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INTRODUCTION AND MOTIVATION 
Recent research and development in the field of Internet of Things (IoT) remarkably 
changed the entire scenario of the integration of the physical domain with internet-
based computer networks. In particular, IoT is concerned with the interconnection and 
integration between computers and so-called smart devices (“things”). Back in 2008, the 
U.S. National Intelligence Council’s forecast was that ”by 2025 Internet nodes may reside 
in everyday things –food packages, furniture, paper documents, and more” [1]. This 
trend in the emergence of IoT, including wireless sensor networks (originally known as 
‘smart dust’), has since then been confirmed; recent reports indicate that “The global 
Internet of Things (IoT) market is projected to grow from $2.99T in 2014 to $8.9T in 
2020, attaining a 19.92% compound annual growth rate (CAGR).” [2]. 

Generally, the term IoT can be seen as building upon the concept of wireless sensor 
network (WSN). They can sense data and then gather it, and afterwards send it to the 
network via a sink (also known as gateway) [3]-[6]. Significantly, WSN is considered as 
one of the enabling technologies for the realization of the IoT. These low power devices 
are essentially miniaturized radio communication units with some physical quantity 
measurement capabilities. They are applicable in a very wide range of scenarios, 
including but not limited to, e-health, environment, industry, military, etc. However, the 
life span of the WSNs nodes depends on their energy storage capacity (e.g. battery 
source), and this limited energy is one of the most significant constraints for the 
successful deployment of IoT/WSN applications.        

The incredible growth of the IoT provides solutions to various problems. At the same 
time, the IoT raises some concerns as well; for instance, in [7] it is expressed that the 
global electricity consumption of IoT devices had exceeded 615 TWh in 2013 and that 
this demand will further increase up to 1140 TWh by 2025, which will be the 6% of the 
total electricity consumption in the world. In addition, based on statistics [7], it is 
expected that there will be 23 billion battery-powered IoT devices in 2025. Thus, the 
production of batteries for the IoT will put an extra load of 2 TWh in 2025.  
Given these challenges, energy harvesting (EH), also known as energy scavenging, has 
recently gained strength in the fields of renewables and sustainability, especially in the 
context of fully autonomous WSNs nodes with application to the IoT. 

In relation to the above, EH is one of the explored solutions for powering WSN nodes 
and/or for extending their life span. EH is a process that extracts energy from one source 
(typically from the environment) and converts it to another type (in our context, electric 
energy) [8]. There are numerous energy-harvesting technologies proposed in the 
literature such as radio-frequency (RF), thermal, vibration, thermoelectric, piezoelectric, 
wind, and solar [9]-[10].  Generally, solar energy harvesting is more efficient than the 
other technologies. Research has shown that energy harvesting is not capacity–limited 
as compared to non-rechargeable batteries; thus, WSN nodes can potentially operate 
for a very long time [11]. EH can be used either as an alternative to batteries or other 
energy storage sources (such as super-capacitors) or cascaded with them and is highly 
beneficial [12]. Besides, for further increasing the life-span of WSN nodes, various 
solutions have been presented in the literature; for instance, energy-aware protocols 
and duty-cycling [13]-[16], task scheduling, transient computing (Publication 2), energy 
prediction (Publication 3), data prediction [17], and mobility cut down the power usage, 
if such solutions have sufficiently low overheads [18]. In Chapter 1 of this PhD thesis, the 
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author gives a general introduction of a typical WSN node and its architecture; 
thereafter, the author discusses the energy harvesting technologies and the related 
modeling and the contribution in terms of the hybrid energy-harvesting model.  

Transient computing (TC) is an emerging approach that can be used to deal with the 
intermittent nature of EH. The fundamental idea behind TC is to stop (in the ideal case, 
to pause) and to restart (in the ideal case, to resume) the WSN node activities depending 
on the available energy. This approach can even eliminate the battery energy source and 
drive WSN nodes directly from the energy harvester. This kind of approach is especially 
suitable for applications which do not require 24/7 monitoring or that are tolerant to 
delays and/or errors. In this work, a TC mechanism has been implemented by means of 
a non-volatile microcontroller. In short, in case of low energy, a WSN node stops 
operating and saves an image of its configuration and data. Afterwards, if energy is again 
available then the image is restored and the node proceeds operating. Nevertheless, 
such autonomous (battery-less) devices bring new dynamics and challenges to 
programmers and computer architects [19], in particular regarding the various ways of 
the backup process depending on the application requirements, e.g. when to save the 
microcontroller state/data and how much of that state/data to save [20]-[23]. In the 
literature, TC mechanisms exploit two main types of non-volatile memory technologies, 
namely flash or more recently ferroelectric RAM (FRAM). In addition, two types of TC 
approaches have been proposed in the literature, namely hardware-driven and 
software-driven [24]-[27].   

As of today, the most power hungry component is still the radio’s chip of the WSNs 
node (Publication 4). Thus, appropriate power and energy management of the WSNs 
node’s operations, especially of the radio transmission/reception based on the 
estimated energy availability could be the most effective way of saving energy. 
Therefore, the accuracy and the robustness of the prediction model are essential when 
the operations of WSNs node are optimized and rely on the estimated energy [26]. Thus, 
energy prediction is expected to be a precious tool to estimate the energy available in 
the near future and to guide WSN nodes to make decisions related to their operations. 
To turn this assumption into reality, numerous estimation approaches have been 
proposed in the literature. However, their accuracy and reliability is still questionable. 
Typically, solar and wind are uncontrollable sources of energy, thus their accurate 
prediction is quite challenging, especially for longer time-period horizons.  

There has been approaches for TC and prediction models proposed in the literature 
on an individually basis. This PhD work presents a novel idea that combines these two 
modalities simultaneously to improve the system performance and link quality. For this, 
in Chapter 2 the author firstly assesses the practical feasibility of energy harvesting 
combined with TC on an FRAM-based WSN node. Next, the author describes the 
proposed linear energy model (LINE-P). Finally, the author presents the joint 
implementation of TC and LINE-P in a peer-to-peer network. The results show that the 
implementation of combined modalities improves the system performance (node), the 
link quality, and increases communication stability by 50%.  

Apart from that, this PhD work is based on four other contributions, namely, i) 
‘FYPSIM’ a system-level framework which allows the rapid exploration of design 
alternatives; ii) ‘LINE-P’ a mathematical modeling of dual energy sources which is highly 
accurate, adaptable and of low complexity in terms of computational power;                       
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iii) ‘Adaptive LINE-P’, i.e. an extension of LINE-P; iv) a compression technique that 
reduces the memory overheads by approximately 75% in a wireless node.  

It is noted that most of the existing prediction models are somewhat limited because 
they consider a fixed weighting parameter [26] based on the shorter time-period horizon 
[8], [26]-[30]. Thus, in Chapter 3 of this PhD thesis, the author addresses such issues by 
proposing Adaptive LINE-P. This proposed model is based on variable-length time slots 
(in contrast to [31]) and considers an adaptive weighting parameter depending upon the 
energy profiles (in contrast to [26]). The accuracy of the estimation results yielded by 
the proposed model is up to 90%. Furthermore, the author proposes a compression 
method that reduces the energy profiles by 4 and reduces the memory overhead in the 
WSN node by 50%.  

The problem statement and research questions related to the above are formulated 
in what follows.  
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PROBLEM STATEMENT AND RESEARCH QUESTIONS 
Over the last few years, significant research advances have been made in the field of TC 
and EP under the umbrella of EH. However, these advances have mostly been done 
independently from each other. Thus, there are still various open issues that need to be 
addressed, specifically in the context of autonomous WSN nodes. In relation to above, 
the major issues addressed in this work are:  

Firstly, identifying suitable energy harvesting mechanisms to power the WSN nodes; 
secondly, dealing with the intermittent nature of EH sources (including power loss) by 
means of the simultaneous exploitation of EH and TC; and thirdly managing the available 
energy and in turn reducing the adverse effects of power losses by means of EP in 
addition to EH and TC.   

More specifically, this research work seeks to answer the following four main 
research questions: 

1. How to rapidly evaluate the feasibility of existing and emerging energy 
harvesting technologies in the context of WSNs/IoT and what kind of models 
are sufficient to enable the above? 

2. How to combine and implement the concepts of EH and TC in WSN nodes and 
what are the practical possibilities and limitations of such a joint approach? 

3. How to design an EP model that can be used with several types of EH sources 
and how to reduce its computational overhead so that it can be implemented 
on a resource-constrained WSN node? In addition, how to further improve the 
EP model in terms of adaptability and reduced memory overhead? 

4. How to combine and exploit EH, TC, and EP to make the best use of the 
available energy, i.e., control the quality of service of the application executing 
on a WSN network that include a WSN node solely powered by EH? 

In the following author have identified the novelty in this PhD work. 

STATEMENT OF NOVELTY 
A first novel aspect in this PhD work is the proposed FYPSIM framework, which enables 
to rapidly determine the feasibility of EH sources for WSN nodes. 

Furthermore, in order to deploy accurate and reliable energy predictors, the 
proposed LINE-P and Adaptive LINE-P prediction models bring significant benefits to the 
design and implementation of WSN nodes. The author proposes both energy prediction 
and  energy profile compression methods as well as FYPSIM (simulator) tool in the 
domain of WSN nodes.  

In particular, the author illustrates that utilizing the proposed multiple energy 
sources based algorithms and compression technique increases the WSN node 
performance and prolong its life by harvesting the energy from the environment and 
making best use of it thanks to the accurate estimates, as well as reduces the memory 
overheads by around 75%. Furthermore, the combination of EH with TC and EP improves 
the reliability and link quality, as illustrated for a peer-to-peer wireless communication. 

The work that has been conducted in relation to the above questions has resulted in 
the contributions that are summarized in what follows. 
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CONTRIBUTION OF THIS PhD THESIS  
The contributions described in this PhD thesis and detailed in the appended publications 
comprises five parts:      

A. A system-level framework, named FYPSim, has been designed and implemented. 
FYPSim provides support for modelling not only various single EH technologies 
(solar, thermal, RF, etc.) but also hybrid EH technologies, a feature lacking in most 
WSN frameworks. Experiments conducted with FYPSim illustrate how the 
framework can be used to evaluate various EH sources (indoor solar, airflow, and 
RF) for powering WSN nodes from different vendors (Dresden AVR, Atmel 
ATmega, SenseNode, and WiSense) under varying activity rates. 

B. The feasibility to operate WSN nodes without energy storage has been 
evaluated by means of an experimental setup. The setup comprises various EH 
sources (RF, solar, thermal, or hybrid) and several wired and wireless sensor 
nodes; TC has been implemented on a non-volatile node (FRAM-based). Among 
other things, the experimental results show that EH combined with TC in the 
non-volatile WSN node is indeed feasible thanks to the implementation of 
Texas Instrument’s Compute Through Power Loss mechanism that allows 
pausing and resuming the node’s operation depending on the available energy.   

C. A new EP model, LINE-P (for Linear Energy Prediction), has been proposed and 
evaluated. LINE-P builds upon sampling and approximation theory and features 
a so-called symmetrical kernel. LINE-P is suitable for dual EH sources and 
various data time intervals, as opposed to previous models that are only 
recommended for a particular data time interval. LINE-P also enables 
adjusting/resizing the kernels, which makes it compatible with solar powered 
WSNs, a feature generally lacking in existing solar-based prediction models. The 
simulation results on real-life energy datasets show that the prediction 
accuracy is up to ca. 98% for LINE-P for solar energy, and up to ca. 96% for wind-
based prediction, while keeping the computational overheads acceptable. 

D. A TC-based scheme used to reduce the adverse effects of power losses in WSN 
nodes that operate solely on EH has been proposed and implemented. LINE-P EP 
model (contribution C. above) is integrated in the scheme to manage the energy by 
allowing firing communication tasks only if sufficient and stable energy is predicted. 
The scheme has been evaluated for a peer-to-peer wireless setup. The results 
illustrate that the combined TC and EP modalities require only 15% of the node’s 
memory and that the LINE-P (Case-II)’s accuracy is up to 98% for consistent weather 
and up to 90% for inconsistent weather. In addition, the results illustrate that the 
proposed approach yields an average receiving rate up to 94.6%. 

E. The last contribution is Adaptive LINE-P that addresses the fixed weighting 
parameter issue, found in most EP models, by calculating adaptive weighting 
parameters based on the stored energy profiles. In addition, a profile 
compression method is proposed to reduce the memory requirements. The 
simulation results on real-life energy datasets indicate that Adaptive LINE-P 
accuracy is up to 90-94% and that the profile compression method can reduce 
memory overheads by 50%. 
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The above contributions are reflected in the appended research papers, as shown in 
Table 1. 

Table 1. Relation between the research papers and the contributions 

Contribution Paper I Paper II Paper III Paper IV Paper V 

A        

B        

C        

D        

E       

  



18 
 

THESIS OUTLINE 
This PhD thesis comprises an introduction, three chapters and a conclusion. 

Chapter 1 

This chapter describes the general architecture of a WSN node and its operations. 
Afterwards, EH technologies are discussed. Finally, the proposed hybrid EH modelling 
and framework are introduced (they are described in further details in Publication 1).  

