
Tallinn 2017

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Thomas Johann Seebeck Department of Electronics

Aivar Koodi 153756IVEM

AUTOMATIC CONFIGURING SOLUTION

FOR INTERNET OF THINGS

APPLICATIONS

Master's thesis

Supervisor: Mairo Leier

 PhD

Co-supervisior: Olev Märtens

 Professor

Tallinn 2017

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Thomas Johann Seebecki elektroonikainstituut

Aivar Koodi 153756IVEM

VÄRKVÕRGU SEADMETE AUTOMAATSE

KONFIGUREERIMISE LAHENDUS

Magistritöö

Juhendaja: Mairo Leier

 Doktorikraad

Kaasjuhendaja: Olev Märtens

 Professor

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Aivar Koodi

19.05.2017

4

Abstract

The number of Internet-of-Things (IoT) devices is increasing and it creates a need to

configure them in a convenient and fast manner. This master’s thesis is focusing on

developing a solution for automatic configuring to provide these features for IoT

devices. Although there are many solutions developed in the past, the one proposed in

this thesis uses new technological possibilities enabled by Bluetooth Low Energy (BLE)

and Wireless Fidelity (Wi-Fi) in System-on-a-Chips (SoC).

Thesis consists of choosing the suitable chip for the task, stating the system

requirements and developing the method for automatic configuration system. In

addition, a software is developed based on the method and tested to verify its’

workability. The work ends with the presentation of the results, conclusion and future

work.

This thesis is written in English and is 86 pages long, including 7 chapters, 45 figures

and 1 table.

5

Annotatsioon

Värkvõrgu seadmete automaatse konfigureerimise lahendus

Värkvõrgu seadmete kasvutrendiga tekib vajadus nende kiireks ja mugavaks

konfigureerimiseks. Käesolev magistritöö käsitleb värkvõrgu seadmete automaatse

konfigureerimislahenduse välja töötamist, et neid nõudmisi rahuldada. Kuigi

konfigureerimiseks on arendatud ka teisi süsteeme, keskendub see töö automaatse

konfigureerimise lahenduse arendusel uusimate mikrokontrollerite kasutamisele, mis

võimaldavad kasutada Bluetooth Low Energy (BLE) ja Wireless Fidelity (Wi-Fi)

võimekust.

Magistritöö koosneb mikrokontrolleri valikust, konfigureerimise süsteemi nõuete

seadmisest ja metoodika välja töötamisest. Lisaks luuakse metoodikal baseeruv

tarkvara, mida ka testitakse, et kinnitada selle kontseptsiooni töötavust. Töö võtavad

kokku tulemuste analüüs, järeldused ning arendusvõimalused.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 86 leheküljel, 7 peatükki, 45

joonist, 1 tabelit.

6

List of abbreviations and terms

IoT Internet of Things

SoC System-on-a-Chip

USD United Stated Dollar

BLE Bluetooth Low Energy

CPU Central Processing Unit

DMIPS Dhrystone millions of instructions per second

KB Kilobyte

ROM Read Only Memory

SRAM Static Random Access Memory

RTC Real-Time Clock

MB Megabyte

QSPI Quad serial peripheral interface

SAR Successive Approximation Register

ADC Analog to Digital Converter

DAC Digital to Analog Converter

SPI Serial Peripheral Interface

I²S Inter-IC Sound

I²C Inter-Integrated Circuit

UART Universal Asynchronous Receiver/Transmitter

SD Secure Digital

SDIO Secure Digital Input Output

MMC Multi-media Card

MAC Media Access Control

DMA Direct Memory Access

IEEE Institute of Electrical and Electronics Engineers

CAN Controller Area Network

IR Infrared

TX Transmission

7

RX Receive

PWM Pulse-Width Modulation

LED Light-Emitting Diode

OTP One Time Programmable

MIMO Multiple-Input and Multiple-Output

SISO Single-Input and Single-Output

MSC Modulation and Coding Scheme

UDP User Datagram Protocol

NFC Near Field Communication

API Application Programming Interface

Wi-Fi Wireless Fidelity

SSID Service Set Identifier

AP Access Point

AES-CCM Advanced Encryption Standard- Counter with CBC-MAC

CBC-MAC Cipher Block Chaining- Message Authentication Code

WPA Wi-Fi Protected Access

WFA Wi-Fi Alliance

WLAN Wireless Local Area Network

WAPI WLAN Authentication and Privacy Infrastructure

RNG Random Number Generator

RSA Rivest-Shamir-Adleman public-key cryptosystems

ECC Elliptic Curve Cryptography

SHA-2 Secure Hash Algorithm 2

mDNS multicast Domain Name System

LOS Line of sight

Optiverter Inverter with optimized energy production algorithms

RSSI Received signal strength indication

Mbps Megabits per second

TCP Transmission Control Protocol

IIoT Industrial Internet of Things

M2M Machine-to-Machine

RTOS Real-Time Operating System

CRC Cycle redundancy checks

MHz Megahertz

8

Table of contents

1 Introduction ... 13

 Motivation .. 13

 Problem statement .. 14

 Objectives and thesis organization ... 14

2 Configuration solutions ... 16

 State-of-the-Art ... 16

 Texas Instruments CC3000 SmartConfig .. 16

 Espressif ESP-TOUCH ... 19

 Wi-Fi Alliance NFC “tap-to-connect” ... 21

 Optiverter configuring solution ... 22

 Summary of the State-of-the-Art .. 22

3 System requirements ... 24

 Requirements .. 24

 Environmental requirements ... 24

 Configuration requirements ... 24

 Security requirements .. 25

 Summary of the requirements ... 26

4 Selection of communication device ... 28

 Overview of communication devices ... 28

 Espressif ESP32 ... 28

 Atmel ATWINC3400 .. 31

 Texas Instruments WL1835MOD ... 32

 Wi2Wi W2CBW0015 ... 33

 Selection ... 34

 Summary of the device selection .. 37

5 Automatic configuration solution: developed method .. 38

 System architecture and reliability analysis ... 38

 System architecture ... 39

 Analysis of reliability issues .. 45

9

 Applicable reliability techniques and methods .. 47

 Considered reliability techniques .. 53

 Software development language and tools ... 54

 Process planning .. 54

 Software development ... 54

 Software evaluation ... 55

 Server ... 56

 Software architecture .. 59

 System components ... 59

 Software flow .. 60

 Summary of the developed method .. 65

6 Experimental evaluation .. 67

 Initial Configuration ... 67

 Connection via mobile application .. 67

 Configuration via mobile application .. 68

 Device data analysis ... 70

 Cluster data request ... 70

 Scanned data observation .. 70

 Unconfigured cluster device recognition ... 71

 Secondary configuration ... 73

 Connection via unconfigured ESP32 ... 73

 Configuration of unconfigured ESP32 .. 74

 Summary of the evaluation ... 76

7 Results, conclusion and future work.. 78

 Results .. 78

 Future work... 79

 Conclusions .. 81

References .. 82

Appendix 1 – Bluetooth Core Specification versions .. 84

Appendix 2 – Bluetooth 4.2 / Bluetooth Low Energy .. 85

Appendix 3 – Developed software ... 86

10

List of figures

Figure 1. CC3000 SmartConfig basic principle [2] .. 17

Figure 2. SmartConfig flow - AES encryption enabled [2] .. 18

Figure 3. ESP-TOUCH basic principle [3] ... 20

Figure 4. ESP32 SoC [6] .. 28

Figure 5. ESP32 function block diagram [6] .. 30

Figure 6. ATWINC3400 SoC [8] ... 31

Figure 7. ATWINC3400 block diagram [8] ... 32

Figure 8. WL1835MOD chip [10] .. 32

Figure 9. WL1835MOD functional diagram [10] .. 33

Figure 10. W2CBW0015 chip [12] .. 33

Figure 11. W2CBW0015 block diagram [12] .. 34

Figure 12. Main concept of automatic configuration solution 39

Figure 13. Process description .. 40

Figure 14. Deployment diagram ... 41

Figure 15. Activity diagram for continuous operations .. 42

Figure 16. Activity diagram for discontinuous operations - initial configuration 43

Figure 17. Activity diagram for discontinuous operations - secondary configuration ... 44

Figure 18. CP2102 USB to TTL connection [17] with ESP32 [6] 54

Figure 19. Project menuconfig ... 55

Figure 20. User channel [14] .. 56

Figure 21. Data feed view [14] ... 56

Figure 22. Cluster devices [14] .. 57

Figure 23. Https request ... 57

Figure 24. API keys [14] .. 58

Figure 25. Received cluster data structure.. 58

Figure 26. Received cluster data example .. 59

Figure 27. System components ... 60

Figure 28. Initialization, advertisement and scan operations ... 61

Figure 29. Device configured and connection with Wi-Fi AP operations 62

file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298781
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298782
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298783
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298784
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298785
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298786
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298787
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298788
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298789
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298790
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298791
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298792
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298793
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298795
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298796
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298797
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298798
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298803
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298805
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298806
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298807
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298808
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298809

11

Figure 30. Connection with server and device configuring operations 64

Figure 31. Advertising devices ... 67

Figure 32. Initial connection ... 68

Figure 33. Initial or update configuration ... 68

Figure 34. Initial configuration data from ESP32 .. 69

Figure 35. One device connected to Wi-Fi AP verification ... 69

Figure 36. Cluster data ... 70

Figure 37. Scanned data.. 71

Figure 38. Configuration process failed ... 72

Figure 39. Configuration process initiated ... 72

Figure 40. Configured ESP32 establishes connection .. 73

Figure 41. Unconfigured ESP32 receives connection .. 74

Figure 42. Configuring an unconfigured ESP32 .. 75

Figure 43. Two devices connected to Wi-Fi AP verification ... 75

Figure 44. Server request from newly configured device .. 76

Figure 45. Basic principle using mesh networking .. 80

file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298810
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298811
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298812
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298813
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298814
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298815
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298816
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298817
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298818
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298819
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298820
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298821
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298822
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298823
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298824
file:///D:/Aivar/Documents/Magister%20Elektroonika%20ja%20kommunikatsioon/Lõputöö/final-thesis-portfolio-materials/Aivar_Koodi_final_thesis_MSc_07052017.docx%23_Toc482298825

12

List of tables

Table 1. System-on-a-Chip selection.. 35

13

1 Introduction

This document is the master’s thesis written in the autumn of 2016 and spring of 2017

at Tallinn University of Technology under School of Information Technologies,

Thomas Johann Seebeck Department of Electronics during IVEM11/15-Communicative

Electronics Master's program with specialization to Cognitive Electronics. The subject

of this thesis is Automatic Configuration System for Internet of Things Applications.

