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Abstract 

The goal of this thesis is to develop a system to synchronize Digital Sputnik Voyager 

lamps in a wi-fi network without using the internet or a dedicated clock server. We 

research existing methods and protocols with the aim of finding a suitable solution for 

adoption. 

No suitable free and open source software was found, so a hybrid of the two most common 

protocols, PTP and NTP, was developed. 

This thesis is written in English and is 35 pages long, including 8 chapters, 5 figures, and 

3 tables. 

 



5 

Annotatsioon 

Peer-to-peer kellade sünkroniseerimine Wi-Fi võrgus 

Antud töö eesmärgiks on töötada välja süsteem Digital Sputnik Voyager lampide 

omavaheliseks sünkroniseerimiseks wi-fi võrgus.  

Töös antakse ülevaade levinud sünkroniseerimismeetoditest ja -protokollidest, ning 

võrreldakse saadavalolevaid tarkvaralahendusi et valida neist sobivaim. 

Analüüsides selgub, et sobivat vabavaralist lahendust hetkel veel ei eksisteeri. Voyager 

lampide sünkroniseerimiseks luuakse uus hübriidprotokoll, mis kasutab kombinatsiooni 

levinud protokollidest NTP ning PTP. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 35 leheküljel, 8 peatükki, 5 

joonist, 3 tabelit. 
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List of abbreviations and terms 

NTP Network Time Protocol 

DMX 

GPS 

IP 

Digital Multiplex 

Global Positioning System 

Internet Protocol 

PTP 

SNTP 

Precision Time Protocol 

Simple Network Time Protocol 

LAN Local area network 
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1 Introduction 

Modern stage and film lights are sophisticated devices that allow users to control their 

intensity, colors and even beam direction remotely. Remote-controlled lights almost 

always use a master-slave architecture. The control logic and animation data reside in the 

master controller which sends data to “dumb” devices by wire over protocols such as 

DMX512 [1].  

Digital Sputnik Voyager lights differ from this traditional scheme in that they are 

engineered to be controlled wirelessly over wi-fi with computers and smartphones instead 

of dedicated control surfaces. When using no wires, setting up lamps takes less time and 

less equipment is needed. Using smartphones causes multiple issues which makes old 

protocols unsuitable. Firstly, wi-fi cannot guarantee low latency. Indeed, it can be the 

“weakest link” in a computer network [2]. Secondly, the user might want to use her 

smartphone for other purposes once everything has been set up. 

 

Figure 1: Digital Sputnik Voyager lights [3] 
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As an alternative to master-slave architecture, the controlling logic runs on lights. In this 

new system, the controller sends animation instructions to the lights. For example, to 

create a strobing light, a single command telling the lamp to toggle on-off every 0.01 

seconds can be sent. Once the lamp has received this instruction, it can continue to strobe 

even if the controller is removed from the network. 

DMX works without any synchronization, but because latencies are very low, all devices 

display the received data immediately. Voyager lights do not have a continuous data 

stream, however, therefore we need a new way to synchronize the animations. 

This thesis aims to research existing synchronization protocols with the aim of adopting 

an existing solution for use in the Digital Sputnik ecosystem.  
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2 Requirements 

To synchronize animations running on lamps, we need to synchronize their clocks, but 

we do not need to set them to a time standard such as Coordinated Universal Time (UTC) 

or International Atomic Time (TAI). 

2.1 Network environment 

Digital Sputnik does not supply network equipment, and users often use older consumer-

grade wireless access points in congested network environments. Sometimes, users 

configure the lamps before taking them to a movie set in a remote location without a 

connection. Vast distances can be involved, which means the quality of the connection is 

sometimes low with many packets being dropped. Therefore, the synchronization must 

also work with an intermittent connection. Multicast is sometimes not available in wi-fi 

networks [4], so the system must also work without multicast support. The devices 

involved in controlling lamps are shown in Figure 2. 

2.2 Software environment 

A set-up consists of Voyager lights which include an embedded computer running Ubuntu 

Linux. A multiplatform controller application running on the user's smartphone or laptop 

allows her to modify lamps’ settings and presets while also offering monitoring 

capabilities. For accurate monitoring, the controller application also must be 

synchronized. Therefore, the solution must be usable as a library in the multiplatform 
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controller software and also run on Ubuntu Linux. The CPU load of the synchronization 

software on Ubuntu should be <1%  

 

Figure 2: Typical network environment for Voyager lights 

2.3 Accuracy 

The animations engine runs at 200Hz. Synchronization accuracy should be high enough 

to satisfy filmmakers. Cinematographers should not be able to notice any deviations when 

watching slow-motion filmed footage. 