Chapter 2 

This chapter introduces the concept of TC and its various types, as well as the related 
state-of-the-art. This chapter discusses the various energy prediction models along with 
the related state-of-the-art, based on the different time-period horizons. Further details 
about EP, the assessment of the proposed model, and the results can be found in 
Publications 2 and 3. In addition, the chapter introduces the combined implementation 
of TC and EP; further details can be found in Publication 4. 

Chapter 3 

This chapter describes Adaptive LINE-P, i.e. the extension of the LINE-P model, which 
addresses the fixed parameter-weighting factor by proposing an adaptive weighting 
factor based on the stored energy profile. Thereafter, the author discusses the energy 
profile compression technique which provides a solution for explicitly low memory 
sensor node. Further details can be found in Publication 5.  

 

The last chapter comprises various points, namely a conclusion of the PhD work, a 
summary of the claims, and a few suggestions for future work.   
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1. WIRESLESS SENSOR NODES AND EH MODELLING 
This chapter gives a general overview of a typical WSN node and its architecture, 
afterwards presents some background information on EH technologies, and then 
introduces the author’s contribution regarding the modelling of EH and in particular 
hybrid EH.  

Regarding EH modelling, various simulators have been proposed in the literature to 
explore the feasibility of an EH-powered WSN before its actual deployment. Thus, this 
chapter also discusses the comparison between the proposed framework named FYPSim 
and WSN simulators. Further detailed information relevant to the main contribution can 
be found in Publication 1. 

With the advent of the IoT, the design and implementation of WSNs and WSN nodes 
is getting a lot of attention from both the scientific community and the industry, in 
particular with respect to their energy efficiency. Generally, a sensor node can be seen 
as a small embedded system or electronic component that contains various elements 
such as a microcontroller, an RF module, an energy storage device (if needed), a power 
management mechanism (hardware circuit and/or software function), a possible energy 
harvester, and the sensor itself (e.g. for temperature, humidity, etc.), as generically 
represented in Figure 1. The basic function of the sensor node lies in data acquisition, 
data processing and data communication. Usually, a sensor node is implemented on a 
resource-constrained platform; it has limited computational power, memory, battery 
capacity, and communication bandwidth.     

  
Figure 1. Generic block diagram of a wireless sensor node. 

A single sensor node only performs basic tasks (sense and transmit the data). The 
combination of multiple such sensor nodes, together with central node(s) such as a 
coordinator and gateway constitutes a wireless sensor network [3]-[4], [32]-[33], as 
shown in Figure 2.  

 



20 
 

 
Figure 2. The concept of wireless sensor network [36]. 

Research in WSNs include many issues ranging from the development of the node’s 
hardware, the protocol design, to the energy management [34]. WSNs are a key enabler 
for a vast range of applications, ranging for instance from environmental monitoring to 
healthcare [3]. WSNs significantly gained strength and more attention in the field of 
healthcare applications, especially in terms of fully autonomous devices. 

An example of the latter is the next-generation sensor nodes for mHealth, which 
include so-called biostamps [35], i.e. thin and stretchable tattoo-like sensors that can 
replace bulky traditional sensors. Such biostamps are used for measuring e.g. body 
temperature, UVA/B exposure, lactate, pH, and glucose levels. In order to make these 
convenient and autonomous, they should feature both wireless communication and, of 
special interest for this work, energy harvesting capabilities such as the flexible 
thermoelectric generator (TEG) shown in Figure 3. 

 
Figure 3. Prototype of a flexible thermoelectric generator (TEG). Source: North Carolina State 
University’s Centre for Advanced Self-Powered Systems of Integrated Sensors [37]. 

Typically, sensor nodes are powered by a battery source; if the battery becomes 
depleted, the node will not be able to operate (so-called “dead” from a wireless 
communication perspective). Although batteries can be replaced or recharged, this is 
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quite often an expensive, time consuming and sometimes nearly impossible task, 
especially for large-scale networks or remote application (e.g. glacier or in space). 
Despite some improvements in battery technologies during the past few years, energy 
is still the biggest constraint when designing and operating WSNs node. Therefore, 
different techniques and various ways of reducing the energy consumption have been 
proposed in the literature to increase the lifetime of the nodes. Nevertheless, providing 
additional energy to the nodes remains highly desirable and can be achieved by means 
of EH. In an EH-powered WSN node, the energy source (e.g. solar, thermal, etc.) can be 
connected to the rechargeable battery or super capacitor or, in some cases, be used to 
directly WSN node (a.k.a. autonomous or battery-less WSN node). However, one of the 
significant drawbacks of EH is that such sources typically (although not always) exhibit 
intermittent patterns, e.g. changing weather conditions will impact the energy collected 
by means of a solar panel. 

1.1 Energy Harvesting and WSN nodes 
Nowadays EH is getting more and more popular among the researchers and in the 
industry since it provides additional energy which can solve, or at least alleviate, the 
capacity issue of battery sources. EH extracts the energy from the environment or other 
mechanisms and converts that energy into electric energy. EH plays a vital role to extend 
the lifetime of WSN nodes; an example of a WSN node architecture including EH 
capabilities is shown in Figure 4. 

 
Figure 4. Block diagram of energy harvesting architecture in a WSN node [41].  

As can be seen in Figure 4, one or several energy sources can be used; the latter case 
is known as hybrid EH. The bold lines in the figure represent the energy paths. In one 
path, energy flows from the energy harvester(s) through a power conditioner and 
battery manager block before reaching the energy storage. The energy then flows 
through a power manager that delivers it to the WSN node. In another path, the energy 
flows directly to the WSN sensor node. 

The harvested energy is dependent upon the efficiency of the harvester, its 
orientation (if solar), location, or some other aspects such as weather, time or machine 
activity [38]. Generally, EH is an explored technology and is successfully deployed in 
many applications, especially where size does not matter [39]. Furthermore, in some 
application, EH provides directly power to sensor node with no power source (battery) 
[40], as also indicated by the direct supply path in Figure 4.  
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However, EH is intermittent in nature [41], and thus, completely relying on EH could 
be the cause of disruptions or delays in the application’s operations. While this is not 
acceptable in time critical applications, it may be acceptable in others (e.g. in delay 
tolerant networks).  

Given the above, three issues of special interest have been explored in this work. 
The first one is that of evaluating the feasibility of using a single or hybrid EH source for 
powering a given WSN. This issue and the related EH modelling is further discussed in 
this chapter (Section 1.3) and in Publication 1. 

The second one is that of managing power losses due to the intermittent nature of 
EH, especially when used as the sole energy source. This issue is further discussed in 
Chapter 2 and Publications 3 and 4. 

The third one, illustrated by the dashed box and dashed lines in Figure 4, is that of 
predicting the available energy to better control the WSN node operations. This issue is 
also further discussed in Chapter 2 and Publications 3 to 5. 
However, before looking more closely to the above issues, various EH technologies are 
briefly introduced in Section 1.2. 

1.2 Energy Harvesting Technologies 
Numerous EH technologies exist, but this chapter covers only the most relevant ones in 
the context of WSN nodes such as solar, thermal, wind, RF and acoustic. These EH driving 
low power embedded devices are discussed in several survey papers such as [42]. 

EH and renewable energy have a wide range of potential applications. For example, 
various EH WSNs have implemented in the past like Trio [43] and Prometheus [44].   

Figure 5 shows different types of energy harvesting technologies. 

 

 
Figure 5. Overview of the numerous energy harvesting technologies. 

1.2.1 Photovoltaic (PV) EH is the process of converting incoming photons from sources 
such as outdoor or ambient (indoor) light into electricity. A PV energy harvester consists 
of semiconducting materials: n-type and p-type. Typically, PV EH provides higher power 
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output as compared to other harvesting technologies; it is applicable also for the large-
scale WSN networks. However, it is light or environment dependent. The power 
efficiency depends upon the material and orientation as well [45]. Some prototypes of 
PV harvester are presented in [46]-[48].  

1.2.2 Thermal EH is the process of creating electric energy from a temperature 
difference using a thermoelectric generator (TEG). A TEG is a thermopile formed by  
p-type and n-type semiconductor, placed between a hot and a cold plate and 
connected in series [49]. 

1.2.3 Wireless EH 

RF energy harvesting is the process of converting electromagnetic waves into electricity 
by means of a rectifying antenna, or rectenna. Energy can be harvested from either 
ambient RF power from sources such as radio and television broadcasting and mobile 
phone transmitters and microwave or from EM (electromagnetic) signals generated at 
a specific wavelength. Another possible solution is to use a dedicated RF transmitter to 
generate power as per the requirements. However, the RF efficiency depends on the 
distance and between the RF transmitter and the harvester. In particular, a useful 
application of RF EH is to wake up sensor nodes from deep sleep state upon request (aka 
wakeup node). Examples of implementations of wireless energy harvesting techniques 
for WSNs are available in [50]-[52]. 

1.2.4 Wind EH is the process of converting energy from wind into electrical energy. A 
(small size) wind turbine is used to power WSN nodes. However, efficient design of 
small-scale wind energy harvester is still an ongoing research effort. Some examples of 
wind energy harvesting designed for WSNs are available in [53]-[54].  
1.2.5 Acoustic EH is the method  that  transform the higher and continuous acoustic 
waves from the environment into electrical energy  through a transducer. The received 
acoustic emissions may be of the type longitudinal transverse, bending and hydrostatic 
waves  from low to high frequencies [55].  Usually, it is used where power is not 
available, for e.g. remote areas [56, 55]. However, the efficiency of harvester acoustic 
power is low [41].        

1.2.6 Hybrid EH is the combination of two or more harvesting technologies, for example 
solar (PV) with RF and thermal or the other way around. The main idea behind hybrid 
EH is to use uncorrelated energy sources that can complement one another so as to 
increase the probability of uninterrupted energy supply. However, the power 
management of each harvester consume energy itself.  

Literature on EH systems is still largely related to extensive simulation studies. Most of 
the works focus on the system building, efficiency and viability of EH mechanisms [57]. 

Evaluating the WSNs node behaviour, network performance and practical feasibility, 
can be carried out via a WSNs simulator (framework). In what follows, a comparative 
analysis of WSNs simulators is briefly discussed.    

In addition, the author proposed a hybrid model for energy harvesting (RF, solar, 
thermal) based on combined ambient (indoor) energy sources. The author also 
proposed a battery management circuit, with low power current consumption, which is 
cascaded with the energy storage device and the energy harvester. The detailed 
description of the author’s contribution can be found in Publication 1. 
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cascaded with the energy storage device and the energy harvester. The detailed 
description of the author’s contribution can be found in Publication 1. 
1.3 WSNs Simulator 
The author proposed a system-level framework (testbed) designed to rapidly evaluate 
the operating feasibility of the WSNs node based on various functionality of simulator, 
for instance, WSNs nodes power consumption, practicability with single and hybrid 
energy harvester (a feature is lacking in other simulators), energy prediction models and 
energy storage support. In relation to the above, Table 2 shows the comparison between 
the proposed framework and the state-of-the-art. The following table illustrates that 
only GreenCastalia, WSNSim and HarvWSNet provide the source code, [58] in order to 
evaluate the WSNs node behaviour, network performance and practical feasibility, 
before working on the WSNs node implementation. On the contrary, the proposed 
FYPSim covers the aspects which are required for the coarse-grain but rapid exploration 
of design alternatives. 
Table 2. Illustration of the supported features in selected WSN simulators. 

Tools Code 
Availability 

Energy 
Prediction 

Models 

Storage 

Model 

Hybrid 
Harvester 

model 

Power 
Consumption 

model 

Compression 
technique 

Green 
Castalia 

[59] 

  
 

      
 

SensEH 
[60] 

  
  

 
  

 

WSNSim 
[61] 

  
 

     
 

[62]   
  

 
  

 

[63]   
  

 
  

 

HarvWS
Net [64] 

  
 

      
 

[65]   
  

 
  

 

[66]   
  

 
  

 

FYPSim 
(This 
work) 
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exploration of design alternatives and thus relatively coarse-grain models of the 
harvesters are used. 

As an example, let’s consider a RF-EH that converts higher AC voltages to DC voltages 
at short distances. A model for an RF to DC voltages is as follows:  

                                           V = 2 [Gant λ / 4π d (2Re [Zrec].Prf (1+Qrf
 2)) 1/2-VF]                            (1)       

where V is the DC output voltage, Gant is the gain of the antenna, d is the distance, Re 
[Zrec] is the reactance, Prf is the power, Qrf is the quality factor and VF is the forward 
voltage.  

Other energy harvester models, such as solar and thermal, used in FYPSim have been 
discussed in Publication 1 (Appendix A). 

In addition, FYPSIM includes a hybrid energy harvesting setup model, which is lacking 
in most WSN simulators. For this, the author proposed a hybrid energy-harvesting model 
with a single power management circuit. 

More information about the hybrid EH circuit and the above model and the battery 
management system can be found in Publication 1. 

Experiments have been conducted to explore the behaviours of various sensor nodes 
such as Dresden AVR, Atmel Atmega, SenseNode and WiSense, which are evaluated at 
three different states i.e. idle, sleep and active modes, and their current consumption 
based on the hybrid harvester with battery source and super capacitor. 