 Motivation

The topic was proposed by Ubik Solutions OÜ who needs a solution to configure

communication units of Optiverters easily. Optiverter is a patented technology to

increase the efficiency of solar panel inverter. Right now, the configuration is conducted

one at the time. Since there might be tens of devices in one installation, the current

solution is not user-friendly nor time efficient.

The innovation of this work is using new technologies enabling Wireless Fidelity (Wi-

Fi) and Bluetooth coexistence. Conducting automatic configuration for several devices

using Bluetooth Low Energy (BLE) has not been done before according to findings

presented in this thesis.

Furthermore, with the emerge of Bluetooth 5.0 core specification, there is a chance that

promised flooding and routing mesh capability will be included in next version. This

would establish a basis for more reliable and energy efficient data transmission, since

only one device needs to be connected to the Wi-Fi Access Point (AP) and the data of

other devices will be sent to it via Bluetooth mesh. In this sense, the developed

automatic configuration solution adds a great functionality for future communication

systems.

The trend of Internet of Things (IoT) is changing how users communicate with the rest

of the world. According to Business Insider Intelligence in-depth research report it is

projected that businesses are going to spend approximately 5 billion dollars on the IoT

solutions in the next five years raising total number of IoT devices from 6,6 to 22,5

billion by the end of 2021 [1].

14

The issue, how to configure Wi-Fi easily, is currently actual because the user

satisfaction is closely related with the industry drivers. The IoT industry is currently

propelled by the high adoption of smartphones and tablets, expanded internet

connectivity, decreasing cost of internet-connected sensors and huge investments in the

sector [1].

Easy device deployment and solved reliability issues for highly beneficial devices

propagate consumers, businesses and governments to invest into them and trust their

workability to ease everyday life, therefore giving a boost to last two mentioned drivers

of the IoT field.

Therefore, a system that could provide mentioned benefits, is an interesting and

necessary research topic for mentioned company and many others.

 Problem statement

Currently used solution to configure Optiverter communication units is not time

efficient nor convenient. This creates a need to replace the solution with the one that

could solve these issues. The problems introduced and solved in this master’s thesis are

presented as follows:

• how to configure IoT devices without reprogramming;

• how to decrease time spent on configuring;

• how to automate the configuring process

• how to make configuring process convenient to users.

 Objectives and thesis organization

The objective of this thesis is to develop a solution to automatically configure IoT

devices in order to increase the user-friendliness and decrease time spent on

configuration processes. In addition, the software communication unit must be selected,

software developed and tested to prove the workability of the concept.

This thesis follows the engineering method structure, where sections are organized as

follows:

• section II presents the State-of-the-Art overview of the configuring systems;

15

• section III is stating the requirements for the automatic configuration system;

• section IV describes the reasoned selection of communication device for this

thesis;

• section V introduces the developed method for automatic configuring system;

• section VI presents the experimental evaluation of the developed system;

• section VII presents the results, conclusions and future work of the thesis.

16

2 Configuration solutions

Analysis of the State-of-the-Art is necessary to take account the benefits and flaws of

previously developed configuration solutions. The data gathered about the automatic

configuration solutions is presented from oldest to newest.

 State-of-the-Art

 Texas Instruments CC3000 SmartConfig

SmartConfig™ technology was developed by Texas Instruments in 2014 to connect a

CC3000-enabled device to the home wireless network using a one-step and one-time

process. Main functionality of this system is to configure multiple CC3000 devices to

the same AP at the same time. In addition, it is possible to configure multiple CC3000

devices to different APs serially. Following sections describe the procedure overview

and the limitations of this technology [2].

2.1.1.1 Procedure overview

SmartConfig procedure is initiated after CC3000 enters SmartConfig mode. The mode

is triggered externally on the CC3000 device when a button is pressed on the processor's

board [2].

Once the SmartConfig state is initiated, the CC3000 starts probing UDP (user datagram

protocol) packets. These packets contain the information regarding the SSID (Service

Set Identifier) and the password of the selected Wi-Fi AP. CC3000 will connect to the

selected AP [2].

After CC3000 receives the configuration data, it creates a SIMPLE_CONFIG_DONE

asynchronous event. In addition, the CC3000 will save the SmartConfig association

information received in shared memory [2].

17

Although the SmartConfig process can be performed without Advanced Encryption

Standard 128 (AES-128) encryption, it is not reasonable to use this possibility. It will

create a security issues because the association information is not secured during

broadcast process and while holding the data in shared memory [2].

If AES-128 encryption is enabled, the configuring device will encrypt the association

information broadcast. A specific key chosen by both sides is used to conduct this

operation. The CC3000 will place the encrypted association information received to

shared memory, which is then decrypted and stored as a profile [2].

In the final stage of the SmartConfig, the profile is stored, CC3000 resets and connects

to the selected Wi-Fi AP. To announce the completion of the configuration process and

stop it on the configuring device’s side, the mDNS packet is sent by the CC3000 [2].

Basic principle is described on Figure 1. CC3000 SmartConfig basic principle Figure 1

and process flow on Figure 2.

Figure 1. CC3000 SmartConfig basic principle [2]

18

2.1.1.2 Advantages

Advantages of TI CC3000 Smart Config are listed as follows:

• user-friendly;

• allows to configure multiple devices at once;

• configuration process can be done far from the device;

• SSID and password data encrypted.

Figure 2. SmartConfig flow - AES encryption enabled [2]

19

2.1.1.3 Limitations

Limitations of TI CC3000 SmartConfig are listed as follows:

• “must use CC3000 devices for system setup;

• configuration process uses Wi-Fi for data transmission;

• new devices in the system require additional configuration process;

• it is not possible to configure multiple CC3000 devices to different APs

simultaneously;

• key length is limited to 31 characters only when working with AES encryption;

• WEP security without SmartConfig AES encryption doesn't work;

• MTU in the configurable side should be set to 1500;

• it does not work with configuring devices that are MIMO devices;

• it does not work with configuring SISO devices at a channel width of 40MHz;

• it works at 11n rates only up to MCS7 [2].”

 Espressif ESP-TOUCH

ESP-TOUCH communication protocol technology was developed by Espressif Inc. in

2015. The main function of this technology is to connect ESP devices to selected Wi-Fi

AP, since it is not connected to network at the beginning. Following sections describe

the procedure overview and the limitations of this technology [3].

2.1.2.1 Procedure overview

ESP-TOUCH Smart Config process is initiated after the Smart Config function is

enabled in a device that supports ESP-TOUCH. Once this condition is fulfilled, the

configuration using Wi-Fi enabled device could begin [3].

Wi-Fi enabled device such as tablet or smartphone connects and sends UDP packets to

the Wi-Fi AP via specially dedicate mobile application. In addition, it will encode the

SSID and password into the length field of a sequence of UDP packets. From there the

ESP device reaches and decodes the information to connect with AP. After the

20

completion of the configuration process, the device will return the IP of the transmitter

side and the transmitter side will get the IP of the device. The basic concept of the

process is described on Figure 3 [3].

If the device is unable to connect to the router within a specified time, the application

returns the error message. Error message and the next round of SmartConfig process

will start if the device is unable to obtain SSID and password within a certain time [3].

2.1.2.2 Advantages

Advantages of ESP-TOUCH are listed as follows:

• user-friendly;

• relatively fast configuring;

• configuration process can be done far from the device;

• allows to configure multiple devices at once.

2.1.2.3 Limitations

Limitations of ESP-TOUCH are listed as follows:

Figure 3. ESP-TOUCH basic principle [3]

21

• must use ESP devices for system setup;

• configuration process uses Wi-Fi for data transmission;

• new devices in the system require additional configuration process.

 Wi-Fi Alliance NFC “tap-to-connect”

NFC configuration technology is being developed by many different application

software manufacturers. Some of the notable applications in this area are Wi-Fi

Alliance, NFC Quick Actions and NFC Task Launcher. The main functionality of using

Wi-Fi Alliance “tap-to-connect” software is to write Wi-Fi AP’s SSID and password on

a Near Field Communication (NFC) tag, which is then used to give the credentials to

device to access correct Wi-Fi AP. Following sections describe the procedure overview

and the limitations of this technology [4].

2.1.3.1 Procedure overview

NFC configuration process is initiated when device is ready to scan the NFC tag.

Software capable of writing data on the mentioned tag is used to write the association

information on the tag. Information contains the selected Wi-Fi AP’s SSID and

password. Once the tag is scanned by the device, the device automatically connects to

selected Wi-Fi AP [4].

2.1.3.2 Advantages

Advantages of NFC configuration are listed as follows:

• relatively fast configuring;

• simple to use.

2.1.3.3 Limitations

Limitations of NFC configuration are listed as follows:

• configuration process must be done near the device;

• requires a NFC tag for configuring;

• each device must be configured separately;

22

• new devices in the system require additional configuration process.

 Optiverter configuring solution

The development of Optiverter communication unit configuring solution began in 2015

by Ubik Solutions OÜ. The main functionality of using this solution is to send Wi-Fi

AP’s SSID and password via special mobile application to access correct Wi-Fi AP.

Following sections describe the procedure overview and the limitations of this

technology.

2.1.4.1 Procedure overview

Configuration process is initiated when device is in configuration mode. By using

mobile application, the Wi-Fi SSID and password are sent to the device via Wi-Fi. Once

the device is configured it will automatically connect to selected Wi-Fi AP.

2.1.4.2 Advantages

Advantages of Optiverter configuring solution are listed as follows:

• simple to use.

• configuration process can be done far from the device;

2.1.4.3 Limitations

Limitations of Optiverter configuring solution are listed as follows:

• relatively slow configuring;

• each device must be configured separately;

• new devices in the system require additional configuration process.

 Summary of the State-of-the-Art

This chapter showed that there are different ways to carry out configuration processes.

Found technologies include CC3000 SmartConfig, ESP-TOUCH, NFC “tap-to-connect”

and Ubik Solutions OÜ configuring solution.

23

CC3000 SmartConfig, ESP-TOUCH and Optiverter configuring solution introduced a

solution to configure the devices without close connection by using Wi-Fi for

configuring. This is needed to improve comfort while configuring devices from a

distance. For example, when devices are mounted on solar panels which are installed on

the roof.

CC3000 SmartConfig and ESP-TOUCH provide the minimal time for configuration

process by enabling the possibility to configure several devices at the same time.

NFC “tap-to-connect” is the most energy efficient by using NFC technology. The

limitation of the technique is that it needs to conduct configuration process for each

device separately and cannot configure from distance.

In addition, previously mentioned systems can not automatically configure a device

which is added to the system later.

