
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Engineering

Tallinn 2015

IAY70LT

Karl Janson 131119IASM

IMPLEMENTATION OF HEVC

COMPUTATIONAL KERNELS ON DRRA

Master thesis

Supervisor:

Muhammad Adeel Tajammul

M.Sc. (SoC)

Early stage researcher

2

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Karl Janson

15.06.15

3

Abstract

In the field of high performance computing, hardware accelerators are used to fit

computational requirements by exploiting the parallelism that a hardware

implementation can offer and taking some load off the general-purpose sequential

processor.

This thesis proposes an implementation framework that helps with the task of profiling

an application in order to find the computational kernels that can be implemented on a

hardware accelerator. Furthermore, a method for extracting these kernels and

implementing them on a on the Dynamically Reconfigurable Resource Array (DRRA)

based hardware accelerator, is explained.

The usage of the framework is demonstrated by profiling the High Efficiency Video

Coding (HEVC) decoder in order to find its computational kernels. The maximum

parallelism of the kernels is then investigated and the DRRA-based implementation is

described.

This thesis is written in English and is 80 pages long, including 8 chapters, 39 figures

and 3 tables.

4

Annotatsioon

HEVC arvutuslike tuumade implementeerimine DRRA-l

Et täita arvutuslike nõudeid, kasutatakse tihtipeale suurt arvutusjõudlust vajavate

ülesannete lahendamiseks riistvaralisi kiirendeid.

Kiirendite kasutamise eeliseks on ühest küljest nende suur paralleelsus, mis võimaldab

teha mitut arvutust samaaegselt, samas, kui tavaprotsessorite puhul on paralleelsus

võrdlemisi väike (enamasti kaasajal alla kümne tuuma). Teisest küljest aga jätab

riistvaraline kiirendi vabaks rohkem ressursse süsteemi põhiprotsessoril, mistõttu jällegi

süsteemi üldine jõudlus kasvab.

Selles lõputöös pakutakse välja teostuse raamistik rakenduse profileerimiseks, et

tuvastada selle arvutuslikud tuumad. Lisaks sellele käiakse välja meetod nende tuumade

teostuseks Dynamically Reconfigurable Resource Array (DRRA) peal.

Antud raamistiku kirjeldamiseks näitlikustatakse seda protsessi High Efficiency Video

Coding (HEVC) videodekoodri peal. Esmalt HEVC dekooder profileeritakse, et leida

selle arvutuslikult kõige keerukamad komponendid (arvutuslikud tuumad). Seejärel

kirjeldatakse meetodit maksimaalse kasuliku paralleelsuse leidmiseks.

Edasi teostatakse üks leitud tuumadest MATLAB keskkonnas ning analüüsitakse

võimalusi selle teostamiseks DRRA peal kasutades VESYLA kompilaatorit.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 80 leheküljel, 8 peatükki, 39

joonist, 3 tabelit.

5

Table of Abbreviations and Terms

DRRA Dynamically Reconfigurable Resource Array

HEVC High Efficiency Video Coding

CPU Central processing unit

FPGA Field-programmable gate array

JCT-VC Joint Collaborative Team on Video Coding

CTU Coding tree unit

CU Coding unit

CB Coding block

PB Prediction block

TB Transform block

DCT Discrete cosine transform

IDCT Inverse discrete cosine transform

DST Discrete sine transform

CABAC Context-adaptive binary arithmetic coding

1-D One-dimensional

2-D Two-dimensional

FIR Finite impulse response

DSP Digital signal processor

DPU Data-path unit

6

FSM Finite-state machine

BSD Berkeley Software Distribution

GNU GNU's Not Unix!

GPL GNU General Public License

GCC GNU Compiler Collection

LFSR Linear feedback shift register

VESYLA Vectorizing Symbolic Language Assembler

7

Table of Contents

1. Introduction ... 13

1.1. Task description .. 14

1.2. Implementation Framework Overview .. 15

1.3. Thesis organization ... 16

2. Related Work .. 18

3. High Efficiency Video Coding Standard .. 19

3.1. Picture Prediction Methods ... 19

3.2. Representation of Colors ... 20

3.3. Picture Partitioning ... 20

3.3.1. Coding Tree Units.. 20

3.3.2. Coding Units.. 21

3.3.3. Coding Blocks ... 22

3.3.4. Prediction Block .. 23

3.3.5. Transform Blocks .. 24

3.4. HEVC Encoder ... 24

3.5. HEVC Decoder ... 25

4. Profiling the HEVC Decoder ... 27

4.1. Sample HEVC Software ... 27

4.2. General Structure of the Sample Source Code ... 27

4.3. Profiling of HEVC Sample Decoder ... 29

4.3.1. Profiling Process .. 29

4.3.2. Analysis of Profiling Results .. 29

5. Description of Relevant HEVC Components ... 33

5.1. Inverse Transform ... 33

8

5.1.1. HEVC Transform .. 33

5.1.2. HEVC 2-D Inverse Transform ... 33

5.1.3. 1-D Inverse Transform ... 34

5.2. Interpolation Filter .. 35

5.2.1. Interpolation .. 35

5.2.2. Finite Impulse Response Filter ... 35

5.2.3. Interpolation in HEVC ... 37

6. Analysis of the HEVC Sample Software.. 40

6.1. Interpolation filter ... 40

6.2. Inverse transform .. 42

7. Dynamically Reconfigurable Resource Array .. 45

7.1. DRRA Fabric .. 45

7.2. DRRA Cell ... 46

7.2.1. Data-Path Unit ... 46

7.2.2. Register file ... 47

7.2.3. Sequencer .. 47

7.3. VESYLA .. 48

7.3.1. Pragmas ... 48

7.3.2. VESYLA Folder Structure ... 49

7.3.3. Known Limitations of VESYLA .. 49

7.4. Mapping Process ... 50

8. Implementation Flow .. 52

8.1. Test Cases Generation ... 52

8.2. MATLAB Implementation .. 53

8.3. VESYLA-Readable Code ... 54

8.4. Verification of VESYLA Implementation ... 58

Conclusions .. 59

9

References .. 61

Appendix 1 – Transform matrices ... 64

Appendix 2 – Profiling of the HEVC Decoder .. 65

Appendix 3 – Example Inverse Transform Test Case .. 66

Appendix 4 – MATLAB code for inverse partial butterflies .. 68

Appendix 5 - Top-level MATLAB inverse transform code .. 73

Appendix 6 – MATLAB Inverse Transform Verification Code 76

Appendix 7 – VESYLA-Readable 4x4 Inverse DCT Transform Using Single Register

File at a time ... 77

Appendix 8 – Parallelized VESYLA-Readable 4x4 Inverse DCT Transform 78

Appendix 9 - HEVC video decoder’s layout .. 80

10

List of Figures

Figure 1. Diagram of proposed framework .. 15

Figure 2. Partitioning of CTUs into CUs ... 22

Figure 3. Division of a CU into CBs and syntax elements ... 22

Figure 4. Different ways to divide a CB into PBs .. 23

Figure 5. Partitioning of a CB into TBs ... 24

Figure 6. Dataflow graph of the HEVC encoder .. 25

Figure 7. Dataflow graph of the HEVC decoder .. 26

Figure 8. Top level folder structure for the example HEVC codec source code 27

Figure 9. HEVC sample codec source code's folder structure 28

Figure 10. Makefile section to add coverage information .. 29

Figure 11. Command for running Valgrind.. 29

Figure 12. Pie chart describing the usage of instructions per functions in HEVC decoder

 ... 30

Figure 13. Amount of parallelization vs speedup in the HEVC decoder 31

Figure 14. Dataflow diagram of a 6 tap FIR filter .. 36

Figure 15. Sample positions in luma interpolation [3] ... 38

Figure 16. Luma interpolation filtering equations [3]. Variable B is the bit depth of the

reference samples and “>>” denotes an arithmetical shift right operation. 38

Figure 17. Call graph for the interpolation filter .. 41

Figure 18. Cleaned up pseudocode of the filterVer() function 41

Figure 19. Relative instruction usage of the interpolation filter 42

Figure 20. A part of the call graph showing the inverse transform 43

Figure 21. Pseudocode for the xITrMxN() function ... 43

Figure 22. Relative amount of instructions used by different parts of the inverse

transform. ... 44

Figure 23. Fragment of the DRRA fabric [4] ... 45

11

Figure 24. Pragmas used by VESYLA .. 48

Figure 25. VESYLA's directory tree .. 49

Figure 26. Inverse transform functions that should be mapped on the accelerator 52

Figure 27. cITrMxN() function parameters .. 53

Figure 28. 4x4 inverse butterfly algorithm's flow diagram. It needs to be noted, that in

last step, the addition and subtraction use the same inputs, so they cannot be

implemented in parallel on DRRA. ... 55

Figure 29. Calculation pipeline in DRRA (implements parallelism of level 4) 56

Figure 30. Transform matrix used by the DST-like transform 64

Figure 31. Transform matrix used by the DCT-like transform 64

Figure 32. Profiling information of the HEVC decoder. The chosen kernels are marked

with red. All the functions above the inverse transform are top-level functions............ 65

Figure 33. Example of a test case for the MATLAB inverse transorm implementation 67

Figure 34. MATLAB code for inverse partial butterflies ... 72

Figure 35. Top-level MATLAB inverse transform code .. 75

Figure 36. Code for verifying the MATLAB implementation of the inverse transform 76

Figure 37. VESYLA-Readable 4x4 Inverse DCT Transform Using Single Register File

at a time .. 77

Figure 38. VESYLA-readable 4x4 Inverse DCT transform code 79

Figure 39. Layout of the HEVC video decoder. Functions with name

partialButterflyInverse are part of the inverse transform. Functions belonging to class

TComInterpolationFilter, are part of the interpolation filter ... 80

12

List of Tables

Table 1. FIR filter coefficients for luma fractional interpolation [3] 37

Table 2. Chroma interpolation filter coefficients in case of 4:2:0 chroma subsampling 39

Table 3. Comparison of VESYLA-readable implementations of the 4x4 inverse

butterfly. ... 57

13

1. Introduction

In the field of high performance computing (HPC), hardware accelerators are commonly

used. Such offloading of the more computationally intensive tasks from the general-

purpose CPU to a specialized hardware gives the system a noticeable increase in speed.

For decades such hardware accelerators have been used for various different tasks,

starting with arithmetic co-processors in old Intel processor based systems, where the

hardware acceleration was used to unload the computationally demanding floating-point

calculations to a specialized hardware. Another well-known type of hardware

accelerators are the graphics processors, which take the responsibility of doing graphics

and other digital signal processing (DSP) applications. Nowadays, physics-related

calculations also use such accelerators.

Lately, as the prices for computing equipment are getting cheaper and the needs for

performance has increased. Hardware accelerators have found their way into almost

every area of modern computing. There exist accelerators for not only graphics and

arithmetic, but also for high definition audio, video, gaming, different communication

solutions and cryptography, etc. Recently, Intel suggested a reconfigurable (FPGA-

based) general-purpose hardware accelerator [1].

The motivation behind use of hardware accelerators is to exploit inherent parallelism

within the computationally extensive task to achieve a significant speedup. The general-

purpose CPUs, though, execute tasks sequentially and their resources are usually also

shared by multiple processes.

By using a hardware accelerator, however, it is possible to offload some parts of the

computationally demanding algorithm from the general-purpose CPU into a specialized,

highly parallelized, integrated circuit. This solution helps to increase the calculation

speed of those algorithms in two ways: first, freeing the general-purpose CPU from the

data intensive task and thus giving it more time to work on control intensive tasks, and

secondly, speeding up the calculation of these computationally demanding tasks

themselves by exploiting their data level parallelism.

14

According to Amdahl’s law [2], an algorithm cannot be parallelized completely, as the

speedup of a program, which is achieved by utilizing parallelism, is limited by the time

that is taken by sequential part of the program. Fortunately, Amdahl’s law also offers an

estimation of speedup that is achievable for an algorithm, by knowing the relation

between the fully sequential and the parallelizable parts. Hence, it is important to know

the amount of exploitable parallelism within an application. This thesis looks into the

amount of speedup that is exploitable from parallelizable computational kernels within

High Efficiency Video Coding (HEVC) [3] .

The High Efficiency Video Coding [3] consists of many potentially computationally

intensive components, which may require the assistance of a graphics accelerator in

order to speed up the decoding. This is especially true, if real-time HD video streaming

is required. In this thesis, the Dynamically Reconfigurable Resource Array [4] is used as

the hardware accelerator to host the computational kernels of HEVC.

1.1. Task description

The goal of this thesis is to develop an implementation framework for finding and

implementing the computational kernels of the application on the hardware accelerator

by:

 Describing a method for profiling and analyzing an application to find its

computational kernels

 Describing a method for implementing the computational kernels of an

application on the hardware accelerator

 Describing the verification method for the implementation

 Giving an example of using the framework by describing the implementation of

the computational kernels of the High Efficiency Video Coding (HEVC)

decoder on the Dynamically Reconfigurable Resource Array (DRRA).

15

1.2. Implementation Framework Overview

In this thesis proposes an implementation framework for profiling an application in

order to find its computational kernels for implementation on a hardware accelerator. To

illustrate the idea, the thesis describes the process of finding the computational kernels

of on HEVC decoder and then implementing on the DRRA as the target hardware.

