the prediction errors for some one-sided neighborhood of the k-th element of the
profile is minimal. The norms of errors are calculated in the following form:

IEOI = Y |G = ) = foill = D],
=1

where f(k) is the measured energy in slot k and f,, ; (k) is the predicted energy for slot k
using the kernels S;.
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For a particular realization of the adaptive predictor, to cover different types of
profiles, the author chooses three kernels with different approximation properties and
the corresponding sampling operators, i.e., a first one with minimal norm, a second one
with high order of approximation, and a third one with good approximation properties
and small norm.

3.4 Compressed Energy Profiles

In this section, the author suggests a method for compressing energy profile data to
address the memory size limitation of WSN nodes.

The purpose of compression is to reduce a > 1 times; the author uses the following
representation,

f© =2 fRS (¢ =),
where f is the compressed energy profile, f the original energy profile and S (¢t) ==
%s (2t/a) the dilated kernel. Instead of f(k), it is only needed to store f(ak). For
example, if @ = 4, then 4 times less memory is needed.

For reconstruction, the author uses an interpolating kernel S, i.e. a kernel defined
using a window function, which satisfies the equality:

Aw) + A1 —uw) =1,(u€e[0,1]).

The reconstruction formula is as follows:

() = Zif(ak)2S (%1 - 2k>.

For a particular realization of the compression algorithm, the author takes @« = 4 and
for both the kernel s and'S, he chooses the Hann kernel.

3.5 Accuracy Assessment of the Adaptive LINE-P (all cases)

Based on MAE and MSE error evaluations, the author conducted various tests by
deploying solar and wind profiles available in [91]-[92], in order to evaluate the
performance in terms of accuracy, robustness, and adaptability.

After the assessment of all cases of Adaptive LINE-P, Case-lll yields more accurate
results as compared to Case-l and Case-Il. Further details about this evaluation can be
found in Publication 5.

Given this, Adaptive LINE-P model (Case Il) has been selected for further comparison
with the state-of-the-art, as presented in the next section.

3.6 Comparison of Adaptive LINE-P (Case-lll) with the State-of-the-Art

In the following, the author summarizes the evaluation of the performance of Adaptive
LINE-(Case-Ill) along with the state-of-the-art based on the medium (61 time-slots) time
period horizon of the solar energy profile SCE [91].
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3.6.1 Assessment of Adaptive LINE-P (Case-Ill) with the Solar Energy Profile

Figure 19 shows the results for fairly consistent profiles, to observe the behavior and
adaptability of the prediction models based on the medium (61 time-slots) time-period
horizon. The graphical representation shows that most of the models are estimating up
to the mark only for the 1%t day. It can be seen that for all other days, LINE-P (Case-III)
starts over-estimating. UD-WCMA also starts over- estimating in all days, especially on
the 12t and 13t of December from the 45" to the 60t time-slots, and 20t to 50t time-
slots. UD-WCMA vyields the worst results comparatively to the other EP models. In
particular, on the 11* of December, IPro-Energy model is off the chart from the 5% to
10t time-slots. Although gradually its estimation is approaching the real data, it then
starts under-estimating after the 40" until the 53™ time-slots. On the contrary, Adaptive
LINE-P (Case-lll) seems much better and most of time yields estimates close to the real
data, as also shown in Publication 5.
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Figure 19. Graphical representation of Adaptive LINE-P (Case-Ill) and state-of-the-art based on
the medium (22-minutes data interval) time-period horizon of solar profile with 61 time-slots in
24 hours.

For further assessment of all the prediction models, we present the estimation errors
in Tables 4 and 4a by using MAE and MSE with the same SCE profile available in [91].
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Table 8. Error comparison of prediction models in terms of MAE for the SCE solar energy profile
(Publication 5).

MODELS Day 1- Day 2- Day 3- Day 4- Average-
MAE MAE MAE MAE MAE
LINE-P (Case-lll) 0.0820 0.0945 0.0944 0.1563 0.1068
UD-WCMA 0.4280 0.3811 0.2961 0.2103 0.3288
IPRO-Energy 0.0782 0.0842 0.1745 0.2008 0.1344
Adaptive LINE-P 0.0802 0.0970 0.0932 0.1405 0.1027
(Case-lll)

Table 9. Error comparison of prediction models based on MSE for the SCE solar energy profile
(Publication 5).

MODELS Day 1- Day 2- Day 3- Day 4- Average-
MSE MSE MSE MSE MSE
LINE-P (Case-lll) 0.0348 0.0493 0.0850 0.1051 0.0685
UD-WCMA 0.5105 0.4112 0.2637 0.1451 0.3326
IPRO-Energy 0.0313 0.0351 0.1898 0.1524 0.1021
Adaptive LINE-P 0.0352 0.0530 0.0849 0.0905 0.0659
(Case-lll)

In relation to Tables 8 and 9, it is clearly shown that Adaptive LINE-P (Case-lIll) yields
up to ca. 94% accuracy, which is better as compared to the other EP models.

3.6.2 Assessment of Adaptive LINE-P (Case-lll) with the Wind Energy Profile

This section summarizes the comparative analysis of Adaptive LINE-(Case-lll) with the
state-of-the-art based on the shorter (96 time-slots in 24 hours) time period horizon for
the wind energy profile Elia (Belgium’s electricity transmission system operator)
available in [92].

A graphical comparison is shown in Figure 20 and the MAE and MSE values are shown
in Tables 10 and 11.
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Figure 20. Graphical representation of Adaptive LINE-P (Case-lll) and state-of-the-art based on
the shorter (15-minutes data interval) time period horizon for the wind energy profile with 96
time-slots in 24 hours (Publication 5).
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Table 10. Error comparison of the EP models in terms of MAE for the wind energy profile
(Publication 5).

MODELS | Day 1- Day 2- Day 3- Day 4- Day 5- Day 6- | Average-

MAE MAE MAE MAE MAE MAE MAE
LINE-P 0.0349 | 0.0623 | 0.1083 | 0.4257 | 0.2294 | 0.1565 0.1695
(Case-lll)
uUD- 0.0330 | 0.0879 | 0.1088 | 0.3437 | 0.1946 | 0.1279 0.1493
WCMA
IPRO- 0.0986 | 0.1907 | 0.1863 | 0.6094 | 3.0968 | 0.4993 0.7801
Energy

Adaptive | 0.0338 | 0.0569 | 0.1095 | 0.4186 | 0.2133 | 0.1594 | 0.16525
LINE-P
(Case-lll)

Table 11. Error comparison of the EPs models in terms of MSE for the wind energy profile
(Publication 5).

MODELS | Day 1- Day 2- Day 3- Day 4- Day 5- Day 6- | Average-

MSE MSE MSE MSE MSE MSE MSE
LINE-P 0.0021 | 0.0065 | 0.0311 | 0.4667 | 0.1451 | 0.0545 0.1176
(Case-lll)
uD- 0.0018 | 0.0144 | 0.0415 | 0.3143 | 0.1048 | 0.0323 0.0845
WCMA
IPRO- 0.0112 | 0.0441 | 0.0936 | 0.5489 | 1.9788 | 0.3059 0.4970
Energy

Adaptive | 0.0020 | 0.0061 | 0.0292 | 0.4243 | 0.1278 | 0.0563 0.1076
LINE-P
(Case-lll)

Tables 10 and 11 show that the proposed Adaptive LINE-P (CASE-IIl) performs better
than the other energy prediction models (error down to — 80 %) (Publication 5).

In the above section, the author compared the EPs models with two different
sources, namely solar and wind data profiles; apart from a minor exception, the results
show that Adaptive LINE-P (Case-lll) provides the best results as compared to the other
EP models.

3.7 Evaluation of the Compressed Energy Profile Method

Here, the author assesses the compressed energy profile method in two steps. Firstly,
its accuracy and adaptability are verified against real data (real energy profile). Secondly,
the compression method in incorporated with the two adaptive energy prediction
models (Adaptive LINE-P and UD-WCMA) for further assessment against their non-
compressed versions.

59



Generally, the compressed energy profile method is much more effective where
slots are shorter. In order to verify the accuracy and adaptability of the method, the
author choses wind energy profile since the wind is uncontrollable, and closer or shorter
slots estimation of energy can then yield less error.

Figure 21 shows the short time—period horizon, considering 15-mins interval data,
which corresponds to 96 slots in 24 hours. It is clearly visible in Figure 21 that the
weather conditions are extremely inconsistent. As shown, the first two days appear
consistent and productive, but the next two days have a quite low productivity in term
of power generation. The last two days have even lower energy production. However,
such type of variations expose the weakness of the other prediction models.

On the contrary, Adaptive and compressed LINE-P (Case-lll) yields both better
accuracy and reliability.
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Figure 21. Graphical representation of energy prediction models with and without the compressed
profile method based on the short time period horizon of the wind energy profile (Elia)
(Publication 5).
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In the following, the author calculates the error estimation in terms of MAE and MSE
for the wind energy profile (Publication 5).

Table 12. Error estimation in terms of MAE of the prediction models with and without the
compressed profile method for the wind energy profile (Publication 5).

MODELS Day 1- Day 2- Day 3- Day 4- Day 5- Day 6- Average
MAE MAE MAE MAE MAE MAE -MAE
Compressed - 0.2005 0.0852 0.1183 1.7228 3.1929 1.5404 1.1433
UD-WCMA
Non- 0.1977 0.0884 0.1173 1.6643 3.0968 1.4999 1.1107
Compressed -
UD-WCMA
Compressed — 0.0182 0.0518 0.1069 0.4050 0.1908 0.1515 0.1540
Adaptive LINE-P
(Case-lll)
Non- 0.0338 0.0569 0.1095 0.4186 0.2133 0.1594 0.1652
Compressed —
Adaptive LINE-P
(Case-Ill)
Table 13. Error estimation in terms of MSE of the prediction models with and without the
compressed profile method for the wind energy profile (Publication 5).
MODELS Day 1- Day 2- Day 3- Day 4- Day 5- Day 6- Average-
MSE MSE MSE MSE MSE MSE MSE
Compressed 0.0475 0.0120 0.0306 4.6731 13.0108 2.8090 3.4305
-UD-WCMA
Non- 0.0463 0.0132 0.0304 4.4162 12.2862 2.6713 3.2439
Compressed
-UD-WCMA
Compressed 0.0007 0.0053 0.0285 0.4506 0.0945 0.0495 0.1048
— Adaptive
LINE-P (Case-
1)
Non- 0.0020 0.0061 0.0292 0.4243 0.1278 0.0563 0.1076
Compressed
— Adaptive
LINE-P (Case-
1)
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Tables 12 and 13 illustrate the error estimation with and without the proposed
profile compression method in terms of MAE and MSE for the wind energy profile. In
Table 12, it can be observed that incorporating the compressed profile method increases
the MAE for UD-WCMA by +3% but decreases it for Adaptive LINE-P (CASE-IlI) by —6.77%
(Publication 5).

In Table 13, it can be seen that incorporating the compressed profile
method increases the MAE for UD-WCMA by + 5.75 % but decreases it for Adaptive
LINE-P (CASE-Ill) by —2.6%. As seen earlier, the compressed energy profile method
reduces the memory requirements by a factor 2 (Publication 5).
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3.8 Chapter Summary

In this chapter, the author has proposed the extension of LINE-P named Adaptive LINE-
P (three cases-based). This proposed model alleviates the fixed length time-slot and
fixed weighting parameter. Adaptive LINE-P model chooses the weighting parameter
based on the actual energy profile. Experiments have been conducted with three time-
period horizons (shorter, medium and longer) on different time-slots.

The results show that the proposed adaptive prediction model is highly adaptable
against sharp variations or rapid changes as compared to other adaptive and non-
adaptive prediction models.

Moreover, in this chapter, the author also proposed a compressed energy profile
method that can easily be incorporated with any prediction model; this method allows
reducing the memory requirements by 50% and yet provides 90% accuracy.

The outcome of the experimental evaluation of Adaptive LINE-P combined with the
energy profile compression illustrates that the prediction error is not significantly
degraded when the proposed compressed profile method is used; thus, it offers a good
trade-off between accuracy and memory requirements.

The next chapter concludes this PhD work and briefly indicates possible future work.
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4. CONCLUSION

This PhD thesis touched upon several aspects related to the energy challenge in wireless
sensor nodes, namely energy harvesting technologies, transient computing, energy
prediction and the combination thereof. The work can be seen as an effort to the
development of autonomous wireless sensor networks, and on the longer run, to energy-
efficient loT solutions.

The thesis comprised 4 chapters. After the introduction, the 1% chapter covered the
architecture of WSNs, energy harvesting technologies, and related models and background
information. The 2" chapter focused on the mathematical modelling & implementation of
transient computing and energy prediction model. The 3™ chapter presented the adaptive
energy prediction model and the energy profile compression technique.

In particular, the author presented a combined transient computing mechanism and
energy prediction model; the expected benefit of this combined approach is to help
developing battery-less nodes that can be used in applications such as delay-tolerant sensor
networks. The nodes can perform their computation and communication tasks as a function
of the available energy.

Indeed, transient computing enables pausing/resuming the tasks when power losses
occur and estimating the energy availability enables improving the system (node)
performance and quality of service by pausing the tasks and sharing the information with
other nodes before a power loss occurs.

The above work has been carried out not only by means of theoretical models but also
by means of practical experiments involving the development of a hardware/software
implementation.

The introductory chapter of this PhD thesis posed the following research questions:

1. How to rapidly evaluate the feasibility of existing and emerging energy
harvesting technologies in the context of WSNs/loT and what kind of models
are sufficient to enable the above?

2. How to combine and implement the concepts of EH and TC in WSN nodes and
what are the practical possibilities and limitations of such a joint approach?

3. How to design an EP model that can be used with several types of EH sources
and how to reduce its computational overhead so that it can be implemented
on a resource-constrained WSN node? In addition, how to further improve the
EP model in terms of adaptability and reduced memory overhead?

4. How to combine and exploit EH, TC, and EP to make the best use of the available
energy, i.e., control the quality of service of the application executing on a WSN
network that include a WSN node solely powered by EH?

What follows briefly discusses how the contributions of this thesis provide answers
or element thereof to the above questions.

Paper 1

This paper presented a system-level exploration framework named FYPSim that includes
coarse-grain models of various energy harvesting technologies (including hybrid energy
harvesting and battery management) and the sizing of energy storage technologies. The
framework also enables comparing energy prediction algorithms (EWMA, WCMA, etc.) The
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exploration results with energy harvesting technology models for indoor solar, indoor air
flow, and indoor radio frequency, as well as energy storage technology models for Li-lon
batteries and supercapacitors. It can be said that such coarse-grain models enable the rapid
exploration of various technologies (as opposed to simulators that are based on fine-grain
models that are slower to simulate), thus providing an answer to the 1% research question.

Paper 2

This paper presented the implementation of transient computing on a FRAM- based node
(MSP430FR5739+CC2500) cascaded directly with three energy harvesting sources (RF, solar,
thermal) without energy storage such as a battery or super capacitor. Based on various
experiments, the author concluded that energy harvesting combined with transient
computing in WSN nodes is indeed feasible. A limitation that was identified is the need for
energy sources that can sustain the peaks of current that occur at boot time and when
resuming the nodes’ operations. Thus, based on the results, Paper Il provides an answer to
the 2" research question.

Paper 3

This paper proposed LINE-P, a linear energy prediction model that builds upon
approximation and sampling theory. LINE-P is suitable for dual-source energy harvesting. The
results show that the accuracy of the solar-based and wind-based predictions is up to
approximately 98% and 96%, respectively. At the same time, the proposed LINE-P model
offers the best trade-off among existing energy prediction models, i.e., equivalent or better
prediction accuracy at a lower complexity, which makes LINE-P is a good candidate for
implementation on resource-constrained WSN nodes. Thus, this contribution provides an
answer to the first part of the 3™ research question (Paper V answers the second part).

Paper 4

This paper proposed a novel approach for the combined implementation of two modalities
(transient computing and energy prediction) aimed at improving the adaptability and
robustness of a bidirectional communication setup comprising an energy-autonomous
WSNs node. The experimental results show that the implemented modalities consume only
15% of the total memory of a node, the accuracy of the energy prediction is 90% in
inconsistent weather, and the average receiving rate (reliability of the packet
transmission/reception at various distances) is 94.6%. Thus, based on the proposed
approach and experimental results, Paper IV provides answers to the 4% research question.

Paper 5

The paper proposed the Adaptive LINE-P (all cases) model which is an enhancement of the
LINE-P model. Adaptive LINE-P incorporates an adaptive mechanism which removes the
fixed-parameter issue. In addition, the paper introduced a compression technique which
compresses the stored energy profile. This technique was incorporated in both Adaptive
LINE-P and other existing energy prediction models. The results showed 90% accuracy in
Adaptive LINE-P model along with a memory overhead reduced by 50% on solar and wind
energy profiles based on shorter (96 slots in 24 hours) time-period horizon.

Thus, based on the proposed adaptive energy prediction model, energy profile compression
technique and the results, Paper V provides answers to the second part of the 3™ research
question.
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Summary of Claims

In the following, the claims of novelty that were shown in this PhD work are listed. The
claims correspond to Contributions A to E and are reflected in Papers 1-5.

Claim 1: To the best knowledge of the author, the proposed system-level framework
FYPSim provides a complement to other existing WSNs simulators since it allows the
rapid exploration of alternatives before their detailed simulation. This corresponds to
Contribution A and Publication 1.

Claim 2: To the best knowledge of the author, the proposed mathematical model of
LINE-P, based on the approximation and sampling theory, is unique in the scientific
literature and offers a good trade-off between accuracy and complexity. In addition,
LINE-P is designed and developed for the dual source energy profile (solar and wind); its
methodology and demonstration have been shown through a practical implementation.
This corresponds to Contribution C and Publication 2.

Claim 3: The author proposed a novel approach by combining two modalities (transient
computing and prediction model) and demonstrated them through their
implementation on a peer-to-peer setup of wireless sensor nodes. This corresponds to
Contribution B to D and Publication 2 to 4. To the knowledge of the author, such an
approach has not been proposed and published previously.

Claim 4: The author proposed the mathematical model of Adaptive LINE-P, which is an
extension of the LINE-P model. Adaptive LINE-P is based on an adaptive weighting factor
parameter, which is calculated as a function of the weather condition. This proposed
prediction model is highly reliable, robust, adaptable and up to 90% accurate. To the
best of knowledge of the author, the proposed energy profile compression technique
that can reduce the memory overhead by up to 50% is the first of its kind. This
corresponds to Contribution E and Publication 5.

Perspectives and Future work

With the technological advancement, increasing requirements and fast deployment of IoT,
it is expected that the sensor nodes will deployed everywhere. This means an increased
overall energy consumption even if progress can be made in terms of energy storage capacity
and energy harvesting efficiency. Therefore, the proposed solution, in particular combining
modalities of transient computing and energy prediction is expected to be suitable approach
for cases where the delay is not critical or where monitoring is not required on a 24/7 basis.

Furthermore, the work presented in this PhD thesis could be expanded along several
directions.

Firstly, energy trading between the wireless node could be considered. To do so, RF
energy harvesting and RF energy transfer circuitry could be combined with a brokering
mechanism that would distribute the available energy depending on the workload of the
individual nodes.

Secondly, due to dense deployment of 10T, dealing with large amounts of data is creating
new challenges in terms of data exchange, storage capacity, data management,
computation, etc. Therefore, the traditional WSN approach may no longer be effective and
thus, adding new spatial and/or temporal data prediction models to the presented work may
help reducing such new burdens by reducing the amount of actual data to be transferred,
stored and processed.
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ABSTRACT

The advent and growth of the IoT has opened new directions and challenges for the
scientific community. In particular, loT enabling devices such as wireless sensor nodes
are powered by energy-limited batteries, which affects their life-time and reliability in
case of intensive utilization, and eventually leads to increased maintenance
requirements and related cost. Thus, researchers have investigated and proposed
various solutions under the so-called energy harvesting concept. Such solutions help
overcoming the limited batteries’ capacities by providing a supplementary or alternative
source of energy to operate e.g. smart devices, wireless sensor nodes, home appliances,
industrial machine etc. The positive impact of energy harvesting in loT enables
innovative applications that are no longer hindered by the batteries limits.

However, energy harvesting poses several challenges both at the hardware and
software levels when designing energy-autonomous wireless sensor nodes. Indeed,
energy harvesting from the environment such as from solar, wind, thermal, RF etc
sources typically exhibits intermittent characteristics. This means that the wireless
sensor nodes may be left without power, which in turn impacts the application’s
performance in terms of e.g. connectivity and reliability.

Firstly, the author proposed a system-level framework that uses coarse-grain models
of various single and hybrid energy harvesting technologies for wireless sensor nodes.
Experimental results illustrate how the framework can be used to evaluate various
energy harvesting sources for powering WSN nodes.

Then the author assessed the practical feasibility of powering a wireless sensor node
from an energy harvesting source without energy storage. A salient feature of the work
is the implementation of a transient computing mechanism on a non-volatile (FRAM-
based) node. The experimental results illustrate that energy harvesting, combined with
transient computing, is indeed feasible.

Next the author proposed an energy prediction model named LINE-P (Linear Energy
Prediction). It builds upon sampling and approximation theory. LINE-P is more suitable
for dual EH sources and various data time intervals than state-of-the-art models. The
simulation results show that LINE-P’s prediction accuracy is up to ca. 98% for solar
energy and up to ca. 96% for wind-based prediction.

Thereafter, the author deployed a transient computing mechanism for bidirectional
communication where energy harvesting is used in combination with transient
computing and the LINE-P energy prediction model. This allows firing communication
tasks only if sufficient and stable energy is predicted. The results for a peer-to-peer
wireless setup illustrate that the combined two modalities require only 15% of the
node’s memory, and this proposed approach (combined) yields an average receiving
rate up to 94.6%.

Finally, the author designed the Adaptive LINE-P model that addresses the fixed
weighting parameter issue by calculating adaptive weighting parameters based on the
stored energy profiles. In addition, a profile compression method has been proposed to
reduce the memory requirements. The results illustrate that Adaptive LINE-P’s accuracy
is up to 90-94% and compression method can 50% reduce memory overheads.
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KOKKUVOTE

Teadlaskonnale on avanenud uued vdimalused ja valjakutsed seoses asjade interneti
(Internet of Things - IoT) ilmumise ja arenguga. Naiteks piiratud varuga energiaallikate
kasutamine traadita vOrgu sdlmedes piirab nende eluiga, vahendab usaldatavust, viib
suurenenud hooldusvajaduseni ja kaasneva kuluni. Sellega seoses on teadlased uurinud
energiakorje (energy harvesting) vdimalusi ja pakkunud valja erinevaid lahendusi.
Lisades tdiendava vGi alternatiivse energiaallika aitavad valjapakutud lahendused
Gletada elektrokeemiliste allikate mahtuvusega seotud piiranguid arukates seadmetes,
traadita vorgu sb6lmedes, koduseadmetes, té6stusmasinates ja mujal. Energiakorje
positiivne mdju lubab uuenduslikke rakendusi mida ei takista enam elektrokeemiliste
allikatega seotud piirangud. Siiski on veel mitmeid valjakutseid traadita sensorsélmede
energiasGltumatuse tagamiseks, nii riistvara kui ka tarkvara vallas. Energiakorje
keskkonnast, olgu see siis pdikeseenergia, tuuleenergia, soojusenergia VvOi
raadiosageduslikud signaalid, on tiipiliselt katkendliku loomuga. See tdhendab, et
traadita sensorsdlmed vdivad jaada ilma energiata, mis omakorda mojutab rakenduste
joudlust, Ghenduvust ja usaldusvaarsust.

Esmalt pakkus autor vilja jamedakoelisi mudeleid kasutava sisteemitasandi
raamistiku erinevate energiakorje tehnoloogiate ja nende koosluste jaoks traadita
sensors6lmedes. Katsetulemused nditavad kuidas raamistikku saab kasutada erinevate
energiakorje allikate hindamiseks traadita sensorsdlmede energiaga varustamisel.

Seejarel hindas autor traadita sensorsdlme energiakorje teel toitmise teostatavust
ilma energia akumuleerimiseta. Selle t66 véljapaistev tulemus on transientse
arvutusmeetodi implementeerimine mittevolatiilse maluga (FRAM) vorgusGlmes.
Katsetulemused naitavad et energiakorje koos transientse arvutusmeetodiga on
tGepoolest teostatav.

Jargnevalt pakkus autor vilja energia prognoosimise mudeli LINE-P (Linear Energy
Prediction). See baseerub aproksimeerimise ja vGendamise teooriatel. LINE-P on
kasutatav duaalsete energiakorje allikate jaoks muutuvate ajaintervallide korral
paremini kui tuntud parimad lahendused. Simulatsiooni tulemused naitavad, et LINE-P
prognoosi tdpsus on ligi 98% paikeseenergia korral ja ligi 96% tuuleenergia korral.

Sellele jargnevalt kasutas autor transientset arvutusmeetodit komibinatsioonis
energiakorje ja LINE-P prognoosimise mudeliga kahesuunalise side jaoks. See lubab side
alamilesande alustamist ainult siis kui piisav ja stabiilne energiavaru on prognoositud.
Kahe s6lme vahelise traadita side katsetamise tulemused nditavad, et kaks
kombineeritud meetodit nduavad ainult 15% v8rgusdlme malust ja pakutud lahenduse
keskmine vastuvotu maar on kuni 94,6%.

L6puks arendas autor valja adaptiivse LINE-P mudeli, mis kasutab fikseeritud
kaaluparameetrite asemel adaptiivseid kaaluparameetreid salvestatud energiaprofiilide
jaoks. Lisaks pakutakse valja profiilide kokkusurumise meetod maluvajaduse
vahendamiseks. Tulemused nditavad, et adaptiivse LINE-P tdpsus on kuni 90-94% ja
kokkusurumine vdhendab maluvajadust 50%.
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Abstract— FYPSim is a framework that enables the modeling of
various energy harvesting technologies and the sizing of energy
storage technologies at the system level with application to wireless
sensor networks. In this paper, we present the specific features of
FYPSim related to energy harvesting exploiting indoor solar, indoor
air flow, and indoor radio frequency energy sources. We also
describe the models used for modeling hybrid energy harvesting and
battery management. Our experimental results illustrate how
FYPSim can be used to evaluate the above technologies in
combination with Li-Ion batteries and supercapacitors.