Four cases, corresponding to various activity rates have been considered; they are 
classified into the following way: 

CASE A: In this case the nodes are always in the sleep mode, as a result the energy 
consumption is minimal. However, the author found that, for the selected hybrid EH 
setup, this case is not feasible for Dresden AVR node which has a higher consumption 
than the other nodes.  

CASE B: In this case, the author changed the scenario and kept the sensor nodes 
active for every 1 s out of 60 s, which is applicable in e.g. a health monitoring system, 
temperature monitoring, etc. Based on the experimental results (see Publication 1), the 
number of feasible combinations is similar to case A; and again Dresden AVR node, with 
the selected hybrid EH setup, is not feasible at this activity level due to its higher current 
consumption.  

CASE C: The author made this case to have more active time than in previous cases, 
namely every 1.6 s out of 60 s, which is applicable in more intensive sensing and signal 
processing activities. Results (see Publication 1) illustrates that the nodes consume more 
energy as compared to the previous cases, and only WiSense node is feasible with the 
selected hybrid EH setup. 

CASE D: This case can only be considered where continuous monitoring is required 
on an e.g. 24/7 basis, which is suitable for extremely critical applications such as 
surveillance, disaster monitoring etc. The experiments show that no solution is 
appropriate for the selected hybrid EH setup. 
 An extract of the results found in Publication 1, is given in Table 3. 
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Table 3: Hybrid Energy Harvester powered different sensor nodes cascaded with a 3.75V 
Supercapacitor. 

Sensor 
Nodes 

Case A 

Idle =0s 

Active =0s 

Sleep=300s 

Total Time =300s 

Case B 

Idle =5s 

Active =5s 

Sleep=290s 

Total Time =300s 

Case C 

Idle =8s 

Active =8s 

Sleep=284s 

Total Time =300s 

Case D 

Idle =0s 

Active =300s 

Sleep=0s 

Total Time =300s 

Dresden 
AVR 

Idle 

Active 

Sleep 

Current 
Consumption (A) 

3.24 

97.2 

-1.5 

Current 
Consumption (A) 

163.13 

4953.96 

-4858.26 

Current 
Consumption (A) 

262.26 

7868.01 

-7772.31 

Current 
Consumption (A) 

3240 

97200 

-97104.3 

Atmel 
ATmega 

Idle 

Active 

Sleep 

Current 
Consumption (A) 

0.19 

5.83 

89.86 

   

Current 
Consumption (A) 

2.34 

70.45 

25.24 

  

Current 
Consumption (A) 

3.64 

109.22 

-13.52 

Current 
Consumption (A) 

129.6 

3888 

-3792.3 

SenseNode 

 

      Idle 

Active 

Sleep 

Current 
Consumption (A) 

             0.06 

1.94 

93.75 

  

Current 
Consumption (A) 

1.85 

55.51 

40.18 

  

Current 
Consumption (A) 

2.92 

87.66 

8.03 

  

Current 
Consumption (A) 

142.56 

3207.6 

-3111.9 

WiSense 

 

     Idle 

Active 

Sleep 

Current 
Consumption (A) 

0.03 

0.97 

94.72 

  

Current 
Consumption (A) 

1.38 

41.55 

54.14 

  

Current 
Consumption (A) 

2.19 

65.90 

29.79 

  

Current 
Consumption (A) 

81 

2430 

-2334.3 

In conclusion, the author has shown how a designer can estimate and evaluate the 
feasibility of hybrid energy harvesting by using FYPSim for various nodes, here cascaded 
with a supercapacitor.  

 

 



27 
 

1.4 Chapter Summary  
In this chapter, the author discussed the background and presented the architectural 
overview of a generic wireless sensor node, in particular its limited life time due to 
energy storage constraints. This lead to discuss a variety of energy harvesting 
technologies. 

Next, an example of the models used in FYPSim has been presented and the 
proposed model for hybrid energy harvesting has been introduced. 
Some selected results illustrate how the framework  can be used to explore the 
feasibility of EH for various WSN nodes.  

Publication 1 presents additional EH models and results for both Li-Ion battery and 
supercapacitor. In addition, the paper also presents a single power management system 
for hybrid energy harvester which was designed and simulated with LT spice. The 
operating principle of this management system depends on the battery voltage, if it 
drops below a threshold then the circuits starts harvesting energy. The details can be 
found in the Publication 1. 

During this initial phase of the PhD work, the author observed that the concept of TC 
was emerging as a potentially valuable approach to deal with some of the challenges 
associated with EH. Thus, the focus of the remainder of the work is on TC in combination 
with EP, as discussed in the next chapter.  
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2.  TRANSIENT COMPUTING, LINEAR ENERGY PREDICTION, 
AND THEIR JOINT IMPLEMENTATION  

This chapter covers the following topics: 

• An overview of transient computing, its benefits, constraints, and state-of-the-
art, as well as a summary of the TC implementation initially conducted on a 
single WSN node powered by means of EH.  

• A brief introduction to energy prediction and related state-of-the-art, a 
summary of the proposed linear energy prediction model (LINE-P) which is 
based on sampling theory, and finally its comparison with the state-of-the-art 
in terms of estimation error, time complexity and space (memory) 
requirements. 

• A description of the proposed mechanism that deploys two modalities (TC and 
EP) in a combined way on a non-volatile sensor node (TI MSP430FR5739 + 
CC2500), and thereafter the assessment of the performance and link quality of 
a peer-to-peer setup powered by means of a solar energy harvester. 

2.1 Transient Computing 
The concept behind TC is to dynamically stop/pause and restart/resume computation 
(and communication) operations depending on the available energy. In the context of 
this work, TC is a useful mechanism to deal with power losses that result from either a 
depleted battery/supercapacitor and, of special interest, when operating a WSN node 
directly from an energy harvester without any energy storage (i.e. no battery or 
supercapacitor).  

The integration of EH and TC in wireless sensor nodes enables the design of highly 
energy constrained, battery-less systems that operate only as a function of their 
environment [68, 69]. Thus, TC can not only minimize the size of the sensor node but 
also its mass, complexity, and cost [39, 70]. Such TC-enabled battery-less sensor nodes 
can also be used in environments where the electrochemical properties of the batteries 
are incompatible with safety requirements, such as in certain space applications. 

In practice, this concept is enabled by the use of microcontrollers that include non-
volatile memory (e.g. flash or more recently FRAM). When a power loss occurs, the TC 
mechanism takes a snapshot (i.e. saves the state and/or data of the microcontroller), 
and thereafter, when the power reaches back the operating threshold, the last saved 
snapshot is restored and the operation is continued from where it was interrupted [67]. 
The registers of the microcontroller are saved upon imminent power failure (typically 
detected by means of a threshold voltage) and restored when the power is again 
available, as shown in Figure 6 [71]. 
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Figure 6. Illustration of the operation of a transient computing system [67]. 

In this example, the node hibernates when the supply voltage goes down to VH, i.e. 
a snapshot of the state/data of the microcontroller is saved in non-volatile memory 
before the supply voltage goes below Vmin. Once the supply voltage goes above VR, the 
snapshot is restored and the node goes back to the active mode. 

In order to operate TC systems continuously and efficiently, they require sufficient 
energy for the executing the tasks. However, in case of low energy the node will be shut 
down until energy is again available. The time interval between shut down and wakeup 
or vice versa depends on the input power source [39].  

In relation to above operations, researchers have identified some challenges in the 
design of transiently powered systems [36, 39]: 

1. Transient systems are unable to control the time when they are on since this
only depends on the available input power.

2. Between on and off operations, the system is shut down and peripherals are
off. Supposing that the application requires several on and off conditions, the
non-volatile memory (NVM) have to save the system state between the on and
off conditions.

The above challenges are already significant when the TC system includes a single 
node. The situation is even more complex when the number of sensor nodes are 
expanded and transformed into a WSN or has to performed bi-directional 
communication. In Publication 4, the author faced some more challenges while 
implementing the peer-to-peer network based on TC (Note: these have been addressed 
in the last part of Chapter 2). 

1. The WSN node is supposed to update its peer that the communication is no
longer possible in case of low energy and just before the system (node) enters
the shut-down mode.

2. The employed TC mechanism does not directly support the radio configuration
since the registers of the radio chip cannot be directly saved to FRAM.

3. Re-establishing the communication when there is again enough available
energy requires the implementation of an additional mechanism.

The author addresses the above issues by proposing to combine two modalities, 
namely TC and EP, to better deal with EH-powered nodes. Moreover, works on EH 
systems are often limited to single node networks [57]. Thus, when the nodes are added 
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up in a network, they can perform data processing in a more powerful manner [72]. The 
author used a peer-to-peer setup for the assessment of the combined TC and EP 
approach. The detailed information can be found in Publication 4.  

Before going into some of the details of the proposed approach, what follows 
summarizes the state-of-the-art of TC.  
Mementos was the first TC approach presented by Ransford et al. [21]. It shifts general 
computing into an interruptible model which can deal with intermittent power off 
phases via a checkpointing mechanism. This mechanism saves and restores the data and 
instruction to and from flash memory in case of power fluctuations. However, this 
concept increases the overall execution time.  

Afterwards, DINO (“Death Is Not an Option”) [24] adds a mechanism which helps 
insuring consistency between volatile and non-volatile data even when in the presence 
of frequent interrupts. In addition, another novelty in DINO is to use a FRAM-based 
microcontroller rather than one based on flash memory. The overhead in terms 
execution time lies between 1.8x to 2.7x. 

Significantly, Hibernus [20] reduces the number of checkpoints by replacing the 
periodic checkpointing by an ad-hoc technique that is triggered only when the supply 
voltage decreases below a given threshold. As compared to Mementos, Hibernus 
reduces the execution time and energy overheads by 76%-100% and 49%-79%, 
respectively. 

QuickRecall [25] introduces a new concept that saves all the instructions, data and 
state into FRAM (unified approach where the RAM is not used). This potentially reduces 
the execution time and energy consumption since no data have to be transferred 
between the FRAM and the RAM. QuickRecall can reduce the program execution time 
by up to 4.5x as compared to other methods and allows operations to be performed in 
short on-time slots of 5 ms (vs. 15 ms in other approaches). 

Balsamo et al. [23] developed a new TC method called “power neutral” operation. In 
this method, the microcontroller’s frequency is dynamically adapted against the input 
power source. Their results illustrates that such a power-neutral method can extend 
operations for 4%-88% further with a 21% acceleration in application execution.   

Hibernuss++ [67] proposes a dynamic adaptation of the hibernate and restore 
thresholds based on the fluctuation in energy and the system load properties. Results 
show that Hibernuss++ reduces energy consumption by 16% and accelerate the 
application excecution time by 17% as compared to other techniques. However, this 
approach requires additional circuitry.   

HarvOs [64] is a series of code instrumentation strategies deployed at compile-time 
and adapting the execution of the program at run-time as a function of the remaining 
energy. The approach allows transiently powered devices to complete a given workload 
with 68% fewer checkpoints on average and the number of required checkpoints rests 
only 19% far from the ideal solution.   

ARM mbed support presented in [73] integrates TC approaches into the mbed OS. It 
enables multiplatform and TC as a service above IoT application protocols. The paper 
illustrates the feasibility of the approach by implementing it on a low power 
microcontroller with flash memory operating from only 1 mF additional capacitance.   

Bhatti et al. [74] present a selective policy for efficient state retention that 
dynamically indicates the unallocated space and only saves to flash memory. 
In addition, [75] implements an “Allocated State” policy on different memories, i.e., 
FRAM and Flash. This policy was implemented on both technologies; Figure 7(a) and 7(b) 
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illustrate that the cost for saving is proportionally reduced with the size of allocated 
memory, as compared to saving the entire memory (up to 85.1% reduction when 
memory usage is 18%). 

 
(a) Complete State              (b) Allocated State 

Figures 7. Illustration of the state of memory with NVM and Flash [74]. 

Furthermore, by employing this kind of concept on flash memory, it was observed 
that it is less effective in terms of saving times and energy, as shown in Figure 8(c) and 
8(d), as compared to the case with FRAM (Figure 8(a) and 8(b)); the penalty being largely 
due to the erasing process for the flash memory.  

(a) Saving time (FRAM)                   (b) Saving energy (FRAM) 

 
(c) Saving time (Flash)                              (d) Saving energy (Flash) 

Figure 8: Time and energy overheads between FRAM (a and b) and flash memory (c and d) [74]. 
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In [75], incremental work in checkpoint is proposed to minimize the size of the 
checkpoint updates in the secondary storage. The approach can be categorized in three 
different techniques, namely i) records modification in the RAM only, ii) avoid 
computational overhead by binding variables to program paths, and updating the 
relevant variables, iii) do not require program path to variable binding, rather it 
efficiently indicates modified memory locations using a Hash of Hashes (HoH) approach.  

