
Tallinn 2023

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Helena Ingermann 212001IVCM

Windows Subsystem for Android – Forensic

Analysis

Master's thesis

Supervisor: Shaymaa Mamdouh

Khalil

 MSc

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Helena Ingermann 212001IVCM

Windows Subsystem for Android -

kriminalistiline analüüs

Magistritöö

Juhendaja: Shaymaa Mamdouh

Khalil

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Helena Ingermann

15.05.2023

4

Abstract

Microsoft introduced the Windows Subsystem for Android (WSA) in May 2021, with the

goal to integrate Android application usage into a desktop environment. This Subsystem

facilitates the seamless integration of Android applications with the Windows 11

operating system, bridging the gap between mobile and desktop experiences.

However, the rapid integration of Windows Subsystem for Android (WSA) into the

Windows 11 operating system introduces new challenges for digital forensic

investigators. As the number of users employing Android applications on their desktop

environments grows, it becomes increasingly vital for digital forensic specialists to

understand the ramifications of such a subsystem and the artifacts it produces within the

host system.

This research addresses these challenges and provides a foundation for digital forensic

investigators, ensuring they have the knowledge and resources to examine WSA-related

artifacts and know of WSA’s potential attack surfaces thoroughly and accurately.

A controlled experiment was conducted to facilitate a comprehensive overview of WSA

as a subsystem including the essential artifacts associated with it. The research covers

WSA installation artifacts, application execution data, file operations, log information,

and a detailed examination of WSA from a network perspective. Due to structural

similarities, WSA and Windows Subsystem for Linux 2 (WSL2) were compared.

In conclusion, the study highlights potential attack surfaces and identifies gaps in

knowledge that warrant further research to enhance the understanding of the forensic

implications of Windows Subsystem for Android in the Windows 11 operating system.

This thesis is written in English and is 75 pages long, including 7 chapters, 23 figures and

7 tables.

5

Annotatsioon

Windows Subsystem for Android kriminalistiline analüüs

Microsoft tutvustas 2021. aasta mais Windows Subsystem for Android (WSA)

alamsüsteemi, mille eesmärk on hõlbustada Androidi rakenduste integreerimist

Windowsi töölauakeskkonda. WSA alamsüsteem soodustab Androidi rakenduste

probleemivaba integreerimist Windows 11 operatsioonisüsteemis, ühendades mobiilsete

ja töölauarakenduste maailmad.

WSA aktiivne arendus Windows 11 operatsioonisüsteemiga toob paraku kaasa uusi

väljakutseid digitaalkriminalistika uurijatele. Kuna Androidi rakenduste kasutajate arv

töölauakeskkonnas kasvab, muutub digitaalkriminalistika spetsialistide jaoks üha

olulisemaks mõista sellise alamsüsteemi kasutamise potentsiaalseid tagajärgi ning

digitaalseid tõendeid, mis jäetakse host süsteemi.

Käesoleva lõputöö eesmärk on käsitleda WSA digitaalekspertiisi väljakutseid, pakkudes

digitaalkriminalistika spetsialistidele teoreetilisi aluseid, ressursse ja vahendeid WSA-d

puudutava põhjaliku ja täpse digitaal ekspertiisi läbiviimiseks ning teadlikkuse tõstmiseks

WSA potentsiaalsete ründepindade osas.

Magistritöö raames viidi läbi kontrollitud eksperiment, et saavutada süstemaatiline ja

põhjalik arusaam WSA alamsüsteemist ning sellega seotud digitaalsetest jälgedest.

Eksperiment keskendus WSA installeerimise, rakenduste käivitamise, failitoimingute ja

logiandmete digitaalsetele jälgedele ning WSA võrgutegevuse üksikasjalikule analüüsile.

Arvestades struktuurilisi sarnasusi, võrreldi WSA-d Windows Subsystem for Linux 2

(WSL2) alamsüsteemiga. Lõputöö toob välja potentsiaalsed ründealad ja tuvastab

teadmislüngad, mis nõuavad täiendavat uurimist, et paremini mõista Windows 11

operatsioonisüsteemile paigaldatud WSA digitaalsete jälgede mõju.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 75 leheküljel, 7 peatükki, 23

joonist, 7 tabelit.

6

List of abbreviations and terms

ADB Android Debug Bridge

AOSP Android Open Source Project

BAM Background Activity Moderator

COM Component Object Mode

DAM Desktop Activity Moderator

FTP File Transfer Protocol

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ICMP Internet Control Message Protocol

MRU Most Recently Used

MB Megabyte

NAT Network Address Translation

NetBIOS Network Basic Input/Output System

NVMe Nonvolatile Memory Express

OS Operating System

RID Relative Identifier

RPC Remote Procedure Call

SID Security Identifier

SMB Server Message Block

SSD Solid State Drive

TLS Transport Layer Security

TTL Time To Live

UEFI Unified Extensible Firmware Interface

VHDX Virtual Hard Disk Image

VM Virtual Machine

VPN Virtual Private Network

WSA Windows Subsystem for Android

7

WSL Windows Subsystem for Linux

8

Table of contents

1 Introduction ... 12

1.1 Research Objectives ... 13

1.2 Novelty ... 13

1.3 Navigating the Thesis Structure ... 14

2 Background .. 16

2.1 WSA ... 16

2.1.1 WSA VM lifecycle .. 17

2.1.2 WSA Usage in Countries without Amazon Appstore Support 18

2.1.3 Use Cases of WSA amongst Users .. 19

2.2 WSL2 .. 20

2.3 Windows Forensics... 20

2.4 Network Forensics .. 23

2.5 Tools ... 24

2.5.1 CAINE (Computer Aided INvestigative Environment) 24

2.5.2 FTK Imager ... 24

2.5.3 Arsenal Image Mounter ... 24

2.5.4 KAPE ... 25

2.5.5 Registry Explorer ... 25

2.5.6 MFTECmd.exe .. 25

2.5.7 PECmd.exe .. 26

2.5.8 Event Log Explorer ... 26

2.5.9 LECmd.exe .. 26

2.5.10 Regshot .. 26

2.5.11 Timeline Explorer .. 27

3 Related Work ... 28

4 Methodology .. 31

4.1 Roadmap for the Controlled Experiment.. 31

4.2 Experiment Setup ... 33

4.2.1 Stage 1 ... 34

9

4.2.2 Stage 2 ... 34

4.2.3 Stage 3 ... 35

4.2.4 Stage 4 and Stage 5 .. 36

4.3 Disk acquisition .. 37

5 Analysis and Results .. 38

5.1 WSA Virtual Hard Disk Evidence.. 38

5.2 Registry Evidence ... 39

5.2.1 NTUSER.dat Hive ... 40

5.2.2 UsrClass.dat Hive .. 41

5.2.3 SYSTEM Registry Hive .. 42

5.2.4 SOFTWARE Hive ... 43

5.3 Prefetch and Amcache: Program and Application Execution: 46

5.4 Application Artifacts .. 47

5.5 File Operations and Artifacts .. 48

5.5.1 Test 1: File Transfer .. 48

5.5.2 Test 2: EICAR File Download .. 49

5.6 Event Logs .. 51

5.7 Network Artifacts ... 54

5.7.1 Test 3: Ping Test Analysis ... 56

5.7.2 Test 4a and Test 4b: Firewall Rule and HTTP Traffic Analysis 58

5.7.3 Test 5: VPN Test Analysis .. 60

5.8 Comparison Between WSA and WSL2.. 61

5.8.1 Firewall Rule Test ... 61

5.8.2 Eicar File Test .. 62

5.8.3 Program and Application Execution Artifacts .. 62

6 Discussion .. 64

7 Conclusion ... 68

References .. 70

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 73

Appendix 2 – Firewall Rules .. 74

Appendix 3 – Installed Applications .. 74

10

List of figures

Figure 1. VM lifecycle considerations [1]. ... 18

Figure 2. Experiment setup diagram. ... 33

Figure 3. Visual representation of WSA Client and WSA Pacman GUI. 35

Figure 4. WsaService distribution information. ... 40

Figure 5. RecentDocs subkey: Evidence of MSIX Windows app package opening. 41

Figure 6. Shimcache: Application and program execution evidence 43

Figure 7. DownloadSize under

Microsoft\Windows\CurrentVersion\AppModel\StagingInfo. 45

Figure 8. Prefetch: Application execution evidence. .. 46

Figure 9. Amcache: Program execution evidence. ... 47

Figure 10. RecentDocs subkey: Evidence of application usage. 47

Figure 11. $J. .. 49

Figure 12. $MFT. ... 49

Figure 13. Sysmon: PingTools installation. ... 51

Figure 14. Rule creation for WsaClient.exe. .. 52

Figure 15. Hyper-V network illustration [37]. ... 54

Figure 16. WSA network architecture concept. ... 56

Figure 17. Wireshark capture of the host physical and WSA adapter. 57

Figure 18. Wireshark capture of the host adapter. .. 58

Figure 19. WSA Firefox and host Firefox after enabling the firewall rule. 59

Figure 20. User-Agent of the WSA. ... 59

Figure 21. User-Agent of the host. ... 60

Figure 22. Visual representation of Surfshark VPN test outcome. 60

Figure 23. Evidence of the Eicar test file relations to WSA... 62

11

List of tables

Table 1. Registry Hives [16]... 21

Table 2. Device and Windows specifications. .. 34

Table 3. NTUSER.dat registry evidence. ... 40

Table 4. UsrClass.dat registry evidence. .. 41

Table 5. SYSTEM registry hive evidence .. 42

Table 6. SOFTWARE registry hive evidence. ... 44

Table 7. Overview of the event logs. .. 53

12

1 Introduction

The popularity of Android as a mobile operating system and the expansion of mobile

devices have led to a growing demand for solutions to integrate mobile applications into

desktop environments seamlessly. Microsoft developed a technology called Windows

Subsystem for Android (WSA), a compatibility layer providing the capability to run

Android applications natively on Windows 11 devices to address this need on the market

[1]. By leveraging virtualization and containerization technologies, WSA enables users

to access their Android applications directly from their Windows 11 devices.

Similarly, to Windows Subsystem for Linux 2 (WSL2) [2], WSA utilizes same Hyper-V

virtualization technology to create a virtualized environment where Android applications

can run alongside Windows applications without needing a separate emulator or virtual

machine. With the integration of essential Android operating system components and the

Linux kernel, WSA offers users a seamless and intuitive experience, allowing access to

Android applications as if they were native Windows applications.

The first announcement of the Subsystem was in May 2021 at a Microsoft Build

developer conference with the goal of users accessing Android apps without switching

devices. In March 2022, the first stable release of WSA became accessible in 31 markets.

Since then, WSA has caused significant interest in end-users and developers even though

the technology is still in active development.

Bridging a gap between two significant ecosystems may also raise potential malicious

avenues for the threat actors to exploit. The literature review conducted for this thesis

showed how limited research and documentation are available about subsystems and their

forensic implications, making it a compelling area to research further. According to

statistics, there are over 2.8 billion active Android users [3], and based on 2022 third-

quarter statistics, 438,328 applications are available in Amazon Appstore [4]. WSA

enables developers and end-users to run such applications in their Windows 11 operating

system, raising new risks and potential attack vectors for Windows users. Understanding

aspects such as the WSA architecture, its integration with Windows 11 operating system,

13

potential attack surfaces, changes WSA makes to the registry, and documenting the

artifacts left on the host system are crucial to assist digital forensic experts in future

investigations.

1.1 Research Objectives

The primary focus of this thesis is to document the digital artifacts left behind by

Windows Subsystem for Android (WSA) on the Windows 11 operating system. The

thesis aims to answer two main questions:

Firstly, what artifacts are left behind by WSA, and where can they be found? The goal is

to document the digital traces WSA leaves on the host system by providing insights into

the components and processes that make up WSA. These artifacts may include registry

entries, files, logs, and other digital remnants that can be used to reconstruct user activities

or trace malicious behaviour.

Secondly, can digital artifacts found in WSA be compared with artifacts found in WSL2?

By conducting the comparison, this thesis seeks to identify if there exist any similarities

between the artifacts on the Windows 11 system. The comparison will focus on artifacts

such as registry entry key locations, event logs, and network traffic to identify unique

features or challenges each subsystem poses.

It is important to note that the scope of the forensic analysis of WSA remains solely on

analysing the WSA environment and its artifacts and its implications on the host system

rather than the Android operating system; therefore, traditional Android forensic

techniques and methods are out of scope of this experiment.

1.2 Novelty

Currently, there is a lack of publicly available research studies specifically focused on

WSA. Although a few studies have been published on WSL2, which utilizes the same

Hyper-V virtualization technology as WSA, a substantial gap in the current literature

persists. The increasing usage of WSA amongst both end-users and developers and the

growing importance of digital forensics, creates a need for comprehensive documentation

and research on this emerging technology.