To overcome these flaws, a system is proposed ensuring minimal time on configuration

process and user-friendly experience.

24

3 System requirements

To establish connection between communication devices and server, it is necessary to

configure communication devices by giving them Wi-Fi AP’s SSID and password, and

server’s Application Programming Interface (API) keys. Since configuring all devices

one at the time is very inefficient, a system is needed to decrease the time and increase

the user-friendliness of the configuration process while implementing new devices to

the local device cluster.

The system requirements chapter covers the main features that must be provided to the

device automatic configuration system taking account the demands stated in the

Problem statement. These requirements are divided in 3 main subtopics: environmental,

configuration and security.

 Requirements

 Environmental requirements

1. Units must be able to withstand temperature range -40..80 degrees Celsius.

2. Units must be able to transmit and receive data within line of sight (LOS)

distance of 3 meters via BLE.

3. Units must be able to transmit and receive data within LOS distance of 40

meters via Wi-Fi.

4. Units must be functional for 25 years.

 Configuration requirements

1. Communication between cluster devices must be done using BLE. Necessary for

future to develop a mesh network for data transmission purposes with the server.

More information about Bluetooth 5.0/Bluetooth Low Energy is presented in

Appendix 1 – Bluetooth Core Specification versions. In addition, it could be

25

used to decrease the power consumption of the configuration process [6]. More

information about BLE is presented in Appendix 2 – Bluetooth 4.2 / Bluetooth

Low Energy.

2. Communication between cluster device and server must be done using Wi-Fi.

Necessary to provide the long-range communication capability.

3. User must be able to connect to every unit via BLE using dedicated mobile

application.

4. Units must be able to store SSID and password of the main Wi-Fi AP provided

via BLE by user using dedicated mobile application or other units in the cluster.

5. Units must be able to detect all nearby BLE devices and store their media access

control (MAC) addresses and Received signal strength indication (RSSIs).

6. Recently configured unit must be able to connect to server database in order to

check whether the nearby devices belong to the cluster or not. Connection with

server is established via Wi-Fi.

7. Units must be able to verify other units belonging in the cluster using data from

server.

8. Units which has the SSID and password of the main Wi-Fi AP must be able to

distribute it to other units belonging in the cluster via BLE.

 Security requirements

1. All Bluetooth connections must be initialized using pairing processes, which is

encrypted by P-265 elliptic curve cryptography.

2. Data transmission via Bluetooth must be encrypted using AES-CCM

cryptography.

3. Units must be able to remove MAC addresses and RSSI data from cluster list of

all nearby Bluetooth devices which does not belong to the cluster.

26

4. Connection and data transmission with Wi-Fi AP must be protected using Wi-Fi

Protected Access 2 – Enterprise (WPA2-Enterprise).

5. Connection with server must be established through https and using unit specific

API-keys.

 Summary of the requirements

This chapter presented the requirements needed for the automatic configuration system

operability. The requirements were divided into environmental, configuration and

security requirements.

Optiverters are installed permanently outdoors. Due to harsh climate condition and

guarantee time of 25 years, the devices must be robust. In addition, the solution must be

able to conduct all communication activities within the LOS range of 3 meters for BLE

and 40 meters for Wi-Fi. This needed because the configuring solution is a part of their

Optiverter technology which could be installed everywhere. For example, on a roof.

Initialization requirements include the following features:

• configuration process must use BLE for communication;

• user must be able to connect to device at any time moment:

• devices must store Wi-Fi AP’s SSID and password;

• devices must be able to get information about cluster devices from the server;

• communication with server must be established via Wi-Fi;

• devices must be able to scan the surrounding devices;

• devices must be able to configure near-by cluster devices automatically.

To ensure the data integrity, the security measures must be used. For this part, there are

only usage suggestions, because the capability to offer different security protocol is

dependent on the SoC selected for this thesis.

27

In conclusion, the solution needs to use robust devices to conduct reliable, user-friendly

and, and safe, in the aspect of data security, configuration processes. Furthermore, it

must conduct all previously mentioned functions automatically when new device is

included.

28

4 Selection of communication device

Following chapter describes different wireless modules and selection made from these

to use in current master thesis work. The selection is made based on the requirements

stated in chapter System requirements.

 Overview of communication devices

This section gives a broad overview of the background, technical capabilities and

application areas of the different SoCs that seemed to be suitable for current master’s

thesis.

 Espressif ESP32

ESP32 was developed by Espressif Inc and released on the market in September of

2016. The company states in their hardware design guidelines, that the chip can provide

good power and communication performance in a wide variety of applications thanks to

integrated Bluetooth 4.2 + BLE and 2,4 GHz Wi-Fi dual mode [6]. ESP32 costs

approximately 8 USD [7]. The SoC is presented in Figure 4.

ESP32 is a SOC with Xtensa Dual-Core 32-bit LX6 microprocessor CPU performing at

up to 600 Dhrystone millions of instructions per second (DMIPS) and operating at 240

MHz. The chip is designed with TSMC ultra-low power 40 nm technology, operating at

temperatures from -40°C to 125°C. SOC is equipped with 448 KB ROM, 520 KB

SRAM, 16 KB SRAM in RTC and up to 4x16 MB QSPI flash/SRAM. ESP32 possesses

following wireless communication capabilities: Wi-Fi 802.11b/g/n/e/i and Bluetooth

Figure 4. ESP32 SoC [6]

29

v4.2 BR/EDR and BLE. Furthermore, it has On-board PCB antenna and IPEX

connector for external antenna [6].

In addition, it has following peripheral interfaces:

• up to 18 channels of 12-bit SAR ADC;

• 2 × 8-bit DACs;

• 10 × touch sensors;

• temperature sensor;

• 4 × SPI;

• 2 × I²S;

• 2 × I²C;

• 3 × UART;

• 1 SD/SDIO/MMC host,

• 1 slave (SDIO/SPI);

• Ethernet MAC interface with dedicated DMA (direct memory access) and IEEE

(Institute of Electrical and Electronics Engineers) 1588 support

• CAN (controller area network) bus 2.0;

• IR (infrared) TX/RX (transmit/receive);

• Motor PWMs (pulse width modulation)

• up to 16 channels LED (light emitting diode) PWMs;

• hall effect sensor;

• ultra-low power analogue pre-amplifier. [6]”

30

To provide communication security the ESP32 uses IEEE 802.11 standard security

features, including WFA (Wi-Fi Alliance), WPA/WPA2 and WAPI (WLAN

Authentication and Privacy Infrastructure). Furthermore, it uses secure boot, flash

encryption, 1024-bit OTP (One Time Programmable) and cryptographic hardware

acceleration: AES, SHA-2 (Secure Hash Algorithm), RSA (Rivest-Shamir-Adleman

public-key cryptosystems), ECC (elliptic curve cryptography), Random Number

Generator (RNG) [6].

The function block diagram is described on Figure 5.

As mentioned, the ESP32 has many built in features which makes it very versatile. For

example it can be used as a generic low-power IoT sensor hub, generic low-power IoT

logger, video streamer from camera, Over The Top (OTT) device, internet music player,

audio streaming device, communication unit of Wi-Fi enabled toy, Wi-Fi enabled

speech recognition device, communication unit of audio headset, communication unit of

smart power plug, communication unit of home automation device, communication unit

of mesh network node, communication unit of industrial wireless control,

communication unit of baby monitor, communication unit of wearable electronics, Wi-

Figure 5. ESP32 function block diagram [6]

31

Fi location-aware device, security ID tag, proximity and movement monitoring trigger

device or temperature sensing logger [6].

 Atmel ATWINC3400

ATWINC3400 was developed by Atmel and released to the market in July of 2015. The

company states in their datasheet, that the chip is an add-on to existing MCU solutions

optimized for low-power mobile applications. Wi-Fi and BLE 4.0 capabilities are used

through UART or SPI to Wi-Fi interface [8]. In addition, the chip costs approximately

32 USD. The SoC is presented in Figure 6 [9].

ATWINC3400 is designed using CMOS 65 nm technology, operating at temperatures

from -40°C to 85°C. It supports single stream 802.11n mode in 2.4GHz ISM band

which provides the PHY rate up to 72 Mbps (megabits per second). Chip offers a fully

integrated power amplifier, LNA, integrated PA and T/R switch, and power

management capability. In addition, the chip features an on-chip microcontroller,

integrated flash memory and peripherals such as 1xUART, 1xSPI, 1xI2C, and SDIO.

Furthermore, ATWINC3000 provides variety of network options such as TCP, UDP,

DHCP, ARP, HTTP, SSL, and DNS and support IEEE 802.11 WEP, WPA, WPA2 and

China WAPI security. The function block diagram of ATWINC3400 is described on

Figure 7 [8].

ATWINC3400 is used in IoT applications [8].

Figure 6. ATWINC3400 SoC [8]

32

 Texas Instruments WL1835MOD

WL1835MOD was developed by Texas Instruments Incorporated and released to the

market in August of 2014. The company states in their datasheet, that the add-on chip

provides high throughput and extended range using Wi-Fi and Bluetooth 4.1 [10]. Chip

costs approximately 23 USD. The chip is presented in Figure 8 [11].

WL1835MOD is a 2.4-GHz module, two antenna solution with drivers for high-level

operating systems such as Linux® and Android™. The chip operates in temperature

range between –20°C to 70°C. It features following Wi-Fi capabilities: 20- and 40-MHz

SISO and 20-MHz 2 × 2 MIMO at 2.4 GHz for throughput of 80 Mbps for TCP and 100

Mbps for UDP. In addition, it has Bluetooth 4.1 compliance and CSA2 support and

Host Controller Interface (HCI) for transport over UART [10].

Figure 7. ATWINC3400 block diagram [8]

Figure 8. WL1835MOD chip [10]

33

The function block diagram of W2CBW0015 is described on Figure 9 [10].

The application areas of WL1835MOD are listed as follows: Internet of Things (IoT),

industrial and home automation, multimedia, smart gateway and metering, home

electronics, video conferencing, home appliances and white goods, video camera and

security [10].

 Wi2Wi W2CBW0015

W2CBW0015 was developed by Wi2Wi Inc. and released to the market in May of

2013. The company states in their datasheet, that the chip provides an easy and flexible

way to add Wi-Fi and Bluetooth 3.0+HS capabilities to devices and appliances [12].

Chip costs approximately 25 USD [13]. The chip is presented in Figure 10.