When setting up lamps for a scene, quick startup takes priority over initial accuracy. It is 

important to avoid holding up production because making actors, directors and other crew 

wait is expensive. 

After clocks are fully synchronized, they can be removed from the wi-fi network and must 

remain in sync for at least three days. 

The multiplatform controller application should also be synchronized to the network so 

that animations can be monitored from a computer screen. 
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The accuracy requirements were defined to be as follows: 

• Initial sync time - <2 seconds 

• Fully synced - <60 seconds 

• Initial accuracy - <50 ms 

• Full accuracy - <5ms 

• Controller sync accuracy - <200ms 

2.4 Security 

It should not be possible for any third-party unauthorized users to modify lamps’ settings 

and animations. However, the lights are meant to be used in a secure wi-fi network, so 

additional application-level user verification is not necessary.
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3 Synchronization methods 

Most devices can use either of the two standard options of getting an accurate clock.  

The first option is the use of radio time sources such as GPS or shortwave radio 

broadcasts. GPS offers nano-second level accuracy, but using this signal requires an 

additional GPS receiver at each node [5]. GPS cannot be used in buildings because of 

poor reception. Most computers do not require GPS/level accuracy and sync to a time 

server over the internet  [6]. 

There are thousands of time servers available on the internet [7], including many servers 

that are themselves directly connected to an atomic clock or GPS receiver [8].  

For us, neither radio nor an internet time server is suitable. Voyager lights are often used 

in remote locations where neither GPS nor internet is available. Therefore, a peer-to-peer 

solution needs to be devised to allow devices’ clocks to sync with each other. Most 

existing protocols are concerned with syncing devices to a reference clock, not with 

syncing a cluster of devices amongst themselves  [9] [10]. We need to examine the 

protocols to determine whether they are suitable for use on local area networks not 

connected to the internet. 

3.1 Einstein synchronization 

IP-based protocols are all based on the symmetry described in Einstein’s 1905 paper “On 

the electrodynamics of moving bodies  [11].” 

If we have two clocks at points A and B, and we know that the time light travels from A 

to B equals the transit time in the opposite direction, the two clocks can be synchronized. 

If a ray of light is sent from point A at time t1, it arrives at point B at time t2 and is 

immediately reflected back towards point A where it arrives at time t3. As the transit times 

are equal, we can deduct the following. 
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𝑡3 − 𝑡2 = 𝑡2  − 𝑡1 

If the timestamp  t2 can be transmitted or transported to point A, it is possible to find the 

time differences between the clocks.  

While computer networks use a combination of radio, electrical and light signals, the 

principle remains the same. In an ideal computer network, all latencies are symmetrical, 

and the transit time can be computed by measuring round trip time and dividing this by 

two. Unfortunately, in the real world, the transit times are never symmetrical [12], and 

additional delays can be caused by scheduling algorithms in the software layer [10].  

Sometimes, a time server connected to a reference clock is not available, and one or 

multiple intermediate proxies are used. The primary goal of a time protocol is to choose 

the best available time server and combine multiple measurements to estimate errors and 

achieve higher precision [13]. For example, statistics can be used to estimate the 

asymmetry of connections. If there appears to be more variability from client to server, 

we can assume that the latency in this direction is also higher [12]. 

3.2 IP-based clock synchronization protocols 

Next, let’s look at the available synchronization protocols to identify which is more 

suitable for use with Voyager lights. There are two major protocols for IP networks – 

Network Time Protocol (NTP) and Precision Time Protocol (PTP).  

They are both designed to use a master server directly connected to a reference clock such 

a GPS probe. All devices synchronize by connecting to this master server via a minimal 

amount of proxies [10] [9]. 

There are no reference clocks available when using Voyagers in a remote location so we 

can disregard many features of the protocols. The following aspects and questions will be 

considered most important when making the decision:  

1. Compatibility with reference-less networks: Can a client be ordered to 

synchronize to a master server that has not been synced to a reference clock? 
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2. Peer discovery: Can clocks automatically discover other clocks in the local 

network? 