14

This research aims to address this gap in the literature by providing an exploration of the

digital artifacts left behind by WSA on the host Windows operating system. Examining

WSA's architecture, artifacts, and potential attack vectors, this study plans to contribute

a foundation for digital forensic investigators in the light of the growing popularity of

Windows Subsystems. This research seeks to support the potential future forensic

investigations of WSA by providing valuable insights to facilitate more efficient and

effective forensic analysis of WSA for investigators. By comparing results with WSL2,

which has a similar architecture, this thesis aims to improve the understanding of

Windows subsystem forensics.

1.3 Navigating the Thesis Structure

In this chapter, we will provide an overview of the subsequent chapters, outlining the

structure and content of each to facilitate a clear understanding of the topics covered. The

chapter serves as a roadmap for the reader, highlighting the aspects of each chapter.

Chapter 2 offers essential background information on the Windows Subsystem for

Android (WSA) and provides an overview of its predecessor, the Windows Subsystem

for Linux (WSL2). This chapter also includes a discussion of the windows and network

forensic techniques employed in this research and an overview of the tools utilized

throughout the thesis.

Chapter 3 delves into a comprehensive literature review, examining the existing state of

the art related to the topic to establish a foundation for the current research. The review

primarily focuses on WSL2 since, at the time of writing, there were no research papers

related to WSA as to the author's knowledge. Other relevant studies are also discussed in

this chapter.

Chapter 4 describes the research methodology employed in this study, providing an in-

depth overview of the controlled experiment setup. This chapter includes an experiment

setup diagram to facilitate comprehension.

Chapter 5 presents the results and findings of the experiment, offering key insights

derived from the analysis. The analysis is based on the controlled experiment detailed in

Chapter 4. This chapter also includes a comparison between WSA and WSL2

15

Chapter 6 provides a discussion of the findings, connecting them to the broader context

of the literature and the research questions posed. This chapter explores the implications,

limitations, and potential avenues for future research.

Finally, Chapter 7 concludes the study, summarizing the research's main findings,

contributions, and implications.

16

2 Background

On the 15th of February 2022, Microsoft announced the release of the first public preview

build (1.8.32837.0) of Windows Subsystem for Android (WSA). As of April 2023, the

latest available build is 2302.4000, which has been running on Android 13 [5]. Before the

emergence of WSA, Android emulators such as Bluestacks1 filled the void in the market

for running Android applications on Windows operating systems. Compared to Android

emulators, WSA is unique on several occasions. It allows Android applications to run

natively on Windows, whereas Android emulators are third-party software applications

that simulate the Android operating system on a Windows device. In addition, WSA

utilizes Hyper-V virtualization technology, offering a more seamless and integrated

experience, with Android applications appearing and behaving like native Windows apps.

WSA is developed and supported by Microsoft, ensuring high compatibility with

Windows devices and applications. In contrast, Android emulators can vary significantly

in compatibility and performance, with some emulators being better suited for specific

devices or applications than others.

2.1 WSA

Windows Subsystem for Android (WSA) enables Android applications accessible

through the Amazon Appstore to run on Windows 11 devices [1]. There are two options

to install the WSA on the user's device: installing the Amazon Appstore, which will also

install the WSA in the background, or using Microsoft Store for retrieving the Android

application, and in turn, the Amazon Appstore will be installed as well. The official

requirement for installing Android applications on WSA is to utilize the Amazon

Appstore. However, the Amazon Appstore is supported only in 31 countries [6]. To

operate WSA on their devices, users must meet specific minimum system requirements.

These requirements include the Windows 11 operating system, a minimum of 8GB of

1 https://www.businessinsider.com/guides/tech/what-is-bluestacks (accessed Mar. 25, 2023)

17

RAM, an SSD storage type, and an x64 or ARM64 processor architecture [8].

Additionally, virtualization must be enabled on the host device.

WSA operates on the Linux kernel and Android operating system derived from the

Android Open Source Project (AOSP) [7]. Starting from January 2023, WSA runs on

version 13 of the Android operating system [5]. The subsystem functions within a Hyper-

V virtual machine, similar to the operating environment for Windows Subsystem for

Linux 2 (WSL2) [7]. Using the Android OS and Linux kernel, WSA provides an

environment where Android applications can be run natively on Windows 11 devices [7].

The Hyper-V virtual machine creates a containerized environment that facilitates the

seamless integration of Android applications alongside Windows applications [7]. In a

collaborative effort, Microsoft has partnered with Intel to utilize the Intel Bridge

Technology to enable Arm-only apps to run AMD and Intel devices to cover a wide range

of Windows process types [7].

It is vital to consider that WSA is still in the developmental stages and may be subject to

changes and updates in the future. Using the Linux kernel and Android OS based on the

Android Open Source Project (AOSP) allows for compatibility with a broad range of

Android applications. At the same time, the Hyper-V virtual machine environment

ensures the efficient and effective operation of WSA.

2.1.1 WSA VM lifecycle

Within the Windows Subsystem for Android (WSA), applications can operate in three

different states, each of which is influenced by the user's actions [1]. The transition

between these states is typically prompted by user interaction, such as launching an

application or receiving a notification. When an application is minimized, it is either

paused or stopped, depending on the current state. The three distinct states are related to

the virtual machine (VM) lifecycle and can be described in Figure 1 [1]:

1. Running

2. Lightweight Doze: Activated after no app activity for 3 minutes. Deactivated by

user activity or an app notification.

3. Not Running: Activated after no app activity for 7 minutes.

18

Figure 1. VM lifecycle considerations [1].

2.1.2 WSA Usage in Countries without Amazon Appstore Support

The rapid expansion of Windows Subsystem for Android's popularity has generated

significant interest among end-users and developers, extending beyond the currently

supported countries. Therefore, individuals seek alternative solutions for obtaining WSA,

particularly in countries with restricted access to the Amazon Appstore. A comprehensive

overview of these alternatives will be presented in the subsequent section.

One potential solution for users seeking to access Windows Subsystem for Android is

manually installing the WSA using PowerShell. The required package can be obtained

from a third-party website, allowing users to install the WSA on their Windows 11 device

without using Microsoft Store and Amazon Appstore [9].

However, to install Android applications using WSA, users must find alternative sources

for obtaining applications—one of the options is to manually sideload the desired

applications, which eventually can get cumbersome. Another approach is to use Aurora

Store, an open-source third-party app store that allows users to download Android

applications directly onto their devices [10].

19

In addition to the previously mentioned methods of manually sideloading apps or using

the Aurora Store1, a graphical user interface (GUI) based open-source package manager

utility called WSA Pacman offers a centralized platform solution for users, making

managing and updating apps more convenient [11]. WSA Pacman can be obtained from

its dedicated GitHub page and requires the WSA to run with developer and debugging

modes enabled.

Utilizing WSA Pacman, a prevalent use case for users, is to obtain the desired applications

from APKMirror, a renowned third-party website recognized for its vast assortment of

applications. APKMirror asserts that it verifies the authenticity of each application prior

to making it accessible for download, thereby ensuring the safety and integrity of the apps

hosted on its platform [12] .

Even though there are numerous ways to use the WSA, it is crucial to exercise caution

when downloading apps from third-party websites like APKMirror or using before

mentioned alternative solutions for WSA to function. They may present potential security

risks, and Microsoft does not officially support these solutions.

2.1.3 Use Cases of WSA amongst Users

As mentioned, WSA offers users a convenient experience to explore their favourite

Android applications in Windows 11. In order to gain more insight into the use and the

purposes for which the users employ WSA, a short overview follows to summarize some

usual use cases based on available information on public forums. Upon investigating

forum channel discussions on WSA's usefulness, it is evident that many advantages are

afforded to end-users and developers through utilizing WSA.

From a developer's standpoint, WSA broadens the potential market by facilitating access

to new user segments by creating applications tailored for Windows devices. Moreover,

WSA streamlines the app testing process by enabling developers to capitalize on their

pre-existing expertise in Android app development and repurpose their code and tools,

resulting in decreased development time and effort [13].

1 https://gitlab.com/AuroraOSS/AuroraStore (accessed Mar. 28, 2023)

20

End-users employ WSA for various purposes, including engaging in gaming experiences,

managing IoT devices, accessing preferred social media platforms, and exploring various

music services, among other applications [13]. This list highlights the versatility and

adaptability of WSA in catering to a wide array of user needs and preferences.

It is imperative to note that the information outlined in this section is vital from the

authors' perspective to understand better how the users use WSA and, therefore, can help

support conducting forensic examinations more efficiently.

2.2 WSL2

Windows Subsystem for Linux 2 (WSL2) represents an advanced iteration of its

predecessor, WSL1, and facilitates the execution of ELF64 Linux binaries on Windows

systems. WSL2 operates on a complete Linux kernel, ensuring comprehensive system

call compatibility [14]. Notably, WSL2 employs Hyper-V lightweight virtualization

technology, which also serves as the foundation for the Windows Subsystem for Android

(WSA).

Relative to WSA, the system requirements for WSL2 are notably less demanding. To

operate WSL2, the minimum prerequisite is Windows 10, Version 1903 (Build 18362 or

later), or Windows 11 [14]. In contrast, WSA is exclusively available for Windows 11,

reflecting a higher threshold regarding system requirements.

WSL2 additionally enables the utilization of Linux GUI applications. Concerning system

requirements, the host system needs to be on a minimum of Windows 10 Build 19044

and above or Windows 11 [15]. These applications operate like native Windows

applications and can be initiated from the Start menu [15], exhibiting similarity to the

functionality of WSA.

2.3 Windows Forensics

The experiment carried out in this research primarily relies on Windows and network

forensic techniques. This section provides a more general overview of Windows registry

hives and other valuable datapoints. Subsequent chapter, specifically the Chapter 5 -

Analysis and Results, will delve into how each artifact contributes to the investigative

process outlined in this thesis.

21

The Windows Registry is composed of both live and offline hives. These hives store

crucial configuration information about the operating system, integrated applications,

installed hardware, and user accounts [16]. For the forensic investigation in this thesis,

the analysis focuses on offline database files, commonly referred to as hives. The

overview of the offline hives is in the Table 1 [16]:

Table 1. Registry Hives [16].

Registry Hive Nickname Offline file

HKEY_LOCAL_MACHINE\SAM HKLM\SAM SAM

HKEY_LOCAL_MACHINE\Security HKLM\Security SECURITY

HKEY_LOCAL_MACHINE\System HKLM\System SYSTEM

HKEY_LOCAL_MACHINE\Software HKLM\Software SOFTWARE

HKEY_CURRENT_USER HKCU NTUSER.DAT,

UsrClass.dat

The SAM, SYSTEM, SOFTWARE, and SECURITY hives are in the path

C:\Windows\System32\config\. The SAM hive contains user-related information that can

aid in investigating user activities. When profiling a user, it is essential to note the

Relative Identifier (RID) found in the SAM hive. Numerous other artifacts, such as the

Recycle Bin, Background Activity Moderator (BAM), and Event Logs, also employ RIDs

[16]. Hence, recording the RID early in the investigation can enable the correlation of

other potentially vital pieces of evidence.

The SYSTEM database file stores information such as the computer's hostname, essential

for analysing log files or network connections and the system's configuration settings,

including service and device driver configurations [16]. Information under

SYSTEM\CurrentControlSet\Services can help determine whether a service application

initiates at boot [16]. Furthermore, the SYSTEM hive contains subkeys for the BAM and

Desktop Activity Moderator (DAM). BAM logs the full path of an executable, along with

the date and time of its last execution, providing critical information about executed

22

programs [16]. The User Security Identifier (SID) links BAM and DAM subkeys to users.

The ShimCache, located within the registry key SYSTEM\ControlSet\Control\Session

Manager\AppCompatCache, is a critical artifact in identifying executables executed on a

system [17]. ShimCache entries are typically populated following a system reboot or

shutdown [17].

The SOFTWARE hive retains configuration data about installed applications. For

example, the Microsoft\Windows\CurrentVersion\CapabilityAccessManager has

information about applications that control the system's microphone, camera, and location

[16]. Furthermore, SOFTWARE\Microsoft\Windows NT\CurrentVersion contains data

regarding the operating system's version, type, build number, and other details [16]. The

SOFTWARE database file also assists in identifying network profiles and their initial and

most recent connection times.

The SECURITY hive holds security-related information for the system, containing data

on user and group Security Identifiers (SIDs) and system audit policies [16]. Its primary

responsibility is maintaining settings and configurations about access control and user

permissions.

