

Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Tengiz Pataraia 177329

EMBEDDED CONTROL SYSTEM

DEVELOPMENT FOR AN AUTONOMOUS

VEHICLE TEST PLATFORM

Master's thesis

Supervisor: Raivo Sell

 Senior Research

Scientist

Co-supervisor Eduard Petlenkov

 Professor

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Tengiz Pataraia 177329

SISSEJUHATUD KONTROLLISÜSTEEMI

ARENDAMINE AUTONOOMSE SÕIDUKI

KATSE PLATFORMILE

Magistritöö

Juhendaja: Raivo Sell

 Venemteadur

Kaasjuht Eduard Petlenkov

 Professor

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Tengiz Pataraia

06.05.2019

4

Abstract

Embedded control systems are one of the most challenging fields of software engineering

Development process of such applications involves knowledge and understanding of

several engineering disciplines. This thesis emphasises on one of the most distinctive

applications of embedded systems – vehicle control system in robotics. The goal of this

thesis is to give a technical overview of the vehicle platform, provide an extensive

introduction on open and closed-loop control systems along with their practical

implementation.

Some of the key takeaways from this study is closed-loop controller mathematics, modern

practices and frameworks for programming ARM Cortex-M4 microcontrollers and

creating industry standard electrical wiring and software flow diagrams of the control

system.

Thesis presents an implementation of modern practices of mobile robot control system

architecture such as modular control system for different actuators and sensors.

This thesis is written in English and is 47 pages long, including 6 chapters, 16 figures and

3 tables.

5

List of abbreviations and terms

DPI Dots per inch

TalTech Tallinn University of Technology

ARM Acron RISC Machine

MCU Microcontroller unit

UDP User Datagram Protocol

CAN Controller Area Network

UART Universal Asynchronous Receiver-Transmitter

UGV Unmanned Ground Vehicle

ATV All-Terrain Vehicle

ROS Robot Operating System

GPIO General Purpose Input/Output

GPS Global Positioning System

ID Identifier

I/O Input/Output

HAL Hardware Abstraction Layer

PID Proportional Integral Derivative

SPL Standard Peripheral Library

AI Artificial Intelligence

ECS Embedded Control System

6

Table of Contents

1 Introduction ... 10

1.1 Project background and motivation ... 11

1.2 Authors contribution .. 12

1.3 Outline of the thesis ... 12

2 Control systems ... 14

2.1 Embedded control systems ... 15

2.2.1 Embedded control system challenges .. 16

2.2 Modular architecture concept and novelty of the idea ... 16

3 Description of the vehicle .. 18

3.1 Equipment layout on the vehicle .. 19

3.2 Technical requirements .. 21

3.3 Motor drivers as control objects layout .. 22

3.2.1 Rear wheel motor driver .. 23

3.2.2 Front motor driver ... 23

3.2.3 Brake motor driver .. 23

3.2.4 Electrical connections .. 24

3.4 Control system equipment .. 26

3.2.1 UDP and CAN bus protocols .. 26

3.2.2 UDP frame ... 27

3.5 Microcontroller board description .. 28

4 General vehicle software architecture ... 30

4.1 Robot Operating System... 31

4.2 Autoware .. 31

4.3 Embedded control system software architecture .. 34

4.2.1 Drive system flow diagrams .. 34

5 Vehicle control Implementation .. 37

7

5.1 General procedure for control system design ... 37

5.2 Choice of PD control .. 38

5.3 Proportional derivative control implementation ... 39

5.4 Proportional derivative control of the steering ... 40

5.5 Proportional derivative control step testing results .. 43

6 Summary .. 45

References .. 46

8

List of figures

Figure 1 Control Loops .. 16

Figure 2 Mobile platform Uku.. 18

Figure 3 General layout of the vehicle ... 19

Figure 4 Controller box layouts .. 23

Figure 5 drive controllers ... 24

Figure 6 Electrical wiring ... 25

Figure 7 Internal block diagram [6] .. 27

Figure 8 available GPIO pins on the controller .. 29

Figure 9 hardware architecture block diagram ... 30

Figure 10 Software diagram of the vehicle .. 33

Figure 11 Flow diagram of three control unit... 35

Figure 12 control system setup guidelines ... 38

Figure 13 Control system block diagrams for steering and rear wheel drive 40

Figure 14 Wheel angle measurement positions .. 41

Figure 15 excel trendline for potentiometer angle mapping .. 42

Figure 16 Step testing recording from one steering edge to another 44

9

List of tables

Table 1 List of sensors and actuators on the robot ... 20

Table 2 UDP message frame example .. 27

Table 3 Angle measurements ... 41

10

1 Introduction

Embedded systems have very diverse applications across multiple engineering

disciplines. Range of these applications can be scaled from small consumer electronics

such as digital watches or wearable devices to large stationary or dynamic complex

systems such as space rockets, factory controllers, avionics or automotive industry

controllers. The complexity of these embedded system processor units is as diversified as

their application fields, however, in this thesis, we will be dealing with, microprocessors

and microcontroller process units for medium and large scale embedded safety critical

systems.

The thesis will contemplate different stages of development of the embedded software

control system for autonomous and semi-autonomous all-terrain vehicle platform. The

main aim of this study is to introduce the concept of a modular control system and

emphasise more on the development of the embedded software for each module.

The primary goal of technical development of this thesis is to create embedded

applications for different control units, design the most optimal control system for each

driver, and create a codebase for the controller board that will ease the software creation

of other control units on the specified vehicle platform for other students in future.

Secondary goal of the thesis is to describe different communication protocols on the

vehicle, explain the working principle of high and low-level software on this autonomous

vehicle. Describe existing hardware on the vehicle and create new efficient electrical

diagrams for some sensors and actuators.

After the completion of the first prototype we should analyse how does our developed

embedded application interact with higher level software and the physical vehicle which

in this case is different driver units. Test, tune and validate the control system and

compare it to other development methods used in the industry.