Figure 9. WL1835MOD functional diagram [10]

Figure 10. W2CBW0015 chip [12]

34

W2CBW0015 is a single-band (2.4GHz) Wi-Fi and Bluetooth 3.0+HS multi-band

module with an operating temperature range from -30°C to 85°C. Chip includes RF

front-end, PA, crystal, switch, integrated MAC, baseband, filter and EEPROM for

calibration data and MAC address storage. In addition, it has SDIO 2.0 host interface

for 32 bit processors running Linux, Android and Windows operating systems [12].

The function block diagram of W2CBW0015 is described on Figure 11 [12].

The application areas of W2CBW0015 are listed as follows: IoT (Internet of Things),

IIoT (Industrial IoT) / M2M (Machine-to-Machine), imaging platforms (printer, digital

camera), internet enabled consumer devices, video streaming (DTV, DVD/Blu-ray

players), video conferencing, Vo-Fi (Voice over Wi-Fi), Wi-Fi enabled security

cameras, home audio/video systems, hands-free audios, automotive aftermarket,

warehousing and logistics handhelds, medical imaging and monitoring equipment,

gaming platforms, mobile routers (Mi-Fi) or mobile hotspot, smart homes, and smart

energy grid [12].

 Selection

This section explains the motivation for selecting a System-on-a-Chip (SoC) to use it in

device automatic configuration system. The data gathered from chapter Selection of

Figure 11. W2CBW0015 block diagram [12]

35

communication device section Overview of communication device is presented in Table

1.

Table 1. System-on-a-Chip selection

Chip ESP32 ATWINC3400 WL1835MOD W2CBW0015

Add-on chip No Yes Yes Yes

Cost (USD) 8 32 25 23

Bluetooth

version

4.2 4.0 3.0 + HS 4.1

Https network

option

Yes No No

information

No information

Communication

security

WFA,

WPA/WPA2,

WAPI,

secure boot,

flash encryption,

1024-bit OTP,

AES,

SHA-2,

RSA,

ECC,

Random

Number

Generator

(RNG).

WEP,

WPA,

WPA2

China WAPI

No

information

WEP,

TKIP,

WPA/WPA2,

AES

Temperature

range (-40 .. 80)

-40 .. 125 -40 .. 85 -20 .. 70 -30 .. 85

Peripherals 32 No No No

The evaluation process begins with the estimation of the total price of one

communication unit which is important because the automatic configuration system

must be a low cost IoT solution.

Before the comparison of device prices, there is a necessity to evaluate whether the SoC

can operate by itself without needing additional MCU for the main operability. The

information from the datasheets suggest that only ESP32 is capable to run the processes

needed for the operable system. The price of other SoCs will increase because they need

36

additional processing capability. In this light, the add-on chips are not as good as fully

integrated chips.

By comparing the approximate cost, we can see that ESP32 is significantly cheaper than

other SoCs which makes it the most usable.

Secondly, the system needs to use BLE which is implemented in Bluetooth versions 4.0,

4.1, 4.2 and 5.0. ESP32 ATWINC3400 and W2CBW0015 are suitable for the task.

Because ESP32 has Bluetooth 4.2 makes it more beneficial for the thesis work in the

sense of better data transmission capability, energy consumption and data security.

More information available in Appendix 1 – Bluetooth Core Specification versions.

Thirdly, the data security measures must be evaluated because it is a critical part in IoT

solutions. ESP32, ATWINC3400 and W2CBW0015 provides communication security.

Since ESP32 uses newer security protocols it is reasonable to use it.

Fourthly, the chips have environmental temperature requirements because they are used

outdoors for a long period of time. Approximately 10-20 years. The temperature

requirements for this thesis are set in the range of -40°C to 80°C due to the harsh

environmental condition in northern hemisphere. From this we can see that ESP32 and

ATWINC3400 are both suitable for this task. ESP32 has an advantage over

ATWINC3400 because it operates in larger temperature range.

Finally, the peripherals must be considered to ease the implementation of the automatic

configuring system in different application areas. In this field, the ESP32 offers to most

versatile selection of peripherals.

In addition, unlike others, ESP32 offers FreeRTOS (free real-time operating system)

capability, which makes it possible to transport already developed functionality easily.

As the analysis shows the ESP32 is the most suitable SoC for the thesis work. It

provides the necessary processing power and robustness with a minimal cost. In

addition, it has many peripherals which could be used in further development if needed.

37

 Summary of the device selection

This chapter introduced several platforms on which the system could be developed.

ESP32, ATWIN3400, WL1835MOD and W2CBW0015 were the devices under

consideration.

From the analysis, ESP32 had the best features at minimal cost. Therefore, the selection

fell to this SOC.

In addition, Ubik Solutions used the Espressif ESP8266 as their previous platform

which is a predecessor to ESP32. This feature makes it easy to transport already

developed functionalities to ESP32.

38

5 Automatic configuration solution: developed method

This chapter is the bulk of this thesis work and covers the architecture of automatic

configuration solution and reliability analysis, used programming language and IDE,

mobile application, server, and the software developed for the solution.

 System architecture and reliability analysis

Apart from other systems presented in chapter Configuration solutions, the proposed

system uses BLE to establish connection for configuration processes.

The solution is visualized in Figure 12. A BLE device, such as smartphone, is used to

establish the initial connection.

Connection is established with a cluster device which is a device belonging to one

specific user. The devices are listed in server and their data can be viewed and added

from computer interface or mobile device application.

Once configuration process is completed via BLE, the communication device will

connect to selected Wi-Fi AP.

After connection with Wi-Fi AP is established, the configured device requests a list of

cluster devices from the server over https.

It then uses the obtained list to configure nearby cluster devices.

Configuration process is ended when all the devices are capable of transmitting data to

the server.

39

Following sections describes system architecture, analysis of reliability issues,

advantages and limitations of this technology.

 System architecture

As mentioned the proposed software system is intended to automatically configure all

devices within predefined cluster via BLE. Objective is to connect all cluster devices to

the server via Wi-Fi through the Wi-Fi AP. Maximum number of devices for thesis

work is limited to 30 units to prevent Wi-Fi router malfunctions due to large demand.

To give a better overview of the solution, the process description is presented in Figure

13.

The configuration processes are described as follows:

1. User connects to her/his cluster device via BLE device and configures it to

access the correct Wi-Fi AP.

2. Cluster device connects to Wi-Fi AP via Wi-Fi.

3. Cluster device sends a request to receive cluster devices from the server.

4. The server returns cluster list data to the cluster device.

Figure 12. Main concept of automatic configuration solution

40

5. Cluster device scans for near-by devices. Once found, it checks whether the

device is a cluster device. If it is, the connection is established.

6. Unconfigured or not updated cluster device sends a confirmation information.

7. Found device is configured if the confirmation information states that the device

is not configured or updated.

Connection with the unknown Bluetooth device is not established because it does not

belong to cluster list received from the server.

To go more specific, the deployment diagram to visualize the solution, can be found in

Figure 14.

Figure 13. Process description

41

Figure 14. Deployment diagram

42

Starting from the bottom to the top, the Figure 14 demonstrates that the sensor

communication cluster may contain up to 30 sensors. Every communication unit

advertises and scans information to and from near-by devices. Also, devices receive

MAC addresses of other devices, which are in the cluster from server and transmit

information feed. The feed contains vital information about devices operability and data

from input/output pins. Sensor communication with server is conducted through the Wi-

Fi AP via Wi-Fi.

Server provides storage for incoming data feed and MAC address of the corresponding

device of each channel. Since the front-end development is not part of the thesis, the

MathWorks Thingspeak server capabilities is used for initial configuration. One channel

describes the data of one device and holds all feed information. Administrator can add

and remove channels from the cluster through admin user interface. Apart from that

feature the administrator and client interfaces are rather similar. Both have a capability

to monitor the feed sent from devices and conduct initial configuration for the cluster.

Although last functionality is possible only when using BLE enabled device such as

smartphone or tablet. [14]

Operations of device software can be divided into two groups: continuous and

discontinuous. Continuous operations are described on activity diagrams Figure 15 and

discontinuous on Figure 15 and Figure 16.

Figure 15. Activity diagram for continuous operations

43

Continuous processes, seen on Figure 15, are active the entire time when power is on. In

this case, the device advertises its’ configuration and configurer’s information via BLE

in order to notify other devices about the advertiser’s state. Besides advertising, the

device is also scanning via BLE to find and save MAC addresses, RSSI-s (received

signal strength indication), configuration and configurer’s information of all devices in

the proximity. This data is later used in initialization processes.

Discontinuous processes, seen on Figure 16 and Figure 17, are meant to be active only

once per one work cycle. Cycle ends when power is turned off. The process could take

place more than once when the SSID and password for the Wi-Fi AP needs to be

updated.

Figure 16. Activity diagram for discontinuous operations - initial configuration

44

Figure 17. Activity diagram for discontinuous operations - secondary configuration

45

In case of initial configuration, one device is configured by client or administrator using

smartphone or tablet via BLE. Wi-Fi AP’s SSID and password is sent from the mobile

application to device. Since the front-end development is not a part of the thesis, the

EspBlufi mobile application is used for the initial configuration. The device changes its’

configuration and configurer’s information when it connects to the server via Wi-Fi

successfully or fails to do so. If device is connected, then it requests a data packet from

the server about friendly devices in the cluster. Secondary configuration starts after the

cluster list is received and saved successfully.

Secondary configuration implies that the Wi-Fi AP data is sent between devices

themselves and does not need human assistance any more. The cluster data saved in

firstly configured device is compared with the ones captured from the near-by

advertising devices. If a device recognizes another friendly unconfigured or not updated

device, it automatically connects to it and sends Wi-Fi AP data.

In case of renewing the Wi-Fi AP data the process is carried out similarly to initial

configuration. The decision, whether to update other devices in the cluster is determined

by the configuration time. If configuration time between the configuring and under

configuration device is more than 30 seconds the update configuration process is

initiated.

Configuration process ends when all devices configuration information does not require

reconfiguration and are able to access the Wi-Fi AP to receive and transmit data.

 Analysis of reliability issues

According to IEEE Recommended Practice on Software Reliability [15], it is necessary

to conduct analysis based on previously described fault tolerant system to determine

where the defects probably lay and which are the weak areas of the software system.

Reliability analysis provides an overview, that can be used to find possible solutions for

reliability issues. The failure in discussed fault tolerant system is inability to connect

devices automatically to the server.

Advertisement process is a continuously working activity, which is vital for other

devices to find the advertiser. Automatic connection events might not take place, if the

data in the advertisement packet is incorrect or memory location is not available.

46

System must be able to inform the user, if false or no data is sent. Also, the physical

layer of BLE must be operable always to transmit data.