In addition to system hives, each user has a dedicated registry hive located at

C:\Users\<username>\NTUSER.dat, which contains user account-related configurations,

application execution data, file and folder interactions, cloud storage settings, and

information about internet activities [16]. For instance, the

Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist key within

NTUSER.dat can provide a wealth of details regarding GUI programs initiated through

Windows Explorer, such as [16]:

• Last Run Time

• Run Count

• Name of the GUI application

• Focus Time

• Focus Count

23

Another user-related hive can be found at

C:\Users\<username>\AppData\Local\Microsoft\Windows\UsrClass.dat, a virtualized

registry root supporting the User Account Control (UAC) feature [16]. This hive also

contains information about program execution and the folders that the user opened or

closed.

Prefetch files, situated in C:\Windows\Prefetch, provide valuable information about the

execution history of applications. These files reveal the executable's name, the first and

last execution times, and the execution count. A Prefetch file is generated after an

application is executed for the first time and can store data from up to eight execution

instances. If multiple Prefetch files share the same executable name, it implies that the

executable was run from different locations. It is crucial to recognize that the presence of

a Prefetch file does not necessarily indicate successful execution; thus, it is essential to

corroborate this information using additional artifacts that provide other execution

evidence [16].

The Amcache hive, located at C:\Windows\appcompat\Programs\Amcache.hve, is a

valuable repository of program execution data [18]. It contains information on file

execution paths, installation executions, SHA1 hashes, and deletion times. Amcache is

critical in analyzing portable programs, external storage devices, and anti-forensic tools

during digital forensic investigations [18].

2.4 Network Forensics

Network forensics is a specialized domain of digital forensics, primarily concerned with

the monitoring, capturing, and recording network activity for subsequent analysis [19].

This investigative process examines volatile and dynamic data, providing critical insights

into a system's network behaviour and communication patterns [19].

In the present study, network forensics was employed to analyse the WSA from a network

perspective. The open-source packet analysis tool, Wireshark [20], was utilized to achieve

this objective. This powerful tool facilitates the real-time capture and examination of

network traffic.

24

2.5 Tools

The selection of tools for this research was informed by the author's prior experience with

various forensic utilities that have demonstrated their reliability and suitability in

conducting similar experiments. Many of these tools have been developed and endorsed

by renowned forensic specialists. By leveraging the author's expertise and familiarity with

these tools, the experiment sought to ensure the results' accuracy and validity while

benefiting from the well-established reputation and credibility of the chosen forensic

applications.

2.5.1 CAINE (Computer Aided INvestigative Environment)

CAINE (Computer Aided INvestigative Environment) is an open-source forensic

operating system with a graphical user interface (GUI) [21]. It was selected for this

research due to its robust write-blocking methodology, which ensures the creation of

forensically sound disk images. By default, CAINE mounts all disks in Read-Only mode

[21], thereby preserving the integrity of the data during the forensic examination and

preventing any inadvertent modifications to the actual evidence. This characteristic

makes CAINE ideal for conducting a reliable and comprehensive forensic investigation.

2.5.2 FTK Imager

FTK Imager is a versatile imaging and data previewing tool1 commonly employed in

manual forensic investigations. For this experiment, the command-line version of FTK

Imager was utilized to acquire disk images.

2.5.3 Arsenal Image Mounter

Arsenal Image Mounter is a sophisticated image mounting tool widely used in digital

forensics. It enables the mounting of forensic images as drives or physical devices in read-

only mode, preserving the integrity of the evidence [22]. The tool supports various image

formats, including RAW/DD, E01, S01, AD1, and L01 [16]. By mounting images,

investigators can interact with files using their native applications, run antivirus and

1 https://www.exterro.com/ftk-imager (accessed Apr. 12, 2023)

25

malware detection tools on the mounted image, and maintain the forensic soundness of

the image file due to its read-only capabilities.

2.5.4 KAPE

KAPE is a versatile triage imaging tool typically employed to collect critical evidence

before conducting a full disk imaging process. It serves two primary functions: gathering

files from various sources and processing the collected files using one or more programs1.

KAPE can search mounted E01 images, live system drives, and specific paths, with the

ability to output the collected targets as a virtual hard disk image (VHDX).

The Target configuration contains a list of file masks that facilitate identifying and

collecting different items from the storage device [23]. On the other hand, the Modules

configuration comprises information about the programs to be executed, which can be

run against a live system or files collected by one or more target configurations [23].

In the context of this research, KAPE was utilized to target key artifacts that would

support the investigation, focusing on the disk image previously acquired using CAINE.

Module execution was carried out on the VHDX generated by the target collection.

2.5.5 Registry Explorer

Registry Explorer is an open-source registry viewer designed for digital forensics

purposes. It offers the ability to view registry hives, parse registry keys using plugins,

display deleted keys, and explore unallocated space within a hive [16]. One of its

distinguishing features is the capacity to load multiple hives simultaneously, allowing for

efficient searches across several hives at once.

2.5.6 MFTECmd.exe

MFTECmd.exe is a sophisticated command-line tool developed by Eric Zimmerman for

parsing NTFS file systems in the context of digital forensics [24] . By delving into the

MFT, forensic analysts can gain a wealth of information about files, including their

creation, modification, access times, file ownership, and other essential attributes. The

1 https://www.kroll.com/en/services/cyber-risk/incident-response-litigation-support/kroll-artifact-parser-

extractor-kape (accessed Apr. 12, 2023)

26

tool's capabilities extend to parsing various MFT attributes, reconstructing file paths, and

exporting the results in various output formats, such as CSV and JSON [24].

2.5.7 PECmd.exe

PECmd.exe is an open-source tool Eric Zimmerman created for parsing Prefetch files.

Prefetch files are a crucial component of the Windows operating system, responsible for

improving application launch performance by caching essential information related to

frequently executed programs.

The PECmd tool is highly versatile, allowing forensic analysts to process individual

Prefetch files or an entire Prefetch directory, depending on the scope of the investigation

[25]. In addition, PECmd can output processed Prefetch data in CSV and JSON formats

[25]. By analyzing these files, investigators can gather valuable insights into the

applications used, their execution times, and their usage frequency, contributing to a more

comprehensive understanding of user activities.

2.5.8 Event Log Explorer

Event Log Explorer is an advanced Windows event log analysis tool to enhance the

process of examining event logs. This software is compatible with the Windows "legacy"

format, EVT, and the newer EVTX format logs [26].

The utility has powerful filtering capabilities, enabling forensic analysts to identify

specific events or patterns of interest quickly and accurately. Furthermore, Event Log

Explorer simplifies generating and exporting of event log reports [26].

2.5.9 LECmd.exe

LECmd.exe is a specialized tool for parsing shortcut files, commonly known as LNK

files. These files are typically generated within the directory

C:\Users\<user>\AppData\Roaming\Microsoft\Windows\Recent, providing valuable

information regarding user activity and file access patterns.

2.5.10 Regshot

Regshot is an open-source utility that facilitates the task of comparing modifications made

to the registry. This tool can capture snapshots of the registry in two states, enabling a

comparative analysis between them. The tool offers the option to generate the output in

27

either "text" or "HTML" format, allowing users to choose the format that best suits their

needs1.

The present thesis leveraged the capabilities of Regshot to conduct a comparative analysis

of the first and second disk images obtained during the investigation. Specifically,

Regshot was utilized to determine any alterations made to the registry or file system due

to the WSA and WSA Pacman installation.

2.5.11 Timeline Explorer

Timeline Explorer is a graphical user interface-based tool designed as an alternative to

Excel for digital forensic investigators to perform their analysis. It offers advanced

filtering options, timestamp formatting, search functions, and conditional formatting 2.

The tool was utilized in this master's thesis to analyse Shimcache, Amcache, Prefetch,

$M, and $J, and its features helped to identify and visualize relevant information for the

investigation efficiently.

1 https://github.com/Seabreg/Regshot (accessed: May 11, 2023)

2 https://aboutdfir.com/toolsandartifacts/windows/timeline-explorer/ (accessed May 11, 2023)

28

3 Related Work

The analysis of related studies concentrates on research supporting the WSA

investigation, encompassing potential locations of artifacts, appropriate tools for analysis,

and other factors. The primary emphasis of the research and articles in this chapter is on

WSL2, as WSA is also based on the same virtualization technology. The literature review

incorporates papers on Android, highlighting potential threats and security concerns

associated with these platforms, as well as a paper discussing Hyper-V virtualization

technology. To the author's knowledge, no WSA-related papers have been published at

the time of writing, indicating a gap in the current state of the art.

In 2022, Boigner. and Luh, published a paper, "WSL2 Forensics: Detection, Analysis &

Revirtualization [27]". The authors proposed a hypothesis to detect WSL artifacts based

on Windows artifact categories such as Windows Registry, Prefetch, Jumplist, and

AmCache. They used open-source tools like RegRipper, WinPrefetchView,

JumpListView, and Windows internal Event Viewer. The author's approach is

experiment-driven by first determining the artifact categories for the WSL installation,

setting up necessary testing environments for the acquisition, and further analysis. As a

result, the previously placed evidence, such as documents, images, and archived files, can

be extracted, proving their proposed hypothesis. The paper did not cover memory analysis

which might be necessary for future investigations.

The "Forensic Analysis of Windows Subsystem for Linux on Windows 11" thesis

employed an experimental approach, concentrating on artifacts remaining on the host

system [28]. The author conducted basic user activities in the experimental environment,

captured network traffic, and obtained disk images. The investigation primarily focused

on Windows and network forensics, excluding memory forensics. Most utilized tools

were open source, endorsed by SANS Institute instructors, and a single commercial tool

Magnet Axiom. The study involved a comparison between WSL1 and WSL2. The author

ultimately determined that examining multiple artifacts is essential to associate them with

WSL and emphasized the potential benefit of incorporating memory forensics for more

valuable evidence.

29

Article [29] highlighted the potential risk of WSL2 inadvertently exposing internet traffic

by circumventing the Windows Filtering Platform (WFP) layers [29]. WSL2 relies on

Hyper-V virtual networking, and the Hyper-V Virtual Ethernet Adapter transmits traffic

without the host firewall checking the packets on the host machine. Within the OSI layer

two, the NATed packets appear exclusively as Ethernet frames [29]. The article claims

this concern persists even when using VPN software [29]. Although VPN software

developers assert, they are addressing the issue [29], no subsequent literature confirms

whether the problem has been resolved.

During the Digital Forensic Research Conference, Asif Matadar delivered a presentation

entitled "Investigating WSL Endpoints," primarily concentrating on WSL2 [30]. Matadar

executed nine experiments to assess potential attack methods targeting WSL2. The

objective was to identify forensic artifacts of interest from the Digital Forensics and

Incident Response perspective. According to the presenter, these techniques represent a

limited selection of potential attack vectors within WSL2. Given the growing attention

from threat actors directed toward WSL2, it is reasonable to anticipate a possible increase

in interest concerning WSA as well.

Paper [31] conducted a comparative analysis of three virtualization technologies in her

paper "Comparison between common virtualization solutions: VMware Workstation,

Hyper-V and Docker". The findings indicated that Hyper-V outperformed its counterparts

in most domains, surpassing VMware, while Docker demonstrated the most optimal

performance among the three [31]. The paper's thorough examination of Hyper-V

architecture contributes to understanding the underlying technology employed in WSA.

Allix et al. emphasized the need for additional research concerning Android malware

from a forensic perspective [32]. Their study involved obtaining numerous applications

and utilizing customized crawlers in marketplaces to analyse application content. The

authors determined that the design of Android applications enables the extraction of

essential artifacts, thereby facilitating a deeper understanding of application developers.

Although Android malware forensics falls outside the purview of this thesis, the paper

offers valuable background knowledge to support the investigation.

In 2020, a paper titled "Android Application Development: A Brief Overview of Android

Platforms and Evolution of Security Systems" examined the progression of Android

30

application development, addressing the associated security concerns [33]. The authors

discussed emerging security frameworks and systems specific to the Android platform.

As emphasized in the paper, Android applications present security risks that warrant

consideration in the context of WSA running in Windows 11 operating system.

Kanchhal and Murugaanandam gave an exhaustive overview of Android architecture,

how malware spreads, and how to detect it [34]. For their experiment, they developed an

Android malware application and injected it into an Android device to show how data

from a victim’s device may be captured. They collected the dataset they produced in their

experiment and used it to develop a malware detection model using machine learning,

which proved to be 99.37 percent accurate. They plan to include deep learning and other

results optimization in their future research.

As stated at the beginning of the literature review, the author sought research papers that

would offer valuable contextual insights to facilitate the examination of the selected thesis

topic. Given the lack of research directly associated with WSA, the author relied upon the

existing state of the art surrounding WSL2 and will lean on Viitmaa's [28] thesis to

perform the comparison required for the previously mentioned problem statement. Papers

examining Android and a single study on Hyper-V serve as essential background

knowledge, facilitating the effective conduct of the research. The Android-related papers

provide insights into potential attack vectors associated with using the Android operating

system, thereby enhancing the understanding of the relevant security concerns.

