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Abstract 

This thesis work implements the tool support for the automatic mapping of Event-B 

models to UPPAAL models based on the mapping suggestions of [1], [2]. Event-B is a 

state-based formalism for the specification and verification of complex and critical 

systems with focus on the behavioural and safety aspects. Event-B follows the correct-

by-construction paradigm wherein the system model is developed in a refinement-based 

stepwise manner. Theorem proving is the underlining tool for the verification of the 

system model. On the other hand, UPPAAL Timed Automata (UTA) is a state-based 

formalism with clear focus on the modelling and verification of real-time systems. UTA 

is well-supported by the UPPAAL toolbox for the modelling, simulation and verification 

of real-time systems. Verification is performed with the efficient built-in model-checker. 

Several attempts have been made to extend Event-B to support modelling and verification 

of timing properties [3]–[5]. Though, all of these works resulted in high complexity 

solutions. This motivated the integration of Event-B and UTA to mutually complement 

each other in complex system development without the need to extend any of the two 

formalisms.   

The aim of this thesis is to implement the tool support for the established mapping 

between Event-B and UTA by processing the underlying Extensible Markup Language 

(XML) base of the mapped models. 

Keywords: Event-B, iUML-B, UPPAAL, Timed Automata, real-time systems, model 

transformation, verification and validation. 

This thesis is written in English and is 44 pages long, including 8 chapters, 18 figures, 2 

tables and 1 appendix.
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Annotatsioon 

Käesolevas magistritöös on realiseeritud automaatne mudelteisendus Event-B 

formalismist UPPAALi ajaga automaatide formalismi. Teisendus põhineb 

publikatsioonides [1], [2]. toodud kirjeldusel. Event-B on oleku-põhine formalism, mis 

on loodud keerukate ja kriitiliste süsteemide spetsifitseerimiseks ning verifitseerimiseks 

fookusega süsteemide käitumis-  ja ohutusaspektidel. Event-B toetab nn korrektsus-läbi 

konstruktsiooni paradigmat, mille puhul süsteemi mudel luuakse lähtudes abstraktsest 

spetsifikatsioonist  läbi nõuete suhtes korrektsust säilitavate täpsustamissammude. 

Süsteemi mudeli korrektsuse verifitseerimine toimub Event-B teoreemitõestaja abil. 

Erinevalt Event-B-st on UPPAALi ajaga automaadid (UTA) oleku-põhine formalism, 

mille fookus on reaalaja süsteemide modelleerimisel ja verifitseerimisel. UTA-l on hästi 

väljaarendatud tööriistatugi reaalaja süsteemide modelleerimiseks, simulatsiooniks ja 

verifitseerimiseks. Mudelite verifitseerimiseks on UTA tööriistadesse sisseehitatud  

efektiivne mudelkontrolli motor. Kuigi Event-B puhul on tehtud mitmeid katseid 

laiendada formalismi adresseerimaks ka ajaga seotud omaduste modelleerimist ja 

verifitseerimist (vt viited [3]–[5]), on senised katsed viinud väga keerukate ja raskesti 

kasutatavate lahendusteni. See on andnud motivatsiooni Event-B ja UTA 

integreerimiseks, et luua keerukate süsteemide arenduseks vastastikku üksteist täiendav 

formalismide komplekt ilma vajaduseta laiendada neid neile mitteomaste omadustega.  

Magistritöö raames loodud tööriist teisendab Event-B mudelid UTA mudeliteks parsides 

Event-B XML (Extensible Markup Language) failivormingut ning teisendades selle 

vastavasse UTA XML-failide vormingusse. 

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 44 leheküljel, 8 peatükki, 18 

joonist, 2 tabelit ja 1 apendiks. 

 



7 

List of abbreviations and terms 

TA Timed Automata 

UTA UPPAAL Timed Automata 

iUML 

PN 

XML 

UL 

MA 

VSS 

VBD 

TTD 

RBC 

 

 

Integrated Unified Modelling Language 

Petri Net 

Extensible Markup Language 

UPPAAL Language  

Movement authority 

Virtual Sub Sections 

Virtual Block Detector 

Trackside Train Detection 

Radio Block Centre 
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 Introduction 

Formal methods are techniques to model and reason about complex systems as 

mathematical objects. They are concerned with the application of a reasonably wide 

variety of theoretical computer science fundamentals. Formal methods are supported by 

formal languages (e.g., mathematical logic) and allow applying formal system 

verification which is essentially a complement to usual system/software testing for 

making sure the behaviour of the system conforms to its requirements. While systems 

grow more complex and safety becomes a more serious issue, the formal approach to 

system design allows for an extra level of insurance.  

Formal methods differ from other system design techniques through the utilization of 

formal verification systems, such as theorem provers and model-checkers. Formal 

methods are necessary to avoid building/developing incomplete and/or incorrect systems 

due to unfinished, incompatible or ambiguous requirements. Formal methods can be 

applied to all steps of the software life-cycle and on various levels of abstraction. 

Event-B [6] is a formal modelling method for developing a system and the formalism is 

widely accepted for the modelling and verification of complex systems. Event-B features 

the use of set theory, the use of the refinement paradigm and the use of mathematical 

theorem proving for developing and verifying systems at different levels of abstraction 

and in a correct-by-construction manner. 

The UPPAAL toolbox is an environment developed as a collaborative effort by the 

Uppsala University and Aalborg University and it is used for modelling, validation and 

verification of real-time systems. The models are implemented as networks of timed 

automata which can be extended with data types (bounded integers, arrays, etc.). 

