
Tallinn 2021

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Shobit Jain 182458IVSM

IMPLEMENTATION OF MODEL

TRANSFORMATIONS BETWEEN EVENT-B

AND UPPAAL TIMED AUTOMATA

Master’s Thesis

Supervisor: Leonidas Tsiopoulos

 Ph.D.

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Shobit Jain 182458IVSM

EVENT-B JA UPPAALI AJAGA

AUTOMAATIDE VAHELISE TEISENDUSE

REALISEERIMINE

Magistritöö

Juhendaja: Leonidas Tsiopoulos

 Ph.D.

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Shobit Jain

05.01.2020

4

Acknowledgements

I would like to express my gratitude for my thesis supervisor Leonidas Tsiopoulos (Ph.D.)

for his guidance during this project and encouraging me on every step. I have enjoyed

having a professional relationship with him. I extend gratitude to Professor Jüri Vain for

his outstanding contribution in this field. I also appreciate all the support I receive from

the University of Tartu, Tallinn University of Technology and the Government of Estonia.

Furthermore, to my brother and family for all the unconditional support during the

compilation of this dissertation. I also wish to thank Naveed Ahmed who has been a

source of support. Many thanks to all friends that took part in the study and enabled this

research to be possible.

I would like to thank Abhilash Yadav for pulling me up in difficult moments where I felt

stumped and for goading me on to follow my dream of getting this degree. I sincerely

appreciate God for everything from the bottom of my heart.

5

Abstract

This thesis work implements the tool support for the automatic mapping of Event-B

models to UPPAAL models based on the mapping suggestions of [1], [2]. Event-B is a

state-based formalism for the specification and verification of complex and critical

systems with focus on the behavioural and safety aspects. Event-B follows the correct-

by-construction paradigm wherein the system model is developed in a refinement-based

stepwise manner. Theorem proving is the underlining tool for the verification of the

system model. On the other hand, UPPAAL Timed Automata (UTA) is a state-based

formalism with clear focus on the modelling and verification of real-time systems. UTA

is well-supported by the UPPAAL toolbox for the modelling, simulation and verification

of real-time systems. Verification is performed with the efficient built-in model-checker.

Several attempts have been made to extend Event-B to support modelling and verification

of timing properties [3]–[5]. Though, all of these works resulted in high complexity

solutions. This motivated the integration of Event-B and UTA to mutually complement

each other in complex system development without the need to extend any of the two

formalisms.

The aim of this thesis is to implement the tool support for the established mapping

between Event-B and UTA by processing the underlying Extensible Markup Language

(XML) base of the mapped models.

Keywords: Event-B, iUML-B, UPPAAL, Timed Automata, real-time systems, model

transformation, verification and validation.

This thesis is written in English and is 44 pages long, including 8 chapters, 18 figures, 2

tables and 1 appendix.

6

Annotatsioon

Käesolevas magistritöös on realiseeritud automaatne mudelteisendus Event-B

formalismist UPPAALi ajaga automaatide formalismi. Teisendus põhineb

publikatsioonides [1], [2]. toodud kirjeldusel. Event-B on oleku-põhine formalism, mis

on loodud keerukate ja kriitiliste süsteemide spetsifitseerimiseks ning verifitseerimiseks

fookusega süsteemide käitumis- ja ohutusaspektidel. Event-B toetab nn korrektsus-läbi

konstruktsiooni paradigmat, mille puhul süsteemi mudel luuakse lähtudes abstraktsest

spetsifikatsioonist läbi nõuete suhtes korrektsust säilitavate täpsustamissammude.

Süsteemi mudeli korrektsuse verifitseerimine toimub Event-B teoreemitõestaja abil.

Erinevalt Event-B-st on UPPAALi ajaga automaadid (UTA) oleku-põhine formalism,

mille fookus on reaalaja süsteemide modelleerimisel ja verifitseerimisel. UTA-l on hästi

väljaarendatud tööriistatugi reaalaja süsteemide modelleerimiseks, simulatsiooniks ja

verifitseerimiseks. Mudelite verifitseerimiseks on UTA tööriistadesse sisseehitatud

efektiivne mudelkontrolli motor. Kuigi Event-B puhul on tehtud mitmeid katseid

laiendada formalismi adresseerimaks ka ajaga seotud omaduste modelleerimist ja

verifitseerimist (vt viited [3]–[5]), on senised katsed viinud väga keerukate ja raskesti

kasutatavate lahendusteni. See on andnud motivatsiooni Event-B ja UTA

integreerimiseks, et luua keerukate süsteemide arenduseks vastastikku üksteist täiendav

formalismide komplekt ilma vajaduseta laiendada neid neile mitteomaste omadustega.

Magistritöö raames loodud tööriist teisendab Event-B mudelid UTA mudeliteks parsides

Event-B XML (Extensible Markup Language) failivormingut ning teisendades selle

vastavasse UTA XML-failide vormingusse.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 44 leheküljel, 8 peatükki, 18

joonist, 2 tabelit ja 1 apendiks.