11

1.1 Project background and motivation

The main reason and one of the biggest motivation behind the development of new control

system architecture for Uku was the project called ISEAUTO [5] which is the first self-

driving car project development in Estonia. The project aim was to create a fully

autonomous self-driving vehicle. The lifespan of this project was more than a year and

lasted from June 2017 to March 2019. This period included development of mechanical

structure, control system hardware, firmware and high-level software development. Due

to the project complexity and short deadlines, the development processes of each primary

subsystem such as high-level software (AI), control system hardware and software should

have happened parallelly to each other.

Thanks to modern technologies it is easy to do comprehensive tests of autonomous

vehicles in the laboratory in different virtual environments; however, developing the

safety-critical system such as autonomous vehicles requires different means of testing and

validation.

Let us further break down the development concept. At the beginning of the ISEAUTO

project, there was an urgent need of having a test platform that would have functionalities

precisely similar to the project so that controlling both, test platform ATV and the final

car platform would be precisely similar to one another. Robot Uku, in this case, was the

perfect mobile robot that could be upgraded to modern standards and support technical

requirements set for the final autonomous bus platform.

Due to the aim and motivation of the development process, final product and architecture

of Uku’s control system are influenced by the final ISEAUTO self-driving car control

system. Differences from one another are caused due to the different controllers,

electronic circuits, control units, mechanical body and other reasons related to the use

case and technical differences of each vehicle. Even though development process was

going independently from one another main structure of the final control system for both

bus and the ATV platform is derivative from one another except the fact that Uku’s

control system has highly modular control system approach comparing to the final bus

platform.

One of the objective outcomes of this project was writing a research paper called

“Modular smart control system architecture for the mobile robot platform” for

12

MMM2019 conference. This paper emphasizes on research of current technologies in

today's mobile robotics industry.

1.2 Authors contribution

Following thesis thoroughly describes high-level software and hardware architecture of

the vehicle, however main emphasis is on the development of embedded application and

control system for this vehicle.

Besides the understanding of this complex system and taking part in the integration of the

high-level software, the most significant contribution of this thesis and technical

development of this project is creating firmware for controllers for this vehicle. Below is

the list of the main contribution of this thesis:

▪ Explore existing drive, motor and hardware systems on the vehicle

▪ Chose general software frameworks for control unit such as Standard Peripheral

Library versus Hardware Abstraction Layer Library (SPL vs HAL Libraries)

▪ Configure general data bus (CAN bus) for the controller module (STM32F303)

▪ Take part in ROS and vehicle integration

▪ Understand and be able to run most of the functionalities of ROS and configure

high-level software on PC so that it controls the embedded software as expected

▪ Construct general embedded software architecture according to standards for the

main drive controller module and create a codebase for future projects

▪ From the general codebase create a separate control system for each drive system

▪ Create new electrical wiring diagrams

▪ Create a software PID control system for controller units

▪ Tune PID controllers for most optimal autonomous and manual driving

To support these statements, a big part of the following text will be dedicated to the

general description of the vehicle software and hardware architecture and working

principles.

1.3 Outline of the thesis

Chapter 2: General theory and history of control systems, importance such systems in

many fields of engineering. Provides the overview of modular control systems, the

13

reasoning behind choosing this type of architecture and its advantages over other control

architectures

Chapter 3: Gives the technical background necessary to understand the mobile robot

vehicle platform.

▪ Describes functionalities of each motor drivers and presents them as control

objects.

▪ Sub-chapter presents a microcontroller unit as a control module. Gives a thorough

overview of the capabilities of this microcontroller unit (MCU) and reasoning

behind choosing it

▪ Control system requirements, communication protocols

Chapter 4: Explains the overview of general software architecture on all levels of

hardware. Connection diagram of all devices and message flow between primary vehicle

components.

Chapter 5: General lifecycle of the control system development. The reasoning behind

choosing the Proportional Derivative control. Step testing and tuning.

Chapter 6: The Last chapter concludes the full project development and presents several

objective outcomes from it.

14

2 Control systems

First theoretical analysis of control systems has been done by James Clerk Maxwell in

1868 in the paper “On Governors” [1]. In this research, Maxwell studied several types of

Governors which by that time were already successfully used in various products such as

windmills and steam engines as a mechanical speed, pressure and distance regulators.

Even though Governors have been used in industry, the theoretical basis of this device

was not yet defined. For the first time in history, Maxwell introduced a distinction

between proportional and integral control. Maxwell turned the analysis of Governors into

the stability analysis of linearised systems. This method at a time was a breakthrough

because the dominant method of stability study was energy conservation.

A governor is a part of a machine by means of which the velocity of the machine [...] is

kept nearly uniform, not with standing variations in the driving power or the resistance.

Most governors depend on the centrifugal force of a piece connected with a shaft of the

machine. When the velocity increases, this force increases, and either increases the

pressure of the piece against a surface or moves the piece, and so acts on a break or a

valve. [1]

This reference above is an excerpt from Maxwell’s paper “On Governors” indicates that

the emphasis of the study was to achieve zero-error regulation in the presence of constant

uncertainties and therefore highlights the fact that “control theory” deserves paternity of

Maxwell.

When we think of governors today, we can say that they are ancestors cruise control

systems in today’s automotive industry.

Theory of Maxwell has gone through many iterations of mathematical and scientific

advancements. Furthermore, the latest development of electronics and computer

technologies created a possibility to solve problems with modern day control systems far

more sophisticated and advanced then Maxwell’s Governors did. Some of the greatest

achievements of human history like landing on a moon and coming back on earth safely

on an Apollo mission became possible thanks to advanced control systems such as

15

Kalman filter [2]. One of the outstanding engineering achievements in the 21st century

was the autonomous precision landing of space rockets achieved by private company

SpaceX [3].

2.1 Embedded control systems

Having mentioned some of the backgrounds histories of foundations of the control system

and some of the outstanding achievements of human history in control engineering we

can start analysing the basis of control engineering more closely. Let us discuss the main

building blocks of control science why is it useful and how is it connected to the topic of

this research.

Roland S. Burns in his book Advanced Control Engineering describes: “Fundamentals to

any control system is the ability to measure the output of the system, and to take corrective

action if its value deviates from some desired value.” [3]. Alternatively, to put it in other

words control theory solves the problem of generating desired output from the plant which

is the system that we want to control.