Similarly, to advertising, the scanning processes is also continuously working. This

process is vital to find nearby sensor communication units in order to compare them

with devices from cluster list, which is obtained from server. Automatic connection

events might not take place, if memory location for scanned devices is not available.

System must be able to inform when false or no data is received. Also, the physical

layer of BLE must be operable always to receive data.

Running processes continuously is consuming a lot of power. In principle, the

advertising and scanning events does not need to work all the time, because of two

reasons. Advertising is only needed during initial configuration and update processes.

Scanning is needed until all the cluster devices are configured. In future work, this flaw

could be eliminated by sending the information from server side to start configuring or

updating the devices. After devices receive the info, they will start advertising and

scanning.

User accessing a device with smartphone or tablet via BLE is the feature, which is the

basis of initiating the automatic configuration system. The connection creation between

mobile device and sensor communication unit must be secured. System must be able to

inform when pairing is successful or failed. The physical layer of BLE must be operable

at all times to allow pairing.

User’s ability to send Wi-Fi AP SSID and password to device via BLE through the

mobile application is another important feature of the system. The Wi-Fi AP data must

be encrypted, have memory holding SSID and password available at all times and

physical layer of BLE operable. System must be able to inform when SSID and

password are incorrect or not sent.

Wi-Fi module operability and system messages about current connection state must be

granted when device connects to correct Wi-Fi AP.

After the connection is established, the device sends cluster data request to server. This

request must be encrypted and correctly presented in order to get cluster data. System

must be able to inform when request is sent.

47

If server accepts the request, the device receives cluster data from the server. The data

received must be encrypted, received properly, and saved to a correct memory location.

System must be able to inform which data was received.

It is important for a device to compare scanned and received device lists to find matches

in order to start automatically configuring the cluster devices. For this operation, the

memory locations must be available, data in them valid and information about the

comparing process presented.

One device connecting to another device needs a secured connection and operational

BLE physical layer. In addition, initializing device must have data about other device’s

previous configuration time for updating. System must be able to inform about the

connection state and configuration time. Device must be able to change its’ advertising

data upon different activities. For this the data must be altered in correct memory

location.

Information gathered provides the basis to find best ways to mitigate discussed

reliability issues.

 Applicable reliability techniques and methods

This section introduces different methods how to solve previously discussed

problematic areas. Single-version techniques are used, because the project is not about

safety critical system. Therefore, not needing the multi-version techniques, which uses

at least two versions of the same software module to meet the requirements of design

diversity. Single version techniques simply add functionalities that are unnecessary in a

fault-free environment to a single software module [16].

By using single-version techniques, software is modified to be able to detect a fault,

isolate it and prevent the propagation of its effect throughout the system. Firstly, the

detecting process is viewed, which is the basis of recovery [16].

Single-version techniques use different acceptance tests to detect faults. The result of a

program is subjected to a test and program will continue its execution only if the result

passes the test. Otherwise it will indicate a fault. An effective test can be calculated in a

simple manner and its’ criteria are derived independently of the program application

[16].

48

To increase reliability following techniques are used: timing checks, coding checks,

reversal checks, reasonableness checks and structural checks. These are described

briefly in following sections [16].

Timing checks can be applied to systems with timing constrains. These constrains are a

foundation to checks that indicate a deviation from the correct behaviour [16].

Coding checks can be applied to systems whose data can be encoded using information

redundancy techniques. Cyclic redundancy checks are applicable when the information

is transported without changing its’ content. Arithmetic codes are applicable to detect

arithmetic operation errors. In addition, some systems allow reversal checks which

compare the actual inputs of the system with the computed ones and gives a fault upon a

disagreement [16].

Reasonableness checks use semantic properties of data to detect fault and structural

checks are based on known properties of data structures [16].

Fault containment is a necessary procedure after fault detection. It is achieved in

software altering the structure of the system and by putting a set of restrictions defining

which actions are permissible within the system. There are four techniques for fault

containment: modularization, partitioning, system closure and atomic actions. All of

these are described in following sections [16].

Modularization is used to prevent the propagation of faults. It is done by limiting the

amount of communication between modules to carefully monitored messages and by

eliminating shared resources. “Before performing modularization, visibility and

connectivity parameters are examined to determine which module possesses highest

potential to cause system failure. Visibility of a module is characterized by the set of

modules that may be invoked directly or indirectly by the module. Connectivity of a

module is described by the set of modules that may be invoked directly or used by the

module [16].”

Partitioning the modular hierarchy of a software architecture in horizontal or vertical

dimensions creates the isolation between functionally independent modules. “Horizontal

partitioning separates the major software functions into independent branches. The

execution of the functions and the communication between them is done using control

modules. Vertical partitioning distributes the control and processing function in a top-

49

down hierarchy. High level modules normally focus on control functions, while low-

level modules perform processing [16].”

System closure bases on principle that no action is permissible unless explicitly

authorized. The system environment has many restrictions and strict control which

makes the processes highly visible. The purpose of this containment technique is to

locate and remove any faults by viewing interactions between the elements of the

system [16].

Atomic actions define interactions between system components. It is an activity in

which the modules communicate exclusively with each other among a group and during

that time there is no interaction with the rest of the system. The results are correct if

atomic action terminates normally. Otherwise the detected fault affects only the

participating components. This enables a possibility to define fault containment area

and limit fault recovery to atomic action components [16].

Fault recovery from the faulty state to regain operational status is the next step after

fault is detected and contained. Fault detection and containment mechanisms must be

implemented properly because the information about fault containment region is crucial

for the design of fault recovery mechanism. There are four techniques for fault

recovery: exception handling, checkpoint and restart, process pairs, and data diversity.

These are described in following sections [16].

“Exception handling is the interruption of normal operation to handle abnormal

responses.” The exceptions which are triggered by events in a software module are

classified into three groups [16].

1) Interface exceptions are initiated when an invalid service request is detected.

This exception must be handled by the module that requested the service [16].

2) Local exceptions are initiated when fault within its internal operations is

detected by fault detection mechanism. This exception must be handled by the

faulty module [16].

3) Failure exceptions are initiated when fault recovery mechanism is unable to

recover successfully. This exception must be handled by the system [16].

50

Checkpoint and restart, also known as backward error recovery technique bases on

method where a snapshot of the system state is taken before fault occurs and used to

recover the system after restart. Design faults, activated

by some unexpected input sequence, are the most common software faults. These

resemble hardware intermittent faults and as in hardware, a simple module restart is in

many cases enough to complete its’ execution [16].

The acceptance test block checks the correctness of the result and works simultaneously

with the module’s executing a program. Upon fault detection, the “retry” signal is sent

to module to use checkpoint state stored in the memory for re-initialization.

Checkpoints can be static or dynamic [16].

Static checkpoint stores a single snapshot of the system state in the memory at the

beginning of the program execution. If a fault is detected at the output of the module,

the system returns to previous state and starts the execution from the beginning.

Dynamic checkpoints store snapshots of the system state in the memory at various

points during the execution. Upon detecting a fault, the system goes back to the last

checkpoint and continues the execution. Prior to creating checkpoints, fault detection

checks need to be embedded in the code and executed [16].

“A number of factors influence the efficiency of check-pointing, including execution

requirements, the interval between checkpoints, fault activation rate and overhead

associated with creating fault detection checks, checkpoints, recovery, etc. In static

approach, the expected time to complete the execution grows exponentially with the

execution requirements. Therefore, static check-pointing is effective only if the

processing requirement is relatively small. In dynamic approach, it is possible to

achieve linear increase in execution time as the processing requirements grow. There

are three strategies for dynamic placing of checkpoints: [16]”

1) “Equidistant, which places checkpoints at deterministic fixed time intervals. The

time between checkpoints is chosen depending on the expected fault rate [16].”

2) “Modular, which places checkpoints at the end of the sub-modules in a module,

after the fault detection checks for the sub-module are completed. The execution

time depends on the distribution of the sub-modules and expected fault rate

[16].”

51

3) “Random, placing checkpoints at random [16].”

Checkpoint and restart mechanism is used because it is conceptually simple,

independent of the damage caused by a fault, applicable to unanticipated faults and

general enough to be used at multiple levels in a system. Main disadvantage of restart

recovery is that non-recoverable actions exist in some systems, which cannot be solved

by reloading the state and restarting the system. Special treatment is needed to recover

from such actions [16].

“Process pair technique runs two identical versions of the software on separate

processors. First the primary processor, Processor 1, is active. It executes the program

and sends the checkpoint information to the secondary processor, Processor 2. If a fault

is detected, the primary processor is switched off. The secondary processor loads the

last checkpoint as its starting state and continues the execution. The Processor 1

executes diagnostic checks off-line. If the fault is non-recoverable, the replacement is

performed. After returning to service, the repaired processor becomes secondary

processor [16].”

“The main advantage of process pair technique is that the delivery of service continues

uninterrupted after the occurrence of the fault. It is therefore suitable for applications

requiring high availability [16].”

“Data diversity is a technique aiming to improve the efficiency of checkpoint and restart

by using different inputs re-expressions for each retry. Its is based

on the observation that software faults are usually input sequence dependent. Therefore,

if inputs are re-expressed in a diverse way, it is unlikely that different

re-expressions activate the same fault.

There are three basic techniques for data diversity: [16]”

1) “Input data re-expression, where only the input is changed [16].”

2) “Input data re-expression with post-execution adjustment, where the output

result also needs to be adjusted in accordance with a given set of rules. For

example, if the inputs were re-expressed by encoding them in some code,

then the output result is decoded following the decoding rules of the code [16].”

52

3) “Input data re-expression via decomposition and re-combination, where the

input is decomposed into smaller parts and then re-combined after execution to

obtain the output result [16].”

Methods to improve software reliability are described in following sections. Reliability

considerations include protecting data, protecting system and reporting, protection from

hardware failures, ensuring available memory, protecting system states, and protection

from inadvertent operations, out-of-sequence commands or data, and environmental

effects [15].

Data could be protected by using multiple data storage places, CRC (cycle redundancy

checks), comparisons before use and self-checking of software data integrity [15].

System protection and reporting could be granted by sending commands/messages with

CRC and handshaking for correctness, checking commands/data before use at

destination, and checking of message size, content, stage of operation, etc. [15].

Protection from hardware failures could be solved by adding sensors, actuators and data

lines to the system [15].

To ensure memory availability, the background memory checks for memory viability

could be conducted [15].

For protecting system states, it is possible to use multiple bits (8, 16, and 32) to indicate

any change in critical functions or for sensor and effector identification. Prior to

activation, check address and instructions sequence against separate stored data and

check if activation is “legal” under current conditions [15].

To grant protection from inadvertent operations, out-of-sequence commands or data,

and environmental affects one or more listed processes could be carried out [15]:

1) Implement self-checking of software events and data integrity [15].