Keywords—Indoor energy harvesting; Wireless sensor nodes;
Photovoltaic cells; Micro turbines; RF energy.

1. INTRODUCTION

Energy harvesting (EH) is more and more commonly used for
powering the nodes that compose wireless sensor networks
(WSNs), whereby EH circuits collect energy from distributed
sources such as solar, air flow, and radio-frequency (RF) and
transform it into electrical energy.

Generally speaking, existing WSN simulators lack
comprehensive coverage of energy harvesting technologies [1].
FYPSim is a framework currently under development as part of
our research effort that aim at modeling EH at the system-level so
as to provide WSN designers the possibility to rapidly compare
design alternatives. In this paper we focus on the specific features
of FYPSim related to indoor EH.

We first describe three examples of energy sources, i.e., solar,
air flow, and RF, exploited in an indoor context. We also propose
a hybrid model for EH based on combined indoor energy sources.
We also present a battery management circuit with low current
consumption that is cascaded with the storage device and the EH
system. This circuit starts harvesting energy from the source(s)
once the energy level in the storage device goes below a threshold
voltage; it stops harvesting energy when the storage device is fully
charged.

This research has been partly supported by the European Union through the
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Program.
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Finally, we present experimental results illustrating the
capabilities of FYPSim for the three above energy sources with
four different sensor types (Dresden AVR, Dresden Atmel-ARM,
SenseNode, and WiSense nodes).

II. SIMULATION OF INDOOR ENERGY HARVESTING
TECHNOLOGIES

Usually, energy available in indoor (ambient) environments is
underestimated and often considered as ineffective; however,
recent research has shown that indoor EH has the potential to
power WSN nodes. For example, energy can be harvested from
home appliance devices such as artificial lights, air conditioners,
radiators, and washing machines; even air ventilation can be used
to produce some electric power by using air micro-turbine
generators [5]; yet another possibility is to exploit the fact that the
human body emits energy in the form of heat all the time.

This section presents three examples of EH technologies that
can be used in an indoor context, including simulation results
based on mathematical models that available in the literature [1]-

[3].

A. (Indoor) Solar Energy

Conceptually, (indoor) solar EH is based on photovoltaic cells
(PV) that convert artificial light into electrical energy in the form
of a direct current with no need for conversion circuitry.

In [5], the authors considered a circuit with one diode and two
resistors (see Fig. 1) that is equivalent to a photovoltaic model
consisting of ny PV cells in series.

Fig. 1. Equivalent electrical circuit for a photovoltaic module [5].



Let’s suppose that the shunt resistance Ry, is infinite and that
the output of the PV module depends on the current-voltage
characteristics. This can be expressed as a four parameter model
described by (1) [6],

Ipyv= IL Ia[eXp( (VPV+IPVR5)/USVL) ‘1] (1)

where I; is the current generated from light (A), [, is the
dark/reverse saturation current of the p-n diodes (1x10? A), Ry is
the series resistance of the PV module, and V; is the junction

terminal voltage (V), as defined in (2),
Vi=== @

where Tt is the cell absolute temperature (K), & is the Boltzmann’s
constant (1.3807x10* J/K), and ¢ is the charge of an electron
(1.6022x10" C) [1].

Getting the harvested power from the PV module is difficult
because of the voltage-current relationship, so the value of R; is
set to a very few ohms; in addition, /py R, has to be negligible,
otherwise the voltage may drop significantly [4].

In [4], the authors’ formulation of the output power of a solar
panel, Ppy (Vpy), is expressed as per (3),
Ppy (Vey) =Vprley =Vev L - Vv L[exp (Vev/ngVi) -1]
= Vev I - Vev 1o [exp (Vev q /ns & To)] (3)
Note that the value of exp (Vpy/nsV;) is much greater than 1 and
that the light-generated current (/) = the short circuit current (/)
[6].

We have implemented (3) in FYPSIM and simulated the
harvested power, Ppy as a function of Vpy, with standard values
for the above mentioned parameters, i.e., indoor temperature 7. of
295 K, light irradiance of 480 lux, and measured /. of 74pA [1].
The results are shown in Fig 2.
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Fig. 2. Output power (Ppy) of the photovoltaic module for Vpy ranging from 1 to
4 V. The peak power is achieved for Vpy =3 V.

B. (Indoor) Air Flow Energy

Nature provides us with several non-polluting energy sources,
wind energy being one of them. The mechanism of a wind turbine
converts the kinetic energy of the wind into mechanical energy;
then a generator converts the latter into electrical energy [7].

As mentioned above, size is a key factor, so micro turbines
that exploit air flows are deemed the most suitable for
applications in indoor environments. Such micro turbines are
capable of producing (low amount of) energy with less than 1
m/sec air velocity, as shown in Table 1.

Generally, in cold places people use radiators during the winter
season to keep rooms warm; this results in air movement. It is
possible to calculate the corresponding air velocity by applying
“) [4],

Ve=10.65[g L dt/ (273 + t.)]"? @)

where g is the acceleration of gravity (9.81m/s?), L is the vertical
distance from the bottom of the surface (m), and (dt=t. - t;) is the
difference between the radiator’s surface temperature (°C) and the
room temperature (°C).

In the following example we assume that the initial to final
velocity ranges from 0.25 to 1.5 m/sec for calculating the
generated power at various levels of velocity.

In [2], a mathematical model of wind power is expressed as per
(5),
Pavait = 0.5(pnL*V>C,) (5)

German physicist Albert Betz concluded that no wind turbine can
convert more than (59.3%) of the kinetic energy of the wind into
mechanical energy turning a rotor; this is referred to as the power
efficiency and denoted by C),.

Specifically, (5) has been used to find the air flow power by
applying standard values i.e. p is the air density (1.22 kg/ m%), L
is the blade length (5 cm), and C, is the power efficiency (0.2).
We have simulated the air flow power (5) in our framework
(FYPSim); a screenshot of the corresponding power graph is
shown in Fig 3.
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Fig. 3. Simulated wind power for an (indoor) micro turbine for velocity ranging
from 0.2 to 1.5 m/sec.

As expected, the trend of the air flow power curve shown in
Fig 3 is cubic. For the experiments described in Section V, we
consider that the air velocity is 0.4 m/sec, yielding a harvesting
power of 0.216x10° W @ 0.4 m/sec. Based on the above power
value, the simulated harvested energy is 2.7 J over 24 hours, as
shown in the first column of Table I.



C. Radio Frequency (Indoor) Energy

The huge deployment of RF communication devices over the
last few decades makes RF energy available in many (especially
urban) areas at “any time and everywhere”. Typically, the radio
signals emitted by different sources, e.g. TV towers, mobile
stations, and dedicated RF energy sources can be considered as
RF energy transmitters; RF receivers (harvesters) can convert part
of the received radio frequency signals into electrical energy.

Radio frequency energy harvesting (RFEH) can be applied in
various contexts such as health monitoring systems, wireless
charging systems, and wireless body area networks [7, 8]. In
some implementations, a diode-based multi-stage voltage
multiplier (rectifying circuit) converts the RF signal (AC) into a
DC voltage [7]. The energy level of the RF signal (AC) also
depends upon the distance between the emitting radio source and
the RFEH circuit. Dedicated indoor RF sources possibly provides
higher AC voltages, and thus DC voltages, because of typically
short distances, e.g. 1.25 V @ 0.5 m [3].

In [3], the authors propose a mathematical model for an RF to
DC voltage converter, as shown in (6),

V=2 [Gand/ 41 d (2Re [Zree] Pry (1+0,7)) "-V5] (6)

where V is the calculated value of the output DC voltage, G is
the antenna gain (0.85 dBi), d is the distance (here we consider
0.2to 1.5 m), Re [Z,e.] is the reactance (20 Q), P,yis the maximum
available power (16.8 dBm), O, is the quality factor (7), and Vr
is the low forward voltage (150 mV).

Since [3] provides an equation for the output voltage only (i.e.
not for the current, nor for the power), we assume that the value
of the internal resistance Ry is 0.1 mQ and that of the load
resistance R; (Li-lon battery or supercapacitor) is 50 KQ. After
applying the maximum power theorem, the output DC voltage has
been simulated in FYPSim and the corresponding curve plotted
in Fig. 4. Assuming a scenario where d = 0.5 m, the output DC
voltage is 1.25 V and the corresponding harvested energy is 2.7 J
after a period of 24 hours.
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Fig. 4. Output DC voltage after conversion from RF for distances ranging from
0.2t02m.

III. MODELING HYBRID ENERGY HARVESTING SOURCES

As discussed above, each indoor source only produces low
levels of energy. Thus, combining two or more of such sources
(hybrid energy harvesting) has recently emerged as a potential
way to increase the total harvestable energy. In this section, we
propose to model a hybrid energy harvesting setup for the three
sources discussed previously by means of (7), whereby the
various energy levels are added and the sum is multiplied by a
coefficient reflecting the efficiency of the combining circuit,

Eypy = XizoEi  a=(Es+ Egr + Ey) « (7
where E; is the harvested solar energy, Err is the RF harvested
energy, Ew is the harvested air flow energy, and a efficiency
coefficient.

For the example used in Section V, the hybrid harvested
energy is (0.0094 +2.7 +2.7) * 0.59 =3.19 J.

In order to minimize the complexity of the hybrid setup, we
consider a single power management circuit referred to as battery
management (for which o ranges from 0.3 to 0.8). This approach
has the added benefit of avoiding several separate battery
management circuits. As shown in Fig. 5, this circuit is inserted
between the energy harvesters and the storage device (e.g. battery
or supercapacitor) and is described in the next section.

Fig 5. Block diagram illustrating that the link between the energy harvesters and
the storage device is controlled by the battery management circuit.

IV. BATTERY MANAGEMENT CIRCUIT

The circuit has been designed and simulated with LT Spice;
Fig. 6 shows its schematic diagram. As seen in Fig. 6, when the
battery voltage drops below the threshold value (red line), the
circuit starts harvesting energy from the energy sources until the
battery is fully charged (green curve). The blue curve shows the
overall charging/discharging cycle.

The characteristic of the circuit can be summarized as: Vpaery
= 5.2V, Vr, (threshold voltage) = 2.2 V, Vou = Vatery When
VBattery > Vrn and Vour = 0 V when Vaattery < Vrn,

Furthermore, the simulation results indicate that the current
consumption is very low at 630 pA.
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Fig. 6. Schematic diagram of the battery management circuit.

Fig. 7. Graphical presentation of the operation of the "Battery management’

circuit.

V. EXPERIMENTAL RESULTS FOR HARVESTED ENERGY FOR LOW
POWER WSN NODES

This section presents the simulation results for the
experiments conducted with FYPSim considering real-life nodes,
i.e. Dresden AVR [9], Atmel ATmega , SenseNode, and WiSense
[10] powered by either a Li-lon battery (5V) or a supercapacitor
(3.75V). Those experiments show how it is possible to rapidly
evaluate the feasibility of using the hybrid harvesting setup
described previously. The individual levels of harvestable energy
are listed in Table I, whereas the level of harvestable energy for
the hybrid setup is listed in the first column of Table I and Table
1I.

The behavior of the Dresden AVR, Atmel ATmega,
SenseNode, and WiSense based nodes are simulated taking into
account three different states referred to as idle, active and sleep
modes, with corresponding current consumptions indicated in the
first column of Tables II and III and the energy level listed in the
first column of Table 1.

Moreover, several duty cycle cases have been considered.
Note that we consider a worst-case scenario, i.e. the batteries or
supercapacitors are initially depleted. Average values for the
energy production and consumption are used in all simulations.

Case A: This is a special case since the nodes are always in
the sleep mode, and thus the energy consumption is minimal.
Obviously, such a mode is not used continuously in practice, and
the nodes have to be active at least intermittently. Nevertheless,

this case can be used to evaluate the performance of the system
during such inactivity periods. As can be seen in Table II and
Table III, Case A yields most of the feasible combinations
(positive numbers for ‘Prod-Cons’), except for the Dresden AVR
nodes (which has a higher energy consumption than the other
nodes).

Case B: This case reflects a scenario where the nodes have a
relatively light activity level (active for every 1 s out of 60 s),
which can illustrate applications such as health monitoring
system, slow-variation temperature monitoring, etc. As shown in
Table II and Table III, the number of feasible combinations is the
same as for Case A; again only Dresden AVR nodes yield to non-
feasible solutions.

Case C: as compared to Case B, the nodes are now active for
longer time periods, i.e. every 1.6 s out of 60 s, which corresponds
to rather intensive sensing and signal processing activities. As
shown in Tables II and III, the nodes consume much more energy
as compared to Case A and Case B. There are now more solutions
that are not feasible (Dresden AVR, ATmega) and SenseNode
(the LI-Ion battery combination). For the WiSense nodes, all
solutions are still feasible from a hybrid energy perspective.

Case D: this is an extreme case, which like Case A, is not
expected to be continuous. It can reflect peak demand in certain
applications, or applications for which sensing and/or signal
processing is intensive. As can be seen in Table II and Table III,
no solution is feasible for the selected hybrid energy harvesting
setup.

VI. DISCUSSION AND CONCLUSION

We have illustrated how a designer can use FYPSim to rapidly
evaluate the feasibility of hybrid energy harvesting to power
WSN nodes. In the specific example, we have considered indoor
solar, air flow, and RF energy sources for Dresden AVR, Atmel
ATmega, SenseNode, and WiSense based WSN nodes, combined
with either a Li-Ion battery or a supercapacitor.

The results tell the designer that the selected hybrid energy
harvesting setup in not suitable for the Dresden AVR node, even
for the least active mode (Case A); they also tell the designer that
the setup is suitable for the other types of nodes for the less active
modes (Case A and Case B). The results also tell the designer that
for the more intensive mode (Case C), the selected hybrid energy
harvesting setup is suitable for a limited number of combinations;
finally, the results for the most intensive mode (Case D) illustrate
the limit of the selected hybrid energy harvesting setup.

In the next phase of our research effort we will exploit the
features of FYPSim for evaluating the impact of using energy
harvesting on the performance of WSNs, among others at the
MAC layer (e.g. LEACH protocol) and in the context of hand-
over in WSNs.



TABLE IL. INDIVIDUAL ENERGY HARVESTING SIMULATION RESULTS.

Indoor Solar

Indoor RF

Indoor Air Flow

Temperature in K 295@2.0V
Ise=74puA@480Lux

RF-DC 1.25V@0.5m

0.31x10* W@0.4 m/sec

Harvested energy: 18.8 J/m?
0.0094 J/5cm*@24 hours

Harvested energy: 2.7 J@24

hours

Harvested energy: 2.7 J@24

hours

TABLE II. HYBRID (INDOOR) HARVESTED ENERGY BASED AVR, ATMEL, SENSE, W1 SENSE NODE POWER BY LI-ION BATTERY (5V).

Hybrid (Indoor) Operating Total time [300s] Case A Case B Case C Case D
Harvested Energy [J] Voltage Idle [s] 0 5 8 0
3.19 V] Active [s] 0 5 8 300
Sleep [s] 300 290 284 0
Dresden AVR current [A] 5 Node cons. (24 hours) [J] 4.32 220.17 349.68 8640
Liine=20%107 Req. Energy (30 days) [J] 129.6 6605.28 10490.68 259200
Lae=10%107 Prod.-Cons. (30 days) [J] -33.9 | -6509.58 | -10394.98 | -259104.3
Lueqy=10*10°°
Atmel ATmega current 1.8-5.5 Node cons. (24 hours) [J] 0.25 3.31 4.85 17.82
[A4] Req. Energy (30 days) [J] 7.76 93.93 145.63 5184
Leiine=0.4%107 Prod.-Cons. (30 days) [J] 87.92 1.76 -49.93 -5088.3
Liae=0.1*10°
Litep=0.6*10°°
SenseNode current [A] 1.8-3.6 Node cons. (24 hours) [J] 0.08 2.46 3.89 142.56
Licie=330*10° Req. Energy (30 days) [J] 2.59 74.02 116.88 4276.8
Lge=1.1*10"° Prod.-Cons. (30 days) [J] 93.10 21.67 -21.18 -4181.1
Ljeey=0.2*10"°
WiSense current [A] 3.6 Node cons. (24 hours) [J] 0.04 1.82 3 108
Licine=250%10"° Req. Energy (30 days) [J] 1.29 55.40 88 3240
Lie=0.7%10° Prod.-Cons. (30 days) [J] 94.40 40.29 8 -3144.3
Lieey=0.1*10°

TABLE IIIII. HYBRID (INDOOR) HARVESTED ENERGY BASED AVR, ATMEL, SENSE, W1 SENSE NODE POWER BY SUPERCAPACITOR (3.75V).

Hybrid (Indoor) Operating Total time [300s] Case A Case B Case C Case D
Harvested Energy [J] Voltage Idle [s] 0 5 8 0
3.19 v Active [s] 0 5 8 300
Sleep [s] 300 290 284 0
AVR current [A] 5 Node cons. (24 hours) [J] 3.24 165.13 262.26 3240
Lieine=20%107 Req. Energy (30 days) [J] 97.2 4953.96 | 7868.01 97200
La=10%107 Prod.-Cons. (30 days) [J] -1.5 -4858.26 | -7772.31 | -97104.3
Lieqy=10*10°
Atmel Atmega current [A] 1.8-5.5 Node cons. (24 hours) [J] 0.19 2.34 3.64 129.6
Lucine=0.4*107 Req. Energy (30 days) [J] 5.83 70.45 109.22 3888
Lae=0.1*10"° Prod.-Cons. (30 days) [J] 89.86 25.24 -13.52 -3792.3
Lieey=0.6*10°
SenseNode current [A] 1.8-3.6 Node cons. (24 hours) [J] 0.06 1.85 2.92 106.92
Licine=330%10¢ Req. Energy (30 days) [J] 1.94 55.51 87.66 3207.6
Lae=1.1*10° Prod.-Cons. (30 days) [J] 93.75 40.18 8.03 -3111.9
Lieey=0.2*10"°
WiSense current [A] 3.6 Node cons. (24 hours) [J] 0.03 1.38 2.19 81
Licine=250%10° Req. Energy (30 days) [J] 0.97 41.55 65.90 2430
Lue=0.7*10° Prod.-Cons. (30 days) [J] 94.72 54.14 29.79 -2334.3
Lyeey=0.1*10""
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Abstract: Energy harvesting is increasingly used for powering wireless sensor network nodes.
Recently, it has been suggested to combine it with the concept of transient computing whereby the
wireless sensor nodes operate without energy storage capabilities. This new combined approach
brings benefits, for instance ultra-low power nodes and reduced maintenance, but also raises new
challenges, foremost dealing with nodes that may be left without power for various time periods.
Although transient computing has been demonstrated on microcontrollers, reports on experiments
with wireless sensor nodes are still scarce in the literature. In this paper, we describe our experiments
with solar, thermal, and RF energy harvesting sources that are used to power sensor nodes (including
wireless ones) without energy storage, but with transient computing capabilities. The results show
that the selected solar and thermal energy sources can operate both the wired and wireless nodes
without energy storage, whereas in our specific implementation, the developed RF energy source can
only be used for the selected nodes without wireless connectivity.

Keywords: WSN; energy harvesting; transient computing

1. Introduction

Advances in semiconductor technology has given birth to low-power, miniaturized computing
units (microcontrollers, DSPs, (nano)-FPGAs), and radio modules. Such circuits are commonly used
for implementing the nodes in wireless sensor networks (WSN) and, more generally, in the internet of
things (IoT). On the other hand, and although new battery technologies (e.g., hydrogen fuel cells) are
being developed and promise new performance levels, those available today are not always sufficient
when it comes to filling the gap between the physical size, capacity, and energy requirements of the
computing and communication modules of the nodes.

Furthermore, for some applications, it is sometimes not possible to include a battery or
super-capacitor in the nodes due to stringent physical constraints or for maintenance reasons
(for example, it may be impossible to access a node integrated in a physical structure and replace its
energy storage unit if the battery fails or once its maximum number of charge/discharge cycles have
been reached, in the case of e.g., intensive and/or very-long term applications) [1].

Thus, many research efforts strive at designing (A) architectural solutions that effectively reduce
energy consumption in the processing and communication modules, and (B) energy harvesting
(EH) solutions that can complement, or even replace, the energy storage units of the nodes for, e.g.,
autonomous systems, leading to the concept of transient computing (TC) discussed later on.

In the context of WSN nodes, the idea of using EH emerged in the late 1990s [2] and refers to the
various techniques that allow collecting energy from the environment (solar, thermal, radio frequency

Electronics 2016, 5, 89; doi:10.3390/ electronics5040089 www.mdpi.com/journal/electronics
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(RF), etc.) and use it to recharge and/or complement energy storage units, such as rechargeable
batteries or super-capacitors, especially in the context of fully-autonomous WSN nodes and/or for
prolonging the lifespan of battery-powered WSN nodes. EH, aided by energy prediction or estimation,
has led to a service-oriented infrastructure supporting a broad range of applications such as IoT
and cyber-physical systems by optimizing the energy consumption and balancing the traffic load to
increase the nodes’ lifetime.

Nevertheless, EH remains challenging in many cases (e.g., for wearable sensors) due to strict form
factor constraints and usability concerns [3,4].

Examples of EH used in wearable WSNs include the research proposed in [1] where the authors
conducted real-world scenario experiments and achieved 550 uW for an indoor photovoltaic source
and 98-250 uW for a thermal source with 3° and 5° temperature gradients, respectively. Several works
have been proposed to minimize the RF energy requirements of the devices with different techniques,
such as at the physical layer [4,5], MAC, routing algorithms, and duty cycle [6-9]. In [10], the authors
used solar and wind energy harvesters and interfaced them with an ultralow power WSN hardware
infrastructure that is suitable for long-term wireless structural health monitoring (WSHM).

RF-EH is an emerging alternative among the numerous energy harvesting techniques. Indeed,
many RF transmitters (TV towers, mobile base stations, wireless access points, and even dedicated RF
transmitters) have been deployed in the past decades; RF energy can, thus, be considered as easily
available in many places [11], especially in indoor environments [12]. RE-EH has found applications in
wireless charging, wireless body area networks, surveillance, and cognitive radio networks [13,14]
with quality of service (QoS) constraints. Harvesting such energy is typically achieved by means of a
so-called rectenna, connected to the WSN nodes, that converts a share of the available energy of the
RF signal into electrical energy. Such rectennas are typically composed of an antenna and matched
voltage multiplier/rectifying circuitry tuned to the radio frequency of interest; such a setup converts
the RF signal to a DC voltage. In particular, dedicated indoor RF sources possibly provides higher
AC voltages and, thus, DC voltages, because of typically short distances between the energy source
and the nodes, e.g., 1.25 V @ 0.5 m [11]. Furthermore, when it comes to large-scale wireless networks,
simulation results [15] indicate that RE-EH can increase the lifetime of a network by up to 70% while
maintaining adequate quality of service. Simulation results presented in [16] suggest that RF-EH can
increase the lifetime of randomly-deployed dense cooperative WSNs up to 69%.

In [17] the authors focused on a solar energy harvester and energy management, in combination
with a new energy forecast model for WSNs. In [18], the authors proposed a hybrid energy harvesting
concept based on wind, solar, and chemical energy, which can be used for both simultaneous and
individual harvesting processes.

As illustrated above, a large body of research related to EH for WSNs and the IoT has been
published in the literature; the interested reader can refer to, e.g., [19] for a recent overview.

That being said, there is still room for research in this field. For example, it has recently been
suggested in [3] to combine the concepts of EH and TC. The overall idea stems from the fact that
harvested energy is typically fluctuating and intermittent, possibly leaving the WSN nodes without
power (even if they include a battery or super-capacitor since these can possibly reach a discharged
state). Another argument behind TC is to enable the design and implementation of WSN nodes that
operate without an energy storage unit (for e.g., size or maintenance issues, as mentioned earlier).

Such WSN nodes operating with energy storage, but complemented with TC, are suitable for,
e.g., applications that do not require permanent monitoring, or that are tolerant to delays (e.g., storing
data locally and transmitting it when energy is again available), or that are tolerant to missing data
(such missing data can sometimes be compensated for by means of spatial or temporal correlation
techniques).

A critical issue in TC is stopping (ideally pausing) and restarting (ideally resuming) computations
depending on the available power. For this, several methods, such as checkpointing [20,21] and
dynamic power management [22], have been recently proposed. They all rely on the use of
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microcontrollers that feature non-volatile memory, i.e., flash or more recently ferroelectric RAM
(FRAM), to enable saving and restoring the state and data of the node.

One of the first research effort related to TC is the Mementos approach, proposed by
Ransford et al. [20]. It turns general computing programs into interruptible versions that are ‘protected’
from frequent power cuts by means of a checkpointing mechanism that saves and restores the context
data and program into flash memory on a periodic basis. Although this mechanism adds an overhead
in terms of execution time, it enables suspending the execution when the voltage reaches a given
threshold and resuming when the voltage rises sufficiently again. In effect, this type of approach
enables spreading computation over time as a function of the available energy.

As a follow-up to the above, DINO (“Death Is Not an Option”) [23] adds support for dealing with
the inconsistency between volatile and non-volatile data that may occur due to frequent interrupts.
Another novelty in DINO is the use of a microcontroller based on FRAM instead of Flash memory.
The reported execution-time overhead for DINO is between 1.8 x and 2.7 x.

Further improvements to TC have been proposed in Hibernus [21]. The key idea here is to replace
the periodic checkpointing by an ad-hoc technique, whereby the microcontroller enters the save mode
only when the power supply voltage falls to a given threshold (detected by means of a comparator).
Hibernus significantly reduces the number of checkpoints and, thus, reduces the execution time and
energy overheads by 76%-100% and 49%-79%, respectively, as compared to Mementos.

QuickRecall [24] goes one step further by using the FRAM in a unified mode (i.e., containing the
instructions, data, and saves); thus, the RAM is not used, which can reduce execution time and energy
consumption since there are no data transfers between the FRAM and the RAM.