7

List of abbreviations and terms

TA Timed Automata

UTA UPPAAL Timed Automata

iUML

PN

XML

UL

MA

VSS

VBD

TTD

RBC

Integrated Unified Modelling Language

Petri Net

Extensible Markup Language

UPPAAL Language

Movement authority

Virtual Sub Sections

Virtual Block Detector

Trackside Train Detection

Radio Block Centre

8

Contents

Author’s declaration of originality ... 3

Acknowledgements .. 4

Abstract ... 5

Annotatsioon ... 6

List of abbreviations and terms .. 7

Contents .. 8

List of figures ... 10

List of tables ... 11

 Introduction .. 12

1.1 Research goal ... 12

1.2 Motivation .. 13

 Related Work and Background .. 14

2.1 Refinement-Based Development of Timed Systems [7] 14

2.2 Integrating Refinement-Based Methods for Developing Timed Systems [2] . 14

2.3 Integration of iUML-B and UPPAAL Timed Automata for Development of

Real-Time Systems with Concurrent Processes [1] ... 14

2.4 Other related work ... 15

2.4.1 The EventB2PN Tool: From Event-B specification to Petri Nets through

Model Transformation [8] .. 15

2.4.2 Code generation for Event-B [10] .. 15

 Preliminaries ... 16

3.1 Preliminaries of Event-B and iUML-B .. 16

3.2 Preliminaries of UPPAAL Timed Automata ... 17

 Mapping Rules and Implementation of Model Transformation 18

4.1 Model Transformation at XML level ... 19

4.2 Pattern Composition Elements for Mapping Algorithm 20

4.2.1 Constants .. 20

4.2.2 Variables ... 21

4.2.3 Invariants .. 21

4.2.4 Axioms ... 22

4.2.5 Events ... 23

9

4.2.6 States ... 23

4.2.7 Guards ... 24

4.2.8 Actions .. 26

4.2.9 Event-B Mathematical Notation and Transformation to UTA 27

4.3 Tools and algorithm ... 33

 Case Study .. 35

 Validation of results ... 40

 Conclusion .. 40

 Future work .. 41

References .. 42

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 44

10

List of figures

Figure 1. Transition structure in iUML-B (left) and UTA (right) [1] 19

Figure 2. Initialization of States ... 23

Figure 3. Step-by-step process to extract transition ... 24

Figure 4. Parameter declarations in Guards (Event-B)... 25

Figure 5. Replaceable equity signs in guards ... 25

Figure 6. Complex guards in Event-B .. 26

Figure 7. Identification of assignment ... 26

Figure 8. Functional override (Event-B) .. 27

Figure 9. Replaceable keyword in Events .. 27

Figure 10. Partial function .. 31

Figure 11. The transformation of Event-B Lambda abstraction (left) to UTA C-like

functions (right) with FIFO queues [1]... 32

Figure 12. Overview of the transformation .. 34

Figure 13. The state machine of train component of 5th refinement step of ERTMS [15]

 .. 36

Figure 14. Class diagram representing dynamic aspects of the ERTMS environment [15]

 .. 36

Figure 15. Mapped ERTMS Train state machine to UTA ... 37

Figure 16. Event RBC_shrink_ma in Event-B ... 38

Figure 17. iUML-B (left) and UPPAAL (right) model for event RBC_shrink_ma 38

Figure 18. Tool generated ERTMS controller ... 39

file:///C:/Users/Shobit/Desktop/final%20thesis/Shobit_Thesis_Draft_5_1_2021_final_2_Leonidas_Final_Check.docx%23_Toc60763729

11

List of tables

Table 1. Event-B keywords and their relation to UTA... 33

Table 2. Rodin File Types .. 34

12

 Introduction

Formal methods are techniques to model and reason about complex systems as

mathematical objects. They are concerned with the application of a reasonably wide

variety of theoretical computer science fundamentals. Formal methods are supported by

formal languages (e.g., mathematical logic) and allow applying formal system

verification which is essentially a complement to usual system/software testing for

making sure the behaviour of the system conforms to its requirements. While systems

grow more complex and safety becomes a more serious issue, the formal approach to

system design allows for an extra level of insurance.

Formal methods differ from other system design techniques through the utilization of

formal verification systems, such as theorem provers and model-checkers. Formal

methods are necessary to avoid building/developing incomplete and/or incorrect systems

due to unfinished, incompatible or ambiguous requirements. Formal methods can be

applied to all steps of the software life-cycle and on various levels of abstraction.

Event-B [6] is a formal modelling method for developing a system and the formalism is

widely accepted for the modelling and verification of complex systems. Event-B features

the use of set theory, the use of the refinement paradigm and the use of mathematical

theorem proving for developing and verifying systems at different levels of abstraction

and in a correct-by-construction manner.

The UPPAAL toolbox is an environment developed as a collaborative effort by the

Uppsala University and Aalborg University and it is used for modelling, validation and

verification of real-time systems. The models are implemented as networks of timed

automata which can be extended with data types (bounded integers, arrays, etc.).

1.1 Research goal

This thesis work targets a missing-link in model transformations between Event-B and

UTA. The tool support for the mapping between Event-B and UTA has been missing.

The integrated framework has been established but without tool support. The research

goal is to implement tool support for the model transformations between Event-B

and UTA.

https://en.wikipedia.org/wiki/Theoretical_computer_science

13

1.2 Motivation

When developing large and complex systems, refinement alone is often insufficient.

Refinement in the context of system modelling refers to the arrangement of models across

various abstraction levels. Also, adding and verifying timing properties to Event-B

models introduces complexity to the development process [3]–[5]. Furthermore, prior

research works emphasize the need for integration of Event-B and UTA in order to

address complexity of development of real time systems [1], [2] and [7]. By following

the refinement-based and correct-by-correction approach, Event-B can handle efficiently

the data and functional refinement of the model and UTA can handle efficiently the timing

refinement of the same model focusing only on the verification of timing properties. As

a result, the framework has been established [1], [2] and [7], but the tool support for

automated mapping is still missing.

14

 Related Work and Background

In this section, we shall explore some related works that inspire this thesis. We identify

two important ones that serve as precedence for our work and also several others that are

related to this project.

2.1 Refinement-Based Development of Timed Systems [7]

This paper was the first work regarding the integration of Event-B and UTA providing

the theoretical basis for the work in this thesis. The authors showed that Event-B and

UTA share the same functional semantics and proposed a model-level mapping via

Extended Finite State Machines for each refinement level. The result of a data refinement

step within Event-B served as an input to timing refinement step. Extended refinement

proof obligations were also presented for both Event-B and UTA in order to guarantee

correctness of the proposed system development. The approach was demonstrated on a

safety controller design case study.

2.2 Integrating Refinement-Based Methods for Developing Timed Systems [2]

The model-level mapping proposed in [7] results in potentially too large UTA models. In

[2] an event-level mapping was proposed in order to address the aforementioned issue.

Each event from an Event-B model was mapped to a distinct UTA model eventually

forming a full model through parallel composition. Also, to further facilitate the approach

the mapping rules were defined on syntactic level. Since we reuse the suggestions of this

paper, details on the mapping will appear in Section4.

2.3 Integration of iUML-B and UPPAAL Timed Automata for Development of

Real-Time Systems with Concurrent Processes [1]

In this paper the mapping is still based on the events, as in [2], but the UTA model

structure is partly extracted from the iUML-B state machine diagram which facilitates the

development of the Event-B model by visualizing it. This way the potentially

computational heavy approach proposed in [2] can be mitigated.

15

In this thesis we reuse and implement in a tool the mappings suggested in [1], [2] and

details appear in Section 4.