Figure 1. Diagram of proposed framework

The proposed framework can be divided six sequential steps (Figure 1):

1. Profiling of the application: This step involves the analysis of an open source

software implementation of the application of interest. For this step, some

profiling tool, which is capable of measuring the instructions that are being used

separate functions of the program, is required. In this thesis, the Valgrind [5]

software, together with the Callgrind [6] tool, is used.

2. Benchmarking: In the benchmarking step, the profiling data is analyzed in

order to find the computational kernels that should be implemented in the

hardware to achieve speedup of the processing. The kernels should me chosen

based on analysis of the parallelizability and computational difficulty. Also, by

figuring out the percentage of the parallelizable components in the system, the

maximum speedup that can be achieved, can be calculated using the Amdahl’s

law.

3. Extraction of the kernels: The computational kernel that is going to be put on

the hardware accelerator should be relevant enough in regards of instruction

usage, so that speeding it up would have a measurable effect on the

computational process as whole. The kernel should also be parallelizable in

order to take advantage of the highly parallel nature of the hardware

implementation.

16

4. Extraction of testing data: In case the source code for the application that was

profiled before is available, it is also possible to find the implementation of the

kernel of interest in the software and modify its code in a way that it would

dump all the data passing it into a file. This will generate real-world testing data

for testing the implementation of the kernel later in the process.

5. Implementation of the kernel in MATLAB: After the computational kernels

and the test data are extracted from the software, a MATLAB model of the

kernel should be implemented. This is an intermediate step, which is necessary

for porting the kernel to DRRA.

6. Equivalence checking: After implementing the MATLAB model of the

computational kernel, it has to be verified. For this step, the testing data that was

extracted from the software, can be used.

7. Implementation of the kernel in VESYLA-readable format: Next, the

MATLAB implementation of the computational kernel needs to be modified in a

manner that can be read by VESYLA, the MATLAB compiler for DRRA.

8. Equivalence checking between the VESYLA-readable implementation and

the MATLAB model: Finally, the VESYLA-readable implementation should

be verified against the MATLAB model. Alternatively, the test cases that were

dumped from the software implementation of the algorithm, could be used to

verify the equivalence of the VESYLA-readable implementation and the

software implementation of the kernel.

1.3. Thesis organization

Following section shows the organization of rest of the thesis:

 In section 2, a short description of previous work related to the topic of this

thesis is given.

 In section 3, a general overview of the HEVC video coding standard is given.

 In section 4, discusses identification of computational kernels of HEVC decoder.

 In section 5, discusses short theoretical background of identified computational

kernels from section 4.

 In section 6, analyses a sample HEVC decoder’s source code in order to find the

computational kernels.

17

 In section 7, a short overview about DRRA, its compiler VESYLA and the

mapping process is given.

 In section 8, Implementation flow consisting of testing data dumped from

sample decoder software, MATLAB implementation of HEVS’s computational

kernel and sample of DRRA implementation of that kernel is presented.

 Finally, some conclusions about the data shown in this thesis is given.

18

2. Related Work

The High Definition Video Coding standard that is used in this thesis as an example

application for describing the proposed implementation framework has existed for a

couple of years already, which means that also some other related implementations for it

exist. One of the most influential of all the implementations is the semi-official open

source software implementation of the entire HEVC video codec [7] that is the basis for

this thesis. The sample software is based on the HEVC Text Specification [8] and the

overview paper written by the authors of the HEVC standard [3]. In addition, some

research exists on profiling the HEVC encoder [9] and on implementing HEVC the

decoder on hardware [10].

The hardware platform used in this thesis is the Dynamically Reconfigurable Resource

Array (DRRA). Out of the main components of DRRA, interconnection scheme of is

described in [11], while the control scheme used in the DRRA is described in [12]. Its

data-path units are in [13] and [14] explains address generation scheme used by DRRA.

Finally, [4] provides detailed information about all components of DRRA along with

information about how it fits in to the world of computational fabrics. The configuration

infrastructure of DRRA is in [15] and [16].

In order to simplify mapping of algorithms on DRRA, Vectorizing Symbolic Language

Assembler (VESYLA), a high-level pragma-based MATLAB synthesis tool for DRRA,

exists. The framework VESYLA is based on is in [17] and [18], while [19] explains

VESYLA itself.

19

3. High Efficiency Video Coding Standard

High Efficiency Video Coding [3], also known as H.265, is the latest version in the

series of non-proprietary video coding standards. It was developed by the JCT-VC [3]

team as a successor to the H.264/MPEG-4 AVC [20] video coding standard because of

the growing demands for higher video compression to serve better the need for ultra-

high resolution videos and streaming. Tests [21] show that HEVC can achieve up to

50% better compression rate than MPEG-4 AVC while producing resulting images with

similar subjective quality on high-resolution video sequences.

HEVC shares the same overall structure and components with its predecessors, which

means that the total increase in performance is achieved by a careful tuning and small

updates to the existing components, rather than building a new standard from scratch

[3]. In this section, a quick overview of the HEVC video coding standard is given.

3.1. Picture Prediction Methods

To achieve a good compression of a picture, it is necessary to remove as much

information as possible without having any noticeable effects on the picture quality. For

this reason, HEVC does not encode every picture completely. Because a video is a

sequence of multiple pictures with usually only small changes happening between the

frames, it makes sense only to store the changes between the frames instead of the entire

sequence of the images. During the decoding process, it is possible to produce the

original frames by just applying the changes to a previously decoded frame. This type of

frame prediction is called inter-picture prediction [3].

However, inter-picture prediction cannot always be used. An example for this case

would be the encoding of first frame of a sequence because there are no previous frames

that could be used for the inter-picture prediction. Another problem is that as every

predicted frame is a modification of the previous one, after some time the small errors

accumulate and start producing noticeable artifacts to the image.

To overcome this problem, HEVC includes another way to predict the frames called

intra-picture prediction [3]. An intra-picture predicted frame is encoded with only

20

spatial data from the frame itself, so that the decoding process would not depend on any

previously decoded frames. The decision about whether a frame should be decoded

using intra- or inter-picture prediction is made by the encoder. Usually, in addition to

the first frame, an intra-predicted frame is also included in the stream every now and

then to mitigate the cumulative errors generated by the inter-picture prediction. This

approach also helps to provide random access points to the video.

3.2. Representation of Colors

Although HEVC supports many different color spaces, the most typical color

representation used is YCbCr. It consists of the brightness, or luma (Y) component and

two color (chroma) components that specify the color's deviation from gray towards

blue (Cb) and red (Cr). In HEVC, colors can be represented with either 8- or 10-bit

precision. However using 8-bit precision is much more common [3].

The most typical chroma subsampling used in HEVC is 4:2:0 [3], which means that for

any rectangular picture with size of W x H, where W is the width and H is the height of

the picture in luma samples, W/2 x H/2 of both types of chroma samples are used. This

approach helps to lower the amount of information needed to represent the image and

therefore reduce size of the encoded picture. This is possible since human eye is more

sensitive to brightness than the color.

In this thesis, only the most typical case of YCbCr color space with 4:2:0 sampling

and 8-bit precision is viewed.

3.3. Picture Partitioning

To encode a raw video sequence into the HEVC bitstream, each picture of the input

video sequence needs first to be partitioned by the encoder into smaller units in order to

lower the complexity of calculations and raise the image quality. The rest of the video

processing takes place based on these units.

3.3.1. Coding Tree Units

The first level of these units are called coding tree units (CTU). The CTUs are used as a

top-level block for processing during the actual encoding or decoding.

21

CTUs can be viewed as HEVC's version of the macroblocks [20] that were used in

earlier video coding standards. Similar to the macroblocks, all CTUs have the same size

– either 16x16, 32x32 or 64x64 luma samples, although usually larger size is preferred

as it provides a better compression [3]. The size of the CTUs is selected by the encoder

at the beginning of the encoding process and it remains constant during the entire video

sequence.

3.3.2. Coding Units

The problem with macroblocks used in older video standards is that as they cannot be

very large (normally not larger than 16x16 luma samples) [20] or otherwise some of the

details in the picture can be lost and the image can get blurry. This, however, sets the

limits for the maximum compression that can be achieved.

In order to get a better image compression, the maximum dimensions of the basic

coding element, the CTU, have been increased in HEVC to 64x64 luma samples [3],

providing much better compression than the macroblock in older standards. This is

particularly true for parts of the picture with not much detail , such as a single-colored

background.

To overcome the problem of losing details in the picture, HEVC has introduced the

concept of further partitioning the CTUs recursively into coding units (CU). A coding

unit is the smallest unit that is used for image processing and it can be as large as the

CTU (up to 64x64 luma samples) in the areas with little or no detail or as small as 8x8

luma samples for highly detailed areas [3]. This approach enables the HEVC encoded

video sequence to have sharp details where they are needed and good compression

elsewhere.

Partitioning of the CTUs into CUs is done using the quadtree structure (Figure 2), where

a CTU can be recursively divided into four equal-sized CUs. This can be done as long

as needed or until the smallest allowed size of 8x8 luma samples of the CU is reached.

The decisions about the partitioning are made at the encoding time and the information

about the partitioning is stored along with other data in the HEVC bitstream. This

means that the decoder can use the information later for correctly reassembling the

video sequence.

22

Figure 2. Partitioning of CTUs into CUs

3.3.3. Coding Blocks

Every picture consists of multiple color channels. In case of most typical color

representation that is used in HEVC, YCbCr with 4:2:0 chroma subsampling, one luma-

and two chroma channels, half the size of the luma channel, are used. For this reason the

CU, as a general unit for coding in HEVC, is in turn divided into coding blocks (CB).

Each CB defines the picture data held in the CU for a single channel. The exact size and

number on CBs in one CU is defined by the color representation that is used, but in the

most typical case, it consists of one luma CB with dimensions equal to the CU’s size

and two chroma CBs half the size of the CU. Actual image processing is done for every

CB separately. In addition to CBs, the CU also contains syntax elements, the data

describing the CU such as its size, location in the picture, etc.

Figure 3. Division of a CU into CBs and syntax elements

23

In fact, the same logic between CUs and CBs can be also applied to any other

partitioning unit in HEVC. The main logic is always the same: while talking about

picture partitioning in HEVC, units mean the logical coding elements containing all the

color channels joined with some additional coding related information. Blocks, on the

other hand, mean the real frame buffer data for one specific color channel where the

actual processing is targeted.

3.3.4. Prediction Block

A CB can be divided further into prediction blocks (PBs), which are used for picture

prediction. The way the division is performed depends on whether the current picture

uses intra- or inter-picture prediction.

Figure 4. Different ways to divide a CB into PBs

For intra-picture prediction, a PB has usually the same size as the CB, except for the

smallest size of CB that is allowed by the HEVC standard, 8x8 luma samples. In this

case, the CB can be divided into four PB quadrants, 4x4 luma samples in size, which

can have different intra-picture prediction mode each. [3]

In case of inter-picture prediction, a CB can be partitioned into one, two or four PBs,

while division into four PBs is done only if the current CB has the minimum size that is

allowed by the HEVC standard. In case a CB is divided into four PBs, they will always

be equal in size. To divide a CB into two PBs, six different options, including

asymmetric division methods, exist [3].

The different ways, how the partitioning of a CB into PBs is done are illustrated in

Figure 4. The details about the partitioning, however, are out of the scope of this thesis

and in case more information about the topic is desired, the reader is referred to [3].

24

3.3.5. Transform Blocks

In order to compress the residuals, the output, of the picture prediction process, they

need to be transformed into the frequency domain and quantized. To do so, HEVC

utilizes two types of integer transforms that are explained in more detail in subsection

5.1.

Figure 5. Partitioning of a CB into TBs

The transform is performed on transform block (TB) level that are, like PBs, produced

by recursively dividing a CB into four quadrants until needed or until the minimum TB

size of 4x4 luma samples is reached as shown in Figure 5. The process itself is very

similar to the process of partitioning a CTU into CUs, as described in section 3.3.2 [3].

The size of the chroma TB is always half the size of the luma TB, except in case of 4x4

luma TB, in which the size of the chroma TB is also 4x4 luma samples [3].

3.4. HEVC Encoder

The first step in encoding a picture in a video sequence into HEVC bitstream (Figure 6)

is making a decision to about the prediction type that is used (inter- or intra-picture

prediction, subsection 3.1). After that, the image is partitioned as explained in

subsection 3.3.

Next, the prediction residuals for the picture is generated. This helps to reduce the

amount of data that is stored or sent, as only the differences between different blocks are

used instead of the entire picture.

The exact method used for generating of the residuals depends on the decision that was

made about the type of the prediction in the image partitioning step. In case the intra-

picture prediction was chosen, the residuals are generated by only using data from the

25

same picture, so they contain only information about the spatial with neighboring

blocks, but not the block in other frames.

In case the inter-picture prediction was chosen, temporal differences from previous, and

sometimes even upcoming, frames is used. As a changing of the position of an object in

time is actually movement of that object, the residuals that are generated by inter-picture

prediction are also called motion vectors.

After the generation of the residuals, they are transformed using a 2-dimensional

transform into the frequency domain. Then the transform coefficients are quantized and

scaled to remove some frequencies that are less important for retaining the picture and

not noticeable when removed, thus achieving image compression.