Recently, Balsamo et al. [22] have developed a TC method that adapts the power consumption
of energy-storage-less devices dynamically by means of dynamic frequency scaling (DFS), which
allows handling energy fluctuations in a finer manner. In addition to a threshold for detecting power
cuts, two extra thresholds are used to help decide if the voltage and frequency of the FRAM-based
microcontroller should be decreased or increased. Tests conducted on Fast Fourier Transform (FFT),
Cycling Redundancy check (CRC), and Rivest, Shamir, and Adleman (RSA) algorithms together with
solar and micro-turbine energy harvesters show that it is not only possible to adjust the performance
of the microcontroller but also to effectively reduce the number of save and restore phases since the
microcontroller is allowed to run in a lower performance mode when the available power is reduced.

Whereas transient computing has been demonstrated on microcontrollers (mostly without wireless
connectivity features), the literature still lacks reports on experiments with wireless-enabled sensor
nodes. The purpose of this paper is to share findings and experimental results obtained when three
EH sources (solar, thermal, and RF) are used to power both wired and wireless sensor nodes without
energy storage, and evaluate the practical feasibility of TC for WSNs.

The main contributions presented in this paper are:

(A) The practical implementation of three EH sources combined with a TC method on FRAM wireless
sensor nodes, and
(B) The assessment of the practical feasibility of such combinations.

In particular, it is shown that for the selected EH sources and nodes, the solar and thermal energy
sources can power both non-wireless and wireless sensor nodes without energy storage, whereas in
our specific implementation, the developed RF energy source can only be used for the selected nodes
without wireless connectivity.

2. Materials and Methods

2.1. Energy Modeling

Before evaluating the practical feasibility of EH combined with TC, we briefly review the
fundamentals of the three selected EH sources and related analytical models. These models are
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used to obtain baseline references against which the actual EH sources can be compared (including
both indoor and outdoor environments for the solar energy source).

2.1.1. Solar Energy

Visible light can be converted into electrical energy via solar panels that are typically constructed
from crystalline silicon cells (i.e., multicrystalline and monocrystalline silicon). Outdoor solar
harvesting is a highly explored area and provides a higher value of energy [1]. However, ambient
(mostly indoor) solar energy is not exploited as much since it generally provides less energy [25].
In [26], a formulation of the output power of a solar panel, Ppy (Vpy), is expressed as per Equation (1):

Ppy (Vpy) = Vpy Ipy = Vpy I — Vpy Io [exp (Vpy/ns Vi) —1] = Vpy Isc — Vpy lo [exp (Vpy-q/nsk-To)] (1)

where Vpy is the output voltage, Ipy is the output current, I, is the light-generated current, lo is the
dark/reverse saturation current of the p-n diodes, s is the number of series solar cells, V is the
junction terminal thermal voltage, q is the charge of the electron, k is Boltzmann constant, and Tc is the
ambient temperature.

2.1.2. Thermal Energy

Thermoelectric generators (TEGs) exploit the Seebeck effect to produce electrical energy. TEGs
are typically constructed from n-type and p-type semiconductors that are connected in series, which
are combined with thermal ceramics in parallel. By connecting a load of resistance Ry, to the TEG,
an electric current ITgg flows in accordance to the temperature difference. In [26], a model is proposed
for a TEG energy harvester. The corresponding model equation is showed in Equation (2):

(VTEG xnxax (Ty—1Tc)— VTEGZ>
Rs, TEG

Preg(Vrec) = Vi x Itgc = 2)
where n is the number of thermocouples, « is the Seebeck’s coefficient, Rs, TEG is the internal resistance,
and AT is the temperature difference (T—Tc, where Ty is the temperature of the hot side and T¢ is
temperature of cold side).

2.1.3. Radio-Frequency Energy

RF-EH devices are typically composed of an antenna matched to either a single or multiple
frequency bands, combined with an impedance-matching circuit tuned to the targeted frequencies,
followed by a voltage amplitude multiplier, e.g., as in the diode based, multi-stage voltage multiplier
proposed in [11]. In addition to the quality of the matching circuit, an important limiting factor in
RF-EH is the distance between the emitting radio source and the RF-EH circuit. In [11], an analytical
model of an RF to DC voltage converter is proposed and expressed by Equations (3) and (4):

V =2 [Gant M4t d (2Re [Zrec].Prg (1+Q%) V5 — VE] @)

where V is the output voltage of the RF-EH circuit which performs the RF to DC conversion, Gap; is
the antenna gain, d is the distance, Re (Zec) is the reactance, Py is the maximum available power, Q¢ is
the quality factor, and Vr the low forward voltage.

n Vo VO

— — 4
nRo + Ry, %_'_% 4)

Vout

where V| (i.e., V in Equation (3)) is the input of the voltage multiplier, Ry is the internal resistance, R,
is the load resistance, 7 is the number of stages, and V, is the output voltage.
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The above sections briefly reviewed the three EH sources used in this work. As mentioned earlier,
various approaches combining TC and EH have been proposed in the literature. However, such
approaches have not been widely experimented in practice, especially when actual radio modules are
included; what follows describes our experimental setup for conducting such experiments; our results
are then presented in Section 3.

2.2. Experimental Setup
The experimental setup consists of the hardware listed below.

e One MSP-EXP430G2 Launchpad kit (used as a temperature sensor node without wireless
connectivity);

e Two EZ430-RF2500 kits (used as temperature sensor nodes with wireless connectivity);

e  Two MSP-EXP430FR5739 kits with CC2500 evaluation module kit (used as sensor nodes with
wireless connectivity and non-volatile FRAM memory);

e One Linear Technology DC2080A energy harvesting multi source demo board including solar
(Panasonic AM-5412) and TEG (CUI INC CP85438) energy sources, as well as an input for our
self-developed RF-EH source;

e One self-developed RF-EH board (900 MHz matching network and five-stage voltage multiplier
architecture);

e Two Kent Electronics log periodic printed circuit board antennas (850 MHz to 6500 MHz);

e  One SMA 100 A Signal Generator—9 KHz to 6 GHz (used as an RF transmitter);

e One Jameco PS 613 DC Power Supply;

e One PRT-13781 solar panel (13.5 cm x 11.2 cm) and 3.3 V voltage regulator;

e One Hewlett Packard 34401A Multimeter for measuring the current;

e One Fluke 123 industrial scope meter for observing and measuring the voltages;

e One TES 1335 light meter for measuring the illuminances.

The schematic of the self-developed RF-EH board is shown in Figure 1; the corresponding
photograph is shown in Figure 2.

X_IN (258 3.3nF c3 3.36F CH 3anf c? 3.3nF C8 3.3nF

i I L
f ] | J
BHbt BHBt BHE Bt BHet
D1 HSMS-2852 D2Hsms-2852 | D3 HsMS-2852 | D4 HSMS-2852 DSHSMS-2852 X_0UT
| | = | I
[ 11 1 I~ )
C2 3.3nF ca 3.3nF c6 3.3nF €9 3.3nF Ciz 3.3nF b

Notes: X1,X2.X3 are not resistors, but elements of the matching network. By default X2 is a 0 ohm resistor.

PCB with a marking HP uses diodes HSMS-2852 and PCB with a marking SKY uses diodes SMS7621-005LF

Figure 1. Schematic diagram of the self-developed RF-EH (five-stage voltage multiplier).

Figure 2. Photograph of the two variants of the self-developed RF-EH circuit based on HP and
SKYWORK manufactured diodes.
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The code running on the MSP-EXP430FR5739 Kkits is the device-to-device example provided
in the SimpliciTI RF protocol package from Texas Instrument. This package was ported to the
MSP-EXP430RF5739 board by following the guidelines provided in [27]. The code has then been
modified to implement a TC method. For this, “Compute through Power Loss Utility (CTPL)” from
Texas Instrument was used [28]. It contains a set of functions for implementing the strategy, shown
in Figure 3.

Reset LPMx.5 Wake-Up

Vahd CTPL
Image?

cipl_init ()

Press Reset

Ctpl_enterShutdown ()

Different Modes Voltage drops
below threshold?

A4

m

Figure 3. Selected parts of Texas Instrument’s Compute through Power Loss Utility strategy used for
implementing TC. The Ctpl_enterShutdown () function is triggered when the power supply voltage
drops below the threshold. Adapted from [28].

In a first set of experiments, the DC2080A board (with onboard solar panel, onboard TEG, and
external RF energy harvester) was used. Each energy path (corresponding to the various sources)
on the DC2080A board includes a voltage step-up converter and power manager. The three energy
sources were first evaluated individually by configuring jumpers on the DC2080A board and then in a
simple hybrid mode by means of OR-ring diodes. Several experiments were run with and without
the small onboard capacitors (12 x 100 puF, configured via a jumper). These small onboard capacitors
are not considered as ‘real” energy storage (which would be implemented by e.g., supercapacitors
or batteries). In a second set of experiments, the PRT-13781 solar panel and 3.3 V voltage regulator
were used.

For the experiments with the MSP-EXP430FR5739 Kkits, a reference voltage (coming from the EH
source through a voltage divider) is fed to the microcontroller pin 1.5, as can been seen in Figure 4.
The proper operation of the CTPL utility has been verified by defining CTPL_BENCHMARK in
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the compiler and assembler predefined symbols, which enables toggling a pin to indicate that the
CTPL function has been triggered (pin 4.0 in our case); this toggling pattern is shown in Figure 5.
A photograph of the experimental setup is shown in Figure 6.

Oscilloscope

(Voltage)
Channel A, B

Multimeter

(Current)

PS 613 DC
Power
Supply

Radio Link
C2500EM 3.0

DC2080A

(EH kit)
33V

PRT-13781 Voltage
Regulator
Solar Panel 33v

Figure 4. Block diagram of the experimental setup used to test TC with the FRAM-based microcontroller
and radio link. It is possible to switch between a regulated DC power supply, energy harvesting kit
(with onboard solar and TEG sources and external RF source), and the external solar panel. When the
reference voltage on P1.5 lowers down to the value set in software, the ctpl_enterShutdown () software
function is triggered; this can be verified on P4.0.

Figure 5. Illustration of the toggling pattern. The threshold value is set in software to 2.5 V; thus,
when the voltage drops below (here captured at 2.388 V), the state and data of the microcontroller
is saved. This is followed by the toggling pattern that indicates the end of the CTPL function (the
ctpl_enterShutdown () function continues to toggle the pin while waiting for the device to enter a BOR).
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Figure 6. Photograph of the experimental setup. Here, the external solar panel is used to power the
FRAM-based microcontroller. The regulated DC power supply and multi-source EH kit can be seen in
the background.

3. Experimental Results

3.1. Powering the Nodes with RF-EH

We have first characterized the DC output voltage of the self-developed RF-EH (by means of
the Kent Electronics log periodic printed circuit board antennas and SMA 100 A Signal Generator)
and compared the measurements with the analytical models (described in Section 2.1.3). As shown in
Figure 7, both simulated and measured output DC voltages peak at 900 MHz (the matching frequency)
and, to a lesser degree, at 1.8 GHz. As can also be observed, although their orders of magnitude are
similar, the simulated and measured curves do not fit perfectly. This can be explained by the fact that
the selected analytical model is not sufficiently realistic since it does not take the conversion efficiency
into account; in future work a model, such as the one proposed in [16], could be used instead.

4 T T T T T T T T
Y Analytical Model at 14dBm
‘1{ Analytical Model at 16.8dBm
",i Analytical Model at 18dBm
Sl LY Measured at 14dBm il
"i_ Measured at 16.8dBm
< 251 \ ~— Measured at 18dBm 1
a
e 2r
g
>° 15}
1 L
05F
0 1 1 1 1 L L L :
0.3 1 12 14 16 18 2 22 24 26

Frequency (Hz) . 109

Figure 7. Analytical model and measured output voltages for the RF-EH (five-stage voltage multiplier)
at 5 cm, without a load.
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We have then used the RF-EH circuit to power the MSP-EXP430G2 kit (configured as a wired
temperature sensor). Figures 8 and 9 show the output DC voltage for frequencies ranging from
900 MHz up to 2.6 GHz for five different RF levels (10, 12, 14, 16.8, and 18 dBm) with 2 cm and 5 cm
distances between the transmitting (TX) and receiving (RX) antennas, respectively. As expected, the
maximum output voltage is achieved at the matching frequency (900 MHz). It can also be seen that
there is another smaller peak at 1.85 MHz for all input levels. The experimental results (first row in
Table 1) show that the energy provided by the self-developed RF-EH board is sufficient to power the
MSP-EXP430G2 kit configured as a wired temperature sensor with a distance of 5 cm and 18 dBm.

Al — 10dbm i
— 12dbm
4+ — 14dbm E
— 16.8dbm
= — 18dbm ]
s 3t -
a
o
Sl E
(=]
=
a8 2r p
161 R
1 N <
05F k
0 1 L ——— L L
0.8 1 1.2 14 1.6 1.8 2 22 24 26
Frequency (Hz) x10°

Figure 8. DC voltage at the fifth stage of the self-developed RF-EH board when powering the
MSP-EXP430G2 kit. The distance between the TX and RX antennas is 2 cm.
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Figure 9. DC voltage at the fifth stage of the self-developed RF-EH board when powering the
MSP-EXP430G2 kit. The distance between the TX and RX antennas is 5 cm.
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Table 1. Measured voltage and current values with different nodes powered by the RF, solar, and TEG
energy harvesters.

Node’s Voltage [V]; Node’s Voltage [V]; Node’s Voltage [V];
EH Technology Current [mA] Current [mA] Current [mA]
MSP-EXP430G2 EZ430-RF2500 MSP-EXP430FR5739+CC2500
RF (900MHz@5 cm, 18 dBm) 1.83; 0.029 0.89;2.21 0.001; 0.0
Solar (Panasonic AM-5412) 3.2;024 3.23;0.19 See Table 2 for values
TEG (CUI INC P85438) 3.0;,0.25 2.8;0.182 2.35;0.66

We have then used the RF-EH board to power the nodes that feature wireless connectivity
(EZ430-RF2500 and MSP-EXP430FR5739 kits with CC2500 evaluation module kit). The experimental
results show that the RF-EH board does not provide sufficient energy to operate the nodes featuring
wireless connectivity, even whilst the small onboard capacitors are enabled. This is essentially due to
the peak current that is required when the nodes boot and try to form or join the wireless network,
which makes the voltage drop below the minimum operating voltage of the microcontrollers. However,
the self-developed RF-EH is used for illustration purposes only and could be replaced by a more
efficient one.

3.2. Powering the Nodes with the Onboard Solar Source

This experiment makes use of the onboard solar panel (3 cm x 5 cm) in a well-lighted office
environment; it powers the three different types of nodes, one at a time. The experimental results
(second row in Table 1) show that the solar energy source is able to boot and operate the three types of
nodes (including with wireless connectivity), even whilst the small onboard capacitors are disabled.

Moreover, specific experiments have been conducted with the MSP-EXP430FR5739+CC2500 kits
which were powered by alternative sources instead of those reported in Table 1. The two Kkits are
programmed as a transmitter and a receiver. The results are presented in Table 2. The sources are
(i) a fixed power supply and (ii) the onboard solar panel. Tests have been conducted both with and
without wireless activity. Due to the low ambient illuminance, extra lamps had to be used to boot the
nodes (measured at 9.98K LUX). As can be seen for the transmitter case, the current increases quite a
lot when the radio in on, leading to a voltage drop. The same does not happen for the receiver.

Table 2. First to fourth rows: measured voltage and current for the MSP-EXP430FR5739+CC2500
used as a transmitter.  Fifth to eighth rows: measured voltage and current for the
MSP-EXP430FR5739+CC2500 used as a receiver, both with the fixed power supply and the onboard
solar panel (3 cm x 5 cm).

Source [V] Node Input [V] Node Output [V] Node Input [mA]
Main 3.3 3.33 2.5 2, No Radio
Main 3.3 3.33 2.5 37, With Radio
Solar EH 3.327 3.325 2, No Radio
Solar EH 2.185 2.167 29, With Radio
Main 3.3 33 3.106 2, No Radio
Main 3.3 3.3 3.106 20, With Radio
Solar EH 3.326 3.211 2.11, No Radio
Solar EH 3.324 3.112 20, With Radio

3.3. Powering the Nodes with the PRT-13781 Solar Panel

As seen above, it is difficult to boot the MSP-EXP430FR5739+CC2500 kits with the onboard solar
panel, mostly due to the peak current when booting. Thus, further experiments were also conducted
with the larger PRT-13781 solar panel (13.5 x 11.2 cm); the results for the transmitter and receiver are
presented in Table 3.
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Table 3. First and second rows: measured voltage and current for the MSP-EXP430FR5739+CC2500
used as a transmitter. ~ Third and fourth rows: measured voltage and current for the
MSP-EXP430FR5739+CC2500 used as a receiver, with the larger solar panel (13.5 cm x 11.2 cm).

Parameters Case I (Outdoor Light) Case II (Indoor Light) Caselejalo(osrh]dairé)hl;)amp

Light Intensity [LUX] 5.36 K 146 K 9.98 K
Voltage [V] and Current 3.06 3.10 3.5
[mA] without radio 2.46 2.00 2.16
Voltage [V] and Current 3.0 3.09 3.5

[mA] with radio 20.0 22.0 22.16
Voltage [V] and Current 3.0 3.10 3.5
[mA] without radio 2.16 2.00 2.16
Voltage [V] and Current 291 3.09 3.5

[mA] with radio 19.98 22.0 22.16

3.4. Powering the Nodes with the TEG Source

In this experiment, the analytical model (described in Section 2.1.2) and the measured output
voltage of the onboard TEG EH are compared. The results shown in Figure 10 indicate that the orders
of magnitude and overall trends are similar but not matching perfectly. This can be explained by the
fact that some of the required parameters are not provided in the datasheet of the TEG module and
had to be estimated.

Power (UWY)

ok Power Analytical Model at 50e3 ohm Load
Power Analytical Model at 83e3 ohm Load
Power Analytical Model at 100e3 ohm Load
05k Measured Power at 50e3 ohm Load
Measured Power at 82e3 ohm Load
Measured Power at 100e3 ohm Load

1 1 1 1 1 1 1 1

2 25 3 35 4 45 5 5.5 6
Voltage (V)

Figure 10. Analytical model and measured power for the TEG-EH source with different loads.

Furthermore, the TEG EH source was used to power the three different nodes, one at a
time. Keeping the palm of the hand on the TEG module gradually increased the temperature and,
consequently, the output voltage, as shown in Figure 11 for the EZ430-RF2500 kit (used as a temperature
sensor node with wireless connectivity). Due to this gradual start, it was necessary to use the small
onboard capacitors to boot the nodes. The experimental results (third row in Table 1) show that whilst
the TEG-EH does not provide as much energy as the onboard solar panel, it is also able to operate all
three types of nodes (one at a time).
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Figure 11. Output voltage of the TEG module over time, when heated with the palm of the hand.

4. Concluding Remarks

Our practical experimental results show that EH combined with TC in WSN nodes is feasible.
However, a number of conditions have to be met to makes this possible.

One of them is to implement a mechanism that allows pausing and resuming computations on
the nodes depending on the available power. The results show that for simple applications, such as
the one used in our experiments, a lightweight method like CTPL combined with a FRAM-based
microcontroller is sufficient.

Another condition is to have energy sources that are powerful enough to power the nodes.
The experimental results show that it is possible to boot and operate WSN nodes solely on certain
harvested energy sources (in our case: solar, thermal, or hybrid), but not on others (in our case: RF and
an onboard solar panel in ambient conditions). The experimental results also confirmed that the peak
currents can be problematic, not only for booting the nodes but also for resuming computations after a
power cut. Although adding extra capacitors might alleviate the problem, this would somehow defeat
the whole purpose of operating WSN nodes without energy storage units.

Generally speaking, the experimental results are positive, but also highlight the need for careful
dimensioning of the EH sources and the save/restore method. For those applications that are more
complex or more demanding, it would most likely be needed to use more sophisticated methods, such
as the ones discussed in the introduction; this is a possible topic for future work.

Another topic that needs to be further investigated is the impact that TC has on the application
that runs on the WSN nodes in terms of quality of services (QoS) and quality of experience (QoE),
especially for a large number of nodes. For this, it would be best to begin with simulations to evaluate
metrics, such as delay, latency, throughput, and jitter in a system where the nodes are on and off at
different times. Despite the fact that, in general, such patterns are expected to degrade the QoS and
QokE, it might be possible to apply some of the methods and techniques developed for delay-tolerant
networking and disruption-tolerant networking (although the memory and bandwidth overheads
would have to be minimized significantly).
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Abstract: Energy harvesting technologies such as miniature power solar panels and micro wind
turbines are increasingly used to help power wireless sensor network nodes. However, a major
drawback of energy harvesting is its varying and intermittent characteristic, which can negatively
affect the quality of service. This calls for careful design and operation of the nodes, possibly by
means of, e.g., dynamic duty cycling and/or dynamic frequency and voltage scaling. In this context,
various energy prediction models have been proposed in the literature; however, they are typically
compute-intensive or only suitable for a single type of energy source. In this paper, we propose Linear
Energy Prediction “LINE-P”, a lightweight, yet relatively accurate model based on approximation and
sampling theory; LINE-P is suitable for dual-source energy harvesting. Simulations and comparisons
against existing similar models have been conducted with low and medium resolutions (i.e., 60 and
22 min intervals/24 h) for the solar energy source (low variations) and with high resolutions (15 min
intervals/24 h) for the wind energy source. The results show that the accuracy of the solar-based and
wind-based predictions is up to approximately 98% and 96%, respectively, while requiring a lower
complexity and memory than the other models. For the cases where LINE-P’s accuracy is lower
than that of other approaches, it still has the advantage of lower computing requirements, making
it more suitable for embedded implementation, e.g., in wireless sensor network coordinator nodes
or gateways.

Keywords: WSN; energy harvesting; transient computing

1. Introduction

Although improvements have been made in the domain of energy storage (e.g., supercapacitor
and lithium battery), those storage devices still have numerous shortcomings such as size,
installation, maintenance and cost, especially for WSNs nodes [1]. In this context, energy harvesting
is an increasingly popular approach used for powering wireless sensor network (WSN) nodes. Various
energy harvesting methods and techniques have been proposed and developed over the last decade [2];
such approaches are typically used to complement more traditional energy storage devices such as
rechargeable batteries and supercapacitors, or even to replace them all together as in battery-less nodes
that operate according to the principles of transient computing [3].

However, energy sources such as solar and wind are characterized by significant variations and
intermittence; thus, it is challenging to guarantee that the WSN nodes always have the necessary energy
to operate. In turn, this can negatively impact the quality of service of the application. In the worst
case, some nodes might temporarily run out of energy. To alleviate this issue, on-line mechanisms
such as dynamic duty cycling and/or dynamic frequency and voltage scaling can be used to modulate
the energy consumption of the WSN node according to the available energy.

Sensors 2017, 17, 1666; d0i:10.3390/s17071666 www.mdpi.com/journal/sensors
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In this context, energy prediction plays a vital role to deal with questions such as “when is the next
power loss going to happen?” and “What will happen when the data transmission/reception is performed
although energy has not been predicted properly?” In addition, “Will WSNs operation provides
satisfactory QoS by using energy prediction, specifically if used together with transient computing?”
The importance of energy prediction in WSNs is also highlighted by recent works such as [4] which
proposes a forecast algorithm applicable to solar-powered WSNs and also demonstrates its practical
implementation using real WSN nodes, as well as [5] which focuses on a wind energy prediction model.
In particular, the accuracy of the prediction or forecast model is deemed significant, especially in the case
of autonomous WSNs for which proper operation relies on the available energy predictions [4].

Moreover, research shows that, at least as of today, a node’s radio chip consumes the largest
amount of energy as compared to computation and sensing operations [3]. Proper management of
radio consumption can be more effective if the microcontroller of a WSN node can be programmed
in such a way that it performs the transmission/reception operations in accordance to the predicted
energy availability.

Furthermore, other causes of energy wastage in the WSN nodes are idling, listening, etc.
As a solution, a node remains in the idle state and wakes up when the energy is predicted and performs
transmission/receiving at that time. Energy prediction can be seen as an alternative solution [3], which
can control the computation and communication operations in the WSN nodes, although energy
optimizations techniques can also be applied with modifications, e.g., in the MAC (media access
control) protocol [6].

For better performance of the autonomous WSN nodes, energy prediction concept is essential
because prediction at different data time intervals provides more accuracy, realistic results, and allows
executing the tasks when energy has been properly estimated [7].

Although it could be argued that energy prediction in the context of energy harvesting
technologies for WSNs is now quite mature, few energy prediction models provide accurate results
at a low computational complexity cost. In fact, energy prediction for autonomous WSNs is still
not extensively explored, which calls for further research. Most of the prediction models use as
much as possible the energy history (e.g., past records) for accuracy [7] or by employing rather
computational complex models to reduce the error estimation. On the contrary, in this article, we
propose three different sub-cases of an energy prediction model, named LINE-P, which considers
very few values for predicting energy from past records. Furthermore, most proposed energy
prediction models are suitable for solar energy or wind energy only; to accommodate the emergence of
multi-source energy harvesting, the proposed LINE-P model supports dual-source (solar and wind)
WSNis harvesters.

The main contributions presented in this paper are:

1. Anoverview of existing fixed weighting factor based energy prediction models.

2. A proposal for a symmetrical kernel-based model (LINE-P) for dual-source (solar and wind)
which estimates the value on three different data time intervals, i.e., shorter, medium and
longer. Indeed, although different prediction models have been proposed in the literature to
forecast solar or wind energy availability, most are based on a fixed weighting factor. However,
the fixed weighting factor is incompatible with the solar powered WSNs because each solar
panel has a different set of parameters [4]. On the other hand, the symmetric kernels have
simple computation of the dot product in a potentially infinite dimensional feature space by
means on the kernel function. In addition, symmetric kernels have a simpler structure than
non-symmetric kernels.

3. A comparison of the proposed LINE-P model against state-of-the-art energy prediction models
(fixed weighting factor) for solar and wind-based energy sources. We validate our model by
using real datasets (energy profiles) and comparing the performance of the various models by
means of classical error estimation techniques, showing their accuracy and complexity in terms
of execution time and space (memory).
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Before looking at the details of the existing and proposed models, what follows briefly discusses
solar and wind energy; these two sources as used for the experimental results described in the second
part of this paper.