Meanwhile, the paper on Hyper-V offers a deeper comprehension of the underlying

technology upon which WSA is built, further strengthening the author's knowledge to

conduct her experiment.

31

4 Methodology

This research utilizes a controlled-experiment methodology to explore the subject matter

in-depth. The following chapter presents a comprehensive outline of this thesis's

experimental setup, including the specifics of the disk acquisition process. The totality of

the controlled experiment is illustrated in Figure 2. This figure provides a comprehensive

graphical representation of the experiment.

4.1 Roadmap for the Controlled Experiment

The experiment contains five stages, each with specific objectives and tasks.

• Stage 1 involves installing the Windows 11 operating system and Sysmon,

followed by acquiring the first disk image. This image will be compared with the

Stage 2 disk image to facilitate registry analysis in Section 5.2 - Registry

Evidence.

• Stage 2 entails the necessary steps for setting up WSA. The second disk image is

acquired and will be used in conjunction with the first disk image to support

registry analysis in Section 5.2 - Registry Evidence and Section 5.4 - Application

Artifacts.

• Stage 3 focuses on installing applications that assist in conducting the required

tests for Stage 4. The resulting artifacts related to application installation are

discussed in Section 5.2 - Registry Evidence and Section 5.4 - Application

Artifacts.

• Stage 4 consists of two file operation tests. Test 1 examines the possibility of

transferring files between the host and WSA while also assessing the forensic

implications of these movements. Test 2 involves downloading files from the

WSA Firefox application and the host Firefox to evaluate the effectiveness of

Microsoft Defender. Firefox was chosen based on the author's personal

32

preference, as the outcome of Test 2 is not dependent on the specific browser used.

The results of Stage 4 are covered in Section 5.5 - File Operations and Artifacts.

• Stage 5 aims to understand WSA from a network perspective. Tests 3, 4a, 4b, and

5 are described in more detail in Section 4.2 - Experiment Setup. The final disk

image is acquired to facilitate forensic analysis of Stages 3 through 5.

Section 5.6 - Event Logs explores Sysmon and other relevant event logs that provide

application download evidence and additional data that may support this research. A more

detailed overview of the experimental setup is presented in Section 4.2 - Experiment

Setup.

In Section 5.8 - Comparison Between WSA and WSL2, a comparative analysis is carried

out, drawing upon the findings of the controlled experiment conducted in this research

and the results of the thesis entitled "Forensic Analysis of Windows Subsystem for Linux

on Windows 11” [28].

33

Figure 2. Experiment setup diagram.

4.2 Experiment Setup

The experiment was carried out in Estonia, a region not currently included in the

supported areas for the Amazon Appstore. The author employed an alternative WSA

installation solution outlined in Chapter 2. - Background as the basis for conducting the

experiment. Table 2 presents the device and Windows specifications utilized in the

controlled experiment.

34

Table 2. Device and Windows specifications.

Hostname THESIS23

Processor Intel(R) Core (TM) i7-8850H CPU @ 2.60GHz

Installed RAM 16.0 GB (15.7 GB usable)

Architecture 64-bit operating system, x64-based processor

OS Edition Windows 11 Education

OS Version 22H2

OS build 22621.1413

4.2.1 Stage 1

The experiment began with the installation of the Windows 11 operating system. After

that, Sysmon was installed to provide more in-depth security and system monitoring.

WSA requires the activation of virtualization in Unified Extensible Firmware Interface

(UEFI) settings and enabling Hyper-V, Virtual Machine Platform, and Windows

Hypervisor Platform features within the Control Panel (Windows Features). After

enabling these Windows features, a system reboot was needed to apply the changes

effectively. The first disk image was acquired.

4.2.2 Stage 2

Following the initial disk acquisition, the WSA MSIX Windows app package was

obtained from MS Store Generation Project1 website, which allows downloading package

directly from the Microsoft server2. This package was subsequently installed manually by

employing PowerShell commands. In the next phase of the experiment, the most recent

version of the GUI package manager, WSA Pacman, was installed. WSA Pacman was

installed by downloading the necessary files from its dedicated GitHub repository3. Once

the installation of WSA Pacman was completed, it was necessary to reboot the system to

finalize the configuration and ensure the proper functioning of the installed components.

1 https://store.rg-adguard.net/ (accessed Apr. 05, 2023)

2 https://softwarekeep.com/help-center/is-storerg-adguardnet-safe-and-legal (accessed Apr. 05, 2023)

3 https://github.com/alesimula/wsa_pacman (accessed: Apr. 08, 2023)

https://github.com/alesimula/wsa_pacman

35

Upon rebooting the system, the WSA Client was launched. Developer mode, which also

automatically enables USB debugging, was enabled to provide WSA Pacman with the

necessary permissions to manage applications, sideload packages, and access specific

system settings usually limited in a standard user environment. Alongside activating

developer mode, Android Debug Bridge (ADB) debugging was authorized for WSA

Pacman, enabling the installation and removal of applications, access to the filesystem,

and the execution of commands in the Android environment [35]. The second disk image

was acquired.

Figure 3. Visual representation of WSA Client and WSA Pacman GUI.

The steps mentioned above were necessary because the author could not access the

official Amazon Store due to regional restrictions, needing to sideload the apps, and

acquiring packages from alternative sources. Developers frequently employ sideloading

to test applications before submitting them to official app stores.

4.2.3 Stage 3

After the second disk image, three applications - Firefox, Microsoft Word, X-plore, and

Ping Tools - were downloaded from APKmirror. The Ping Tools application was chosen

to conduct ping tests. To gain a deeper understanding of network connectivity between

36

the host and WSA, Wireshark 1 and command-line tools such as netstat and ipconfig were

used.

4.2.4 Stage 4 and Stage 5

The Firefox application was explicitly acquired to evaluate the effectiveness of the

Firewall port 80 block rule. The results were compared with those of a previous

experiment conducted on the WSL2, as documented in the "Forensic Analysis of

Windows Subsystem for Linux on Windows 11" thesis [28]. Furthermore, the Firefox

browser was utilized to generate HTTP traffic and to facilitate the Eicar test file download

experiment. This experiment aimed to assess the ability of Windows Defender to identify

and respond to potentially malicious files accessed through various channels, including

the host Firefox browser and the WSA Firefox application.

The X-plore file manager application facilitated the investigation of file-sharing

capabilities between the WSA and the host system. This examination aimed to understand

the possibilities of file transfers between the two environments, assess the movement of

files between the host and WSA, and analyse the implications of such transfers from a

digital forensics’ perspective.

EICAR test files2 were downloaded utilizing the host Firefox browser and the Windows

Subsystem for Android (WSA) Firefox browser. This test aimed to examine the

functionality of Microsoft Windows Defender's detection capabilities when downloading

files through a WSA application compared to the host system. After the completion of

the file downloads, event logs were analysed to determine what forensic evidence could

be found when a “malicious” file was downloaded from WSA.

To obtain further insights from a network forensic standpoint, the author visited a

Hypertext Transfer Protocol (HTTP) site using both the host Firefox and Android

application Firefox to obtain additional artifacts to differentiate between host traffic and

WSA, such as User Agent, allowing for a more comprehensive understanding of the

1 https://www.wireshark.org/ (accessed Apr. 05, 2023)

2 https://www.eicar.org/download-anti-malware-testfile/ (accessed Apr. 07, 2023)

37

network behaviour of WSA, which could provide valuable insights for forensic

investigations.

The article [29] published in 2020 investigated the potential leakage of internet traffic in

WSL2. In order to determine whether WSA exhibits similar vulnerabilities, Surfshark

Virtual Private Network (VPN) 1 was used as the testing tool. Within the Surfshark VPN

settings, the kill switch feature was activated, ensuring that any potential IP leaks were

mitigated by disabling the internet connection during rare disruptions. Additionally, the

VPN was configured to operate in strict mode, safeguarding against internet connectivity

in the event of VPN disconnections or interruptions. Enabling the kill switch and setting

it to strict mode was required to see if it was possible to replicate the issue. Afterward,

the third disk image was acquired.

4.3 Disk acquisition

The disk acquisition process was conducted by removing the NVMe2 SSD from the target

machine and placing it into an NVMe enclosure. Subsequently, the forensic investigation

device was booted up using bootable USB flash drive with CAINE operating system, and

the target machine's NVMe SSD was connected. The disk was acquired utilizing the FTK

Imager command-line tool.

The acquisition process involved the creation of a forensically sound E01 image of the

target disk, segmented into 2TB fragments, with no compression applied. The process

included relevant metadata, such as case number, evidence number, description,

examiner, and notes, and concluded with a verification process to ensure the integrity of

the acquired image. The resulting disk image provided a solid foundation for conducting

a thorough and reliable forensic investigation.

1 https://surfshark.com/one (accessed Apr. 07, 2023)

2 https://www.netapp.com/data-storage/nvme/what-is-nvme/ (accessed Apr. 15, 2023)

38

5 Analysis and Results

This chapter presents an examination of the forensic analysis and the findings obtained

from the experiment setup outlined in Figure 2. This evaluation delves into the various

aspects of the WSA environment and the interaction between the host system and the

Android applications. The artifacts are discussed throughout this chapter, and

comparisons are drawn to validate the findings.

The analysis conducted in this research involved comparing the first and second disk

images to identify the differences in the registry and file system after the installation of

Windows Subsystem for Android and WSA Pacman. The Regshot tool was employed to

facilitate this comparison, which aided in capturing and comparing snapshots of the

system's state.

The second and third disk images were used to conduct a comprehensive analysis as

presented in Chapter 5 - Analysis and Results. This analysis involved examining various

artifacts and data points to gain insights into the functioning and behaviour of WSA, its

impact on the host system, and the presence of relevant forensic evidence.

By using multiple disk images and conducting thorough analysis, this research aimed to

provide a thorough understanding of the changes and artifacts associated with the

installation and operation of WSA, allowing for a more informed interpretation of the

experiment findings and their implications.

5.1 WSA Virtual Hard Disk Evidence

The Windows Subsystem for Android (WSA) utilizes a virtual hard disk (VHDX) format

for storing its data and operating system resources. Specifically, the WSA data is stored

within two VHDX files located at the following paths:

• Users\<username>\AppData\Local\Packages\MicrosoftCorporationII.WindowsS

ubsystemForAndroid_8wekyb3d8bbwe\LocalCache\userdata.vhdx

39

• Users\<username>\AppData\Local\Packages\MicrosoftCorporationII.WindowsS

ubsystemForAndroid_8wekyb3d8bbwe\LocalCache\metadata.vhdx

Furthermore, the fully qualified path for the WSA service executable is:

• C:\Program

Files\WindowsApps\MicrosoftCorporationII.WindowsSubsystemForAndroid_2

301.40000.7.0_x64__8wekyb3d8bbwe\WsaService\WsaService.exe

Additionally, Android maintains an application log within the WSA environment, which

can be found at:

• \Users\<username>\AppData\Local\Packages\MicrosoftCorporationII.Windows

SubsystemForAndroid_8wekyb3d8bbwe\LocalState\diagnostics\logcat

During the analysis of the Regshot output, two essential files related to ADB (Android

Debug Bridge) were discovered. These files, namely "adbkey" and "adbkey.pub," are for

establishing a secure connection between the host system and the Windows Subsystem

for Android.

The "adbkey" file represents the private key, while the "adbkey.pub" file corresponds to

the public key. These keys are used for authentication, ensuring the integrity and security

of the communication between the host and WSA.

The keys are stored in the following location:

• C:\Users\<username>\.android\adbkey

• C:\Users\<username>\.android\adbkey.pub

5.2 Registry Evidence

The following section examines the second disk image, containing the analysis of the

NTUSER.dat, UsrClass.dat, SYSTEM, and SOFTWARE registry hives. This section

provides insights into the most relevant artifacts from the author's perspective, equipping

forensic examiners with essential key locations for conducting similar forensic

investigations.

40

5.2.1 NTUSER.dat Hive

Table 3 presents the significant registry artifacts found in the NTUSER.dat registry hive,

providing valuable evidence of WSA's existence.

Table 3. NTUSER.dat registry evidence.

