
Tallinn 2018

 TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Karl-Ivar Pajula 142423 IABB

PROCESS, BENEFITS, AND COST OF

DOCUMENTATION AMONG ANALYSTS IN

AGILE SOFTWARE DEVELOPMENT

TEAMS

Bachelor’s thesis

Supervisor: Alexander Horst Norta

 PhD

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Karl-Ivar Pajula 142423 IABB

DOKUMENTEERIMISE PROTSESS,

KASULIKKUS JA KULU ANALÜÜTIKUTE

SEAS AGIILSETES TARKVARAARENDUSE

MEESKONDADES

Bakalaureusetöö

Juhendaja: Alexander Horst Norta

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Karl-Ivar Pajula

21.05.2018

4

Abstract

Today, software development teams are using Agile methodologies, which emphasize

communication with the client, flexibility, adapting to the situation and planning the

development in one to two-week cycles. This model is based on the Agile Manifesto,

which was published at the beginning of 21st century [1]. In addition, Agile concept

recommends minimal documentation of solutions. At the same time, there are existing

theories and publications, which claim the opposite and describe different challenges if

teams are trying to combine several methods. The purpose of this thesis is to investigate

one of the challenges – documentation, its process, benefit and cost among analysts. In

order to solve the problem, the author conducts interviews with analysts and analyzes the

results qualitatively. Based on the results, the author presents the generic process of

documentation which can be followed and to depend on if there are questions about the

format and details of documentation. Also, it turns out that the main reason for

documenting at all is to aid the development and it takes about a third of one week.

Reading the documentation takes less time but the thesis describes situations how

documentation which is as short as possible and as detailed as necessary can save the time

for the whole team. In conclusion, every team must agree within themselves and also with

the client how much and what is documented in the project. At the end of the thesis, the

author brings out some recommendations to follow.

This thesis is written in English (United States) and is 50 pages long, including 7 chapters,

7 figures and 4 tables.

5

Annotatsioon

Dokumenteerimise protsess, kasulikkus ja kulu analüütikute

seas agiilsetes tarkvaraarenduse meeskondades

Täna, tarkvaraarenduse meeskondades on peamiselt kasutusel agiilsed metoodikad, mis

rõhutavad suhtlust kliendiga, paindlikust, kohandumist olukorraga ning arenduse

planeerimist ühe kuni kahenädalaste tsüklite kaupa. Antud mudelile pandi alus 21. sajandi

algusaastatel Agiilse Manifestoga [1]. Lisaks eelnevalt mainitutele, soovitab agiilne

kontseptsioon minimaalset lahenduste dokumenteerimist. Samal ajal eksisteerivad

teooriad ning publikatsioonid, mis räägivad vastupidist ning kirjeldavad erinevaid

väljakutseid, kui meeskonnad üritavad kombineerida mitut alternatiivi. Käesoleva

lõputöö eesmärk on uurida ühte väljakutsetest – dokumenteerimine, selle protsess,

kasulikkus ja kulu analüütikute seas. Probleemi lahendamiseks, teeb autor intervjuud

analüütikutega ning analüüsis tulemusi kvalitatiivselt. Antud tulemuste põhjal kirjeldab

autor üldist dokumenteerimise protsessi, mida järgida ning millest sõltuda kui tekib

küsimus dokumendi formaadi ja detailide üle. Lisaks, tuleb välja et peamine põhjus

dokumenteerimiseks on arenduse toetamine ning sellele läheb aega kolmandik nädalast.

Kirjutatud dokumentatsiooni lugemisele läheb küll väike protsent, kuid töös on

kirjeldatud olukorrad, kuidas dokumentatsioon, mis on nii lühike kui võimalik ja detailne

kui vajalik, aitab säästa kogu meeskonna aega. Kokkuvõttes, peab iga tiim kokku leppima

eelkõige enda seas kui ka kliendiga, kui palju ning mida dokumenteeritakse. Autor toob

töö lõpus välja toonud mõned soovitused, mida järgida.

Lõputöö on kirjutatud ameerika-inglise keeles ning sisaldab teksti 50 leheküljel, 7

peatükki, 7 joonist, 4 tabelit.