1.1 Research goal 

This thesis work targets a missing-link in model transformations between Event-B and 

UTA. The tool support for the mapping between Event-B and UTA has been missing. 

The integrated framework has been established but without tool support. The research 

goal is to implement tool support for the model transformations between Event-B 

and UTA.  

https://en.wikipedia.org/wiki/Theoretical_computer_science
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1.2 Motivation 

When developing large and complex systems, refinement alone is often insufficient. 

Refinement in the context of system modelling refers to the arrangement of models across 

various abstraction levels. Also, adding and verifying timing properties to Event-B 

models introduces complexity to the development process [3]–[5]. Furthermore, prior 

research works emphasize the need for integration of Event-B and UTA in order to 

address complexity of development of real time systems [1], [2] and [7]. By following 

the refinement-based and correct-by-correction approach, Event-B can handle efficiently 

the data and functional refinement of the model and UTA can handle efficiently the timing 

refinement of the same model focusing only on the verification of timing properties. As 

a result, the framework has been established [1], [2] and [7], but the tool support for 

automated mapping is still missing.
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 Related Work and Background 

In this section, we shall explore some related works that inspire this thesis. We identify 

two important ones that serve as precedence for our work and also several others that are 

related to this project. 

2.1 Refinement-Based Development of Timed Systems [7] 

This paper was the first work regarding the integration of Event-B and UTA providing 

the theoretical basis for the work in this thesis. The authors showed that Event-B and 

UTA share the same functional semantics and proposed a model-level mapping via 

Extended Finite State Machines for each refinement level. The result of a data refinement 

step within Event-B served as an input to timing refinement step. Extended refinement 

proof obligations were also presented for both Event-B and UTA in order to guarantee 

correctness of the proposed system development. The approach was demonstrated on a 

safety controller design case study. 

2.2 Integrating Refinement-Based Methods for Developing Timed Systems [2] 

The model-level mapping proposed in [7] results in potentially too large UTA models. In 

[2] an event-level mapping was proposed in order to address the aforementioned issue. 

Each event from an Event-B model was mapped to a distinct UTA model eventually 

forming a full model through parallel composition. Also, to further facilitate the approach 

the mapping rules were defined on syntactic level. Since we reuse the suggestions of this 

paper, details on the mapping will appear in Section4. 

 

2.3 Integration of iUML-B and UPPAAL Timed Automata for Development of 

Real-Time Systems with Concurrent Processes [1] 

In this paper the mapping is still based on the events, as in [2], but the UTA model 

structure is partly extracted from the iUML-B state machine diagram which facilitates the 

development of the Event-B model by visualizing it. This way the potentially 

computational heavy approach proposed in [2] can be mitigated. 
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In this thesis we reuse and implement in a tool the mappings suggested in [1], [2] and 

details appear in Section 4. 

 

2.4 Other related work  

The following papers facilitate us in better understanding the mapping of Event-B and 

UTA as well as in observing various alternative options for mapping.  

2.4.1 The EventB2PN Tool: From Event-B specification to Petri Nets through 

Model Transformation [8] 

This paper proposes transformation rules from Event-B specifications to Petri Nets (PN) 

structures. Since PN can be mapped to UTA [9], this work could be beneficial for the 

Event-B to UTA mapping by providing fully the skeleton/structure of the UTA models, 

compared to the mapping proposed in [1]. At the time of working for this thesis the tool 

presented in [8] was under re-building and this did not allow us to consider further this 

work.  

2.4.2 Code generation for Event-B [10] 

This paper presents the syntactic translation from Event-B to Java programs. Every Event-

B model are formed from contexts and machines. Java classes of Event-B represents that 

constants and their properties are defined under contexts. On the other hand, variables 

and their properties are defined under machine class. Furthermore, it explains 

initialization, guard, action, state transition and their relationship with each other. This 

paper acted as the guideline to understand the data structure and creating objects with an 

object-oriented programming language for Event-B model. 
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 Preliminaries 

3.1 Preliminaries of Event-B and iUML-B 

Event-B [6] is a state-based formalism for the development of complex systems. Event-

B adheres to the refinement approach wherein the system is created in a stepwise manner 

progressively adding details proving that each refinement step preserves the correctness 

of the previous steps. A model in Event-B, a machine, can be interpreted as a transition 

system where the variable valuations constitute the states and the events represent the 

transitions updating the variables. Event-B is supported by the Rodin Platform [11], 

which can be extended with plugins facilitating in various ways the modelling and 

verification process. 

iUML-B is a graphical front-end for Event-B [12] implemented as plugin for the Rodin 

Platform allowing to build a model through a diagrammatic way in the form of state-

machines and class diagrams. The embedded generator then generates Event-B 

automatically. Class diagrams model data relationships, while state-machines visualize 

the states and transitions of an Event-B machine. In a state-machine with a transition e1 

between states S1 and S2, transition e1 can be fired if the state is S1 and the guard of the 

transition G (t, v) evaluates to true. When e1 is fired it changes the state to S2 and may 

also modify other variables of the state-machine via actions S (t, v). This corresponds to 

event e1 in Event-B [1]. 

 

e1 = any t where state = S1 ∧ G (t, v) then state := S2 || S(t, v) end 

 

An Event-B model holds two sections: a dynamic part (called machine) modelled by a 

transition system and a static part (called context) specifying the model’s parameters, 

types and assumptions about them [13]. 