Finally, other information that is related to encoding of the image is also added to the

bitstream and the result is compressed using a lossless CABAC-derived entropy

encoding algorithm [3].

Figure 6. Dataflow graph of the HEVC encoder

3.5. HEVC Decoder

HEVC is designed so that the decoder almost exactly mirrors the inner workings of the

encoder as it goes through all the same steps, but in a reverse order and by doing the

inverse of all the operations. The dataflow model of the HEVC video stream can be seen

in Figure 7.

To decode HEVC video stream, first it is entropy decoded to uncompress the bitstream.

The next step is to inverse scale, inverse quantize and then inverse transform it in order

to reproduce the prediction residuals that were generated by the encoder.

26

After the residuals are found, they are used to restore the original picture by adding the

residuals to previously decoded blocks.

Finally, the decoded picture is put through two in-loop filters (the deblocking filter and

the sample adaptive offset filter) to smooth out some of the artifacts that were generated

by the quantization.

Figure 7. Dataflow graph of the HEVC decoder

27

4. Profiling the HEVC Decoder

4.1. Sample HEVC Software

In order to find the computational kernels in HEVC, it is necessary to profile it. By

profiling, it is possible to find out which component of the codec uses relatively the

most instructions, when compared to others, during the processing of a video sequence.

A video codec consists of two parts: a decoder and an encoder. In this thesis, the focus

is put on the decoder, as it is the part of the HEVC codec that is also used the most in

real life and has, as well, a bit lower complexity. Additionally, there already exists some

research about profiling the HEVC encoder [9].

In this thesis, an open source, BSD licensed, HEVC example software [7] was used for

experimenting. The software is almost ideal for profiling because it is open source, so it

is possible to directly change the source code, if needed. In addition, profiling it will

probably also give quite accurate results for a general case of an HEVC decoder as it

follows quite directly the HEVC video codec text specification [8], without many

optimizations [7].

4.2. General Structure of the Sample Source Code

HEVC_sample_sw
├───bin <─ Output folder for compiled binary files
├───build <─ Folder with building information for various platforms
│ ├───linux
│ ├───vc10
│ ├───vc8
│ └───vc9
├───cfg <─ Codec configuration files
├───compat
├───doc <─ Documentation
├───HM.xcodeproj
├───lib
└───source <─ Codec source code

Figure 8. Top level folder structure for the example HEVC codec source code

28

The code is written in C++. Its top-level hierarchy is quite straightforward and common

for an open source project. The most important top-level directories are shown in Figure

8. As it can be seen in the figure, it includes building scripts for GNU/Linux (based on

makefiles) and for different versions of visual C++. For this thesis, the compilation was

done using GNU GCC compiler under the GNU/Linux operating system. None of the

codec configuration in the “cfg” folder was changed and the default values were used.

HEVC_sample_sw
│
⋮
│
└───source
 ├───App <─ Application folder
 │ ├───TAppDecoder <─ Decoder application code
 │ ├───TAppEncoder <─ Encoder application code
 │ └───utils
 └───Lib <─ Library folder
 ├───libmd5 <─ Libraries for calculating MD5 checksums
 ├───TAppCommon <─ Common application related libraries
 ├───TLibCommon <─ Common libraries (used by many different parts)
 ├───TLibDecoder <─ Decoding related libraries
 ├───TLibEncoder <─ Encoding related libraries
 └───TLibVideoIO <─ Video bitstream related libraries

Figure 9. HEVC sample codec source code's folder structure

The source code of the sample HEVC codec is sorted into folders mostly by its usage

(Figure 9). The same type of organization continues also for the individual files, as most

of the file names start with a hint about their usage.

The most important source files are:

 /source/App/TAppDecoder/decmain.cpp: the main file, where the program’s

execution starts.

 /source/Lib/TLibCommon/typedef.h: this file is included in all the other files in

the application, it defines the global variables, types, macros, etc.

 /build/linux/makefile: the main makefile for compilation under the GNU/Linux

operating system.

29

4.3. Profiling of HEVC Sample Decoder

4.3.1. Profiling Process

Profiling of the HEVC decoder was done under GNU/Linux operating system using the

open source GPL licensed Valgrind [5] toolkit along with the Callgrind [6] tool.

Callgrind is capable of profiling the software by mapping the layout of all the functions

in the program together with the information about the number of instructions they use

and their relations to other functions. The maps can be later visualized by using another

open source tool called KCachegrind [22].

decoder_analyzer_debug_gcov:

 $(MAKE) -C lib/TLibVideoIO debug MM32=$(M32) GCOV_FLAGS=1

 $(MAKE) -C lib/TLibCommon debug MM32=$(M32) GCOV_FLAGS=1

 $(MAKE) -C lib/TAppCommon debug MM32=$(M32) GCOV_FLAGS=1

 $(MAKE) -C lib/TLibDecoderAnalyser debug MM32=$(M32) GCOV_FLAGS=1

 $(MAKE) -C app/TAppDecoderAnalyser debug MM32=$(M32) GCOV_FLAGS=1

Figure 10. Makefile section to add coverage information

In order to profile a program using Valgrind and Callgrind, it is first compiled with the

GCOV_FLAGS=1 parameter that instructs the compiler also include coverage related

information in the executable. The compiler parameter was added by writing a new

section to the main makefile, which compiles the HEVC decoder. The section can be

seen in Figure 10.

valgrind --tool=callgrind ./TAppDecoderAnalyserStaticd -b input.hevc
-o output.yuv | tee callgrind.txt

Figure 11. Command for running Valgrind

The actual process of profiling a program by using Valgrind and Callgrind is quite

straightforward. All that is needed is to run Valgrind with the option that instructs it to

use the Callgrind tool and add the program to be profiled as parameter, as seen in Figure

11. Valgrind will run the program by acting as an intermediary between the program

and the operating system, thus being able catch all the instructions that pass through it.

Additionally, as done in Figure 11, the output of the profiling process can be piped into

the “tee” command in order to store it in a text file.

4.3.2. Analysis of Profiling Results

30

After the profiling process is finished, a file with the profiling results, called

callgrind.out.xxxx, where xxxx is a four-digit number, is created. This file can be then

analyzed in order to determine the computational kernels of the program.

Figure 12. Pie chart describing the usage of instructions per functions in HEVC decoder

Figure 12, which was generated by analyzing the profiling data (appendix 2), shows the

relative usage of instructions by different computational kernels of the HEVC decoder.

On the figure, only the kernels with larger footprints are shown. Kernels that have a

relatively small footprint, together with sequential functionality, are classified in the

figure as “others”. As each of the non-sequential functions in this group takes up a

relatively small number of instructions, for simplicity, this group can be thought as

completely sequential and non-parallelizable, as placing these functions on the

accelerator would not make much difference to the overall performance of the HEVC

decoder.

According to the chart in Figure 12, in case of the HEVC decoder, the parallelizable

part of the application is 100% - 32.68% = 67.32%. However, it can be seen from the

figure, that two kernels, the inverse transform, and the interpolation filter, in total, use

56.22% of all the instructions in the HEVC decoder. To be exact, the inverse transform

takes up 37.27% and the interpolation filter 18.95% of all the instructions used by the

decoder during the profile. It this can also be observed on the HEVC decoder’s map in

appendix 9, where it can be seen, that most of the bigger blocks belong to either the

inverse transform or the interpolation filter.

31

As the amount of parallelization that is achievable by only these two functions is very

close to the total amount of parallelization achievable in this application, it makes sense

to choose the inverse transform and the interpolation filter as the kernels to be

implemented on the hardware accelerator.

By knowing the percentage of the parallelizable functionality in the application, it is

possible to calculate the theoretical maximum speedup that can be reached by

parallelizing this part of the algorithm. To do this, the Amdahl’s law [2] can be used (1):

𝑆(𝑛) =
1

(1 − 𝑃) +
𝑃
𝑛

 (1)

Where:

n ∈ ℕ is the number of thread in execution,

P ∈ ℕ is the percentage of the algorithm that can be parallelized.

Figure 13. Amount of parallelization vs speedup in the HEVC decoder

As calculated before, by parallelizing the inverse transform and the interpolation filter,

it means, that it is possible to parallelize 56.22% of the entire application. By using this

number as the reference, it is possible to apply the equation of the Amdahl’s law (1) to

find out the maximum speedup and the optimal amount of parallelization needed.

As it can be seen from the chart in Figure 13, in the beginning, by increasing the

parallelization, the speedup increases drastically, but at around 36 concurrent threads,

32

the increase of the speedup decreases considerably and from that point on, increasing

the concurrency does not provide a noticeable increase in speed.

This means, that making more than 36 calculations simultaneously in the hardware

accelerator does not give a noticeable increase in speed, so it is possible to save on the

chip area and cost of the hardware accelerator by not increasing the concurrency beyond

that point.

It can be seen from the chart, that the absolute maximum increase in speed by

implementing this part of the application in hardware, remains somewhere around 2.2

times the speed of a sequential calculation of the same kernels. Of course, this number

is the theoretical maximum that does not take into account the parallelizability of the

concrete functions and latency, so in a real system, the maximum amount of speedup

that can be obtained, remains even lower.

33

5. Description of Relevant HEVC Components

In the previous section, the HEVC decoder was profiled and by analyzing the results,

two main kernels were found: the inverse transform and the interpolation filter. In this

section, the theoretical background information for those computational kernels in the

context of HEVC is provided.

5.1. Inverse Transform

5.1.1. HEVC Transform

HEVC uses four different sizes of transforms: 4x4, 8x8, 16x16 and 32x32 luma

samples, depending on the TB in use. For computing the transform, HEVC usually

utilizes an integer DCT-based transform, but in the case of 4x4 luma TBs in intra-

picture predicted frames, an integer DST-based transform is used.

The reason behind using two different transforms is that DST gives about 1% bit-rate

reduction in case of 4x4 intra-picture predicted TBs [3]. For all the other cases, the

difference between DST- and DCT based transforms is marginal [3], so DCT is used,

mostly because there are more computationally efficient algorithms available.

5.1.2. HEVC 2-D Inverse Transform

If the transform coefficients matrix that is outputted from the quantization and scaling

phase is defined as d[x][y], then the calculation of the residuals matrix r[x][y] is

performed in the following way [8]:

1. A 1-D inverse transform is performed for each column of the coefficients matrix

d[x][y], resulting in an intermediate values matrix e[x][y].

2. To ensure, that all the intermediate values can be stored in a 16-bit variable (in

case of 8-bit video decoding), 7-bit right shift is performed on the e[x][y] matrix

followed by 16-bit clipping operation as shown below:

g[x][y] = clip(−32768, 32767, (e[x][y] + 64) >> 7) (2)

34

3. Finally, a 2nd 1-D inverse transform is performed on the rows of the g[x][y]

matrix that was calculated in the previous point, ending up with the residuals

final matrix r[x][y]

5.1.3. 1-D Inverse Transform

The equations for both the IDCT- and IDST-like transforms are pretty much the same,

although there are some differences in the usage of the transform matrix as for IDCT

only a 32x32 matrix (appendix 1) is defined [3] and for smaller transforms subsampling

of that is matrix is used. The IDST-like transform uses its specific matrix (appendix 1).

The equations for both the IDCT (4) and IDST (3) can be found below [8].

Variables used by the equations (3) and (4) with their explanations:

 n – size of the transform

 transMatrixi,j – transform matrix (appendix 1)

 xj – input vector for the 1-D transform

 yj – output vector for the 1-D transform

𝑦[𝑖] = ∑(𝑡𝑟𝑎𝑛𝑠𝑀𝑎𝑡𝑟𝑖𝑥[𝑖][𝑗] ∗ 𝑥[𝑗])

𝑛−1

𝑗=0

, (3)

𝑊ℎ𝑒𝑟𝑒 𝑖, 𝑗 = 0 … 𝑛

𝑦[𝑖] = ∑(𝑡𝑟𝑎𝑛𝑠𝑀𝑎𝑡𝑟𝑖𝑥[𝑖][𝑘] ∗ 𝑥[𝑗])

𝑛−1

𝑗=0

, (4)

𝑊ℎ𝑒𝑟𝑒 𝑖, 𝑗 = 0 … 𝑛, 𝑘 = (1 << (5 − 𝐿𝑜𝑔2(𝑛))) ∗ 𝑗

Properties and comparison of the equations for IDST-like transform (3) and

IDCT-like transform (4):

 The relatively complex formula for calculating variable k in equation (4) is

caused by the fact that for the IDCT-like transform only 32x32 transform matrix

is defined [3] and subsampling of that matrix is required for smaller transforms.

35

In case separate matrices are used for different sized transforms, equation (4)

becomes identical to equation (3).

 If the result of the inverse transform of a column with index n ∈ ℝ is written to

the row of the output matrix with index n ∈ ℝ, the matrix is automatically

transposed in the process. This means that the exact same equation (and the

exact same software function, hardware etc.) can be used to calculate both of the

1-D inverse transforms without having to do an additional transposing operation

on the intermediate matrix between the inverse transforms.

 For implementation of the IDCT, the partial butterfly algorithm [23] could also

be used to reduce computational complexity.