6

List of abbreviations and terms

DPI Dots per inch

TUT

Stakeholder/client/customer

An analyst

MVP

UML

XSD

Tallinn University of Technology

A person or group of people who are responsible for business

requirements and who pay the bills of the software team

A person in the team who is responsible for satisfying business

requirements by giving input to the developer about the

necessary details

Minimum Viable Product

Unified Modelling Language

XML Schema Definition

RE

Task

Wiki

Requirements Engineering

Small (2-3 days) piece of a feature, which provides business

value and includes a description for a developer to implement

it. Maintained in JIRA [2]

A database for collaboratively maintaining documents, notes,

requirements, and solution about the system. Maintained in

Confluence [2]

7

Table of contents

1 Introduction ... 10

2 Related work .. 12

3 Background .. 15

3.1 The concept of Agile software development .. 15

3.1.1 Methods ... 15

3.2 The basics of traditional Requirements Engineering .. 20

3.3 Challenges of Agile RE and traditional RE .. 21

3.4 Documentation.. 22

3.4.1 Documenting based on traditional RE ... 24

3.4.2 Documenting based on Agile principles .. 24

4 Case Study design .. 26

4.1 Research questions, propositions, and hypotheses ... 26

4.2 Case and data selection ... 28

4.3 Data collection procedures ... 29

4.4 Analysis procedures .. 29

4.5 Validity procedures ... 30

5 Results ... 31

5.1 Respondents being Agile .. 32

5.2 Process of documentation ... 33

5.3 Format and details of documentation ... 34

5.4 Keeping documentation up to date ... 35

5.5 Benefit and cost of documentation ... 37

6 Discussion and future work ... 41

7 Summary .. 43

References .. 45

Appendix 1 – The survey for the analysts during the interview 47

Appendix 2 – the link to the interviews .. 49

Appendix 3 – the process of documentation .. 50

8

List of figures

Figure 1. Amount and usefulness of documentation. ... 22

Figure 2. The frequency of mentioned Agile methods. .. 33

Figure 3. The percentage of covered and updated documentation. 36

Figure 4. The most important benefit attributes. .. 37

Figure 5. The time investment of documentation during the work week. 39

Figure 6. The relation between writing time, coverage, details, and timing. 39

Figure 7. The process of documentation .. 50

9

List of tables

Table 1. The benefit, quality and cost attributes of the documents. 23

Table 2. Propositions and hypotheses... 27

Table 3. The themes with occurrences of the analysis. .. 31

Table 4. The cause-effects of details of the documentation. .. 35

10

1 Introduction

In the recent decade, the word "Agile" has become popular among teams who

continuously deliver new software to different stakeholders. Mainly due to the flexible

framework for satisfying business-critical needs by developing software incrementally

based on short iterations. In addition, Agile emphasizes the communication inside the

team and with the customers in order to avoid exchanging information through long

documents and over-complex diagrams [3]. On the other hand, the concept of traditional

Requirements Engineering(RE) strongly suggests maintaining knowledge in detailed

documents to avoid loss of know-how within the team and between team and stakeholders

[4]. This is also supported by several publications about documentation. Quite frequently

the Agile doesn’t agree with the latest and vice versa.

Therefore, problems such as listed in this paragraph may appear. Firstly, proper

documentation and modeling take time and analysts tend to rely on tacit knowledge,

whilst the stakeholders are expecting the team to deliver as much business value as fast

as possible [5]. Secondly, derived from the first problem, analysts tend to choose

quantitative delivery over qualitative, which may cause inappropriate architecture,

especially in large and long projects [6]. If requirements and the technical solution is not

either documented correctly nor kept up to date, then the risk of losing valuable

knowledge in team increases [7]. Whilst the Agile supports using user stories and use

cases as documentation, then often the insufficiency of those may become harmful to the

team in the long run. Also, some of the post-its used as tasks are not digitalized, which as

well contributes to the problem of losing information.

Now, when team members leave or join the team, then without a trace left behind, the

new person encounters obstacles in seeking information about working systems [8]. He

or she can rely on face-to-face communication with existing team members, but there is

no publication that has guaranteed whether this is the most efficient alternative.

In conclusion, documentation in the everyday work of analyst in an Agile team is

beneficial, but it always has a cost. Therefore, the theoretical part (Chapter 2-3) of this

11

paper re-investigates the true purpose of documentation in general and in terms of

traditional RE and Agile RE. It is known that traditional RE is more time-consuming and

Agile RE can be more efficient in the shorter perspective. Based on existing literature,

several attributes to measure cost, benefit, and quality will be explored. The author

believes that there exists a happy medium between proper documentation and constant

Agile delivery of new features. They can be perfectly combined with each other. One of

the main goals of this paper is to find that happy medium.