In Event-B dependency relationships are used to better structure the model. The SEES 

relationship formulates the relationship between a machine and its context for inquiring 

the static structure of the discrete system (constants, carrier sets, partitions of the sets, 

axioms, theorems, etc). In a refinement step a context may be extended by a new context 

and this is modelled with the EXTENDS relationship. A machine refines another machine 

with the REFINES relationship. 
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3.2 Preliminaries of UPPAAL Timed Automata 

UTA [14] are defined as a closed network of extended timed automata that are called 

processes. The processes are combined into a single system by synchronous parallel 

composition like that in process algebra CCS. The nodes of the automata graph are called 

locations and directed lines between locations are called edges. For each edge, which is a 

transition between two locations, conditions or guards can be defined. Whenever the 

guard holds, the edge can be fired, which leads to a new location. Communication and 

synchronisation between different automata is taken care of by send and receive actions. 

An action send over a channel h is denoted by h! and its co-action, receive is denoted by 

h?. Formally, an UTA is defined as the tuple (L, E, V, CL, Init, Inv, TL), where [14]: 

 

– L is a finite set of locations, 

– E is the set of edges defined by E ⊆ L × G (CL, V) × Sync × Act × L, where 

• G (CL, V) is the set of constraints in guards, 

• Sync is a set of synchronization actions over channels and 

•an Act is a set of sequences of assignment actions with integer and Boolean 

expressions as well as with clock resets.  

– V denotes the set of integer and Boolean variables, 

– CL denotes the set of real-valued clocks (CL ∩ V = ∅), 

– Init ⊆ Act is a set of assignments that assigns the initial values to variables and clocks, 

– Inv : L → I(CL, V) is a function that assigns an invariant to each location, I(CL, V) being 

the set of invariants over clocks CL and variables V and 

– TL: L → {ordinary, urgent, committed} is the function that assigns the type to each 

location of the automaton. 

 

In urgent locations an outgoing edge will be executed immediately when its guard holds. 

Committed locations are useful for creating atomic sequences of process actions since an 

outgoing edge must be executed immediately without time passing. 
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 Mapping Rules and Implementation of Model 

Transformation1 

In this section we first re-introduce the mapping rules from [1] and then we proceed with 

several detailed suggestions for model transformations based on observations at XML 

model representation level as well as on observations of Event-B events.  

Mapping of Functions and Predicates [1]. Variables of integer and enumerated types 

in Event-B become integers in UTA, while finite sets and relations in Event-B are mapped 

to (multidimensional) arrays in UTA. The complex set and relational operators of Event-

B can then be implemented as C-functions in UTA. More elaboration on this appears later 

on in section 4.2.9. 

 

Mapping of Events [1]. Transitions in iUML-B state machines are generally translated 

to edges in UTA. In Figure 1 we exemplify the translation with an iUML-B state machine 

and Event-B code to the left and a corresponding UTA model to the right. Let 

e = any p where G (p,v) then S(p,v) end 

be an event of Event-B, then 

(i) the parameter p will appear in the select label of the UTA edge, which contains 

a comma separated list of p : int expressions where p is a variable name and 

int is a defined type (see Figure 1). 

(ii) the event guard G(p,v) is mapped to the guard G(V) of an edge where V 

denotes UTA variables corresponding to variables v (p> 5 in Figure 1). 

(iii) the event action S(p,v) corresponds to assignment statements (updates) V’= 

S(V) of the UTA edge (num:=num+p in Figure 1). 

                                                 

 

1 https://bitbucket.org/shobitjain/thesis-eventb-to-uppaal 

https://bitbucket.org/shobitjain/thesis-eventb-to-uppaal
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4.1 Model Transformation at XML level 

In order to build a tool for transforming a model from Event-B to UTA, a predefined set 

of rules/pre-requisites is needed for model processing. For instance, variables must 

contain pre/post keywords to identify their type.  Thus, some assumptions are taken into 

consideration. Two main such assumptions are listed below: 

1. Every XML tag has few properties in Event-B model. The tag “carrier set” mainly 

contains three properties; name, source and type and also holds sub-tag 

“constant”. The type of constant consists of the name of carrier set. The 

assumption is if name property of carrier set contains “_STATES” keyword then 

all constants with the same type as the name of carrier set will be considered to 

become locations in the UTA model. 

2. When the value in predicate holds ‘×’ as an argument for a guard, it is considered 

as the number of instances defined at runtime by the user. It is transformed as ‘id’ 

in UPPAAL for process instantiation. 

Figure 1. Transition structure in iUML-B (left) and UTA (right) [1] 
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4.2 Pattern Composition Elements for Mapping Algorithm 

In this subsection we elaborate at XML model representation level with several detailed 

suggestions for model transformations exemplified with XML code snippets from the 

airport control system case study of [1] regarding the landing process of airplanes. 

 

4.2.1 Constants 

1. Whenever label property of carrier sets and axioms contains “states” as the post 

keyword. It would ignore all those constants that belong to this particular carrier set 

because these certain constants are variable states of the system. 

2. In context, when the name of carrier set is similar to type of constant then constant 

belongs to that carrier set as shown in the snippet below, taken from the airplane 

landing case study of [1], regarding the carrier set for airplane’s fuel level and its 

elements. Otherwise the type of constant would be a predefined datatype.  