In [76], the authors present WISPCAM, a wireless camera that is powered from 
harvested RF energy and supports data-transfer from non-volatile memory using RFID. 
The system has an energy storage capacity (a 6 mF super capacitor) to enable a single 
photo to be shot and stored in NVM. In case of energy failure, the system does not fail 
as the photo is stored in NVM and supercapacitor will be charged later again. In relation 
to the above, in [77], the authors propose a similar kind of system, which will not 
performed until there is at least 80µF energy in the capacitor. Monjolo [78], presents a 
similar approach to [76] in home, whereby a current clamp around a main cable harvests 
energy via induction and charges a 500 µF capacitor.   

Usually, TC is demonstrated on a microcontroller (most of them without wireless 
connectivity feature) and the literature still lacks reports on experiments with wireless-
enabled sensor nodes.  

TC provides the support for extending the life span of the WSNs without adding an 
energy storage device. Thus, this innovative concept effectively reduces the physical size 
of the node and alleviates the limited energy capacity constraints. However, TC is more 
suitable for those applications where permanent operation or monitoring is not 
mandatory.  

The combination of EH and TC is still a least explored area. The harvested energy is 
intermittent and possibly leaving the node without power and thus TC operates the 
node by pausing and resuming its operations depending upon the harvested energy.  
The purpose of this section is to share some of experimental results obtained when 
three EH sources such as solar, thermal and RF are used to power an FRAM-based node 
with a TC mechanism without energy storage, as well as the assessment of the 
practicability of TC for WSNs.  

In relation to the above, the author selected a FRAM-based microcontroller 
(MSP-EXP430FR5739) kit combined with a CC2500 radio chip, both from Texas 
Instrument. Thereafter, author modified the CTPL (Compute through Power Loss Utility) 
library, in order to implement TC mechanism. In particular, the CTPL library contain 
numerous functions for deploying the mechanism, as shown in figure 9 (Publication 2). 
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Figure 9: Texas Instrument’s Compute through Power Loss Utility strategy used for implementing 
TC (Publication 2). 

The block diagram of the experimental setup can be seen in Figure 10, which 
illustrates that the microcontroller (MSP430FR5739 kit) is cascaded with either a  DC 
power supply (non EH mode) or with an energy harvesting kit (DC2080A) and as well as 
solar panel (PRT-13781) through selector (switch). Here, the operating principle is that 
in case of the voltage goes below a threshold voltage i.e. 2.5 V, the ctpl_enterShutdown 
() function is triggered and thereafter the state and data of the microcontroller are saved 
(Publication 2).   
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Figure 10: Block diagram of the experimental setup to implement TC mechanism (Publication 2).      

The results illustrates that the solar energy source is able to power and operate the 
nodes (see Table 4 Publication 2). However, the RF and TEG module were not satisfying 
the power requirements of the nodes (the results can be found in Publication 2).   
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Table 4. 1st and 2nd rows: measured voltage and current for the MSP-EXP430FR5739+CC2500 used 
as a transmitter. 3rd and 4th rows: measured voltage and current for the MSP-
EXP430FR5739+CC2500 used as a receiver, with the larger solar panel (13.5 x 11.2 cm). 

               Case I 

(Outdoor Light) 

Case II 

(Indoor Light) 

Case III 

(Sharp lamp Indoor 
Light) 

Light Intensity [LUX] 5.36K 1.46K 9.98K 

Voltage [V] and 

Current [mA] without 
radio 

3.06 

2.46 

 

3.10 

2.00 

 

 

3.5 

2.16 

 

Voltage [V] and  

Current [mA] with 
radio 

3.0 

20.0 

 

3.09 

22.0 

 

3.5 

22.16 

 

Voltage [V] and 

Current [mA] without 
radio 

3.0 

2.16 

 

3.10 

2.00 

 

3.5 

2.16 

 

Voltage [V] and 

Current [mA] with 
radio 

2.91 

19.98 

3.09 

22.0 

3.5 

22.16 

 

More information and results can be found in (Publication 2). 

Now that the principles of TC have been introduced and that the first contribution 
related to EH and TC have been summarized, the discussion moves to the state-of-the-
art related to EP and the proposed linear energy prediction model. 

2.2 Energy Prediction and Proposed LINE-P (Linear Energy Prediction) 
model  
EH, aided by energy prediction (sometimes also referred to as energy estimation), has 
led to a service-oriented infrastructure supporting a broad range of applications such as 
IoT, cyber physical system, by optimizing the energy consumption and balancing the 
traffic load to increase the node lifetime. 

Some researchers argue that energy prediction is quite a mature topic; however, 
only few energy prediction models provide sufficient accuracy, reliability and 
robustness. In fact, EP in the context of autonomous WSNs is still a least explored area. 
In particular, EP can be considered as an alternate solution [31], which can control 
certain operations of the WSNs nodes. The accurate prediction is very essential, 
especially in the domain of autonomous WSNs nodes, where operations are dependent 
on the estimation of the available energy [26]. EP is quite useful for WSNs that predict 
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the energy in the near future over short (a few minutes) and medium (a few hours) 
terms, and that thereafter execute the tasks based on the estimated energy, which 
minimizes the wastage of energy and reduces the computation overhead [41].     

This section discusses various state-of-the-art EP models that have been proposed in 
the literature. It is to be noted that among the research community, the two most 
popular sources are solar and wind energy harvesters.  

The classification of the EP models falls into two categories, i) fixed weighting 
parameter based EP models and ii) adaptive EP models that calculate their weighting 
parameter based on the stored energy profile.       

Most of the EP models are based on a fixed weighting parameter, here represented 
by (α). Normally, this factor is tuned at the beginning of the experiment to ensure the 
closest estimation; however, this is the biggest constraint because a tuned parameter 
(α) affects the accuracy of the estimation under significant varying conditions, such as 
for example, inconsistent weather. Thus, this approach is incompatible with e.g. solar 
powered WSNs because each solar panel contains different and unknown series of 
parameters such as orientation or even dust [26].  

In [28], the authors presented an exponentially weighted moving-average (EWMA) 
EP model; it is widely used in solar energy estimation based on an exponentially 
weighted moving–average filter [79]. EWMA considers that the harvested energy of the 
current day time-slot is identical to the observed energy at the same time on the 
previous days. The amount of energy available during the past days is maintained as a 
weighted average, in which the contribution of previous data is exponentially decaying. 
This algorithm is able to both exploit the periodic cycle in solar energy and to adapt to 
seasonal variations, but leads to significant prediction errors in case of inconsistent 
weather, i.e., when sunny and cloudy days occur on alternative basis [41].  

To address the above issue, Piorno et al. [80] proposed the EP model named 
Weather-Conditioned Moving Average (WCMA). In particular, WCMA is estimating with 
20% less errors than EWMA, especially in an inconsistent weather.  

In [81] the authors proposed a parameterized specification and the computation of 
an optimal online controller. In addition, to compute the solution of a linear program 
(LP) in a multiparametric fashion and transfer most of the associated overhead to an 
offline computation. This approach based on low computational complexity. Evidently, 
the actual control action compute in approximately in 2 ms and consume low power. 

In [82] the authors compared and discussed various solar energy prediction models. 
In particular, author identify that neural network based algorithm is unable to adapt the 
changes but the WCMA and EWMA presents much higher performance in terms of 
estimation and as well as adaptation. In addition, they required less computation and 
memory, in order to implement in WSNs. Simulation results prove that the most efficient 
predictors is highly accurate and kept the fluctuations  with real profile not more than 
10%.  

In [83], the authors exploit the EWMA model and proposed and extension which 
keeps track of the solar energy observed in the previous days. The presented algorithm 
is designed and developed for the short-term varying weather conditions. They  
proposed a scaling factor which adjusts the next value. After each slot, scaling calculates 
the ratio between the harvested energy during the current timeslot and the estimated 
energy for the same timeslot. As a result, the proposed algorithm yields improved 
latency and throughput in the network.  
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In [84], the authors addressed the issue of EH prediction for real-time embedded 
systems (RTES). They contend that accurate estimation of the energy in future is crucial 
for RTES, as the performance of optimization techniques is based on harvesting 
estimation. Therefore, they investigated three techniques in real time series prediction 
(regression analysis, moving average and exponential smoothing) and found that 
regression has the best prediction within a time horizon of 1 second. The proposed 
model aims is to yield the best system performance with the energy harvesting 
constraints. However, although this approach works well, it is not meant for medium-
term prediction horizon-periods.  

Generally, it is assumed that the right estimation for the near future energy intake 
are available to the system, either by simply looking at the  past records [85] or by 
utilizing any low computation energy predictors [86]. Information about the behaviour 
of energy sources over short and medium time interval is often needed to optimize the 
system, and some solutions even rely on it to work well [87].  

In [88], the authors presented a new approach that run the sensor node through 
solar and wind energy harvesting techniques. They observed that when estimating 
energy possibility at timescales between 3 hours to 3 days, using forecasting data 
provides better accuracy than if estimating the energy based on previous data. They 
explained that the reason for the unsatisfactory performance of traditional predictors is 
that the weather patterns are inconsistent. Thus, they developed a model for solar panel 
and wind turbine, which converts the weather forecast data into energy predictors. In 
addition, they showed the system increased ability as compared to existing strategies. 

Although several EP models have been proposed in the literature, there remain a 
need to develop a model that would exhibit both sufficient accuracy and low 
computational complexity. Thus, the author of this PhD thesis proposed a dual–source 
(solar and wind) LINE-P (linear energy prediction) model based on sampling operators. 
The aim was to construct a predictor that on the one hand is good for approximation of 
smooth trends and on the other hand, it is not so sensitive to fluctuations. In this 
approach, the author used some elements of approximation and sampling theory. This 
contribution, presented in details in Publication 3, is summarized in what follows. 

2.2.1 Mathematical Model of LINE-P (all cases)                 

Generally, in the literature (see above for some examples), most of the prediction 
models as designed for solar or wind energy harvesters as an energy source at two 
different time-period horizons, for instance shorter and medium, and they are highly 
dependent on the past records. Because of this, their estimation results contain more 
errors when rapid changes occur in the weather conditions. On the contrary, the 
proposed symmetrical kernel-based LINE-P model estimates the values on three 
different data time intervals, namely shorter, medium and longer, and the estimations 
errors are less even in inconsistent weather conditions. In addition, LINE-P is compatible 
with dual-source (solar and wind) energy harvesters.  

This chapter highlights another issue, i.e. most of the prediction models are based 
on a fixed weighting factor, which is incompatible with the varying properties (e.g. 
orientation) of solar panel powered WSN nodes. The author of this thesis addresses the 
above issue by using symmetric kernels, which have simple computation of the dot 
product in a potentially infinite dimensional feature space by means on the kernel 
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function. In particular, symmetric kernels have a simpler structure than non-symmetric 
kernels. 

The goal of the author is to develop a generic mathematical model for dual-source 
(solar and wind) energy harvester, such as [89]-[90], that estimates energy accurately at 
different time intervals. To validate LINE-P estimations, the author used real energy 
profiles (data sets) of energy provider companies for photovoltaic panels and wind 
turbines, available in [91]-[92], respectively.  

LINE-P (Case-I) 

The proposed LINE-P (Case-I) model is expressed as follows; note that the  detailed 
derivation and further two more cases are presented in Publication 3.  

The samples 𝑓𝑓𝑙𝑙(𝑙𝑙 = 1, … , 𝑘𝑘) are from the 𝑘𝑘 previous days. The parameter vector b 
defines a symmetric kernel and the parameter vector a, where 𝑎𝑎𝑘𝑘 = 0 for 𝑘𝑘 ≤ 0, 
generates a one-sided kernel with the corresponding sampling operator  

  (𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃;b𝑓𝑓)(𝑗𝑗) ≔ ∑ 𝑏𝑏𝑘𝑘𝑓𝑓(𝑗𝑗 − 𝑘𝑘)𝑚𝑚
𝑘𝑘=1 + ∑ 𝑏𝑏𝑘𝑘 𝑓𝑓𝑙𝑙(𝑗𝑗 − 𝑘𝑘)0

𝑘𝑘=−𝑚𝑚 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃;𝖺𝖺;b;𝑙𝑙(𝑗𝑗) 

 where the correction term 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃;b is in Equation (2), 

         𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃;𝘢𝘢;𝑏𝑏;𝑙𝑙(𝑗𝑗) ≔ 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃;𝘢𝘢;𝑏𝑏 ( ∑ 𝑎𝑎𝑘𝑘𝑓𝑓(𝑘𝑘 − 𝑖𝑖)𝑛𝑛
𝑘𝑘=1 − ∑ 𝑎𝑎𝑘𝑘 𝑓𝑓𝑙𝑙(𝑗𝑗 − 𝑘𝑘)𝑛𝑛

𝑘𝑘=1 ),   (2) 

with the multiplier 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃;b as: 

𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃;𝘢𝘢;𝑏𝑏 ≔ ∑ 𝑏𝑏𝑘𝑘 0
𝑘𝑘=−𝑚𝑚 . (3) 

LINE-P (Case-II)  

This performs energy prediction based on few samples. In addition, this case is 
dependent on only one variable 𝑎𝑎, as shown in (4).  

