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Abstract 

Embedded control systems are one of the most challenging fields of software engineering 

Development process of such applications involves knowledge and understanding of 

several engineering disciplines. This thesis emphasises on one of the most distinctive 

applications of embedded systems – vehicle control system in robotics. The goal of this 

thesis is to give a technical overview of the vehicle platform,  provide an extensive 

introduction on open and closed-loop control systems along with their practical 

implementation. 

Some of the key takeaways from this study is closed-loop controller mathematics, modern 

practices and frameworks for programming ARM Cortex-M4 microcontrollers and 

creating industry standard electrical wiring and software flow diagrams of the control 

system. 

Thesis presents an implementation of modern practices of mobile robot control system 

architecture such as modular control system for different actuators and sensors. 

 

 

This thesis is written in English and is 47 pages long, including 6 chapters, 16 figures and 

3 tables. 
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1 Introduction 

Embedded systems have very diverse applications across multiple engineering 

disciplines. Range of these applications can be scaled from small consumer electronics 

such as digital watches or wearable devices to large stationary or dynamic complex 

systems such as space rockets, factory controllers, avionics or automotive industry 

controllers. The complexity of these embedded system processor units is as diversified as 

their application fields, however, in this thesis, we will be dealing with, microprocessors 

and microcontroller process units for medium and large scale embedded safety critical 

systems. 

The thesis will contemplate different stages of development of the embedded software 

control system for autonomous and semi-autonomous all-terrain vehicle platform. The 

main aim of this study is to introduce the concept of a modular control system and 

emphasise more on the development of the embedded software for each module.  

The primary goal of technical development of this thesis is to create embedded 

applications for different control units, design the most optimal control system for each 

driver, and create a codebase for the controller board that will ease the software creation 

of other control units on the specified vehicle platform for other students in future. 

Secondary goal of the thesis is to describe different communication protocols on the 

vehicle, explain the working principle of high and low-level software on this autonomous 

vehicle. Describe existing hardware on the vehicle and create new efficient electrical 

diagrams for some sensors and actuators.  

After the completion of the first prototype we should analyse how does our developed 

embedded application interact with higher level software and the physical vehicle which 

in this case is different driver units. Test, tune and validate the control system and 

compare it to other development methods used in the industry. 
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1.1  Project background and motivation 

The main reason and one of the biggest motivation behind the development of new control 

system architecture for Uku was the project called ISEAUTO [5] which is the first self-

driving car project development in Estonia. The project aim was to create a fully 

autonomous self-driving vehicle. The lifespan of this project was more than a year and 

lasted from June 2017 to March 2019. This period included development of mechanical 

structure, control system hardware, firmware and high-level software development. Due 

to the project complexity and short deadlines, the development processes of each primary 

subsystem such as high-level software (AI), control system hardware and software should 

have happened parallelly to each other.  

Thanks to modern technologies it is easy to do comprehensive tests of autonomous 

vehicles in the laboratory in different virtual environments; however, developing the 

safety-critical system such as autonomous vehicles requires different means of testing and 

validation.  

Let us further break down the development concept. At the beginning of the ISEAUTO 

project, there was an urgent need of having a test platform that would have functionalities 

precisely similar to the project so that controlling both, test platform ATV and the final 

car platform would be precisely similar to one another. Robot Uku, in this case, was the 

perfect mobile robot that could be upgraded to modern standards and support technical 

requirements set for the final autonomous bus platform. 

Due to the aim and motivation of the development process, final product and architecture 

of Uku’s control system are influenced by the final ISEAUTO self-driving car control 

system. Differences from one another are caused due to the different controllers, 

electronic circuits, control units, mechanical body and other reasons related to the use 

case and technical differences of each vehicle. Even though development process was 

going independently from one another main structure of the final control system for both 

bus and the ATV platform is derivative from one another except the fact that Uku’s 

control system has highly modular control system approach comparing to the final bus 

platform.  

One of the objective outcomes of this project was writing a research paper called 

“Modular smart control system architecture for the mobile robot platform” for 
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MMM2019 conference. This paper emphasizes on research of current technologies in 

today's mobile robotics industry.  

1.2 Authors contribution 

Following thesis thoroughly describes high-level software and hardware architecture of 

the vehicle, however main emphasis is on the development of embedded application and 

control system for this vehicle.  

Besides the understanding of this complex system and taking part in the integration of the 

high-level software, the most significant contribution of this thesis and technical 

development of this project is creating firmware for controllers for this vehicle. Below is 

the list of the main contribution of this thesis: 

▪ Explore existing drive, motor and hardware systems on the vehicle 

▪ Chose general software frameworks for control unit such as Standard Peripheral 

Library versus Hardware Abstraction Layer Library (SPL vs HAL Libraries) 

▪ Configure general data bus (CAN bus) for the controller module (STM32F303) 

▪ Take part in ROS and vehicle integration 

▪ Understand and be able to run most of the functionalities of ROS and configure 

high-level software on PC so that it controls the embedded software as expected 

▪ Construct general embedded software architecture according to standards for the 

main drive controller module and create a codebase for future projects 

▪ From the general codebase create a separate control system for each drive system 

▪ Create new electrical wiring diagrams 

▪ Create a software PID control system for controller units 

▪ Tune PID controllers for most optimal autonomous and manual driving 

To support these statements, a big part of the following text will be dedicated to the 

general description of the vehicle software and hardware architecture and working 

principles.  

1.3 Outline of the thesis 

Chapter 2: General theory and history of control systems, importance such systems in 

many fields of engineering. Provides the overview of modular control systems, the 
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reasoning behind choosing this type of architecture and its advantages over other control 

architectures 

Chapter 3: Gives the technical background necessary to understand the mobile robot 

vehicle platform.  