<org.eventb.core.scCarrierSet name="Fuel_Level" org.eventb.core.type="ℙ(Fuel_Level)"/> 

<org.eventb.core.scConstant name="High" org.eventb.core.type="Fuel_Level"/> 

<org.eventb.core.scConstant name="Low" org.eventb.core.type="Fuel_Level"/> 

<org.eventb.core.scConstant name="Medium" org.eventb.core.type="Fuel_Level"/> 

 

3. When the predicate property of axioms contains “partition” as shown in the snippet 

below, regarding the same case study of [1], then the first word after “partition” would 

be the type of constants (Fuel_Level) with the possible values in curly brackets 

({High}, {Medium} and {Low}) being the names of constants. 

<org.eventb.core.scAxiom name="Airport_C3" org.eventb.core.label="axm1" org.eventb.core.predi

cate="partition(Fuel_Level,{High},{Medium},{Low})"/> 

The type and name of constants can be validated by observing the name and type from 

constant tag as shown in the snippet below. 

<org.eventb.core.scConstant name="High" org.eventb.core.type="Fuel_Level"/> 

 

4. The constant values of above type of constants are assigned from the predicate 

property of axioms as shown below. 
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<org.eventb.core.scAxiom name="Airport_C6" org.eventb.core.label="axm4" org.eventb.core.predi

cate="Level_Number={High ↦ 2,Medium ↦ 1,Low ↦ 0}"/> 

The assignments and declarations of constants in UPPAAL on behalf of current and above 

two statements: 

const int High = 2; const int Medium = 1;  const int Low = 0; 

5. Integer constants are directly identified by their type. Type (ℤ) and the constant value 

assigned from the predicate property of axiom.  

4.2.2 Variables 

1. BOOL is the enumerated set for the FALSE and TRUE Boolean values. It is defined 

in a predicate. The set of integer numbers are defined as ℤ and set of natural 

numbers are defined as N. 

2. When integer type variable contains the number of instances for example 

ℙ(SET_SIZE×ℤ) then name of variable is a variable name. It would be transformed 

in two declarations like: 1) “typedef int [0, SET_SIZE - 1] id_t;”, 2) “id_t SET_SIZE 

[id_t];” in UPPAAL. The value of SET_SIZE is given by user at runtime. 

3. A power set is a set of all possible subsets of a set. When the power set is declared in 

Event-B like ℙ(SET) and it does not have the Cartesian product sign (×) as shown in 

the snippet below, then it would be transformed as const int variable[SET]; where 

SET is declared as const int SET = 2; and typedef int [0, SET - 1] id_t. 

<org.eventb.core.scVariable name="variable" org.eventb.core.type="ℙ(SET)"/> 

4.2.3 Invariants 

Invariants define the types of variables including predefined types (bool, int, etc) in the 

context of a machine. They also specify system properties that should hold in every state 

of the system. 

The invariants that contain “belongs to” (∈) in predicate property are declarations of the 

variables providing information about the type of the variables. This information can also 

be extracted from the type property of the variables. So we can ignore these invariants. 



22 

For instance the snippet below from the case study model of [1] show the declaration of 

a variable with an invariant. 

<org.eventb.core.scInvariant name="Airport_M1_implicitContext" org.eventb.core.label="inv3" org

.eventb.core.predicate="queueH_in∈ℕ"/> 

 

An example of an invariant that defines a system property regarding the relation of two 

variables is shown below. 

 

<org.eventb.core.scInvariant name="Airport_M1_implicitContex}" org.eventb.core.label="inv7" org

.eventb.core.predicate="queueH_out≤queueH_in"/> 

4.2.4 Axioms 

Axioms are presumed properties of carrier sets and constants. In context, an axiom exists 

for every carrier set which contains a statement with partition property in its predicate. 

This property contains all the constants that belong to this particular carrier set. For 

instance the two snippets below show the declaration of constants, carrier set and their 

relation with axioms. 

<org.eventb.core.scAxiom name="Airport_C3" org.eventb.core.label="axm1" org.eventb.core.predi

cate="partition(Fuel_Level,{High},{Medium},{Low})"/> 

<org.eventb.core.scCarrierSet name="Fuel_Level" org.eventb.core.type="ℙ(Fuel_Level)"/> 

<org.eventb.core.scConstant name="High" org.eventb.core.type="Fuel_Level"/> 

<org.eventb.core.scConstant name="Level_Number" org.eventb.core.type="ℙ(Fuel_Level×ℤ)"/> 

<org.eventb.core.scConstant name="Low" org.eventb.core.type="Fuel_Level"/> 

<org.eventb.core.scConstant name="Medium" org.eventb.core.type="Fuel_Level"/> 

 

The range of carrier set would be available also in a predicate property. 

<org.eventb.core.scAxiom name="Airport_C5" org.eventb.core.label="axm3" org.eventb.core.predi

cate="Level_Number∈Fuel_Level ⤖ 0 ‥ 2"/> 

The above range from the axiom would be transformed in UPPAAL like: 

typedef int[0,2] Fuel_Level; 
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4.2.5 Events 

1. In airport control model case study [1], the model is constructed in the form of a state 

machine by considering each event as an edge/transition from one state (given as part 

of the guards with “isin_” keyword) to another (given as part of the actions with 

“enter_” keyword). A variable “Airport_State0” is used to keep track of the state 

machine state. When an event is triggered, the initial and final states are assigned to 

“Application_State0” along with the guards and actions of that event. This variable is 

also responsible to hold all states of the system. 