Nowadays most used control systems are embedded systems in wide ranges of

applications. Embedded systems in most cases are complex systems; they consist of

multiple subcomponents that can monitor a broad range of activities and development of

such systems include the cooperation and joint effort of software and hardware designers.

This thesis will discuss control systems built on top of the embedded systems and authors

contribution is mainly designing embedded software application.

The thesis will present two basic types of the control loop, open-loop and closed-loop

control systems. Closed loop control systems, in general, are more sophisticated and

precise because their input depends on the system output and therefore plant continually

trying to adjust to the set position; therefore every closed-loop process has three main

tasks: to measure, to compare and to adjust.

Open-loop control systems, on the other hand, are expected to operate without feedback

and therefore are more likely to experience deviations from the setpoint because of any

disturbances from the environment.

16

Figure 1 Control Loops

2.2.1 Embedded control system challenges

Besides the extensive use of embedded systems in the industry, there are multiple

challenges that need addressing while designing these systems. Many research papers

make their focus on problems such as flexibility of control systems, security and

reliability reconfigurability and robustness cost efficiency of these systems [4].

Control system design presented in this paper will try to resolve some of these issues

based on the modular architecture concept.

2.2 Modular architecture concept and novelty of the idea

Modular architecture concepts have been defined and used previously in many types of

research and publications about mobile robotics. Development of this concept started

more than a decade ago, and the reason behind this was to find a certain degree of overlap

between two different fields of robotics. Modules in this concept would be components

that would enable the transfer of the expertise developed in one research project to

another.

Despite its popularity and thorough research in mobile robot industry this concept is not

yet fully formalised. Professor S Virk describes concept of the “module” in his paper

“CLAWAR: Modular Robots for the Future ” as follows: “A module for mobile robots is

described as any functionally complete device, or sub-assembly, that can be

independently operated and can be readily fitted and connected to, or in combination

with, additional modules to comprise a complete and functionally reliable system.” [5]

According to this definition, module should be plug and play component that can be

reused in different systems and projects with minimal effort of integration. Let us take an

example of a simple analogue sensor (potentiometer). Today if we need to integrate an

analogue sensor into our system we have to go through several steps. First, we should use

17

a separate microcontroller unit and then program it so that we can get readings out of it.

This is one of the best and very well tested practice in the robotics industry today; however

modular system concept cannot be considered as a “module”. According to the definition

above analogue sensor can be considered as a module if it has a particular type of data

bus on which the whole robot operates. This type of communication would make even

the most straightforward analogue sensor independently operational and usable in every

system that operates on that particular data bus.

Other than highly configurable nature of modular systems it is essential to note that they

are more fault tolerant than traditional control systems; this is mainly the cause of the

reduced dependency on a single control unit. This feature is crucial for safety-critical

robots when for example the single unit is damaged in a system it does not cause the

whole system malfunction and other parts of the machine to continue working as

instructed. The system also enables to double most critical modules and create

redundancy in between each subsystem.

18

3 Description of the vehicle

Robot mechanical platform was built several years ago in Tallinn University of

Technology as a multi-purpose off-road vehicle capable of withstanding harsh weather

conditions and suited to drive in an off-road environment. The robot has gone many

iterations of minor development through these years and has been used as research

material for Tallinn University of Technology students, lecturers and professors for

various engineering disciplines. See the picture of the mobile platform below in figure 2.

Figure 2 Mobile platform Uku

During the last, decade there were many changes to the mechanical body of the robot.

Multiple experiments were done on this robot platform with different sensor sets and

software algorithms. However, the central brain of the robot was still running on an old

Windows machine. On the hardware side, all controllers, firmware and communication

protocols of the machine stayed similar to its initial design. After many years, technology

has advanced, and Uku was no longer capable of catching up with modern trends of

technology, and therefore some hardware and software parts needed redesign from

scratch.

19

3.1 Equipment layout on the vehicle

The main mechanical body of the robot Uku was built on the base of an all-terrain vehicle

(ATV). The robot is equipped with three main driving electrical motors. The most

powerful motor which is used to drive the primary vehicle is attached to the rear wheels

and is controlled with its dedicated motor driver. Relatively smaller motor is placed in

the front of the robot and is dedicated for steering. The smallest drive unit of the robot

drive system is linear actuator which is used for breaking and parking operations in case

the rear motor regenerative break is not able to entirely stop the robot.

Drive actuator controller units in the vehicle are distributed across the vehicle in separate

boxes where they are enclosed together with the motor drivers and driver “motherboards”.

See the picture of the general layout of the vehicle below in figure 2.

Figure 3 General layout of the vehicle

20

The robot is also equipped with multiple sensory units. Sensors on this robot can be

separated into two groups. Ones that are connected directly to the control system and ones

that are directly connected to the robot’s central computing unit. The first group of sensors

such as potentiometers and encoders are dedicated to the separate control system units

and do not send their measurements to the central computing unit. On the other hand, the

second group of sensors are main perception tools for robot and therefore are more

sophisticated and require their software drivers for the computer. Sensors that belong in

this group are 2d cameras, 3d and 2d laser scanners (Lidars), depth sensors, sonar sensors,

GPS, gyroscope, and so forth. Full list of the actuator and sensory units can be seen below

in the table.

Table 1 List of sensors and actuators on the robot

 Type Manufacturer Quantity Purpose

Drive

actuator

DC motors 1 • Responsible for

main drive system

• Regenerative

braking

Steering

actuator

DC motors Lynch Motor

Company Ltd

1 • Steering operations

Brake

actuator

Linear DC

motors

Elero GmbH 1 • Brake

• Parking mode

Sensors 2d Lidar Sick

Rplidar

2 ● Safety

● obstacle

detection/avoidance

21

3d Lidar Velodyne

VLP16

1 ● 3d mapping

● localisation

● navigation

Sonar sensors Saab 5 ● safety

● obstacle

avoidance/detection

GPS Xsense 1 ● Localisation

● Navigation

3.2 Technical requirements

Software architecture details were set based on technical requirements of the ISEAUTO

project the communication protocol between controllers on Uku would have to be similar

to those in the final self-driving car. On the other hand, there was more freedom to choose

the layout of controllers on the robot and make a new robust architecture. Other than

requirements from the self-driving car project, the main focus was to create a safe, easily

reconfigurable and scalable system where each module/microcontroller has a task to

control each locomotion unit across the platform separately.