▪ Describes functionalities of each motor drivers and presents them as control 

objects.  

▪ Sub-chapter presents a microcontroller unit as a control module. Gives a thorough 

overview of the capabilities of this microcontroller unit (MCU) and reasoning 

behind choosing it 

▪ Control system requirements, communication protocols  

Chapter 4: Explains the overview of general software architecture on all levels of 

hardware. Connection diagram of all devices and message flow between primary vehicle 

components. 

Chapter 5: General lifecycle of the control system development. The reasoning behind 

choosing the Proportional Derivative control. Step testing and tuning. 

Chapter 6: The Last chapter concludes the full project development and presents several 

objective outcomes from it.  
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2 Control systems 

First theoretical analysis of control systems has been done by James Clerk Maxwell in 

1868 in the paper “On Governors” [1]. In this research, Maxwell studied several types of 

Governors which by that time were already successfully used in various products such as 

windmills and steam engines as a mechanical speed, pressure and distance regulators. 

Even though Governors have been used in industry, the theoretical basis of this device 

was not yet defined. For the first time in history, Maxwell introduced a distinction 

between proportional and integral control. Maxwell turned the analysis of Governors into 

the stability analysis of linearised systems. This method at a time was a breakthrough 

because the dominant method of stability study was energy conservation. 

A governor is a part of a machine by means of which the velocity of the machine [...] is 

kept nearly uniform, not with standing variations in the driving power or the resistance. 

Most governors depend on the centrifugal force of a piece connected with a shaft of the 

machine. When the velocity increases, this force increases, and either increases the 

pressure of the piece against a surface or moves the piece, and so acts on a break or a 

valve. [1] 

This reference above is an excerpt from Maxwell’s paper “On Governors” indicates that 

the emphasis of the study was to achieve zero-error regulation in the presence of constant 

uncertainties and therefore highlights the fact that “control theory” deserves paternity of 

Maxwell. 

When we think of governors today, we can say that they are ancestors cruise control 

systems in today’s automotive industry.   

Theory of Maxwell has gone through many iterations of mathematical and scientific 

advancements. Furthermore, the latest development of electronics and computer 

technologies created a possibility to solve problems with modern day control systems far 

more sophisticated and advanced then Maxwell’s Governors did. Some of the greatest 

achievements of human history like landing on a moon and coming back on earth safely 

on an Apollo mission became possible thanks to advanced control systems such as 
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Kalman filter [2]. One of the outstanding engineering achievements in the 21st century 

was the autonomous precision landing of space rockets achieved by private company 

SpaceX [3]. 

2.1 Embedded control systems 

Having mentioned some of the backgrounds histories of foundations of the control system 

and some of the outstanding achievements of human history in control engineering we 

can start analysing the basis of control engineering more closely. Let us discuss the main 

building blocks of control science why is it useful and how is it connected to the topic of 

this research. 

Roland S. Burns in his book Advanced Control Engineering describes: “Fundamentals to 

any control system is the ability to measure the output of the system, and to take corrective 

action if its value deviates from some desired value.” [3].    Alternatively, to put it in other 

words control theory solves the problem of generating desired output from the plant which 

is the system that we want to control. 

Nowadays most used control systems are embedded systems in wide ranges of 

applications. Embedded systems in most cases are complex systems; they consist of 

multiple subcomponents that can monitor a broad range of activities and development of 

such systems include the cooperation and joint effort of software and hardware designers. 

This thesis will discuss control systems built on top of the embedded systems and authors 

contribution is mainly designing embedded software application.  

The thesis will present two basic types of the control loop, open-loop and closed-loop 

control systems. Closed loop control systems, in general, are more sophisticated and 

precise because their input depends on the system output and therefore plant continually 

trying to adjust to the set position; therefore every closed-loop process has three main 

tasks: to measure, to compare and to adjust.  

Open-loop control systems, on the other hand, are expected to operate without feedback 

and therefore are more likely to experience deviations from the setpoint because of any 

disturbances from the environment. 
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Figure 1 Control Loops 

2.2.1 Embedded control system challenges 

Besides the extensive use of embedded systems in the industry, there are multiple 

challenges that need addressing while designing these systems. Many research papers 

make their focus on problems such as flexibility of control systems, security and 

reliability reconfigurability and robustness cost efficiency of these systems [4].  

Control system design presented in this paper will try to resolve some of these issues 

based on the modular architecture concept. 

2.2 Modular architecture concept and novelty of the idea 

Modular architecture concepts have been defined and used previously in many types of 

research and publications about mobile robotics. Development of this concept started 

more than a decade ago, and the reason behind this was to find a certain degree of overlap 

between two different fields of robotics. Modules in this concept would be components 

that would enable the transfer of the expertise developed in one research project to 

another.    

Despite its popularity and thorough research in mobile robot industry this concept is not 

yet fully formalised. Professor S Virk describes concept of the “module” in his paper 

“CLAWAR: Modular Robots for the Future ” as follows: “A module for mobile robots is 

described as any functionally complete device, or sub-assembly, that can be 

independently operated and can be readily fitted and connected to, or in combination 

with, additional modules to comprise a complete and functionally reliable system.” [5] 

According to this definition, module should be plug and play component that can be 

reused in different systems and projects with minimal effort of integration. Let us take an 

example of a simple analogue sensor (potentiometer). Today if we need to integrate an 

analogue sensor into our system we have to go through several steps. First, we should use 
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a separate microcontroller unit and then program it so that we can get readings out of it. 