2. If an event does not contain an action with label property having the “enter_” keyword, 

it means that it is a self-loop transition on the source state of the event. 

 

4.2.6 States 

1. The initial state of the state machine is detected from the initialisation at the beginning 

of the events section. The action with “init_” keyword is assigning the initial state to 

the variable holding the state machine state information. To exemplify, as shown in 

the snippet below and in Figure 2, the initial state machine state for all airplanes in the 

airport control case study is “In_Air”. The rest of the initialisations concern the rest of 

the variables of the system.   

<org.eventb.core.scAction name="'" org.eventb.core.assignment="Airport_State0 ≔ PLANES × 

{In_Air}" org.eventb.core.label="init_Airport_State0"/> 

 

Figure 2. Initialization of States 

2. In case the initial location is not detected from the initialization section then the tool 

searches for “isnotin_” keyword from the label property in the guards if it detects then 
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it initiate find location as initial location for instance if label property contains 

“isnotin_sm” then “sm” is an initial location. 

3. When events do not contain “isin_”, “enter_” or “isnotin_” keywords they are 

considered as extra information for transformation to UPPAAL. It means that these 

events are not part of the transitions of the state machine of the Event-B system. Such 

events are handled as events that form separate UPPAAL automata themselves which 

are then composed in parallel to form a complete automaton, as it is proposed in [1]. 

We elaborate more on this in the Case Study section. 

4. When the label property of an action in an event contains the “leave_” keyword, it 

would be considered also as the source state of the transition as with the “isin_” case. 

The only difference is that “isin_” appears in guards and “leave_” appears in actions. 

The target state of the transition would remain as described in statement 1 of Events 

subsection 4.2.5 above, i.e., indicated with the “enter_” keyword in one of the actions. 

Figure 3 shows the UPPAAL location extraction process in the form of a flow chart.  

 

Figure 3. Step-by-step process to extract transition 

4.2.7 Guards 

1. The predicate property of guards in Event-B events holds the guard information for 

UPPAAL edges. All guard would be considered except the ones containing the "isin_" 

keyword in label properties. The reason is such guards represent the source locations 
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as explained earlier. Therefore, all guard tags with labels “grd(X)” are instantiated 

guards for the transitions based on the process instance and the values are in predicate 

properties. 

2. In order to generalize the transformation of parameters of every guard from Event-B 

on the basis of assumption 2 of section 4.1, the algorithm transforms the parameter by 

using regular expression for UL for instance (X) => [id]. In Figure 4, X is equal to 

“selfP” indicating the variables instantiation for each airplane. 

 
 

 

Figure 4. Parameter declarations in Guards (Event-B) 

 

3. In Event-B, “=” is used for machine guards (see Figure 5) but UPPAAL supports 

equity operators as in C-like statements. Therefore, “=” is transformed to “==” for UL. 

 

Figure 5. Replaceable equity signs in guards 

4. In Figure 6, grd2 states that for all airplane instances their state is not equal to 

Landing_Runway state from the Airport_State0 set. Since this is not supported directly 

in UPPAAL guards, it has to be implemented in a C-like function in local declarations 

of the UPPAAL template to be called from the guard. A similar solution has to be 

applied for guards grd6 and grd7. 
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Figure 6. Complex guards in Event-B 

4.2.8 Actions 

1. The assignment properties of actions in events contain the value of assignment for the 

corresponding UPPAAL updates on edges. All actions would be considered except the 

ones containing "enter_" in label properties. The reason is this action represents the 

destination location as stated earlier. Therefor all the other action tags with labels 

would be defined as updates (assignments) in UPPAAL and their values are 

assignment properties, as shown in Figure 7. 

 

 

Figure 7.  Identification of assignment 

2. Functional override f(x): = E updates with value E the function f at place x1. When 

function overrides exist in assignments of actions in Event-B for instance  

(ELanding_Permission ≔ ELanding_Permission {selfP ↦ FALSE}) is transformed 

like (ELanding_Permission [id] := false). Where “id” is defined on the basis of 

assumption 2. For instance, in Figure 8 except first action with “enter_” keyword 

which corresponds to the destination state, all actions are assignments where the 

parameterized variables are of type bool and a value FALSE is assigned to them and 

selfP corresponds to the id of the selected instance. 

                                                 

 

1 https://wiki.event-b.org/images/EventB-Summary.pdf 
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Figure 8. Functional override (Event-B) 

3. Event-B uses Unicode character (U+2254) for assignment which visualizes similar to 

colon equal in UPPAAL but they are not the same. Each platform supports different 

characters and UL does not support Event-B ones, generally. Hence, “≔” is replaced 

with “: =” or “=”. 

 

Figure 9. Replaceable keyword in Events 

 

4. Relation overriding in an Event-B action (X <+ Y or X  Y) would be transformed 

directly to X = Y in assignment of UPPAAL. 

4.2.9 Event-B Mathematical Notation and Transformation to UTA 

The complex mathematical operations in Event-B models can be implemented as C-

functions in UTA. Some of the most prominent complex operations are the following 

below. Assume a relation regarding the favorite cities of some persons: 

favoriteCities = {Khushboo↦Paris, Naveed↦Toronto, Shobit↦Venice, Jubril↦Makkah, 

Nadeem ↦Sydney} 

 

1. The domain of the relation is the set of the first of all pairs in the relation and written 

as dom(favoriteCities) = {Khushboo, Naveed, Shobit, Jubril, Nadeem} 

2. The range is quite similar to the domain, being the set of the second of all pairs in the 

relation and written as ran(favoriteCities) = {Paris, Toronto, Venice, Makkah, 

Sydney} 
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3. Ordered pairs (A ↦ B) is a relation set which represents relation between elements 

of sets and written as (Naveed↦Toronto). One of the closest transformation to UTA 

would be two-dimensional arrays. 