Registry Key Value

Software\Microsoft\Windows\CurrentVersion\App

Paths\WsaClient.exe

Path

Software\RegisteredApplications

Software\Microsoft\Windows

NT\CurrentVersion\AppCompatFlags\Compatibility

Assistant\Store

Path (WSA-

pacman.exe, WSA-

pacman-v1.4.0-

installer.exe)

\SOFTWARE\Microsoft\Windows\CurrentVersion\CloudStor

e

Binary format (WSA

Pacman, WSA)

Software\Microsoft\Windows\CurrentVersion\UFH\SHC Path (WSA

PacMan.lnk, WSA-

pacman.exe)

Software\Microsoft\Windows\CurrentVersion\Explorer\Recent

Docs

Opened

Extension Last

Opened

Software\Microsoft\Windows\CurrentVersion\Explorer\Featur

eUsage\AppSwitched

Name

Data

The AppPaths subkey delivers vital distribution information as seen in Figure 4, while

the RegisteredApplications subkey contains data concerning the default programs linked

to specific applications for the operating system. The CompatibilityAssistant\Store

subkey has the potential to provide investigators with insights about third-party

applications that have been executed on the system. Moreover, the SHC key encompasses

information about GUI applications.

Figure 4. WsaService distribution information.

41

The RecentDocs key is a significant registry entry that monitors opened files and folders.

For example, it documented the WSA MSIX Windows app package opening at 19:48:21.

Notably, the RecentDocs key discloses evidence of employing the Windows feature

"Turn Windows Features on or off". The Windows feature was used to activate the

virtualization platforms required for the WSA installation. Consequently, the RecentDocs

subkey can offer intriguing insights relevant to a WSA investigation. It sheds light on the

WSA's presence in the system and the user's activities and interactions regarding the

subsystem's installation.

Figure 5. RecentDocs subkey: Evidence of MSIX Windows app package opening.

The AppSwitched subkey offers valuable insights into application execution, including

the number of times an application has come into focus. This information is particularly

beneficial for understanding user interactions with various applications. By analysing the

AppSwitched key, forensic investigators can better understand the user's behaviour,

application usage patterns, and the frequency of engagement with specific applications.

5.2.2 UsrClass.dat Hive

Table 4 presents artifacts extracted from the UsrClass.dat file.

Table 4. UsrClass.dat registry evidence.

Registry Key Value

Local Settings\Software\Microsoft\Windows\Shell\MuiCache FriendlyName

Local

Settings\Software\Microsoft\Windows\CurrentVersion\AppM

odel\Repository\Packages\MicrosoftCorporationII.WindowsS

ubsystemForAndroid_2301.40000.7.0_x64__8wekyb3d8bbw

e

ApplicationName

PackageRootFolder

PackageID

PackageSid

Local

Settings\Software\Microsoft\Windows\CurrentVersion\AppM

odel\SystemAppData\MicrosoftCorporationII.WindowsSubsy

stemForAndroid_8wekyb3d8bbwe

42

The UsrClass.dat file Packages subkey, and the previously mentioned registry

NTUSER.dat AppPaths subkey can offer valuable distribution information regarding the

investigation. Another noteworthy aspect is the Muicache, which retains references to the

file descriptions located within an executable's resource when the executable is launched.

This information can be beneficial during a forensic examination, providing insights into

the executed applications.

The SystemAppData registry subkey reveals information related to the startup of

applications. By examining this key, forensic investigators can gain a deeper

understanding of the applications initiated on the system, shedding light on potential user

activities and behaviours.

5.2.3 SYSTEM Registry Hive

The following Table 5 provides an overview of the key artifacts that were observed in the

SYSTEM registry hive.

Table 5. SYSTEM registry hive evidence

Registry Key Value

ControlSet001\Services\WsaService ImagePath

DisplayName

ObjectName

PackageFullName

AppUserModelId

PackageOrigin

Description

ServiceSidType

Start

ControlSet001\Services\SharedAccess\Parameters\FirewallPo

licy\RestrictedServices\AppIso\FirewallRules

Rule

ControlSet001\Services\SharedAccess\Parameters\FirewallPo

licy\FirewallRules

Action

Active

Dir

Protocol

LPort

Name

App

ControlSet001\Control\Session Manager\AppCompatCache Full path

Last modified time

Cache entry position

Control set

ControlSet001\Services\bam\State\UserSettings\S-1-5-21-

1840747146-4148207901-798464498-1000

Path

Data

43

The SYSTEM hive revealed several compelling artifacts associated with the presence of

WSA in the system. The WSAService subkey was created under the Services subkey

during installation, containing information such as ImagePath, PackageFullName, Start,

and more, as detailed in Table 5. The Start RegDword was set to 3, meaning the

WsaService will start if the user or process requests it. The BAM artifact held information

on WSA and WSA Pacman execution time and data. Evidence of FirewallRules subkey

can be found in Appendix 2.

Of particular interest was the Shimcache, located within the AppCompatCache subkey.

The KAPE Module was employed to parse the AppCompatCache, and the data was

outputted in CSV. Shimcache retains program execution data, and upon further

examination in conjunction with Prefetch and Amcache, it became evident that

Shimcache contains the earliest information on some of the WSA-related program and

application executions.

Figure 6. Shimcache: Application and program execution evidence

Furthermore, within the Shimcache, program execution artifacts associated with WSA

indicated a last modified time of 19:49:52. Cross-referencing this information with the

NTUSER.dat RecentDocs subkey recorded the opening of the WSA MSIX Windows app

package at 19:48:21, a specific timeframe for the installation can be established. This

correlation of data serves to enhance the accuracy and comprehensiveness of the forensic

investigation.

5.2.4 SOFTWARE Hive

Table 6 comprises a collection of registry evidence extracted from the SOFTWARE hive.

These keys provide insights into the installation, configuration, and operation of WSA on

the host system.

44

Table 6. SOFTWARE registry hive evidence.

Registry Key Value

Microsoft\Windows\CurrentVersion\Uninstall\WSA PacMan_is1 DisplayName

DisplayIcon

UninstallString,

DisplayVersion

Publisher

InstallDate

EstimatedSize

Classes\Local

Settings\Software\Microsoft\Windows\CurrentVersion\AppModel

\PackageRepository\Packages\MicrosoftCorporationII.WindowsS

ubsystemForAndroid_2301.40000.7.0_x64__8wekyb3d8bbwe

Microsoft\SecurityManager\CapAuthz\ApplicationsEx\MicrosoftC

orporationII.WindowsSubsystemForAndroid_2301.40000.7.0_x64

__8wekyb3d8bbwe

PackageSid

Microsoft\Windows\CurrentVersion\AppModel\StagingInfo\Micr

osoftCorporationII.WindowsSubsystemForAndroid_2301.40000.7

.0_x64__8wekyb3d8bbwe

DownloadSize

Classes\PackagedCom\Package\MicrosoftCorporationII.Windows

SubsystemForAndroid_2301.40000.7.0_x64__8wekyb3d8bbwe

Subkeys:

Class

Interface

Proxy

Server

Classes\PackagedCom\ClassIndex\{0D391720-9780-4575-88FF-

BB89716B081F}\MicrosoftCorporationII.WindowsSubsystemFor

Android_2301.40000.7.0_x64__8wekyb3d8bbwe

In the Windows Registry, the Microsoft\Windows\CurrentVersion\Uninstall key contains

valuable information regarding the installation of various applications, including the

WSA Pacman. By examining this key, investigators can obtain detailed insights into the

WSA Pacman's installation, such as the installation date, the publisher of the application,

and other relevant data. Furthermore, the SOFTWARE hive provides information about

the WSA Pacman, such as its Package SID and Download size.

Classes\Local

Settings\Software\Microsoft\Windows\CurrentVersion\AppModel\PackageRepository\P

ackages indicates the presence of WSA package. The subkey contained the full path of

the package and references to WsaClient.exe. WsaClient is an executable file responsible

for managing and executing Android applications within the Windows environment.

45

Under the registry path Microsoft\SecurityManager\CapAuthz\ApplicationsEx, valuable

information on the security manager's authorization settings for Windows Subsystem for

Android (WSA) can be found. Within this subkey, a specific value named "PackageSID"

represents a unique security identifier assigned to facilitate communication between WSA

applications and the endpoint 1.

The installation and staging process of Windows Subsystem for Android is under the

registry key Microsoft\Windows\CurrentVersion\AppModel\StagingInfo. Within this

key, there is a subkey named DownloadSize, which provides information about the size

of the downloaded files during the installation process.

The DownloadSize value is stored as REG_QWORD, a data type representing a 64-bit

integer. In this case, the value represents the size of the downloaded files in bytes. By

analyzing this value, it is possible to gain insights into the size of the installation package.

As seen in Figure 7, the DownloadSize is 795477539, this value can be converted to a

more familiar unit like megabytes (MB). The conversion yields a size of 759MB. It is

important to note that this calculation does not include decimal places, and the resulting

value represents the approximate size of the download.

Figure 7. DownloadSize under Microsoft\Windows\CurrentVersion\AppModel\StagingInfo.

The registry subkey Classes\PackagedCom\Package contains valuable data regarding the

proxy, server, and interface information associated with WSA.

1 https://learn.microsoft.com/en-us/gaming/game-bar/guide/communicating-apps (accessed May 10,

2023)

46

5.3 Prefetch and Amcache: Program and Application Execution:

Prefetch, a Windows feature, and the Amcache hive are valuable resources for obtaining

information on application execution and tracking installed applications and programs

that have been executed or are present on the system. The PECmd command-line tool is

employed to parse Prefetch files, while the KAPE module was used to extract program

execution data from the Amcache hive.

A thorough examination of the Prefetch files reveals a wealth of information about the

executables associated with the WSA installation. Interestingly, the Amcache hive

contains evidence of the WSA Pacman application only. When comparing the data from

both sources, it becomes evident that the Amcache hive records execution events a few

seconds earlier than the Prefetch files.

Moreover, Prefetch documented the execution of powershell.exe with its most recent run

time at 19:45:36 (the first Powershell execution was related to Sysmon installation) which

can be viewed as a significant artifact in determining the WSA installation timeline. As

previously mentioned, the RecentDocs subkey recorded the WSA MSIX Windows app

package opening at 19:48:21, and Shimcache registered the execution of WSAClient.exe

at 19:49:52.

As demonstrated in Figures 8 and 9, the evidence of program execution is documented,

showcasing the relevant data obtained from the analysis of Prefetch and Amcache hives.

These figures visually represent the execution events, enabling a clearer understanding of

the associated timeline and user activities related to the WSA installation and usage.

Figure 8. Prefetch: Application execution evidence.

47

Figure 9. Amcache: Program execution evidence.

5.4 Application Artifacts

By examining the Software\Microsoft\Windows\CurrentVersion\Explorer\RecentDocs

registry key under NTUSER.dat, it can be determined the most recently used application

for each file extension, as this key maintains a Most Recently Used (MRU) list for each

file type. Focusing on the .apk extension, it is evident that the X-plore file manager was

the latest application in use, with an opening date and time of 2023-03-13 12:22:39 as

seen in Figure 10. This information is particularly valuable, as it provides insight into the

applications that users have utilized, including those that have been removed, thereby

offering a comprehensive overview of user behaviour.

Figure 10. RecentDocs subkey: Evidence of application usage.

In addition, cross-referencing the evidence found in RecentDocs with artifacts in

NTUSER\Software\Microsoft\Windows\CurrentVersion\Explorer\FeatureUsage\AppS

witched, the AppSwitched subkey provides knowledge on how many times each

application has been executed. The added data further enhances our understanding of

application usage patterns and user interactions on the system.

48

5.5 File Operations and Artifacts

5.5.1 Test 1: File Transfer

Transferring files between the host system and Windows Subsystem for Android can be

facilitated using third-party applications. In the context of this experiment, the X-plore

file manager application was chosen to manage file transfers.

File Transfer Protocol (FTP) sharing was configured within the X-plore application to

enable file transfer between the host system and WSA. To access the FTP location, a

shortcut was created in Windows Explorer. During the experiment, it became apparent

that X-plore did not satisfy the needs of this experiment since FTP sharing is Read-only

access for the free version.

Consequently, the SDK-Platform tools1 were acquired to utilize the Android Debug

Bridge (ADB)2 command-line tool to transfer files between the host system and the

Windows Subsystem for Android (WSA). The command "adb.exe connect

127.0.0.1:58526" was executed to establish a connection with the WSA environment.

Following the successful connection, files could be transferred between the host and WSA

using the "push" and "pull" commands. The "push" command enables the transfer of files

from the host system to the WSA, while the "pull" command facilitates the transfer of

files from the WSA to the host system.

To conduct file operation testing, an Android Word application was used to create a file

named TEST_PULL.docx, which was then saved to the WSA

/storage/emulated/0/Documents folder. The ADB command-line tool was used to transfer

the file from WSA to the host system. Once the TEST_PULL.docx file was successfully

transferred, it was deleted from the WSA. Subsequently, the file was renamed to

TEST_PUSH.docx on the host machine and "pushed" back to the

/storage/emulated/0/Documents folder in the WSA. Therefore, a KAPE VHDX image of

1 https://developer.android.com/tools/releases/platform-tools (accessed Apr. 10, 2023)

2 https://developer.android.com/tools/adb (accessed Apr. 10, 2023)

49

the $MFT and $J was processed using MFTECmd command-line tool, with the output

generated in CSV format.