This is one of the best and very well tested practice in the robotics industry today; however 

modular system concept cannot be considered as a “module”. According to the definition 

above analogue sensor can be considered as a module if it has a particular type of data 

bus on which the whole robot operates. This type of communication would make even 

the most straightforward analogue sensor independently operational and usable in every 

system that operates on that particular data bus.  

Other than highly configurable nature of modular systems it is essential to note that they 

are more fault tolerant than traditional control systems; this is mainly the cause of the 

reduced dependency on a single control unit. This feature is crucial for safety-critical 

robots when for example the single unit is damaged in a system it does not cause the 

whole system malfunction and other parts of the machine to continue working as 

instructed. The system also enables to double most critical modules and create 

redundancy in between each subsystem. 
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3 Description of the vehicle 

Robot mechanical platform was built several years ago in Tallinn University of 

Technology as a multi-purpose off-road vehicle capable of withstanding harsh weather 

conditions and suited to drive in an off-road environment. The robot has gone many 

iterations of minor development through these years and has been used as research 

material for Tallinn University of Technology students, lecturers and professors for 

various engineering disciplines. See the picture of the mobile platform below in figure 2. 

 

Figure 2 Mobile platform Uku 

During the last, decade there were many changes to the mechanical body of the robot. 

Multiple experiments were done on this robot platform with different sensor sets and 

software algorithms. However, the central brain of the robot was still running on an old 

Windows machine. On the hardware side, all controllers, firmware and communication 

protocols of the machine stayed similar to its initial design. After many years, technology 

has advanced, and Uku was no longer capable of catching up with modern trends of 

technology, and therefore some hardware and software parts needed redesign from 

scratch. 
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3.1 Equipment layout on the vehicle 

The main mechanical body of the robot Uku was built on the base of an all-terrain vehicle 

(ATV). The robot is equipped with three main driving electrical motors. The most 

powerful motor which is used to drive the primary vehicle is attached to the rear wheels 

and is controlled with its dedicated motor driver. Relatively smaller motor is placed in 

the front of the robot and is dedicated for steering. The smallest drive unit of the robot 

drive system is linear actuator which is used for breaking and parking operations in case 

the rear motor regenerative break is not able to entirely stop the robot. 

Drive actuator controller units in the vehicle are distributed across the vehicle in separate 

boxes where they are enclosed together with the motor drivers and driver “motherboards”. 

See the picture of the general layout of the vehicle below in figure 2. 

 

Figure 3 General layout of the vehicle 
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The robot is also equipped with multiple sensory units. Sensors on this robot can be 

separated into two groups. Ones that are connected directly to the control system and ones 

that are directly connected to the robot’s central computing unit. The first group of sensors 

such as potentiometers and encoders are dedicated to the separate control system units 

and do not send their measurements to the central computing unit. On the other hand, the 

second group of sensors are main perception tools for robot and therefore are more 

sophisticated and require their software drivers for the computer. Sensors that belong in 

this group are 2d cameras, 3d and 2d laser scanners (Lidars), depth sensors, sonar sensors, 

GPS, gyroscope, and so forth. Full list of the actuator and sensory units can be seen below 

in the table. 

Table 1 List of sensors and actuators on the robot 

 Type Manufacturer Quantity Purpose 

Drive 

actuator 

DC motors  1 • Responsible for 

main drive system 

• Regenerative 

braking 

Steering 

actuator 

DC motors Lynch Motor 

Company Ltd 

1 • Steering operations 

Brake 

actuator 

Linear DC 

motors 

Elero GmbH 1 • Brake 

• Parking mode  

Sensors 2d Lidar Sick 

Rplidar 

2 ● Safety 

● obstacle 

detection/avoidance 
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3d Lidar Velodyne 

VLP16 

1 ● 3d mapping 

● localisation 

● navigation 

Sonar sensors Saab 5 ● safety 

● obstacle 

avoidance/detection 

GPS Xsense 1 ● Localisation 

● Navigation  

3.2 Technical requirements 

Software architecture details were set based on technical requirements of the ISEAUTO 

project the communication protocol between controllers on Uku would have to be similar 

to those in the final self-driving car. On the other hand, there was more freedom to choose 

the layout of controllers on the robot and make a new robust architecture. Other than 

requirements from the self-driving car project, the main focus was to create a safe, easily 

reconfigurable and scalable system where each module/microcontroller has a task to 

control each locomotion unit across the platform separately.  

Previously communication on Uku between computer and low-level controllers were 

using serial protocols; however today serial protocols are not as fast and do not fulfil 

requirements for real-time applications. This time communication protocol from 

computer to the lower level systems happens with Universal Datagram Protocol (UDP). 

Messages from the Linux computer are sent to one controller that can receive UDP 

messages, and then this control unit distributes them to other controllers using Controller 

Area Network bus (CAN bus). The controller that translates UDP messages to CAN 

messages is called Master controller and has a role of the buffer from computer to the 

drive controllers, and therefore it does not do any calculations or interaction with other 

hardware. 
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The development process included choosing the correct controllers and writing firmware 

for it. However, each locomotion unit and sensor had a separate driver, and therefore they 

needed separate approach and development. All in all, three locomotion units needed 

separate firmware; all of them had dedicated controllers and control system development 

was the primary task of this thesis. Other than these controllers there were tasks with 

secondary priority such as controlling the light of the robot, reading sonar sensors and 

transferring values to the computer and reading encoder values to measure the speed of 

the robot. 