4. Subset (A ⊆ B) A is a subset of a set B which means all elements of A are also 

elements of B. Both sets can be equal as well. For instance, set {Toronto, Venice} is 

subset of set {Paris, Toronto, Venice, Makkah, Sydney} 

5. Minimum/Maximum bounds of a set X are denoted with Min(X)/Max(X). 

6. The inverse (r˜) relation operation reverses the function and the mathematical 

representation is (r −1). For instance, f(y) = x, after inverse (f −1), f(x) = y for instance 

favoriteCities = {Khushboo↦Paris} inverse relation would be favoriteCities = {Paris ↦ 

Khushboo} 

 

The above-mentioned set theory operations are used to manipulate the sets in Event-B in 

one way or another. The equivalent to sets in UTA are arrays and there may be different 

ways to achieve the same functionality as in Event-B. The ideal way would be to use 

arrays in UTA and to perform array operations, functions must be defined with a 

combination of multiple steps which is not possible in single statements. For instance, in 

order to perform Min/Max operation in UTA there is no such direct operation in UTA as 

Event-B has. A loop within a C-like function needs to be created and a sorting algorithm 

to be applied to find Min/Max. Hence, these Event-B complex operations will be 

considered as C-like functions in UTA. Below are some more set theory operations with 

practical examples for Domain/Range Restriction and Subtraction. 
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7. Domain Restriction (S◁r) is a subset that contains all pairs of r where the first 

element is in S. For instance, regarding the example relation favoriteCities: 

{Shobit, Jubril}◁ favoriteCities = {Shobit↦Venice, Jubril↦Makkah } 

In UTA a C-like function is needed to implement it. 

8. Domain Subtraction (S⩤r) is a subset that contains all pairs of r where the first element 

is not in S. For instance, regarding the example relation favoriteCities: {Shobit, Jubril} 

⩤ favoriteCities = {Khushboo↦Paris, Nadeem↦Sydney} 

To achieve this in UPPAAL, a function has to be defined and used in the guard or 

assignment respectively. 

For example, there is an event “Landing_HighPQ” in airport control system of [1] in 

Event-B which contains an action “High_Pqueue ≔{selfP}⩤ High_Pqueue” for 

domain subtraction of finite set of planes “{selfP}” from “High_Pqueue”, i.e., 

removing an airplane from the high priority queue when finally it can land. An 

equivalent functionality has been accomplished in UTA by implementing a C function 

as shown below.  

 

void deHPqueue()   // normal dequeue happens from High priority Queue 

{ 

        int i = 0; 

        --lenH; 

        while (i < lenH) 

        { 

                HPqueue[i] = HPqueue[i + 1]; 

                i++; 

        } 

        HPqueue[i] = 0; 

}  
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9. Range Restriction (r▷S) is a subset that contains all pairs of r where the second 

element is in S. For instance, regarding the example relation favoriteCities: 

favoriteCities ▷ {Venice, Paris} = {Shobit↦Venice, Khushboo↦Paris} 

10. Range Subtraction (r⩥S) is a subset that contains all pairs of r where the second element is not 

in S. For instance, regarding the example relation favoriteCities:  

favoriteCities ⩥ {Shobit, Jubril} = {Khushboo↦Paris, Naveed↦Toronto, 

Nadeem↦Sydney}. 

Direct transformations for range restriction/subtraction are not possible from Event-B 

to UTA. Therefore, this complex operation is implemented with a C-like function in 

UTA. 

11. Union of two sets X and Y, denoted by (X∪Y) is the set containing all elements of 

both sets that are either in X or in Y or in both X and Y. In UTA, to perform union 

operation a merge algorithm is needed to merge the two arrays corresponding to the 

two sets. 

12. Intersection of two sets X and Y, denoted by (X∩Y) is the set containing all elements 

of A that also belong to B. In UTA, in order to find intersection of two sets, we 

initialize a set to hold a common element and use a search algorithm for matching the 

elements from both sets. 

In general, set theory is represented in semantical form and to represent the same in a 

programming language, some form of enumeration must be used. For example, the 

supported enumeration in UTA is array which can contain multiple items and these items 

can be looped through using custom logic to perform some set theory concept. Statement 

numbers 13 to 23 below show additional mathematical operation of Event-B. 

 

13. Partial functions: (⇸ Rightwards Arrow with Vertical Stroke) f ∈ X ⇸ Y, here f is a 

function with many to one relation. It is defined for some values in its domain. As 

Figure 10 shows below one and more than one are elements of domain X are mapped 

with one element of Y. 
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Figure 10. Partial function 

 

14. Relational image: r[S] is the set of values related to all elements of s under the relation 

r. 

15. Partial injections: (⤔ Rightwards Arrow with Tail with Vertical Stroke X ⤔ Y) One-

to-one relations. 

Suppose A= {1,2,3} and B= {r, s, t, u, v} and 

Here f is injective, and g is not injective. 

16. Total injections: Rightwards Arrow with Tail: (X ↣ Y).  It is similar to partial injection 

but all elements are covered. 