Previously communication on Uku between computer and low-level controllers were

using serial protocols; however today serial protocols are not as fast and do not fulfil

requirements for real-time applications. This time communication protocol from

computer to the lower level systems happens with Universal Datagram Protocol (UDP).

Messages from the Linux computer are sent to one controller that can receive UDP

messages, and then this control unit distributes them to other controllers using Controller

Area Network bus (CAN bus). The controller that translates UDP messages to CAN

messages is called Master controller and has a role of the buffer from computer to the

drive controllers, and therefore it does not do any calculations or interaction with other

hardware.

22

The development process included choosing the correct controllers and writing firmware

for it. However, each locomotion unit and sensor had a separate driver, and therefore they

needed separate approach and development. All in all, three locomotion units needed

separate firmware; all of them had dedicated controllers and control system development

was the primary task of this thesis. Other than these controllers there were tasks with

secondary priority such as controlling the light of the robot, reading sonar sensors and

transferring values to the computer and reading encoder values to measure the speed of

the robot.

3.3 Motor drivers as control objects layout

Control objects in this project were DC drive units, all of them different from one another

with their I/O characteristics and load handling capabilities. As mentioned earlier there

were three central motor drive units on the vehicle one for the linear dc motor for vehicle

braking, one for the steering dc servo motor and one for the dc servo drive motor for rear

wheels.

Each control module and other microelectronics are enclosed into the separate water-

resistant control boxes. These boxes themselves connect with thin CAN bus wires to each

other and with power cables to the motors and battery units. Even though all the STM32

microcontroller modules are the same layout inside all boxes are different. Figure 5 below

shows the general picture of all control boxes.

23

a. Steering control box b. Drive control box c. Master and brake control

box

Figure 4 Controller box layouts

3.2.1 Rear wheel motor driver

Rear wheel motor is the most significant DC motor on the vehicle and is equipped with a

“Sigma“ drive system which is one of the most advanced controllers on the vehicle. This

drive system is designed for heavy load applications such as industrial trucks, golf cars

and material handling equipment. The unit itself is built to withstand shock vibration and

extreme temperature environments. Control algorithms of this driver ensure efficient,

smooth acceleration and deceleration without overloading DC motor with high torque.

Motor control algorithms also ensure safe reversing and motor regenerative braking while

moving with fast speeds. See the picture of the brake controller in figure 4. A.

3.2.2 Front motor driver

The front motor is equipped with 60A motor controller from RoboClow family of motion

controllers. This drive unit is the very versatile programmable unit with different control

options. The driver also supports multiple feedback devices and therefore can be used as

an open-loop or a closed-loop speed or position control units. In our application feedback

functions of this driver is not utilize; however, a closed loop control system is

implemented on our controller for more flexible control options. See the picture of the

river below in figure 4. B.

3.2.3 Brake motor driver

Finally, the third controller is a simple H-bridge with the peak current up to 2 amperes.

This controller is used for controlling a linear actuator which is cheap easy to implement

and easy to change in case it brakes. The braking system for this vehicle is used only

when motor regenerative braking is not enough to stop the vehicle or in cases when we

want to park the vehicle on a downhill. See the picture of the controller in figure 4. C.

24

A. Rear drive

controller link

B. Front drive

controller link

C. Brake controller

link

Figure 5 drive controllers

3.2.4 Electrical connections

One of the contribution while designing the control system for the vehicle was to take

part in the design process of the electrical diagrams for each control module. Priorities

for designing electrical diagrams were choosing right electrical components and came up

with the safe and efficient installation of all control modules, switches sensors and other

vehicle equipment.

Below in figure 6, you can see the general control system wiring layout. As it is presented

on the figure, the power source for all the modules on the vehicle is lithium ion battery

pack which is later distributed into two power lines: one 5 volt line for microcontrollers

and one 12 volt power line for the motors, lights and other high power consumption

devices.

http://alpatek.com/product/sigma-drive/
https://www.pololu.com/category/124/roboclaw-motor-controllers
https://www.aliexpress.com/item/L298N-Module-Dual-H-Bridge-Stepper-Motor-Driver-Board-Modules-for-Arduino-Smart-Car/32412365961.html

25

Figure 6 Electrical wiring

Power line for microcontrollers was separated from the battery pack by DC/DC step down

converter which converts 24 volts into 5 volts of electrical potential. Connecting all

controllers on the same power line means that startup and shut down for all controllers

will happen simultaneously. Arranging microcontrollers on one line also enables to power

on and off all microcontroller units simultaneously from one control switch (push button)

on a power line.

CAN bus and power cables for microcontrollers are enclosed in one 4-strand circular

wire, one twisted pair for the CAN bus and one twisted pair for the power line. End of

each line was enclosed in industry standard “male” connectors which would directly plug

into each control box from outside into the wall mounted “female header”. Control from

the wall mounted header extends on the other side of the wall and directly connects to

each microcontroller unit. This type of mechanical structure uses the controller box as a

buffer which reduces the shock impact in case of rough road conditions on the wires and

increases the overall safety of the vehicle.

Mechanical design of this connector allows connection of male and female headers

only in one direction which reduces the risk of reverse connection, protects the

vehicle from water and standardises the electrical circuit. Building such small details

in the vehicle improve the overall integrity and quality of the whole control system

and the vehicle in the long run.

26

3.4 Control system equipment

Modular architecture concept was applied to the base system Uku in several steps. The

first step was getting the prototype of the master controller that would ensure delivery

and translation of UDP messages from the computer to the other controllers on the CAN

bus. A prototype of the master controller was designed and programmed in the scope of

ISEAUTO project final car, and therefore this thesis does not include the development of

firmware for this controller. The second step included the creation of the concept of the

modular control system, integration and programming of all motor and sensor drivers on

separate controller units.