 (𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃;𝑎𝑎𝑓𝑓)(𝑗𝑗) ≔ ∑ 𝑎𝑎𝑘𝑘𝑓𝑓(𝑗𝑗 − 𝑘𝑘).𝑚𝑚
𝑘𝑘=1    (4) 

LINE-P (CASE-III)  

The third case is very similar to Case-I, the only difference is in 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶;b  as shown in 
(5) with the multiplier 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃;b 

𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃;𝑏𝑏 ≔
� 𝑏𝑏𝑘𝑘 0

𝑘𝑘=−𝑚𝑚
� 𝑏𝑏𝑘𝑘 𝑚𝑚

𝑘𝑘=1
. (5) 

What follows presents some of the results related to the evaluation of the 
performance of the LINE-P model based on the solar and wind energy profiles against 
the state of the art models in terms of : (i) Graphical representations, (ii) Time 
complexity, and (iii) Space (memory) requirements. The full set of results can be found 
in Publication 3.         
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2.2.1.1 Graphical representation (Error comparison of the models for solar energy 
profiles) 

This subsection provides some results which were not included in Publication 3 due to 
space constraints. Typically, mean square error (MSE) and mean absolute error (MAE) 
have been considered for comparing the error of each of the models. In order to 
evaluate the errors, a solar-based (SDG&E) dataset (see Figure 11 and 12) has been used. 
In addition, the author considered a medium interval (61 slots) in 24 hours. Figures 11 
and 12 show that LINE-P (all cases) yields the lowest errors as compared to the other 
models.  
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Figure 11. Average MSE for 4 days for all prediction models for solar energy. 
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Figure 12. Average MAE for 4 days for all prediction models for solar energy. 
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The previous section compared the performance of all models for solar energy; in 
what follows, the author compares the performance of LINE-P and Pro-Energy for wind 
energy since only Pro-Energy is multi-source (i.e. which can be applied to the wind 
profile as well).  

2.2.1.2 Graphical representation (Error comparison of the models for wind energy 
profiles) 

In this assessment, the author used a shorter data interval of 96 slots in 24 hours from 
Elia dataset [92]; the results shown in Figure 13 confirm that LINE-P performs better 
than Pro-Energy. MSE and MAE are used to compare the prediction errors of Pro-energy 
and LINE-P (all cases). The results shown in Figure 13 and 14 are for four consecutive 
days (datasets). The results show that in general the prediction errors of LINE-P (all 
cases) are lower than that of Pro-Energy, however, WCMA also yield less error on certain 
specific cases. Thus, it is concluded that LINE-P (all cases) prediction values are very close 
to real data, especially Case-III.  
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Figure 13. Average MSE for 4 days for Pro-Energy and LINE-P (all cases) for wind energy. 
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Figure 14. Average MAE for 4 days for Pro-Energy and LINE-P (all cases) for wind energy. 
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2.2.1.3 Time Complexity of the EP models 

The time complexity and Big-O notations for all prediction models are compared. ASEA 
and EWMA have constant complexity (O(2)), whereas WCMA and Pro-Energy have 
quadratic complexities (O(n2) and O((k+1)2), respectively). QL-SEP and LINE-P (all cases) 
have linear complexity (O(n) and O(m)). 

Considering both the prediction performance of all models and their respective 
complexities, it can be said that the proposed LINE-P approach offers the best trade-off, 
i.e. equivalent or better prediction accuracy than the best existing models at a lower 
complexity. This means that LINE-P is a good candidate for embedded implementation 
on resource-constrained platforms such as WSN nodes/coordinators where CPU usage 
and energy consumption are critical. 

Table 5. Time Complexity of LINE-P (all cases) and the other prediction models. Note: In some 
models, we consider m and k times rather than n times (see Publication 3 for more details).  

Prediction Models Time Complexity T(n) Big-O Notation O(n) 

EWMA T(n) = 2 O(2) 

ASEA T(n) = 2 O(2) 

WCMA T(n) = k(n2 + 1) O(n2) 

Pro-Energy T(n) = (k + 1)2n O((k + 1)2) 

QL-SEP T(n) = (4n + 2)q O(n) 

LINE-P Case-I T(n) = 2(nk +m)+1 O(n) 

LINE-P Case-II T(n) = n O(n) 

LINE-P Case-III T(n)=m(2k+ 1) + 1 O(m) 

Figure 15. Illustration of the time complexity of LINE-P (all cases) as compared to the state-of-
the-art. 
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2.2.1.4 Comparison of Space (Memory) Requirements 

The proposed LINE-P model performs well as compared to the other models in terms of 
prediction error, and at the same time has small memory requirements. A higher 
number of slots N means higher memory overhead for a given predictor. For instance, 
assuming N = 48 and D (previous days) = 20, WCMA requires almost 4 kB of memory to 
store the matrix N·D for an energy prediction [34]. On the contrary, LINE-P (Case-I) and 
(Case-III) only require N = 13 and D = 4. Similarly, LINE-P (Case-II) only requires N = 8 and 
D = 1. Thus, LINE-P models’ memory overheads are approximately 90% and 70% lower 
than for WCMA and Pro-Energy models, respectively (see Publication 3 for more details). 

The above results show that the proposed LINE-P model, especially Case-III, is up to 
90% accurate, has lower time complexity in three different time intervals and requires 
less space (memory) than the other EP models. 

Now that the proposed LINE-P model has been summarized, the next contribution 
of this PhD work is introduced. The remainder of this chapter is organized as follows. In 
section 2.3, the author discusses the novel concept of combining the two previous 
modalities (TC and EP) simultaneously. Thereafter, their impact on a WSN node and as 
well as on peer-to-peer network powered by means of a solar energy harvester is 
discussed.  

2.3 Combination of Transient Computing and Energy Prediction 
Modalities  
Generally, with the increasing number of users, WSN nodes, and wireless and wired 
traffic, significant research efforts are also required to improve and ensure the quality 
of service, quality of experience and reliability of the applications.  

In this section, the author summarizes the proposed approach for combining two 
different modalities, TC and EP, simultaneously in the context of WSNs for stable and 
reliable communication.  

The literature discusses and suggests TC and EP as separate modalities in relation to 
WSNs; however, and to best of our knowledge, no work exploits TC and EP 
simultaneously specifically for WSN nodes; only one work considered this merging 
concept as a future work [71]. The main purpose of this part of this work is to deploy 
this combined approach and to evaluate its impact in terms of performance, adaptability 
and robustness. The remainder of this chapter summarizes the related key issues and 
results; the details thereof can be found in Publication 4. 

Firstly, the author addresses issues related to the design and implementation of TC 
and EP together. Initially, it is needed to decide which energy source and prediction 
model to take into consideration. We have shown in Publication 2 that in our setup the 
solar energy harvesters is the best to operate the wireless nodes. Moreover, the existing 
prediction models are dependent on relatively large amounts of past values; however, 
these are unfeasible in real implementations because of the limited memory of the WSN 
nodes. Furthermore, another issue is related to the connectivity of the nodes, i.e. how 
to re-establish the connectivity of the sensor nodes after a power failure using TC?  

In the first part of this thesis, the author assessed the practical feasibility of TC on a 
single node by using three energy harvesters (RF, thermal and solar) as detailed in 
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Publication 2. As shown in Figure 15, that approach is re-implemented in this part of the 
work, but this time both with a programmable power supply for controlled experiments 
and a solar panel for real-life experiments. Moreover, one of the three cases of LINE-P, 
i.e. Case-II, has been selected since it performs energy prediction based on a single 
variable and less memory space is required for the implementation of the combined TC 
and EP. In addition, the author implemented a peer-to-peer setup where the two 
modalities are integrated and evaluated in terms of link quality features such as jitter, 
packet receiving ratio and energy consumption. The details can be found in Publication 
4; the key results are summarized in what follows.  

2.3.1 Impact of EP on a TC-based WSN node  

In this subsection, the behaviour of the system is evaluated with three cases: without 
energy prediction as well as with 5 and 10 minutes energy prediction.  LINE-P (Case-II) 
model estimates the next value based on the six previous values (slots). Therefore, a 1-
minute prediction is based on 6-minutes data; similarly, a 5-minutes prediction is based 
on the last 30-minutes (half an hour), and a 10-minutes prediction is based on the last 
hour, respectively. 

Note: In the following figures of this section, the estimated energy and Vcc were 
recorded at every 30 seconds by the node. In particular, if the estimated energy goes 
above 2.9 V, then the system starts the communication (in the figure, ‘1’ means start 
communication), otherwise it stops it (‘0’ means stop communication).   
 
2.3.1.1 Behaviour of the System Without Energy Prediction  
 

 

Figure 16. Behaviour of the system without energy prediction (Publication 4). 

Figure 16 illustrates that the system performs communication by considering the current 
Vcc value. The system is adaptive and sensitive against the fluctuations. For example, 
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the communication is stopped at 11:00 and 13:00 although the voltage increases again 
just after the loss.  

2.3.1.1 Behaviour of the System with a 5-Minutes Energy Prediction  

 

Figure 17. Behaviour of the system for 5-minutes energy prediction (Publication 4). 

Figure 17 shows that the communication time is longer since prediction time is higher. 
The voltage drops at 11:00 and 13:00, but despite that, the system continues to 
communicate. Therefore, by deploying EP, the system is more robust and stable against 
the energy variations; however, the system is less adaptive because the prediction time 
is increased.  
 
2.3.1.2 Behaviour of the System with a 10-Minutes Energy Prediction  

 

Figure 18. Behaviour of the system for 10-minutes energy prediction (Publication 4). 
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In this third case, the experiment shows long and stable communication although the 
energy prediction is very close to communication threshold and a decrease of a few 
millivolts would stop the communication. However, the waiting time for a stable 
communication is longer than in the previous case, as shown in Figure 18 at 13:00. 
Therefore, this specific case illustrates that for such a long prediction time, the system 
is not adaptive enough. 

Through the various experiments and observations, the author found that too short  
or too long slots are not beneficial for the energy prediction model in order to achieve 
stability in the communication. In addition, numerous parameters, for instance 
communication threshold, sampling period, prediction time, and the energy harvester 
capacity play a vital role to develop a stable system. 
 
2.3.1.3  Evaluation of link quality and reliability of the peer-to-peer Network 
The performance of the peer-to-peer setup at certain distances has been assessed by 
considering three features, namely jitter, ratio of packets transmission, and energy 
consumption. Though ensuring reliability and link quality could be essential in some 
applications, in the present environment (temperature monitoring case), this is not very 
critical. Tables 6 and 7 show the jitter, average receiving rate and other metrics for the 
link quality and system (node) performance; the details can be found in Publication 4.  

Table 6. Peer-to-peer setup performance based on the average receiving rate at various 
distances (Publication 4). 

Distance 

(m) 

Jitter 

(ms) 

Average receiving 
rate (%) 

Power 
Consumption 

(mW) 

0.3  20.9 94.6 66.7 

1 20.9 94.6 66.7 

3 20.9 94.6 66.9 

6 20.9 94.6 70.2 

 
An important observation is that the implementation of both modalities into the 

peer-to-peer setup does not affect power significantly; as shown in Tables 6 and 7, the 
differences in power consumption of the node is very low. In addition, deploying TC and 
LINE-P (Case-II) model improves the link quality and system stability. The setup’s 
performance and reliability is illustrated by the fact that   94.6% packets were received 
successfully, as shown in Table 6.    
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Table 7. Power consumption of the node without TC and LINE-P modalities at various state 
(Publication 4). 

State  Current 
Consumption 

(mA) 

Power Consumption 

(mW) at Vcc = 3V 

Idle  2 6 

Linking  20 60 

Communicating 20 60 

 
The experiments illustrate that by adding EP in the TC-based system, the WSN node 

can estimate the near future energy and based on that amount the node can take the 
decision to operate further or suspend the operation. However, without EP, TC performs 
the task based on the instantaneous energy only, neither estimating the availability of 
energy nor performing the tasks accordingly for e.g. decreasing energy. In this hardware-
based implementation, the author also observed that if the voltage decreases sharply 
for e.g. 4.9 volts/s or more, then the TC mechanism will not be triggered. Similarly, the 
energy prediction model has its own limits e.g. in highly inconsistent weather. 
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2.4 Chapter Summary  
In this chapter, the author has covered the methodologies of TC and EP, including some 
background information and state-of-the-art. 

The first part explained the TC-based mechanism, its impact and implementation 
with various energy harvesters as a source. These detailed in Publication 2  where the 
author exploited TI’s CTPL API to implement a TC mechanism similar to that of Hibernus [20]. 

The second part was related to proposed LINE-P (Linear energy prediction) model for 
dual source (solar and wind) energy harvester. The author summarized how LINE-P is 
based on the sampling theory, and how it estimates the energy on the next time-slots. 
This part also highlighted that LINE-P (all cases) is less complex and requires less 
information of the past records in order to predict the energy comparatively to the other 
energy prediction models. The details can be found in Publication 3. 

The third part presented the novel idea that combines the two modalities 
simultaneously. In particular, the benefits of this combining concept were illustrated on 
a peer-to-peer setup. The details can be found in Publication 4.  
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3. ADAPTIVE LINE-P (all cases) AND ENERGY PROFILE
COMPRESSION  TECHNIQUE

This chapter covers the following topics: 

• The proposed enhancement of LINE-P, named Adaptive LINE-P model, to
address the fixed weighting parameter issue.