17. Partial surjections: (S ⤀ T) Rightwards Two-Headed Arrow with Vertical Stroke. 

Every element of T has some element of S. It can also hold one to many mapping that 

why it also called onto function.  

Suppose f: A⤀ B and g: B⤀ C are surjective functions.  

Then g∘f: A⤀C is surjective also. 

18. Total surjections: S ↠ T It is similar to partial injection but all elements from domain 

are covered also. 

19. Bijections: (S ⤖ T) Rightwards Two-Headed Arrow with Tail. A function can be 

bijection if and only if it is both an injection and a surjection. A bijection is also called 

a one-to-one correspondence. Every element of S perfectly mapped to every element 

of T. 

If A= {1, 2, 3, 4} and B= {r, s, t, u}, then 

f(1)=s g(1)=r 

f(2)=t g(2)=t 

f(3)=r g(3)=r 
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f(1)=u, f(2)=r, f(3)=t, f(4)=s, 

Here f is a bijection. 

20. Direct product: Circled Times (p ⊗ q) it is an operation that takes two sets and 

constructs a new set. 

21. Parallel product: (Parallel to) (p ∥ q) it represents the reciprocal value of elements. 

22. Lambda (λ) abstraction is an anonymous function and it gets the name from usual 

notation.  

23. λp·P | E - P must constrain the variables in p. Below is an example of transformation 

of Lambda abstraction from Event-B to UTA from the airport control system of [1]. 

 

  

Figure 11. The transformation of Event-B Lambda abstraction (left) to UTA C-like 

functions (right) with FIFO queues [1] 

In left side, action “act1” of event name “Send_HighPQ_Emerg_Req” contains lambda 

abstraction and in right side, it transforms into C-like function in UTA, upper function 
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“Em_deHP_qu_idx” is declared in guard and lower function with name 

“Em_deHP_queue” is declared in update of the edge. 

 

Table 1 below shows the Event-B keywords we have discussed in this section and their 

correspondence in UTA terms. 

 

Table 1. Event-B keywords and their relation to UTA 

 

 

4.3 Tools and algorithm 

When Event-B machine is created under Event-B core plugin in Rodin platform and it 

requires at least Java 1.6 and manipulates this machine into these file extensions. 

Event-B UTA 

isin_(X) X is Transition Source 

enter_(Y) Y is Transition Target 

States Locations 

Transition Label Transition comment 

File name Template name/ File name 

File name File name 

Event Transition 

Guard Guard 

Action Update 

ℤ / ∅ Integer / Empty set or array 

ScVariable Variable 

≔ / (Assignment) := / (Update) 

= / (Guard) / ≠ == / (Guard) /  != 

⊥ / ¬ / ⇒ False / Negation / Imply 

CAPITAL keywords (TRUE, FALSE) Small keywords (true, false) 
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Table 2. Rodin File Types 

Files extension Root Element Type  Content 

.bum IMachineRoot Event-B Machine 

.buc IContextRoot Event-B Context  

.bcm ISCMachineRoot Event-B Statically Checked Machine  

.bcc ISCContextRoot Event-B Statically Checked Context  

.bpo IPORoot Event-B Proof Obligations  

.bpr IPRRoot Event-B Proofs  

.bps IPSRoot Event-B Proof Statuses  

In order to create State-machine Diagram Layout, iUML-B State machines plug-in is used 

which save State-machine Diagram as (.sdm) file extension. Event-B tool use XML file 

for Event-B specification as (.bcm) file. 

 

Figure 12. Overview of the transformation 

This algorithm is written in C# programming language in form of window form 

application. 
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 Case Study 

During the initial stages of the work for this thesis the airport control system case study 

from [1] was used in order to understand the mapping and test the early model 

transformations implemented for the mapping tool. For the main development phase of 

the tool implementation the European Rail Traffic Management System (ERTMS) case 

study of [15] was used.   

The authors of [15] demonstrated a systematic modelling of the safety-critical ERTMS 

system with iUML-B state machines and class diagrams following the refinement-based 

approach. ERTMS controls the train movement on a linear track. The Virtual Block 

Detector (VBD) provides locations to trains and tracks them virtually. All the movements 

of trains are managed by the Radio Block Centre (RBC). VBD provides information of 

free track section to RBC. Movement Authority (MA) issued by RBC permits the 

movement of trains. 

The model for this case study consists of two parts: 1) The system under test which is 

composed of RBC and VBD, 2) the environment consisting of trackside equipment and 

the trains. The trackside equipment consists of Virtual Sub Sections (VSS) and the 

Trackside Train Detection (TDD). In other words, VSS is the track sections and TDD is 

the trackside train detection for the group of VSS. 

Trains and tracksides report locations to VBD and VBD informs RBC about the free track 

sections. MAs by RBC are then allocated to the trains for the sections of the tracks that 

they can move into. Trains that are connected to VBD, send the following information: i) 

train current position, ii) length of the train, iii) and the train confirmation as integral or 

not. Trains are separated into three categories: controlled (with guaranteed free track 

sections), trusted (possible free track sections) and the ghost trains that are not 

communicating for any reason. If the train is not communicating with VBD, then VBD 

will consider that train is still respecting the MA authorisation and is still in mission. 

In total eight refinement steps were performed. To exemplify the tool-based mapping we 

focus on the fifth refinement step. Figure 13. shows the iUML-B state machine for the 

train component. Together with train’s local events, additional interface events are shown 

which are the events for receiving and sending information from/to VBD and RBC. These 
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interface events together with other events for the controlling by the VBD and its 

communication with the other components of the overall system, they are not part of any 

other state machine diagram, rather, they are only depicted in a class diagram to visualise 

component dependencies (see Figure 14). The specification of all these events (including 

train’s events) is written in the usual Event-B way in Rodin platform.   