3.2.1 UDP and CAN bus protocols

As mentioned earlier control system of Uku runs on two communication protocols (data

bus): Universal Datagram Protocol (UDP) and Controller Area Network bus (CAN bus).

Unlike other communication protocols, UDP does not have any flow control feedback

and error correction mechanisms. Therefore, it is used for applications where fast and

continues data exchange is required; such applications are video and audio streaming and

other multimedia applications.

The main advantage of UDP is having no retransmission and flow control concepts. In

scenarios where the vehicle is moving, and there is a small fault between the computer

and the vehicle control it is crucial to continue working without error checking and data

retransmission. System data retransmission in such scenarios might cause car deviation

from the path and result in a crash because of data delivery latency.

27

Figure 7 Internal block diagram [6]

3.2.2 UDP frame

UDP messages from the computer come into predefined frame. The current configuration

of the UDP frame contains 12 bytes and includes ID of the message and set value of the

message. Message IDs on UDP and CAN bus are the same. Below on table 2, you can

see frame structure. It is important to note that frame length is scalable depending on the

number of modules, control units and control variables available on a bus.

Table 2 UDP message frame example

Byte# Datatype Data Endian

1 uint8_t Speed ID Big endian

2-5 char[4] Speed value Big endian

6 uint8_t Steering wheel ID Big endian

7-10 char[4] Steering wheel value Big endian

28

11 uint8_t Brake ID Big endian

12 uint8_t Brake value Big endian

3.5 Microcontroller board description

All control units on the drive system are based on one hardware which runs on ARM

Cortex M4 MCU (microcontroller unit) with the serial number STM32F303CBT6. This

specific hardware was developed before the start of the project outside the university by

one Estonian private company. Initially, this controller was custom design for the back

wheel driver controller board to fit on top of the motherboard pinouts of the drive control

unit. For the simplicity of the whole system, this very hardware was used as a controller

for other drive units as well. Main advantages of this microcontroller unit is that it is

compact, has 27 available input-output pins and supports several communication

interfaces such as CAN, I2C, SPI, UART and USB. Out of these protocols CAN bus is

the data bus that we will be using and discussing in this study. Out of 27 I/O pins hardware

design of the board enables us to program 21 I/O pin and reconfigure it based on the use

case. Figure 7 below represents the ability of each MCU pin outlined in green and one

use case of each pin outlined in red.

The nature of this control system design ended up being useful while developing the

firmware for the drive system and sensors in many ways. The first reason was that because

all the drive systems would have to be programmed on the same microcontroller unit that

would mean less redundant work while setting up communication protocols for different

microcontrollers. Let us review two separate use case where we need to set up ADC

channel (analogue to digital converter) for one sensor and PWM light control for front

lights which are both controlled from the PC through the master controller. This would

mean that many pins on the MCU would stay unchanged such as CAN RX/TX pins,

USART1 TX/RX (Universal Synchronous/Asynchronous Receiver/transmitter) pins,

other LED (light-emitting diode) indicators which are on the board already. In such case

only a single pin would have to be programmed in one case it is PWM on let us say PB0

and ADC on PA0.

29

This concept was used for the design of most of the control units on this control system

where some pins such as CAN bus RX/TX baud rates, update frequencies and LED

indicators are same through the whole control system. Another advantage of this type of

design is that it also enabled us to create a specific codebase which is easily reconfigurable

and understandable for future students and can be easily modified in case of some driver

updates or other sensor edition.

Due to the research environment in the universities, this aspect of having one codebase

and one controller for multiple sensors and drivers is crucial for laboratory workers and

academic stuff for several reasons. One main reason other than its functionality is that

students who write their thesis or a course project based on some university equipment

are working in laboratories in short periods of times where this time in most cases is spent

in understanding the system and getting environment and set up such as software and

hardware ready for the actual work. Therefore having a ready codebase and instructions

where most communication protocols are configured plays a huge role in the speed of

development for future projects and make the process more automated for research

assistants.

Figure 8 available GPIO pins on the controller

30

4 General vehicle software architecture

Overall control and autonomous operations of the vehicle happens on three hardware and

two software levels. Three-level hardware control represents the base level

controllers/modules that are directly connected to sensors and actuators, the second level

is the master controller, and the third is PC. Two level software control is represented

firstly by high-level software in PC which takes care of autonomous, manual driving and

decision making and secondly firmware which runs master and drive controllers. The

simplest way to understand the working principle of the whole system we should

understand how the different hardware units are interconnected. Figure 5 shows the

diagram of the hardware layout and is one of the best representations of the whole control

system. The top part of the figure shows high functional sensor sets which are perception

tools for the robot and is used for vehicles autonomous driving. Next component of the

system is PC which is the central brain of the vehicle and runs on Ubuntu operating system

which itself is one of the most popular Linux distribution based on Debian.

Figure 9 hardware architecture block diagram

31

4.1 Robot Operating System

Nowadays many new cutting-edge robot technologies are based on the Robot Operating

System. Our robot Uku is no exception, and it is taking advantage of ROSs core features.

As it is open-source software that allows inter-process communication and provides all

the tools to build a robust system while keeping sanity on all levels of communication.

ROS being a robotic middleware it provides excellent tools to organise complex robotic

systems and have communication easily on both low-level firmware and higher-level

hardware abstraction layer. One of the significant advantages of ROS is that one can have

communication between many independent nodes on the number of independent

architectures, e.g. Arduino publishing and laptop subscribing different streams of data.

ROS itself is a master-slave communication where we have one ROS master and many

different slave nodes. One of the main tasks of ROS is to run multiple processes

simultaneously on different devices, pass messages between processes, manage packages

from all processes, provide a different driver for many types of sensors. In pursuance

ROS to tackle these problems, it uses several simple paradigms:

▪ Nodes - executables that publish or subscribes streams of data in the form of

message, topic or service.