2.4 Other related work

The following papers facilitate us in better understanding the mapping of Event-B and

UTA as well as in observing various alternative options for mapping.

2.4.1 The EventB2PN Tool: From Event-B specification to Petri Nets through

Model Transformation [8]

This paper proposes transformation rules from Event-B specifications to Petri Nets (PN)

structures. Since PN can be mapped to UTA [9], this work could be beneficial for the

Event-B to UTA mapping by providing fully the skeleton/structure of the UTA models,

compared to the mapping proposed in [1]. At the time of working for this thesis the tool

presented in [8] was under re-building and this did not allow us to consider further this

work.

2.4.2 Code generation for Event-B [10]

This paper presents the syntactic translation from Event-B to Java programs. Every Event-

B model are formed from contexts and machines. Java classes of Event-B represents that

constants and their properties are defined under contexts. On the other hand, variables

and their properties are defined under machine class. Furthermore, it explains

initialization, guard, action, state transition and their relationship with each other. This

paper acted as the guideline to understand the data structure and creating objects with an

object-oriented programming language for Event-B model.

16

 Preliminaries

3.1 Preliminaries of Event-B and iUML-B

Event-B [6] is a state-based formalism for the development of complex systems. Event-

B adheres to the refinement approach wherein the system is created in a stepwise manner

progressively adding details proving that each refinement step preserves the correctness

of the previous steps. A model in Event-B, a machine, can be interpreted as a transition

system where the variable valuations constitute the states and the events represent the

transitions updating the variables. Event-B is supported by the Rodin Platform [11],

which can be extended with plugins facilitating in various ways the modelling and

verification process.

iUML-B is a graphical front-end for Event-B [12] implemented as plugin for the Rodin

Platform allowing to build a model through a diagrammatic way in the form of state-

machines and class diagrams. The embedded generator then generates Event-B

automatically. Class diagrams model data relationships, while state-machines visualize

the states and transitions of an Event-B machine. In a state-machine with a transition e1

between states S1 and S2, transition e1 can be fired if the state is S1 and the guard of the

transition G (t, v) evaluates to true. When e1 is fired it changes the state to S2 and may

also modify other variables of the state-machine via actions S (t, v). This corresponds to

event e1 in Event-B [1].

e1 = any t where state = S1 ∧ G (t, v) then state := S2 || S(t, v) end

An Event-B model holds two sections: a dynamic part (called machine) modelled by a

transition system and a static part (called context) specifying the model’s parameters,

types and assumptions about them [13].

In Event-B dependency relationships are used to better structure the model. The SEES

relationship formulates the relationship between a machine and its context for inquiring

the static structure of the discrete system (constants, carrier sets, partitions of the sets,

axioms, theorems, etc). In a refinement step a context may be extended by a new context

and this is modelled with the EXTENDS relationship. A machine refines another machine

with the REFINES relationship.

17

3.2 Preliminaries of UPPAAL Timed Automata

UTA [14] are defined as a closed network of extended timed automata that are called

processes. The processes are combined into a single system by synchronous parallel

composition like that in process algebra CCS. The nodes of the automata graph are called

locations and directed lines between locations are called edges. For each edge, which is a

transition between two locations, conditions or guards can be defined. Whenever the

guard holds, the edge can be fired, which leads to a new location. Communication and

synchronisation between different automata is taken care of by send and receive actions.

An action send over a channel h is denoted by h! and its co-action, receive is denoted by

h?. Formally, an UTA is defined as the tuple (L, E, V, CL, Init, Inv, TL), where [14]:

– L is a finite set of locations,

– E is the set of edges defined by E ⊆ L × G (CL, V) × Sync × Act × L, where

• G (CL, V) is the set of constraints in guards,

• Sync is a set of synchronization actions over channels and

•an Act is a set of sequences of assignment actions with integer and Boolean

expressions as well as with clock resets.

– V denotes the set of integer and Boolean variables,

– CL denotes the set of real-valued clocks (CL ∩ V = ∅),

– Init ⊆ Act is a set of assignments that assigns the initial values to variables and clocks,

– Inv : L → I(CL, V) is a function that assigns an invariant to each location, I(CL, V) being

the set of invariants over clocks CL and variables V and

– TL: L → {ordinary, urgent, committed} is the function that assigns the type to each

location of the automaton.

In urgent locations an outgoing edge will be executed immediately when its guard holds.

Committed locations are useful for creating atomic sequences of process actions since an

outgoing edge must be executed immediately without time passing.

18

 Mapping Rules and Implementation of Model

Transformation1

In this section we first re-introduce the mapping rules from [1] and then we proceed with

several detailed suggestions for model transformations based on observations at XML

model representation level as well as on observations of Event-B events.

Mapping of Functions and Predicates [1]. Variables of integer and enumerated types

in Event-B become integers in UTA, while finite sets and relations in Event-B are mapped

to (multidimensional) arrays in UTA. The complex set and relational operators of Event-

B can then be implemented as C-functions in UTA. More elaboration on this appears later

on in section 4.2.9.

Mapping of Events [1]. Transitions in iUML-B state machines are generally translated

to edges in UTA. In Figure 1 we exemplify the translation with an iUML-B state machine

and Event-B code to the left and a corresponding UTA model to the right. Let

e = any p where G (p,v) then S(p,v) end

be an event of Event-B, then

(i) the parameter p will appear in the select label of the UTA edge, which contains

a comma separated list of p : int expressions where p is a variable name and

int is a defined type (see Figure 1).

(ii) the event guard G(p,v) is mapped to the guard G(V) of an edge where V

denotes UTA variables corresponding to variables v (p> 5 in Figure 1).

(iii) the event action S(p,v) corresponds to assignment statements (updates) V’=

S(V) of the UTA edge (num:=num+p in Figure 1).

1 https://bitbucket.org/shobitjain/thesis-eventb-to-uppaal

https://bitbucket.org/shobitjain/thesis-eventb-to-uppaal

19

4.1 Model Transformation at XML level

In order to build a tool for transforming a model from Event-B to UTA, a predefined set

of rules/pre-requisites is needed for model processing. For instance, variables must

contain pre/post keywords to identify their type. Thus, some assumptions are taken into

consideration. Two main such assumptions are listed below:

1. Every XML tag has few properties in Event-B model. The tag “carrier set” mainly

contains three properties; name, source and type and also holds sub-tag

“constant”. The type of constant consists of the name of carrier set. The

assumption is if name property of carrier set contains “_STATES” keyword then

all constants with the same type as the name of carrier set will be considered to

become locations in the UTA model.