3. Availability of open source software 

3.3 NTP 

NTP was first documented in 1985, and the basic functionality remains the same to this 

day.  

Servers and clients use the same NTP message format. When using asymmetric mode, 

the client initiates by sending a time-stamped packet to the server. The server fills in the 

packet with the transmit and receive timestamps and sends it back. Servers do not need 

to store information about the clients and can, therefore, be quite lightweight. The client 

periodically combines multiple measurements and servers to get a more accurate reading. 

Of course, clients prefer sources with fewer hops to the reference clock. The periodic 

correction causes the clock to be shifted instantaneously, which can cause problems with 

real-time applications. Newer versions of NTP mitigate these problems by making 

multiple micro-jumps instead of a single correction to the desired value. The system 

clock’s drift rate can also be computed over time and be used to correct the clock’s speed 

[10].  

3.3.1 Reference-less networks 

The NTP standard presumes a reference clock such as a GPS signal is available.  Peers 

prefer servers that are connected to the reference clock with the least amount of nodes. 

Clients refuse to sync to servers that have never been synchronized to a reference clock 

[10]. A workaround has to be used to convince a client into using these reference-less 

servers. 

3.3.2 Peer discovery 

Usually, each client is configured manually by inputting a master server address. 

Broadcast and multicast modes also exist which allow a server to announce its timestamp. 

Broadcast and multicast messages allow clients to listen in, “discover” the server, and 

start using it as a master [10]. 
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3.3.3 Software availability 

NTP is used to set the clock automatically by many operating systems. Libraries, 

applications, and thorough documentation exist for most programming languages and 

platforms [14]. 

3.4 PTP 

PTP was first defined in the IEEE 1588-2002 standard called “Standard for a Precision 

Clock Synchronization Protocol for Networked Measurement and Control Systems” as a 

higher precision alternative to NTP. Unlike NTP, it is designed from the ground up to be 

used in local networks. A typical system includes a dedicated master server, while a 

simple system includes identical clocks which elect a grandmaster (master server) using 

the Best master clock algorithm. 

 A PTP packet is timestamped in the network interface at the moment of transmission, 

eliminating errors caused by buffers and software scheduling. For higher accuracy, 

routing devices supporting transparent PTP mode are used. A transparent device measures 

the time it takes a packet to travel from its input to output and corrects the PTP packets’ 

timestamps accordingly [9]. 

3.4.1 Reference-less networks 

PTP is designed for synchronization of clocks in a local network and does not presume 

the presence of a reference clock. It is possible for the user to set the priority of each node 

manually to force all clients to synchronize to a chosen server [9]. 

3.4.2 Peer discovery 

Each LAN can only have one master at a time. The server-capable devices on a network 

negotiate to find the best available master server. Once negotiated, all other devices sync 

themselves to the chosen master [9]. 

3.4.3 Software availability 

PTP is a newer and more specialized solution and fewer libraries are available compared 

to NTP. It is intended to be used in an environment with a dedicated high-precision 

hardware clock device. Open source solutions are available only for Linux and BSD 
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systems [15]. While timestamping should be done in hardware, it is also possible to 

timestamp in the Linux kernel. Software timestamping will, however, cause lower 

accuracy and reduce the precision advantages compared to NTP [16]. 

3.5 Comparing NTP and PTP 

After initial research, the following table of most important features was compiled 

comparing the NTP and PTP protocols suitability for peer-to-peer synchronization. 

Table 1: Comparison of NTP and PTP protocols 

Feature NTP PTP 

Timestamping Software-based. Hardware-based. 

Hardware requirements None. PTP-capable network 

devices are recommended. 

Reference-less networks Needs workarounds. Supported. 

Accuracy >1 ms. <1 μs. 

Software availability All platforms, multiple 

solutions. 

Specialized platforms, few 

solutions. 

Peer discovery None, each client selects 

which master server to use 

separately. 

Negotiated on local subnet 

level using best master 

clock algorithm. 

 

 

While PTP offers better accuracy and peer discovery, there are no open source 

implementations available for use in our multiplatform controller application. Lack of 

libraries leaves us with no option than to go with NTP. Furthermore, when developing in-

house an application level library, it is unknown what the accuracy would be without 

making further research. 
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The biggest shortcoming of NTP is related to peer discovery. For easy testability and 

maintainability, it would be preferable to use a single master server at a time, which is 

precisely the PTP way of doing things.  