2) Implement watchdog timers that monitor the software’s operation and trigger a

reset or alternate system [15].

3) Implement fault/failure detection, isolation, and recovery (FDIR) measures for

the software [15].

53

 Considered reliability techniques

This section describes the reliability measures which are considered for use in this

thesis. It is based on previously discussed sections System architecture and Applicable

reliability techniques and methods. Section covers finding suitable software fault

recovery, fault containment and fault detection mechanisms.

The software does not need high reliability because it is used for initialization of

devices which takes place only few times during the entire working time of the device.

If the system fails to configure the devices, the outcome causes only drop in user

satisfaction. Installation team spends extra time for configuring and customer access

The software should use checkpoint and restart fault recovery technique because it is the

most simple and robust solution to solve occurring problems. Restart and reload of

previous working system state is conducted upon system failures. Process pair and data

diversity techniques are too complex for this project.

After the system is operable the device must send error report to the server to analyse

the root cause of an error and improve the software based on the gathered information.

The checkpoint and restart technique should use dynamic checkpoints because they

must be placed also after the beginning of the program execution. Needed when power

failure occurs to remember the configuration, advertising and scanning information.

Checkpoints must be placed modularly because recovery has to fall back to the last

working state of the software module. Thus, excluding random placing. Equidistant

placing is also not an option because the software working cycle is not constrained by

time.

Software should use modularization fault containment method, because of the simplicity

of the software. Modularization is needed to avoid a situation where one part of

software creates a failure in the entire system. Since the software uses real-time

operating system (RTOS), the atomic actions are used within the functionality.

Partitioning is not reasonable to use because all software modules are needed to provide

the operability of the system therefore making it hard to sort modules in hierarchy.

System closure and atomic actions are not reasonable to use because they add

unnecessary complexity to the system and restrict its’ usability.

54

All processes listed in architectural overview need a reporting capability for user to

view the exchanged data, software state and information about memory availability and

BLE/Wi-Fi physical link operability. Additional measures like multiple data storage

places, CRC outside BLE controller, comparisons before use, self-checking of software

data integrity and sensors for hardware check are not needed due to the low reliability

requirements for the system [15].

 Software development language and tools

 Process planning

• yEd Graph Editor Version 3.17 was used to create deployment and activity

diagrams for software development process.

 Software development

• Software was written in C language using Eclipse Neon.3 version 4.6.3. It was

also used to build the developed software and flash it on the ESP32.

• CP2102 USB to TTL connector was used for uploading the code to ESP32 and

observing its’ activity via UART. The pin connection is presented in Figure 18.

• xtensa-esp32-elf cross-compiler binary toolchain GCC version 5.2.0 was used to

compile the code going into the ESP32 unit.

Figure 18. CP2102 USB to TTL connection [17] with ESP32 [6]

55

• ESP-IDF (The Espressif IoT Development Framework) was used for developing

applications based on ESP32.

• Ubuntu 16.04 terminal was used to configure the IDF with the command “make

menuconfig” visible in Figure 19

 Software evaluation

For workability evaluation following tools were used:

• CuteCom 0.22.0 to view the UART debug information;

• EspBlufi mobile application version 1.0.1 to check the functionality of

initialization process;

• Wireless Network Watcher v2.05 to check whether the device is connected to

correct Wi-Fi AP;

• Postman version 4.10.7 to check the workability of the cloud server;

Figure 19. Project menuconfig

56

 Server

MathWorks Incorporated ThingSpeak cloud server for IoT data is used to store cluster

device information which is used later for verification of cluster devices near of an

ESP32. [14]

Once the account in ThingSpeak is created, there is a possibility to create channels for

users. As seen in Figure 20, there is one user.

Under this user’s profile, there are several graphs. Each graph represents a device in her

or his device cluster. The view is visible in Figure 21.

Figure 20. User channel [14]

Figure 21. Data feed view [14]

57

The cluster devices can be added and changed from the Channel Settings tab, visible in

Figure 22. The number of cluster devices from the server side is limited to 10, because

free version is used in this thesis.

Cluster data is requested with a following GET command in JSON (JavaScript Object

Notation) format seen in Figure 23.

The part of the request “api_key=WBWA6NBT6EXFS1ZF” indicates to the read API

key needed for secure. Write and read keys can be found under API keys tab. Write key

is used to send information feed to the server. The tab is visible in Figure 24.

Figure 22. Cluster devices [14]

https://thingspeak.com/channels/220032/feeds.json?results=0&api_key=WBWA6NBT6

EXFS1ZF

Figure 23. Https request

https://thingspeak.com/channels/220032/feeds.json?results=0&api_key=WBWA6NBT6EXFS1ZF
https://thingspeak.com/channels/220032/feeds.json?results=0&api_key=WBWA6NBT6EXFS1ZF

58

Received cluster data structure is presented in Figure 25:

Received cluster data example is presenter in Figure 26.

Figure 24. API keys [14]

{
 "channel": {
 "id": unique user identifier,
 "name": "name of the device, company etc.",
 "description": "purpose of the device",
 "latitude": "cluster latitude location",
 "longitude": "cluster longitude location",
 "field1": "MAC of the first device",
 "field2": "MAC of the second device",
 "created_at": "date and time of first appearance",
 "updated_at": "data and time of last update",
 "last_entry_id": last update identifier
 },
 "feeds": [optional data about previous measurements]
}

Figure 25. Received cluster data structure

59

 Software architecture

This section covers the architecture of developed software, including the overview of

system components and modularized software, and detailed description of different

software modules and their connections. The code can be accessed via a git repository

link in Appendix 3 – Developed software.

 System components

The system components described in Figure 27, are the basis for the system operability.

There are five system components: ESP32 device hardware, ESP32 device drivers, real-

time operating system, ESP32 generic middleware and user application code.

User application code holds the developed software. For this master thesis, it contains a

software for automatic configuration system.

ESP32 generic middleware provide API structures and functions to application code. It

is the link between the user application and ESP32 device drivers.

Real-time operating system kernel provides API structures and functions to application

code. It executes the functionality on specific features on ESP32 device hardware. In

this thesis, the FreeRTOS is used.

{
 "channel": {
 "id": 220032,
 "name": "ESP32_temperature_sensor",
 "description": "temperature measurement",
 "latitude": "0.0",
 "longitude": "0.0",
 "field1": "24:0A:C4:01:F7:F2",
 "field2": "14:BB:6E:30:30:59",
 "created_at": "2017-01-28T12:07:26Z",
 "updated_at": "2017-03-11T22:41:06Z",
 "last_entry_id": 1480
 },
 "feeds": []
}

Figure 26. Received cluster data example

60

ESP32 device drivers are necessary to execute functions specific features on ESP32

device hardware.

ESP32 device hardware includes all physical features available on the ESP32 System-

on-a-Chip.

 Software flow

The software is modularized and divided in seven modules: initialization, advertise,

scan, device configured, connection with Wi-Fi AP, connection with server, and device

configuring.

Initialization of Wi-Fi and BLE controller is the first processes that takes place after the

circuit is powered. Starting Wi-Fi functionality is necessary to establish a connection

with selected Wi-Fi AP. BLE controller is needed to advertise and scan viable

information for configuration process. In addition, it is used to create a connection and

transmit data between BLE devices.

As soon as the system is initialised, the advertisement event begins. Off-page reference

1 indicates the places where the advertisement process gets its’ advertisement data. It

Figure 27. System components

61

runs for 5 seconds and then proceeds to scan event. During this time, there is a

possibility for other devices to establish a connection. Off-page reference 2 directs to

operations conducted by ESP32 after connection takes place.

Scan event starts after advertisement event and lasts for 5 seconds. During this time, the

device saves all found nearby devices. Off-page reference 3 directs to device

comparison functionality which is necessary for automatic configuration.

Initialization, advertisement and scan events are presented in Figure 28.

Figure 28. Initialization, advertisement and scan operations

62

The system may enter device configured event from advertising event. Off-page

reference 2 comes from advertising event. The time of last configuration is checked

before the main functionality is initiated to prevent endless configuration loops within

the cluster while updating the devices. The time is obtained from update timer, which is

presented with off-page reference 4 in Figure 29. If last configuration process took place

less than 30 seconds ago, the device will return to advertising event. If not, the device

configured event will turn off advertising and proceed to send update confirmation to

the configuring device. Update configuration is a value which represent the sum of all

characters of SSID and password in hexadecimal. Wi-Fi AP SSID and password is

obtained if the update confirmation is suitable for configuring device. This data is saved

and used in device configuring event. Off-page reference 5 directs to “send Wi-Fi data”

function in device configuring event. After data is saved the system goes to advertising

event and connection with Wi-Fi AP event.

Using saved Wi-Fi AP data, the device tries to connect to selected Wi-Fi AP. If this is

not successful, the device returns to advertising event and waits for the next time it will

be configured. If it is successful, the update timer is reset and the software proceeds to

connection with server event. Off-page reference 6 directs to connection with server

event.

Device configured and connection with Wi-Fi AP events are presented in Figure 29.

Figure 29. Device configured and connection with Wi-Fi AP operations

63

Connection with server begins with the check that ensures that the device is connected

with Wi-Fi AP. If it is not, the system returns to advertise event. If it is, it will try to

connect with server. Upon failed try it will go back to checking the connection with Wi-

Fi AP within connection with server event. If the connection with server is established,

the https request is written to obtain cluster device list from server. The server replies to

that request by sending the data introduced in Software development language and

tools. The data is read and parsed to obtain the cluster devices. To find near-by cluster

devices a comparison operation is conducted. Previously scanned devices and device

list obtained from server is compared. If no unconfigured or not updated devices are

found, the system will fall back to advertise event. If there is, the system continues to

device configuration event.

Device configuration event starts with the update timer check. If the last configuration

took place more than 30 seconds ago, the system will go back to checking the

connection with Wi-Fi AP within connection with server event. Otherwise it will stop

advertising to establish a connection with unconfigured or not updated device. The

device being configured sends the update configuration. This way there is a possibility

to estimate whether the configuring device and the device configured share the same

password. If they do the connection is immediately closed. Otherwise, the configuring

device sends the Wi-Fi AP data to device which under configuring process. Either way

the event ends with the termination of connection and falling back to checking the

connection with Wi-Fi AP within connection with server event.

Connection with server and device configuring events are presented in Figure 30.

64

Figure 30. Connection with server and device configuring operations

65

Some of the events are run continuously such as advertise and scan events. In addition,

connection with server event when the device is configured.

Other events are initiated only when the device is being configured or starting to

configure others.