Upon examining the $MFT output, no record of the TEST_PULL.docx file was found.

However, while analysing the $J output, it was observed that the TEST_PULL.docx file

was created at 06:32:46 and renamed at 06:33:50, as seen in Figure 11. Upon analysing

the Master File Table ($MFT), it was discovered that TEST_PUSH.docx was created at

precisely 06:32:46, with its most recent record modification taking place at 06:33:50, as

seen in Figure 12. By cross-referencing the timestamps with the output from the $J

journal, it became evident that the original name of the file was TEST_PULL.docx. This

conclusion is supported by Figure 11, which clearly shows that TEST_PULL.docx was

renamed to TEST_PUSH.docx.

Figure 11. $J.

Figure 12. $MFT.

Through the analysis of the Master File Table ($MFT) and journal files ($J), no evidence

was found suggesting that a file was created on the WSA subsystem rather than the host

system. Additionally, the author used LECmd.exe to parse the TEST_PUSH.docx.lnk file

to identify any data that could establish that TEST_PUSH.docx was created within WSA

and not on the host. However, further investigation is necessary, and the current tools and

techniques were deemed insufficient for finding the necessary artifacts that could link the

TEST_PUSH.docx file back to the WSA subsystem. As a result, additional research is

needed to address this issue in the future.

5.5.2 Test 2: EICAR File Download

The Eicar test file was employed in an experiment to evaluate the detection capabilities

of Windows Defender when dealing with potentially malicious files accessed through

both the host Firefox browser and the WSA Firefox application. The primary objective

50

of this test was to ascertain whether Windows Defender could effectively identify and

respond to the "malicious" test file in different scenarios.

Windows Defender successfully detected the Eicar test file when downloaded using the

host browser, as evidenced by the corresponding entry in the Microsoft-Windows-

Windows Defender%4Operational.evtx log. In contrast, the file downloaded through the

WSA Firefox application went undetected. Notably, the eicar.com.txt file could not be

downloaded using the Android Firefox browser, necessitating using the eicar_com.zip

file for this experiment.

Interestingly, when the eicar_com.zip file was downloaded using the Android Firefox

application, users were prompted to choose whether they wanted to open the file, with

"Windows default preference" appearing as the first option. It was downloaded to the host

system after selecting "Windows default preference" to open the file. However, Windows

Defender did not automatically detect and remove the eicar_com.zip file unless the user

interacted with it.

The author reported the issue through official Microsoft Support channels. In response,

Microsoft Support explained that the performance of Windows Defender is intentionally

configured to avoid overloading the operating system during regular operation. This

design allows for quick system response times for the user, with scanning delays only

occurring when necessary. Thus, it appears the lack of detection is a deliberate design

choice by Microsoft to prioritize system performance over exhaustive malware detection.

The present controlled experiment has uncovered a notable limitation in the ability of

Windows Defender to detect files accessed via the WSA environment. The WSA stores

files in a VHDX container, so Windows Defender cannot detect them unless they appear

on the host system. As a result, this poses a potential threat to the host system, particularly

in scenarios where a malicious file is downloaded onto the WSA subsystem. Although

the Windows Subsystem for Android does not have root access to the host system's

resources; however, depending on the level of sophistication of the malware, there is a

possibility of exploiting potential vulnerabilities to infect the host system.

51

5.6 Event Logs

The examination of event logs focused on identifying evidence of application downloads

and any other data that could be of value to this investigation. Windows built-in Event

Viewer and Event Log Explorer were used to analyse the event logs.

Sysmon captured several intriguing artifacts that shed light on the downloaded

applications. With Event ID 1, Sysmon documented the installation of Word, PingTools,

Firefox, and X-plore applications. This included the complete path to the location of the

.apk file, the command used for installation ("adb.exe -s 127.0.0.1:58426 install"), the

time of the event, and the SHA256. Further information can be found in Figure 13.

Figure 13. Sysmon: PingTools installation.

The Microsoft-Windows-Sysmon/Operational log records a dedicated event each time an

app is launched, offering valuable insight to form a pattern in application usage with other

artifacts such as the AppSwitched subkey under NTUSER.dat. In addition, Sysmon

provides a comprehensive overview of the WSA Pacman installation process,

corroborating the findings from the Prefetch analysis.

52

In the Sysmon event log depicted in Figure 13, the installation took place at 19:09:49.

Examining the Microsoft-Windows-Shell-Core/Operational event log with Event ID

281151 shows the installation of PingTools slightly later, at 19:10:18. The same

information is available for all other WSA applications installed for the purpose of the

experiment.

The Microsoft-Windows-VHDMP/Operational event log contains records related to the

WSA virtual disk. The first event occurred at 19:53:15, providing the full path of the

virtual disk location, user SID, and details about the logged event.

The Microsoft-Windows-Windows Firewall With Advanced Security Firewall event log

documented the creation of a rule for WsaClient.exe at 19:49:53, as seen in Figure 14.

This log entry corroborates the installation timeline for the Windows Subsystem for

Android (WSA) within the system. Furthermore, the Shimcache registry evidence

supports this timeline, as it recorded the earliest instance of WsaClient.exe execution at

19:49:52. This consistency in the recorded events provides a reliable understanding of the

WSA installation process. It helps establish a precise chronology of events during a

forensic investigation.

Figure 14. Rule creation for WsaClient.exe.

1 https://nasbench.medium.com/finding-forensic-goodness-in-obscure-windows-event-logs-60e978ea45a3

(accessed Apr. 11, 2023)

53

Table 7 is provided below, presenting all the event logs associated with the Windows

Subsystem for Android (WSA), WSA Pacman, and the installed applications. This table

offers a thorough overview of the relevant events, enabling forensic investigators to

understand the interactions and activities related to the WSA environment during the

investigation.

Table 7. Overview of the event logs.

Event log Data

Microsoft-Windows-

Sysmon%4Operational .evtx

Path

Command

SHA256

Microsoft-Windows-Shell-

Core%4Operational.evtx

Application installation information

Microsoft-Windows-

VHDMP/Operational.evtx

Path

SID

Microsoft-Windows-Hyper-V-

VmSwitch-Operational.evtx

Virtual network configuration information

Microsoft-Windows-AppXDeployment-

Server%4Operational.evtx

Deployment information

SID

Path

Application.evtx Full path of the virtual disk

Microsoft-Windows-Hyper-V-Compute-

Operational.evtx

Microsoft-Windows-AppModel-

Runtime%4Admin.evtx

Application process creation info

Package name

Microsoft-Windows-Application-

Experience%4Program-Compatibility-

Assistant.evtx

SID

Path

Microsoft-Windows-

Store%4Operational.evtx

Path

Build

SID

Package name

Microsoft-Windows-Windows Firewall

With Advanced Security%4Firewall.evtx

Path

The event logs in the table include event IDs, event descriptions, paths, timestamps, and

other information related to the subject under investigation, offering valuable insights into

54

the installation, configuration, and usage of WSA, WSA Pacman, and the corresponding

applications. By carefully analysing this detailed data, investigators can identify patterns,

verify timelines, and uncover additional evidence pertinent to the case.

5.7 Network Artifacts

Results of network analysis depends on the type of traffic being observed and whether it

is captured from the host physical adapter or virtual adapter, local area network, or public

network. In this thesis, network capture was done using physical or virtual adapter.

The following subsection outlines the results of various tests, such as ping, firewall port

80 blocking, HTTP traffic, and VPN tests. Figure 16 shows a conceptual representation

of the WSA network architecture created by the author based on her knowledge after

conducting several experiments. The network architecture concept was developed to

address questions raised by the outcomes of Test 4a and to provide an overview of the

WSA network architecture.

To construct the network architecture concept for WSA, the author utilized the article

"What is the Hyper-V Virtual Switch and How Does it Work?" [36], Figure 15 [37], and

the results of the tests conducted in Stage 5. The author employed this approach to gain a

more comprehensive understanding of how the WSA network architecture operates.

Figure 15. Hyper-V network illustration [37].

When Hyper-V is enabled on the host, it creates a network abstraction layer, which

manages the host's network connectivity through the Hyper-V Extensible Switch. The

host's physical network adapter (pNIC) connects to the Hyper-V Extensible Switch. A

55

virtual network adapter (vNIC) is created for the host operating system, also known as

the management operating system. The network traffic passes between the host and its

physical network adapter through the virtual switch, allowing the host to share its physical

network adapter with virtual machines. The WSL Core adapter (Hyper-V virtual switch)

provides network connectivity to the WSA instance. The entirety of the WSA network

architecture concept is visually represented in Figure 16. The IP address of the WSA

Client will change upon each restart, resulting in varying IP addresses observed

throughout the research process.

56

Figure 16. WSA network architecture concept.

5.7.1 Test 3: Ping Test Analysis

In order to assess network connectivity between the host system and the WSA, the

network diagnostic tool, ping, was utilized. The initial ping test involved sending an

Internet Control Message Protocol (ICMP) echo request from the host to WSA, resulting

57

in a successful echo reply. Conversely, the second ICMP echo request was unsuccessful,

originating from WSA to host using the Ping Tools application. The Windows host

firewall blocks all incoming traffic by default, including ICMP, Server Message Block

(SMB), Network Basic Input/Output System (NetBIOS), and Remote Procedure Call

(RPC). The inbound File and Printer Sharing (Echo Request - ICMPv4-In) rule must be

enabled to permit incoming ICMP traffic. The subsequent ping test from WSA to the host

proved successful upon activating this rule.

Executing a ping to 8.8.8.8 from WSA using Ping Tools was successful similar to the

hosts. This ping was monitored via Wireshark, with traffic capture performed on both the

Wi-Fi (host) and vEthernet (WSLCore) interfaces. Analysing the captured network traffic

from both interfaces made it possible to distinguish ping traffic based on the IP addresses.

Specifically, the host was identified as having an IP address of 192.168.1.232, while the

WSA possessed an IP address of 172.31.140.86.

Figure 17. Wireshark capture of the host physical and WSA adapter.

The host IP serves as the default route for the WSA to establish internet connectivity,

capturing network traffic from the host physical adapter results in translating (Network

Address Translation) the WSA IP address to the host IP. Therefore, distinguishing WSA

and host traffic by IP addresses is not possible. When analysing network traffic captured

from the host physical interface, one approach to differentiate between pings originating

from the host (pinging 8.8.8.8) and those from the WSA (also pinging 8.8.8.8) is to

examine the ICMP packet payload, such as Time to Live (TTL) values, payload data

sizes, and packet lengths.

58

As WSA is based on the Linux kernel, its default Time to Live (TTL) value for ICMP

echoes is 64, identical to Linux1. However, since packets are routed through the host, the

TTL value decreases by one. Thus, when capturing traffic from the host interface,

Wireshark displays a TTL value of 63 for pings originating from WSA, while a TTL value

of 128 denotes pings executed by the host. Additionally, as stated, pings can be

distinguished by analysing the payload sizes. For WSA, the data size is 48 bytes, while

the host's data size is 32 bytes. The Flags are set for WSA 0x2 and the host 0x0, as shown

in Figure 18.

Figure 18. Wireshark capture of the host adapter.

5.7.2 Test 4a and Test 4b: Firewall Rule and HTTP Traffic Analysis

As described in Stage 5, the following experiment entailed blocking port 80 to inhibit

users from accessing HTTP websites. This approach effectively restricted the host Firefox

browser from accessing a designated HTTP site (www.ee); however, the WSA Firefox

application remained unaffected by the rule and could continue browsing HTTP sites

without hindrance. A similar observation was made with the WSL2, where the firewall

rule did not impose any constraints on its functionality. Figure 19 represents the

effectiveness of the firewall rule on WSA, with WSA being on the left side and the host

on the right.

1 https://ostechnix.com/identify-operating-system-ttl-ping/ (accessed Apr. 08, 2023)

59

Figure 19. WSA Firefox and host Firefox after enabling the firewall rule.

To gather more data, Wireshark was used, and an HTTP site was revisited—after

removing the firewall rule that blocked port 80—to capture browser fingerprints that help

differentiate network traffic at the highest network layer. The HTTP protocol was chosen

because it is plaintext, while Hypertext Transfer Protocol Secure (HTTPS) uses Transport

Layer Security (TLS). This method allowed for the collection of different artifacts related

to WSA. At the time of conducting this experiment, the user-agent for the WSA latest

Firefox application is Mozilla/5.0 (Android 13; Mobile; rv:109.0) Gecko/111.0

Firefox/111.0\r\n. Figures 20 and 21 depict Wireshark captures of the Hypertext Transfer

Protocol (HTTP) packets that contain the User-Agent fields of both the host and the WSA.