5.2. Interpolation Filter

5.2.1. Interpolation

Interpolation is a method for increasing the sample rate of a signal by adding samples in

the signal. Interpolation can be characterized by the interpolation factor L, which

describes the ratio between the input signal and the interpolated signal. Interpolation

consists of two steps:

1. Zero-stuffing: the sample rate of the signal is increased by adding L-1 zero-

valued samples between every sample of the original signal.

2. Interpolation: a low-pass filter that removes the very high frequency components

in the signal that are introduced by zero-stuffing, thus replacing the added zeroes

with appropriate intermediate values. The output signal of the interpolation

process looks almost exactly like the input, but with L times higher sample rate.

Usually, a FIR filter is used for the implementation of an interpolation filter.

5.2.2. Finite Impulse Response Filter

The FIR filter is a type of filter that has a finite impulse response, which means that

given an impulse (or any other signal with a finite length), the filter settles to zero in a

finite time.

36

As can be seen from the FIR filter’s equation (5) and from its dataflow diagram (Figure

14), the output value of an Nth order FIR depends on the last N values of its input

vector. The input x[n] is shifted through the delay line. The signal after every delay

element Z-1 (every value in the previous N time steps) is multiplied by a filter

coefficient (bi). Finally, all the multiplication results are added together.

As it can be seen from equation (5) and the dataflow diagram in Figure 14, the behavior

of the filter depends on the filter coefficients. By setting the coefficients correctly, it is

possible to change the filter’s output value based on how the input signals change in

time.

An example of the scenario described above would be making the outputs of the

different taps of the filter to cancel each other out if the change rate of the signal in time

is too high, but otherwise copy the signal to the output. This is essentially a low pass

filter, letting through lower frequencies, but cancelling out higher ones.

𝑦[𝑛] = ∑ 𝑏𝑖 ∗ 𝑥[𝑛 − 𝑖],

𝑁

𝑖=0

 (5)

Figure 14. Dataflow diagram of a 6 tap FIR filter

This is also the reason why it is possible to use the FIR filter in the interpolation process

to smooth out large changes in the signal that were created by zero-stuffing. Basically,

by inserting zeroes into the signal, spectral changes are introduced. The new signal

would be largely zeroed out, but would have sudden peaks located on the multiples of

the interpolation factor L. This kind of signal can be considered as a sum of a signal

identical to the original signal before zero-stuffing, but with L times higher sample rate

and another signal with a very high frequency.

37

If a low-pass filter, that blocks only those very high frequencies is applied to the zero-

stuffed signal, the output of the filter is a signal with L times higher sample rate, but

otherwize almost identical to the initial signal.

5.2.3. Interpolation in HEVC

In HEVC the main section where interpolation is used is the inter-picture prediction. As

mentioned in section 3.1, inter-picture prediction relies on temporal changes in a video

stream for predicting frames. For each PB, the encoder searches the reference pictures

for another PB, which best matches the current block. A motion vector that describes

the relative displacement of the reference block compared to the current one is

generated and added to the HEVC bitstream.

The problem with this kind of approach is that any motion in a real world (and thus in a

video stream) does not follow the partitioning of a digital video sequence. It means that

integer motion vectors (i.e., the object has moved exactly an integer number of blocks)

are very rare. In case of a fractional motion vector, the reference block is interpolated to

also generate the prediction samples for fractional positions. [3]

For luma channels, HEVC supports motion vectors with the precision of one-quarter

luma samples. The accuracy of motion vectors used for chroma samples depends on the

chroma subsampling that is used. For the most typical case of 4:2:0 subsampling, the

precision of one eighth of the chroma samples is supported. [3]

Table 1. FIR filter coefficients for luma fractional interpolation [3]

Index i -3 -2 -1 0 1 2 3 4

hfilter[i] -1 4 -11 40 40 -11 4 1

qfilter[i] -1 4 -10 58 17 -5 1 -

The acquisition of fractional luma samples needed for motion prediction is done in

HEVC by using an 8-tap FIR filter for the half-sample positions and a 7-tap filter for the

quarter-sample positions. The coefficients for the interpolation filter in case of luma

samples are shown in Table 1, where hfilter[i] and qfilter[i] specify the coefficients with

index i respectively for the half-sample position and the quarter-sample position luma

interpolation filters.

38

Figure 15. Sample positions in luma interpolation [3]

The samples a0,j, b0,j, c0,j, d0,0, h0,0, and n0,0 in Figure 15 are generated from the integer

samples Ai,j by applying interpolation using the interpolation filters described above.

The rest of the non-integer samples can then be interpolated from the vertically

neighboring previously generated samples a0,j, b0,j and c0,j. The interpolation filtering for

luma samples is done by using the following filtering equations [3]:

Figure 16. Luma interpolation filtering equations [3]. Variable B is the bit depth of the reference samples
and “>>” denotes an arithmetical shift right operation.

The reason behind the shifting operation in the equations shown above is to scale the

result down so that it would fit into 16-bit variables (or registers, in case of hardware

implementation).

39

In the most usual case, when the bit width of the HEVC video samples is eight (like in

this thesis), the filtering operations are separable.

Table 2. Chroma interpolation filter coefficients in case of 4:2:0 chroma subsampling

Index i -1 0 1 2

filter1[i] -2 58 10 -2

filter2[i] -4 54 16 -2

filter3[i] -6 46 28 -4

filter4[i] -4 36 36 -4

The process of interpolating chroma samples is very similar to the interpolation of luma

samples. As mentioned earlier, in the typical case of 4:2:0 chroma subsampling, the

motion prediction is done on 1/8th of chroma sample level. In this case, HEVC defines

four different four-tapped FIR filters with coefficients shown in Table 2. In the table the

filters are shown as filterN[i], where N = 1, …, 4 with i being the index of the

coefficient shown in the first row.

The fractional chroma samples of 1/8th, 2/8th, 3/8th and 4/8th are interpolated using

filter1[i], filter2[i], filter3[i] and filter4[i], where i = -1, …, 2, respectively. For the

remaining fractional chroma samples of 5/8th, 6/8th and 7/8th the mirrored values of the

first three filters (filter3[1−i], filter2[1−i], and filter1[1−i], where i = -1, …, 2,

respectively), are used [3].

40

6. Analysis of the HEVC Sample Software

In section 4 the HEVC decoder was profiled and the computational kernels were

extracted, while in section 5 a theoretical information about the kernels was given. In

this section, the HEVC sample software is analyzed to find the individual C++ functions

where these kernels are implemented in order to find the interfaces, where to extract the

testing data for the next step. Special attention is given to the inverse transform, as this

is the kernel that is implemented during this thesis as a proof of concept.

One of the main tools used in this section is the profiling data generated in section 4.

The call graphs produced during the profiling step show exactly which function is

calling which function, so they are a map for orienting in the source code to find the

relevant functions.

Simultaneously, as the source code is mostly based on the HEVC text specification [8]

and is relatively unoptimized, the text specification can help in understanding how the

functions themselves work.

6.1. Interpolation filter

To find the implementation of the interpolation filter, first it is necessary to take a look

at the call graph that was generated call graph by using the KCachegrind tool. The call

graph (Figure 17) shows that there are two different functions for interpolation filter:

one for horizontal filter and another for the vertical filter, both part of a class

TComInterpolationFilter. In addition, they are both called from the function

xPredInterBlk (inter-picture block prediction) that is in a class TComPrediction.

41

Figure 17. Call graph for the interpolation filter

Void TComInterpolationFilter::filterVer()
{
 if (fracturalSampleOffset == 0)
 {
 //Unit FIR filter
 filterCopy()
 }
 else if (isLuma(compID))
 {
 filterVer<NTAPS_LUMA>();
 }
 else
 {
 filterVer<NTAPS_CHROMA>();
 }
}

Figure 18. Cleaned up pseudocode of the filterVer()

function

In order to find out how the interpolation filter is implemented, analyzing the structure

of the functions filterHor() and filterVer() is needed. The structure of both of the

functions is almost identical.

A cleaned up pseudocode version of the function filterVer() is shown in Figure 18.As it

can be seen in the figure, first it checks, if the fractural sample offset is 0. This means,

that no interpolation filtering is necessary because the current motion vector is integer-

sized and a unit FIR filter is applied, that just copies the input samples into the output

without doing any real filtering.

However, in most cases, interpolation filtering is needed, as integer motion vectors are

very rare (subsection 5.2.3). In this case, a vertical filter function template with the

correct number of taps (based on whether the current block is a luma or a chroma

block), is executed. The function template filterVer<N>(), where N represents the

number of taps of the filter, is actually just a wrapper for another function template

called TComInterpolationFilter::filter(). The filter() function is in turn a function

template of an FIR filter described in subsection 5.2 with an adjustable number of taps.

42

Figure 19. Relative instruction usage of the interpolation filter

By looking deeper into the call graph by using the KCachegrind tool (Figure 19), it is

easy to see that a very big majority of all the instructions used in both the horizontal and

the vertical filters are actually consumed by the TComInterpolationFilter::filter()

function.

TComInterpolationFilter::filter() is a universal FIR filtering function that is capable of

working with any number of taps allowed by the HEVC standard and can thus be used

for both vertical- and horizontal filtering. Since this single function takes up a big

amount of the instructions used by the entire interpolation filter, moving it to a

hardware-based accelerator would increase the decoding speed considerably.

6.2. Inverse transform

As it was also done for the interpolation filter, the analysis of the inverse transform also

begins with analyzing the call graph. It can be seen on the inverse transform part of the

HEVC decoder’s call graph (Figure 20) that there are four nested functions that are

responsible for the inverse transform. The lowest function hints that the inverse

transform is implemented using the partial butterfly algorithm [23], which makes sense,

as it has lower computational complexity and thus it can perform faster and takes less

resources.

43

Figure 20. A part of the call graph showing the inverse transform

int xITrMxN(int coeff[][], int maxTrDynamicRange, int bitDepth){

 int tmp[][], residual[][];

 int shift_1st = 7;
 int shift_2nd = (7 + maxTrDynamicRange - 1) - bitDepth;

 tmp = executeTransform(coeff, shift_1st);
 residual = executeTransform(tmp, shift_2nd);

return residual;

Figure 21. Pseudocode for the xITrMxN() function

Figure 21 shows the simplified pseudocode for the xITrMxN() function. This function

just gets the coeff matrix as an input and then executes the same transform function on

it twice. It also calculates the proper shifting values needed by the HEVC standard

(equation 1) and sets them as parameters for the inverse transform function. The

clipping part of equation (2) is handled by the called functions themselves.

The function shown in Figure 21 is somewhat simplified and does not show the actual

inverse transform execution functionality. The real function in HEVC decoder’s sample

software also checks for picture prediction type and the current transform’s size and

executes either an inverse partial butterfly function with a relevant size or, in case of

4x4 intra-picture prediction, the inverse DST function.

The inverse partial butterfly functions that are called by xITrMxN() just implement the

regular inverse partial butterfly algorithm [23] with some additions defined by HEVC

44

(equation 1). The inverse DST function simply implements the matrix multiplication

(equation 3) of that function as DST lacks the butterfly structure.

Figure 22. Relative amount of instructions used by different parts of the inverse transform.

In Figure 22, it can be seen that a large majority of the instructions used for the inverse

transform can be divided between three inverse partial butterfly functions. Meanwhile,

both the DCT-like and DST-like 4x4 inverse transforms take up only around 1% of all

the instructions that are used in the inverse transform.

In the light of the information provided by Figure 22, it can be mentioned that by

moving the implementation of at least three largest DCT-like inverse transform

functions on hardware, together with the clipping functionality, a considerable

performance increase for the HEVC’s inverse transform can be achieved.

45

7. Dynamically Reconfigurable Resource Array

DRRA or the Dynamically Reconfigurable Resource Array was described by

Muhammad Ali Shami in his PhD thesis [4] in 2012 as a reconfigurable DSP platform

as a part of a design template to host the signal processing parts of different wireless

applications [4].

Figure 23. Fragment of the DRRA fabric [4]

7.1. DRRA Fabric

DRRA’s fabric is organized into DRRA cells. The current version of DRRA has 10

cells divided between 2 rows and 5 columns [24]. Each cell consists of a DPU, register

file and a sequencer. The cells are arranged in a scalable matrix and connected together

with an interconnection network consisting of horizontal and vertical busses. The

horizontal busses are used as outputs for the DPUs and the register files inside the

DRRA cells. The horizontal busses are crossed by vertical busses that act as inputs for

the computational elements inside the cells (Figure 23) [4].

46

On the intersections of the input and output busses, switchboxes, that are used for

connecting them, are located (colored yellow in Figure 23). The connections between

the busses can be dynamically configured inside the switchboxes. The unconnected

lines are isolated from each other using tri-state logic elements. By correct configuration

of the switchboxes, it is also possible to utilize multiple DPUs simultaneously in order

to create parallelism in the calculations [4].

The configuration data for all the switchboxes in a column is stored in a special

configuration memory. The sequencers (colored as orange in Figure 23) of that column

can access this memory. Upon initialization, each sequencer configures the local

switchboxes to connect the DPU and register file in its cell to correct input- and output

busses [4].

Alternatively, during the execution time, a reconfiguration of the switchboxes can also

be made in order to, for example, satisfy the need of conditional statements that, based

on some condition, may require changing the connections of the inputs and outputs of

the computational elements inside the DRRA cell [4].