2. When the value in predicate holds ‘×’ as an argument for a guard, it is considered

as the number of instances defined at runtime by the user. It is transformed as ‘id’

in UPPAAL for process instantiation.

Figure 1. Transition structure in iUML-B (left) and UTA (right) [1]

20

4.2 Pattern Composition Elements for Mapping Algorithm

In this subsection we elaborate at XML model representation level with several detailed

suggestions for model transformations exemplified with XML code snippets from the

airport control system case study of [1] regarding the landing process of airplanes.

4.2.1 Constants

1. Whenever label property of carrier sets and axioms contains “states” as the post

keyword. It would ignore all those constants that belong to this particular carrier set

because these certain constants are variable states of the system.

2. In context, when the name of carrier set is similar to type of constant then constant

belongs to that carrier set as shown in the snippet below, taken from the airplane

landing case study of [1], regarding the carrier set for airplane’s fuel level and its

elements. Otherwise the type of constant would be a predefined datatype.

<org.eventb.core.scCarrierSet name="Fuel_Level" org.eventb.core.type="ℙ(Fuel_Level)"/>

<org.eventb.core.scConstant name="High" org.eventb.core.type="Fuel_Level"/>

<org.eventb.core.scConstant name="Low" org.eventb.core.type="Fuel_Level"/>

<org.eventb.core.scConstant name="Medium" org.eventb.core.type="Fuel_Level"/>

3. When the predicate property of axioms contains “partition” as shown in the snippet

below, regarding the same case study of [1], then the first word after “partition” would

be the type of constants (Fuel_Level) with the possible values in curly brackets

({High}, {Medium} and {Low}) being the names of constants.

<org.eventb.core.scAxiom name="Airport_C3" org.eventb.core.label="axm1" org.eventb.core.predi

cate="partition(Fuel_Level,{High},{Medium},{Low})"/>

The type and name of constants can be validated by observing the name and type from

constant tag as shown in the snippet below.

<org.eventb.core.scConstant name="High" org.eventb.core.type="Fuel_Level"/>

4. The constant values of above type of constants are assigned from the predicate

property of axioms as shown below.

21

<org.eventb.core.scAxiom name="Airport_C6" org.eventb.core.label="axm4" org.eventb.core.predi

cate="Level_Number={High ↦ 2,Medium ↦ 1,Low ↦ 0}"/>

The assignments and declarations of constants in UPPAAL on behalf of current and above

two statements:

const int High = 2; const int Medium = 1; const int Low = 0;

5. Integer constants are directly identified by their type. Type (ℤ) and the constant value

assigned from the predicate property of axiom.

4.2.2 Variables

1. BOOL is the enumerated set for the FALSE and TRUE Boolean values. It is defined

in a predicate. The set of integer numbers are defined as ℤ and set of natural

numbers are defined as N.

2. When integer type variable contains the number of instances for example

ℙ(SET_SIZE×ℤ) then name of variable is a variable name. It would be transformed

in two declarations like: 1) “typedef int [0, SET_SIZE - 1] id_t;”, 2) “id_t SET_SIZE

[id_t];” in UPPAAL. The value of SET_SIZE is given by user at runtime.

3. A power set is a set of all possible subsets of a set. When the power set is declared in

Event-B like ℙ(SET) and it does not have the Cartesian product sign (×) as shown in

the snippet below, then it would be transformed as const int variable[SET]; where

SET is declared as const int SET = 2; and typedef int [0, SET - 1] id_t.

<org.eventb.core.scVariable name="variable" org.eventb.core.type="ℙ(SET)"/>

4.2.3 Invariants

Invariants define the types of variables including predefined types (bool, int, etc) in the

context of a machine. They also specify system properties that should hold in every state

of the system.

The invariants that contain “belongs to” (∈) in predicate property are declarations of the

variables providing information about the type of the variables. This information can also

be extracted from the type property of the variables. So we can ignore these invariants.

22

For instance the snippet below from the case study model of [1] show the declaration of

a variable with an invariant.

<org.eventb.core.scInvariant name="Airport_M1_implicitContext" org.eventb.core.label="inv3" org

.eventb.core.predicate="queueH_in∈ℕ"/>

An example of an invariant that defines a system property regarding the relation of two

variables is shown below.

<org.eventb.core.scInvariant name="Airport_M1_implicitContex}" org.eventb.core.label="inv7" org

.eventb.core.predicate="queueH_out≤queueH_in"/>

4.2.4 Axioms

Axioms are presumed properties of carrier sets and constants. In context, an axiom exists

for every carrier set which contains a statement with partition property in its predicate.

This property contains all the constants that belong to this particular carrier set. For

instance the two snippets below show the declaration of constants, carrier set and their

relation with axioms.

<org.eventb.core.scAxiom name="Airport_C3" org.eventb.core.label="axm1" org.eventb.core.predi

cate="partition(Fuel_Level,{High},{Medium},{Low})"/>

<org.eventb.core.scCarrierSet name="Fuel_Level" org.eventb.core.type="ℙ(Fuel_Level)"/>

<org.eventb.core.scConstant name="High" org.eventb.core.type="Fuel_Level"/>

<org.eventb.core.scConstant name="Level_Number" org.eventb.core.type="ℙ(Fuel_Level×ℤ)"/>

<org.eventb.core.scConstant name="Low" org.eventb.core.type="Fuel_Level"/>

<org.eventb.core.scConstant name="Medium" org.eventb.core.type="Fuel_Level"/>

The range of carrier set would be available also in a predicate property.

<org.eventb.core.scAxiom name="Airport_C5" org.eventb.core.label="axm3" org.eventb.core.predi

cate="Level_Number∈Fuel_Level ⤖ 0 ‥ 2"/>

The above range from the axiom would be transformed in UPPAAL like:

typedef int[0,2] Fuel_Level;

23

4.2.5 Events

1. In airport control model case study [1], the model is constructed in the form of a state

machine by considering each event as an edge/transition from one state (given as part

of the guards with “isin_” keyword) to another (given as part of the actions with

“enter_” keyword). A variable “Airport_State0” is used to keep track of the state

machine state. When an event is triggered, the initial and final states are assigned to

“Application_State0” along with the guards and actions of that event. This variable is

also responsible to hold all states of the system.