1.1. Solar Energy

In consumer applications, the concept of solar energy harvester came up in the late 1980s [8],
as illustrated by many applications such as calculators and electronic games that were powered by
means of solar harvested technology. Solar energy harvesting converts light and heat from the sun into
electricity. Nevertheless, the direction of the solar panel is very crucial; i.e., two co-located harvesters
at different angles produce different amounts of energy. In addition, indoor solar energy harvesting
is generally speaking less exploited as it generates less energy [8].

Both outdoor and indoor solar energy harvesting can potentially power a system for relatively long
durations, although due to their uncertainties (either varying weather or varying indoor illumination
patterns), neither can be used very in a dependable way, especially when considering autonomous and
transient computing based nodes.

1.2. Wind Energy

Nature provides us many non-polluting energy sources, including wind. Three key elements
affect the amount of energy that can be harvested from wind, i.e., wind speed, air density and shaft
area. A small change in these elements causes large differences in the net amount of energy, either
positively or negatively. It has also been shown that no wind turbine converts more than 59.3% of
the kinetic energy of the wind into mechanical energy [8].

1.3. Datasets

In order to design the proposed energy prediction model, as well as to evaluate and compare its
performance, several datasets have been used. Significantly, solar and wind technology are varying
and intermittent by nature. For solar energy, we considered two different data time intervals, shorter
and medium; since wind energy is very uneven, a longer data time interval is better for improving
the prediction accuracy. However, a longer time interval (more number of slots) requires more space.

To fulfill the different data time interval requirements, we obtained datasets from trusted sources
for different locations.

From the California ISO (Folsom, CA, USA), we selected three datasets for solar energy,
Southern California Edison Company (SCE, Rosemead, CA, USA), Pacific Gas and Electric Company
(PG&E, San Francisco, CA, USA), San Diego Gas & Electric Company (SDG&E, Santa Ana, CA, USA),
and one dataset for wind energy [9].

Shorter, medium and longer data time intervals of 22, 60 and 15 min, consisting of 24, 61 and 96
slots in 24 h, respectively, have been used. Furthermore, data from NREL’s Solar Radiation Research
Laboratory (SRRL, Washington, DC, USA) [10] were used for one solar energy profile (shorter data
time interval).

Finally, we used one profile for wind energy from Elia (Belgium'’s electricity transmission system
operator) [11] specifically for longer data time interval.

2. Materials and Methods

In the context of WSNs, few prediction models for solar and very few for wind energy exist.
This section comprises two parts: in the first one, the state of the art related to solar and wind based
energy prediction models is discussed in detail; and, in the second part, we describe and discuss
the proposed LINE-P model.
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2.1. Solar-Based Energy Prediction Models

Solar energy is considered on short-term intervals for accurate prediction purposes, i.e., a day
is divided into slots ranging from one minute to several hours [12]. For example, in [12], a day
is divided into 24 slots (an hour equal to one slot).

2.1.1. Exponential Weighted Moving Average (EWMA)

EWMA [13] is one of the popular prediction models in the domain of WSNs. Several models
have then been proposed to extend EWMA [6,13,14]. EWMA predicts the solar energy based on
the energy profile of the previous day along with the historical average of real data [15]. EWMA has
been discussed in [6] and is expressed as:

X(i) =aX(i—1)+ (1 —a)x(i) M

where x(i) denotes the value of the real energy. EWMA is dependent on the weighting factor «, which
ranges from 0 to 1, and x(i), which expresses the real energy. EWMA works very well on longer slots
and if the weather is consistent. However, EWMA is not suitable for shorter slots and generates large
errors for alternate sunny and cloudy days [15].

Complexity of EWMA: In this work, we are interested in comparing the complexity (in terms of
running time) of various energy estimation methods. For this, we present the Big-O notation for each
of them, starting with that of EWMA for a single estimation value. Since in Equation (1) the number
of multiplication operations are constant and one addition operation is performed, the complexity
in terms of running time is denoted by T(n); i.e., T(n) = 2, thus the Big-O for EWMA is O(2).

2.1.2. Weather Conditioned Moving Average (WCMA)

WCMA is an extension of EWMA that works on short-term prediction by accounting for the mean
of the previous day’s energy as well as the mean of the current day’s energy [14]. WCMA is proposed
in [6] and expressed as:

E(d,n+1) = aE(d,n) + GAPx(1 — a)Mp(d,n +1) @)

The estimation yielded by WCMA is more accurate and has a lower computational complexity as
compared to EWMA [16]. In Equation (2), & is a weighting factor similar to that used in Equation (1),
E(d, n) is the harvested energy of the previous slot, Mp(d, n + 1) is the mean of the D past days atn + 1
sample of the day, and GAPx is a new factor which reflects the solar condition in the present day on
the base of the previous day [15], and E(d, n + 1) is represent predicted energy for the next slot. In [15],
the authors presented a comparative analysis of EWMA with WCMA and found higher accuracy for
WCMA based on four different day profiles. Considering K = 3 and « = 0.7 for both models, the mean
square error (MSE) and mean absolute error (MSA) of WCMA is less than that of EWMA, i.e., 5% and
7%, respectively.

Complexity of WCMA: WCMA introduces the GAPy factor that depends on the present and previous
days, so GAPx complexity in terms of running time is T(n) = n2 (k + 1), where n is the length of
the vector and k is the number of previous days. Mp(d,n + 1) is the mean of the past days, so it
is T(n) = nk. The total complexity of WCMA in terms of running time is T(n) = k (7% + 1) and with
the Big-O notation it is O(n?), whereas the other parameters are negligible.

2.1.3. Accurate Solar Energy Allocation (ASEA)

ASEA is also based on EWMA. In [16], the author realized the importance of short-term
conditions, and designed the ASEA model keeping in mind situations where the weather is extremely
unpredictable such as in the northern part of Europe, etc. To address the above problem, the authors of
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ASEA introduced the parameter ¢ as a weighting factor. It is based on the ratio between the harvested
energy and real energy data, based on the previous slots. For example, when ¢ is smaller than 1,
it indicates bad weather or other issues.

The ASEA model is expressed as:

H(d,n—1)

E(d,n) = E(d,n).p; where p = E(dn—1) ©

where E is the predicted value of EWMA and H is the harvested energy.

Moreover, 1 is calculated at the start of each slots, and then multiplied with EWMA for the ASEA
prediction values. In [17] the authors have checked the performance of ASEA on the summer season;
usually the weather was consistent at that time. However, we have verified the performance of
ASEA by utilizing three different data profiles (for three different months, i.e., in August, October
and December) and we found that ASEA is not always closer to real data than WCMA, as Figure 1
illustrates for the month of December on the dataset presented in [9].

December (Day1) -~ December (Day2)
—Real data| —Real data|
—EWMA —EWMA
" —WCMA | —WCMA
ASEA | ASEA
g =
- = - K\*\&
5 L 5 af
3 3 4
= &
' : Slots Slots
- ~ December (Day3) " _ December (Day4)
—Real data —Real data
—EWMA —EWMA
b —WCMA —WCMA
ASEA | ASEA

Power (Watt)
)
v
Power (Watt)

Lz

0 - a5 g - = = = = = =
® » o = = 5 [ 3

Slots Slots

Figure 1. Graphical comparison of three energy prediction models (EWMA, WCMA, and ASEA)
with real solar energy data for four different days in December. While the three models can follow
the general trend of the real data, none of them can deal with all illumination variations due to
inconsistent weather conditions.
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Complexity of ASEA: ASEA introduces the ¢ factor which has T (1) = 1. This is then multiplied with
the value of EWMA as can be seen in Equation (3). Thus, the total complexity of ASEA in terms of
execution time is T(n) = 2. The Big-O notation of ASEA is O(2).

2.1.4. A Solar Energy Algorithm with Q-Learning (QL-SEP)

QL-SEP is a solar energy prediction model that has been recently proposed in [12]. It uses
the historical data of past days and as well as most recent weather condition from the present day.
In [12], the author assumes that solar energy is based on a periodic cycle and they thus equally divide
each day into many slots. QL-SEP also uses the feature of EWMA for the current solar condition.
Furthermore, the author introduces a daily ratio (DR) parameter. DR is the average of the energy either
increasing or decreasing in the previous slots. DR can be computed as:

bR = EMA(P)R()).
Yi
In Equation (4), P, expresses the prediction error, R is the reliability level and i is the index.

R is the key factor which represents the current reward (status) [12]. Suppose the harvested energy H
is that of the prediction energy of EWMA as shown in Expression (5):

4)

|H - P|
P

®)

Therefore, if the result of Equation (5) is positive, then R is considered as +1, otherwise —1,
when calculating R for each slot. In addition, the value of R changes the status of r as per y which
is the learning rate with the value of 0.1 in [12]. These parameters are applied in Equation (6) to
calculate the Q-value:

Qry1(s) = Qe(s) +7(r — Qi(s)) (6)

After calculating the Q-values, DR is obtained as:

£ (H50) .00
D —
Finally, the QL-SEP predicts the energy based on DR and EWMA, as expressed in Equation (8):

DR )

Eqr-sep = Eewma (1 + DR) (8)

In [12], the author evaluates the QL-SEP models on real-life solar data over a one-year period
and achieves better estimation comparatively to EWMA, ASEA, and Pro-Energy. However, QL-SEP
is designed for longer slots; for instance, each day is divided into 24 slots [12], which is not suitable
if the weather changes rapidly and continuously; furthermore, to get accurate results, a significant
number of computations are required since the device running the prediction modeling has to perform
the calculations for EWMA and then for QL-SEP.

Complexity of QL-SEP: In Equation (8), DR is dependent on the Q-value, as can be seen in Equation (7),
so the complexity in terms of running time of DR is T(n) = (2n + 1)q. Then, for obtaining the final value
of QL-SEP, this is multiplied with EWMA. Now, T(n) = (4n + 2)g, and the Big-O notation of QL-SEP
is O(n); the other parameters are negligible.

2.1.5. Pro-Energy Prediction Model (Suitable for Solar and Wind)

Pro-Energy (PROfile Energy prediction model) predicts energy based on the past days [12].
The Pro-Energy model is designed for multi-source (solar and wind) and is recommended for short
and medium slots in a given day. Pro-energy matches the information of the current day with the most
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similar day among the pool of stored energy profiles. In addition, Pro-energy predicts the next value
with the combination of the next slot in the stored profile noted in the last slot [14].
The energy for the current day is calculated as:

E(d,n) = «H + (1 — o) Ens )

where H is the harvested energy in the previous slot and Eys is the observed energy for the most similar
day. For evaluating the similarity between the previous day and the current day, the mean absolute
error (MAE) of each day from previous to current slot is calculated and stored in K. The smallest MAE
of any day is considered as the most similar day [14]. For multiple profiles, Eys is replaced with
a weighted profile (WP) that is computed as:

P
_ Z]':O IU]'.ESJ‘

wp
P-1

(10)
Pro-energy combines multiple energy profiles in order to get better estimates for different data
time intervals. In Equation (10), P represents the profiles, MAE of each day is stored in E, and w;

is calculated as:
MAE (Eg;, C)

w/ =1— B
L/ MAE (Ey;,C)

11
where C is the current day. By inserting Equation (11) into Equation (10), and for multiple profiles,
Equation (9) becomes Equation (12), i.e., the energy prediction model of Pro-Energy:

E(d,n) = «H + (1 — «)WP (12)

In [14], the authors evaluate the performance of Pro-energy by deploying TelosB nodes with Solar
PV and wind micro-turbines energy harvesters along with datasets from the US National Renewable
Energy Laboratory. Their results show 60% better prediction than EWMA and WCMA.

Complexity of Pro-Energy: The Pro-Energy model expressed in Equation (12) is based on multiple
profiles and requires a significant number of computations. K stores the mean absolute error (MAE) of
previous and current slots, so its complexity in terms of running time in relation to w; is T(n) = (k + 1)?
and that of WP is T(n) = n. Overall, the running time complexity of Pro-energy is T(n) = (k + 1)?n, i.e.,
higher than that of the previously analyzed models because of the squaring factor. The Big-O notation
of the Pro-Energy model is O((k + 1)?).

3. Proposed Dual-Source (Solar and Wind) Linear Energy Prediction) Model (LINE-P)

In this section, we discuss the proposed linear energy prediction model, of which the aim
is to reduce the computational complexity while maintaining similar accuracy as compared to
the other models.

In order to predict the amount of the harvested energy in the next time slot, we propose a class of
methods based on sampling operators. We suppose that the energy profile E can be expressed as:

E(t) = E*(t) + E() (13)

N

where E* is a smooth trend and E represents fluctuations. Our aim is to construct a predictor that on

the one hand is good for approximation of smooth trends expressed by E* and, on the other hand,
—

is not so sensitive to fluctuations expressed by E. In our approach, we use results of approximation

and sampling theory. In the following, we provide a short overview of those results.
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3.1. Sampling Operators

For the uniformly continuous and bounded f € C(R), the generalized sampling series are given
by (t € R;w > 0) as Equation (14), i.e., a summation of function values with sampling kernel,

(Suf)(B) ; £((5 st =, (14

where s € C(R) is a kernel function (see Definition 1 below).
If the kernel function, used in sampling series is the cardinal sine or sinc function, as:

sin 7Tt

s(t) = smc(t)

we get the classical Whittaker-Kotel'nikov-Shannon sampling operator:
(ssim f) () == i F(E sine(wt — 1) (15)
w T \w !
Letustakew =1and t = j € Zin Equation (14), then
(51)() = E fK)s(j— k), (16)

The idea to replace the sinc kernel sinc(-) ¢ L'(R) by another kernel function s € L!(R) appeared
first in [18], where the case s(t) = (sinc(t))* was considered. A systematic study of sampling operators
(14) for arbitrary kernel functions was initiated in 1977 at the RWTH Aachen University by Butzer and
his students [19-21].

In [20], Section 4 describes why we should be motivated to use the generalized sampling operators
(Equation (14)) and also describes the general convergence theorems and convergence theorems
with rates.

3.2. Kernels

The general kernel for the sampling operators (Equation (14)) is defined in the following way.
Definition 1 [20] if s : R — C is a bounded function such that:

0

mo(s) = Y |s(u—k)| < oo (u €R), (17)

k=—00
with the absolute convergence uniform on compact subsets of R, and

0

Y s(u—k)=1(meR), (18)
k=—c0

Now, s is said to be a kernel for sampling operators (14).

The objective of this paper is to use results from [22,23] for signal prediction with the generalized
sampling operators ((Equation (14)), when the kernel function s is defined via the Fourier transform of
certain even window function A € C|_ 1}, A(0) =1, A(u) =0 (Ju|) > 1. More precisely, our kernel
function is defined by the Equation (19),

1
s(f)s (A1) == /o Au) cos(retu)du. (19)



Sensors 2017, 17, 1666 9 of 22

This approach generates even kernels. For some cases, asymmetric kernels are more appropriate.
In this case, we use a general window function A : [—1,1] — C and define the kernel in the Equation (20),

s(t) :=s (A1) 2/ Au) exp(—irtu)du. (20)

In [24], we considered the general cosine window:

n
Aca(u) ==Y apcoskmu (n € N, a = (ag, ay,...,a,)), (21)
k=0
provided:
EIRE )
Ay = Y g = 5 (22)
k=0 k=0

We get the Hann window, if we take n = 1 in (21) and Blackman window, if n =2 and a9 = a
in Equation (21). For n € N, there exists a choice of parameters, which allows us to have the order
of approximation of the corresponding sampling operators estimated by wy, ( f; w)x [19]. Another

choice of the parameter vector 4 = a* in Equation (21), where the parameter vector a € R"*! has
2n

2
components a; = % < : > and a; = 22,,%1 < 0k fork =1,2,...,n, gives us by Equation (19)

a family of rapidly decreasing kernels sy 5, = O(|t|?**1) (see [24] for corresponding operator norms
and [25-27] for truncation errors).

The general cosine window generates a linear combination of translated sinc-functions. We can
use instead of the general cosine window a window in the Equation (23),

n )
Apa(u) = Z e ™ (neN,a=(a_y,a_y41,...,4,)) € R, (23)
k=—n
provided:
L3 (3] 1
Yooayx= Y ay = 5 (24)
k=-13] k=1—[ 141 |
If we use Equation (20), we get a corresponding kernel in the Equation (25),
n
spa(t) = ) mysinc(t —k), (25)
k=—n

which is indeed a kernel in terms of Definition 1, because Condition (24) guarantees that we have
Equation (18) and that mg(sg,) is bounded. Let w = 1 and t = j € Z in Equation (14), then for
a kernel sg , we get

0 n
(S1eaf)() = Y f(K)sea(f—K) = ) af(t—k). (26)

k=—00 k=—n

3.2.1. Approximation Error Estimates

We estimate the approximation error in terms of modulus of smoothness. The classical modulus
of smoothness ([28], p. 76) is defined for any § > 0 by

wi(f;8)¢ = ‘il‘lgllﬂﬁf(‘)llcff € C(R),
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where the one-side difference in respect to increment h is given by:

k
Mﬂﬂ—ﬁbﬂ“(f)fw+m. (27)
=0

Modulus of smoothness is a neat measure of the structural properties of a function. As we can see
from the definition, the modulus of smoothness is related to the derivative of the function. We can
estimate the r-th modulus of smoothness using the r-th derivative of a function. Our aim is to construct
a predictor in the form of a sampling operator that has approximation error estimate via modulus of
smoothness of high order. Such predictors are good for the approximation of smooth trends (i.e., trends
with high order continuous derivatives).

We proved in [23] a theorem about the approximation properties of the Blackman-Harris sampling
operators, defined by the general cosine window (Equation (21)).

3.2.2. Theorem 1 [23]
For Cy 0 (a € R"H), letl,1 <I < mnbefixed. IfI=1orforeveryj=1,...,1-1
n )
Z llkkzl = O,
k=1

then, for f € C(R), we have estimated order of the approximation,

1
[1Cuwaf = fII < My oy (fr’;)

Then, constant M, is independent of f and w.

For the sampling operators, defined by the general exponent window in Equation (23), we need to
prove an analogous theorem. Because we need to use samples from the past to predict the current value,
we give a theorem for one-sided kernels, i.e., we use a parameter vector 4 such that gy = 0 for k < 0.

3.2.3. Theorem 2 [23]

For Sy.p , with (a IS R”H) such that gy =0 fork <0,let!,1 <[ < n be fixed.
Ifl=1orforeveryj=1,...,1 -1

n :
Y ki =0, (28)
k=1
and foreveryj=1,...,1
k .
Y (—D)fakd =0, (29)
k=1

then, for f € C(R), we have estimated order of the approximation,

1Suseaf = £ < Myscr (35, ) 0

Then, constant M, is independent of f and w. In [21], Theorem 2 has been proven.
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3.2.4. Good Kernels for Prediction
Theorem 3 [28]

Lets € C(R)beakernel. Then, {5y}, defines a family of bounded linear operators from C(R)

into itself with the operator norm ||Sy||= ||Sw||c — ¢, satisfying
[|Sw|| = sup E k)| < oo (w > 0).
UER k=—c0

If we suppose that the energy profile E can be represented in form
" —
E(t) =E*(t)+ E(t),
o
where E* is a smooth trend and E represents fluctuations, then we have

(SZOE)(t) = (SuE” )(t) (Sw )(#),

and the error of predicting the trend is
. — —
[(SwE)(t) = (SwE™)(t)|= [(SwE(t)| < sup |E(t)] |[Swll-
t

The last estimate indicates that for good prediction we need to choose a sampling operator with
a small norm. If the trend is smooth [18], we need for good approximation a kernel with approximation
error estimate via high order of approximation.

We choose a symmetric kernel (Equation (25)) with the parameter vector

_f 11 11 23 25 167 25 25 167 25 23 11 11
2560" 256" 3207 256° 512" 128" 7 1287 512" 256" 320" 256" 2560

The symmetric kernels have simpler computation and structure than non-symmetric kernels.

For this b-kernel, we have Theorem 1, and, for a-kernel, we use Theorem 2, which provides
estimates of the error of approximation via modulus of smoothness order 4. This kernel also has a good
decay and a small operator norm, close to the minimal possible value of the norm for a kernel with
such order of approximation.

We choose a one-sided kernel (Equation (25)) with the parameter vector

{00000003151 3 3 1}

8'16’2" 8 8 16

In the following, we construct predictors as sampling operators in Equation (26) with kernels
using those parameter vectors.

4. Prediction

We define three predictors using sampling operators in Equation (26). For the first case, we use
the previous samples from the same day and the information from one of the previous days, closest
to the current day. Because the symmetric kernels give better order of approximation, we use in our
predictor a symmetric kernel with parameter vector b. For measure of the closeness and error correction,
we use a one-sided kernel with parameter vector 4.

For the second case, we use only the previous samples from the same day and a one-sided kernel.
The third case is a simplified version of the first case. Instead of the one-sided kernel, we use a part of
the main symmetric kernel for measure of the closeness and error correction.
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4.1. Case-1

If we have the samples f;(I =1,...,k) from k previous days, then we can use this information for
more complex prediction method. The parameter vector b defines a symmetric kernel, the parameter
vector a, where gy = 0 for k < 0, generates a one-sided kernel with the corresponding sampling
operator (Equation (26)), yielding Equation (31),

(Sprepipf)(j) Z bif(j—k) + E by f1(j — k) + CDIFpReDraim; (7). (31)
k=1 k=—m

where the correction term CDIFprgpry is in Equation (32),

CDIFpreprap;(f) := CTPREDIab <2 arf(k Z a fi(j— k)) (32)

k=1
with the multiplier CTprepiy, as:
0
CTpREDIap = Y, bk (33)
k=—m
We choose from the k previous days the Day 1 for which the absolute value of the correction term
CDIFpreprp; is minimal and take the values f; from that day. Finally, Equation (31) is used to estimate

the energy based on the next time slot, specifically for LINE-P (Case-I), and Equations (32) and (33)
are the substitution factors of Equation (31).

Time Complexity of LINE-P Case-I: Typically, LINE-P case-I is dependent to the two parameters
length of the kernel vector (m, nn) and the number of previous days (k). The running time complexity of
the correction term Equation (32) is T(n) = 2nk. Thus, the total running time complexity of Equation (31)
for a single value estimation is T(n) = 2(nk + m) + 1. The Big-O notation of the LINE-P Case-I is O(n).

4.2. CASE-II

Generally, most prediction models predict energy based on the previous days, but here we propose
a model which works with only n previous samples from the same day. For instance, if we suppose we
do not have the samples from the previous days and have only few previous samples of the same day,
in that case we can use those samples from the past to determine the current value of the function f.
We can use the sampling operators (Equation (26)) with one-sided kernels where gy = 0 fork <0, i.e.,

(Sprepiraf)(j) :== i af(j — k). (34)
j

Here, Equation (34) is used for LINE-P (Case-II).

Time Complexity of LINE-P Case-II: LINE-P case-II is dependent to one parameter ie., m.
The running time complexity of LINE-P case-II is T(n) = n. Its notation in Big-O is O(n).

4.3. CASE-1II

Specifically, in this case, if we have samples similar to in Case-I, the parameter vector b defines
a symmetric kernel with the corresponding sampling operator (Equation (26)), yielding Equation (35).

(Spreprpf)(f Z bif(j—k) + 2 by fi(j — k) + CDIFprep1m (f), (35)
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where the correction term CDIFprepirrpy is in Equation (36),

m m
CDIFprep1rmpi(f) := CTprEDIID <Z bef(i—k) =Y ax fi(j - k)) , (36)
k=1 k=1
Wlth the multiplier CTPREDIH;b
P
CTprepiny = ~—m - (37)
k=1 bi

We choose from the k previous days the day I for which the absolute value of the correction term
CDIFprepiirp; is minimal and take the values f; from that day.
Here, Equation (35) is used for LINE-P (Case-III).

Complexity of LINE-P Case-III: LINE-P Case-III is dependent on two parameters, i.e., the length of
the kernel vector (m) and number of previous days (k). Considering the correction term (Equation (36))
and its time complexity which is T(n) = 2mk, now the total running time complexity of Equation (36)
is T(n) = m(2k + 1) + 1. Its notation in Big-O is O(m).

5. Performance Comparison of LINE-P Model with the State-of-the-Art on Real Solar-Based
Data Profiles

We evaluate the performance of the proposed LINE-P model (all three cases) based on solar profiles
(datasets) in comparison with the state-of-the-art models by means of: (i) graphical representations
along with real datasets; and (ii) calculating two types of errors.

5.1. Graphical Comparison of the Models for Solar Energy

In this section, we present the comparative analysis of the simulation results of all
above-mentioned solar models, including LINE-P. They are examined on 22- and 60-min interval data
corresponding to a medium case of 61 slots, and a longer case of 24 slots in 24 h, respectively. We show
their graphical behavior in comparison with the real profiles (datasets) available in [9,10].

Figure 2 illustrates the medium interval, considering 22-min interval data. As can be seen
in the subplots, solar energy varies quite a lot, as shown here for the month of December. However,
most proposed energy prediction models rely on the smaller number of slots (longer interval), as shown
in the state-of-the-art and in Figure 2. The first four days appear quite consistent, but the next two days
yields low energy production; such variations make that some of the models does not work properly
in this situation. For example, for the fifth and sixth days, the predictions coming from the EWMA and
QL-SEP models are quite off the real data. Another example is that ASEA collapses from the second
day because it is not meant for medium and shorter slots. On the other hand, Figure 1 shows that
ASEA is able to yield suitable predictions for longer intervals. As can also be observed, in any weather
situation, all three cases of LINE-P provide predictions very close to the real dataset.

As illustrated above the authors deploy real datasets [10] in all above models for the graphical
comparison and use longer interval (24 slots) in a day. However, as Figure 3 shows, some of the models
yield worst predictions such as EWMA, WCMA, Pro-Energy and QL-SEP. In addition, ASEA is also
not an appropriate for this kind of datasets situation. On the contrary, LINE-P Case-I and Case-IIL
provide more realistic and accurate values than the other models. Furthermore, among the three cases
of LINE-P, Case-III performs better than Case-I and Case-II. In addition, note that, for certain days,
Case-II yields over predictions.