7.2. DRRA Cell

As described earlier in this thesis, the basic element of a DRRA fabric is the DRRA

cell, where all the actual processing takes place. The DRRA cell consists of three main

components: (Figure 23) the Data-path unit, which is used for data processing, the

register file that is used for storing temporary data and a sequencer for configuring the

cell and the switchboxes that are neighboring it.

7.2.1. Data-Path Unit

The DPU is the component in the DRRA cell, where the actual data processing takes

place. The DPU used in the DRRA has four inputs and two outputs, the inputs are

connected to the closest vertical bus of the DRRA fabric and the outputs to the closest

horizontal bus. It also has a two-way connection to the local sequencer, getting the

configuration information from the sequencer and sending back different exceptions and

other status related data [4].

The inputs and outputs of a DPU can either work separately or act in a group of two in

order to represent complex numbers. In the last case, one of the input or output pins of

47

the pair would represent the real part of the complex number and the other one the

imaginary part. In case this mode is used, two complex number can be represented on

the input of the DPU and one on the output [4].

In the original version [4], the DPU included three partitions:

 A logic partition, that included:

o Comparison

o Logic and arithmetic shifting

o LSFR

o Logic AND and OR operations

 An arithmetic partition, supporting the combinations of addition, subtraction and

multiplication.

 A post processing partition that included saturation and truncation of the DPU

output.

At the time of writing of this thesis, the DRRA fabric was in the process of being

updated and the code for the DPU had been partly rewritten with some of the initial

functionality removed. Unfortunately, only very little documentation describing the

changes to the DRRA’s source code had been made available by its authors.

7.2.2. Register file

The register file is used in the DRRA cell to provide a fast parallel memory access to

the DPU. The register file has two ports for reading- and two for writing that are

connected to the DRRA’s interconnection network, so the contents in the register file

are also available for DPUs in other DRRA cells. In the current version of DRRA, each

register file can contain 64 words of 32-bit data [4] [24].

7.2.3. Sequencer

In DRRA, besides the DPU and the register file, the DRRA cell also includes a

sequencer. The sequencer is being used to configure the DPU, the register file and the

fabric’s interconnection network in a way, that it would implement the desired

algorithm. The sequencer is also responsible for reconfiguring the aforementioned

components when needed [4].

48

The sequencer act as a simple FSM that controls the functioning of all the other

components inside the DRRA cell. The main components of the sequencer are the

program memory, which holds the instructions for the sequencer, the instruction

decoder that decodes the instructions stored in the program memory, the program

counter and a simple FSM for maintaining the program counter [4].

Besides the aforementioned functionality, the sequencer also is used for other tasks, that

are not relevant to this thesis and the reader is guided to [4] for any additional

information on this topic.

7.3. VESYLA

VESYLA is a compiler for DRRA. It is reads specially formatted MATLAB code and

maps the algorithm into the DRRA fabric by generating a VHDL test bench, that can be

used to configure and simulate the fabric [24].

7.3.1. Pragmas

a) Register file allocation:

Pragma:
%! RFILE<> [row_index, col_index]

Example:
p = [5:15]; %! RFILE<> [0:1]

b) DPU allocation:

Pragma:
%! DPU [row_index, col_index]

Example:
z(5) = y(4j) + z(2); %! DPU [0:0]

Figure 24. Pragmas used by VESYLA

Since VESYLA currently lacks automatic resource allocation mechanism [24], the user

allocates resources (register files and the DPUs) manually by adding special pragmas

(Figure 24) that specify the type of the allocated resource (register file or DPU) and its

location on the DRRA’s fabric to the MATLAB code as specially formatted comments.

49

7.3.2. VESYLA Folder Structure

VESYLA’s directory tree (Figure 25) contains two top-level folders: “VESYLA” and

“workspace”. The first one contains the VESYLA compiler. For compilation with

VESYLA, a code is in the VESYLA folder’s root, while the compilation results end up

in the “code” subfolder. The DRRA fabric and testing related files are located in the

“workspace” folder.

vesila_toplevel
├───VESYLA <─ VESYLA’s input- and executable's folder
│ ├───code <─ VESYLA output folder
└───workspace <─ DRRA workspace
 ├───fabric <─ DRRA fabric
 │ ├───DiMArch_RTL
 │ ├───mtrf
 │ ├───pce
 ├───testbenches <─ DRRA test bench directory
 │ ├───template <─ Tesbench template files
 │ │ └───result
 │ ├───test1 <─ An example test bench
 │ │ └───results
 └───test_util <─ Utilities for profiling

Figure 25. VESYLA's directory tree

7.3.3. Known Limitations of VESYLA

At the time of writing this thesis, VESYLA was still in a very early stage of

development and had many limitations. In this section, the known limitations are listed,

both the ones found in the VESYLA user manual [24] and the ones discovered while

working on this thesis. Following limitations are taken into the account while using

VESYLA:

 Addition, multiplication, and their combinations are only supported operations.

 Conditional statements are not supported.

 Operations with vectors cannot be done inside loops.

 Functions cannot be used in the MATLAB code.

 Right now, there is no memory support in VESYLA, which also means that it

also lacks any support for multidimensional arrays. All memory-related

operations have to be done using the register files.

50

 The register files only can be initialized to growing arrays of numbers.

VESYLA can still be used to map some of the more complex parts of the algorithm to

the DRRA fabric. To overcome the problems described above, a more abstract version

of the algorithm could be written in MATLAB, then compiled using VESYLA and

finalized by making some final modifications directly in the test bench on the assembler

level.

7.4. Mapping Process

The process of mapping an algorithm on the DRRA’s fabric using VESYLA should be

the following:

1. The algorithm should be described in MATLAB

2. A simplified version of the algorithm, described in the previous point of this list,

should be made for more complex algorithms, by taking into account the

VESYLA’s limitations that were explained in subsection 7.3.3.

3. Pragmas should be added to the simplified version of the code (subsection 7.3.1)

in order to tell VESYLA how to allocate the resources needed for the mapping

process

4. The m-file with the VESYLA-readable algorithm should be put into the

VESYLA folder (Figure 25)

5. At this point, the VESYLA executable can be run with the m-file with the

algorithm as a parameter. If the compilation is successful and no errors are

detected, the test bench that maps the algorithm to the DRRA fabric together

with some supporting files are put into the “/VESYLA/code’ folder (Figure 25).

6. Next, the generated test bench is simulated. VESYLA already includes the

scripts needed for simulation and profiling the result, so the reader is directed to

the VESYLA user manual [24] for details.

7. Finally, the simulation and profiling results can be compared with the results

from the MATLAB code. For this reason, VESYLA provides the profiler results

and an instrumented version of the original MATLAB code. The profiling

results of the fabric simulation and the MATLAB code can then be compared to

verify their equivalence. Unfortunately, the profiling results generated are in

different format and thus not machine-comparable.

51

8. After the verification of equivalence, the implementation can be modified in the

test bench to bypass some of the VESYLA’s limitations, if needed, and then

verified using some external method.

52

8. Implementation Flow

8.1. Test Cases Generation

Test cases for the implementation were generated from the sample software by

analyzing the structure of the inverse transform functionality in the code. This

information was used to understand how the inverse transform functions communicate

with the rest of the code, in order to find interfaces, where it would be possible to

separate the two, so that the inverse transform code could be replaced by a hardware

accelerator. This interface was then used to dump all the data passing through it into a

test bench file for the MATLAB-based implementation of the inverse transform that is

described in more detail the next subsection.

Figure 26. Inverse transform functions that should be mapped on the accelerator

The process of finding the interface was done by using results from the analysis of the

code that was done in subsection 6.2. The most obvious choice for the interface was the

xITrMxN() function (Figure 26), as this is the top-level inverse transform function. By

implementing this, and every function it calls, on an accelerator, a complete hardware

representation of the entire HEVC’s inverse transform functionality, can be built (see

subsection 6.2).

53

 /** MxN inverse transform (2D)

 * \param bitDepth [in] bit depth

 * \param coeff [in] transform coefficients

 * \param block [out] residual block

 * \param iWidth [in] width of transform

 * \param iHeight [in] height of transform

 * \param useDST [in] Wheather to use DST

 * \param maxTrDynamicRange [in]

 */

Figure 27. cITrMxN() function parameters

The best way to get test data is to dump out every input and output parameter (Figure

27) of the xITrMxN() function. The most suitable place for this is in the higher level

function TComTrQuant::xIT(), which is calling the xITrMxN() function (Figure 26).

This function was identified before as the function to be implemented on the

accelerator.

The data is dumped from the accelerator interface into a text file that uses the MATLAB

m-file syntax. This means that the generated file is directly runnable in MATLAB by

using the input matrices and parameters defined in the test file to run a testing function,

which is described in detail in the next section, and checking its output against the

correct output matrix that is also dumped from the sample C++ decoder. This way it can

be ensured, that the MATLAB implementation of the inverse transform is functionally

identical to the one of the example transform.

An example test case for testing (16x16 inverse transform) can be found in Appendix 3.

In reality, each test file can include hundreds or even thousands of test cases for

different transform sizes and types.

8.2. MATLAB Implementation

The HEVC’s inverse transform kernel that consists of the functions identified before

(Figure 26) were realized in MATLAB to serve as a proof of concept implementation

and a launching pad for implementing it on DRRA. The MATLAB implementation was

done in a way, that it follows the inverse transform interface of the C++ sample code

and accepts the parameters of the xITrMxN() function (Figure 27).

The MATLAB implementation of the HEVC transform consists of four parts: the

testbench that is described in more detail in the previous subsection, the verification

54

code, a top-level inverse transform class and a class consisting of 1-D inverse partial

butterfly algorithms.

The code for verification of the inverse transform is used to verify the MATLAB

implementation of the inverse transform kernel with the testing samples provided by the

testbench. It does that by running the inverse transform using the inputs provided by the

testbench and then comparing the result with the correct output (code in appendix 6).

The verification code calls the top-level inverse transform class (code in appendix 5),

that figures out which type of transform should be used and then runs the individual 1-D

transforms. It also takes care of the HEVC specific parts of the transform, like shifting

and clipping of the values (subsection 5.1.2). This class also includes a function for the

4x4 inverse DST-like transform. For IDCT-like transform, the inverse partial butterfly

functions from a separate class are called. The code for the inverse partial butterflies

class can be seen in appendix 4.

8.3. VESYLA-Readable Code

In this subsection, a proof of concept VESYLA-readable version of the 4x4 inverse

butterfly for calculating the inverse DCT-like transform is presented. Code for both, the

parallel and sequential implementation are shown and their speed is analyzed.

In order to make it VESYLA-readable, user alters the code. First, it is necessary to

break the code down into smaller, elementary operations. The 4x4 inverse butterfly can

by divided into different calculation blocks as shown in Figure 28.

55

Figure 28. 4x4 inverse butterfly algorithm's flow diagram. It needs to be noted, that in last step, the
addition and subtraction use the same inputs, so they cannot be implemented in parallel on DRRA.

One important aspect, when talking about hardware accelerators, is their parallelization

capabilities, how much parallelism can the hardware implementation allow, the more

parallelization is used, the faster is the implementation is (with some limitation, see

section 4.3.2).

As described in subsection 7.2.2, because a register file in DRRA has only two input-

and two output ports, only two different writing and two reading operations can be done

simultaneously on one register file. This means, that in order to write into the register

files, the code has to be partitioned so, that only two writing and two reading operations

of a single register are done simultaneously.

Concurrency in a VESYLA-readable MATLAB code is done using for loops.

Concurrent statements go inside the loop. If the there are multiple for loops in the

MATLAB code, the contents of each loop is calculated concurrently on the DRRA,

while the loops themselves are executed sequentially, one after another. The code for

the implementation of the algorithm that is accessing a single register file at a time can

be found in appendix 7.

56

This way, however, it is not possible to reach the maximum possible speed by

exploiting the parallelism that is found in the algorithm. As it can be seen from Figure

28, there are a lot of possibilities to parallelize the algorithm. This code could be

partitioned only into four steps:

1. 8 concurrent multiplications

2. 4 concurrent additions

3. 2 concurrent additions

4. 2 concurrent subtractions (as VESYLA does not support subtraction, it can be

modified into multiplication with -1 and addition)

However, by increasing the concurrency, a way to overcome the limit on concurrent

register file usage is needed. This can be done by dividing the variables can be divided

between multiple register files, so that instead of writing all the eight multiplication

results into one register file, four register files could be used, each storing two values.

This result of course sacrifices the memory for speed. This effect can, however,

somewhat reduced by reusing the register files. A code describing the parallel approach

can be found in appendix 8.

Every arithmetic operation on the DRRA consists of four steps:

1. Reading values from the register file (4 clock cycles)

2. Making the calculation (4 clock cycles usually, 3 in case of addition)

3. Soring the result in DPU’s output register (4 clock cycles)

4. Writing the result into a register file (4 clock cycles)

Figure 29. Calculation pipeline in DRRA (implements parallelism of level 4)

57

As it can be seen in Figure 29, all of the previously mentioned steps are pipelined, so

that in any case, the answer in calculated in 7 clock cycles. By knowing that

information, it is possible to calculate number of clock samples it the two different

implementations on the algorithm. This can be done, by just counting the number of

sequential instructions performed and multiplying the number by 7 clock cycles. For

this reason, the MATLAB codes in appendixes 7 and 8 can be used. Moreover, based on

the number of the clock cycles, the execution time can be measured if the clock speed of

the hardware platform is known. Based on the constraints defined in [25], a reasonable

estimate for the clock rate would be 450MHz, which would make the length of one

cycle 2.222 ns. The information is available in table

Table 3. Comparison of VESYLA-readable implementations of the 4x4 inverse butterfly.