▪ Master- registers all nodes and directs them to each other

▪ Messages- a data structure that is published into the topic

▪ Services- contain request and response message information.

4.2 Autoware

Software development of Uku went through multiple iterations of development during

the last one year. The development process was done mainly by the software team of

ISEAUTO project; however software integration to the real platform was the result of the

joint effort of both teams.

The core of the software stack used in ISEAUTO was based on one of the most popular

open-source software for self-driving vehicles called Autoware [7]. This software is

developed and runs on the Ubuntu operating system which is Linux based distribution

and ROS which is a middleware for sensors hardware and the vehicle controllers.

32

Autoware solves many problems based on the latest autonomous vehicle trends and

technologies. Main features of Autoware can be divided into three separate sections,

perception, decision making and mission planning. These three sections could as well be

divided into other subsections of computational tasks such as localisation, object

detection, mission and motion planning, intelligent algorithms for decision making and

so forth.

As mentioned earlier Autoware is based on the Robot Operating System which provides

a strong foundation of the whole software architecture. Autoware benefits from ROS in

several ways. Firstly after installation of Autoware, installing multiple sensor drivers

separately is no longer necessary because it already has integrated and field tested many

ROS sensor drivers which are maintained by the ROS community. Other then sensor

drivers Autoware successfully utilises many software packages such as Gazebo for 3D

simulations, OpenCV for computer vision, segmentation and tracking, PCL (Point Cloud

Library) for LiDAR data processing, Cuda (Compute Unified Device Architecture)

libraries for parallel computing for GPU image processing for computers that have

NVIDIA GPUs.

Diagram figure 6 represents the diagram of the core software blocks running on the main

computer of the vehicle. Diagram itself is the derivative of Authorware's software stack

description figure from the paper “Autoware on Board” [7] and is edited based on the

latest use case of the Robot Uku.

33

Figure 10 Software diagram of the vehicle

Understanding of higher level software helps to imagine the whole system better and see

how commands are generated for electronic control units. Figure 6 describes a software

stack diagram of the whole system; however, since we are dealing with control systems,

we are most interested in several blocks from this diagram.

Control of the vehicle from upper-level software happens with two different message

types: velocity command and steering angle command. These two messages are set points

for control units of the vehicle control system. This means that if Autoware commands to

decelerate high-speed control system should be able to autonomously decide to decelerate

with the help of motor regenerative brakes or using brake controller. Generation of these

two messages happens is done by motion planning node. Another block of software that

takes part in all control operations is “ROS-UDP bridge”. This stack of software was built

as part of the final ISEAUTO bus platform. The main task of this node is to translate ROS

messages from motion planning node to UDP messages and send it out through ethernet

terminal to low-level controllers.

34

4.3 Embedded control system software architecture

This sub-chapter will present the general software flow diagram which includes specific

function of each module and explains similarities of error handling processes across three

drive systems: for steering, rear wheel and brake controllers.

Embedded control systems (ECS) in many research papers are represented as a separate

class of embedded systems mostly because of their mission-critical activities and dynamic

requirements of the control software [8]. Development of ESCs in the, for example,

automotive or avionics industry is a prolonged process. Robustness and reliability is the

cornerstone for these ECS applications and therefore software development, testing and

validation process happens parallelly in multiple iterations of the development process

which can last years and sometimes decades. Usually, transport vehicles do not support

embedded application Over the Air Updates (OTA), and therefore their firmware update

is done once in many years during the vehicle maintenance process.

Even the embedded application designed in this project is supposed to run on a single

vehicle it is still able to cause some damage since it operates in public places and therefore

the vehicle can be considered as a critical safety system.

4.2.1 Drive system flow diagrams

Starting the embedded application design process is always related to the thorough

understanding of the physical environment and electrical components to which the

controller is interacting.

Various electronic components such as analogue sensors, encoders, motor drivers need

the entirely different configuration of MCU I/O pins, internal and external clocks, PWM

settings and control logic setup. Even though all the drive control software needed

different setup of peripherals, some software blocks are similar on all control panels.

Let us start a control flow description by looking at the figure 11 diagram. As said earlier

all control units are on the same power line and therefore their startup time is

simultaneous. The graph below is constructed to emphasise this principle and show three

different process flow which is initiated from a single point when the vehicle platform

was powered up.

35

Software blocks in this diagram are divided into several units. CAN bus receiving and

message handling unit, message value handling unit and finally value conversion unit into

different PWM signals depending on the corresponding motor driver type. One of the

primary aggregates of this figure is that: due to the modular architecture concept, initial

process and error handling for CAN bus messages on each control unit are similar to one

another. The main difference of control module software is the configuration of

peripherals and the way these control processes are handled.

Figure 11 Flow diagram of three control unit

Brake module control flow represents an open loop control system and is easiest to handle

because the controller receives Boolean 1 or 0 message whether or not brake should be

pressed or not.

Steering and drive control units, on the other hand, are more sophisticated closed-loop

control systems and include feedback message receive and pwm calculation functions.

Proportional Derivative control process will be thoroughly described in next chaptar of

this thesis.

36

These flow diagrams do not show all the initialisation processes, but it instead presents

control loop after CAN bus message is received. The figure also does not include a

diagram of how PID control processes but control flow is represented instead in blocks

of software operations.

37

5 Vehicle control Implementation

This chapter presents each step of the firmware development of the modular control

system for each module. The outcome of the overall control system for this vehicle is to

design control processes, find sufficient control algorithms and determine needed control

loop components for each module to guarantee the smooth control of the vehicle in both

autonomous and manual mode. The main focus for the control process design was to

reduce the variability of the process value, increase efficiency to make processes less

maintenance dependent and ensure overall safety.

Process control as every field in engineering and science has some internationally defined

terms that help us define specific processes. These definitions are rather trivial;

nevertheless, they help to keep clarity while describing the control process.

▪ Set value - set point, the value that is desired to be maintained

▪ Measured variable - plant output, a variable which should be kept at the designated

set point

▪ Error- Difference between the measured variable and the set value.

▪ Control algorithms - mathematical expressions of the control function that we are

trying to achieve

▪ Disturbance - undesired change from the environment.