In a nutshell, Figures 2 and 3 clearly show that the proposed LINE-P model (all cases) are slots
independent (adjustable based on the profiles) both for medium and short data intervals, as well as
more reliable than the other models.
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Figure 2. Graphical comparison of the obtained predictions for all energy prediction models (including
the proposed LINE-P cases) for medium interval-based (61 slots) solar energy in December. Solar
energy variations are troublesome for some of the models (e.g.,, EWMA and QL-SEP models on the 5th
and 6th days, and ASEA on the 2nd day). On the other hand, ASEA is able to yield suitable predictions
for longer intervals. In any weather situation, all three cases of LINE-P provide predictions very close

to the real dataset.
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In the next section, the above graphical analysis is complemented by a mathematical error
comparison in terms of mean square error and mean absolute error.

May {Day1)

May (Day2)
400 r
—Real daia e —Real data
—EWMA —EWMA
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300 ASEA HD| - AsEA
ﬁ EGLSEP = EQLSEP
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Figure 3. Graphical comparison of the obtained predictions for all models (including the proposed
LINE-P cases) for longer interval-based (24 slots) solar energy in May. Here, even ASEA is not always

able to deal with energy variations; in contrast, LINE-P Case-I and Case-III provide more realistic and
accurate values.

5.2. Error Comparison of the Models for Solar Energy

Mean square error (MSE) and mean absolute error (MAE) have been consider for comparing the
error of each of model. To find the error in each model, we have used solar-based (SDG&E) [9] dataset
(see Figure 3). We considered a medium interval (61 slots) in 24 h. As can be seen in Table 1, LINE-P
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(all cases) have the lowest error as compared to the other models. In addition, it is clearly visible that
LINE-P Case-I and Case-III have lower MAE in all the days, as shown in Table 2.

Table 1. MSE of the LINE-P (all cases) and other prediction models for solar energy.

Prediction Model 1st Day MSE 2nd Day MSE 3rd Day MSE 4th Day MSE Average MSE

EWMA 0.0169 0.0831 0.0546 0.0757 0.05757
WCMA 0.0029 0.0074 0.0215 0.0102 0.0105
ASEA 0.0081 0.4998 0.6539 0.6974 0.04648
QL-SEP 0.0169 0.0831 0.0546 0.0757 0.0575
Pro-Energy 0.0046 0.0395 0.0189 0.0299 0.02322
LINE-P (Case-I) 0.0032 0.0102 0.0388 0.0144 0.01665
LINE-P (Case-II) 0.0040 0.0125 0.0461 0.0181 0.020175
LINE-P(Case-III) 0.0038 0.0074 0.0296 0.0105 0.012825

Table 2. MAE of the LINE-P (all cases) and other prediction models for solar energy.

Prediction Model 1st Day MAE 2nd Day MAE  3rd Day MAE 4th Day MAE Average MAE

EWMA 0.0820 0.2060 0.1588 0.2109 0.16442
WCMA 0.0388 0.0522 0.0863 0.0681 0.06135
ASEA 0.0472 0.5865 0.6379 0.6938 0.49135
QL-SEP 0.0820 0.2060 0.1588 0.2109 0.16442
Pro-Energy 0.0459 0.1493 0.0916 0.1319 0.104675
LINE-P (Case-I) 0.0426 0.064 0.1170 0.0743 0.074675
LINE-P (Case-II) 0.0407 0.0714 0.1279 0.0891 0.082275
LINE-P(Case-III) 0.0459 0.0574 0.0967 0.0682 0.06705

6. Performance Comparison of LINE-P Model with Pro-Energy Models on Real Wind-Based
Data Profiles

Pro-Energy is suitable for both types of energy harvester (solar and wind) or multi-source
harvesters [14,29]. Similarly, we designed LINE-P (all cases) keeping in mind dual-source EH (solar
and wind). Furthermore, for the performance evaluation in terms of accuracy and robustness of
the model, we have examined the proposed LINE-P with two different profile lengths (time slots) and
conducted various experiments. We found very low error in LINE-P (all cases), as shown in Figures 4
and 5. The previous section compared the performance of all models for solar energy; in what follows,
we compare the performance of LINE-P and Pro-Energy for wind energy.

6.1. Graphical Representation of LINE-P and Pro-Energy Models for Wind Energy

The performance of the proposed LINE-P and of the existing Pro-Energy models have been
examined for wind energy harvesting on a short 14.25-min data time interval of 90 slots in 24 h.
Figure 4 shows their graphical behavior against the real profiles (i.e., US Department of energy [9] and
National Laboratory of Research [10]). Figure 4 shows that for a 10-days dataset (real data), LINE-P
(all cases) yields better results than Pro-Energy in most cases. Moreover, we also used a 15-min shorter
data time interval of 96 slots in 24 h from another dataset [11]; the results shown in Figure 5 confirm
that generally speaking, LINE-P performs better and more precisely than Pro-Energy. For example,
the prediction yielded by Pro-Energy model in both Figures 4 and 5 are over/under estimated for
certain days. On the other hand, LINE-P (all cases), especially LINE-P Case-III, yields more vigorous,
less complexity, compatible and accurate predictions.
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Figure 4. Graphical comparison of the obtained predictions for LINE-P (all cases) and Pro-Energy for
shorter interval-based (90 slots) wind energy in December for dataset [9]. Generally speaking, LINE-P
yields more accurate estimates than Pro-Energy.
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Figure 5. Graphical comparison of the obtained predictions for LINE-P (all cases) and Pro-Energy
for shorter interval-based (96 slots) wind energy in December (12 days) and dataset [11]. Generally

speaking, the estimates provided by LINE-P are more accurate than those of Pro-Energy.
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6.2. Error Comparison of the Models for Wind Energy

We also use MSE and MAE to compare the prediction errors of Pro-energy and LINE-P (all cases).
In this case, we use datasets [11] to evaluate the prediction error. The results shown in Table 3 indicate
that in general the prediction errors of LINE-P (all cases) are lower than that of Pro-Energy. From
the results shown in Table 3, it is concluded that LINE-P (all cases) prediction values are very close to
real data; especially Case-III is very effective and accurate.

Table 3. Average MSE and MAE over 10 days for LINE-P (all cases) and Pro-Energy.

Prediction Models 10 Days MSE 10 Days MAE
Pro-Energy 0.777 0.238
LINE-P (Case-I) 0.028 0.038
LINE-P (Case-II) 0.021 0.031
LINE-P(Case-III) 0.018 0.032

6.3. Comparison of the Time Complexities

Table 4 shows the time complexity and Big-O notation for all prediction models. ASEA and
EWMA have constant complexity (O(2)), whereas WCMA and Pro-Energy have quadratic complexities
(O(n?) and O((k + 1)?), respectively). QL-SEP and LINE-P (all cases) have linear complexity (O(n)
and O(m)).

Considering both the prediction performance of all models and their respective complexities,
it can be said that the proposed LINE-P approach offers the best trade-off, i.e., equivalent or better
prediction accuracy than the best existing models at a lower complexity. This means that LINE-P
is a good candidate for embedded implementation on resource-constrained platforms such as WSN
nodes/coordinators where CPU usage and energy consumption are critical.

Table 4. Time Complexity of the LINE-P (all cases) and the other prediction models. Note: In some
models, we consider m and k times rather than n times.

Prediction Models Time Complexity T'(n) Big-O Notation O(n)
EWMA T(n)=2 0(2)
ASEA Tn)=2 0(2)
WCMA T(n) = k(n? + 1) on?)

Pro-Energy T(n) = (k +1)%n O((k + 1)?)

QL-SEP T(n) = (4n +2)q O(n)
LINE-P Case-I T(n)=2(nk+m)+1 O(n)
LINE-P Case-II T(n)=n O(n)
LINE-P Case-IIT Tmn)=mRk+1)+1 O(m)

6.4. Comparison of Space (Memory) Requirements

The proposed LINE-P model performs well as compared to the other models in terms of prediction
error, and at the same time has small memory requirements. A higher number of slots N means memory
overhead for a given predictor. For instance, assuming N = 48 and D (previous days) = 20, WCMA
requires almost 4 kB of memory to store the matrix of N-D for an energy prediction [29]. On the contrary,
LINE-P (Case-I) and (Case-III) use only require N = 13 and D = 4. Similarly, LINE-P (Case-II) only
require N = 8 and D = 1. Thus, LINE-P models’ memory overheads are approximately 90% and 70%
lower than for WCMA and Pro-Energy models, respectively.
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7. Conclusions and Perspectives

We presented LINE-P (three cases-based) prediction model for dual-source (solar and wind energy
harvesting) which is suitable for many possible data time intervals, e.g., shorter, medium and longer,
as opposed to previous models that are only recommended for a particular data time interval (resulting
in degraded predictions when slightly different conditions occur).

The proposed LINE-P (Case-I) predicts the energy based on the previous and current days.
LINE-P (Case-II) predicts the energy according to the current days in case of missing data. LINE-P
(Case-III) is a simplified version of LINE-P (Case-I): instead of the one-sided kernel, we use a part of
the main symmetric kernel for measuring the closeness and error correction. Furthermore, LINE-P
model allows adjusting or resizing of the kernels, making it compatible with solar powered WSNs.
On the contrary, most of the solar-based prediction models exploit a fixed weighting parameter factor
(«), which is incompatible with the solar harvesters due to their different parameter characteristics.

In addition, LINE-P’s principle means that it is associated with low computational and reduced
memory overheads, making it suitable for implementation on WSN nodes/coordinators.

Several datasets have been considered to evaluate the prediction performance and error of
the models. We found that LINE-P model provides low errors, for either solar or wind energy sources.
In terms of MSE and MAE, the predictions are approximately 98% accurate for the LINE-P model
Case-III for solar energy, and around 96% accurate for wind-based prediction.

As future work, we plan to extend LINE-P with adaptive features and compare its performance
against those of UD-WCMA (adaptive tuning of the weighting factor) [4] and Pro-Energy-VLT
(adaptive timeslots granularity) [5].

We also plan to integrate the proposed LINE-P model with our recent work on transient computing
for WSNs, e.g., to dynamically control the execution patterns of the nodes depending on the available
energy. In particular, we will develop an adaptive prediction model which will use the appropriate
kernels according to the energy profiles; if the uncertainty thereof is high, then the model will use
the non-sensitive kernels; on the other hand, if the energy profiles are smooth, then sensitive kernel
will be used for higher prediction accuracy.
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Autonomous Wireless Sensor Networks: Implementation of Transient
Computing and Energy Prediction for Improved Node Performance
and Link Quality

Faisal Ahmed, Corentin Kervadec, Yannick Le Moullec, Gert Tamberg, and Paul Annus
Abstract

Over the last decades, research and development in energy harvesting significantly changed the
traditional way of powering electronic devices, as exemplified by the emergence of battery-less wireless
sensor nodes. In contrast to existing works that consider energy prediction and transient computing
separately, we present a novel approach for the joint implementation of these two modalities aimed
at improving the adaptability and robustness of applications running on battery-less nodes. The
proposed approach performs online energy measurements and store them as energy profiles. Based on
these, we use our recently proposed LINE-P (Case-ll) model to estimate the energy availability in the
near future. These energy estimates are exploited in a transient computing mechanism that manages
the operation of the nodes, in particular their wireless communication functions. We present an
implementation thereof for a peer-to-peer application on FRAM-based wireless sensor nodes (Tl
MSP430FR5739 MCU and TI CC2500 transceiver) that operate without energy storage. In a first set of
experiments, the nodes are powered by a power supply programmed to mimic the intermittent nature
of harvested energy; in a second set, they are powered by a solar panel yielding real data sets (profiles)
at 1, 5, and 10-minute data intervals. The experimental results show how the proposed combined
transient computing and energy prediction approach addresses various issues such as time failure of
the node and system shutdown, as well as how the link quality and overall performance of the peer-to-
peer application are improved.

Keywords: Transient computing; Energy harvesting; Battery-less, Autonomous system; Link quality and
jitter.

1 Introduction

Although advances have been achieved in terms of storage capacity (power source), e.g. supercapacitors or lithium
batteries, these storage devices have numerous shortcomings. These are related to installation/maintenance,
physical constraints (e.g. size, weight), and safety risks due to their electrochemical properties, especially when it
comes to wireless sensor network (WSN) nodes. The explosive growth of IoT and WSN also raises environmental
concerns. In [1], the global electricity consumption of network-enabled devices is reported to have reached 615 TWh
in 2013. In addition, this demand is estimated to raise up to 1140 TWh by 2025, which will be 6% of total global
electricity consumption. Furthermore, it is expected that there will be 23 billion battery-powered IoT devices in
2025. The annual estimation of the global battery consumption is almost 12 billion batteries in 2025. It is also worth
noting that the manufacturing of a battery requires 40 to 500 times its actual energy capacity. Thus, the
manufacturing of IoT batteries is expected to yield a further burden of 2 TWh of energy consumption in 2025.

Energy harvesting (EH) changes the two above-mentioned dynamics and brings significant improvements in the
energy capabilities of embedded systems such as wireless sensor network (WSN). EH introduces various paths of
research for prolonging the life-span of WSN nodes, typically in the form of a buffered temporary energy storage,
or directly (i.e. battery-less), which enables devices to be more energy-autonomous. Recent research results
illustrate that energy harvesting is not capacity-limited anymore [2]; EH, either used as a substitute or as a direct
power source for WSN nodes is highly beneficial [3].

However, due to its intermittent nature, EH is highly unpredictable and variable. For example, weather, light

intensity, and the time of the day greatly affect how much and when energy can be obtained from a photovoltaic



(PV) panel. Finding a good trade-of between performance, adaptability, and robustness for achieving an acceptable
quality of service is challenging.

One approach to deal with this is to use accurate sets of energy prediction models to dynamically control and
modulate the operation of the wireless sensor nodes as a function of the instantaneous and near-future available
energy.

Transient computing (TC) is another recent paradigm designed to deal with the intermittent behavior of EH. TC is
an umbrella term that encompasses various methods that allow pausing and resuming a node’s operations with
limited loss of information; this is typically achieved by means of various strategies for saving/restoring the context
and data of a node by exploiting non-volatile memory technologies such as FRAM.

TC and energy prediction have been studied mostly independently in the scientific literature. Given their respective
potentials, the overall purpose of this work is twofold, namely i) to propose a novel joint approach that combines
those two modalities and ii) to evaluate its practical impact in terms of performance, adaptability and robustness
of applications running on battery-less sensor nodes that are solely powered through EH.

In this paper, we address several concerns related to the design and implementation of the above modalities. The
first one is related to the choice of the energy prediction model. Most of the existing prediction models are based
on long records of past values; however, these are unfeasible in real implementations due to the limited memory
of the WSN nodes. The second one is related to the connectivity of the nodes, i.e. how to properly restore the state
of the WSN nodes and re-establish the connectivity after a power failure using TC?

This paper emphasizes the real-life implementation and evaluation of our proposed solutions to the above issues.
The details thereof are presented in Section 3 and Section 4, respectively. However, we first briefly introduce the
system-level setup (for a single WSN node) shown in Figure 1. In our work, the heart of a WSN node is a
microcontroller that feature FRAM (i.e. non-volatile) memory combined with a radio transceiver. The WSN node
does not include an energy storage device; instead, the energy harvester is used as the sole powering source. In [4]
we evaluated the practical feasibility of TC on a single node basis by deploying three different energy harvesters
(RF, thermal and solar); such an approach is improved and re-implemented in this work. In addition, we recently
proposed the so-called set of linear energy prediction models (LINE-P) in [5]; one of these (Case-II) is modified and
implemented in this work. We also implement a peer-to-peer wireless application whereby two modalities are
integrated and evaluated in terms of link quality features for instance jitter, packet receiving ratio and energy
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Figure 1. System-level illustration of the joint implementation of the both modalities (TC and LINE-P (Case-II)) into

a WSN node solely powered by an energy harvester.
Contributions

The main contributions presented in this paper are summarized as follows:



A) A TC-based mechanism for reducing the negative impact of power losses in battery-less WSN nodes is
designed and implemented. In brief, this mechanism allows 1) ending communication tasks properly
before a shutdown occurs due to a loss of power, as well as 2) resuming them after a wake up (i.e. when
energy is again available). This mechanism consists of four main steps. Upon an imminent loss of power,
1) a node informs its peer that it will not be able to continue the communication task and 2) the TC
mechanism saves the state of the microcontroller. Once energy is again available, 3) the state of the
microcontroller is restored, the SPI communication with the radio transceiver is re-initialized, and the
radio transceiver is reconfigured, and 4) the link protocol is restarted and communication with the peer is
resumed.

B) To improve the energy efficiency of the above system, we adapt and implement an energy prediction
model. To summarize, this model is used to predict how much energy will be available in the next time
period and allows firing a communication task only if a sufficiently high and stable amount of energy is
predicted for the given time period. By doing so, less communication tasks are interrupted, i.e. less
communication errors happen and thus less energy is wasted due to re-transmissions.

C) The feasibility and efficiency of the joint TC and energy prediction modalities are evaluated in practice,
both in a controlled setup using a programmable power supply to mimic the intermittent behavior of
harvested energy, as well as in non-controlled setup using a solar panel exposed to natural light. The
results show that the two implemented modalities consume only 15% of the total memory of a node and
the accuracy of LINE-P (Case-II) is 98% in a consistent weather and 90% in inconsistent weather (e.g.
rapidly changing sunny and cloudy conditions), respectively. In addition, the results illustrate that the
joint modalities provide improved adaptability and robustness, e.g. up to 94.6% average receiving rate.

2 Related Work

Several methods have been proposed to minimize the power consumption and management of WSNs in the
literature. In [6] the authors proposed an extended ad hoc on-demand distance vector (EAODV) routing method
based on distributed minimum transmission (DMT) multicast routing. Similarly, in [7] a multicast routing method
with minimum transmission for multicast routing algorithms is presented. In [8], the authors proposed an unequal
clustering routing protocol considering energy balancing based on network partition and distance (UCNPD), i.e.
unequal clustering based on network partition and distance for the WSN. Their simulation results demonstrate that
the protocol efficiently decreases the speed of the nodes death. In [9], an energy-balanced routing method, FA-
EBRM, based on forward-aware factor is proposed; in [10] the authors present a clustering routing method based
on predictive energy consumption efficiency (PECE), this method works in two stages: firstly cluster formation and
secondly stable data transfer for WSNss.

In [11] the authors proposed a RFID anti-collision method that improves the efficiency of the system. In [12] the
authors proposed a local-world theory where an uneven clustering weighted evolving model of WSNss is designed.
Their experimental data shows that the WSNs share robustness and reduce the probability that successive node
breakdowns occur. In [13] the authors simulation results show that their new MAC protocol can supply better
network service under low energy consumption and transmission delay. Their experimental results indicate that
their method is effective and very useful for transmission of big-data bio-medical image in the context of WSNs. In
[14] the authors discussed a protocol which is based on a low duty cycle energy-efficient MAC for WSNs and is
adaptively updated based on the estimated nodes wake-up time. Their experimental results show that the
improved protocol reduces the network energy consumption and improves the adaptability of the network. In [15],
the authors proposed a fusion approach with coding based on spherical coordinate domain (SCD) in WSNs for
transmission of big-data medical image. Other works that use spherical coordinate domain in medical imaging are
[16], [17].

In [18] the authors deal with the data collection problem in the domain of WSNs. They designed a kind of
optimization of sparse matrix. Their results show that their approach reduces the collection frequency and costs
less energy as compared to general method.

Apart from the traditional low power consumption methods discussed above, researchers are increasingly
proposing autonomous WSNs that operate on the available energy directly from the energy harvester. In what
follows we discuss the operating principle of TC that allows dealing with the intermittent nature of EH.



2.1 Transient Computing

The intermittent nature of EH, especially when used to power battery-less WSN nodes, makes that the execution of
both computations and communication tasks will be interrupted and resumed depending on the available energy.
During the last few years, a number of TC approaches have been proposed in the scientific literature. They can
broadly be classified as software-based and hardware-assisted approaches. In either case, a non-volatile memory
such as Flash or FRAM is used to store a snapshot of the state and/or data of the microcontroller during the power-
loss. Once power is again available, the snapshot is restored and execution either restarts, or preferably, resumes.

A) Software-based TC approaches consist of trigger points and checkpoints that are strategically inserted in the
source code and periodically evaluated. When energy is deemed too low (typically by evaluating the voltage of the
energy device), a snapshot of the state and/or data of the microcontroller is taken. After a loss of power, the latest
valid snapshot is restored and the corresponding tasks or blocks of codes are restarted. The major drawbacks of
such approaches are i) deciding where to insert the trigger points and checkpoints in the code, ii) the code size
overheads for those points and the restore mechanisms, and iii) the execution time overheads caused by creating
the snapshots, restoring them, and the re-execution of tasks or blocks of code that got included in the snapshot even
though they completed before a loss of power.

B) Hardware-assisted TC approaches make use of e.g. hardware comparators that detect an imminent loss of power
and trigger the snapshot mechanism. Those approaches do not require to periodically evaluate the available energy;
this significantly reduces or completely avoids the need for software trigger points and checkpoints and reduces or
avoids the unnecessary re-execution of full tasks or blocks of code as done in the software-based approaches.

TC approaches have previously been discussed in e.g. [4]. To avoid duplication, we hereby only summarize the
main features of various TC approaches, see Table 1.

Table 1. Summary of the main features of various TC approaches

Work SW-based Key feature Platform
or HW-
assisted
Mementos SW Checkpoints placed at a compile-time. MSP430F1232, Flash
[17], 2011
Dino [18], SW Continuation of Mementos, ensures coherence | MSP430FR5969, FRAM
2015 between volatile and non-volatile data.
Hibernus HW Uses a hardware comparator to detect imminent | MSP430(unspecified),
[19], 2015 loss of power. FRAM
QuickRecall HW FRAM is used as a unified memory. MSP430FR5739, FRAM
[20], 2015
Hibernus++ HW Dynamic adaptation of the hibernate and restore | MSP430FR5739, FRAM
[21], 2016 thresholds according to both the energy source

variations and the system load properties.

However, requires additional circuitry.

HarvOS [22], SW Operates at compile-time, allow transiently | STM32L152RE (ARM
2017 powered devices to complete a given workload | Cortex M3), FLASH

with 68% fewer checkpoints on average,

compared to existing approaches.

ARM mbed HW Integrates TC approaches into mbed OS. Enables | NXP FRDM-KL05Z (ARM
support [23], multiplatform and TC as a service above IoT | Cortex-Mo+), Flash
2017 application protocols.
TICTPL HW Similar principles as that of Hibernus. MSP430FRxx series, FRAM
[24], 2015 Designed and supplied by TI.
This work HW Combines TC (TI CTPL) and Energy prediction | MSP430FR5739, FRAM

(LINE-P (Case II), see Section 2.2).




In Table 1, we have summarized the state of the art related to transient computing; in what follows we briefly
discuss the existing state of the art related to energy prediction models.

2.2 Energy Prediction models

Energy prediction in itself remains an active research topic. Energy prediction (sometimes called energy estimation)
deal with unpredictable and non-controllable energy sources such as solar, wind, etc.; this is a critical issue, which
raises many questions. Recent research in energy prediction has enhanced the accuracy and minimized the error
chances; this thus enables very useful tools to support e.g. power management strategies and link quality in the
context of WSNSs.

Usually, the idea of energy prediction can be applicable in a broad range of scenarios. In [25], the authors focus on
solar energy harvester and its energy management that includes a new energy forecast approach (based on Arima
and Garch models) for WSNSs. In [26], a solar-based prediction model is presented for structural health monitoring.

In [27], the authors show that prediction strategies that use weather forecasts are more accurate than those based
on the past and are capable of improving the performance of a variety of systems. However, in this article the
authors have limited scope, which is only energy prediction model.

Recently in [28] the authors proposed aggregated and compression schemes for solar powered WSNs. A node
continually aggregates and compresses sensed data, but only transmits it when it expects to receive more energy.
However, this approach is based on a fixed energy source (battery) rather than battery-less (autonomous node) and
their work is lacking with real time implementation.

An overview of existing proposed energy prediction models, that can support dynamic power management such
as those mentioned above, is presented in Table 2.

Table 2. Summary of various energy prediction models

Prediction Time Interval (Slots) Mathematical Expression Source of
models Harvester
EWMA [28], 2007 Longer (60 mins) X(@) =aX(i—1)+ 1 —a)x(@) Solar

where the weighting factor a ranges
from 0 to 1 and x(i) expresses the
real energy.

WCMA [29], 2012 Longer (60 mins) E(d,n+1) = aE(d,n) + GAP(1 Solar

—a)Mp(d,n+1)

where E is the predicted value of
EWMA, Mp(d,n + 1) is the mean of
D past days at n+1 sample of the day,
and GAPg is a factor which reflects
the solar condition in the present
day on the base of the previous.

QL-SEP [30], 2016 Longer (60 mins) Eqi-sep = Egwma(1 + DR) Solar

Daily ratio (DR) parameter.

Pro-Energy Longer/Medium (60/30 E(d,n) = aH + (1 — 0)Eys Dual-Source
(PROfile Energy mins) where H is the harvested energy in (Solar/Wind)
[31], 2012 the previous slot and Eyg is the
observed energy for the most similar
day.




2.2.1 LINE-P (Case-ll)

In [5] we have presented LINE-P (linear energy prediction model) which is designed and developed based on the
sampling and approximation theory. Moreover, it is applied not only in signal processing but also compression
techniques [34].

In [5] we have shown that LINE-P (Case-II) has a lower complexity and higher energy efficient as compared to
other energy prediction models. In this article, we have implemented LINE-P (Case-II) [5] combined with TC. LINE-
P (Case-II) performs energy estimation based on the n previous samples from the same day. In particular, Case II
is dependent on only single variable, i.e. a.

m

(Sprepiraf) () = Z af(G—Fk)

k=1
Here, samples f;(I = 1, ..., k) are from the k previous days and a is the parameter vector where a; = 0 for k < 0.