Implementation Number of

sequential

instructions

Clock

cycles

Number of

register files

used

Calculated

execution

time

Sequential: Using only

two register file

operations at once

8 56 5 124.432 ns

Fully Parallel 4 28 15 62.216 ns

As it can be seen in Table 3, by increasing the parallelization the 4x4 inverse butterfly

algorithm two-fold decreases the time needed for the execution two times. However,

this kind of implementation also increases register file usage three times. The problem

with the excessive register file usage for parallel systems could be solved by using

memory instead of register files to store data; however, unfortunately this is not an

option at the moment, as the current version of VESYLA does not have memory

support.

Table 3 also shows the inherent parallelism within the given kernel that the accelerator

exploits by pipelining. Parallel implementation also exploits parallelism by allocating

parallel resources. Hence, the inherent parallel resources allocated here are limited to

32, while the theoretical limit is 36. However, the maximum limitation of parallelism

that can possibly be achieved on a 4x4 inverse DCT transform is 64. This is because in

multiplication of two 4x4 matrices there are 16 multiplications in total that can all be

made in parallel, made on a pipeline with parallelism of 4. However, for this thesis, the

inverse butterfly algorithm was chosen, as it is computationally less complex (requires

58

less elements) and applies parallelism of level 32. This is much closer to the theoretical

limit of 36 than 64 that would be the level of parallelization of the matrix multiplication

(subsection 4.3.2).

8.4. Verification of VESYLA Implementation

To verify the correctness of the VESYLA implementation, it is tested similarly to the

MATLAB version. This is done by copying the code from VESYLA implementation

into a function, similar to inverse butterfly functions for MATLAB implementation in

appendix 4. Replacement of some of the register file declarations with function

parameters is probably also necessary. Then, the similar testing method as the one used

for the verification of the MATLAB implementation (section 8.2), can be used.

59

Conclusions

In this thesis, a detailed framework for the extraction of computational kernels for

implementation on a hardware-based accelerator was proposed. To demonstrate the

framework, the High Efficiency Video Coding (HEVC) decoder was used as the

application. The Dynamically Reconfigurable Resource Array (DRRA) was used as the

hardware platform for implementation.

The proposed framework consists of following steps:

1. Profiling of an application

2. Benchmarking of the application

3. Extraction of the kernels

4. Extraction of testing data from the original application

5. Implementation of the kernel in MATLAB

6. Equivalence checking in order to verify the functional equality of the MATLAB

implementation of the kernel with the kernel

7. Implementation of the kernel on VESYLA

8. Verifying of the equality between VESYLA implementation with MATLAB

model or the original kernel.

In this thesis, first the framework was discussed in detail, followed by a short overview

of the HEVC codec that was used as an example for applying the implementation

framework.

Then, the profiling and benchmarking of the HEVC decoder was done. The

benchmarking results showed that 67.32% of the HEVC video decoder was

parallelizable, while 56.22% of all the instructions in the decoder were carried out by

just two kernels: the interpolation filter and the inverse transform, which were selected

as the kernels for the implementation. A theoretical maximum parallelization and

speedup that are achievable if those two kernels would be moved to a hardware

accelerator were found. Next, some theoretical background about the kernels of interest

was given.

60

Then the sample software was analyzed in order to find the functions containing the

relevant kernels. Once found, the functions which should be replaced with the hardware

accelerator to extract the kernels, were identified and were used to dump out real-world

testing data into a MATLAB testbench for testing the implementation in the later

phases.

Next, the chosen kernel, the inverse transform, was implemented in MATLAB and the

generated test cases were used to check the equivalence of the MATLAB

implementation with the kernels extracted from the application.

Finally, two implementations of the kernel using VESYLA with different levels of

parallelism were given and then compared and the verification process of the VESYLA

implementation was described.

Implementation of the inverse butterfly algorithm was chosen over matrix

multiplication, because of two reasons. First, it is computationally less complex than the

matrix multiplication, so less components are needed for the implementation. Secondly,

although matrix multiplication has a theoretical maximum achievable parallelism of

level 64, for a 4x4 inverse transform, the inverse butterfly algorithm has a maximum

achievable parallelism of level 32. The later one is much closer to the theoretical

maximum useful level of parallelism of level 36, which means, that the usage of more

elements to achieve better parallelism is not sensible.

As a result of this thesis, now a detailed framework for finding the computational

kernels in an application and implementing them on a hardware accelerator exists for

DRRA hardware accelerator.

61

References

[1] "Intel's Hybrid CPU-FPGA," [Online]. Available:
http://www.embeddedintel.com/commentary.php?article=2143. [Accessed 14 06 2015].

[2] J. L. Hennessy and D. A. Petterson, Computer Architecture A Quantitive Approach, Fourth
Edition, San Francisco: Elsevier, Inc, 2007.

[3] G. J. Sullivan, J.-R. Ohm, T. Wiegand and W.-J. Han, "Overview of the High Efficiency
Video Coding (HEVC) Standard," Circuits and Systems for Video Technology, IEEE

Transactions on, vol. 22, no. 12, pp. 1649-1668, Dec 2012.

[4] M. A. Shami, Dynamically Reconfigurable Resource Array, PhD Thesis. KTH Royal

Institute of Technology: Sweden, 2012.

[5] "Valgrind's webpage," [Online]. Available: http://valgrind.org/. [Accessed 14 06 2015].

[6] „Callgrind's webpage,“ [Võrgumaterjal]. Available: http://valgrind.org/docs/manual/cl-

manual.html. [Kasutatud 14 06 2015].

[7] "High efficiency video coding (HEVC)," 19 May 2015. [Online]. Available:

http://hevc.hhi.fraunhofer.de.

[8] B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan and T. Wiegand, High Efficiency Video

Coding (HEVC) Text Specification Draft 13, JCTVC-K1003, ITU-T/ISO/IEC Joint

Collaborative Team on Video, 2012.

[9] F. Saab, I. H. Elhajj, A. Kayssi and A. Chehab, "Profiling of HEVC encoder," Electronics
Letters, vol. 50, no. 15, pp. 1061-1063, 2014.

[10] C.-H. Tsai, H.-T. Wang, C.-L. Liu, Y. Li and C.-Y. Lee, "A 446.6K-Gates 0.55-1.2V
H.265/HEVC Decoder for Next Generation Video Applications," in IEEE Asian Solid-

State Circuits Conference (A-SSCC), Singapore, 2013.

[11] M. A. Shami and A. Hemani, "An Improved Self-Reconfigurable Interconnection Scheme

for a Coarse Grain Reconfigurable Architecture," in NORCHIP, Tampere, 2010.

62

[12] A. Hemani and M. Shami, "Control Scheme for a CGRA," in Computer Architecture and
High Performance Computing (SBAC-PAD), 2010 22nd International Symposium on,

Petrópolis, 2010.

[13] M. Shami and A. Hemani, "Morphable DPU: Smart and efficient data path for signal

processing applications," in Signal Processing Systems, 2009. SiPS 2009. IEEE Workshop

on, Tampere, 2009.

[14] M. Shami and A. Hemani, "Address generation scheme for a coarse grain reconfigurable

architecture," in Application-Specific Systems, Architectures and Processors (ASAP), 2011
IEEE International Conference on, Santa Monica, 2011.

[15] M. Tajammul, S. Jafri, A. Hemani, J. Plosila and H. Tenhunen, "Private configuration
environments (PCE) for efficient reconfiguration, in CGRAs," in Application-Specific

Systems, Architectures and Processors (ASAP), 2013 IEEE 24th International Conference

on, Ashburn, 2013.

[16] S. Jafri, M. Tajammul, A. Hemani, K. Paul, J. Plosila, P. Ellervee ja H. Tenuhnen,

„Polymorphic Configuration Architecture for CGRAs,“ Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, kd. PP, nr 99, p. 1, 2015.

[17] O. Malik, A. Hemani and S. M.A., "High Level Synthesis Framework for a Coarse Grain

Reconfigurable Architecture," in NORCHIP, Tampere, 2010.

[18] O. Malik, A. Hemani and S. M.A., "A Library Development Framework for a Coarse Grain

Reconfigurable Architecture," in VLSI Design (VLSI Design), 2011 24th International

Conference on, Madras, 2011.

[19] O. Malik, A. Hemani and M. Shami, "A pragma based approach for mapping MATLAB

applications on a coarse grained reconfigurable architecture," in Integrated Circuits and
Systems Design (SBCCI), 2012 25th Symposium on, Brasilia, 2012.

[20] ITU-T and ISO/IEC JTC 1, Advanced Video Coding for Generic Audiovisual Services,
ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC), 2010.

[21] J.-R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan and T. Wiegand, "Comparison of the

Coding Efficiency of Video Coding Standards - Including High Efficiency Video Coding

(HEVC)," Circuits and Systems for Video Technology, IEEE Transactions on, vol. 22, no.

12, pp. 1669-1684, Dec 2012.

[22] "KCacheGrind's web page," [Online]. Available:

63

http://kcachegrind.sourceforge.net/html/Home.html. [Accessed 14 06 2015].

[23] J.-S. Park, W.-J. Nam, S.-M. Han and S. Lee, "2-D Large Inverse Transform (16x16,

32x32) for HEVC," Journal of Semiconductor Technology and Science, vol. 12, no. 2,
2012.

[24] VESYLA User Manual, KTH Royal Institute of Technology, 2015.

[25] N. Farahini, S. Li and M. A. Tajammul, "39.9 GOPs/watt multi-mode CGRA accelerator
for a multi-standard basestation," in Circuits and Systems (ISCAS), 2013 IEEE

International Symposium on, Beijing, 2013.

64

Appendix 1 – Transform matrices

Figure 30. Transform matrix used by the DST-like transform

Figure 31. Transform matrix used by the DCT-like transform

65

Appendix 2 – Profiling of the HEVC Decoder

Figure 32. Profiling information of the HEVC decoder. The chosen kernels are marked with red. All the
functions above the inverse transform are top-level functions.

66

Appendix 3 – Example Inverse Transform Test Case

bitdepth = 8;
width = 16;
height = 16;
useDST = 1;
maxTrDynamicRange = 15;

% Parameter interpretation:
% -------------------------
% Bit depth is 8
% Transform size is 16x16
% UseDST: It is an intra block. If we have 4x4 matrix, we should use DST% It
%is not 4x4 matrix, so we are using DCT
% Maximum transform dynamic range (not completely sure, what it means) is 15

% Transform coefficients matrix (output of de-quantization), parameter: coeff
inputMatrix = [...
-114 -114 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

-114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

 228 0 -114 0 0 0 0 0 0 0 0 0 0 0 0 0;

 0 114 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

-114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

 114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

-114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];

% Using 16x16 inverse transform, DCT coefficients used are:
coeffMatrix = [...
64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64;
90 87 80 70 57 43 25 9 -9 -25 -43 -57 -70 -80 -87 -90;
89 75 50 18 -18 -50 -75 -89 -89 -75 -50 -18 18 50 75 89;
87 57 9 -43 -80 -90 -70 -25 25 70 90 80 43 -9 -57 -87;
83 36 -36 -83 -83 -36 36 83 83 36 -36 -83 -83 -36 36 83;
80 9 -70 -87 -25 57 90 43 -43 -90 -57 25 87 70 -9 -80;
75 -18 -89 -50 50 89 18 -75 -75 18 89 50 -50 -89 -18 75;
70 -43 -87 9 90 25 -80 -57 57 80 -25 -90 -9 87 43 -70;
64 -64 -64 64 64 -64 -64 64 64 -64 -64 64 64 -64 -64 64;
57 -80 -25 90 -9 -87 43 70 -70 -43 87 9 -90 25 80 -57;
50 -89 18 75 -75 -18 89 -50 -50 89 -18 -75 75 18 -89 50;
43 -90 57 25 -87 70 9 -80 80 -9 -70 87 -25 -57 90 -43;
36 -83 83 -36 -36 83 -83 36 36 -83 83 -36 -36 83 -83 36;
25 -70 90 -80 43 9 -57 87 -87 57 -9 -43 80 -90 70 -25;
18 -50 75 -89 89 -75 50 -18 -18 50 -75 89 -89 75 -50 18;
9 -25 43 -57 70 -80 87 -90 90 -87 80 -70 57 -43 25 -9];