5.1 General procedure for control system design

In general, the first step of the design process is to establish the system goals and problems

it solves after the resolution of the project. The second step is to assign variable to the

hardware we desire to control. The third step is to write specifications and accuracy

requirements and finally, based on the precision requirements chose the proper feedback

devices and in some cases actuator units. After setting these practical guidelines, part

includes the setup of the hardware and the software environment on a test bench. See if

the given microcontroller can satisfy the set requirements and then configure GPIO and

communication protocols.

38

Figure 12 control system setup guidelines

More precise guidelines of the design and implementation of control systems are shown

in figure 6 above. These guidelines of the control system development which was

presented in the book by Mutambara in the book “Design and Analysis of Control

Systems” [9].

5.2 Choice of PD control

In most cases, PID control of the object was sufficient, easy to implement and robust way

of control. One of the focus of designing the control system to create a somewhat unique

system so that different motor controllers would use the same PID but with different gain

parameters and coefficients.

Main advantages of creating a PID controller is that it is easy to implement, highly

reliable, easy to test/troubleshoot and easy to understand. PID itself is an acronym, and it

stands for the Proportional Integral Derivative. These terms describe how the error is

handled during control operations. This means that in proportional controller error will

39

be multiplied by a constant number. Let us call this number Kp. In the integral path, the

error is multiplied by Ki and then integrated. In final derivative action, the error would be

multiplied by the Kd and differentiated. After all these mathematical operations result is

summed to produce controller output.

It is important to note that having all actions of PID is not needed in most of the

applications. Today industry implements four basic behaviour types of PID. P controller,

PI controller, PID controller and PD controller. All these controller types have their

advantages and disadvantages depending on the control object specifications like stable

or unstable and so forth.

Comparative study of PD, PI and PID controllers have been done published in

international journal of engineering and science (IJES) [10]. Based on this study using a

combination of proportional and derivative action (PD) was most reasonable for multiple

reasons. PD action characteristics in this study were derived from the tests on a single

joint robot which can be considered a similar system to a steering controller of our test

platform. Based on the results of this study PD action has a fast response to the set-point,

smaller steady-state error, Large disturbances and noise present in the system are handled,

oscillation cancelling and damping of overshoots [10]. Characteristics described in this

test results were most suitable for our system because of the disturbances from the

feedback sensors and critical consequences in case of an overshoot of the setpoint which

was handled by the PD controller.

5.3 Proportional derivative control implementation

From the control system set up guidelines description above, one of the main tasks of the

process is the choosing of feedback sensors and test bench setup of each control plant.

Control objects ware already chosen (see control object description subchapter) now we

had to choose feedback sensors for each control process.

The mechanical structure of the steering was designed in a way that degree of rotation of

the steering motor was restricted from 60 to - 60 degrees of rotation. A small degree of

rotation enabled us to have a single analogue sensor (potentiometer) as a feedback

mechanism where the analogue output pin is the indicator of the wheel angle position. On

40

the other hand, the rear, the wheels control system used incremental mechanical encoder

for feedback control which is attached to the rear shaft of the vehicle.

The PD control algorithm for each controller was designed similarly so that the

implementation of the PD control becomes as easy as just changing the data input

parameters and controller coefficient.

Let us review the example of steering and velocity control processes. Figure 7 below

presents a control system block diagrams of steering and rear wheel controllers. Left, side

of the figure shows the control of the rear wheels, and the right side shows the control of

the steering operation. Difference between these control systems is only in terms of

implementation and setup of the GPIO pins for PWM generation and sensor value

readings.

Figure 13 Control system block diagrams for steering and rear wheel drive

5.4 Proportional derivative control of the steering

After all components of the system were chosen now we had to configure microcontroller.

As mentioned in the previous section steering controller uses the analogue sensor for

feedback. To get analogue sensor readings to the microcontroller unit pure Analogue to

Digital Converter (ADC) was set up on one GPIO pin which would measure an analogue

change from the potentiometer output pin. After successfully integrating potentiometer to

the microcontroller, it was necessary to determine what were the values of the

potentiometer in different wheel positions to determine maximum angles vehicle

mechanical structure can make and record corresponding potentiometer values.

41

Figure 14 Wheel angle measurement positions

Most notable were measurements in three different steering position, extreme left, middle

and extreme right. Top view wheel illustration of this three position is shown above in

figure 10.

Table 3 Angle measurements

 Angle [rad] potentiometer values from

ADC

Max left 1 1865

Middle 0 1422

Max right -1 1020

Measurement results are presented in table 3 above. After we know maximum and

minimum angles of the vehicle, it is necessary to configure software on the ROS side to

define steering angle limits for this specific vehicle to guarantee that computer sends

steering floating values in the range of -1.0 and 1.0 radian. This will guarantee maximum

precision of the vehicle control on later stages for both autonomous and manual control.

After knowing the threshold values of the UDP messages and their corresponding

potentiometer readings, it is necessary to construct the formula that will map the range of

UDP angle values to the range of potentiometer readings. This step is necessary for PD

control implementation.

42

Mapping one range of values to another was achieved by linear interpolation using the

Microsoft Excel program table 3 by drawing the trendline of the date given in the same

table. After plotting the tradeline, it is not possible to export its corresponding equation

using Microsoft Excel. Tradeline can be seen below in figure 9 and extracted equation (1)

𝑦 = 422.5 × 𝑥 + 1442.3 (1)

Where y is potentiometer value, and x is setpoints sent from the master controller which

means that every time control signal is received from the master controller it is mapped

in the potentiometer values and then these two values are used for proportional

derivative control implementation and error measurement.

Figure 15 excel trendline for potentiometer angle mapping

The second step of steering control development was creating mathematical formulas for

PD control based on the setup and control values that we have already defined. For more

clearance let us list all control variables below:

▪ Input- master controller, commanded variable in the range from -1.0 to 1.0 radian

and mapped to the potentiometer measurement range from 1020 to 1865 (see

table 3)

▪ Feedback- potentiometer in the range from1020 to1865

▪ The control signal to the drive controller- pulse Width Modulation actuating

signal which in our formula is PD control output

43

The equation below represents the PD control formula where 𝑢 is a static characteristic

𝑘𝑑 is derivative gain, 𝑘𝑝 is proportional gain 𝑑𝑒 and 𝑑𝑡 are changed in error and time,

and 𝑒 is the error.