2.3 Solar Energy

Solar energy is a very popular energy source among the research community, especially for the case of energy
prediction for either WSNs or other applications. Indeed, solar energy is one of the promising technologies for
which relatively efficient energy harvesters exist; the efficiency of modern solar PVs makes that they can provide
more power/energy than other sources, as illustrated in Figure 2 [35].

Nevertheless, solar energy also exhibits an uncontrollable (intermittent) behaviour. Although it is obvious that no
energy is produced at night for outdoor solar energy harvesters, there can be illumination variations and drops
during day time as well due to changing weather conditions. It is quite difficult to predict this behaviour accurately
and on the long term; for example, solar energy was examined only for one-time scheduler level for 60 minutes
data interval in 24 hours [35].

Thus, solar energy is well suited for experimenting with TC in combination with energy prediction algorithms for
autonomous WSNs nodes.

Hourly Average Breakdown of Renewable
Resources

Solar Thermal

| Wind

Figure 2. Illustrate the production of renewable energies across the one day [35].

The above sections briefly discussed the TC approaches and energy prediction models, and summarized their state
of the art, along with the solar energy source. As mentioned earlier, most of the prediction models are impractical
to implementation due to the large memory required to store the history data, as well as heavy computations. In
the following section, the design and implementation of TC and LINE-P (Case-II) are presented.



3) Design and Implementation of the joint TC and energy prediction approach

3.1) TC mechanism

Our proposed design and implementation builds upon the embedded software utilities and API (application
programming interface) for FRAM-based microcontrollers provided by Texas Instruments in [12]. In particular, the
package “Compute through Power Loss Utility (CTPL)” contains the function “ctpl_enterShutdown ()” that allows
entering into shutdown mode after saving onboard peripherals, stack and CPU context into FRAM. A hardware
comparator (Comparator D of the MSP430FR5739) is used to detect when the power supply goes below a
programmable threshold (here V =2,5V), and then triggers an interrupt calling the ctpl enterShutdown() function.
The backup image is restored after a power up or a shutdown timeout. As described later on, this function has to
be called strategically when a loss of power is imminent or when it is predicted that not enough energy will be
available to complete a communication task properly.

The basic architecture of our experimental setup is identical to that of [4]. The additional setup consists in
establishing the network between an EH-powered Node (A) and another Node (B) as peer-to-peer for wireless
bidirectional communication, as well as incorporating TC with the energy prediction model on Node (A).

In addition to CTPL, we use SimpliciTI which is a lightweight and low-power network protocol suitable for small
RF networks; it is available as a library from Texas Instrument [36] and we have ported it to the MSP430FR5739
board as per the guidelines provided in [37].

Proper operation of wireless communication tasks that uses the SimplicitTI protocol requires initialization before
starting the communication. In our case, SimpliciTI is reinitialized at every wake up of a node. This is mostly due
to the fact that the radio component (TI CC2550) is an external device and thus its configuration cannot be saved
and restored with CTPL; therefore, it has to re-configured upon restoring power.

Given the intermittent nature of the EH source and the fact that Node (A) operates without any energy storage,
power can be lost at any time; the main challenge is to end the communication just before shutdown and start it
again after the wake up of the node. In order to create link quality between Node (A) and (B) in the peer-to-peer
network, we identified three main issues that should be addressed in our work:

1) In case of low energy and before entering into shutdown mode, a node is supposed to update its peer that
communication will not be continued. This activity requires a few clock cycles, thus the saving mechanism
should be started early enough.

2) The TC mechanism does not support saving the configuration of the radio device. Thereafter each wake-
up following a loss of power, the SPI communication between the node and the radio must be re-
initialized, and the CC2500 registers need to be re-configured.

3) Finally, in order to re-establish the communication, the link protocol has to be relaunched after the
restarting of the node.

Figure 3 shows how the TC mechanism has been modified in order to solve the issues raised by the communication.
Among others, we added a semaphore (Wake-up semaphore) which is set at the end of the TC routine. It is used
by the main state machine to know when a waking up has just happened (See the state machine in Figure 3).
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Figure 3. State machine of the TC mechanism allowing proper wireless communication.

In the following subsection, the implementation of LINE-P (Case-II) in combination with TC is discussed.

3.2) Combining TC and LINE-P (Case-II) energy prediction model

As discussed earlier, checkpointing methods are less efficient since they periodically evaluate the possible
imminent loss of power. An advantage of using energy prediction in combination with TC is that it is not only
possible to detect imminent loss of power but also to better decide whether or not to fire a task depending on the
predicted amount of energy for the next period of time. In our case, energy prediction provides information about
much energy will be available for the next period of time. This allows the system to start communicating only when
a sufficiently high amount of energy is predicted for a stable period of time. In that case, the communication will
be more efficient since less errors due to power losses will occur.

The energy prediction model used in this work builds upon the three cases proposed in [37]. Given the resource
constraints of the nodes used in this work, we selected LINE-P Case II since it is the less computational-intensive
of the three. Nevertheless, in order to reduce the memory footprint of the model to allow it to fit inside the FRAM
memory of the MSP430FR5739 (16KB), we had to scale and a normalize the kernel coefficients used in the prediction
model, thereby replacing float multiplications by integer ones. This allows saving five kilo-bytes of memory (see
Table 3a in the results section), but slightly reduces the accuracy of the model.

During the experiments, real data has been used; thus, live-data of Vcc must be recorded and stored in a buffer on
the node. The prediction is based on the last 6 values recorded (according to the time prediction scale, so that a one
minute prediction is based on the last 6 minutes).

The time prediction of the energy prediction model is configurable. However, as a node is not using any energy
storage, a short-term prediction (between one and ten minutes) is needed to provide enough adaptability to the
system. The impact of the time prediction is further discussed in the experimental section.



Figure 4 illustrates the modified version of the TC mechanism. A time-out protection is used in order to avoid a
node being blocked in the “communicate” state. If a node has not received a message for a chosen time period (for
instance 15 seconds), it has to end the communication and start the link protocol again.
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Figure 4. Diagram of the state machine integrating TC, energy prediction, and wireless communication.

Figure 5 illustrates the behaviour of the system according to Vcc. In order to decide whether or not to perform
communication, a configurable threshold voltage (here set to 2.9V) has been set to verify whether energy is low or
high. As shown in the figure, the TC mechanism has limited time to perform the save. If the voltage decreases too
quickly, it will not be able to perform this correctly. This limit is further discussed in the experimental section.
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3.3) Experimental Setup

In order to assess the proper operation and performance of the proposed combined TC and energy prediction

mechanism described above, the following elements have been used to conduct the experiments.

Two EXP-MSP430FR5739 kits with CC2500 radio device (used as sensor node with wireless connectivity
and non-volatile FRAM memory);

One PRT-13781 solar panel (13.5 cm * 11.2 cm) and 3.3V voltage regulator;

One Hewlett Packard 34401 A Multimeter for measuring the current;

One Velleman PS 613 DC power supply;

One FLUKE 123 industrial scope meter for observing and measuring the voltage;

One programmable energy supply (using LabView) for simulating an energy harvester for the set of
controlled-experiments.

SimpliciTI (TI), simple low-power RF network protocol;

FRAM utilities (TI), FRAM embedded software utilities for MSP ultra-low-power microcontrollers.

Figure 6 shows the diagram of the hardware setup for the peer-to-peer network. In the first part of the network, a
solar panel (source) provides power directly to Node (A). For power stability, a voltage regulator and a low pass

filter have been deployed between the power supply and the microcontroller to get a 3.3 DC voltage. The solar

panel size (13.5 cm * 11.2 cm) can deliver up to 7 V. The maximum power it can produce is 2 Watt with a voltage of

6 V. The characteristics diagram shown in Figure 7a and 7b are measured under various conditions such as sunny
day, cloudy day, and half an hour before sunset. The FLUKE 123 industrial scope meter is used for observing and

measuring the voltage provided by the solar panel through the voltage regulator and the low pass filter. The current
consumption of the node using EH is measuring by the Hewlett Packard 34401A Multi-meter.

10



Peer-to-peer Network

Figure 6. Diagram of the peer-to-peer network. Note: for controlled-experimental purposes, a programmable power
supply have been used for certain experiments (instead of the solar panel).
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Figure 7a. Current-voltage (IV) curve of the solar panel.
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Figure 7b. Power-voltage (PV) curve of the solar panel.

Finally, Figure 8a and 8b are photographs of the complete peer-to-peer network experimental setup. Figure 8a
shows the two nodes composed of EXP-MSP430FR5739 kits fitted with CC2500 RF modules, as well as the solar
panel. The nodes are programmed with the peer-to-peer application that runs on top of the combined TC and
energy prediction approach described above. Figure 8b shows the connection between Node (B) and the
programmable DC power supply.

a. b.

Figure 8. Figure 8a: Node (A) programmed with TC and LINE-P (Case-II) energy prediction and powered by solar
energy harvester. Figure 8b: Node (B) is powered by DC power supply.

In the next section, the results and performance are presented and discussed.
4) Results and Evaluation

In this section, we show the experimental results for the peer-to-peer network based on both modalities, i.e. TC and
LINE-P (Case-II) energy prediction model; in particular, we evaluate its performance with the following aspects:

1) Verification of the system (node) shutdown activity and saving data successfully;

1I) Evaluation of the memory footprint of the node before and after deploying TC and LINE-P (Case-II)
model;

1II) Accuracy of the LINE-P (Case-II) model, by comparing the measured and predicted energies;

1v) Scenario-based experiments and comparative analysis between programmable power supply and
solar panel for the network performance;

V) Evaluation of the link quality and reliability of the network.

The next section presents the evaluation part of the proposed solution with respect to the TC mechanism.

12



I) Verification of the system (node) shutdown activity and saving data successfully

When TC is implemented, in case of low energy the system should be able to save the data successfully before
entering the shutdown mode. To verify this, we use the benchmark feature of CTPL, which toggles a pin of the
microcontroller when it enters the shutdown mode.

Figure 9 is a snapshot taken on the oscilloscope; due to insufficient amount of energy the node enters the shutdown
mode but, before this, the registers of the microcontroller are saved in its FRAM memory. Afterwards, once the
energy will be available again, the node restarts, restores the registers values from the FRAM and resumes its
operations.

One limitation of the TC mechanism is that if the voltage decreases sharply, i.e. more than 4.8 volts/sec, then the
loss of power cannot be detected and no save will take place.

Figure 9. Illustrating the node behaviour in case of low harvesting energy.

In the following section, we evaluate the node’s memory footprint by deploying TC and energy prediction model
(Case-II) simultaneously.

II)  Memory footprint of the node before and after deploying TC and LINE-P (Case-II) model

In [21], we presented the LINE-P (Case-II) model and showed, through simulations, that (Case-II) has the lowest
complexity. This case has therefore been selected for implementation on the resource constrained microcontroller.
The implementation also makes use of integer multiplications instead of float ones (as briefly discussed in Section
3). As shown in Table 3a, this allows reducing the memory footprint of LINE-P (Case-II) from 6.5 KB to 1.5 KB.
Table 3b shows the memory footprint for i) Simplicity only, ii) Simplicity with TC, and iii) Simplicity with TC and
LINE-P (Case-II) energy prediction. As can be seen in the table, the overall memory footprint is 14414 bytes, which
closely fits inside the available memory (91%).

Table 3a. Memory footprint of LINE-P (CASE-II) using float or integer (scaled) multiplications

Float multiplications Integer (scaling) multiplications

LINE-P (Case I1) 6.5 KB 1.5KB
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Table 3b. Memory footprint of Simplicity on TI MSP430FR5739-based node with and without TC and LINE-P (Case-
1I).

Simpliticiti Simpliticiti (TC) Simpliticiti (TC and LINE-P (Case-Il))
FRAM: 12114 FRAM: 13950 bytes (88%) FRAM: 14414 bytes (91%)
bytes (76%)

11I) Accuracy of the LINE-P (Case-II) model, by comparing between measured and predicted energy

In order to validate the accuracy of the LINE-P (Case-II) model, we have conducted several experiments in different
weather conditions. For instance, Figure 10a illustrates the graphical difference between the measured energy and
the predicted energy on a sunny day. For further evaluation, the classical method mean absolute error (MAE) has
been used to calculate the percentage error. The corresponding results for Figure 10a can be viewed in Figure 10b.
Similarly, the results shown in Figure 11 and 12 are for partially cloudy and cloudy weather, respectively

Furthermore, Figures 10a, 11 and 12 represent the predicted data based only on the six previous values of real data
for minimizing utilization of the memory. Each slot duration is four minutes and the energy is predicted based on
next 16 minutes. Therefore, the predicted value of the slot 17 have been computed at slot 7 and compared with real
value of Slot 11.

Comparison Between Real and Predicted Energy

3,60
3,55
3,50

345

3.35
3,30
3,25

3,20
1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24

Figure 10a. Graphical comparison between real and predicted energy on a sunny day.
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Figure 10b. Mean absolute error percentage between the real and estimated energy for a sunny day.
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Figure 10b, shows that the MAE between real and predicted energy on a sunny day is approximately 1.38 %, which
is deemed very good.

Comparison Between Real and Predicted Energy
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Figure 11. Graphical comparison between real and predicted energy for a partially cloudy day.

Due to more intermittent characteristics of a partially cloudy day, the probability of error increases. The calculated
MAE for Figure 11 is approximately 10%.
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Figure 12. Graphical comparison between real and predicted energy for a cloudy day.

Figure 12 shows consistency in weather, thus the probability of error in prediction values is very low, i.e. 1.57%.
Significantly, the accuracy of the proposed approach is deemed to range from very good to acceptable. Given this,
using energy prediction can have a positive impact in terms of network performance and link quality since it allows
firing a communication task only when enough energy is predicted to be available.

V) Scenario-based experiments and comparative analysis between the programmable power supply and solar
panel for the network performance.

In this subsection we present various experiments and their results which are based on a programmable power
supply and a solar panel.

A) The programmable power-supply has been used to mimic an energy harvester so as to study the behaviour
of the system for different situations. To mimic the intermittent pattern of a real energy harvester, we use
a programmable power supply. LabVIEW has been used to program the power; this enables studying the
behaviour of the energy prediction-based system through different energy scenarios.

Scenario I is based on a 20 minutes duration and the voltage varies between 2.7 V and 3.5 V. At the 9" minute, a loss

of power occurs, i.e., the voltage decreases quickly to 0 V and thereafter increases sharply to 3.5 V, as shown in
Figure 13.
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Figure 13. Voltage variation for Scenario I, including a loss of power at the 9" minute.

As compared to the previous scenario, Scenario Il includes more fluctuations between 2.7 V and 3.5 V but no power
loss; the duration of experiment is 12 minutes, as shown in figure 14.
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Figure 14. Tllustrated the more variation between 2.7 to 3.5V.

Scenarios I and II are considered as case studies; next the corresponding behaviours of the system is presented for
1, 5 and 10 minutes data time-intervals.
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Scenario I for 1-minute prediction performed every 30 seconds
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Figure 15. Behaviour of the system corresponding to scenario I, for 1-minute prediction performed every 30 seconds.

In Figure 15, energy prediction has been performed every 30 seconds and Vcc recorded every 30 seconds by the
node. If the predicted energy goes above the 2.9 V threshold, then the system starts the communication (in the
figure, ‘1’ indicates active communication), otherwise it stops it. The results are consistent with the expected
behaviour of the system. In this scenario the prediction model is not very useful; nevertheless, this scenario
illustrates that the TC mechanism works properly since despite the loss of power, the system is able to end and
restart the communication.

Scenario 11

As shown in Figure 16, Scenario II includes more voltage variations. The behaviour of the system is tested with four
cases, namely without energy prediction and for 1, 5 and 10 minutes energy predictions. LINE-P (Case-II) model is
based on the six previous slots. Thus, a 1 minute prediction is based on the last 6 minutes; similarly, a 5 minutes
prediction relies on the last 30 minutes, and a ten minutes prediction is based on the last hour, respectively.

Figure 16 shows the system behaviour for Scenario II with no energy prediction case. Since no energy prediction is
performed, the system controls the communication based only on the current value of voltage. The system is
adaptive and very sensitive against the variations. As illustrated in the figure at 11:00 and 13:00, the communication
is stopped although the voltage increases again just after the power loss.
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Figure 16. Behaviour of the system for Scenario II without energy prediction.

Figure 17 shows the system behaviour for Scenario II with a 1-minute energy prediction. In this case, we observed
that the prediction model itself is not given enough time for performing the energy prediction. This case is very
similar with the previous no energy prediction case; again, the system is adaptive and sensible against the
variations.
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Figure 17. Behavior of the system for Scenario II with a 1-minute energy prediction.
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Figure 18 shows the system behaviour for Scenario II with a 5 minutes energy prediction. In this case, it can be
observed that the prediction model is now given enough time, in this case 5 minutes; as a result, the communication
time is higher since prediction time is higher. Power losses at 11:00 and 13:00 illustrate this point, because despite
these, the system continues to communicate. Thus, the system is more robust and stable against the variations; the
price to pay is that it is less adaptive.
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Figure 18. Behaviour of the system for Scenario II with a 5 minutes energy prediction.

Figure 19 shows the system behaviour for Scenario II with a 10-minute energy prediction. In this case, the
experiment shows long and stable communication, although the energy prediction is very close to communication
threshold and a decrease of a few millivolts would stop the communication. However, the waiting time for a stable
communication is longer than in the previous case as shown in Figure 19 at 13:00. Thus, this specific case illustrates
that for such a long prediction time, the system is not adaptive enough.
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Figure 19. Behaviour of the system for Scenario II with a 10 minutes energy prediction. Note: In this case, Vcc is recorded
and predicted every 1 minute instead of every 30 seconds.
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Through the above various observations, it can be said that either too short or too long slots are not beneficial for
the energy prediction model in order to achieve stability in the communication.

B) Experiments with the solar panel
After experimenting with the programmable power supply, we used the solar panel to power the node, again
without any energy storage device. Figure 20 shows the behaviour of the system with a 1-minute energy prediction,
in sunny conditions. The behaviour of the system is as expected as per the previous experiments with the

programmable power supply. Thus, the node is communicating for a longer period and it is deemed more reliable
and stable for the same length of prediction time (1-minute).
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Figure 20. Behaviour of the system using the solar panel with a 1-minute energy prediction under sunny conditions.

Next, we repeated the experiment under cloudy conditions. The corresponding results are shown in Fig. 21.

In this case, the solar panel provided insufficient power, though very close to threshold voltage. We observed that
when the node is communicating, its consume more current. However, once the communication is established,
thereafter the current consumption increases and the voltage decreases, which causes the system to repeatedly start
and end the communication.
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Figure 21. Behaviour of the system with a 1-minute energy prediction, using the solar panel as the energy
harvester under cloudy conditions.
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V) Evaluation of link quality and reliability of the network by measuring the jitter and ratio at various
distance.

In order to achieve efficient energy, we exploit a solar energy harvester as a power source. Moreover, the
implementation of both modalities, i.e. TC along with LINE-P (CASE-II) energy prediction model simultaneously
is expected to be effective and to improve the system performance and link quality based on the energy prediction.
The peer-to-peer link quality can be viewed from two levels, i.e. application specific level and network level.

In this section, we evaluate the network performance at certain distances by observing three features, namely jitter,
ratio of packets transmission and energy consumption. Usually, in peer-to peer networks, the coverage area is based
on the 4 hops count [23]. However, in this scenario, the network has no hops. Thus, it is interesting to evaluate
whether or not the variation of distance can make a difference or influences the communication between two nodes
in terms of power consumption. Usually, ensuring reliability and link quality requires many mechanisms.
However, here the application is not very critical (environment monitoring system). In addition, in this scenario,
the reliability is evaluated in terms of the average receiving ratio. Therefore, delays in the transmission are not so
critical. Table 4 presents the jitter, average receiving ratio of the packets, and the power consumption of the node at
various distances. Similarly, Table 5 shows the current consumption and power consumption of the node without
deployment of TC and LINE-P for certain states of the node.

Table 4. Peer-to-peer network performance based on the average receiving rate at various distances.

Distance Jitter Average receiving rate Power
(m) (ms) (%) Consumption
(mW)
0.3 20.9 94.6 66.7
20.9 94.6 66.7
3 20.9 94.6 66.9
6 20.9 94.6 70.2

As can be observed in Table 1, only power consumption is affected by distance. Both the jitter and average receiving
rate are constant and their values quite acceptable for such a non-critical application. On the contrary, the power
consumption of the node without the deployment of TC and LINE-P while establishing the link and the
transmission is 60 mW, which can be observed in Table 5.

Table 5. Power consumption of the node without TC and LINE-P modalities for various states.

State Current Consumption Power
(mA) Consumption
(mW) at Vec =3V
Idle 2 6
Linking 20 60
Communicating 20 60

By deploying both TC and LINE-P (Case-II) model into the peer-to-peer network does not require much more
power; as can be seen in Table 4 and Table 5, the difference in power consumption of the node is very low. Actually,
both modalities improved the link quality. In addition, jitter and power consumption are definitely affected, due to
the decreasing amount of harvested energy and longer distance. In the context of network performance and
reliability, all the packets were received successfully, which can be seen in the Table 4.

A%)) Discussion and Conclusion

We have demonstrated and evaluated the hardware-based implementation of both modalities (TC and LINE-P
(CASE-II) energy prediction model). As our experiments have shown, the TC mechanism, on an individual basis,
plays an important role for the performance of the node and helps mitigating issues such as power loss by saving
and restoring the microcontroller registers in its FRAM memory. However, TC itself operates with the
instantaneous energy only, neither estimating the availability of energy nor performing the tasks accordingly.
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Indeed, if the voltage decreases too rapidly, (4.9 volts/sec or above in our case) then the TC mechanism will not be
performed at all. In addition, in case of decreasing energy, the node should to stop a communication task.

To deal with this, we added an energy prediction model in the system. Our experiments have shown that by adding
energy prediction in the TC-enabled system, the node can now predict the availability of the energy for the next
time slot. Thereafter, it can take the decision to fire or stop a task based on the estimated energy. In particular, it
can only communicate when the energy is higher than the energy threshold, which provides link quality, reliability
and system stability. Furthermore, energy prediction can improve the robustness against the variation in power.
The experiments also show that several parameters such as the communication threshold, sampling period,
prediction time, and the power capacity of the harvester influence the behaviour of the system. On the other hand,
the energy prediction model calculation requires some CPU-time and consume a small amount of energy. Finally,
it was noted that the energy prediction model has its own limits and is not able to perform very well in highly
changing weather.

In conclusion, and to the best of our knowledge, the practical implementation of the joint TC and energy prediction
has not been shown previously and a novel approach for autonomous WSN nodes has been presented in this paper.
The results illustrates the benefits of the proposed approach, e.g. an average receiving rate of 94.6% at various
distances between the nodes for various power variation scenarios. Furthermore, by conducting various
experiments and utilizing real energy datasets of the solar energy, the results show that the proposed solution
provides 90-98% accuracy of the predicted energy, depending upon the weather conditions.

Usually, if harvested energy is greater than 0 but insufficient to power the node or more, then this harvested energy
is wasted. Therefore, in our upcoming work, we will consider wireless power transfer between autonomous nodes
so that unused harvested energy can be shared among the nodes. We also plan to integrate the wireless power
transfer concept with the proposed TC and energy prediction to enhance the operating time of the nodes as much
as possible.
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Abstract: In the context of wireless sensor networks, energy prediction models are increasingly
useful tools that can facilitate the power management of the wireless sensor network (WSN)
nodes. However, most of the existing models suffer from the so-called fixed weighting parameter,
which limits their applicability when it comes to, e.g., solar energy harvesters with varying
characteristics. Thus, in this article we propose the Adaptive LINE-P (all cases) model that calculates
adaptive weighting parameters based on the stored energy profiles. Furthermore, we also present
a profile compression method to reduce the memory requirements. To determine the performance of
our proposed model, we have used real data for the solar and wind energy profiles. The simulation
results show that our model achieves 90-94% accuracy and that the compressed method reduces
memory overheads by 50% as compared to state-of-the-art models.

Keywords: WSN; energy harvesting; energy prediction

1. Introduction

1.1. Energy Harvesting and Prediction Models

Energy harvesting (EH) is a promising technology that became a hot topic in the scientific
community during the last few decades; however, EH is still a least explored area, especially at
the micro and nano power levels. In particular, EH at the micro level is quite useful to power
ultra-low-power sensor nodes. EH introduces various paths of research for prolonging the lifespan
of wireless sensor network (WSN) nodes, either as an energy harvester with buffered energy storage
(e.g., battery or super-capacitor) or directly (e.g., without energy storage) for autonomous devices.
Several EH approaches, presented in the literature, exploit solar, wind, or thermal energy.

EH is a good alternative solution for those applications that are implemented once and become
operational for longer periods; examples include environmental monitoring, structural monitoring,
etc. Furthermore, WSN applications can benefit from EH to extend the life of the node or network [1].
Generally, numerous methods associated with EH have been discussed in the literature. These include
energy-aware protocols, duty cycle management, task scheduling, transient computing (TC) in
stand-alone mode (which performs transmission when the energy is available with or without any
power source battery), data prediction [2], as well as mobility, which can reduce the power consumption
if mobility incurs low overheads [3].

According to the literature, EP plays an important role for EH in the context of WSNs. Energy
prediction for non-controllable energy source seeks to provide information about the upcoming
available energy based on past records (profiles) and/or current values. EP mechanisms increase the
system’s efficiency [4] because they enable more careful utilization of the available energy as well as
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the dynamic execution of tasks depending upon the estimation of the energy available in the next time
slots. Given the importance of EP, it is necessary to propose accurate sets of energy prediction models
in order to increase the performance and other important processes for better quality of service.

In this article, we first briefly recall the limitations of most existing EP models due to the
fixed-weighting parameter issue; thereafter, we suggest a solution with an adaptive weighting factor
based on the energy profiles. In [5], we discussed how most of the energy prediction models such
as EWMA, WCMA, ASEA, PRO-Energy, QL-SEP, and LINE-P (all cases) are dependent on a fixed
weighting parameter; however, these solutions are not always suitable for real implementations with
many various types (and hence characteristics) of e.g., solar energy harvesters.