% Transform result (outputted residual block), parameter: block

67

outputMatrix = [-2 -2 -1 -1 0 0 1 1 1 1 0 -1 -1 -2 -2 -3;
 -2 -2 -1 -1 -1 0 0 0 1 1 1 1 1 0 0 0;
 -3 -3 -3 -3 -3 -3 -2 -2 -2 -1 0 0 1 2 2 2;
 -4 -4 -4 -5 -5 -5 -5 -5 -4 -3 -2 -1 0 1 2 2;
 -3 -3 -3 -3 -4 -4 -4 -4 -4 -3 -2 -2 -1 0 1 1;
 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0;
 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 -1;
 -1 -1 0 0 1 2 2 3 3 3 2 2 1 1 0 0;
 -2 -1 -1 0 1 2 3 3 4 4 4 4 3 3 3 2;
 -3 -3 -2 -2 -1 0 1 1 2 2 3 3 3 3 3 3;
 -6 -6 -6 -6 -5 -5 -5 -5 -4 -4 -3 -2 -2 -1 -1 -1;
 -6 -7 -7 -7 -8 -8 -9 -9 -9 -8 -8 -7 -6 -6 -5 -5;
 -2 -2 -3 -3 -4 -5 -5 -6 -6 -6 -5 -5 -4 -4 -3 -3;
 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2;
 1 1 1 1 2 2 3 3 3 4 4 4 4 4 3 3;
 -5 -4 -4 -3 -2 -1 0 1 2 2 2 2 2 1 1 1];

% Run the MATLAB code with the parameters and compare outputs
success = transformVerify.verify(bitdepth, width, height, useDST,
maxTrDynamicRange, inputMatrix, outputMatrix, coeffMatrix);

% Check if the test passed and if not, increase the error counter.
if (success == 0)
 errors = errors + 1
end
% ==================END OF DCT==================

Figure 33. Example of a test case for the MATLAB inverse transorm implementation

68

Appendix 4 – MATLAB code for inverse partial butterflies

classdef Butterflies

 properties
 end

 methods (Static)
 % ============= 4x4 partial inverse butterfly =============
 function dst = partialButterflyInverse4(src, shifting, add, size)

 % 4x4 transform matrix
 DCT4x4_MATRIX = [64 64 64 64;
 83 36 -36 -83;
 64 -64 -64 64;
 36 -83 83 -36];

 %One column at a time
 for i = 1:size
 src_col = src(1:4,i);

 %Implementation of the butterfly structure
 O1 = DCT4x4_MATRIX(2,1)*src_col(2) + DCT4x4_MATRIX(4,1)*src_col(4);
 O2 = DCT4x4_MATRIX(2,2)*src_col(2) + DCT4x4_MATRIX(4,2)*src_col(4);
 E1 = DCT4x4_MATRIX(1,1)*src_col(1) + DCT4x4_MATRIX(3,1)*src_col(3);
 E2 = DCT4x4_MATRIX(1,2)*src_col(1) + DCT4x4_MATRIX(3,2)*src_col(3);

 % Calculating final anwer and making the
 % required connections
 dst(i,1) = bitshift(E1 + O1 + add,shifting*-1, 'int32');
 dst(i,2) = bitshift(E2 + O2 + add,shifting*-1, 'int32');
 dst(i,3) = bitshift(E2 - O2 + add,shifting*-1, 'int32');
 dst(i,4) = bitshift(E1 - O1 + add,shifting*-1, 'int32');
 end
 end

 % ============= 8x8 partial inverse butterfly =============
 function dst = partialButterflyInverse8(src, shifting, add)

 % 8x8 transform matrix
 DCT8x8_MATRIX = [64 64 64 64 64 64 64 64;
 89 75 50 18 -18 -50 -75 -89;
 83 36 -36 -83 -83 -36 36 83;
 75 -18 -89 -50 50 89 18 -75;
 64 -64 -64 64 64 -64 -64 64;
 50 -89 18 75 -75 -18 89 -50;
 36 -83 83 -36 -36 83 -83 36;
 18 -50 75 -89 89 -75 50 -18];

69

 %One column at a time
 for i = 1:8
 src_col = src(1:8,i);

 %Implementation of the butterfly structure
 for k = 1:4
 O(k) = DCT8x8_MATRIX(2,k)*src_col(2) + DCT8x8_MATRIX(4,k)*src_col(4) +...
 DCT8x8_MATRIX(6,k)*src_col(6) + DCT8x8_MATRIX(8,k)*src_col(8);
 end

 EO0 = DCT8x8_MATRIX(3,1)*src_col(3) + DCT8x8_MATRIX(7,1)*src_col(7);
 EO1 = DCT8x8_MATRIX(3,2)*src_col(3) + DCT8x8_MATRIX(7,2)*src_col(7);
 EE0 = DCT8x8_MATRIX(1,1)*src_col(1) + DCT8x8_MATRIX(5,1)*src_col(5);
 EE1 = DCT8x8_MATRIX(1,2)*src_col(1) + DCT8x8_MATRIX(5,2)*src_col(5);

 % Combining even and odd terms at each hierarchy levels to
 % calculate the final spatial domain vector
 E(1) = EE0 + EO0
 E(4) = EE0 - EO0
 E(2) = EE1 + EO1
 E(3) = EE1 - EO1

 % Calculating final anwer and making the
 % required connections
 for k = 1:4
 dst(i, k) = bitshift(E(k) + O(k) + add, shifting*-1, 'int32');
 dst(i, (k+4)) = bitshift(E(5-k) - O(5-k) + add, shifting*-1, 'int32');
 end
 end
 end

 % ============= 16x16 partial inverse butterfly =============
 function dst = partialButterflyInverse16(src, shifting, add)

 % 16x16 transform matrix
 DCT16x16_MATRIX = [...
 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64;
 90 87 80 70 57 43 25 9 -9 -25 -43 -57 -70 -80 -87 -90;
 89 75 50 18 -18 -50 -75 -89 -89 -75 -50 -18 18 50 75 89;
 87 57 9 -43 -80 -90 -70 -25 25 70 90 80 43 -9 -57 -87;
 83 36 -36 -83 -83 -36 36 83 83 36 -36 -83 -83 -36 36 83;
 80 9 -70 -87 -25 57 90 43 -43 -90 -57 25 87 70 -9 -80;
 75 -18 -89 -50 50 89 18 -75 -75 18 89 50 -50 -89 -18 75;
 70 -43 -87 9 90 25 -80 -57 57 80 -25 -90 -9 87 43 -70;
 64 -64 -64 64 64 -64 -64 64 64 -64 -64 64 64 -64 -64 64;
 57 -80 -25 90 -9 -87 43 70 -70 -43 87 9 -90 25 80 -57;
 50 -89 18 75 -75 -18 89 -50 -50 89 -18 -75 75 18 -89 50;
 43 -90 57 25 -87 70 9 -80 80 -9 -70 87 -25 -57 90 -43;
 36 -83 83 -36 -36 83 -83 36 36 -83 83 -36 -36 83 -83 36;
 25 -70 90 -80 43 9 -57 87 -87 57 -9 -43 80 -90 70 -25;
 18 -50 75 -89 89 -75 50 -18 -18 50 -75 89 -89 75 -50 18;
 9 -25 43 -57 70 -80 87 -90 90 -87 80 -70 57 -43 25 -9];

70

 %One column at a time
 for i = 1:16
 src_col = src(1:16,i);

 %Implementation of the butterfly structure
 for k = 1:8
 O(k) = DCT16x16_MATRIX(2,k)*src_col(2) + ...
 DCT16x16_MATRIX(4,k)*src_col(4) + ...
 DCT16x16_MATRIX(6,k)*src_col(6) + ...
 DCT16x16_MATRIX(8,k)*src_col(8) + ...
 DCT16x16_MATRIX(10,k)*src_col(10) + ...
 DCT16x16_MATRIX(12,k)*src_col(12) + ...
 DCT16x16_MATRIX(14,k)*src_col(14) + ...
 DCT16x16_MATRIX(16,k)*src_col(16);
 end

 for k = 1:4
 EO(k) = DCT16x16_MATRIX(3,k)*src_col(3) + ...
 DCT16x16_MATRIX(7,k)*src_col(7) + ...
 DCT16x16_MATRIX(11,k)*src_col(11) + ...
 DCT16x16_MATRIX(15,k)*src_col(15);
 end

 EEO(1) = DCT16x16_MATRIX(5,1)*src_col(5) + ...
 DCT16x16_MATRIX(13,1)*src_col(13);
 EEE(1) = DCT16x16_MATRIX(1,1)*src_col(1) + ...
 DCT16x16_MATRIX(9,1)*src_col(9);
 EEO(2) = DCT16x16_MATRIX(5,2)*src_col(5) + ...
 DCT16x16_MATRIX(13,2)*src_col(13);
 EEE(2) = DCT16x16_MATRIX(1,2)*src_col(1) + ...
 DCT16x16_MATRIX(9,2)*src_col(9);

 %Combining even and odd terms at each hierarchy levels to
 % calculate the final spatial domain vector
 for k = 1:2
 EE(k) = EEE(k) + EEO(k);
 EE(k+2) = EEE(3-k) - EEO(3-k);
 end

 for k = 1:4
 E(k) = EE(k) + EO(k);
 E(k+4) = EE(5-k) - EO(5-k);
 end

 % Calculating final anwer and making the
 % required connections
 for k = 1:8
 dst(i, k) = bitshift(E(k) + O(k) + add, shifting*-1, 'int32');
 dst(i, (k+8)) = bitshift(E(9-k) - O(9-k) + add, shifting*-1, 'int32');
 end
 end
 end

71

 % ============= 32x32 partial inverse butterfly =============
 function dst = partialButterflyInverse32(src, shifting, add)

 % 32x32 transform matrix
 DCT32x32_MATRIX = []; %Matrix removed to save space in the thesis.
 %In case of interest please refer to appendix 1.

 %Implementation of the butterfly structure
 for i = 1:32
 src_col = src(1:32,i);

 % Combining even and odd terms at each hierarchy levels to
 % calculate the final spatial domain vector
 for k = 1:16
 O(k) = DCT32x32_MATRIX(2,k)*src_col(2) + ...
 DCT32x32_MATRIX(4,k)*src_col(4) + ...
 DCT32x32_MATRIX(6,k)*src_col(6) + ...
 DCT32x32_MATRIX(8,k)*src_col(8) + ...
 DCT32x32_MATRIX(10,k)*src_col(10) + ...
 DCT32x32_MATRIX(12,k)*src_col(12) + ...
 DCT32x32_MATRIX(14,k)*src_col(14) + ...
 DCT32x32_MATRIX(16,k)*src_col(16) + ...
 DCT32x32_MATRIX(18,k)*src_col(18) + ...
 DCT32x32_MATRIX(20,k)*src_col(20) + ...
 DCT32x32_MATRIX(22,k)*src_col(22) + ...
 DCT32x32_MATRIX(24,k)*src_col(24) + ...
 DCT32x32_MATRIX(26,k)*src_col(26) + ...
 DCT32x32_MATRIX(28,k)*src_col(28) + ...
 DCT32x32_MATRIX(30,k)*src_col(30) + ...
 DCT32x32_MATRIX(32,k)*src_col(32);
 end

 for k = 1:8
 EO(k) = DCT32x32_MATRIX(3,k)*src_col(3) + ...
 DCT32x32_MATRIX(7,k)*src_col(7) + ...
 DCT32x32_MATRIX(11,k)*src_col(11) + ...
 DCT32x32_MATRIX(15,k)*src_col(15) + ...
 DCT32x32_MATRIX(19,k)*src_col(19) + ...
 DCT32x32_MATRIX(23,k)*src_col(23) + ...
 DCT32x32_MATRIX(27,k)*src_col(27) + ...
 DCT32x32_MATRIX(31,k)*src_col(31);
 end

 for k = 1:4
 EEO(k) = DCT32x32_MATRIX(5,k)*src_col(5) + ...
 DCT32x32_MATRIX(13,k)*src_col(13) + ...
 DCT32x32_MATRIX(21,k)*src_col(21) + ...
 DCT32x32_MATRIX(29,k)*src_col(29);
 end

 EEEO(1) = DCT32x32_MATRIX(9,1)*src_col(9) + ...
 DCT32x32_MATRIX(25,1)*src_col(25);
 EEEO(2) = DCT32x32_MATRIX(9,2)*src_col(9) + ...
 DCT32x32_MATRIX(25,2)*src_col(25);
 EEEE(1) = DCT32x32_MATRIX(1,1)*src_col(1) + ...
 DCT32x32_MATRIX(17,1)*src_col(17);
 EEEE(2) = DCT32x32_MATRIX(1,2)*src_col(1) + ...
 DCT32x32_MATRIX(17,2)*src_col(17);

72

 % Combining even and odd terms at each hierarchy levels to
 % calculate the final spatial domain vector
 EEE(1) = EEEE(1) + EEEO(1);
 EEE(4) = EEEE(1) - EEEO(1);
 EEE(2) = EEEE(2) + EEEO(2);
 EEE(3) = EEEE(2) - EEEO(2);

 for k = 1:4
 EE(k) = EEE(k) + EEO(k);
 EE(k+4) = EEE(5-k) - EEO(5-k);
 end

 for k = 1:8
 E(k) = EE(k) + EO(k);
 E(k+8) = EE(9-k) - EO(9-k);
 end

 % Calculating final anwer and making the
 % required connections
 for k = 1:16
 dst(i, k) = bitshift(E(k) + O(k) + add, shifting*-1, 'int32');
 dst(i, (k+16)) = bitshift(E(17-k) - O(17-k) + add, shifting*-1, 'int32');
 end
 end
 end
 end
end

Figure 34. MATLAB code for inverse partial butterflies

73

Appendix 5 - Top-level MATLAB inverse transform code

classdef IntDct2

properties
end

methods (Static)