Figure 20. User-Agent of the WSA.

60

Figure 21. User-Agent of the host.

5.7.3 Test 5: VPN Test Analysis

The concluding experiment aimed to reproduce the concerns highlighted in the article

"Linux under WSL2 can be leaking" [29]. Surfshark VPN was installed and configured

as detailed in Section 4.2 - Experiment Setup. Upon disconnecting the VPN service, the

host system could not access any websites, while the WSA Firefox application retained

the ability to navigate to any specified website. This observation suggests that the issue

persists and applies to the WSA environment. Figure 22 displays how Surfshark VPN is

disconnected, and host Firefox is unable to connect to the Reddit website; meanwhile, the

WSA maintains the ability to access Reddit.

Figure 22. Visual representation of Surfshark VPN test outcome.

61

5.8 Comparison Between WSA and WSL2

The comparative analysis presented in this study is based upon the findings of a previous

thesis titled "Forensic Analysis of Windows Subsystem for Linux on Windows 11 [28]."

Both investigations adopt a similar controlled experimental approach. Specific

experiments in the current research are chosen to facilitate direct comparisons between

the Windows Subsystem for Linux 2 (WSL2) and Windows Subsystem for Android

(WSA).

This analysis will focus on evaluating the behaviour of both subsystems in the context of

various scenarios, including the application of Windows Firewall port 80 block rules,

Windows Defender's ability to detect malicious files, file operations between the host and

subsystems, and the identification of key evidence on program and application execution

artifacts. By drawing parallels between the WSA and WSL2, this analysis aims to

understand their respective forensic implications and potential attack surfaces in a

Windows 11 environment.

It is essential to acknowledge that the experiments in this study were conducted on two

distinct Windows 11 operating system versions. Consequently, the comparative analysis

will not delve into the registry artifacts specifics, as their relevance may be contingent

upon the specific OS version. Instead, the focus will be on identifying more definitive

similarities and differences between the WSL2 and WSA, which can provide meaningful

insights and conclusions regarding their respective forensic characteristics in the broader

context of the subsystems in the Windows 11 environment. To facilitate a more

comprehensive and accurate comparison between the WSL2 and WSA, performing an

additional controlled experiment involving both subsystems within the same

experimental setting would be essential.

5.8.1 Firewall Rule Test

In both experiments, firewall rules were implemented to restrict traffic to specific ports.

For the WSL2 experiment, ports 80, 8080, and 443 were blocked [28], while in the WSA,

only HTTP traffic to port 80 was blocked, as this was deemed sufficient for the

investigation. After the enforcement of the firewall rules, the host browser and the GUI

application Firefox were utilized to assess the effectiveness of these restrictions. The

results demonstrated a consistent pattern across both subsystems, with the host internet

62

access being successfully restricted. In contrast, the GUI Firefox applications within the

respective subsystems retained their connectivity, meaning that the applied firewall rules

do not impact the network access of the subsystems.

5.8.2 Eicar File Test

In the second comparison, the focus is on the Eicar test file. In the WSL2 experiment, this

test involved changing file permissions and moving files between the subsystem and the

host. However, due to the absence of root access in the WSA experiment, only the file

transfer capability between the host and subsystem was assessed, including finding

indicators to file creation location.

In the WSL2 experiment, it was possible to identify files originating from WSL2 within

the host system by the SWP file extension [28]. In contrast, the WSA experiment did not

allow such distinction by examining the $MFT and $J data streams. To prove the file

originated from the WSA, the author employed additional pivot points, including the

TEST_PUSH.docx.lnk shortcut file analysis. However, this method yielded insignificant

results. As such, additional research is necessary to identify relevant artifacts and

establish a link between files originating from the WSA.

Nevertheless, when downloading the Eicar file using the WSA Firefox application and

opting to open the file with "Windows default preferences," which also downloads the

file to the host system, an LNK file is created. By employing the LECmd.exe command-

line tool to decode the information within the downloaded Eicar test file, some indication

that the file's existence is related to WSA can be determined as seen in Figure 23.

Figure 23. Evidence of the Eicar test file relations to WSA.

5.8.3 Program and Application Execution Artifacts

The Amcache hive, AppCompatCache registry key, and Prefetch offered a wealth of

information for both subsystems. Notably, the earliest recorded data on the installation of

63

WSA and WSL2 were consistent for both subsystems, as evidenced by the

AppCompatCache registry key. This highlights the significance of these forensic artifacts

in providing valuable insights into the installation timeline and usage patterns of WSA

and WSL2 subsystems within a comprehensive forensic examination context.

64

6 Discussion

The Discussion chapter thoroughly discusses this thesis's findings, highlighting pivotal

points for future research. This study aimed to address two primary research questions:

• What artifacts are left behind by WSA, and where can they be found?

• Can digital artifacts found in WSA be compared with artifacts found in WSL2?

A controlled experiment was conducted to address these questions, providing insights

into the research questions posed. The investigation sought to comprehend the

components comprising the Windows Subsystem for Android (WSA), trace user

activities, and establish a detailed timeline concerning the installation of the subsystem.

This chapter emphasizes some of the most intriguing artifacts discovered during the

research, which may prove beneficial for future forensic investigations of a similar nature.

The author acknowledges the value of these artifacts in contributing to a deeper

understanding of the WSA and its forensic implications.

Throughout the experiment, we identified the virtual hard disk (VHDX) files that WSA

employs to store its data and operating system resources. These files were found in the

following locations:

• Users<username>\AppData\Local\Packages\MicrosoftCorporationII.WindowsS

ubsystemForAndroid_8wekyb3d8bbwe\LocalCache\userdata.vhdx

• Users<username>\AppData\Local\Packages\MicrosoftCorporationII.WindowsS

ubsystemForAndroid_8wekyb3d8bbwe\LocalCache\metadata.vhdx

Furthermore, the WsaService.exe was located at C:\Program

Files\WindowsApps\MicrosoftCorporationII.WindowsSubsystemForAndroid_2301.400

00.7.0_x64__8wekyb3d8bbwe\WsaService\WsaService.exe. This essential core service

plays a pivotal role in ensuring the proper functioning of the WSA subsystem.

65

Another noteworthy discovery within the WSA environment is the Android-specific

application log, located at

\Users<username>\AppData\Local\Packages\MicrosoftCorporationII.WindowsSubsyste

mForAndroid_8wekyb3d8bbwe\LocalState\diagnostics\logcat. This log presents a

potential focal point for future research, given that the present thesis did not delve into a

comprehensive analysis of this log.

Transitioning to the analysis of registry hives, the thesis examined NTUSER.dat,

UsrClass.dat, SYSTEM, and SOFTWARE, revealing key findings such as artifacts that

can assist in identifying evidence of WSA's existence, distribution information, and

application execution. Additionally, the research uncovered artifacts that may facilitate

tracking user activities related to WSA, thereby enriching the understanding of this

subsystem from a digital forensics’ perspective.

One of the most intriguing findings in this research was the registry key

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\RecentDocs, which

recorded the opening of the WSA MSIX Windows app package at 19:48:21. This

timestamp was identified as the earliest evidence of the WSA's presence on the system.

However, the author hypothesizes that if WSA were installed through either the Amazon

Appstore or Microsoft Store, this registry key might not exist. As such, this artifact

warrants further investigation. Additional testing is needed to compare the installation

method utilized in this thesis with the official methods of installing WSA through the

Amazon Appstore or Microsoft Store. This comparison would help validate whether the

identified registry key is exclusive to the installation method employed in this research or

if it also appears when using the official installation methods.

In addition, the RecentDocs subkey plays a significant role in understanding user

activities in the system, particularly when cross-referenced with

NTUSER\Software\Microsoft\Windows\CurrentVersion\Explorer\FeatureUsage\AppS

witched. RecentDocs maintains a record of the Most Recently Used (MRU) list of

applications, thus enabling the identification of the last application used. Together, the

AppSwitch subkey offers insights into the frequency of application usage, further

enriching the understanding of user behaviour.

66

The most significant artifacts for tracking program and application usage include the

Amcache hive, Prefetch, and AppCompatCache/Shimcache. When cross-referenced,

these artifacts can offer a specific timeframe of the events that have occurred. These

artifacts have also proven helpful in investigations of WSL2, with

AppCompatCache/Shimcache providing the earliest timestamps of activity occurrence

[28].

In Stage 4, Test 1 aimed to verify the feasibility of transferring files between the host and

WSA using the ADB command-line tool. The analysis of the $MFT and $J files

demonstrated that, by examining dates, timestamps, and the "Update Reasons" column in

$J, it is possible to deduce that TEST_PUSH.docx was previously named

TEST_PULL.docx and was not created on the host system. Regrettably, analysing the

$MFT and $J files did not reveal the file's origin. In contrast, the WSL2 research allowed

the author to determine the file's source by examining the SWP file extension [28]. This

finding presents another potential area for future research, seeking artifacts that could

help associate the file's origin with WSA.

To further clarify the author's intent behind conducting Test 1, the first objective was to

confirm whether transfers from the host system to WSA were feasible. Second, the author

considered hypothetical scenarios, such as data theft or malware infection of the host

system, that would require digital forensic examiners to think critically when

investigating devices with WSA installed. WSA could serve as a pathway for the

exfiltration of files. In future work, the author intends to investigate further artifacts

related to file movements and seek evidence to establish the file's origin.

In Test 2, the author sought to determine if Windows Defender behaved similarly to its

performance in WSL2, as reported in the relevant thesis paper [28], where it failed to

detect the Eicar test file downloaded via a GUI application. The results for WSA mirrored

those of WSL2, with the file downloaded from the WSA Firefox application remaining

undetected. Moreover, no evidence of the file installation was found in the Windows

Defender%4Operational.evtx log, unlike the Eicar file downloaded from the host

browser.

The network analysis offered a comprehensive understanding of WSA from a network

standpoint. Tests conducted in Stage 5 enabled the development of the WSA network

67

architecture concept depicted in Figure 15, which can aid forensic examiners in their

investigations. Furthermore, based on the tests performed in Stage 5, WSA traffic can be

differentiated from host traffic by factors such as TTL, payload data size, flags, and packet

lengths. At the time of writing this thesis, the user-agent for the latest WSA Firefox

application was Mozilla/5.0 (Android 13; Mobile; rv:109.0) Gecko/111.0

Firefox/111.0\r\n.

Another significant finding in this research is the results of Test 4a. In Test 4a, the firewall

rules did not apply to the WSA GUI application, allowing it to continue browsing the web

despite the host being restricted. This test was also performed on WSL2 [28], which

inspired the investigation into whether WSA would be similarly affected. The test results

prompted the author to conduct further research to investigate why the rules did not apply

to the WSA. As a result, the author gained a deeper understanding of the WSA network

architecture, as demonstrated in Section 5.7 - Network Artifacts, Figure 16. Hyper-V

creates a network abstraction layer that manages the host network connectivity through

the Hyper-V Extensible Switch. At the same time, the WSA client connection is provided

by the WSL Core adapter (Hyper-V virtual switch) that is connected to the Hyper-V

Extensible Switch. Consequently, any traffic originating from the WSA will bypass the

host, rendering the rules inapplicable to the WSA.

Test 5 aimed to evaluate the impact of VPN on WSA and revealed that the issue,

previously identified in a related article [29] also impacted WSA. As with the firewall,

the traffic generated by WSA is not routed through the host, which explains the outcomes

of the VPN test. According to the article "Linux under WSL2 can be leaking" [29], the

issue is being addressed, but it remains unclear how the developers plan to achieve a

solution since the traffic of both WSA and WSL2 does not pass through the host. Given

this situation, the author remains sceptical regarding the effectiveness of finding a

solution to remediate the issue.

68

7 Conclusion

This research was carried out in Estonia, a region outside the supported areas of the

Amazon Appstore, which is necessary for the official installation of Windows Subsystem

for Android (WSA). Therefore, the author employed alternative approaches to conducting

the controlled experiment for this thesis.

This thesis hopes to serve as a foundation for the forensic investigation of WSA by

offering an overview of key artifacts and nuances related to WSA. The author

successfully identified crucial forensic artifacts that can help ascertain the presence of

WSA on a system, construct a timeline of when the subsystem was installed, and track

user activities related to application usage and installation. Additionally, the research

provided an overview of artifacts within the NTUSER.dat, UsrClass.dat, SYSTEM, and

SOFTWARE registry hives that may prove valuable. A review of event logs was also

conducted, demonstrating their value in investigating WSA.