2. If an event does not contain an action with label property having the “enter_” keyword,

it means that it is a self-loop transition on the source state of the event.

4.2.6 States

1. The initial state of the state machine is detected from the initialisation at the beginning

of the events section. The action with “init_” keyword is assigning the initial state to

the variable holding the state machine state information. To exemplify, as shown in

the snippet below and in Figure 2, the initial state machine state for all airplanes in the

airport control case study is “In_Air”. The rest of the initialisations concern the rest of

the variables of the system.

<org.eventb.core.scAction name="'" org.eventb.core.assignment="Airport_State0 ≔ PLANES ×

{In_Air}" org.eventb.core.label="init_Airport_State0"/>

Figure 2. Initialization of States

2. In case the initial location is not detected from the initialization section then the tool

searches for “isnotin_” keyword from the label property in the guards if it detects then

24

it initiate find location as initial location for instance if label property contains

“isnotin_sm” then “sm” is an initial location.

3. When events do not contain “isin_”, “enter_” or “isnotin_” keywords they are

considered as extra information for transformation to UPPAAL. It means that these

events are not part of the transitions of the state machine of the Event-B system. Such

events are handled as events that form separate UPPAAL automata themselves which

are then composed in parallel to form a complete automaton, as it is proposed in [1].

We elaborate more on this in the Case Study section.

4. When the label property of an action in an event contains the “leave_” keyword, it

would be considered also as the source state of the transition as with the “isin_” case.

The only difference is that “isin_” appears in guards and “leave_” appears in actions.

The target state of the transition would remain as described in statement 1 of Events

subsection 4.2.5 above, i.e., indicated with the “enter_” keyword in one of the actions.

Figure 3 shows the UPPAAL location extraction process in the form of a flow chart.

Figure 3. Step-by-step process to extract transition

4.2.7 Guards

1. The predicate property of guards in Event-B events holds the guard information for

UPPAAL edges. All guard would be considered except the ones containing the "isin_"

keyword in label properties. The reason is such guards represent the source locations

25

as explained earlier. Therefore, all guard tags with labels “grd(X)” are instantiated

guards for the transitions based on the process instance and the values are in predicate

properties.

2. In order to generalize the transformation of parameters of every guard from Event-B

on the basis of assumption 2 of section 4.1, the algorithm transforms the parameter by

using regular expression for UL for instance (X) => [id]. In Figure 4, X is equal to

“selfP” indicating the variables instantiation for each airplane.

Figure 4. Parameter declarations in Guards (Event-B)

3. In Event-B, “=” is used for machine guards (see Figure 5) but UPPAAL supports

equity operators as in C-like statements. Therefore, “=” is transformed to “==” for UL.

Figure 5. Replaceable equity signs in guards

4. In Figure 6, grd2 states that for all airplane instances their state is not equal to

Landing_Runway state from the Airport_State0 set. Since this is not supported directly

in UPPAAL guards, it has to be implemented in a C-like function in local declarations

of the UPPAAL template to be called from the guard. A similar solution has to be

applied for guards grd6 and grd7.

26

Figure 6. Complex guards in Event-B

4.2.8 Actions

1. The assignment properties of actions in events contain the value of assignment for the

corresponding UPPAAL updates on edges. All actions would be considered except the

ones containing "enter_" in label properties. The reason is this action represents the

destination location as stated earlier. Therefor all the other action tags with labels

would be defined as updates (assignments) in UPPAAL and their values are

assignment properties, as shown in Figure 7.

Figure 7. Identification of assignment

2. Functional override f(x): = E updates with value E the function f at place x1. When

function overrides exist in assignments of actions in Event-B for instance

(ELanding_Permission ≔ ELanding_Permission {selfP ↦ FALSE}) is transformed

like (ELanding_Permission [id] := false). Where “id” is defined on the basis of

assumption 2. For instance, in Figure 8 except first action with “enter_” keyword

which corresponds to the destination state, all actions are assignments where the

parameterized variables are of type bool and a value FALSE is assigned to them and

selfP corresponds to the id of the selected instance.

1 https://wiki.event-b.org/images/EventB-Summary.pdf

27

Figure 8. Functional override (Event-B)

3. Event-B uses Unicode character (U+2254) for assignment which visualizes similar to

colon equal in UPPAAL but they are not the same. Each platform supports different

characters and UL does not support Event-B ones, generally. Hence, “≔” is replaced

with “: =” or “=”.

Figure 9. Replaceable keyword in Events

4. Relation overriding in an Event-B action (X <+ Y or X Y) would be transformed

directly to X = Y in assignment of UPPAAL.

4.2.9 Event-B Mathematical Notation and Transformation to UTA

The complex mathematical operations in Event-B models can be implemented as C-

functions in UTA. Some of the most prominent complex operations are the following

below. Assume a relation regarding the favorite cities of some persons:

favoriteCities = {Khushboo↦Paris, Naveed↦Toronto, Shobit↦Venice, Jubril↦Makkah,

Nadeem ↦Sydney}

1. The domain of the relation is the set of the first of all pairs in the relation and written

as dom(favoriteCities) = {Khushboo, Naveed, Shobit, Jubril, Nadeem}

2. The range is quite similar to the domain, being the set of the second of all pairs in the

relation and written as ran(favoriteCities) = {Paris, Toronto, Venice, Makkah,

Sydney}

28

3. Ordered pairs (A ↦ B) is a relation set which represents relation between elements

of sets and written as (Naveed↦Toronto). One of the closest transformation to UTA

would be two-dimensional arrays.