In addition, the proposed Adaptive LINE-P (all cases) model estimates the energy over three
different time periods, namely shorter, medium, and longer, and uses variable-length timeslots.
The proposed prediction model improves the prediction accuracy and minimizes the error between the
harvested energy and stored profiles. Furthermore, in this article we propose a compression method
that reduces the size of the stored energy profiles by 50% in order to reduce memory overheads.

1.2. Contribution

Our contribution can be summarized as follows:

e We propose and evaluate enhancements to the existing LINE-P (all cases) model; we name the
resulting new model “Adaptive LINE-P (all cases)”; namely,

o we propose an adaptive parameter to address the fixed weighting parameter issue that is found
in most existing energy prediction models, specifically when targeting solar energy harvesters;

o we propose a profile compression technique that can be integrated in any energy
prediction model.

e Our results show that the proposed enhancements achieve up to 98% accuracy (non-compressed
profile) and up to 90% accuracy but with a 50% reduction of the memory requirements when
using the compressed profile method, as compared to the state of the art.

The rest of the article is formulated as follows. Related work is presented in Section 2.
The proposed Adaptive LINE-P (all cases) is detailed in Section 3. The comparative performance
evaluation of the models is discussed in Section 4. Finally, we briefly conclude in Section 5.

2. Materials and Methods

Here, we discuss the state of the art regarding the fixed kernel parameter issue, variable length
time slots, and dynamic or adaptive energy prediction models related to the domain of WSNs.

2.1. Non-Adaptive Energy Prediction Models

In [5] the authors presented three cases of LINE-P (linear energy prediction model) that are based
on the sampling and approximation theory. The authors showed that LINE-P (all cases) is more
accurate, has a lower complexity, and is energy-efficient in terms of computation as compared to other
non-adaptive EP models.

However, the above comparison did not include the latest extensions, namely Pro Energy VLT
and IPro-Energy. Thus, in this sub-section we first briefly introduce LINE-P and then discuss Pro
Energy VLT and IPro Energy.
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2.1.1. LINE-P

We first briefly introduce LINE-P. The detailed mathematical derivations can be found in [5].

Linear Energy Prediction LINE-P (Case I)

The main aim when designing LINE-P was to minimize the computational complexity while
maintaining similar accuracy to other models.

If we have the samples f;(I =1,...,k) from k previous days, we utilize this information as the
basis for EP. Here, vector b defines a symmetric kernel and the parameter vector a, where a; = 0 for
k < 0, generates a one-sided kernel with the correspondent sampling operator:

(Sprepinf) () == Tpqbef (G — k) 4+ Zo—_ubx fi(j — k) + CDIFpReD a0 (), O

where the correction term CDIFprgpry, in Equation (1) is given as
CDIFprep b (j) = CTprEDLab (Tk—a i f (k — 1) — Tiqax i — k), )
with the multiplier CTprepy;, defined as:
CTrRED 0 = Th— k- ®)

Equation (1) is used to estimate the energy based on the next time slot, specifically for LINE-P
(Case I), and Equations (2) and (3) are the substitution factors of Equation (1).

Linear Energy Prediction LINE-P (Case II)

In this case, we proposed a model that performs energy estimation with only n previous samples
from the same day. This case is dependent on only one variable, i.e., a:

m

(SpreDIEaf) () = Z”kf(j —k). )
k=1

Linear Energy Prediction LINE-P (Case III)
The third case is similar to Case I; the only difference is in CTprepisr;p as shown in Equation (7).
(Sereief) () = Tioabif (= k) + TR__ bk fi( = k) + CDIFpReD 115 (7). ®)

where the correction term CDIFprgpiyr;p: is in Equation (6),

CDIFprepirrpa () := CTpreprnp (Tky bif(— k) — Ty b i — k), (6)
with the multiplier CTPREDIU;b
DY —
CTpreDIILY = ~—r 2 7)
k=1 Yk

We select, from the k previous days, day [ for which the absolute value of the correction term
CDIFprepiirp; is minimal and consider the values f; from that day.

2.1.2. Pro-Energy-VLT

In this subsection, Pro-Energy-VLT is discussed. In [6], the authors presented Pro-Energy with
variable-length timeslots (Pro-Energy-VLT), based on the Pro-Energy model. In particular, the author
proposed a perceptually important point (PIP) technique to calculate the variable size timeslots such
as 30, 60, and 90 min [6], as compared to their original design, which was fixed to 30-min data



Sensors 2018, 18, 1105 40f26

intervals [6]. The authors revealed that Pro-energy-VLT increases the prediction accuracy while
reducing the memory and the energy overhead of energy forecasting [6]. However, the authors used
two fixed weighting factors « and v in their algorithms to estimate energy for the next time slot
over short and medium data intervals. As mentioned earlier, such a fixed tuning parameter is not
compatible with various solar energy harvesters with different characteristics.

2.1.3. IPro-Energy

We now discuss IPro-Energy, which is also based on the Pro-Energy model. In [7], the authors
of IPro-energy highlighted its two main features. Firstly, IPro-Energy uses a weighted profile (WP)
technique to compensate for inconsistency in the weather behavior. Secondly, the authors showed that
the model has a low complexity in terms of execution time, and low requirements in terms of storage
data. We have conducted a simulation test of IPro-energy and compared its results with Pro-Energy;
we found that, indeed, IPro-Energy yields better results than Pro-Energy, as shown in Figure 1. In order
to quantify the prediction error, we have used two classical measures, namely MAE (mean absolute
error) and MSE (mean square error), as shown in Table 1.

October 2017 (28th Day) October 2017 (29th Day)

—Real data —Real data
—Pro-Energy —Pro-Energy
IPro-Energy IPro-Energy
15 15
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g SO =" o ¢ Y
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Figure 1. Illustration of a four-day comparative analysis of [Pro-Energy with Pro-Energy.

Table 1. Prediction error in terms of MAE and MSE for IPro-Energy and Pro-Energy.

Energy Prediction Model

MAE (Mean Absolute Error)

MSE (Mean Square Error)

IPro-Energy
Pro-Energy

0.09915
0.15875

0.0608
0.1665

Although the results yielded by IPro-Energy are better than those of Pro-Energy, the former
relies on a more complex model and the execution times are much higher than those of Pro-Energy.
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This is because both the basic Pro-Energy model and the new features of IPro-Energy have to be
executed. In particular, IPro-Energy introduces an additional weighting factor, Wy, which lies at [0, 1].
Thereafter, based on Wy and the r weighting factor (which has a 0.5 fixed value), the authors calculated
the smarting factor (S) in Equation (8). Then, for predicting the energy based on the next timeslots,
Equation (8) is inserted into Equation (9):

_ (Ct—Ci1)
s=r (G ran) o ©

The expected energy is denoted by Cy,; for the timeslot t+i of the current day,
Cryi = WG + ((1 - wf) WPH,) +s, )

where WP is expressed as a combination of the previously observed most similar days.

Apart from the fixed parameter weighting factor-based models, there are several ANN-based
algorithms available in the literature that estimate the energy based on a short-term energy prediction.
In [8], the authors proposed a method for an adaptive neural network model. They used sliding
window training with window sizes of three, four, and five months’ data. In particular, their simulation
results show that the five-month window size was the best simulation. In addition, they show that it is
good to have a larger window size for training purposes as fewer data decreases the prediction quality.
However, even a window size of three months of data would be too big for the microcontroller’s
(MSP430FR5739 and MSP430G2) memory targeted in our work and in [9] it was concluded that such
ANN-based models are not adaptive and not more reliable than EWMA and WCMA algorithms.

There are others approaches to reducing the energy consumption and management in WSNs
that work by estimating the energy, i.e., route selection schemes [9] and adaptive duty cycling [10].
Furthermore, in [11] the authors investigate the distributed sampling rate adaptation method in the
multi-sensor implemented wireless devices to assign data capturing tasks among them based on
the remaining energy network participation and correlations. In addition, they proposed effective
mechanisms to utilize the ability of wireless devices to monitor a few selected points in a certain area.
In [12], the authors present joint channel selection and routing schemes for multi-channel WSNs that
apply duty cycling to sustain energy. The experimental tests and simulation show that the proposed
schemes reduce overhearing by approximately 60% with two channels without affecting network
performance. Furthermore, the researchers exploited some other techniques for minimizing energy
consumption, for instance data compression and source coding [13], transmitting power control and
distributed sampling rate adaptation for WSNs [14].

In the following, we discuss adaptive parameter weighting factor-based models for solar energy
harvesting in the context of WSNss.

2.2. Adaptive Energy Prediction Model

In this section we discuss UD-WCMA, the only dynamic or adaptive weighting factor-based EP
model that aims at better tracking variations in the generated energy (due to, e.g., weather conditions).
UD-WCMA [15] is developed based on the WCMA structure; it introduces a time-varying
weighting parameter Gi(n + 1). This gain is adapted depending on the variations in the reference
profiles stored in the memory. In addition, the energy prediction is ensured by combining the
information collected from the last observations 6(11) with the mean value (1 + 1) of the harvested
energy from the stored profiles.
Mathematical expression of the dynamic schemes in the UD-WCMA prediction model is
as follows:
2 (n+1) =Gi(n+1)8(n)+ [1 = Gi(n+1)]GAPuy(n +1), (10)
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where
o(n+1)

20+ )t 1)
In Equation (10) o represents the standard deviation of the irradiance levels of the stored profiles
at time n + 1 with respect to the mean value. Subsequently, ¢ is also a standard deviation that

indicates the energy variation in the stored profiles between the time slots n and # + 1. They are
defined, fori={1, ... ,d}, by:

Gi(n+1)= (11

o(n+1) = \/dz xi(n+1) — ug(n + 1)) (12)
and
A1) = \ A At 4 1) gl + 1), 09)
where
Ayi(n+1) = xj(n+1) — x;(n) (14)
and 1
u(n+1) = EZ?:lAli(" +1). (15)

In order to further increase the accuracy and robustness of the model, especially for dealing with
inconsistent weather, the author in [15] proposed replacing the last observation (1) with a weighted
linear combination of the last observation and the closest energy pattern in memory denoted by
xi(n + 1). Moreover, the linear combination is weighted by an adaptive factor G(n + 1) depending on
the variation of the current day measurements, as follows:

n+1) =G (n+1)[Gn+1)0(n) +1—G(n+1)x;(n +1)] + (1 — G1(n +1))GAPuy(n+1), (16)
where
Gin+1)=Gi(n+1)+Gy(n+1) 17)
and
o(n+1)
200(n+1)+om(n+1))

In Equation (18), o»(n + 1) represents the standard deviation of the variations in the solar

G2(7’l + 1) =

(18)

irradiance measurement vector 6 between continuous time steps along a window of size K.
Consequently, the vector of consecutive variations defined by A, (n + 1) is given by:

Ap(n+1)=0n+1—k)—0(n—k), k=1,...,k—1 (19)
Thus, the corresponding mean and standard deviation are defined by:
1
M2(}’l + 1) Zk 1A2k(7l + 1 (20)

and

nn+1) = \/ﬁzf;%(AZk(nJrl)—uz(n+1))2. (21)

3. Proposed Multi-Source Adaptive Linear Energy Prediction Model (Adaptive LINE-P)

As described above, LINE-P is designed and developed based on sampling theory and
approximation; we propose a novel adaptive linear energy prediction model (named Adaptive
LINE-P), of which the main purpose is to add adaptive weighting to LINE-P. Rather than using
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a fixed weighting parameter, which makes it difficult to reflect the different properties of energy
harvesters such as solar-based ones, Adaptive LINE-P is based on energy profiles, which improves the
accuracy, adaptability, and reliability of the energy predictions.

We first present the Adaptive LINE-P model and evaluate its basic performance. Thereafter,
we compare its performance against that of Pro-Energy, Pro-Energy-VLT, IPro-Energy, and UD-WCMA.
We used four datasets of traces of harvested energy. These datasets are from trusted sources,
and taken from different locations of the USA and Europe. Furthermore, three datasets for solar
energy, i.e., Southern California Edison Company (SCE, Rosemead, CA, USA), Pacific Gas and Electric
Company (PG&E, San Francisco, CA, USA), and San Diego Gas & Electric Company (SDG&E, Santiago,
CA, USA) [16] are used; we also selected one dataset for wind energy from Elia (Belgium-based power
generation company, Brussels, Belgium) [17].

3.1. Sampling Operators

Let us suppose that a function f is defined for every point of some domain D and has series

representation there in the form:

[ee]

Y fte)se(t)

k=—00

in which {t;} is a collection of points of D and {si} is some set of suitable expansion functions.
Such an expansion is called a sampling series. The function f is represented in its entirety in terms
of its values, that is samples, at a discrete subset of its domain. For the uniformly continuous and
bounded f € C(R), the generalized sampling series are given by (t € R;w > 0) as per Equation (22),

(Suf)(®) Z f( st =i, @)

where s € C(R) is a kernel function.
If the kernel function used in the sampling series is the cardinal sine, defined in the form:

sin 7tt
7Tt

s(t) = sinc(t) :=

’

we get the classical (Whittaker-Kotel'nikov-) Shannon sampling operator,

(SZ}“C ) Z f< > sinc(wt — k). (23)
Let us take w = 1 and t = j € Z in Equation (22), then
(S1)(j) = Z fR)s(j = (24)

3.2. Kernels

The general kernel for the sampling operators Equation (22) is expressed below.

Definition 1. ([18]) If s : R — C is a bounded function such that the absolute moment

mo(s) ==Y [s(u—k)| <oo(u €R), (25)
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with the absolute or positive convergence uniform on compact subsets of R, and we have a partition of unity

i s(u—k)=1(u€R), (26)

k=—c0

then s is called a kernel for sampling operators Equation (22).

The conditions in Definition 1 guarantee that the series in Equation (22) converges for f € C(R);
moreover, we have uniform convergence

[1(Swf) = fIl =0, (w — o0)
for any f € C(R). We estimate the speed of the convergence of sampling operators in terms of the

modulus of smoothness w; (r € N) (see [18-22]) in the form

s
w

1(Swf) = £l = Meo, (f l),

where M is a positive constant. If we have an estimate in terms of a high order of modulus of
smoothness, then the sampling operator rapidly converges for smooth signals.

The main aim of this article is to use for signal prediction the generalized sampling operators
Equation (22), where the kernel function s is defined through the Fourier transform of a certain
window function:

Definition 2. A function A € C(R) is called a window function for a kernel of a sampling operator if A(0) =1
and A(£2k) =0 fork € N.

Our kernel function is defined by the equality
1 .
s(t) :==s (A ) = E_/ A(u) exp(—irtu)du. (27)
A special case of the kernel function are M-bandlimited kernels, defined by Equation (27), using
window functions A(u) = 0 (|u| > M > 0). We consider the case M = 1, i.e., with kernels defined

using window functions A € C[_1 5, A(0) =1, A(u) =0 (Ju| > 1). If the window function is an even
function, then we get an even kernel:

1
s(t) = ./o Au) cos(rtu)du. (28)

Generally, for some cases, non-symmetric kernels are more suitable. In such cases, we prefer the
general window function A € C|_; ;) and define the kernel in the form

s(t) = %/_11 Mu) exp(—imtu)du. (29)

These sorts of kernels arise in conjunction with window functions widely use in applications
(e.g., [23-26]), particularly in signal analysis. Many kernels can be defined by Equation (28), e.g.,

(1) A(u) = 1 represents the sine function;

2) /'\]-(u) 1= cos 7t<] + %)u, j=0,1,2,... defines the Rogosinski-type kernel (see [20]), in the form

r(t) = %@m(wﬁ%) +sinc<t—j—%>) (30)
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2
= ———5—*%cos Tt (31)

Powers of the Hann window (see [25], Equation (25));

A () := cos™ (%) (32)
give a general Hann kernel in the form
_ L(1+m)
s t)y=27" , 33
Hon(£) TA+Z-OT(1+ 2 +1) (33)
where I' is the Euler gamma function.
If m =1, we get the Hann kernel:
sinc(t —1) +2sinc(t) +sinc(t +1
st = (Sl =)+ 2inc(t) sinc(t 1)) a
(3) The general cosine window
n
Aca(u) :== Z aycoskru, (35)
k=0
illustrates the Blackman—-Harris kernel (see [20]),
sca(t) :==1/2 Y}y ag(sinc(t — k) +sinc(t +k)), (36)
provided (here and following | x| is the largest integer less than or equal to x € R):
5] 125t )
Zﬂzk = Z M1 = 5 (37)
k=0 k=0

We get the Hann window if we take n = 1 in Equation (35), and the Blackman window if n = 2
and a9 = a in Equation (35). For n € N there exists a choice of parameters that allows us to have
the order of approximation of the corresponding sampling operators estimated by high (2n) order of
modulus of smoothness w», ( f %) x (cf. [20]). Another possibility for the parameter vector a = a*

: « « . 2n
in (35), where the parameter vector a* = (a(’g,ai, . ,u;‘l) € R"t1 has components 45 = ﬁ < )
n

1 2n

and 4§ = 531 n_k

fork =1,2,...,n, gives us by Equation (28) a family of rapidly decreasing

kernels sy, = O( |t\2”+1) (see [21] for corresponding operator norms and [22] for truncation errors).
The general cosine window generates a linear combination of translated sine-functions; rather
than the general cosine window, a window in the form Equation (38) can be used:

n .
Apa(u):= Y ae®™™ (neN, a=(a_pa_p1,..., an)) € R, (38)
k=—n
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provided
7] L] .
ZﬂZk = Z k-1 = 7 (39)
k=0 k=1
If we use Equation (29), we get a corresponding kernel in the form of Equation (40):
n
sea(t) = Y agsinc(t—k), (40)

k=—n

which fulfills the properties of a kernel in terms of Definition 1, because the condition in Equation (39)
guarantees that we have Equation (26) and that mg(sg,4) is bounded. Letus takew = landt=j€ Z
in Equation (22), then for kernel sg , we get

Suead) ()= Y fEseali—k) = 3 anf(t— k). (41)

k=—c0 k=—n
Comment on Approximation Error Estimates

The reader can refer to this section in [5] for a short discussion of approximation error estimates.
Note, for the case at hand: if we have for some 7 (r € N), an estimate of speed of convergence in terms
of modulus of smoothness w;, then the sampling series representation is exact for polynomials with
a maximal power less than or equal to (r + 1).

3.3. Adaptive Predictors

We need adaptive predictors because the energy profiles can have different properties,
i.e., with different smoothness, variation, etc. For different types of profiles we need different kernels
for the sampling operators. In the current approach, we use the following kernels:

- For smooth profiles, kernels allow approximation order, estimates through high order of modulus
of smoothness.

- For unstable profiles, the kernel provides a sampling operator with minimal (close to 1) norm.

Note: The trivial error estimate signal for additive noise is in the form ||Sy||-||v||, where ||Sy]] is
the operator norm and ||v || is the norm of the noise component, i.e., if the operator norm is equal to 4,
then in the worst case, we have 4-fold amplification of the noise in the predicted energy profile.

We deal with other profiles with a kernel that provides a sampling operator with good
approximation properties and a small norm.

In order to choose the predictor kernel, we use I; norms of the prediction errors of
previous estimates.

3.4. 11 Norm

Now, we propose a method for adaptive prediction. We use the I; norms of the prediction errors.
Moverover, we choose some 7 (r € N) kernels s; (i=1,2, ..., ) that generate sampling operators with
different properties (approximation order, norm, etc.) and compute the predicted values using it.

For predicting the k-th element, we choose the kernel for which the /; norm of the prediction
errors for some one-sided neighborhood of the k-th element of the profile is minimal. We compute for
the k-th element norms ||E;(k)||1 of errors in the following form:

[E:(R)[[1 = _nzllf(k—]') = fpitk=1)l,
=
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where f(k) is the measured energy in slot k and f, (k) is the predicted energy for slot k using the
kernels s;.

For particular realization of the adaptive predictor, to cover different types of profiles, we choose
three kernels with different approximation properties. We have corresponding sampling operators,
a first one with minimal norm, a second one with a high order of approximation, and a third one with
good approximation properties and a small norm.

3.5. Compressed Profiles

In this section, we suggest a method for compressing profile data to address the memory size
limitation of WSN nodes. This is expressed as

f(t) =T f(K)S (£ = k),

where f is the compressed profile, f the original profile, and S(t) := %s (2t/a) (« > 0) the dilated
kernel. Instead of f(k) we store f(ak). For example if « = 4, we use one-quarter of the memory.
For reconstruction, we use an interpolating kernel S, i.e., a kernel defined using a window function
that satisfies the equality
Aw)+A1—u) =1, (ue(0,1]).

The reconstruction formula is as follows:
. — (2,
f(j) = X f(ak)2S (E] - 2k>.

For efficient realizations we need to choose a reconstruction kernel, which allows us to compute a
good enough reconstruction with a minimal number of operations; for the compression part the kernel
may be more complicated, because we need to compress the profile only once a day.

For a particular realization of the compression algorithm, we take « = 4 and for both the
kernel s and S, we choose the Hann kernel (Equation (34)), which adds for reconstruction only three
multiplications for every day in one prediction step.

In what follows, we check the accuracy of Adaptive LINE-P (all cases). Thereafter, we can
determine which of the cases is predicted best in terms of numerical value and suitable for further
comparison with the state of the art.

3.6. Accuracy Evaluation of the Adaptive LINE-P (All Cases) Based on the MAE and MSE

In this section we seek to find which of the three cases of Adaptive LINE-P model provides the
most accuracy, robustness, lower errors, and adaptability in case of frequent changes in the energy
source. In order to quantify the error in each case of Adaptive LINE-P, we consider two source energy
profiles (solar and wind) and conduct various evaluations by means of MAE and MSE measures.

We have conducted two tests based on the two sources, namely, solar (SDG&E energy profile) and
wind (Elia energy profile). Tables 2 and 3 show the MAE and MSE for Adaptive LINE-P (all cases) for
SDG&E energy profile for six individual days, as well as the average. Similarly, Tables 4 and 5 show
the MAE and MSE for Adaptive LINE-P (all cases) for Elia energy profile.
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Table 2. Error comparison of adaptive LINE-P (all cases) based on the MAE for SDG&E solar

energy profile.
MAE MAE MAE MAE MAE MAE
MODELS  pay1) (Day2) (Day3) (Dayd) (Day5) (Daye) ~veraseMAE
Adaptive LINE-P o 000r 01071 01575 00969 00597  0.0382 0.0871
(Case )
Adaptive LINE-P ) 0c01 1148 01993 01239 00869  0.0554 0.1065
(Case 1)
Adaptive LINE-P 00y 0887 01486 0.0902 00523  0.033 0.0793
(Case III)

Table 3. Error comparison of adaptive LINE-P (all cases) based on the MSE for SDG&E solar

energy profile.
MSE MSE MSE MSE MSE  MSE
MODELS  pay1) (Day2 (Day3) (Day4) (Day5 (Daye) ‘VerageMSE
Adap(tc“;‘;eLII)l\I EP 00212 00649 01462 00588 00184  0.0069 0.0527
Adaptive LINE-P ) 0100 00608 02402 00769 00356  0.0207 0.0768
(Case II)
Adaptive LINE-P 001 0305 01287 00537 00133 0.0065 0.0429
(Case III)

Table 4. Error comparison of adaptive LINE-P (all cases) based on the MAE for Elia wind energy profile.

MAE MAE MAE MAE MAE MAE

MODELS (Day1) (Day2) (Day3) (Day4) (Day5 (Daye) ~veraseMSE
Adaptive LINE-P ho0) 1455 00494 00391 01192 0.0806 0.0887
(CaseI)
Adaptive LINE-P 5500 1508 00343 00205 01481  0.0754 0.0895
(Case II)
Adaptive LINE-P ) vo0n 01444 00474 00322 01137  0.0921 0.0875
(Case III)

Table 5. Error comparison of adaptive LINE-P (all cases) based on the MSE for Elia wind energy profile.

MSE MSE MSE MSE MSE MSE

MODELS (Day1) (Day2) (Day3) (Day4) (Day5) (Day6) Average MSE
Adaptive LINE-P o 0105 00410 00070 00038 00445  0.0129 0.0212
(Case I)
Adaptive LINE-P 0109 0484 00027 00019 00597  0.0106 0.0230
(Case II)
Adaptive LINE-P 0150 00410 00031 00021 00431  0.0211 0.0210
(Case I1I)

Tables 2-5 illustrate that, among all cases of Adaptive LINE-P model, Case III yields more accurate
estimates as compared to Case I and Case II (error down by between —1% and —44%). Given this,
Adaptive LINE-P model (Case III) has been selected for further comparison with the state of the art,
as presented in the next section.
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4. Comparative Analysis of Adaptive LINE-P (Case III, Non-Compressed Profiles) with the State
of the Art

In this section, we assess the performance of Adaptive LINE-P (Case III) against that of UD-WCMA
(the only other adaptive energy prediction model available in the literature) and against that of LINE-P
(Case III) and IPro-energy (deemed the best two non-adaptive energy prediction models). Note that
although we refer to LINE-P (Case III) and IPro-energy as non-adaptive, they are able to model
energy variations, but they do not include specific adaptation mechanisms as in Adaptive LINE-P
and UD-WCMA.

The comparison is based on short, medium, and longer time period horizons. The classification
of the time periods and their graphical representations are extracted from the real datasets available
in [16,17]. For the longer time period, we consider 30 time slots; for the medium and shorter time
periods we used 61 and 96 time slots in 42-, 22-, and 15-min data intervals in 24 h, respectively.

As far as the longer time period is concerned, by deploying real implementation of energy
prediction, we have found that a longer time period such as a 1-h data interval is not sufficiently
adaptive and feasible, specifically for those regions where the weather changes frequently. Therefore,
we have reduced the data interval time from 60 to 42 min and conducted experiments based on 42-,
22-, and 15-min time periods.

In addition, we present the evaluation of the model based on the same two error measures as in
Section 2, i.e., MSA and MSE; thereafter, we assess their time complexities and finally the analysis of
the proposed compression technique.

4.1. Graphical Representation of Adaptive LINE-P (Case I11) as Compared to the State of the Art Based on
Longer, Medium, and Shorter Time Period Horizons

For the assessment of all the prediction models, we present the estimation errors in Tables 6 and 7
by using MAE and MSE with the same profile PG&E available in [16].