Several experiments were conducted to investigate the WSA from network forensic

aspect and explore potential attack vectors discussed in the literature review. The research

offers a comprehensive review of these observations and the distinctive characteristics of

WSA. This includes a network architecture concept developed by the author, which

clarifies why the application of firewall rules does not impact the WSA or when VPN is

configured to operate in strict mode to mitigate against any Internet connectivity in case

of VPN disconnections or interruptions, WSA can still visit websites even when the host

is not.

The research compared WSA and WSL2, based on the "Forensic Analysis of Windows

Subsystem for Linux on Windows 11" thesis [28]. The comparison examined file

artifacts, program and application execution artifacts, and the firewall rule test was

conducted in both experiments. This comparison aimed to determine similarities between

these two subsystems. However, additional research is required to provide more validated

findings for a more exhaustive comparison since the experiments were done on different

Windows 11 operating system versions.

69

As previously noted, this research serves as a starting point for forensic investigations of

WSA. The available documentation on the Windows Subsystem for Android is rather

limited, and the fundamental understanding of this subsystem is fragmented across

various open sources. Hence, the author intended to establish a comprehensive knowledge

base related to the WSA to fill this gap.

Again, it is vital to highlight that the experiment was conducted in Estonia, a region that

has yet to be included in the supported areas for the Amazon Appstore. Future research

could analyse WSA downloaded from the official Amazon Appstore and explore other

aspects, such as incorporating memory forensics, which can provide additional valuable

artifacts.

70

References

[1] “Windows Subsystem for AndroidTM️,” Feb. 13, 2023.

https://learn.microsoft.com/en-us/windows/android/wsa/ (accessed Mar. 25, 2023).

[2] “What is Windows Subsystem for Linux,” Aug. 12, 2022.

https://learn.microsoft.com/en-us/windows/wsl/about (accessed Mar. 25, 2023).

[3] “Android Statistics (2023),” Business of Apps.

https://www.businessofapps.com/data/android-statistics/ (accessed Mar. 25, 2023).

[4] “Amazon Appstore: number of available apps by quarter 2022,” Statista.

https://www.statista.com/statistics/307330/number-of-available-apps-in-the-

amazon-appstore/ (accessed Mar. 25, 2023).

[5] “Windows Subsystem for AndroidTM️ Release Notes,” M️ar. 21, 2023.

https://learn.microsoft.com/en-us/windows/android/wsa/release-notes (accessed

Mar. 25, 2023).

[6] “Countries and regions that support Amazon Appstore on Windows - Microsoft

Support.” https://support.microsoft.com/en-us/windows/countries-and-regions-that-

support-amazon-appstore-on-windows-d8dd17c7-5994-4187-9527-ddb076f9493e

(accessed Mar. 26, 2023).

[7] W. I. Blog, “Introducing AndroidTM Apps on Windows 11 to Windows

Insiders,” Windows Insider Blog, Oct. 20, 2021.

https://blogs.windows.com/windows-insider/2021/10/20/introducing-android-apps-

on-windows-11-to-windows-insiders/ (accessed Mar. 26, 2023).

[8] “Everything You Should Know About Windows Subsystem for Android in

Windows 11,” M️ay 23, 2022. https://learndelphi.org/everything-you-should-know-

about-windows-subsystem-for-android-in-windows-11/ (accessed Apr. 03, 2023).

[9] A. M️ohammed, “How to set up Windows Subsystem for Android on your

Windows 11 PC,” Android Police, Sep. 18, 2022.

https://www.androidpolice.com/set-up-wsa-windows-11-android-apps/ (accessed

Mar. 26, 2023).

[10] “Aurora OSS / AuroraStore · GitLab,” GitLab, Sep. 25, 2022.

https://gitlab.com/AuroraOSS/AuroraStore (accessed Mar. 28, 2023).

[11] S. Hazarika, “WSA PacM️an is a GUI package manager and package installer for

Windows Subsystem for Android,” XDA Developers, Dec. 23, 2021.

https://www.xda-developers.com/wsa-pacman-gui-package-manager-windows-

subsystem-for-android/ (accessed Mar. 26, 2023).

[12] “APKM️irror - Free APK Downloads - Free and safe Android APK downloads,”

APKMirror. https://www.apkmirror.com/ (accessed Mar. 28, 2023).

[13] “Please list use cases of WSA,” r/Windows11, Oct. 23, 2021.

www.reddit.com/r/Windows11/comments/qe8036/please_list_use_cases_of_wsa/

(accessed Apr. 03, 2023).

[14] “Comparing WSL Versions,” M️ar. 20, 2023. https://learn.microsoft.com/en-

us/windows/wsl/compare-versions (accessed Apr. 03, 2023).

[15] “Run Linux GUI apps with WSL,” M️ar. 20, 2023.

https://learn.microsoft.com/en-us/windows/wsl/tutorials/gui-apps (accessed Apr. 03,

2023).

71

[16] R. Lee, C. Tilbury, and O. Carroll, FOR500 Windows Forensic Analysis,

H01_01. in Registry Analysis, Application Execution, and Cloud Storage Forensics,

no. 500.2. SANS Institute, 2022.

[17] “ShimCache.” https://forensafe.com/blogs/shimcache.html (accessed Apr. 13,

2023).

[18] “AmCache Blog.” https://forensafe.com/blogs/AmCache.html (accessed Apr.

13, 2023).

[19] J. Buric and D. Delija, “Challenges in network forensics,” in 2015 38th

International Convention on Information and Communication Technology,

Electronics and Microelectronics (MIPRO), May 2015, pp. 1382–1386. doi:

10.1109/MIPRO.2015.7160490.

[20] “Wireshark · About,” Wireshark. https://www.wireshark.org/ (accessed Apr. 05,

2023).

[21] “CAINE Live USB/DVD - computer forensics digital forensics.”

https://www.caine-live.net/ (accessed Apr. 12, 2023).

[22] “Arsenal Recon.” https://arsenalrecon.com/products/arsenal-image-mounter

(accessed Apr. 12, 2023).

[23] R. Lee, C. Tilbury, and O. Carroll, FOR500 Windows Forensic Analysis,

H01_01. in Digital Forensics and Advanced Triage, no. 500.1. SANS Institute,

2022.

[24] Eric, “M️FTECmd.” Apr. 03, 2023. Accessed: Apr. 12, 2023. [Online].

Available: https://github.com/EricZimmerman/MFTECmd

[25] Eric, “PECmd.” Apr. 10, 2023. Accessed: Apr. 12, 2023. [Online]. Available:

https://github.com/EricZimmerman/PECmd/blob/99abe48e27240dae1012692f02a4

ae1299f09a80/README.md

[26] “Windows event log analysis software, view and monitor system, application

and security event logs — FSPro Labs.” https://eventlogxp.com/ (accessed Apr. 12,

2023).

[27] P. Boigner and R. Luh, “WSL2 Forensics: Detection, Analysis &

Revirtualization,” in The 17th International Conference on Availability, Reliability

and Security, in ARES 2022. Vienna, Austria: Association for Computing

Machinery, 2022. doi: https://doi.org/10.1145/3538969.3544439.

[28] T. Viitmaa, “Forensic analysis of Windows Subsystem for Linux on Windows

11,” Tallinn University of Technology, Tallinn, 2022. Accessed: Jan. 11, 2022.

[Online]. Available: https://digikogu.taltech.ee/en/item/0631248d-7129-46d1-91f9-

62728984e5f5

[29] “Linux under WSL2 can be leaking - Blog,” Mullvad VPN.

https://mullvad.net/en/blog/2020/9/30/linux-under-wsl2-can-be-leaking/ (accessed

Apr. 04, 2023).

[30] A. M️atadar, “Investigating Windows Subsystem for Linux (WSL) Endpoints,”

presented at the The Digital Forensic Research Conference, 2020. Accessed: Jun.

11, 2022. [Online]. Available: https://dfrws.org/wp-

content/uploads/2020/07/2020_USA_pres-

investigating_windows_subsystem_for_linux_wsl_endpoints.pdf

[31] Z. Li, “Comparison between common virtualization solutions: VM️ware

Workstation, Hyper-V and Docker,” in 2021 IEEE 3rd International Conference on

Frontiers Technology of Information and Computer (ICFTIC), Nov. 2021, pp. 701–

707. doi: 10.1109/ICFTIC54370.2021.9647226.

[32] K. Allix, Q. Jerome, T. Bissyandé, J. Klein, R. State, and Y. Le Traon, “A

Forensic Analysis of Android Malware -- How is Malware Written and How it

72

Could Be Detected?,” presented at the Proceedings - International Computer

Software and Applications Conference, Jul. 2014. doi:

10.1109/COMPSAC.2014.61.

[33] A. Sarkar, A. Goyal, D. Hicks, D. Sarkar, and S. Hazra, “Android Application

Development: A Brief Overview of Android Platforms and Evolution of Security

Systems,” in 2019 Third International conference on I-SMAC (IoT in Social,

Mobile, Analytics and Cloud) (I-SMAC), Dec. 2019, pp. 73–79. doi: 10.1109/I-

SMAC47947.2019.9032440.

[34] Y. Kanchhal and M️. Se, “An Enhanced Solution for Detection of Injected

Android M️alware Application,” Jul. 2022, pp. 1–11. doi:

10.1109/ICSES55317.2022.9914175.

[35] “Android Debug Bridge (adb),” Android Developers.

https://developer.android.com/tools/adb (accessed Apr. 05, 2023).

[36] “What is the Hyper-V Virtual Switch and How Does it Work?,” Altaro DOJO |

Hyper-V, Sep. 26, 2019. https://www.altaro.com/hyper-v/the-hyper-v-virtual-

switch-explained-part-1/ (accessed May 08, 2023).

[37] “Welcome to vPlanet Technologies : : : Banaglore.”

http://vplanetech.com/hyperv.html (accessed May 08, 2023).

73

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Helena Ingermann

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Windows Subsystem for Android – Forensic Analysis”, supervised by

Shaymaa Mamdouh Khalil.

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

15.05.2023

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

74

Appendix 2 – Firewall Rules

Evidence of Firewall rules under SYSTEM hive.

ControlSet001\Services\SharedAccess\Parameters\FirewallPolicy\FirewallRules

Appendix 3 – Installed Applications

Evidence of installed applications under NTUSER.dat hive

Software\Microsoft\Windows\CurrentVersion\Uninstall

75

	Author’s declaration of originality
	Abstract
	Annotatsioon Windows Subsystem for Android kriminalistiline analüüs
	List of abbreviations and terms
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Research Objectives
	1.2 Novelty
	1.3 Navigating the Thesis Structure

	2 Background
	2.1 WSA
	2.1.1 WSA VM lifecycle
	2.1.2 WSA Usage in Countries without Amazon Appstore Support
	2.1.3 Use Cases of WSA amongst Users

	2.2 WSL2
	2.3 Windows Forensics
	2.4 Network Forensics
	2.5 Tools
	2.5.1 CAINE (Computer Aided INvestigative Environment)
	2.5.2 FTK Imager
	2.5.3 Arsenal Image Mounter
	2.5.4 KAPE
	2.5.5 Registry Explorer
	2.5.6 MFTECmd.exe
	2.5.7 PECmd.exe
	2.5.8 Event Log Explorer
	2.5.9 LECmd.exe
	2.5.10 Regshot
	2.5.11 Timeline Explorer

	3 Related Work
	4 Methodology
	4.1 Roadmap for the Controlled Experiment
	4.2 Experiment Setup
	4.2.1 Stage 1
	4.2.2 Stage 2
	4.2.3 Stage 3
	4.2.4 Stage 4 and Stage 5

	4.3 Disk acquisition

	5 Analysis and Results
	5.1 WSA Virtual Hard Disk Evidence
	5.2 Registry Evidence
	5.2.1 NTUSER.dat Hive
	5.2.2 UsrClass.dat Hive
	5.2.3 SYSTEM Registry Hive
	5.2.4 SOFTWARE Hive

	5.3 Prefetch and Amcache: Program and Application Execution:
	5.4 Application Artifacts
	5.5 File Operations and Artifacts
	5.5.1 Test 1: File Transfer
	5.5.2 Test 2: EICAR File Download

	5.6 Event Logs
	5.7 Network Artifacts
	5.7.1 Test 3: Ping Test Analysis
	5.7.2 Test 4a and Test 4b: Firewall Rule and HTTP Traffic Analysis
	5.7.3 Test 5: VPN Test Analysis

	5.8 Comparison Between WSA and WSL2
	5.8.1 Firewall Rule Test
	5.8.2 Eicar File Test
	5.8.3 Program and Application Execution Artifacts

	6 Discussion
	7 Conclusion
	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix 2 – Firewall Rules
	Appendix 3 – Installed Applications