Why not use NTP broadcast or multicast modes? These are both ways of masters to 

announce their presence in the network. If all devices are configured as broadcast or 

multicast servers, every peer attempts to synchronize to all other devices. In a network of 

tens of peers, this would cause a lot of traffic and slow synchronization. It is also not 

possible in these modes for a peer to be a server and client at the same time, as this would 

cause a feedback loop, which is detected by NTP causing the client to ignore the server. 

With all devices being servers at the same time, it would be impossible for 

synchronization to take place. 

The decision was made to develop a PTP-inspired master selection algorithm to be used 

with NTP synchronization.
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4 Existing NTP software packages 

In the following chapter, NTP libraries and applications will be compared. 

Using the same library on all platforms would simplify the development and testing. 

Initial research divided the available software packages into the following two categories: 

• Portable SNTP (Simple NTP) client-only libraries with minimal, meant to be used 

for application-level synchronization when the system clock cannot be trusted 

• UNIX software implementing a large subset of NTP 

For the first category, the following open source solutions were considered: 

• GuerrillaNtp 

• Arduino-libraries NTPClient 

• Ntplib 

• Nettime 

• Ntpclient 

For the second category, there are fewer options [17]: 

• ntp (reference implementation) 

• chrony 

• openntpd 

Unfortunately, all portable implementations turned out to only implement SNTP, which 

is a small subset of the full protocol [10]. SNTP uses a single measurement to determine 
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the clock. This solution achieves lower accuracy and is not suitable for a high-jitter 

environment.  

Because it is not possible to use any of the options from the second category in the 

multiplatform controller software, we decided to use different software for the controller 

and lamp. The controller software is written in C#, therefore it would also be most 

convenient to use a C# NTP library. We chose to use GuerrillaNtp, because it was the 

only one to be written in C#. High precision is not required for the controller application, 

so a simple library is sufficient.  

On the Voyager side, however, high precision is required and therefore a more 

sophisticated software package needs to be used.  

4.1 Comparison of UNIX software solutions 

Chrony makers have compiled a thorough comparison of all three options. We eliminated 

openntpd from the contest right away because it does not support changing the polling 

interval [18]. Without adjustable polling, it’s impossible to achieve a fast initial 

synchronization time. 

Let’s look at the accuracies of chrony and the ntp reference implementation in a simulated 

Linux environment. The measurements were made using clknetsim. Mean values and 

deviations were obtained by running 100 simulations. Table 2 shows the accuracy in a 

stable network environment [18]. In the second test, shown on table 3, the network was 

available to clients only for 30 continuous minutes in a 24 hour period. A similar use case 

to the second test would be the configuration of lamps indoors before taking them 

outdoors to be used on a set without a wi-fi network. 

Chrony was more accurate in all scenarios except for the permanent network connection 

with 1000 μs jitter, where the difference was less than 5 percent. With the intermittent 

network connection, differences were colossal, with Chrony being an order of magnitude 

more accurate. 

Moving on to the feature set, while ntp is a full implementation of the NTP protocol [18], 

we are not planning to use any of the additional features such as manycast and multicast 

modes, or autokey. Chrony has been designed to be used in a network where access to the 
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master server is intermittent, while ntp is an older solution that goes back to times when 

all devices used wired internet. Furthermore, ntp is also more resource-intensive, using 

more memory and CPU time [18].  

Table 2: NTP accuracy with permanent network connection and stable clock [18] 

Network jitter 

[μs] 

Chrony 

[μs] 

Ntp reference implementation  

[μs] 

10 35 ± 8 234 ± 46 

100 109 ± 14 256 ± 50 

1000 475 ± 93 454 ± 94 

10 000 1603 ± 447 3665 ± 651 

 

Table 3: NTP accuracy with intermittent network connection [18] 

Network jitter 

[μs] 

Chrony  

[μs] 

Ntp reference implementation 

[μs] 

10 7273 ± 1744 608803 ± 510468 

100 9528 ± 1895 580679 ± 481379 

1000 10706 ± 2521 1115961 ± 733914 

10 000 26105 ± 70408 897703 ± 847901 

 

Chrony claims to synchronize the clock faster and with higher accuracy, adapts to changes 

in the clock’s frequency [18]. This would be useful when immersing the waterproof 

Voyager lamps in water, causing the temperature to drop.  
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5 Integration 

Before starting work on the discovery protocol, the chosen software packages were tested 

in various environments to validate their accordance with the defined functional and non-

functional requirements. 