3.3 Motor drivers as control objects layout 

Control objects in this project were DC drive units, all of them different from one another 

with their I/O characteristics and load handling capabilities. As mentioned earlier there 

were three central motor drive units on the vehicle one for the linear dc motor for vehicle 

braking, one for the steering dc servo motor and one for the dc servo drive motor for rear 

wheels.  

Each control module and other microelectronics are enclosed into the separate water-

resistant control boxes. These boxes themselves connect with thin CAN bus wires to each 

other and with power cables to the motors and battery units. Even though all the STM32 

microcontroller modules are the same layout inside all boxes are different. Figure 5 below 

shows the general picture of all control boxes. 
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a. Steering control box b. Drive control box c. Master and brake control 

box 

Figure 4 Controller box layouts 

3.2.1 Rear wheel motor driver 

Rear wheel motor is the most significant DC motor on the vehicle and is equipped with a 

“Sigma“ drive system which is one of the most advanced controllers on the vehicle. This 

drive system is designed for heavy load applications such as industrial trucks, golf cars 

and material handling equipment. The unit itself is built to withstand shock vibration and 

extreme temperature environments. Control algorithms of this driver ensure efficient, 

smooth acceleration and deceleration without overloading DC motor with high torque. 

Motor control algorithms also ensure safe reversing and motor regenerative braking while 

moving with fast speeds. See the picture of the brake controller in figure 4. A. 

3.2.2 Front motor driver 

The front motor is equipped with 60A motor controller from RoboClow family of motion 

controllers. This drive unit is the very versatile programmable unit with different control 

options. The driver also supports multiple feedback devices and therefore can be used as 

an open-loop or a closed-loop speed or position control units. In our application feedback 

functions of this driver is not utilize; however, a closed loop control system is 

implemented on our controller for more flexible control options. See the picture of the 

river below in figure 4. B. 

3.2.3 Brake motor driver 

Finally, the third controller is a simple H-bridge with the peak current up to 2 amperes. 

This controller is used for controlling a linear actuator which is cheap easy to implement 

and easy to change in case it brakes. The braking system for this vehicle is used only 

when motor regenerative braking is not enough to stop the vehicle or in cases when we 

want to park the vehicle on a downhill. See the picture of the controller in figure 4. C. 
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A. Rear drive 

controller link  

B.  Front drive 

controller link  

C.  Brake controller 

link  

Figure 5 drive controllers 

3.2.4 Electrical connections 

One of the contribution while designing the control system for the vehicle was to take 

part in the design process of the electrical diagrams for each control module. Priorities 

for designing electrical diagrams were choosing right electrical components and came up 

with the safe and efficient installation of all control modules, switches sensors and other 

vehicle equipment.  

Below in figure 6, you can see the general control system wiring layout. As it is presented 

on the figure, the power source for all the modules on the vehicle is lithium ion battery 

pack which is later distributed into two power lines: one 5 volt line for microcontrollers 

and one 12 volt power line for the motors, lights and other high power consumption 

devices.  

http://alpatek.com/product/sigma-drive/
https://www.pololu.com/category/124/roboclaw-motor-controllers
https://www.aliexpress.com/item/L298N-Module-Dual-H-Bridge-Stepper-Motor-Driver-Board-Modules-for-Arduino-Smart-Car/32412365961.html
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Figure 6 Electrical wiring 

Power line for microcontrollers was separated from the battery pack by DC/DC step down 

converter which converts 24 volts into 5 volts of electrical potential. Connecting all 

controllers on the same power line means that startup and shut down for all controllers 

will happen simultaneously. Arranging microcontrollers on one line also enables to power 

on and off all microcontroller units simultaneously from one control switch (push button) 

on a power line. 

CAN bus and power cables for microcontrollers are enclosed in one 4-strand circular 

wire, one twisted pair for the CAN bus and one twisted pair for the power line. End of 

each line was enclosed in industry standard “male” connectors which would directly plug 

into each control box from outside into the wall mounted “female header”. Control from 

the wall mounted header extends on the other side of the wall and directly connects to 

each microcontroller unit. This type of mechanical structure uses the controller box as a 

buffer which reduces the shock impact in case of rough road conditions on the wires and 

increases the overall safety of the vehicle. 

Mechanical design of this connector allows connection of male and female headers 

only in one direction which reduces the risk of reverse connection, protects the 

vehicle from water and standardises the electrical circuit. Building such small details 

in the vehicle improve the overall integrity and quality of the whole control system 

and the vehicle in the long run.  
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3.4 Control system equipment 

Modular architecture concept was applied to the base system Uku in several steps. The 

first step was getting the prototype of the master controller that would ensure delivery 

and translation of UDP messages from the computer to the other controllers on the CAN 

bus. A prototype of the master controller was designed and programmed in the scope of 

ISEAUTO project final car, and therefore this thesis does not include the development of 

firmware for this controller. The second step included the creation of the concept of the 

modular control system, integration and programming of all motor and sensor drivers on 

separate controller units.  

3.2.1 UDP and CAN bus protocols 

As mentioned earlier control system of Uku runs on two communication protocols (data 

bus): Universal Datagram Protocol (UDP) and Controller Area Network bus (CAN bus). 

Unlike other communication protocols, UDP does not have any flow control feedback 

and error correction mechanisms. Therefore, it is used for applications where fast and 

continues data exchange is required; such applications are video and audio streaming and 

other multimedia applications.  

The main advantage of UDP is having no retransmission and flow control concepts. In 

scenarios where the vehicle is moving, and there is a small fault between the computer 

and the vehicle control it is crucial to continue working without error checking and data 

retransmission. System data retransmission in such scenarios might cause car deviation 

from the path and result in a crash because of data delivery latency.  
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Figure 7 Internal block diagram [6] 

3.2.2 UDP frame 

UDP messages from the computer come into predefined frame. The current configuration 

of the UDP frame contains 12 bytes and includes ID of the message and set value of the 

message. Message IDs on UDP and CAN bus are the same. Below on table 2, you can 

see frame structure. It is important to note that frame length is scalable depending on the 

number of modules, control units and control variables available on a bus.   