Table 6. Error comparison of prediction models based on MAE for the PG&E solar energy profile.

MAE MAE MAE MAE MAE MAE

MODELS (Day1) (Day2) (Day3) (Day4) (Day5) (Day6) Average MAE
LINE-P (Case III) 0.0269 0.0315 0.0188 0.0189 0.0138 0.0141 0.0206
UD-WCMA 0.0407  0.0686 0.0685 0.0330 0.0194 0.0312 0.0435
IPRO-Energy 0.0070 0.0861 0.0645 0.0526 0.0252 0.0310 0.0443
Adaptive LINE-P (Case III) ~ 0.0251 0.0370 0.0150 0.0210 0.0171 0.0155 0.0217

Table 7. Error comparison of prediction models based on the MSE by deploying PG&E solar profile.

MSE MSE MSE MSE MSE MSE

MODELS (Day1) (Day2) (Day3) (Day4) (Day5) (Day6) Average MSE
LINE-P (Case III) 0.0037  0.0040 0.0018 0.0017  0.0011 0.0008 0.0021
UD-WCMA 0.0063 0.0184 0.0429 0.0040 0.0017 0.0034 0.0127
IPRO-Energy 0.0002 0.0267 0.0127 0.0037  0.0027 0.0032 0.0082
Adaptive LINE-P (Case III) 0.003 0.0086 0.0013 0.0037  0.0015 0.0011 0.0032

Tables 6 and 7 illustrate that adaptive LINE-P (Case III) yield less error comparatively to the other
prediction models, except LINE-P (Case III), although the error difference between adaptive LINE-P
and non-adaptive LINE-P is negligible. Actually, the estimation error is also dependent on the profile;
in another profile, we have found higher error in non-adaptive LINE-P (Case III) than adaptive LINE-P.

To obtain the results shown in Figure 2, we have used a PG&E profile [16] for the solar energy
to assess the adaptive LINE-P (Case III) and the state-of-the-art models based on longer (30 time
slots) time period horizon. Figure 2 shows that the profile corresponds to highly consistent weather;
all together, all days are nearly identical.



Sensors 2018, 18, 1105 14 of 26

1 August 2017 (1st Day) 1 August 2017 (2nd Day)
8 /{g,—’—- 8 S
N \ -
] 5}
= s
s 4 T4
@ o
3 —Real data 3
a2 —LINE-P(Case-lll) Q@ 2 —Realdata
Adaptive LINE-P(Case-Ill) —LINE-P(Case-lll)
UD-WCMA —Adaptive LINE-P(Case-ll)
0 IPRO-Energy 0 UD-WCMA
IPRO-Energy
%0 35 40 50 55 FO) 35 40 45 50 55 60
sféts Slots
10 August 2017 (3rd Day) 1 August 2017 (4th Day)
8 8 e
6 / z6 \
] ]
s s
5 4 54
: :
& 2 —Realdata a2 —Real data
—LINE-P(Case-ll) —LINE-P(Case-lll)
o —Adaptive LINE-P(Case-lll) 0 —Adaptive LINE-P(Case-lll)
UD-WCMA UD-WCMA
IPRO-Energy IPRO-Energy
2 2
30 35 40 45 50 55 60 30 35 40 45 50 55 60
Slots Slots
1 August 2017 (Sth Day) " August 2017 (6th Day)

8 —— 8

/

~

Power (Watt)
s~ o

|
Power (Watt)
> o

~

—Real data —Real data
—LINE-P(Case-Ill) —LINE-P(Case-lll)
0 —Adaptive LINE-P(Case-lll) 0 —Adaptive LINE-P(Case-lll
UD-WCMA UD-WCMA
IPRO-Energy IPRO-Energy
230 35 40 45 50 55 60 30 35 40 45 50 55 60

2,
S
73
@,
X
@

Figure 2. Graphical representation of Adaptive LINE-P (Case III) and state of the art based on the
longer (42-min data interval) time period horizon for the solar profile with 30 time slots in 24 h.

However, some of the EP models are unable to predict the energy with full accuracy. For instance,
UD-WCMA overestimates the energy on all six days. Even though for the first day it starts by
underestimating, after the 40th time slot it estimated the real data well; after the 50th time slot it starts
overestimating again. Therefore, this overestimation may indicate that UD-WCMA is not sufficiently
adaptable, even for consistent profiles.

Similarly, IPRO-Energy starts by underestimating at all days (except for the first day), but as
compared to UD-WCMA, IPRO-Energy is better at modeling energy variations. Although IPRO-Energy
and LINE-P (Case III) provide adequate results, both are based on a fixed weighting parameter factor;
thus, they are not well suited for various types of solar energy harvesters, as mentioned earlier in
the paper. On the other hand, Adaptive LINE-P (Case III) is not dependent on any fixed weighting
parameter; it performs predictions on the adaptive weighting factor based on the profiles. Furthermore,
we observe in Figure 2 (for all days) that the adaptive LINE-P (Case III) is highly accurate. Thus, for this
energy profile, Adaptive LINE-P provides both accuracy and adaptability.

In the following, we evaluate the performance of Adaptive LINE (Case III) along with the state of
the art based on the medium (61 time slots) time period horizon of the solar energy profile SCE [16].

For further assessment of all the prediction models, we present the estimation errors in
Tables 8 and 9 by using MAE and MSE with the same profile SCE available in [16].
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Table 8. Error comparison of the prediction models based on MAE for the SCE solar energy profile.

MODELS MAE (Day1) MAE (Day2) MAE (Day3) MAE (Day4) Average MAE
LINE-P (Case III) 0.0820 0.0945 0.0944 0.1563 0.1068
UD-WCMA 0.1088 0.1347 0.1881 0.0979 0.1323
IPRO-Energy 0.0782 0.0842 0.1745 0.2008 0.1344
Adaptive LINE-P (Case III) 0.0802 0.0970 0.0932 0.1405 0.1027

Table 9. Error comparison of the prediction models based on MSE for the SCE solar energy profile.

MODELS MSE (Day 1) MSE (Day 2) MSE (Day 3) MSE (Day 4) Average MSE
LINE-P (Case III) 0.0348 0.0493 0.0850 0.1051 0.0685
UD-WCMA 0.0559 0.0797 0.1509 0.0465 0.0832
IPRO-Energy 0.0313 0.0351 0.1898 0.1524 0.1021
Adaptive LINE-P (Case III) 0.0352 0.0530 0.0849 0.0905 0.0659

In relation to Tables 8 and 9, it is shown that adaptive LINE-P (Case III) has less error possibility
as compared to the other prediction models.

Figure 3 shows the results for fairly consistent profiles, to see the behavior and adaptability
of the prediction models based on the medium (61 time slots) time period horizon. The graphical
representation shows that most of the models are estimating up to the mark only in the first day.
It can be seen that in all other days, LINE-P (Case III) starts overestimating. UD-WCMA also starts
overestimating in all days, especially on the 12th and 13th of December from the 45th to the 60th
time slots, and 20th to 50th time slots. UD-WCMA yields the worst results comparative to the other
prediction models. Furthermore, on 11th December, the IPro-Energy model is off the chart from the
fifth to the 10th time slots. Although gradually its estimation is approaching the real data, it then starts
underestimating from the 40th until the 53rd time slots. On the contrary, Adaptive LINE-P (Case III)
seems much better and most of the time yields estimates close to the real data.

In addition, we have assessed Adaptive LINE-P (Case III) comparative to the state of the art based
on the graphical representation and classical error-calculating methods (MSA and MSE), as presented
in what follows.

Figure 4 shows the comparison of Adaptive LINE-P (Case III) and the state of the art for the
SDG&E solar energy profile. This profile exhibits very low power production throughout the figure.
In addition, this profile is for cloudy days with lots of variation. This kind of profile is a real challenge
for the prediction models; indeed, too much fluctuation and extremely sharp variation-based weather
is difficult to predict accurately and requires continuous adaptation. As can be observed, most of the
models, especially from the second to the fourth days, are overestimating. Moreover, UD-WCMA
shows poor prediction for all the days. Furthermore, due to rapid changes in the profile, IPRO-Energy
underestimates on the 30th and 31st of October, but once the profile becomes smooth IPRO-Energy
predicts well until the end of profile, especially in the last two days. LINE-P (Case III) and Adaptive
LINE-P (Case III) overestimate from the 30th to 40th time slots in all days. Thereafter, it can be observed
that Adaptive LINE-P (Case III) also shows robustness and predicts accurately as compared to LINE-P
(Case III) and the state of the art.
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Figure 3. Graphical representation of Adaptive

LINE-P (Case III) and state of the art based on the

medium (22-min data interval) time period horizon of the solar profile with 61 time slots in 24 h.
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Figure 4. Graphical representation of Adaptive LINE-P (Case IIl) and the state of the art based on the
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for the solar energy profile with 61 time slots in 24 h.
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For further assessment of all the prediction models, we also present the estimation errors in

Tables 10 and 11 by using MAE and MSE with the same profile SDG&E available in [16].

Table 10. Error comparison of the prediction models based on MAE for the SDG&E solar energy profile.

MAE MAE MAE MAE MAE MAE
MODELS (Day1) (Day2) (Day3) (Day4) (Day5) (Day6) Average MAE
LINE-P (Case III) 0.0619  0.0841  0.1432  0.0910  0.0668  0.0362 0.0805
UD-WCMA 0.0625 0.1224 0.1376 0.1409 0.1392 0.1381 0.1234
IPRO-Energy 0.0467 0.1053 0.1305 0.1141 0.0733 0.0418 0.0852
Adaptive LINE-P (Case IlI)  0.0645 0.0861 0.1486 0.0976 0.0525 0.0366 0.0809

Table 11. Error comparison of the prediction models based on MSE for the SDG&E solar energy profile.

MSE

MSE

MSE

MSE

MSE

MSE

MODELS (Day1) (Day2) (Day3) (Day4) (Day5) (Day6) Average MSE
LINE-P (Case III) 0.0156  0.0392  0.1378  0.0417  0.0193  0.0066 0.0433
UD-WCMA 0.0160  0.1040 0.1185  0.1220  0.1386  0.1281 0.1045
IPRO-Energy 0.0115  0.0555  0.1150  0.0615  0.0198  0.0091 0.0454
Adaptive LINE-P (Case IlI)  0.0161  0.0395  0.1287  0.0537  0.0133  0.0065 0.0429

For this kind of energy profile, we found that in terms of MAE, Adaptive LINE-P (Case III) yields
less errors than IPRO Energy and UD WCMA (between ca. —5% and ca. —34%), and is almost identical
to LINE-P (Case III) (+0.5%). In terms of MSE, Adaptive LINE-P (Case III) yields lower error as
compared to all other energy prediction models (between —5.5% and ca. —59%). In addition, Adaptive
LINE-P (Case III) model is highly adaptive, as can be observed in Figure 4. However, LINE-P and
IPRO-Energy also show good estimations, but they still suffer from the fixed weighting parameter
issue, which was discussed earlier.

Results for Wind Energy

In what follows, we compare Adaptive LINE (Case III) with the state of the art based on the
shorter (96 time slots in 24 h) time period horizon for the wind energy profile Elia available in [11].

As shown in Figure 5, it can be observed that LINE-P (Case III) initially overestimates and then
approaches the real data. Similar to the solar energy case, UD-WCMA predictions are rather far from
the real data. Most of the time, it can be seen that it starts with an overestimation if the real data
increases; on the other hand, if the real data decreases, then its behavior changes completely and
underestimates, especially in the last two days in Figure 4. IPRO-Energy is also not yielding very good
estimates. It is clearly visible in Figure 4 that both UD-WCMA and IPRO-Energy are not suitable for
uncontrollable energy sources on the shorter time period horizon. On the other hand, Adaptive LINE-P
(Case III) shows robustness, adaptability, suitability for variable-length time slots, and accuracy. If the
profiles are changing frequently, then UD-WCMA and IPRO-Energy are not as accurate as Adaptive
LINE-P (Case III). In addition, the Adaptive LINE-P (Case III) model is highly adaptable, as can be
observed in Figure 5.

In the following section, we compute the accuracy of the adaptive LINE-P (Case III) by means of
the MAE and MSE for the wind energy profile.
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Figure 5. Graphical representation of Adaptive LINE-P (Case III) and state of the art based on the
shorter (15-min data interval) time period horizon for the wind energy profile with 96 time slots in 24 h.

4.2. Accuracy Assessment of the Energy Prediction Models Based on the MAE and MSE for Solar and Wind

Energy Profiles

In this section, we examine the models based on the multiple (solar and wind) energy profiles.
In order to calculate the error possibility in Adaptive LINE-P (Case III) and the other energy prediction
models, we consider the PG&E solar energy profile available in [16].

Tables 12 and 13 illustrate that the results provided by Adaptive LINE-P (Case III) have less errors
as compared to the other prediction models (down by up to —82%), with the exception of LINE-P

(Case III) (+50%) in terms of MSE (Table 13).

Table 12. Error comparison of the energy prediction models in terms of MAE for the solar energy profiles.

MAE MAE MAE MAE MAE MAE
MODELS (Day1) (Day2) (Day3) (Day4) (Day5) (Day6) Average MAE
LINE-P (Case III) 0.0269 0.0315 0.0188 0.0189 0.0138 0.0141 0.0206
UD-WCMA 0.0407 0.0686 0.0685 0.0330  0.03476  0.03688 0.047
IPRO-Energy 0.0070 0.0861 0.0645 0.0526 0.0252 0.0310 0.044
Adaptive LINE-P (Case III) ~ 0.0251 0.037 0.0150 0.0210 0.0171 0.0155 0.0217
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Table 13. Error comparison of the energy prediction models in terms of MSE for the solar energy profile.

MSE MSE MSE MSE MSE MSE

MODELS (Dayl) (Day2) (Day3) (Day4) (Day5) (Daye) ~VerageMSE
LINE-P (Case III) 0.0037 0.0040 0.0018 0.0017 0.0011 0.0008 0.0021
UD-WCMA 0.0049 0.0184 0.0429 0.0040 0.0329 0.0372 0.0233
IPRO-Energy 0.0002 0.0267 0.0127 0.0037 0.0027 0.0032 0.0082
Adaptive LINE-P (Case III) 0.003 0.0086 0.0013 0.0095 0.0015 0.0011 0.0041

Next, we deal with Elia wind energy profile [17] to see the possible errors in Adaptive LINE-P
(Case III) as compared to the state of the art.

Similarly, Tables 14 and 15 show that the proposed Adaptive LINE-P (CASE III) performs better
than the other energy prediction models (error down by up to ca. —78% in terms of MAE and MSE).
In the above section, we have compared the energy prediction models with two different sources,
namely solar and wind data profiles; apart from a minor exception, the results show that Adaptive
LINE-P (Case III) provides the best results as compared to the other energy prediction models.

In the next section, we evaluate the performance of the proposed compressed profile method as
compared to the state of the art.

Table 14. Error comparison of the energy prediction models in terms of MAE for the wind energy profile.

MAE MAE MAE MAE MAE MAE

MODELS (Day1) (Day2) (Day3) (Day4) (Day5) (Day6) Average MAE
LINE-P (Case III) 0.0349  0.0623  0.1083  0.4257  0.2294  0.1565 0.1695
UD-WCMA 0.0330  0.0879  0.1088  0.3437  0.1946  0.1279 0.1493
IPRO-Energy 0.0986  0.1907  0.1863  0.6094  3.0968  0.4993 0.7801
Adaptive LINE-P (Case II)  0.0338  0.0569  0.1095  0.4186  0.2133  0.15%4 0.16525

Table 15. Error comparison of the energy prediction models in terms of MAE for the wind energy profile.

MSE MSE MSE MSE MSE MSE

MODELS (Dayl) (Day2) (Day3) (Day4) (Day5) (Daye) ~verageMSE
LINE-P (Case III) 0.0021 0.0065 0.0311 0.4667 0.1451 0.0545 0.1176
UD-WCMA 0.0018 0.0144 0.0415 0.3143 0.1048 0.0323 0.0845
IPRO-Energy 0.0112 0.0441 0.0936 0.5489 1.9788 0.3059 0.4970
Adaptive LINE-P (Case ITI) ~ 0.0020 0.0061 0.0292 0.4243 0.1278 0.0563 0.1076

5. Comparison of the Compressed Profile Method with the State of the Art Based on the Shorter
Time Period Horizon

Here, we assess the compressed profile method in two steps. Firstly, in order to verify its accuracy
and adaptability, we compare it with the real data (real profile), see Figures 6 and 7. Secondly,
we incorporate the method with the two adaptive energy prediction models (Adaptive LINE-P and
UD-WCMA) for further assessment against their non-compressed versions, as well as against the
real data.

In all experiments, we use the shorter (96 time slots) time period horizon in 24 h. We check the
accuracy of the compressed profile method against the graphical representation and a MAE and MSE
as well.

5.1. Graphical Representation of the Compressed Profile Method and Its Error Estimation as Compared to the
Real Data (a Real Dataset) Based on the Solar Energy Profile

In Figure 6, the energy profile reflects consistent weather; however, there are certain variations in
each day. In this figure, the accuracy remains at a high level, though some lack in adaptability against
the sharp variation is visible on all days (except on the third day).
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Figure 6. Graphical representation of compressed profile method against the real data based on the shorter
(15-min data interval) time period horizon of solar energy profile (Elia) with 96 time slots in 24 h.

For further analysis of the proposed compressed profile method, we incorporate it into UD-WCMA
and adaptive LINE-P (Case III) models to validate its accuracy when used with those models.
In addition, we have used the same energy profile [17] to compare the error estimation with the
non-compressed UD-WCMA and adaptive LINE-P (Case III) as well. The results for the solar energy
profile are presented in Section 5.2 and those for the wind energy profile in Section 5.3.
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Figure 7. Graphical representation of the compressed profile method against the real data based on the

L]

L]

shorter (15-min data interval) time period horizon of solar profile with 96 time slots in 24 h.

5.2. Error Estimation with and without Compression Method in UD-WCMA and Adaptive LINE-P (Case I1I)

for the Solar Energy Profile

Furthermore, Tables 16 and 17 illustrate the error estimation with and without the proposed

profile compression method in terms of MAE and MSE for the solar energy profile.

Table 16. Error estimation MAE of the prediction models with and without the compressed profile for

the solar energy profile.

MAE MAE MAE MAE MAE MAE
MODELS (DayD) (Day?) (Day3) (Day4) (Day5) (Daye) ~veraseMAE
Compress-Method 0.0471 0.0550 0.0248 0.0283 0.0608 0.0432 0.0432
Compressed-UD-WCMA 0.1225 0.0719 0.0265 0.0430 0.1046 0.0649 0.0722
Non-Compressed-UD-WCMA 0.1138 0.0697 0.0241 0.0407 0.1130 0.0588 0.0700
Compressed-Adaptive LINE-P (Case III) 0.1327 0.0687 0.0305 0.0360 0.0771 0.0431 0.0646
Non-Compressed-Adaptive LINE-P (Case III) 0.1315 0.0793 0.0264 0.0258 0.0677 0.0398 0.0617

Table 17. Error estimation MSE of the prediction models with and without the compressed profile for

the solar energy profile.

MSE MSE MSE MSE MSE MSE
MODELS (Day1) (Day2) (Day3) (Day4) (Day5) (Day6) Average MSE
Compress-Method 0.0121 0.0177  0.0022 0.0024 0.0202 0.0087 0.0105
Compressed-UD-WCMA 0.3549 0.0298 0.0030 0.0077  0.0833 0.0351 0.0856
Non-Compressed-UD-WCMA 0.3528 0.0324 0.0025 0.0055 0.0818 0.0316 0.0844
Compressed-Adaptive LINE-P (Case III) 0.0691 0.0306 0.0033 0.0052 0.0342 0.0156 0.0263
Non-Compressed-Adaptive LINE-P (Case III) 0.1315 0.0302 0.0022 0.0046 0.0293 0.0152 0.0355
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It can be observed that incorporating the compressed profile method increases the MAE for
UD-WCMA and Adaptive LINE-P (CASE III) by ca. +3.14% and +4.7%, respectively. Interestingly,
it can also be seen that incorporating the compressed profile method increases the MSE by ca. +1.4%
for UD-WCMA and decreases it by ca. —26% for Adaptive LINE-P. As seen earlier in the paper,
the compressed profile method reduces the memory requirements by a factor of 2, thus offering a good
trade-off between accuracy and memory requirements. In the following, we further evaluate the
compressed profile method with the graphical representation as well as with MAE and MSE based on
the wind energy profile.

5.3. Error Estimation with and without Compression Method in UD-WCMA and Adaptive LINE-P (Case III)
for the Wind Energy Profile

Here, we use the wind energy profile to evaluate the performance of the compressed profile
method as compared to the real data in terms of the graphical view.

Figure 8 exhibits extremely inconsistent weather; moreover, the last three days show low power
productivity. As can been observed in the figure, the compressed profile method shows stability
(smoothness) rather than adaptability, especially on 14th and 15th January, due to sharp variation;
however, approaching the profile’s end, we see the robustness of the compressed profile method.
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Figure 8. Graphical representation of the compressed profile method against the real data based on the
shorter (15-min data interval) time period horizon of wind profile (Elia) with 96 time slots in 24 h.

In the following, we present the prediction error of the compressed profile method in terms of
MAE and MSE for the wind energy profile.
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5.4. Graphical Representation of the Prediction Model with and without the Compressed Profile Method for the
Wind Energy Profile

In the following, we calculate the error estimation in terms of MAE and MSE for the wind

energy profile.

In Figure 9 we observed that the proposed compressed profile method integrated with Adaptive
LINE-P (Case-III) and UD-WCMA shows stability and accuracy similar to the non-compressed
Adaptive LINE-P (Case-III) and UD-WCMA; however, we calculated minor error in the compressed
method as compared to the non-compressed method.
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Figure 9. Graphical representation of energy prediction models with and without the compressed
profile method based on the short time period horizon of the wind energy profile (Elia).
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As can be observed in Tables 18 and 19, the MAE and MSE values are of the same order of
magnitude as for the solar energy profile (Tables 16 and 17). Next, for further evaluation, we apply the
same profile we used above for the compressed profile method into the UD-WCMA and Adaptive
Line-P (CASE III) energy prediction models and then compare their results without adding the
compression feature.

Table 18. Error estimation in terms of MAE of the prediction models with and without the compressed
profile method for the wind energy profile.

MAE MAE MAE MAE MAE MAE

MODELS (Day1) (Day2) (Day3) (Day4) (Day5) (Day6) Average MAE
Compressed-profile 0.0089 0.0303 0.0577 0.2216 0.1189 0.0704 0.0846
Compressed-UD-WCMA 0.0761 0.1186 0.0431 0.0424 0.0997 0.0797 0.0766
Non-Compressed-UD-WCMA 0.0757 0.1179 0.0425 0.0405 0.1008 0.0799 0.0762
Compressed-Adaptive LINE-P (Case III) 0.0813 0.1322 0.0435 0.0280 0.1137 0.0921 0.0818
Non-Compressed-Adaptive LINE-P (Case III) 0.0955 0.1444 0.0474 0.0322 0.1120 0.0927 0.0873

Table 19. Error estimation in terms of MSE of the prediction models with and without the compressed
profile method for the wind energy profile.

MSE MSE MSE MSE MSE MSE

MODELS (Day1) (Day2) (Day3) (Day4) (Day5) (Day6) Average MSE
Compressed-profile 0.0001 0.0019 0.0088 0.1146 0.0398 0.0107 0.0293
Compressed-UD-WCMA 0.0102 0.0233 0.0039 0.0038 0.0267 0.0132 0.0135
Non-Compressed-UD-WCMA 0.0101 0.0230 0.0038 0.0035 0.0267 0.0132 0.0133
Compressed-Adaptive LINE-P (Case III) 0.0145 0.0405 0.0065 0.0016 0.0432 0.0333 0.0232
Non-Compressed-Adaptive LINE-P (Case III) 0.0186 0.0456 0.0074 0.0021 0.0441 0.0336 0.0252

In addition, Tables 18 and 19 illustrate the error estimation with and without the proposed profile
compression method in terms of MAE and MSE for the wind energy profile. In Table 18, it can be
observed that incorporating the compressed profile method increases the MAE for UD-WCMA by
ca. +0.52% but decreases it for Adaptive LINE-P (CASE III) by ca. —6.3%.

In Table 19, it can be seen that incorporating the compressed profile method increases the MAE
for UD-WCMA by +1.5% but decreases it for Adaptive LINE-P (CASE III) by ca. —7.93%. As seen
earlier in the paper, the compressed profile method reduces the memory requirements by a factor of 2.
In line with the results shown for the solar energy profile (Tables 16 and 17), the results for the wind
energy profile show that that the proposed compressed profile method offers a good trade-off between
accuracy and memory requirements.

6. Conclusions

We have presented Adaptive LINE-P (three cases-based) prediction model for multi-source
(solar and wind) energy sources. The proposed model is independent of the fixed length time slot
and fixed weighting parameter. We have conducted experiments with three time period horizons
(shorter, medium, and longer) with different time slots. Adaptive LINE-P model chooses the weighting
parameter based on the actual energy profile. We have conducted numerous experiments with real
datasets, and for the error evaluation we have used the MAE and MSE error calculating method.
The results show that Adaptive LINE-P, especially (Case III), is 90-94% accurate (depending on the
weather). In addition, our prediction model is highly adaptable against sharp variations as compared
to other adaptive and non-adaptive prediction models. Most of the time, the proposed Adaptive
LINE-P model yields estimates with less errors, except in a few cases, depending on the energy profile.
Nevertheless, this is a small (and relatively rare) price to pay as compared to the general gains offered
by the adaptive feature of the model. Moreover, we proposed a compressed profile method that
can easily be incorporated into any prediction model; this method allows us to reduce the memory
requirements by 50% and provides 90% accuracy.
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In the future, we plan to work on the data prediction concept, which is also one of promising
solution for saving energy. This concept can be applied to cases where the data are identical for longer
time periods, for instance temperature and humidity, specifically in the domain of WSNs.
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