5.1 Chrony 

Pre-compiled Chrony packages were available from the main Ubuntu repository [19]. 

Unfortunately, the package provided with Ubuntu (2.1.1 from June 2015) was an older 

version which was more than two years old. Meanwhile, many enhancements had taken 

place in Chrony, most importantly “estimation and correction of asymmetric network 

jitter.” Packages with the newest version were compiled for use on the Voyager lights. 

Chrony works by directly adjusting the system clock and the animation engine running 

on the Voyager lights is synchronized to the system clock, so no additional interfacing 

was required to make the two cooperate. 

First tests were made without any effort being placed on configuration and all servers 

being added to clients manually via the built-in command-line interface. The local 

directive was used to convince clients that the server is serving valid time, despite the 

server never having been connected to a reference clock. With the default configuration, 

the following issues became apparent. 

• Initial sync taking too long, over 10 seconds 

• Server randomly failing NTP validity checks and being regarded as “falseticker” 

• Client not stepping the clock, when the deviation is small (a few seconds) 

Thankfully, Chrony offers a wide assortment of configurable preferences. The 

aforementioned issues were fixable one-by-one. 
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First, to speed up initial sync initstepslew directive was used to force rapid polling and 

clock stepping on start-up. 

The trust parameter was added to force clients into using the specified servers. This made 

the client forego any validity checks and always assume that the source is always true. 

Unfortunately, bypassing all checks brought up multiple issues a few weeks later. In some 

sporadic cases, overloading a wi-fi access point caused very high latencies of over 10 

seconds. With the trust parameter, the client continued to trust the servers even though 

the accuracy of measurements with such high latencies is very low, causing the lights to 

desynchronize. Replacing the trust parameter with a manually set maximum round trip 

time of 1 second made the client ignore the packets with ultra-high latencies. 

Last, to force more aggressive clock stepping, the makestep directive was used to reduce 

the maximum deviation before the clock is stepped to 0.05 seconds. 

After making the changes in preferences, initial synchronization speed was less than 2 

seconds. 

5.2 GuerrillaNtp client 

GuerrillaNtp provides a C# class that can be used to get the offset of the host system’s 

time from server time [20]. There is no built-in polling method, so it is up to the host 

application to poll when necessary. Querying the offset worked on the first try, we 

compared the output to the clock on the host server manually. No effort was made to 

measure the accuracy of GuerillaNTP because the latency of a wi-fi connection is almost 

always smaller than the required synchronization accuracy.  

5.3 GuerrillaNtp server 

As an additional exercise, server functionality was implemented into GuerrillaNtp. In the 

future, a need to synchronize the clocks to real-time could arise, and for this purpose 

synchronizing to the user’s laptop or smartphone is a simple solution. 
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6 Discovery protocol 

Because none of the available NTP solutions supported the protocol’s broadcast option, 

we had two options: 

• Implement NTP broadcast client functionality into GuerrillaNtp and Chrony 

• Implement discovery separately 

At first, we researched the feasibility of implementing NTP broadcast functionality. 

Unfortunately, obstacles came up quickly. Because the system is a peer-to-peer system, 

every device is necessarily also a server. When using broadcast mode, this would mean 

that all devices would have to broadcast time stamps all the time. When all lamps on the 

network are equal, clients will use all available devices as masters. With tens of devices, 

it is impossible to predict what the outcome would be, but it is certain that quick 

synchronization would not be guaranteed. Using one device at a time as the master would 

be more effective.  

Looking back at the protocol comparison, we discovered that the PTP master selection 

algorithm is perfect for use in a local network. Therefore the decision was made to 

develop discovery software based on the PTP discovery mechanism while using NTP for 

actual clock synchronization.  

This could be achieved via a discovery script that handles master negotiations and passes 

the current server’s IP address to GuerrillaNtp and chrony. The hierarchy is depicted in 

Figure 3.  
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Figure 3: Communications of discovery scripts and NTP applications 

6.1 PTP discovery mechanism 

Although PTP servers use multicast for announcing, multicast is often blocked on wi-fi 

networks. Broadcasting was chosen instead to make the system compatible with more 

networks. 