Table 2 UDP message frame example 

Byte# Datatype Data Endian 

1 uint8_t Speed ID Big endian 

2-5 char[4] Speed value Big endian 

6 uint8_t Steering wheel ID Big endian 

7-10 char[4] Steering wheel value Big endian 
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11 uint8_t Brake ID Big endian 

12 uint8_t Brake value Big endian 

3.5 Microcontroller board description 

All control units on the drive system are based on one hardware which runs on ARM 

Cortex M4 MCU (microcontroller unit) with the serial number STM32F303CBT6. This 

specific hardware was developed before the start of the project outside the university by 

one Estonian private company. Initially, this controller was custom design for the back 

wheel driver controller board to fit on top of the motherboard pinouts of the drive control 

unit. For the simplicity of the whole system, this very hardware was used as a controller 

for other drive units as well. Main advantages of this microcontroller unit is that it is 

compact, has 27 available input-output pins and supports several communication 

interfaces such as CAN, I2C, SPI, UART and USB. Out of these protocols CAN bus is 

the data bus that we will be using and discussing in this study. Out of 27 I/O pins hardware 

design of the board enables us to program 21 I/O pin and reconfigure it based on the use 

case. Figure 7 below represents the ability of each MCU pin outlined in green and one 

use case of each pin outlined in red. 

The nature of this control system design ended up being useful while developing the 

firmware for the drive system and sensors in many ways. The first reason was that because 

all the drive systems would have to be programmed on the same microcontroller unit that 

would mean less redundant work while setting up communication protocols for different 

microcontrollers. Let us review two separate use case where we need to set up ADC 

channel (analogue to digital converter) for one sensor and PWM light control for front 

lights which are both controlled from the PC through the master controller. This would 

mean that many pins on the MCU would stay unchanged such as CAN RX/TX pins, 

USART1 TX/RX (Universal Synchronous/Asynchronous Receiver/transmitter) pins, 

other LED (light-emitting diode) indicators which are on the board already. In such case 

only a single pin would have to be programmed in one case it is PWM on let us say PB0 

and ADC on PA0. 
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This concept was used for the design of most of the control units on this control system 

where some pins such as CAN bus RX/TX baud rates, update frequencies and LED 

indicators are same through the whole control system. Another advantage of this type of 

design is that it also enabled us to create a specific codebase which is easily reconfigurable 

and understandable for future students and can be easily modified in case of some driver 

updates or other sensor edition.  

Due to the research environment in the universities, this aspect of having one codebase 

and one controller for multiple sensors and drivers is crucial for laboratory workers and 

academic stuff for several reasons. One main reason other than its functionality is that 

students who write their thesis or a course project based on some university equipment 

are working in laboratories in short periods of times where this time in most cases is spent 

in understanding the system and getting environment and set up such as software and 

hardware ready for the actual work. Therefore having a ready codebase and instructions 

where most communication protocols are configured plays a huge role in the speed of 

development for future projects and make the process more automated for research 

assistants. 

 

Figure 8 available GPIO pins on the controller 
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4 General vehicle software architecture 

Overall control and autonomous operations of the vehicle happens on three hardware and 

two software levels. Three-level hardware control represents the base level 

controllers/modules that are directly connected to sensors and actuators, the second level 

is the master controller, and the third is PC. Two level software control is represented 

firstly by high-level software in PC which takes care of autonomous, manual driving and 

decision making and secondly firmware which runs master and drive controllers. The 

simplest way to understand the working principle of the whole system we should 

understand how the different hardware units are interconnected. Figure 5 shows the 

diagram of the hardware layout and is one of the best representations of the whole control 

system. The top part of the figure shows high functional sensor sets which are perception 

tools for the robot and is used for vehicles autonomous driving. Next component of the 

system is PC which is the central brain of the vehicle and runs on Ubuntu operating system 

which itself is one of the most popular Linux distribution based on Debian.  

 

 

Figure 9 hardware architecture block diagram 
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4.1 Robot Operating System 

Nowadays many new cutting-edge robot technologies are based on the Robot Operating 

System. Our robot Uku is no exception, and it is taking advantage of ROSs core features. 

As it is open-source software that allows inter-process communication and provides all 

the tools to build a robust system while keeping sanity on all levels of communication. 

ROS being a robotic middleware it provides excellent tools to organise complex robotic 

systems and have communication easily on both low-level firmware and higher-level 

hardware abstraction layer. One of the significant advantages of ROS is that one can have 

communication between many independent nodes on the number of independent 

architectures, e.g. Arduino publishing and laptop subscribing different streams of data. 

ROS itself is a master-slave communication where we have one ROS master and many 

different slave nodes. One of the main tasks of ROS is to run multiple processes 

simultaneously on different devices, pass messages between processes, manage packages 

from all processes, provide a different driver for many types of sensors. In pursuance 

ROS to tackle these problems, it uses several simple paradigms:  

▪ Nodes - executables that publish or subscribes streams of data in the form of 

message, topic or service. 

▪ Master- registers all nodes and directs them to each other 

▪ Messages- a data structure that is published into the topic 

▪ Services- contain request and response message information. 

4.2 Autoware 

Software development of Uku went through multiple iterations of development during 

the last one year. The development process was done mainly by the software team of 

ISEAUTO project; however software integration to the real platform was the result of the 

joint effort of both teams. 