• The proposed energy profile compression technique, which can be integrated
in any energy prediction model.

In this chapter, the author recalls the limitation shared by most of the prediction 
models such as IPRO-Energy [8], QL-SEP [27], EWMA [28], PRO-Energy [29], ASEA [30], 
WCMA [80], and LINE-P (all cases) (Publication 3), i.e., they estimate energy based on a 
fixed weighting parameter. Such solutions are not always feasible in practical 
deployments since energy harvesters such as solar panels each have a different set of 
parameters such as orientation, dust, etc. [26]. Thus, the author suggests an adaptive 
weighting factor based on the stored energy profiles. The proposed Adaptive LINE-P 
predicts the energy over three different time-period horizons, i.e. shorter, medium and 
longer and uses variable-length timeslots. In addition, the proposed model improves the 
prediction accuracy and minimizes the error between the harvested energy and stored 
profiles as compared to other non- adaptive, adaptive and variable time-slot EP models. 

The remainder of this chapter is organized as follows. First, in the next section, the 
author discusses the state-of-the-art related to the non-adaptive and adaptive EP 
models. The proposed Adaptive LINE-P is discussed in Section 3.1. Thereafter, the 
proposed compression technique is presented in Section 3.2. Its integration with 
different EP models and their comparative analysis is discussed in Section 3.3. A 
conclusion is drawn in Section 3.4 and the chapter summary is given in Section 3.5. 

In what follows, the author discusses the state-of-the-art regarding fixed kernel 
parameter, variable length time slots and adaptive (a.k.a dynamic) EP models. 

3.1 Non-Adaptive Energy Prediction Models 

3.1.1 IPro-Energy 

IPro-Energy is an extension of the Pro-Energy model. IPro-Energy has two additional 
features; first, it uses a weighted profile (WP) technique to counter inconsistent 
weather. Second, the model estimates energy with low computational complexity and 
as well as relatively small execution time with low storage data [8]. In addition, IPro-
Energy has higher accuracy energy estimation and the implementation of the IPro-
Energy on sensor nodes is expected to be feasible without great effort. The results 
presented in [8] indicate that IPro-energy predictions are 78% accurate for the short 
term and 50% for medium term prediction horizon.   

3.1.2 Pro-Energy-VLT (Variable-length timeslots) 

Pro-Energy-VLT is an extension of Pro-Energy which combines energy predictor with 
timeslots of variable lengths that increases the robustness of the algorithms.  In [95], 
the authors proposed a perceptually important point (PIP) technique to calculate the 
variable size timeslots such as 30, 60 and 90 minutes, as compared to their original 
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design, which was fixed to a 30 minutes data interval [95]. The authors of Pro-Energy –
VLT discussed a case study and assessed the practical feasibility of a hardware 
implementation with real-life solar and wind energy profiles and as well as publicy-
available traces. The authors claim that Pro-energy-VLT improves the prediction 
accuracy, while reducing the memory and the energy overhead of energy forecasting by 
67% and 40%, respectively [95].   

3.2 Adaptive Energy Prediction Model 
Here, the author discusses the adaptive weighting factor based EP models, which are 
dependent on the stored energy profile. Moreover, these EP models are much more 
suitable and compatible with e.g. the solar energy harvesters [26]. 

3.2.1 UD-WCMA 

This energy prediction model proposed in the literature [26] is based on the WCMA EP 
model but uses a time varying gain parameter G1 (n+1). This gain is adapted depending 
on the variations in the reference profiles stored in memory [26]. This approach sums 
the information from measured data and stored profiles which represent the energy 
patterns in the sensor nodes location to update the prediction model. UD-WCMA yields 
competitive prediction values and with the tuning free parameter makes it very suitable 
and robust against the solar harvester parameters such as presence of dust, cast 
shadows orientation and cloud cover. For example, the absolute error distribution of 
UD-WCMA is characterized by 24W/m2, which is lower than the other schemes.    

3.2.2 Proposed Adaptive Linear Energy Prediction Model (Adaptive LINE-P) 

The author proposes an adaptive linear energy prediction model which estimates the 
energy based on the weather condition rather than using a fixed parameter. The results 
presented in Publication 3, and summarized below, show that Adaptive LINE-P is more 
accurate, reliable and adaptable as compared to other EP models. 

In what follows, the mathematical modelling of Adaptive LINE-P is summarized. 

3.3 Sampling Operators 

For the uniformly continuous and bounded 𝑓𝑓ϵ 𝐶𝐶(ℝ), the generalized sampling series are 
given by (𝑡𝑡 ϵ ℝ;𝑤𝑤 > 0) as per (6), 

 (𝑆𝑆𝑤𝑤𝑓𝑓)(𝑡𝑡) ≔� 𝑓𝑓�𝑘𝑘
𝑤𝑤
� 𝑠𝑠(𝑤𝑤𝑡𝑡 − 𝑘𝑘),

∞

𝑘𝑘=−∞
  (6) 

 we get the classical (Whittaker-Kotel’nikov-) Shannon sampling operator, 

 (𝑠𝑠𝜔𝜔𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑓𝑓)(𝑡𝑡) ≔� 𝑓𝑓�𝑘𝑘
𝑤𝑤
� 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠(𝑤𝑤𝑡𝑡 − 𝑘𝑘).

∞

𝑘𝑘=−∞
  (7) 

Let us take 𝑤𝑤 = 1 and 𝑡𝑡 = 𝑗𝑗 ∈  ℤ in (8), then 

 (𝑆𝑆1𝑓𝑓)(𝑗𝑗) ≔ ∑ 𝑓𝑓(𝑘𝑘)𝑠𝑠(𝑗𝑗 − 𝑘𝑘)∞
𝑘𝑘=−∞  (8)  

3.3.1 Kernels  

The general kernel for the sampling operators (6) is defined in the following way. 
Definition 1 ([96]) if 𝑠𝑠:ℝ → ℂ is a bounded function such that 

  𝑚𝑚0(𝑠𝑠) ≔ ∑ |𝑠𝑠(𝑢𝑢 − 𝑘𝑘)| <  ∞ (𝑢𝑢 ∈ ℝ),∞
𝑘𝑘=−∞      (9) 
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with the absolute convergence uniform on compact subsets of ℝ, and  

                            ∑ 𝑠𝑠(𝑢𝑢 − 𝑘𝑘) = 1 (𝑢𝑢 ∈ ℝ),∞
𝑘𝑘=−∞                                                  (10) 

now 𝑠𝑠 is said to be a kernel for sampling operators (6). 
The main aim is to use the generalized sampling operators (6) for predicting the 

signal, where the kernel function s is defined via the Fourier transform of a certain 
window function: 

Definition 2 A function 𝜆𝜆 ∈ 𝐶𝐶ℝ is called a window function for a kernel of a sampling 
operator if 𝜆𝜆(0) = 1 and 𝜆𝜆(2𝑘𝑘) = 0 for 𝑘𝑘 ∈  ℕ. 

Further details about the derivation of this aspect of the model can be found in 
Publication 5. 

3.3.2 Adaptive Predictors 

Adaptive predictors are needed because the energy profiles can have different 
properties, i.e. with different smoothness, variation, etc. For different types of profiles, 
there is a need for different kernels for the sampling operators. In the current approach, 
the author uses the following kernels: 

• For smooth profiles, kernels that allow approximation order, estimates via high 
order of modulus of smoothness.  

• For unstable profiles, kernels that provide a sampling operator with minimal 
(close to 1) norm. 

Note: The trivial error estimate signal for additive noise is in form ||𝑆𝑆𝑤𝑤||  ||𝑣𝑣 ||, where 
||𝑆𝑆𝑤𝑤|| is the operator norm and ||𝑣𝑣 || is the norm of noise component, i.e. if the operator 
norm is equal to 4, then in the worst case, there is a 4-times amplification of the noise 
in the predicted energy profile. 

To deal with other profiles, a kernel that provides a sampling operator with good 
approximation properties and small norm is needed. 

In order to choose a predictor kernel, the author uses 𝑙𝑙1norms of the prediction 
errors of previous estimates. 

𝐥𝐥𝟏𝟏norm 

In this section, the author proposes a method for adaptive prediction and uses the 
𝑙𝑙1norms of the prediction errors. Moreover, the author chooses some kernels, which 
generate sampling operators with different properties (approximation order m, norm, 
etc.) and compute the predicted values using it. 

For predicting the k-th element, the author chooses the kernel for which the 𝑙𝑙1norm 
of the prediction errors for some one-sided neighborhood of the k-th element of the 
profile is minimal. The norms of errors are calculated in the following form: 

||𝑃𝑃𝑖𝑖(𝑘𝑘)||1 =  ��𝑓𝑓(𝑘𝑘 − 𝑗𝑗) − 𝑓𝑓𝑝𝑝,𝑠𝑠(𝑘𝑘 − 𝑗𝑗)�,
𝑛𝑛

𝑗𝑗=1

 

where f(k) is the measured energy in slot k and 𝑓𝑓𝑝𝑝,𝑠𝑠(𝑘𝑘) is the predicted energy for slot k 
using the kernels 𝑆𝑆𝑠𝑠. 
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For a particular realization of the adaptive predictor, to cover different types of 
profiles, the author chooses three kernels with different approximation properties and 
the corresponding sampling operators, i.e., a first one with minimal norm, a second one 
with high order of approximation, and a third one with good approximation properties 
and small norm. 

3.4 Compressed Energy Profiles 
In this section, the author suggests a method for compressing energy profile data to 
address the memory size limitation of WSN nodes. 

The purpose of compression is to reduce α ≥ 1 times; the author uses the following 
representation, 

𝑓𝑓(̅𝑡𝑡) = 𝛴𝛴𝑘𝑘𝑓𝑓(𝑘𝑘)𝑆𝑆 �(𝑡𝑡 − 𝑘𝑘), 

where 𝑓𝑓̅ is the compressed energy profile, f the original energy profile and 𝑆𝑆 �(𝑡𝑡) ≔
2
𝛼𝛼
𝑠𝑠 (2𝑡𝑡/𝛼𝛼) the dilated kernel. Instead of f(k), it is only needed to store 𝑓𝑓̅(𝛼𝛼𝑘𝑘). For 

example, if 𝛼𝛼 = 4, then 4 times less memory is needed. 
For reconstruction, the author uses an interpolating kernel �̃�𝑆, i.e. a kernel defined 

using a window function, which satisfies the equality: 

𝜆𝜆(𝑢𝑢) +  𝜆𝜆(1 − 𝑢𝑢) = 1, (𝑢𝑢 ∈ [0,1]). 
The reconstruction formula is as follows:  

𝑓𝑓(𝑗𝑗) ≈ 𝛴𝛴𝑘𝑘𝑓𝑓(̅𝛼𝛼𝑘𝑘)2�̃�𝑆  �
2
𝛼𝛼
𝑗𝑗 − 2𝑘𝑘�. 

For a particular realization of the compression algorithm, the author takes 𝛼𝛼 = 4 and 
for both the kernel s and 𝑆𝑆� , he chooses the Hann kernel. 

3.5 Accuracy Assessment of the Adaptive LINE-P (all cases)  
Based on MAE and MSE error evaluations, the author conducted various tests by 
deploying solar and wind profiles available in [91]-[92], in order to evaluate the 
performance in terms of accuracy, robustness, and adaptability. 

After the assessment of all cases of Adaptive LINE-P, Case-III yields more accurate 
results as compared to Case-I and Case-II. Further details about this evaluation can be 
found in Publication 5.  

Given this, Adaptive LINE-P model (Case III) has been selected for further comparison 
with the state-of-the-art, as presented in the next section.  

3.6 Comparison of Adaptive LINE-P (Case-III) with the State-of-the-Art 
In the following, the author summarizes the evaluation of the performance of Adaptive 
LINE-(Case-III) along with the state-of-the-art based on the medium (61 time-slots) time 
period horizon of the solar energy profile SCE [91].    
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3.6.1 Assessment of Adaptive LINE-P (Case-III) with the Solar Energy Profile 

Figure 19 shows the results for fairly consistent profiles, to observe the behavior and 
adaptability of the prediction models based on the medium (61 time-slots) time-period 
horizon. The graphical representation shows that most of the models are estimating up 
to the mark only for the 1st day. It can be seen that for all other days, LINE-P (Case-III) 
starts over-estimating. UD-WCMA also starts over- estimating in all days, especially on 
the 12th and 13th of December from the 45th to  the 60th  time-slots, and 20th to 50th  time-
slots. UD-WCMA yields the worst results comparatively to the other EP models. In 
particular, on the 11th of December, IPro-Energy model is off the chart from the 5th to 
10th time-slots. Although gradually its estimation is approaching the real data, it then 
starts under-estimating after the 40th until the 53th time-slots. On the contrary, Adaptive 
LINE-P (Case-III) seems much better and most of time yields estimates close to the real 
data, as also shown in Publication 5. 

 
Figure 19. Graphical representation of Adaptive LINE-P (Case-III) and state-of-the-art based on 
the medium (22-minutes data interval) time-period horizon of solar profile with 61 time-slots in 
24 hours. 