% ============= 4x4 partial inverse butterfly =============
function dst = partialButterflyInverse4(src, shifting, clipMinMax)
 if (shifting > 0)
 add = bitshift(1, shifting-1, 'int32')
 else
 add = 0;
 end
 %Calculate IDCT using the butterfly code
 dct = Butterflies.partialButterflyInverse4(src, shifting, add, 4);
 %Apply clipping to the calculated IDCT
 dst = clip(dct, clipMinMax);
end

 % ============= 8x8 partial inverse butterfly =============
function dst = partialButterflyInverse8(src, shifting, clipMinMax)

 if (shifting > 0)
 add = bitshift(1, shifting-1, 'int32');
 else
 add = 0;
 end
 %Calculate IDCT using the butterfly code
 dct = Butterflies.partialButterflyInverse8(src, shifting, add);
 %Apply clipping to the calculated IDCT
 dst = clip(dct, clipMinMax);
end

% ============= 16x16 partial inverse butterfly =============
function dst = partialButterflyInverse16(src, shifting, clipMinMax)
 if (shifting > 0)
 add = bitshift(1, shifting-1, 'int32');
 else
 add = 0;
 end
 %Calculate IDCT using the butterfly code
 dct = Butterflies.partialButterflyInverse16(src, shifting, add);
 %Apply clipping to the calculated IDCT
 dst = clip(dct, clipMinMax);
end

 % ============= 32x32 partial inverse butterfly =============
function dst = partialButterflyInverse32(src, shifting, clipMinMax)
 if (shifting > 0)
 add = bitshift(1, shifting-1, 'int32');
 else
 add = 0;
 end
 %Calculate IDCT using the butterfly code
 dct = Butterflies.partialButterflyInverse32(src, shifting, add);
 %Apply clipping to the calculated IDCT
 dst = clip(dct, clipMinMax);
end

74

%4x4 fast inverse DST matrix calculation
function dst = fastInverseDst(src, shifting, clipMinMax)
 if (shifting > 0)
 rnd_factor = bitshift(1, shifting-1, 'int32');
 else
 rnd_factor = 0;
 end

 % 4x4 transform coefficients matrix
 DST4x4_MATRIX = [29 55 74 84;
 74 74 0 -74;
 84 -29 -74 55;
 55 -84 74 -29];

 % One column at a time
 for i = 1:4
 src_col = src(1:4,i);

 for column = 1:4
 intermediateResult = 0;
 for row = 1:4
 intermediateResult = intermediateResult + ...
 src_col(row) * DST4x4_MATRIX(row,column);
 end

 if (shifting >= 0)
 intermediateResult = bitshift((intermediateResult + ...
 rnd_factor), shifting*-1, 'int32');
 else
 intermediateResult = bitshift((intermediateResult + ...
 rnd_factor) , shifting, 'int32');
 end
 dst(i, column) = clip(intermediateResult, clipMinMax);
 end

 end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%TOPLEVEL INVERSE TRANSFORM FUNCTION%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function block = xITrMxN(bitDepth, coeff, iWidth, iHeight, useDST, maxTrDynamicRange)
 %calculate transform parameters
 %Shifting for transform matrix. In case of 8bit video always constant.
 transformMatrixShift = 6;
 %shifting value for first 1D transform.
 shift_1st = transformMatrixShift + 1
 %shifting value for second 2D transform
 shift_2nd = (transformMatrixShift + maxTrDynamicRange -1) - bitDepth;

 %minimum clipping value
 clipMinimum = -1*(bitshift(1, maxTrDynamicRange, 'int32'));
 %maximum clipping value
 clipMaximum = bitshift(1, maxTrDynamicRange, 'int32') - 1;
 %clipping parameters for the first 1D transform
 clipMinMax_1st = [clipMinimum clipMaximum];

 %Maximum size for the data object
 shrt_max = 32767;
 %clipping values for the second 1D transform
 clipMinMax_2nd = [(-1*shrt_max)-1 shrt_max];

75

 %Transforms:
 %HEVC transform vs "normal" DCT transform: in HEVC shifting and clipping
 %is done after every 1D transform. In case of 4x4 intra frame DST is used.
 %In this implementation both 1D transforms are identical and automatically
 %transpose theoutput function for the next step.
 %The only difference between 1st and 2nd 1D transform are the shifting
 %and clipping parameters.

 %1st 1D transform:
 switch iHeight
 case 4
 if ((iWidth == 4) && (useDST == 1))
 tmp = IntDct2.fastInverseDst(coeff, shift_1st, clipMinMax_1st);
 else
 tmp = IntDct2.partialButterflyInverse4 (coeff, shift_1st, clipMinMax_1st)
 end
 case 8
 tmp = IntDct2.partialButterflyInverse8 (coeff, shift_1st, clipMinMax_1st);
 case 16
 tmp = IntDct2.partialButterflyInverse16 (coeff, shift_1st, clipMinMax_1st);
 case 32
 tmp = IntDct2.partialButterflyInverse32 (coeff, shift_1st, clipMinMax_1st);
 otherwise
 disp('Matrix with and illegal size!')
 end

 %2nd 1D transform
 switch iWidth
 case 4
 if ((iHeight == 4) && (useDST == 1))
 block = IntDct2.fastInverseDst(tmp, shift_2nd, clipMinMax_2nd);
 else
 block = IntDct2.partialButterflyInverse4 (tmp, shift_2nd, clipMinMax_2nd);
 end
 case 8
 block = IntDct2.partialButterflyInverse8 (tmp, shift_2nd, clipMinMax_2nd);
 case 16
 block = IntDct2.partialButterflyInverse16 (tmp, shift_2nd, clipMinMax_2nd);
 case 32
 block = IntDct2.partialButterflyInverse32 (tmp, shift_2nd, clipMinMax_2nd);
 otherwise
 disp('Matrix with and illegal size!')
 end

end
end

end

% Clipping function
function out = clip(num, minmax)
 if (num < minmax(1))
 out = minamax(1);
 elseif (num > minmax(2))
 out = minmax(2);
 else
 out = num;
 end
end

Figure 35. Top-level MATLAB inverse transform code

76

Appendix 6 – MATLAB Inverse Transform Verification Code

classdef transformVerify
 properties
 end
 methods (Static)
 %Inverse transform testing and verifying script
 function success = verify(bitDepth, width, height, useDST,
 maxTrDynamicRange, inputMatrix, outputMatrix, coeffMatrix)

 %Run an the transform
 output = IntDct2.xITrMxN(bitDepth, inputMatrix, width,
 height, useDST, maxTrDynamicRange)

 %Compare the output with
 success = isequal(outputMatrix, output);
 %If an mismatch is detected, print out the data for debugging
 if (success == 0)
 disp('Error detected, parameters are the following:')
 bitDepth
 width
 height
 useDST
 maxTrDynamicRange
 inputMatrix
 outputMatrix
 coeffMatrix
 output
 disp('====End of parameter dump====')
 end
 end
 end
end

Figure 36. Code for verifying the MATLAB implementation of the inverse transform

77

Appendix 7 – VESYLA-Readable 4x4 Inverse DCT

Transform Using Single Register File at a time

src = [1:16];
dst = [1:16];

mulreg = [1:8];
addreg = [1:4];
% Real 4x4 transform coefficients matrix, for testing
%DCT4x4_MATRIX = ...
%[64 64 64 64 83 36 -36 -83 64 -64 -64 64 36 -83 83 -36];

% Placeholder for 4x4 transform coefficients matrix,
% for compiling with VESYLA
DCT4x4_MATRIX = [1:16];

for i = 1:4
 mulreg(i) = DCT4x4_MATRIX(5)*src(4+i);
 mulreg(i+1) = DCT4x4_MATRIX(6)*src(4+i);
end
for i = 1:4
 mulreg(i+2) = DCT4x4_MATRIX(1)*src(i);
 mulreg(i+3) = DCT4x4_MATRIX(2)*src(i);
end
for i = 1:4
 mulreg(i+4) = DCT4x4_MATRIX(13)*src(12+i);
 mulreg(i+5) = DCT4x4_MATRIX(14)*src(12+i);
end
for i = 1:4
 mulreg(i+6) = DCT4x4_MATRIX(9)*src(8+i);
 mulreg(i+7) = DCT4x4_MATRIX(10)*src(8+i);
end

for i = 1:4
 addreg(i) = mulreg(i) + mulreg(i+4);
 addreg(i+1) = mulreg(i+1) + mulreg(i+5);
end
for i = 1:4
 addreg(i+2) = mulreg(i+2) + mulreg(i+6);
 addreg(i+3) = mulreg(i+3) + mulreg(i+7);
end
 %Combining even and odd terms at each hierarchy levels to
 % calculate the final spatial domain vector\
for i = 1:4
 dst(((i-1)*3)+i) = addreg(i+2) + addreg(i);
 dst(((i-1)*3)+i+1) = addreg(i+3) + addreg(i+1);
end
for i = 1:4
 dst(((i-1)*3)+i+2) = addreg(i+3) + addreg(i+1) * (-1);
 dst(((i-1)*3)+i+3) = addreg(i+2) + addreg(i) * (-1);
end

Figure 37. VESYLA-Readable 4x4 Inverse DCT Transform Using Single Register File at a time

78

Appendix 8 – Parallelized VESYLA-Readable 4x4 Inverse

DCT Transform

%Register files for source data
src1 = [1:16]; %! RFILE<>[0:0]
src2 = [1:16]; %! RFILE<>[0:1]
src3 = [1:16]; %! RFILE<>[1:0]
src4 = [1:16]; %! RFILE<>[1:1]

dst = [1:16]; %! RFILE<>[0:2]

%Register files for storing multiplication results
mulreg1 = [1:16]; %! RFILE<>[1:2]
mulreg2 = [1:16]; %! RFILE<>[0:3]
mulreg3 = [1:16]; %! RFILE<>[1:3]
mulreg4 = [1:16]; %! RFILE<>[0:4]

addreg1 = [1:16]; %! RFILE<>[1:4]
addreg2 = [1:16]; %! RFILE<>[0:5]

% Real 4x4 transform coefficients matrix, for testing
% DCT4x4_MATRIX1 = ...
% [64 64 64 64 83 36 -36 -83 64 -64 -64 64 36 -83 83 -36];
% DCT4x4_MATRIX2 = ...
% [64 64 64 64 83 36 -36 -83 64 -64 -64 64 36 -83 83 -36];
% DCT4x4_MATRIX3 = ...
% [64 64 64 64 83 36 -36 -83 64 -64 -64 64 36 -83 83 -36];
% DCT4x4_MATRIX4 = ...
% [64 64 64 64 83 36 -36 -83 64 -64 -64 64 36 -83 83 -36];

% Placeholder for 4x4 transform coefficients matrix,
% for compiling with VESYLA
DCT4x4_MATRIX1 = [1:16]; %! RFILE<>[1:5]
DCT4x4_MATRIX2 = [1:16]; %! RFILE<>[0:6]
DCT4x4_MATRIX3 = [1:16]; %! RFILE<>[1:6]
DCT4x4_MATRIX4 = [1:16]; %! RFILE<>[0:7]

for i = 1:2:4
 mulreg1(i) = DCT4x4_MATRIX1(5)*src1(4+i); %! DPU [0:0]
 mulreg1(i+1) = DCT4x4_MATRIX1(6)*src1(4+i); %! DPU [0:1]
 mulreg2(i) = DCT4x4_MATRIX2(1)*src2(i); %! DPU [1:0]
 mulreg2(i+1) = DCT4x4_MATRIX3(2)*src2(i); %! DPU [1:1]

 mulreg3(i) = DCT4x4_MATRIX3(13)*src3(12+i); %! DPU [0:2]
 mulreg3(i+1) = DCT4x4_MATRIX3(14)*src3(12+i); %! DPU [2:0]
 mulreg4(i) = DCT4x4_MATRIX4(9)*src4(8+i); %! DPU [2:2]
 mulreg4(i+1) = DCT4x4_MATRIX4(10)*src4(8+i); %! DPU [2:3]
end

for i = 1:2:4
 addreg1(i) = mulreg1(i) + mulreg3(i); %! DPU [0:0]
 addreg1(i+1) = mulreg1(i+1) + mulreg3(i+1); %! DPU [1:0]

79

 addreg2(i) = mulreg2(i) + mulreg4(i); %! DPU [0:1]
 addreg2(i+1) = mulreg2(i+1) + mulreg4(i+1); %! DPU [1:1]
end

j=1; %We are using two different index variables for the for cycle

for i = 1:4
 %Combining even and odd terms at each hierarchy levels to
 % calculate the final spatial domain vector
 dst(((j-1)*3)+j) = addreg2(i) + addreg1(i); %! DPU [0:0]
 dst(((j-1)*3)+j+1) = addreg2(i+1) + addreg1(i+1); %! DPU [0:1]
end
for i = 1:4
 dst(((j-1)*3)+j+2) = addreg2(i+1) - addreg1(i+1); %! DPU [0:0]
 dst(((j-1)*3)+j+3) = addreg2(i) - addreg1(i); %! DPU [0:1]
 j=j+1;
end

Figure 38. VESYLA-readable 4x4 Inverse DCT transform code

80

Appendix 9 - HEVC video decoder’s layout

Figure 39. Layout of the HEVC video decoder. Functions with name partialButterflyInverse are part of

the inverse transform. Functions belonging to class TComInterpolationFilter, are part of the

interpolation filter