The core of the software stack used in ISEAUTO was based on one of the most popular 

open-source software for self-driving vehicles called Autoware [7]. This software is 

developed and runs on the Ubuntu operating system which is Linux based distribution 

and ROS which is a middleware for sensors hardware and the vehicle controllers.  
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Autoware solves many problems based on the latest autonomous vehicle trends and 

technologies. Main features of Autoware can be divided into three separate sections, 

perception, decision making and mission planning. These three sections could as well be 

divided into other subsections of computational tasks such as localisation, object 

detection, mission and motion planning, intelligent algorithms for decision making and 

so forth.  

As mentioned earlier Autoware is based on the Robot Operating System which provides 

a strong foundation of the whole software architecture. Autoware benefits from ROS in 

several ways. Firstly after installation of Autoware, installing multiple sensor drivers 

separately is no longer necessary because it already has integrated and field tested many 

ROS sensor drivers which are maintained by the ROS community.  Other then sensor 

drivers Autoware successfully utilises many software packages such as Gazebo for 3D 

simulations, OpenCV for computer vision, segmentation and tracking, PCL (Point Cloud 

Library) for LiDAR data processing, Cuda (Compute Unified Device Architecture) 

libraries for parallel computing for GPU image processing for computers that have 

NVIDIA GPUs. 

Diagram figure 6 represents the diagram of the core software blocks running on the main 

computer of the vehicle. Diagram itself is the derivative of Authorware's software stack 

description figure from the paper “Autoware on Board” [7] and is edited based on the 

latest use case of the Robot Uku. 
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Figure 10 Software diagram of the vehicle 

Understanding of higher level software helps to imagine the whole system better and see 

how commands are generated for electronic control units. Figure 6 describes a software 

stack diagram of the whole system; however, since we are dealing with control systems, 

we are most interested in several blocks from this diagram.  

Control of the vehicle from upper-level software happens with two different message 

types: velocity command and steering angle command. These two messages are set points 

for control units of the vehicle control system. This means that if Autoware commands to 

decelerate high-speed control system should be able to autonomously decide to decelerate 

with the help of motor regenerative brakes or using brake controller. Generation of these 

two messages happens is done by motion planning node. Another block of software that 

takes part in all control operations is “ROS-UDP bridge”. This stack of software was built 

as part of the final ISEAUTO bus platform. The main task of this node is to translate ROS 

messages from motion planning node to UDP messages and send it out through ethernet 

terminal to low-level controllers. 
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4.3 Embedded control system software architecture 

This sub-chapter will present the general software flow diagram which includes specific 

function of each module and explains similarities of error handling processes across three 

drive systems: for steering, rear wheel and brake controllers.  

Embedded control systems (ECS) in many research papers are represented as a separate 

class of embedded systems mostly because of their mission-critical activities and dynamic 

requirements of the control software [8]. Development of ESCs in the, for example, 

automotive or avionics industry is a prolonged process. Robustness and reliability is the 

cornerstone for these ECS applications and therefore software development, testing and 

validation process happens parallelly in multiple iterations of the development process 

which can last years and sometimes decades. Usually, transport vehicles do not support 

embedded application Over the Air Updates (OTA), and therefore their firmware update 

is done once in many years during the vehicle maintenance process.  

Even the embedded application designed in this project is supposed to run on a single 

vehicle it is still able to cause some damage since it operates in public places and therefore 

the vehicle can be considered as a critical safety system. 

4.2.1 Drive system flow diagrams 

Starting the embedded application design process is always related to the thorough 

understanding of the physical environment and electrical components to which the 

controller is interacting.  

Various electronic components such as analogue sensors, encoders, motor drivers need 

the entirely different configuration of MCU I/O pins, internal and external clocks, PWM 

settings and control logic setup. Even though all the drive control software needed 

different setup of peripherals, some software blocks are similar on all control panels.  

Let us start a control flow description by looking at the figure 11 diagram. As said earlier 

all control units are on the same power line and therefore their startup time is 

simultaneous. The graph below is constructed to emphasise this principle and show three 

different process flow which is initiated from a single point when the vehicle platform 

was powered up.  
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Software blocks in this diagram are divided into several units. CAN bus receiving and 

message handling unit, message value handling unit and finally value conversion unit into 

different PWM signals depending on the corresponding motor driver type. One of the 

primary aggregates of this figure is that: due to the modular architecture concept, initial 

process and error handling for CAN bus messages on each control unit are similar to one 

another. The main difference of control module software is the configuration of 

peripherals and the way these control processes are handled. 

 

Figure 11 Flow diagram of three control unit 

Brake module control flow represents an open loop control system and is easiest to handle 

because the controller receives Boolean 1 or 0 message whether or not brake should be 

pressed or not.  

Steering and drive control units, on the other hand, are more sophisticated closed-loop 

control systems and include feedback message receive and pwm calculation functions. 

Proportional Derivative control process will be thoroughly described in next chaptar of 

this thesis. 



 

36 

These flow diagrams do not show all the initialisation processes, but it instead presents 

control loop after CAN bus message is received. The figure also does not include a 

diagram of how PID control processes but control flow is represented instead in blocks 

of software operations. 
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5 Vehicle control Implementation 

This chapter presents each step of the firmware development of the modular control 

system for each module. The outcome of the overall control system for this vehicle is to 

design control processes, find sufficient control algorithms and determine needed control 

loop components for each module to guarantee the smooth control of the vehicle in both 

autonomous and manual mode. The main focus for the control process design was to 

reduce the variability of the process value, increase efficiency to make processes less 

maintenance dependent and ensure overall safety. 