 

Figure 13. The state machine of train component of 5th refinement step of ERTMS [15] 

 

 

Figure 14. Class diagram representing dynamic aspects of the ERTMS environment [15] 

When applying the developed mapping tool to generate the UTA model from the iUML-

B/Event-B model, if a component is modelled with a iUML-B state machine then this 

state machine is transformed to an explicit UTA template with similar model skeleton 

adhering to the mapping propositions in Section 4. The Train UTA template is presented 
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in Figure 15. The close visual resemblance to the original state machine is clear. State 

names from the state machine are the corresponding location names in UTA template. 

Transition/event names are translated to edge names in comments in the corresponding 

edges. Since this 5th refinement step of ERTMS already includes a lot of details modelled 

with various complex mathematical operations in guards and actions, most of the guards 

and updates include C function placeholders indicating where the modeller needs to 

implement the C functions corresponding to the Event-B mathematical operations. The 

function placeholder name is composed of a prefix “fn_” followed by the variable name 

of the complex guard or assignment. Moreover, the tool adds in comment lines the 

relevant original Event-B specification for assisting in what has to be implemented in the 

function bodies. 

 

Figure 15. Mapped ERTMS Train state machine to UTA1 

Let us exemplify with the mapping of a single full event. Figure 16. shows the Event-B 

specification for event “RBC_shrink_ma”. The ANY clause in the specification contains 

two parameters “tr” and “vss_set” which are transformed into SELECT non-deterministic 

choice parameters on the transition in UTA. As per statement 2 of Section 4.2.5 above, 

                                                 

 

1 https://bitbucket.org/shobitjain/thesis-eventb-to-uppaal/src/master/Generated_ERTMS_UPPAAL_Model.xml 
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because this event contains only “isin_” in one of the expressions in the WHERE clause, 

the transition is applied as a self-loop transition and the rest of the expressions are added 

as guards on this transition. Simple guards are directly translated to UTA and for the 

complex expressions, a function placeholder is added instead which will contain the logic 

for it, as stated above. Similarly, In THEN clause, due to the complex nature expression 

of the action, it is translated in UPPAAL using a placeholder for the C-like function to be 

finally implemented. 

 

Figure 16. Event RBC_shrink_ma in Event-B 

Figure 17. shows corresponding representation of the above mentioned event in iUML-B 

and UPPAAL. iUML-B model contains the event and the state “connected” on which the 

event “RBC_shrink_ma” is applied. The same state (location) is generated in UPPAAL 

with the same transition and the properties applied on the transition are based on the 

specification mentioned for Figure 16. 

 
 

Figure 17. iUML-B (left) and UPPAAL (right) model for event RBC_shrink_ma 

 

Regarding the rest of the ERTMS events that they do not belong to an iUML-B state 

machine, the mapping tool groups them in a separated UTA template as shown in Figure 

18. Since the enabling conditions of these events are mutual exclusive, the events can be 
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modelled as different local self-loop transitions on the same location. This mapping 

decision conforms also what was proposed in [2] regarding mapping of pure Event-B 

events not supported by any iUML-B diagram.   

 

 

Figure 18. Tool generated  ERTMS controller1  
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 Validation of results  

The first stage for validation of the results is based on visual inspection comparing the 

original Event-B/iUML-B model against the generated UTA model. Regarding the 

ERTMS case study, this stage confirms that the generated UTA model is for the biggest 

part as expected. For full validation some manual steps need to be still performed 

concerning the completion of the UTA model. The C-like functions have to be 

implemented, the separate templates need to be synchronized fully with any common 

global variables and additionally with synchronization channels and any real-time 

information needs to be added to the model to allow the verification of the timing 

properties of the system. After these manual steps the UTA model can be simulated (and 

system timing properties can be model-checked) and its traces can be compared with the 

simulation traces generated by the ProB animator [16] for the Event-B model allowing 

for complete validation of the correctness of the mapping.      

 

 Conclusion 

In this thesis we demonstrated the implementation decisions for a tool for transforming 

Event-B/iUMLB models to UTA. Our goal was to establish an automated mapping 

process enabling the combination of the two formalisms to mutually complement each 

other for the formal development of complex systems. Some steps need to be still 

manually performed by the modeller to finalize the UTA model but, nevertheless, a 

complete and structured skeleton for the UTA model is automatically generated together 

with all necessary information to finalize the model.   
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 Future work 

Although the provided assumptions, findings and implementation of the tool are generic 

enough for transforming Event-B models to UTA, there are several improvements that 

can still be made. One direction is to take into account also the iUML-B class diagrams 

to structure in even better way the generated UTA templates. For example, by 

investigating closer the class diagram in Figure 14 a better decomposition of the system 

components could be applied instead of having just two UTA templates. Another future 

work is about automating the implementation of at least some of the C-like functions to 

model in UTA the Event-B complex guards and assignments. This would reduce the 

amount of manual work required to complete the UTA model. Furthermore, the tool 

functionality can be extended to be able to infer refined variable declarations and other 

gluing information between refinement levels in Event-B side of the modelling process. 

Currently the tool transforms individual refinement levels and the modeller is then 

responsible to add missing information from previous refinement steps. 
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