4. Subset (A ⊆ B) A is a subset of a set B which means all elements of A are also

elements of B. Both sets can be equal as well. For instance, set {Toronto, Venice} is

subset of set {Paris, Toronto, Venice, Makkah, Sydney}

5. Minimum/Maximum bounds of a set X are denoted with Min(X)/Max(X).

6. The inverse (r˜) relation operation reverses the function and the mathematical

representation is (r −1). For instance, f(y) = x, after inverse (f −1), f(x) = y for instance

favoriteCities = {Khushboo↦Paris} inverse relation would be favoriteCities = {Paris ↦

Khushboo}

The above-mentioned set theory operations are used to manipulate the sets in Event-B in

one way or another. The equivalent to sets in UTA are arrays and there may be different

ways to achieve the same functionality as in Event-B. The ideal way would be to use

arrays in UTA and to perform array operations, functions must be defined with a

combination of multiple steps which is not possible in single statements. For instance, in

order to perform Min/Max operation in UTA there is no such direct operation in UTA as

Event-B has. A loop within a C-like function needs to be created and a sorting algorithm

to be applied to find Min/Max. Hence, these Event-B complex operations will be

considered as C-like functions in UTA. Below are some more set theory operations with

practical examples for Domain/Range Restriction and Subtraction.

29

7. Domain Restriction (S◁r) is a subset that contains all pairs of r where the first

element is in S. For instance, regarding the example relation favoriteCities:

{Shobit, Jubril}◁ favoriteCities = {Shobit↦Venice, Jubril↦Makkah }

In UTA a C-like function is needed to implement it.

8. Domain Subtraction (S⩤r) is a subset that contains all pairs of r where the first element

is not in S. For instance, regarding the example relation favoriteCities: {Shobit, Jubril}

⩤ favoriteCities = {Khushboo↦Paris, Nadeem↦Sydney}

To achieve this in UPPAAL, a function has to be defined and used in the guard or

assignment respectively.

For example, there is an event “Landing_HighPQ” in airport control system of [1] in

Event-B which contains an action “High_Pqueue ≔{selfP}⩤ High_Pqueue” for

domain subtraction of finite set of planes “{selfP}” from “High_Pqueue”, i.e.,

removing an airplane from the high priority queue when finally it can land. An

equivalent functionality has been accomplished in UTA by implementing a C function

as shown below.

void deHPqueue() // normal dequeue happens from High priority Queue

{

 int i = 0;

 --lenH;

 while (i < lenH)

 {

 HPqueue[i] = HPqueue[i + 1];

 i++;

 }

 HPqueue[i] = 0;

}

30

9. Range Restriction (r▷S) is a subset that contains all pairs of r where the second

element is in S. For instance, regarding the example relation favoriteCities:

favoriteCities ▷ {Venice, Paris} = {Shobit↦Venice, Khushboo↦Paris}

10. Range Subtraction (r⩥S) is a subset that contains all pairs of r where the second element is not

in S. For instance, regarding the example relation favoriteCities:

favoriteCities ⩥ {Shobit, Jubril} = {Khushboo↦Paris, Naveed↦Toronto,

Nadeem↦Sydney}.

Direct transformations for range restriction/subtraction are not possible from Event-B

to UTA. Therefore, this complex operation is implemented with a C-like function in

UTA.

11. Union of two sets X and Y, denoted by (X∪Y) is the set containing all elements of

both sets that are either in X or in Y or in both X and Y. In UTA, to perform union

operation a merge algorithm is needed to merge the two arrays corresponding to the

two sets.

12. Intersection of two sets X and Y, denoted by (X∩Y) is the set containing all elements

of A that also belong to B. In UTA, in order to find intersection of two sets, we

initialize a set to hold a common element and use a search algorithm for matching the

elements from both sets.

In general, set theory is represented in semantical form and to represent the same in a

programming language, some form of enumeration must be used. For example, the

supported enumeration in UTA is array which can contain multiple items and these items

can be looped through using custom logic to perform some set theory concept. Statement

numbers 13 to 23 below show additional mathematical operation of Event-B.

13. Partial functions: (⇸ Rightwards Arrow with Vertical Stroke) f ∈ X ⇸ Y, here f is a

function with many to one relation. It is defined for some values in its domain. As

Figure 10 shows below one and more than one are elements of domain X are mapped

with one element of Y.

31

Figure 10. Partial function

14. Relational image: r[S] is the set of values related to all elements of s under the relation

r.

15. Partial injections: (⤔ Rightwards Arrow with Tail with Vertical Stroke X ⤔ Y) One-

to-one relations.

Suppose A= {1,2,3} and B= {r, s, t, u, v} and

Here f is injective, and g is not injective.

16. Total injections: Rightwards Arrow with Tail: (X ↣ Y). It is similar to partial injection

but all elements are covered.

17. Partial surjections: (S ⤀ T) Rightwards Two-Headed Arrow with Vertical Stroke.

Every element of T has some element of S. It can also hold one to many mapping that

why it also called onto function.

Suppose f: A⤀ B and g: B⤀ C are surjective functions.

Then g∘f: A⤀C is surjective also.

18. Total surjections: S ↠ T It is similar to partial injection but all elements from domain

are covered also.

19. Bijections: (S ⤖ T) Rightwards Two-Headed Arrow with Tail. A function can be

bijection if and only if it is both an injection and a surjection. A bijection is also called

a one-to-one correspondence. Every element of S perfectly mapped to every element

of T.

If A= {1, 2, 3, 4} and B= {r, s, t, u}, then

f(1)=s g(1)=r

f(2)=t g(2)=t

f(3)=r g(3)=r

32

f(1)=u, f(2)=r, f(3)=t, f(4)=s,

Here f is a bijection.

20. Direct product: Circled Times (p ⊗ q) it is an operation that takes two sets and

constructs a new set.

21. Parallel product: (Parallel to) (p ∥ q) it represents the reciprocal value of elements.

22. Lambda (λ) abstraction is an anonymous function and it gets the name from usual

notation.

23. λp·P | E - P must constrain the variables in p. Below is an example of transformation

of Lambda abstraction from Event-B to UTA from the airport control system of [1].

Figure 11. The transformation of Event-B Lambda abstraction (left) to UTA C-like

functions (right) with FIFO queues [1]

In left side, action “act1” of event name “Send_HighPQ_Emerg_Req” contains lambda

abstraction and in right side, it transforms into C-like function in UTA, upper function

33

“Em_deHP_qu_idx” is declared in guard and lower function with name

“Em_deHP_queue” is declared in update of the edge.

Table 1 below shows the Event-B keywords we have discussed in this section and their

correspondence in UTA terms.

Table 1. Event-B keywords and their relation to UTA

4.3 Tools and algorithm

When Event-B machine is created under Event-B core plugin in Rodin platform and it

requires at least Java 1.6 and manipulates this machine into these file extensions.