For further assessment of all the prediction models, we present the estimation errors 
in Tables 4 and 4a by using MAE and MSE with the same SCE profile available in [91].  
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Table 8. Error comparison of prediction models in terms of MAE for the SCE solar energy profile 
(Publication 5). 

MODELS Day 1-
MAE 

Day 2-
MAE 

Day 3-
MAE 

Day 4-
MAE 

Average-
MAE 

LINE-P (Case-III) 0.0820 0.0945 0.0944 0.1563 0.1068 

UD-WCMA 0.4280 0.3811 0.2961 0.2103 0.3288 

IPRO-Energy 0.0782 0.0842 0.1745 0.2008 0.1344 

Adaptive LINE-P 
(Case-III) 

0.0802 0.0970 0.0932 0.1405 0.1027 

 
Table 9. Error comparison of prediction models based on MSE for the SCE solar energy profile 
(Publication 5). 

MODELS Day 1- 
MSE 

Day 2- 
MSE 

Day 3-
MSE 

Day 4- 
MSE 

Average-
MSE 

LINE-P (Case-III) 0.0348 0.0493 0.0850 0.1051 0.0685 

UD-WCMA 0.5105 0.4112 0.2637 0.1451 0.3326 

IPRO-Energy 0.0313 0.0351 0.1898 0.1524 0.1021 

Adaptive LINE-P  
(Case-III) 

0.0352 0.0530 0.0849 0.0905 0.0659 

In relation to Tables 8 and 9, it is clearly shown that Adaptive LINE-P (Case-III) yields 
up to ca. 94% accuracy, which is better as compared to the other EP models. 

3.6.2 Assessment of Adaptive LINE-P (Case-III) with the Wind Energy Profile 

This section summarizes the comparative analysis of Adaptive LINE-(Case-III) with the 
state-of-the-art based on the shorter (96 time-slots in 24 hours) time period horizon for 
the wind energy profile Elia (Belgium’s electricity transmission system operator) 
available in [92]. 

A graphical comparison is shown in Figure 20 and the MAE and MSE values are shown 
in Tables 10 and 11. 



58 

Figure 20. Graphical representation of Adaptive LINE-P (Case-III) and state-of-the-art based on 
the shorter (15-minutes data interval) time period horizon for the wind energy profile with 96 
time-slots in 24 hours (Publication 5).  
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Table 10. Error comparison of the EP models in terms of MAE for the wind energy profile 
(Publication 5). 

MODELS Day 1-
MAE 

Day 2-
MAE 

Day 3-
MAE 

Day 4-
MAE 

Day 5-
MAE 

Day 6-
MAE 

Average-
MAE 

LINE-P 
(Case-III) 

0.0349 0.0623 0.1083 0.4257 0.2294 0.1565 0.1695 

UD-
WCMA 

0.0330 0.0879 0.1088 0.3437 0.1946 0.1279 0.1493 

IPRO-
Energy 

0.0986 0.1907 0.1863 0.6094 3.0968 0.4993 0.7801 

Adaptive 
LINE-P 

(Case-III) 

0.0338 0.0569 0.1095 0.4186 0.2133 0.1594 0.16525 

 
Table 11. Error comparison of the EPs models in terms of MSE for the wind energy profile 
(Publication 5).  

MODELS Day 1-
MSE 

Day 2-
MSE 

Day 3-
MSE 

Day 4-
MSE 

Day 5-
MSE 

Day 6-
MSE 

Average-
MSE 

LINE-P 
(Case-III) 

0.0021 0.0065 0.0311 0.4667 0.1451 0.0545 0.1176 

UD-
WCMA 

0.0018 0.0144 0.0415 0.3143 0.1048 0.0323 0.0845 

IPRO-
Energy 

0.0112 0.0441 0.0936 0.5489 1.9788 0.3059 0.4970 

Adaptive 
LINE-P 

(Case-III) 

0.0020 0.0061 0.0292 0.4243 0.1278 0.0563 0.1076 

Tables 10 and 11 show that the proposed Adaptive LINE-P (CASE-III) performs better 
than the other energy prediction models (error down to – 80 %) (Publication 5).  

In the above section, the author compared the EPs models with two different 
sources, namely solar and wind data profiles; apart from a minor exception, the results 
show that Adaptive LINE-P (Case-III) provides the best results as compared to the other 
EP models.  

3.7 Evaluation of the Compressed Energy Profile Method  
Here, the author assesses the compressed energy profile method in two steps. Firstly, 
its accuracy and adaptability are verified against real data (real energy profile). Secondly, 
the compression method in incorporated with the two adaptive energy prediction 
models (Adaptive LINE-P and UD-WCMA) for further assessment against their non-
compressed versions.  
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Generally, the compressed energy profile method is much more effective where 
slots are shorter. In order to verify the accuracy and adaptability of the method, the 
author choses wind energy profile since the wind is uncontrollable, and closer or shorter 
slots estimation of energy can then yield less error. 

Figure 21 shows the short time–period horizon, considering 15-mins interval data, 
which corresponds to 96 slots in 24 hours. It is clearly visible in Figure 21 that the 
weather conditions are extremely inconsistent. As shown, the first two days appear 
consistent and productive, but the next two days have a quite low productivity in term 
of power generation. The last two days have even lower energy production. However, 
such type of variations expose the weakness of the other prediction models.  

On the contrary, Adaptive and compressed LINE-P (Case-III) yields both better 
accuracy and reliability.   

Figure 21. Graphical representation of energy prediction models with and without the compressed 
profile method based on the short time period horizon of the wind energy profile (Elia) 
(Publication 5). 
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In the following, the author calculates the error estimation in terms of MAE and MSE 
for the wind energy profile (Publication 5).  

Table 12. Error estimation in terms of MAE of the prediction models with and without the 
compressed profile method for the wind energy profile (Publication 5). 

MODELS Day 1-
MAE 

Day 2-
MAE 

Day 3-
MAE 

Day 4-
MAE 

Day 5-
MAE 

Day 6-
MAE 

Average
-MAE 

Compressed -
UD-WCMA 

0.2005 0.0852 0.1183 1.7228 3.1929 1.5404 1.1433 

Non-
Compressed -

UD-WCMA 

0.1977 0.0884 0.1173 1.6643 3.0968 1.4999 1.1107 

Compressed – 
Adaptive LINE-P 

(Case-III) 

0.0182 0.0518 0.1069 0.4050 0.1908 0.1515 0.1540 

Non-
Compressed – 

Adaptive LINE-P 
(Case-III) 

0.0338 0.0569 0.1095 0.4186 0.2133 0.1594 0.1652 

Table 13. Error estimation in terms of MSE of the prediction models with and without the 
compressed profile method for the wind energy profile (Publication 5). 

MODELS Day 1-
MSE 

Day 2-
MSE 

Day 3-
MSE 

Day 4-
MSE 

Day 5-
MSE 

Day 6-
MSE 

Average-
MSE 

Compressed 
-UD-WCMA 

0.0475 0.0120 0.0306 4.6731 13.0108 2.8090 3.4305 

Non-
Compressed 
-UD-WCMA 

0.0463 0.0132 0.0304 4.4162 12.2862 2.6713 3.2439 

Compressed 
– Adaptive

LINE-P (Case-
III) 

0.0007 0.0053 0.0285 0.4506 0.0945 0.0495 0.1048 

Non-
Compressed 
– Adaptive

LINE-P (Case-
III) 

0.0020 0.0061 0.0292 0.4243 0.1278 0.0563 0.1076 



62 

Tables 12 and 13 illustrate the error estimation with and without the proposed 
profile compression method in terms of MAE and MSE for the wind energy profile. In 
Table 12, it can be observed that incorporating the compressed profile method increases 
the MAE for UD-WCMA by +3% but decreases it for Adaptive LINE-P (CASE-III) by – 6.77% 
(Publication 5).  

In Table 13, it can be seen that incorporating the compressed profile 
method increases the MAE for UD-WCMA by + 5.75 % but decreases it for Adaptive 
LINE-P  (CASE-III) by – 2.6%. As seen earlier, the compressed energy profile method 
reduces the memory requirements by a factor 2 (Publication 5).  
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3.8 Chapter Summary 
In this chapter, the author has proposed the extension of LINE-P named Adaptive LINE-
P (three cases-based). This proposed model alleviates the fixed length time-slot and 
fixed weighting parameter. Adaptive LINE-P model chooses the weighting parameter 
based on the actual energy profile. Experiments have been conducted with three time-
period horizons (shorter, medium and longer) on different time-slots.  

The results show that the proposed adaptive prediction model is highly adaptable 
against sharp variations or rapid changes as compared to other adaptive and non-
adaptive prediction models.  

Moreover, in this chapter, the author also proposed a compressed energy profile 
method that can easily be incorporated with any prediction model; this method allows 
reducing the memory requirements by 50% and yet provides 90% accuracy.  

The outcome of the experimental evaluation of Adaptive LINE-P combined with the 
energy profile compression illustrates that the prediction error is not significantly 
degraded when the proposed compressed profile method is used; thus, it offers a good 
trade-off between accuracy and memory requirements. 

The next chapter concludes this PhD work and briefly indicates possible future work. 
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4. CONCLUSION 
This PhD thesis touched upon several aspects related to the energy challenge in wireless 
sensor nodes, namely energy harvesting technologies, transient computing, energy 
prediction and the combination thereof. The work can be seen as an effort to the 
development of autonomous wireless sensor networks, and on the longer run, to energy-
efficient IoT solutions.  

The thesis comprised 4 chapters. After the introduction, the 1st chapter covered the 
architecture of WSNs, energy harvesting technologies, and related models and background 
information. The 2nd chapter focused on the mathematical modelling & implementation of 
transient computing and energy prediction model. The 3rd chapter presented the adaptive 
energy prediction model and the energy profile compression technique.    

In particular, the author presented a combined transient computing mechanism and 
energy prediction model; the expected benefit of this combined approach is to help 
developing battery-less nodes that can be used in applications such as delay-tolerant sensor 
networks. The nodes can perform their computation and communication tasks as a function 
of the available energy.  

Indeed, transient computing enables pausing/resuming the tasks when power losses 
occur and estimating the energy availability enables improving the system (node) 
performance and quality of service by pausing the tasks and sharing the information with 
other nodes before a power loss occurs.  

The above work has been carried out not only by means of theoretical models but also 
by means of practical experiments involving the development of a hardware/software 
implementation. 

The introductory chapter of this PhD thesis posed the following research questions: 

1. How to rapidly evaluate the feasibility of existing and emerging energy 
harvesting technologies in the context of WSNs/IoT and what kind of models 
are sufficient to enable the above? 

2. How to combine and implement the concepts of EH and TC in WSN nodes and 
what are the practical possibilities and limitations of such a joint approach? 

3. How to design an EP model that can be used with several types of EH sources 
and how to reduce its computational overhead so that it can be implemented 
on a resource-constrained WSN node? In addition, how to further improve the 
EP model in terms of adaptability and reduced memory overhead? 

4. How to combine and exploit EH, TC, and EP to make the best use of the available 
energy, i.e., control the quality of service of the application executing on a WSN 
network that include a WSN node solely powered by EH? 

What follows briefly discusses how the contributions of this thesis provide answers 
or element thereof to the above questions. 

Paper 1  

This paper presented a system-level exploration framework named FYPSim that includes 
coarse-grain models of various energy harvesting technologies (including hybrid energy 
harvesting and battery management) and the sizing of energy storage technologies. The 
framework also enables comparing energy prediction algorithms (EWMA, WCMA, etc.) The 
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exploration results with energy harvesting technology models for indoor solar, indoor air 
flow, and indoor radio frequency, as well as energy storage technology models for Li-Ion 
batteries and supercapacitors. It can be said that such coarse-grain models enable the rapid 
exploration of various technologies (as opposed to simulators that are based on fine-grain 
models that are slower to simulate), thus providing an answer to the 1st research question. 

Paper 2 

This paper presented the implementation of transient computing on a FRAM- based node 
(MSP430FR5739+CC2500) cascaded directly with three energy harvesting sources (RF, solar, 
thermal) without energy storage such as a battery or super capacitor. Based on various 
experiments, the author concluded that energy harvesting combined with transient 
computing in WSN nodes is indeed feasible. A limitation that was identified is the need for 
energy sources that can sustain the peaks of current that occur at boot time and when 
resuming the nodes’ operations. Thus, based on the results, Paper II provides an answer to 
the 2nd research question.       
Paper 3 

This paper proposed LINE-P, a linear energy prediction model that builds upon 
approximation and sampling theory. LINE-P is suitable for dual-source energy harvesting. The 
results show that the accuracy of the solar-based and wind-based predictions is up to 
approximately 98% and 96%, respectively. At the same time, the proposed LINE-P model 
offers the best trade-off among existing energy prediction models, i.e., equivalent or better 
prediction accuracy at a lower complexity, which makes LINE-P is a good candidate for 
implementation on resource-constrained WSN nodes. Thus, this contribution provides an 
answer to the first part of the 3rd research question (Paper V answers the second part).  