PTP uses Announce messages to select the master. The master “advertises” itself by 

sending Announce packets at regular intervals. Whenever a clock joins a LAN, it listens 

for announces, and if it receives none with a higher priority, it starts sending out Announce 

packets itself. Whenever a current master receives a higher priority Announce packet, it 

accepts the new master and stops announcing itself announcing itself. The protocol does 

not take into account the quality of the network connection of nodes, only the contents of 

the Announce packet are considered [9].  
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6.2 Discovery implementation 

First tests were carried out without any synchronization capabilities. A Python script was 

written closely following the PTP announce packet principles. The announce interval was 

initially set to 2 seconds and timeout to 8 seconds. This script was installed on Voyager 

lamps and the logs were monitored. In a network of three lamps, everything worked 

perfectly. When the number of devices was increased to ten, random master switching 

started taking place. The culprit was traced to dropped packets. When the consequent 

announces of the master were lost for some reason, all other devices started announcing 

their presence. Decreasing the announce interval to 1 second and sending out an 

additional duplicate packet fixed this issue. 

 

6.2.1 Chrony 

Next, the discovery had to be set up to add the current master server to Chrony. 

Thankfully. Chrony has a command-line interface that can be used to modify various 

parameters while the daemon is running.  

Every time a new master server is selected, the script first removes the current server (if 

there is one), and then adds a new server. 

6.2.2 GuerrillaNtp 

Once the Chrony-based solution was working, an identical C# library also had to be 

implemented. For ease of use, the decision was made to separate the whole system into 

three parts: 

1. GuerrillaNtp client 

2. Discovery service 

3. Voyager NTP service, which passes the discovered server IP to GuerrillaNtp 

automatically 
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7 Validation 

Before releasing the synchronization to clients, in-house testing was conducted to validate 

the final system’s compliance with the requirements. 

7.1 Estimated accuracy 

First, two lights were synchronized and set to display a chase1 animation. Next, a high-

speed camera was used to film the two lights side-by-side at 240 frames per second. In 

the resulting frames shown in Figure 4, lights are set up vertically. 

 

Figure 4: Frames from video of two Voyager lights 

                                                 

 

1 chase -  an electrical application where strings of adjacent light bulbs cycle on and off frequently to give 

the illusion of lights moving along the string [21] 
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The accuracy set up in the requirements was <5 ms. The time between frames is 1/240  

seconds = 4.2 ms. Identical pixels are illuminated on both lamps in all frames, which 

translates to an accuracy of at least 4.2 ms.  The desired goal was achieved, and no further 

testing was deemed necessary. 

7.2 Initial sync delay and accuracy 

A Python script was written to measure the initial sync delay. The script started the 

synchronization application and checked the clock every 1 ms until a clock correction 

was detected. A master clock was available and continuously announcing on the network. 

This test was repeated 10 times, the results are shown in Figure 5. 

The mean value of the initial sync delay was calculated to be 1.05±0.34 with 95% 

confidence. This is well within the required maximum initial sync delay of 2 seconds. 

 

Figure 5: Initial sync delay measurements 

 

The initial sync accuracy was not measured, but visual observation of animations 

confirmed that the clocks, and therefore the animations, were indeed in sync within 2 

seconds. 
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7.3 CPU and memory use 

The CPU utilization was monitored by running the Linux ps (process status) application 

every 5 seconds and piping the output to a file. The CPU utilization shown by ps was 0% 

at all times for both the discovery and chrony processes. This was satisfactory and no 

further measurements were made. 
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8 Summary 

The purpose of this study was to develop or adopt a suitable solution to synchronize 

Digital Sputnik Voyager lights in wi-fi network. We compared the existing software and 

discovered that there are no existing free and open source solutions for time reference-

less peer to peer synchronization in wi-fi networks.  

The two most popular internet protocol based time synchronization based are Network 

Time Protocol (NTP) and Precision Time Protocol (PTP). PTP is a nearly perfect solution 

for our use case, but its peer discovery does not work in networks where multicast has 

been blocked, and there are very few PTP implementations available. No open source 

PTP applications were found for operating systems other than Linux. 

As a solution, a hybrid of NTP and PTP was developed, which uses NTP for 

synchronization and a subset of PTP for peer discovery. Ready-made  NTP  applications, 

chrony and GuerrillaNtp, were used for the synchronization.  For the peer discovery, 

applications were developed from scratch in Python and C#.
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