Event-B UTA

isin_(X) X is Transition Source

enter_(Y) Y is Transition Target

States Locations

Transition Label Transition comment

File name Template name/ File name

File name File name

Event Transition

Guard Guard

Action Update

ℤ / ∅ Integer / Empty set or array

ScVariable Variable

≔ / (Assignment) := / (Update)

= / (Guard) / ≠ == / (Guard) / !=

⊥ / ¬ / ⇒ False / Negation / Imply

CAPITAL keywords (TRUE, FALSE) Small keywords (true, false)

34

Table 2. Rodin File Types

Files extension Root Element Type Content

.bum IMachineRoot Event-B Machine

.buc IContextRoot Event-B Context

.bcm ISCMachineRoot Event-B Statically Checked Machine

.bcc ISCContextRoot Event-B Statically Checked Context

.bpo IPORoot Event-B Proof Obligations

.bpr IPRRoot Event-B Proofs

.bps IPSRoot Event-B Proof Statuses

In order to create State-machine Diagram Layout, iUML-B State machines plug-in is used

which save State-machine Diagram as (.sdm) file extension. Event-B tool use XML file

for Event-B specification as (.bcm) file.

Figure 12. Overview of the transformation

This algorithm is written in C# programming language in form of window form

application.

35

 Case Study

During the initial stages of the work for this thesis the airport control system case study

from [1] was used in order to understand the mapping and test the early model

transformations implemented for the mapping tool. For the main development phase of

the tool implementation the European Rail Traffic Management System (ERTMS) case

study of [15] was used.

The authors of [15] demonstrated a systematic modelling of the safety-critical ERTMS

system with iUML-B state machines and class diagrams following the refinement-based

approach. ERTMS controls the train movement on a linear track. The Virtual Block

Detector (VBD) provides locations to trains and tracks them virtually. All the movements

of trains are managed by the Radio Block Centre (RBC). VBD provides information of

free track section to RBC. Movement Authority (MA) issued by RBC permits the

movement of trains.

The model for this case study consists of two parts: 1) The system under test which is

composed of RBC and VBD, 2) the environment consisting of trackside equipment and

the trains. The trackside equipment consists of Virtual Sub Sections (VSS) and the

Trackside Train Detection (TDD). In other words, VSS is the track sections and TDD is

the trackside train detection for the group of VSS.

Trains and tracksides report locations to VBD and VBD informs RBC about the free track

sections. MAs by RBC are then allocated to the trains for the sections of the tracks that

they can move into. Trains that are connected to VBD, send the following information: i)

train current position, ii) length of the train, iii) and the train confirmation as integral or

not. Trains are separated into three categories: controlled (with guaranteed free track

sections), trusted (possible free track sections) and the ghost trains that are not

communicating for any reason. If the train is not communicating with VBD, then VBD

will consider that train is still respecting the MA authorisation and is still in mission.

In total eight refinement steps were performed. To exemplify the tool-based mapping we

focus on the fifth refinement step. Figure 13. shows the iUML-B state machine for the

train component. Together with train’s local events, additional interface events are shown

which are the events for receiving and sending information from/to VBD and RBC. These

36

interface events together with other events for the controlling by the VBD and its

communication with the other components of the overall system, they are not part of any

other state machine diagram, rather, they are only depicted in a class diagram to visualise

component dependencies (see Figure 14). The specification of all these events (including

train’s events) is written in the usual Event-B way in Rodin platform.

Figure 13. The state machine of train component of 5th refinement step of ERTMS [15]

Figure 14. Class diagram representing dynamic aspects of the ERTMS environment [15]

When applying the developed mapping tool to generate the UTA model from the iUML-

B/Event-B model, if a component is modelled with a iUML-B state machine then this

state machine is transformed to an explicit UTA template with similar model skeleton

adhering to the mapping propositions in Section 4. The Train UTA template is presented

37

in Figure 15. The close visual resemblance to the original state machine is clear. State

names from the state machine are the corresponding location names in UTA template.

Transition/event names are translated to edge names in comments in the corresponding

edges. Since this 5th refinement step of ERTMS already includes a lot of details modelled

with various complex mathematical operations in guards and actions, most of the guards

and updates include C function placeholders indicating where the modeller needs to

implement the C functions corresponding to the Event-B mathematical operations. The

function placeholder name is composed of a prefix “fn_” followed by the variable name

of the complex guard or assignment. Moreover, the tool adds in comment lines the

relevant original Event-B specification for assisting in what has to be implemented in the

function bodies.

Figure 15. Mapped ERTMS Train state machine to UTA1

Let us exemplify with the mapping of a single full event. Figure 16. shows the Event-B

specification for event “RBC_shrink_ma”. The ANY clause in the specification contains

two parameters “tr” and “vss_set” which are transformed into SELECT non-deterministic

choice parameters on the transition in UTA. As per statement 2 of Section 4.2.5 above,

1 https://bitbucket.org/shobitjain/thesis-eventb-to-uppaal/src/master/Generated_ERTMS_UPPAAL_Model.xml

38

because this event contains only “isin_” in one of the expressions in the WHERE clause,

the transition is applied as a self-loop transition and the rest of the expressions are added

as guards on this transition. Simple guards are directly translated to UTA and for the

complex expressions, a function placeholder is added instead which will contain the logic

for it, as stated above. Similarly, In THEN clause, due to the complex nature expression

of the action, it is translated in UPPAAL using a placeholder for the C-like function to be

finally implemented.

Figure 16. Event RBC_shrink_ma in Event-B

Figure 17. shows corresponding representation of the above mentioned event in iUML-B

and UPPAAL. iUML-B model contains the event and the state “connected” on which the

event “RBC_shrink_ma” is applied. The same state (location) is generated in UPPAAL

with the same transition and the properties applied on the transition are based on the

specification mentioned for Figure 16.

Figure 17. iUML-B (left) and UPPAAL (right) model for event RBC_shrink_ma

Regarding the rest of the ERTMS events that they do not belong to an iUML-B state

machine, the mapping tool groups them in a separated UTA template as shown in Figure

18. Since the enabling conditions of these events are mutual exclusive, the events can be

39

modelled as different local self-loop transitions on the same location. This mapping

decision conforms also what was proposed in [2] regarding mapping of pure Event-B

events not supported by any iUML-B diagram.