The automatic configuration process ends when all found cluster devices are configured

successfully to the Wi-Fi AP.

 Summary of the developed method

This chapter contains the system architecture and reliability analysis, and software

architecture.

System architecture stated the outline of the workability, that is needed for software

development. The architecture considers of all requirements stated in chapter

Configuration requirements. The system is designed to be accessed and configured via

user’s BLE device. After configuration process by user, the system will automatically

configure all other cluster devices in the proximity. Configuration process ends when all

cluster devices are configured to access selected Wi-Fi AP.

Reliability analysis was conducted to find potential hazards within the system which

could lead to the system failure. In addition, different methods and techniques how to

mitigate them, were introduced. Furthermore, the solutions were considered based on

previously collected information.

For the software fault detection, it is proposed to use reporting capability for user to

view the exchanged data, software state and information about memory availability and

BLE/Wi-Fi physical link operability.

For the software fault containment modularization is needed to avoid a situation where

one part of software creates a failure in the entire system.

For the software fault recovery, the software should use checkpoint and restart fault

recovery technique, because it is the simplest technique to regain the operability of the

system. After system restart the error report must be sent to server.

66

Software architecture implemented the main concept into the code. The code can be

accessed via a git repository link in Appendix 3 – Developed software.

Although the automatic configuration system itself is operational, there are some

features left for the future work. Due to strict time constraints, following addition will

be added in the future:

• data security features;

• reliability techniques considered to avoid system failures;

• the solution to avoid continuously working processes, such as advertising and

scanning, to decrease power consumption is also added in the future.

The chapter about developed method and code gives a chance to evaluate the operability

of the system.

67

6 Experimental evaluation

This chapter covers the tested functionalities of the software and is divided sections

describing initial configuration, device data analysis, secondary configuration and Wi-Fi

AP data update. In addition, a section is added to describe the potential benefit of the

proposed system taking account the power and time used for one configuration action.

 Initial Configuration

 Connection via mobile application

Figure 31 displays the EspBlufi mobile application which scans two communication

devices called BLUFI_DEVICE. These devices are advertising to start the configuration

or updating process. One with a MAC address 24:0A:C4:01:F7:F2 is selected for initial

configuration.

The information from the ESP is visible by using CuteCom interface seen on Figure 32.

Text “BLUFI_DEMO: BLUFI_ble_connect” indicates that the connection process was

successful and the configuration process is ready to take place.

Figure 31. Advertising devices

68

 Configuration via mobile application

ESP32 is configured by sending the Wi-Fi SSID and password to the device.

Configuring process is presented in Figure 33.

Figure 33. Initial or update configuration

Figure 32. Initial connection

69

The information from ESP32 is seen on Figure 34. Text “HTTPS_REQUEST:

Connected to AP” indicates that the configuration process was successful and the

ESP32 is ready to request cluster data from the server.

Wireless Network Watcher verifies that the BLUFI_DEVICE with a MAC address

24:0A:C4:01:F7:F2 is connected to the correct Wi-Fi AP. Interface is presented on

Figure 35.

Figure 34. Initial configuration data from ESP32

Figure 35. One device connected to Wi-Fi AP verification

70

 Device data analysis

 Cluster data request

After successful configuration process, the ESP32 sends a request to ThingSpeak IoT

cloud server. As a response the cloud server sends the devices which belong to

customers device cluster. The response is visible on Figure 36. Texts

“HTTPS_REQUEST: Cluster device 1: 24:0A:C4:01:F7:F2”, “HTTPS_REQUEST:

Cluster device 2: 14:BB:6E:30:30:59” and “HTTPS_REQUEST: Cluster device 3:

24:0A:C4:01:F7:2E” indicates that there are three devices in the cluster according to

the server data. This data is used in later stages of automatic configuration.

 Scanned data observation

The scanning process runs continuously in ESP32. The scan results are visible on

Figure 37. Texts “BEACON_DEMO: Scanned device 0: 98:E0:D9:9B:46:4E”,

“BEACON_DEMO: Scanned device 1: 24:0A:C4:01:F7:2E”, “BEACON_DEMO:

Scanned device 2: 76:04:26:68:61:21”, and “BEACON_DEMO: Scanned device 3:

6A:D9:A3:C7:0F:76” indicates that the ESP32 found four devices in the close

proximity. This data is used in later stages of automatic configuration.

Figure 36. Cluster data

71

 Unconfigured cluster device recognition

The data gathered from server and scanning process is compared to find devices

belonging to the user’s cluster. If these ESP32s are found, it is tested whether the

devices were configured in the past 30 seconds to check if the Wi-Fi AP association

information has been updated.

If Wi-Fi AP data update has taken place in during last 30 seconds, the configuration

process will not take place because it was already updated within mentioned time. As

we can see in Figure 38, ESP32 finds the cluster device but fails to reconfigure it. Text

“BEACON_DEMO: Cluster device 3 was recently updated less than 30 seconds ago.”

indicates that the connection process could not be initiated.

Figure 37. Scanned data

72

Otherwise, the secondary configuration phase starts as seen on Figure 39. Texts

“BEACON_DEMO: Updating cluster device 3:” and “BEACON_DEMO: Cluster device

3 was recently updated more than 30 seconds ago.” indicates that the connection

process is initiated.

Figure 39. Configuration process initiated

Figure 38. Configuration process failed

73

 Secondary configuration

Secondary configuration will take place after initial configuration. In this process

ESP32s are the configuring devices. Process will continue until all cluster devices are

configured successfully.

 Connection via unconfigured ESP32

Differently from the initial configuration process, the connection with other ESP32 is

created by configured ESP32. The connection establishment between two ESP32s can

be viewed on Figure 40. Text “GATTC_DEMO: REMOTE BDA: 24:0a:c4:01:f7:2e”

indicates that the connection is established with unconfigured ESP32. The MAC

address of unconfigured ESP32 is 24:0A:C4:01:F7:2E.

Figure 40. Configured ESP32 establishes connection

74

The connection with unconfigured ESP32 can be viewed in Figure 41. Text “BT:

24:0A:C4:01:F7:f2, Server_if=4, reason=0x0, connect_id=4” indicates that the

connection is established with configured ESP32 and the MAC address of this is

24:0A:C4:01:F7:F2.

 Configuration of unconfigured ESP32

Configured ESP32 sends Wi-Fi AP association information unconfigured ESP32. The

unconfigured ESP32 uses this information to connect with Wi-Fi AP as seen in Figure

42. Text “HTTPS_REQUEST: Connected to AP” indicates that the configuration

process was successful and the ESP32 is ready to request cluster data from the server.

Figure 41. Unconfigured ESP32 receives connection

75

Wireless Network Watcher verifies that ESP32s with a MAC addresses

24:0A:C4:01:F7:F2 and 24:0A:C4:01:F7:2E are connected to the correct Wi-Fi AP.

Interface is presented on Figure 43.

In addition, we can see how the newly configured ESP32 makes a successful cluster

device request in Figure 44. Texts “HTTPS_REQUEST: Cluster device 1:

24:0A:C4:01:F7:F2”, “HTTPS_REQUEST: Cluster device 2: 14:BB:6E:30:30:59” and

“HTTPS_REQUEST: Cluster device 3: 24:0A:C4:01:F7:2E” indicates that there are

three devices in the cluster according to the server data.

Figure 42. Configuring an unconfigured ESP32

Figure 43. Two devices connected to Wi-Fi AP verification

76

 Summary of the evaluation

This chapter presented the results obtained while testing the developed system. The

testing was divided in three sections: initial configuration, device data analysis and

secondary configuration.

Initial configuration takes place when user accesses the ESP32 with a BLE device and

configures it. The test conducted showed that the capability for these actions was

possible and the ESP32 established a connection with Wi-Fi AP.

Device data analysis consists of operations in which ESP32 requests and receives data

about cluster devices from the server, scans the near-by devices and recognizes the

unconfigured or not updated cluster devices. These features were tested. The device

could access server and receive cluster data, conduct a scan and find all near-by devices,

and determine which device should be configured.

Figure 44. Server request from newly configured device

77

Secondary configuration takes place when recently configured ESP32 starts to configure

or update another ESP32. The test conducted showed that the capability for these

actions was possible and the ESP32 established a connection with Wi-Fi AP. Thanks to

update timer, the system did not go to endless configuration loop. The fact that the

operation was conducted automatically indicates the possibility to configure bigger

clusters than the one limited by 30 devices in this thesis.

In conclusion, the software worked as it supposed to. The fact that security and

reliability methods were not used makes the system vulnerable to any kind of cyber-

attacks and causes significant problems upon failure. These two topics must be

addressed in the future work.

78

7 Results, conclusion and future work

This chapter of the thesis covers the collected results, conclusion and future work with

this project.

 Results

This master’s thesis presents a work done to propose and develop a solution for Ubik

Solution OÜ for Optiverter communication unit automatic configuration. The automatic

configuration solutions developed enables to configure IoT devices without

reprogramming, decrease time spent on configuring, automate the configuring process

and make the process user-friendly.

The State-of-the-Art research of found configuring systems, such as Texas Instruments

CC3000 SmartConfig, Espressif ESP-TOUCH, Wi-Fi Alliance NFC “tap-to-connect”,

and Ubik Solutions OÜ configuring solution, showed that there is no technology

available which would guarantee a user-friendly experience and low configuring time.

In addition, none of the systems can automatically configure a device which is added to

the system later on. To overcome these flaws, a system was proposed ensuring the

minimal time on configuration process and user-friendly usage.

Since Ubik Solutions OÜ needs this system to work outdoors, within the time period of

10-20 years, the devices must be low-cost, robust and still be able to conduct all

communication activities. Configuration process must use BLE for communication

within the cluster. In addition, user must be able to connect to device at any time

moment and store Wi-Fi AP’s SSID and password to the device. Furthermore, device

must be able to connect and receive cluster information from the server to compare it

with scanned devices. This is needed to connect and configure with unconfigured or not

updated devices. Behind the functionality, the data transmitted and received must be

secured with encryption methods available to selected communication device.

ESP32, ATWIN3400, WL1835MOD and W2CBW0015 were the devices under

consideration to be selected for the thesis. Conducted analysis showed that ESP32 had

79

the best features for minimal cost and therefore selected. In addition, Ubik Solutions

used the Espressif ESP8266 as their previous communication device, which is a

predecessor to ESP32. Both chips use RTOS which makes it easy to transport already

developed functionalities to ESP32.

System architecture stated the outline of the workability, that is needed for software

development. The system is designed to be accessed and configured via user’s BLE

device. After configuration process by user, the system will automatically configure all

other cluster devices in the proximity. Configuration process ends when all cluster

devices are configured to access selected Wi-Fi AP.