Process control as every field in engineering and science has some internationally defined 

terms that help us define specific processes. These definitions are rather trivial; 

nevertheless, they help to keep clarity while describing the control process. 

▪ Set value - set point, the value that is desired to be maintained 

▪ Measured variable - plant output, a variable which should be kept at the designated 

set point 

▪ Error- Difference between the measured variable and the set value. 

▪ Control algorithms - mathematical expressions of the control function that we are 

trying to achieve 

▪ Disturbance - undesired change from the environment. 

5.1 General procedure for control system design 

In general, the first step of the design process is to establish the system goals and problems 

it solves after the resolution of the project. The second step is to assign variable to the 

hardware we desire to control. The third step is to write specifications and accuracy 

requirements and finally, based on the precision requirements chose the proper feedback 

devices and in some cases actuator units. After setting these practical guidelines, part 

includes the setup of the hardware and the software environment on a test bench. See if 

the given microcontroller can satisfy the set requirements and then configure GPIO and 

communication protocols. 
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Figure 12 control system setup guidelines 

More precise guidelines of the design and implementation of control systems are shown 

in figure 6 above. These guidelines of the control system development which was 

presented in the book by Mutambara in the book “Design and Analysis of Control 

Systems” [9]. 

5.2 Choice of PD control 

In most cases, PID control of the object was sufficient, easy to implement and robust way 

of control. One of the focus of designing the control system to create a somewhat unique 

system so that different motor controllers would use the same PID but with different gain 

parameters and coefficients.  

Main advantages of creating a PID controller is that it is easy to implement, highly 

reliable, easy to test/troubleshoot and easy to understand. PID itself is an acronym, and it 

stands for the Proportional Integral Derivative. These terms describe how the error is 

handled during control operations. This means that in proportional controller error will 
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be multiplied by a constant number. Let us call this number Kp. In the integral path, the 

error is multiplied by Ki and then integrated. In final derivative action, the error would be 

multiplied by the Kd and differentiated. After all these mathematical operations result is 

summed to produce controller output. 

It is important to note that having all actions of PID is not needed in most of the 

applications. Today industry implements four basic behaviour types of PID. P controller, 

PI controller, PID controller and PD controller. All these controller types have their 

advantages and disadvantages depending on the control object specifications like stable 

or unstable and so forth.  

Comparative study of PD, PI and PID controllers have been done published in 

international journal of engineering and science (IJES) [10]. Based on this study using a 

combination of proportional and derivative action (PD) was most reasonable for multiple 

reasons. PD action characteristics in this study were derived from the tests on a single 

joint robot which can be considered a similar system to a steering controller of our test 

platform. Based on the results of this study PD action has a fast response to the set-point, 

smaller steady-state error, Large disturbances and noise present in the system are handled, 

oscillation cancelling and damping of overshoots [10]. Characteristics described in this 

test results were most suitable for our system because of the disturbances from the 

feedback sensors and critical consequences in case of an overshoot of the setpoint which 

was handled by the PD controller. 

5.3 Proportional derivative control implementation 

From the control system set up guidelines description above, one of the main tasks of the 

process is the choosing of feedback sensors and test bench setup of each control plant. 

Control objects ware already chosen (see control object description subchapter) now we 

had to choose feedback sensors for each control process.  

The mechanical structure of the steering was designed in a way that degree of rotation of 

the steering motor was restricted from 60 to - 60 degrees of rotation. A small degree of 

rotation enabled us to have a single analogue sensor (potentiometer) as a feedback 

mechanism where the analogue output pin is the indicator of the wheel angle position. On 



 

40 

the other hand, the rear, the wheels control system used incremental mechanical encoder 

for feedback control which is attached to the rear shaft of the vehicle. 

The PD control algorithm for each controller was designed similarly so that the 

implementation of the PD control becomes as easy as just changing the data input 

parameters and controller coefficient.  

Let us review the example of steering and velocity control processes. Figure 7 below 

presents a control system block diagrams of steering and rear wheel controllers. Left, side 

of the figure shows the control of the rear wheels, and the right side shows the control of 

the steering operation. Difference between these control systems is only in terms of 

implementation and setup of the GPIO pins for PWM generation and sensor value 

readings.  

 

Figure 13 Control system block diagrams for steering and rear wheel drive 

5.4 Proportional derivative control of the steering 

After all components of the system were chosen now we had to configure microcontroller. 

As mentioned in the previous section steering controller uses the analogue sensor for 

feedback. To get analogue sensor readings to the microcontroller unit pure Analogue to 

Digital Converter (ADC) was set up on one GPIO pin which would measure an analogue 

change from the potentiometer output pin. After successfully integrating potentiometer to 

the microcontroller, it was necessary to determine what were the values of the 

potentiometer in different wheel positions to determine maximum angles vehicle 

mechanical structure can make and record corresponding potentiometer values.  
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Figure 14 Wheel angle measurement positions 

Most notable were measurements in three different steering position, extreme left, middle 

and extreme right. Top view wheel illustration of this three position is shown above in 

figure 10.  

Table 3 Angle measurements 

 Angle [rad] potentiometer values from 

ADC  

Max left 1 1865 

Middle 0 1422 

Max right -1 1020 

Measurement results are presented in table 3 above. After we know maximum and 

minimum angles of the vehicle, it is necessary to configure software on the ROS side to 

define steering angle limits for this specific vehicle to guarantee that computer sends 

steering floating values in the range of -1.0 and 1.0 radian. This will guarantee maximum 

precision of the vehicle control on later stages for both autonomous and manual control. 