Paper 4 

This paper proposed a novel approach for the combined implementation of two modalities 
(transient computing and energy prediction) aimed at improving the adaptability and 
robustness of a bidirectional communication setup comprising an energy-autonomous 
WSNs node. The experimental results show that the implemented modalities consume only 
15% of the total memory of a node, the accuracy of the energy prediction is 90% in 
inconsistent weather, and the average receiving rate (reliability of the packet 
transmission/reception at various distances) is 94.6%. Thus, based on the proposed 
approach and experimental results, Paper IV provides answers to the 4th research question.       

Paper 5 

The paper proposed the Adaptive LINE-P (all cases) model which is an enhancement of the 
LINE-P model. Adaptive LINE-P incorporates an adaptive mechanism which removes the 
fixed-parameter issue. In addition, the paper introduced a compression technique which 
compresses the stored energy profile. This technique was incorporated in both Adaptive 
LINE-P and other existing energy prediction models. The results showed 90% accuracy in 
Adaptive LINE-P model along with a memory overhead reduced by 50% on solar and wind 
energy profiles based on shorter (96 slots in 24 hours) time-period horizon. 

Thus, based on the proposed adaptive energy prediction model, energy profile compression 
technique and the results, Paper V provides answers to the second part of the 3rd research 
question.      
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Summary of Claims 

In the following, the claims of novelty that were shown in this PhD work are listed. The 
claims correspond to Contributions A to E and are reflected in Papers 1-5. 

Claim 1: To the best knowledge of the author, the proposed system-level framework 
FYPSim provides a complement to other existing WSNs simulators since it allows the 
rapid exploration of alternatives before their detailed simulation. This corresponds to 
Contribution A and Publication 1. 

Claim 2: To the best knowledge of the author, the proposed mathematical model of 
LINE-P, based on the approximation and sampling theory, is unique in the scientific 
literature and offers a good trade-off between accuracy and complexity. In addition, 
LINE-P is designed and developed for the dual source energy profile (solar and wind); its 
methodology and demonstration have been shown through a practical implementation. 
This corresponds to Contribution C and Publication 2.       

Claim 3: The author proposed a novel approach by combining two modalities (transient 
computing and prediction model) and demonstrated them through their 
implementation on a peer-to-peer setup of wireless sensor nodes. This corresponds to 
Contribution B to D and Publication 2 to 4. To the knowledge of the author, such an 
approach has not been proposed and published previously.   

Claim 4: The author proposed the mathematical model of Adaptive LINE-P, which is an 
extension of the LINE-P model. Adaptive LINE-P is based on an adaptive weighting factor 
parameter, which is calculated as a function of the weather condition. This proposed 
prediction model is highly reliable, robust, adaptable and up to 90% accurate. To the 
best of knowledge of the author, the proposed energy profile compression technique 
that can reduce the memory overhead by up to 50% is the first of its kind. This 
corresponds to Contribution E and Publication 5.    

Perspectives and Future work 

With the technological advancement, increasing requirements and fast deployment of IoT, 
it is expected that the sensor nodes will deployed everywhere. This means an increased 
overall energy consumption even if progress can be made in terms of energy storage capacity 
and energy harvesting efficiency. Therefore, the proposed solution, in particular combining 
modalities of transient computing and energy prediction is expected to be suitable approach 
for cases where the delay is not critical or where monitoring is not required on a 24/7 basis.  

Furthermore, the work presented in this PhD thesis could be expanded along several 
directions.  

Firstly, energy trading between the wireless node could be considered. To do so, RF 
energy harvesting and RF energy transfer circuitry could be combined with a brokering 
mechanism that would distribute the available energy depending on the workload of the 
individual nodes. 

Secondly, due to dense deployment of IoT, dealing with large amounts of data is creating 
new challenges in terms of data exchange, storage capacity, data management, 
computation, etc. Therefore, the traditional WSN approach may no longer be effective and 
thus, adding new spatial and/or temporal data prediction models to the presented work may 
help reducing such new burdens by reducing the amount of actual data to be transferred, 
stored and processed.   
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ABSTRACT 
The advent and growth of the IoT has opened new directions and challenges for the 
scientific community. In particular, IoT enabling devices such as wireless sensor nodes 
are powered by energy-limited batteries, which affects their life-time and reliability in 
case of intensive utilization, and eventually leads to increased maintenance 
requirements and related cost. Thus, researchers have investigated and proposed 
various solutions under the so-called energy harvesting concept. Such solutions help 
overcoming the limited batteries’ capacities by providing a supplementary or alternative 
source of energy to operate e.g. smart devices, wireless sensor nodes, home appliances, 
industrial machine etc. The positive impact of energy harvesting in IoT enables 
innovative applications that are no longer hindered by the batteries limits. 

However, energy harvesting poses several challenges both at the hardware and 
software levels when designing energy-autonomous wireless sensor nodes. Indeed, 
energy harvesting from the environment such as from solar, wind, thermal, RF etc 
sources typically exhibits intermittent characteristics. This means that the wireless 
sensor nodes may be left without power, which in turn impacts the application’s 
performance in terms of e.g. connectivity and reliability.   

Firstly, the author proposed a system-level framework that uses coarse-grain models 
of various single and hybrid energy harvesting technologies for wireless sensor nodes. 
Experimental results illustrate how the framework can be used to evaluate various 
energy harvesting sources for powering WSN nodes. 

Then the author assessed the  practical feasibility of powering a wireless sensor node 
from an energy harvesting source without energy storage. A salient feature of the work 
is the implementation of a transient computing mechanism on a non-volatile (FRAM-
based) node. The experimental results illustrate that energy harvesting, combined with 
transient computing, is indeed feasible. 

Next the author proposed an energy prediction model named LINE-P (Linear Energy 
Prediction). It builds upon sampling and approximation theory. LINE-P is more suitable 
for dual EH sources and various data time intervals than state-of-the-art models. The 
simulation results show that LINE-P’s prediction accuracy is up to ca. 98% for solar 
energy and up to ca. 96% for wind-based prediction. 

Thereafter, the author deployed a transient computing mechanism for bidirectional 
communication where energy harvesting is used in combination with transient 
computing and the LINE-P energy prediction model. This allows firing communication 
tasks only if sufficient and stable energy is predicted. The results for a peer-to-peer 
wireless setup illustrate that the combined two modalities require only 15% of the 
node’s memory, and this proposed approach (combined) yields an average receiving 
rate up to 94.6%. 

Finally, the author designed the Adaptive LINE-P model that addresses the fixed 
weighting parameter issue by calculating adaptive weighting parameters based on the 
stored energy profiles. In addition, a profile compression method has been proposed to 
reduce the memory requirements. The results illustrate that Adaptive LINE-P’s accuracy 
is up to 90-94% and compression method can 50% reduce memory overheads. 
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 KOKKUVÕTE 
Teadlaskonnale on avanenud uued võimalused ja väljakutsed seoses asjade interneti 
(Internet of Things - IoT) ilmumise ja arenguga. Näiteks piiratud varuga energiaallikate 
kasutamine traadita võrgu sõlmedes piirab nende eluiga, vähendab usaldatavust, viib 
suurenenud hooldusvajaduseni ja kaasneva kuluni. Sellega seoses on teadlased uurinud 
energiakorje (energy harvesting) võimalusi ja pakkunud välja erinevaid lahendusi. 
Lisades täiendava  või alternatiivse energiaallika aitavad väljapakutud lahendused 
ületada elektrokeemiliste allikate mahtuvusega seotud piiranguid arukates seadmetes, 
traadita võrgu sõlmedes, koduseadmetes, tööstusmasinates ja mujal. Energiakorje 
positiivne mõju lubab uuenduslikke rakendusi mida ei takista enam elektrokeemiliste 
allikatega seotud piirangud. Siiski on veel mitmeid väljakutseid traadita sensorsõlmede 
energiasõltumatuse tagamiseks, nii riistvara kui ka tarkvara vallas. Energiakorje 
keskkonnast, olgu see siis päikeseenergia, tuuleenergia, soojusenergia või 
raadiosageduslikud signaalid, on tüüpiliselt katkendliku loomuga. See tähendab, et 
traadita sensorsõlmed võivad jääda ilma energiata, mis omakorda mõjutab rakenduste 
jõudlust, ühenduvust ja usaldusväärsust. 

Esmalt pakkus autor välja jämedakoelisi mudeleid kasutava süsteemitasandi 
raamistiku erinevate energiakorje tehnoloogiate ja nende koosluste jaoks traadita 
sensorsõlmedes. Katsetulemused näitavad kuidas raamistikku saab kasutada erinevate 
energiakorje allikate hindamiseks traadita sensorsõlmede energiaga varustamisel.   

Seejärel hindas autor traadita sensorsõlme energiakorje teel toitmise teostatavust 
ilma energia akumuleerimiseta. Selle töö väljapaistev tulemus on transientse 
arvutusmeetodi implementeerimine mittevolatiilse mäluga (FRAM) võrgusõlmes. 
Katsetulemused näitavad et energiakorje koos transientse arvutusmeetodiga on 
tõepoolest teostatav. 

Järgnevalt pakkus autor välja energia prognoosimise mudeli LINE-P (Linear Energy 
Prediction). See baseerub aproksimeerimise ja võendamise teooriatel. LINE-P on 
kasutatav duaalsete energiakorje allikate jaoks muutuvate ajaintervallide korral 
paremini kui tuntud parimad lahendused. Simulatsiooni tulemused näitavad, et LINE-P 
prognoosi täpsus on ligi 98% päikeseenergia korral ja ligi 96% tuuleenergia korral. 

Sellele järgnevalt kasutas autor transientset arvutusmeetodit komibinatsioonis 
energiakorje ja LINE-P prognoosimise mudeliga kahesuunalise side jaoks.  See lubab side 
alamülesande alustamist ainult siis kui piisav ja stabiilne energiavaru on prognoositud. 
Kahe sõlme vahelise traadita side katsetamise tulemused näitavad, et kaks 
kombineeritud meetodit nõuavad ainult 15% võrgusõlme mälust ja pakutud lahenduse 
keskmine vastuvõtu määr on kuni 94,6%. 

Lõpuks arendas autor välja adaptiivse LINE-P mudeli, mis kasutab fikseeritud 
kaaluparameetrite asemel adaptiivseid kaaluparameetreid salvestatud energiaprofiilide 
jaoks. Lisaks pakutakse välja profiilide kokkusurumise meetod mäluvajaduse 
vähendamiseks. Tulemused näitavad, et adaptiivse LINE-P täpsus on kuni 90-94% ja 
kokkusurumine vähendab mäluvajadust 50%.



 

77 
 

Appendix A 
 

 

 

 

 

 

 

 

 

 

 

 

 

Publication I 

Ahmed, F., Le Moullec, Y., Annus, P., Mustufa, Y.S.A. Analytical evaluation of indoor 
energy harvesting technologies for WSNs with FYPSim framework. 2016 International 
Conference on Industrial Informatics and Computer Systems (CIICS), 2016. [6] p. 





����������	
��������	�	����	
�����	����������	����������	��	����	����	������	������� 		������	�����!	������ 	"�	#�����!	����	�����	�$%$	���&�� 	'�(�������	�	
���������!		�������	)���������	�	��������	�������!	
�����		������*����$���$��		 �$	�����	#������	�$	'�(�������	�	���������	
����������	���	+�(����	�������	,'���-!	)���������	�	�����		�����!	�����	����$�����*�����$��		./0123415	6789:;	:<	=	>?=;@AB?C	DE=D	@F=GH@<	DE@	;BI@H:FJ	B>	K=?:BL<	@F@?JM	E=?K@<D:FJ	D@NEFBHBJ:@<	=FI	DE@	<:O:FJ	B>	@F@?JM	<DB?=J@	D@NEFBHBJ:@<	=D	DE@	<M<D@;	H@K@H	A:DE	=PPH:N=D:BF	DB	A:?@H@<<	<@F<B?	F@DAB?C<Q	RF	DE:<	P=P@?S	A@	P?@<@FD	DE@	<P@N:>:N	>@=DL?@<	B>	6789:;	?@H=D@I	DB	@F@?JM	E=?K@<D:FJ	@TPHB:D:FJ	:FIBB?	<BH=?S	:FIBB?	=:?	>HBAS	=FI	:FIBB?	?=I:B	>?@UL@FNM	@F@?JM	<BL?N@<Q	V@	=H<B	I@<N?:G@	DE@	;BI@H<	L<@I	>B?	;BI@H:FJ	EMG?:I	@F@?JM	E=?K@<D:FJ	=FI	G=DD@?M	;=F=J@;@FDQ	WL?	@TP@?:;@FD=H	?@<LHD<	:HHL<D?=D@	EBA	6789:;	N=F	G@	L<@I	DB	@K=HL=D@	DE@	=GBK@	D@NEFBHBJ:@<	:F	NB;G:F=D:BF	A:DE	X:YRBF	G=DD@?:@<	=FI	<LP@?N=P=N:DB?<Q	Z[\]̂_̀abcd̀^̂_	[d[_e\	fg_h[aijdek	lj_[m[aa	a[dâ_	d̂ [̀ak	nf̂îĥmigjo	o[mmak	pjo_̂	iq_rjd[ak	st	[d[_e\u	�$		���vw')+��w�		
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