Reliability analysis was conducted to find potential hazards within the system which

could lead to system failure. For the software fault detection, it is proposed to use

reporting capability for user to view the exchanged data, software state and information

about memory availability and BLE/Wi-Fi physical link operability. For the software

fault containment modularization is needed to avoid a situation where one part of

software creates a failure in the entire system. For the software fault recovery, the

software should use checkpoint and restart fault recovery technique, because it is the

simplest technique to regain the operability of the system. After system restart the error

report must be sent to the server.

Software architecture implemented the main concept presented in system architecture

into the code. Successful software tests proved that the system works. The code can be

accessed via a git repository link in Appendix 3 – Developed software.

 Future work

In the future, three issues need to be solved for this solution. The current problems are

lack of data security, low system reliability and high energy consumption.

Firstly, security measures should be implemented in the software architecture and

software to make it less vulnerable to all cyber-attacks. Fortunately, ESP32 offers many

features to improve.

80

Secondly, reliability considerations should also be taken into account to prevent

significant problems upon system failure. Since these issues are mapped and

considerations proposed, there is a good basis to add this functionality.

Thirdly, running processes continuously is consuming a lot of power. In principle, the

advertising and scanning events does not need to work all the time, because of two

reasons. Advertising is only needed during initial configuration and update processes.

Scanning is needed until all the cluster devices are configured. This flaw could be

eliminated by sending the information from server side to start configuring or updating

the devices.

In addition, with the release of Bluetooth 5.0 core specification, there is a chance that

promised flooding and routing mesh capability will be included in next version. This

would establish a basis for more energy efficient data transmission thanks to possibility

that only one device needs to be connected with Wi-Fi AP and data of other devices will

be sent to it via Bluetooth mesh. Since the automatic configuration system already uses

BLE for communication with each other, the mesh networking would be easily

implemented. The basic principle of the system using mesh capability is presented in

Figure 45.

Figure 45. Basic principle using mesh networking

81

 Conclusions

This master thesis solved the problems stated by Ubik Solution OÜ, by selecting

suitable communication device for work, establishing base requirements and creating a

methodology to conduct the functions needed. Furthermore, a software was created

based on the system architecture and tested. Since the test results showed that the

concept of automatic configuration solution works, it can be concluded that there is a

possibility to develop a system based on set requirements.

82

References

[1] P. Newman, “The Internet of Things 2017 Report,” BI Intelligence, 2017.

[2] Texas Instruments Incorporated, “CC3000 SmartConfig Getting Starter,” Texas

Instruments Incorporated, 24 September 2013. [Online]. Available:

http://processors.wiki.ti.com/index.php/CC3000_SmartConfig_Getting_Started.

[Accessed 19 November 2016].

[3] Espressif Incorporated, “ESP-TOUCH User Guide,” 12 April 2016. [Online].

Available: http://www.espressif.com/sites/default/files/30b-esp-

touch_user_guide_en_v1.1_20160412_0.pdf. [Accessed 27 November 2016].

[4] Wi-Fi Alliance, “Wi-Fi CERTIFIED Wi-Fi Protected Setup™ adds NFC "tap-to-

connect" for simple set up of security-protected Wi-Fi® devices and networks,” 9

April 2014. [Online]. Available: http://www.wi-fi.org/news-events/newsroom/wi-fi-

certified-wi-fi-protected-setup-adds-nfc-tap-to-connect-for-simple-set-up. [Accessed

27 November 2016].

[5] D. Anupam and D. Biswajit, “A Study on Energy Consumption of Different

Wireless Devices,” 28 December 2012. [Online]. Available:

http://www.ijert.org/view-pdf/1847/a-study-on-energy-consumption-of-different-

wireless-devices. [Accessed 7 January 2017].

[6] Espressif Incorporated, “ESP32 Datasheet,” 4 April 2017. [Online]. Available:

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf.

[Accessed 12 April 2017].

[7] Seeed Development Limited, “ESP-32S Wifi Bluetooth Combo Module,” Espressif

Incorporated, 23 September 2016. [Online]. Available:

https://www.seeedstudio.com/ESP-32S-Wifi-Bluetooth-Combo-Module-p-

2706.html. [Accessed 2 November 2016].

[8] Atmel Corporation, “ATWINC3400 PRELIMINARY DATASHEET,” July 2015.

[Online]. Available: http://www.atmel.com/images/Atmel-42396-SmartConnect-

ATWINC3400_Datasheet.pdf. [Accessed 10 January 2017].

[9] Digi-Key Electronics, “Microchip Technology ATWINC3400-XPRO,” 5 January

2017. [Online]. Available: https://www.digikey.com/products/en/rf-if-and-rfid/rf-

evaluation-and-development-kits-boards/859?k=atwinc3400. [Accessed 16 January

2017].

[10] Texas Instruments Incorporated, “WL1835MOD,” Texas Instruments Incorporated,

December 2015. [Online]. Available: http://www.ti.com/product/WL1835MOD.

[Accessed 2 November 2016].

[11] Mouser Electronics Incorporated, “WL1835MOD,” Texas Instruments Incorporated,

December 2015. [Online]. Available:

http://eu.mouser.com/Search/Refine.aspx?Keyword=WL1835MOD. [Accessed 4

November 2016].

[12] Wi2Wi Incorporated, “W2CBW0015 datasheet,” 17 May 2013. [Online]. Available:

83

http://wi2wi.com/pdf/W2CBW0015.pdf. [Accessed 17 November 2016].

[13] Mouser Electronics Incorporated, “W2CBW0015,” Wi2Wi Incorporated, June 2012.

[Online]. Available: http://eu.mouser.com/ProductDetail/Wi2Wi/W2CBW0015-

T/?qs=1QLBgCcymxVWwsJhYLtuuA%3D%3D. [Accessed 3 November 2016].

[14] The MathWorks Incorporated, “ThingSpeak,” The MathWorks Incorporated, 2017.

[Online]. Available: https://thingspeak.com. [Accessed 12 November 2016].

[15] IEEE, “1633-2016 - IEEE Recommended Practice on Software Reliability,” 2016.

[Online]. Available: https://standards.ieee.org/findstds/standard/1633-2016.html.

[Accessed 11 February 2017].

[16] E. Dubrova, “Software Redundancy,” in FAULT TOLERANT DESIGN, Stockholm,

Springer, 2013, pp. 114-119.

[17] Stak Trading, “CP2102 USB to TTL Serial Adapter,” Silicon Laboratories, January

2017. [Online]. Available:

https://stak.com/Silicon_Labs_CP2102_USB_to_TTL_Serial_Adapter. [Accessed

January 2017].

84

Appendix 1 – Bluetooth Core Specification versions

The document containing Bluetooth Core Specification versions is uploaded in GitLab

environment and can be accessed by using Uni-ID provided by Tallinn Univeristy of

Technology.

Following link directing to the pdf document was last available in 19.05.2017.

http://gitlab.pld.ttu.ee/thesis/2017_ble_mesh/blob/master/documents/finalthesis_append

ix_1.pdf

85

Appendix 2 – Bluetooth 4.2 / Bluetooth Low Energy

The document containing Bluetooth 4.2 / Bluetooth Low Energy overview is uploaded

in GitLab environment and can be accessed by using Uni-ID provided by Tallinn

Univeristy of Technology.

Following link directing to the pdf document was last available in 19.05.2017.

http://gitlab.pld.ttu.ee/thesis/2017_ble_mesh/blob/master/documents/finalthesis_append

ix_2.pdf

86

Appendix 3 – Developed software

The developed software is uploaded in GitLab environment and can be accessed by

using Uni-ID provided by Tallinn Univeristy of Technology.

Following link directing to developed C project was last available in 19.05.2017.

http://gitlab.pld.ttu.ee/thesis/2017_ble_mesh/tree/master/developement/blufi

	Author’s declaration of originality
	Abstract
	Annotatsioon Värkvõrgu seadmete automaatse konfigureerimise lahendus
	List of abbreviations and terms
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Objectives and thesis organization

	2 Configuration solutions
	2.1 State-of-the-Art
	2.1.1 Texas Instruments CC3000 SmartConfig
	2.1.1.1 Procedure overview
	2.1.1.2 Advantages
	2.1.1.3 Limitations

	2.1.2 Espressif ESP-TOUCH
	2.1.2.1 Procedure overview
	2.1.2.2 Advantages
	2.1.2.3 Limitations

	2.1.3 Wi-Fi Alliance NFC “tap-to-connect”
	2.1.3.1 Procedure overview
	2.1.3.2 Advantages
	2.1.3.3 Limitations

	2.1.4 Optiverter configuring solution
	2.1.4.1 Procedure overview
	2.1.4.2 Advantages
	2.1.4.3 Limitations

	2.2 Summary of the State-of-the-Art

	3 System requirements
	3.1 Requirements
	3.1.1 Environmental requirements
	3.1.2 Configuration requirements
	3.1.3 Security requirements

	3.2 Summary of the requirements

	4 Selection of communication device
	4.1 Overview of communication devices
	4.1.1 Espressif ESP32
	4.1.2 Atmel ATWINC3400
	4.1.3 Texas Instruments WL1835MOD
	4.1.4 Wi2Wi W2CBW0015

	4.2 Selection
	4.3 Summary of the device selection

	5 Automatic configuration solution: developed method
	5.1 System architecture and reliability analysis
	5.1.1 System architecture
	5.1.2 Analysis of reliability issues
	5.1.3 Applicable reliability techniques and methods
	5.1.4 Considered reliability techniques

	5.2 Software development language and tools
	5.2.1 Process planning
	5.2.2 Software development
	5.2.3 Software evaluation
	5.2.4 Server

	5.3 Software architecture
	5.3.1 System components
	5.3.2 Software flow

	5.4 Summary of the developed method

	6 Experimental evaluation
	6.1 Initial Configuration
	6.1.1 Connection via mobile application
	6.1.2 Configuration via mobile application

	6.2 Device data analysis
	6.2.1 Cluster data request
	6.2.2 Scanned data observation
	6.2.3 Unconfigured cluster device recognition

	6.3 Secondary configuration
	6.3.1 Connection via unconfigured ESP32
	6.3.2 Configuration of unconfigured ESP32

	6.4 Summary of the evaluation

	7 Results, conclusion and future work
	7.1 Results
	7.2 Future work
	7.3 Conclusions

	References
	Appendix 1 – Bluetooth Core Specification versions
	Appendix 2 – Bluetooth 4.2 / Bluetooth Low Energy
	Appendix 3 – Developed software