After knowing the threshold values of the UDP messages and their corresponding 

potentiometer readings, it is necessary to construct the formula that will map the range of 

UDP angle values to the range of potentiometer readings. This step is necessary for PD 

control implementation.  
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Mapping one range of values to another was achieved by linear interpolation using the 

Microsoft Excel program table 3 by drawing the trendline of the date given in the same 

table. After plotting the tradeline, it is not possible to export its corresponding equation 

using Microsoft Excel. Tradeline can be seen below in figure 9 and extracted equation (1) 

𝑦 = 422.5 × 𝑥 + 1442.3 (1) 

Where y is potentiometer value, and x is setpoints sent from the master controller which 

means that every time control signal is received from the master controller it is mapped 

in the potentiometer values and then these two values are used for proportional 

derivative control implementation and error measurement. 

 

Figure 15 excel trendline for potentiometer angle mapping 

The second step of steering control development was creating mathematical formulas for 

PD control based on the setup and control values that we have already defined. For more 

clearance let us list all control variables below: 

▪ Input- master controller, commanded variable in the range from -1.0 to 1.0 radian 

and mapped to the potentiometer measurement range from 1020 to 1865 (see 

table 3) 

▪ Feedback- potentiometer in the range from1020 to1865 

▪ The control signal to the drive controller- pulse Width Modulation actuating 

signal which in our formula is PD control output 
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The equation below represents the PD control formula where 𝑢 is a static characteristic 

𝑘𝑑 is derivative gain, 𝑘𝑝 is proportional gain 𝑑𝑒 and 𝑑𝑡 are changed in error and time, 

and 𝑒 is the error. 

𝑢 = 𝑘𝑝 + 𝑒 + 𝑘𝑑
𝑑𝑒

𝑑𝑡
 (2) 

Now let us break down this formula and analyse the proportional and integral action 

influence on control process. Proportional action generates a rapid response to the 

present changes in input by generating immediate changes in output and therefore 

speeds up the error elimination process.  Derivative action offsets output signal by the 

amount proportional to the rate at which the input is changing and therefore protects 

the control process from overshooting. In short “if proportional action tells the output 

how far to move when an error appears derivative action tells the output how far to 

move when the input ramps” [11]. 

5.5 Proportional derivative control step testing results 

A crucial part of the process control is properly tuning of the controller. Since our 

controller board built on STM32 microcontroller, it was possible to use third party 

software STM-studio to visualise and capture real-time values of each control variable. 

Our primary focus during testing was the comparison of set-value from the master 

controller and feedback value from the analogue sensor. As described in previous chapters 

we were given set values from -1.0 float value to 1.0 float radian value. Figure 11 below 

shows tradelines of these two variables. The blue line represents the angle request, and 

the green line represents analogue sensor feedback. The y-axes of the coordinate system 

on figure 11 represent angle values in radians, and x-axes represent time in milliseconds. 

Here we should note that analogue sensor feedback has many disturbances and therefore 

has an unstable tradeline which should also be encountered while tuning the vehicle 

wheels to avoid constant jitter of the steering wheels.  

Test processes were validated by step-testing, and the primary goal of the test was to tune 

coefficients of the PD parameters to achieve the most optimal control speed and avoid 

overshoots. All testing procedures were conducted in the laboratory were test platform in 
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the static position which in general influenced settling due to the high friction of standing 

wheels compared to the moving wheels. Example of figure 11 shows one of the most 

optimal results after tuning. This exact process shows one full turn of the wheels from the 

extreme left angle of the vehicle to the extreme right angle of the wheel and the whole 

settling time was around 8 000 milliseconds (8 seconds) which is a perfect result if we 

consider the fact that vehicle was standing.  

 

Figure 16 Step testing recording from one steering edge to another 

 

Tuning and adjustment of the PD controller were done during the autonomous rides as 

well. Test results showed that steering control was one of the most important for 

autonomous mode driving. Control system with high derivative gains was creating an 

aggressive control of the steering and was causing vehicle deviation from the path. If 

settling time was too slow vehicle was unable to do sharp turns.  

Tuning of the PD control for steering was the result of a trial and error method to sync 

high-level and low-level software together. 
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6 Summary 

The thesis presents the development of an embedded control system for the self-driving 

car test platform. The author guides through the development and rapid prototyping cycles 

of the autonomous vehicle platform while keeping the main focus on creating an efficient 

embedded control system with the modular architecture. The study was conducted in 

collaboration with different parties from different engineering disciplines, and different 

faculties within the university. The main objectives from the beginning of the project 

were to create a test vehicle which would be operational in a short period and enable 

conducting outdoor tests.  

In pursuance of, creating a background necessary to understanding technical development 

and main objectives of the thesis, a big part of the thesis is dedicated to the presentation 

of the technical equipment and mechanical structure of the vehicle. The thoroughly 

described high-level software architecture, low-level controller wiring and functional 

diagrams of the developed firmware gives an understanding on the scale of the whole 

project and makes it easy to comprehend the reasons behind authors choice for specific 

frameworks and control algorithms.  

Carefully chosen components such as STM32 microcontrollers and frameworks such as 

HAL libraries gave a significant advantage while creating a robust control system in a 

timely manner. Wide range of peripheral and their configurability options on STM32 

microcontrollers gave the possibility to have a single microcontroller unit for multiple 

sensors and drive units. 

Obtained results from this working test platform was a standardised modular control 

system which brought significant advantage to the project of ISEAUTO and still remains 

fully functional system for other future projects. The created control system is flexible 

and easily reconfigurable for most of the students thanks to the modular architecture 

concept and created codebase for other module integration.  
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