𝑢 = 𝑘𝑝 + 𝑒 + 𝑘𝑑
𝑑𝑒

𝑑𝑡
 (2)

Now let us break down this formula and analyse the proportional and integral action

influence on control process. Proportional action generates a rapid response to the

present changes in input by generating immediate changes in output and therefore

speeds up the error elimination process. Derivative action offsets output signal by the

amount proportional to the rate at which the input is changing and therefore protects

the control process from overshooting. In short “if proportional action tells the output

how far to move when an error appears derivative action tells the output how far to

move when the input ramps” [11].

5.5 Proportional derivative control step testing results

A crucial part of the process control is properly tuning of the controller. Since our

controller board built on STM32 microcontroller, it was possible to use third party

software STM-studio to visualise and capture real-time values of each control variable.

Our primary focus during testing was the comparison of set-value from the master

controller and feedback value from the analogue sensor. As described in previous chapters

we were given set values from -1.0 float value to 1.0 float radian value. Figure 11 below

shows tradelines of these two variables. The blue line represents the angle request, and

the green line represents analogue sensor feedback. The y-axes of the coordinate system

on figure 11 represent angle values in radians, and x-axes represent time in milliseconds.

Here we should note that analogue sensor feedback has many disturbances and therefore

has an unstable tradeline which should also be encountered while tuning the vehicle

wheels to avoid constant jitter of the steering wheels.

Test processes were validated by step-testing, and the primary goal of the test was to tune

coefficients of the PD parameters to achieve the most optimal control speed and avoid

overshoots. All testing procedures were conducted in the laboratory were test platform in

44

the static position which in general influenced settling due to the high friction of standing

wheels compared to the moving wheels. Example of figure 11 shows one of the most

optimal results after tuning. This exact process shows one full turn of the wheels from the

extreme left angle of the vehicle to the extreme right angle of the wheel and the whole

settling time was around 8 000 milliseconds (8 seconds) which is a perfect result if we

consider the fact that vehicle was standing.

Figure 16 Step testing recording from one steering edge to another

Tuning and adjustment of the PD controller were done during the autonomous rides as

well. Test results showed that steering control was one of the most important for

autonomous mode driving. Control system with high derivative gains was creating an

aggressive control of the steering and was causing vehicle deviation from the path. If

settling time was too slow vehicle was unable to do sharp turns.

Tuning of the PD control for steering was the result of a trial and error method to sync

high-level and low-level software together.

45

6 Summary

The thesis presents the development of an embedded control system for the self-driving

car test platform. The author guides through the development and rapid prototyping cycles

of the autonomous vehicle platform while keeping the main focus on creating an efficient

embedded control system with the modular architecture. The study was conducted in

collaboration with different parties from different engineering disciplines, and different

faculties within the university. The main objectives from the beginning of the project

were to create a test vehicle which would be operational in a short period and enable

conducting outdoor tests.

In pursuance of, creating a background necessary to understanding technical development

and main objectives of the thesis, a big part of the thesis is dedicated to the presentation

of the technical equipment and mechanical structure of the vehicle. The thoroughly

described high-level software architecture, low-level controller wiring and functional

diagrams of the developed firmware gives an understanding on the scale of the whole

project and makes it easy to comprehend the reasons behind authors choice for specific

frameworks and control algorithms.

Carefully chosen components such as STM32 microcontrollers and frameworks such as

HAL libraries gave a significant advantage while creating a robust control system in a

timely manner. Wide range of peripheral and their configurability options on STM32

microcontrollers gave the possibility to have a single microcontroller unit for multiple

sensors and drive units.

Obtained results from this working test platform was a standardised modular control

system which brought significant advantage to the project of ISEAUTO and still remains

fully functional system for other future projects. The created control system is flexible

and easily reconfigurable for most of the students thanks to the modular architecture

concept and created codebase for other module integration.

46

References

[1] J. Maxwell, “On Governors,” 5 March 1868.

[2] a. M. Leonard and F. S. Stanley, “Discovery of the Kalman Filter as a Practical

Tool for Aerospace and Industry,” November 1985.

[3] R. S. Burns, Advanced Control Engineering, London, 2001.

[4] P. A. a. J. S. A. Crespo, Embedded Control Systems: From Design to

Implementation, 2007.

[5] G. . S. Virk, “CLAWAR: Modular Robots for the Future,” 9-11 November 2002.

[6] R. Sell, E. Väljaots, T. Pataraia and E. Malayjerdi1, “Modular smart control

system architecture for the mobile robot platform,” 2019.

[7] S. Kato, S. Tokunagay, Y. Maruyamay, S. Maeday, M. Hirabayashiz, Y.

Kitsukawaz, A. Monrroyz and T. Andoz, “Autoware on Board: Enabling

Autonomous Vehicles with Embedded Systems,” April 2018.

[8] G. H. H. a. D. S. J. Jan F. Broenink, Software for Embedded Control Systems *.

[9] R. H. Bishop, Modern Control Systems, 2011.

[10] D. E. Oku and P. E. Obot, Comparative Study of PD, PI And PID Controllers for

Control of a Single JOint System in Robot, 2018.

[11] T. R. Kuphald, Lessons In Industrial Instrumentation, 2015.

[12] L. S. Sterling, The Art of Agent-Oriented Modeling, London: The MIT Press,

2009.

[13] A. P. L. o. S. Rockets, “Lars Blackmore”.

[14] R. Sell, A. Rassõlkin , M. Leier and J. P. Ernits , “978-1-5386-5413-2/18/$31.00

©2018 European Union Self-driving car ISEAUTO for research andeducation,”

2018.

[15] G. H. H. a. D. S. J. Jan F. Broenink, “Software for Embedded Control Systems,”

2002.