Figure 18. Tool generated ERTMS controller1

40

 Validation of results

The first stage for validation of the results is based on visual inspection comparing the

original Event-B/iUML-B model against the generated UTA model. Regarding the

ERTMS case study, this stage confirms that the generated UTA model is for the biggest

part as expected. For full validation some manual steps need to be still performed

concerning the completion of the UTA model. The C-like functions have to be

implemented, the separate templates need to be synchronized fully with any common

global variables and additionally with synchronization channels and any real-time

information needs to be added to the model to allow the verification of the timing

properties of the system. After these manual steps the UTA model can be simulated (and

system timing properties can be model-checked) and its traces can be compared with the

simulation traces generated by the ProB animator [16] for the Event-B model allowing

for complete validation of the correctness of the mapping.

 Conclusion

In this thesis we demonstrated the implementation decisions for a tool for transforming

Event-B/iUMLB models to UTA. Our goal was to establish an automated mapping

process enabling the combination of the two formalisms to mutually complement each

other for the formal development of complex systems. Some steps need to be still

manually performed by the modeller to finalize the UTA model but, nevertheless, a

complete and structured skeleton for the UTA model is automatically generated together

with all necessary information to finalize the model.

41

 Future work

Although the provided assumptions, findings and implementation of the tool are generic

enough for transforming Event-B models to UTA, there are several improvements that

can still be made. One direction is to take into account also the iUML-B class diagrams

to structure in even better way the generated UTA templates. For example, by

investigating closer the class diagram in Figure 14 a better decomposition of the system

components could be applied instead of having just two UTA templates. Another future

work is about automating the implementation of at least some of the C-like functions to

model in UTA the Event-B complex guards and assignments. This would reduce the

amount of manual work required to complete the UTA model. Furthermore, the tool

functionality can be extended to be able to infer refined variable declarations and other

gluing information between refinement levels in Event-B side of the modelling process.

Currently the tool transforms individual refinement levels and the modeller is then

responsible to add missing information from previous refinement steps.

42

References

[1] F. Shokri-Manninen, L. Tsiopoulos, J. Vain, and M. Waldén, “Integration of

iUML-B and UPPAAL Timed Automata for Development of Real-Time Systems with

Concurrent Processes,” in Rigorous State-Based Methods, Cham, 2020, pp. 186–202, doi:

10.1007/978-3-030-48077-6_13.

[2] J. Vain, L. Tsiopoulos, and P. Boström, “Integrating Refinement-Based Methods

for Developing Timed Systems,” 2016, doi: 10.1201/b20053-17.

[3] D. Cansell, D. Méry, and J. Rehm, “Time Constraint Patterns for Event B

Development,” in B 2007: Formal Specification and Development in B, Berlin,

Heidelberg, 2006, pp. 140–154, doi: 10.1007/11955757_13.

[4] C. Zhu, M. Butler, and C. Cirstea, “Refinement of timing constraints for

concurrent tasks with scheduling,” in Abstract State Machines, Alloy, B, TLA, VDM, and

Z: ABZ 2018, May 2018, vol. 10817, pp. 219–233, Accessed: Jan. 02, 2021. [Online].

Available: https://eprints.soton.ac.uk/419024/.

[5] C. Zhu, M. Butler, and C. Cirstea, “Semantics of real-time trigger-response

properties in Event-B,” in 2018 International Symposium on Theoretical Aspects of

Software Engineering (TASE), Aug. 2018, pp. 150–156, doi: 10.1109/TASE.2018.00028.

[6] J.-R. Abrial, Modeling in Event-B: System and Software Engineering. Cambridge:

Cambridge University Press, 2010.

[7] J. Berthing, P. Boström, K. Sere, L. Tsiopoulos, and J. Vain, “Refinement-Based

Development of Timed Systems,” in Integrated Formal Methods, Berlin, Heidelberg,

2012, pp. 69–83, doi: 10.1007/978-3-642-30729-4_6.

[8] M. Garoui, B. Mazigh, and A. Koukam, “The EventB2PN Tool: From Event-B

specification to Petri Nets through model transformation,” in 2015 IEEE/ACIS 16th

International Conference on Software Engineering, Artificial Intelligence, Networking

and Parallel/Distributed Computing (SNPD), Jun. 2015, pp. 1–7, doi:

10.1109/SNPD.2015.7176278.

[9] A. Furfaro and L. Nigro, “Modelling and Schedulability Analysis of Real-time

Sequence Patterns using Time Petri Nets and Uppaal,” 2007.

[10] A. Fürst, T. S. Hoang, D. Basin, K. Desai, N. Sato, and K. Miyazaki, “Code

Generation for Event-B,” Cham, 2014, pp. 323–338.

43

[11] M. Jastram and P. M. Butler, Rodin User’s Handbook: Covers Rodin v.2.8. North

Charleston, SC, USA: CreateSpace Independent Publishing Platform, 2014.

[12] M. Y. Said, M. Butler, and C. Snook, “A method of refinement in UML-B,” Softw.

Syst. Model., vol. 14, no. 4, pp. 1557–1580, Oct. 2015, doi: 10.1007/s10270-013-0391-z.

[13] T. S. Hoang, “An Introduction to the Event-B Modelling Method,” in Industrial

deployment of system engineering methods, Springer, 2013, pp. 211–236.

[14] G. Behrmann, A. David, and K. G. Larsen, “A Tutorial on Uppaal,” in Formal

Methods for the Design of Real-Time Systems, vol. 3185, M. Bernardo and F. Corradini,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 200–236.

[15] D. Dghaym, M. Poppleton, and C. Snook, “Diagram-Led Formal Modelling Using

iUML-B for Hybrid ERTMS Level 3,” in Abstract State Machines, Alloy, B, TLA, VDM,

and Z, Cham, 2018, pp. 338–352, doi: 10.1007/978-3-319-91271-4_23.

[16] J. Bendiposto, M. Lescheul, O. Ligot, and M. Samia, “La validation de modèles

Event-B avec le plug-in ProB pour RODIN,” Tech. Sci. Inform., vol. 27, no. 8, pp. 1065–

1084, Oct. 2008, doi: 10.3166/tsi.27.1065-1084.

44

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Shobit jain

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Implementation of model transformations between Event-B and UPPAAL

Timed Automata”, supervised by Leonidas Tsiopoulos.

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

05.01.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