The empirical part (Chapters 4-6) of the thesis takes a deeper look into the work of

analysts (the people who usually write documentation) in one IT enterprise to explore the

current real-life situation in different ways of documenting and modeling different

artifacts of different IT-systems. The processes, format, level of details and time spent in

writing documentation and keeping it up to date are examined in this thesis. This is

compared with the time spent in reading the documentation and the coverage of systems

with documentation.

As a result, the author finds a solution, which is close to the ideal in terms of effort and

impact ratio. The effort is measured with time-consumption and the impact is based on

the benefits of the documentation.

To achieve that, an inquiry in the shape of interviews is conducted among the analysts in

IT company based on the guidelines of Case Study Research. [9]. The purpose is to get

qualitative data from different teams and different projects in both private and public

sectors. The answers are being recorded and transcribed into digitalized text, which is

then analyzed with RQDA software [10].

Finally, through a discussion in Chapter 5, ideas for analysts to find a balance between

investing resources in proper detailed documentation and implementing new features for

the system are proposed. The offered solution is expected to be as close to the ideal in

terms of effort and impact ratio mentioned in the previous paragraph. This is the gap

which has not been solved based on the existing literature and is aimed to be filled in this

thesis.

12

2 Related work

As Klaus Pohl and Chris Rupp write in their book Requirements Engineering

Fundamentals that documentation, in general, should follow certain standards such as

being agreed upon, unambiguous, necessary, consistent, verifiable, feasible, traceable,

complete and understandable [4]. This book also gives a decent overview of the core

structure of proper documentation and for which tasks it can be used for. For example,

planning, architectural design, implementation, test, change and contract management,

system usage and maintenance.

In comparison, in 2001 Agile Manifesto was created [1], which is the basis for a very

thorough publication written by Pekka Abrahamsson, Outi Salo, Jussi Ronkainen and

Juhani Warsta [3]. One of the central values of Agile is Working software over

comprehensive documentation. They elaborate on this by claiming that documentation

should be lessened to an appropriate level. One of the purposes here in this thesis is to

analyze the “appropriate” level in the context of format and details. In the next chapter,

deeper look into different Agile methods and their usage are looked at.

It is common to combine the above-mentioned two methods based on the needs of a

specific team and of course the context. When it comes to using bits and pieces from

either one of them, challenges may arise. Quite a lot of literature write that describe the

latest. It is clearly brought out that requirements documentation is one of the problems of

traditional RE due to extreme time-consumption [11]. It can be overcome by using user

stories for instance. In addition, the user stories do not tend to change over time. On the

other hand, one of the challenges in Agile RE is minimal documentation due to the reason

that user story and perhaps backlog are the one and only documents left behind after

delivering the new feature. They also find that user stories satisfy system or product

features, not non-functional requirements. The high usage of user stories for requirements

specification is also supported by 19 out of 24 investigated studies [7].

Similar inconsistency comes out from another study, where the results state that on the

one hand, Agile supports a better understanding of requirements due to the immediate

access to customer and direct communication [12]. On the contrary, it is found that

insufficient format of the user stories makes properties such as consistency and

verifiability difficult to validate. Especially in the large and complex software systems

13

and requirements, code and tests change over time. They offer a solution where after the

initial requirements elicitation, final solution must be properly documented using the

principles of traditional RE approach. This should mitigate the knowledge loss, but then

again it has a cost to the stakeholder and the team.

In last year, another publication is written about Agile quality requirements engineering

challenges, where 17 participants from different organizations were interviewed [13]. The

results show nine challenges including losing the architectural overview. This means that

due to the rapid changes in requirements and minimal documentation which cause

isolated knowledge, systems become less understandable and maintainable.

Lastly, when speaking about different challenges - change management plays an

important role in terms of documenting essential requirements versus documenting as

much as possible. Change tends to be the built-in process of Agile [1], [14]. The

precondition for change management is requirements management. Because of that, it is

needed to have a link between requirements and the source and even the code. Agile offers

Extreme Programming with user stories, but they seem to fail as a baseline for

requirements management.

Since this paper focuses on one challenge – documentation in Agile teams – then the next

paragraphs are related explicitly to that. In 2014, a very thorough article was published

about the cost, benefit, and quality of documentation among software practitioners [15].

Based on existing studies they summarize the attributes for measuring the cost, benefit,

and quality of a document. These are used in this paper during the interviews and in the

survey. This publication also addresses different formats of the document. A quite

interesting finding is that from all (69) of the studies under investigation, only 18% relate

to the cost of documentation, whereas 71% connect to quality and 54% to benefit.

Therefore, one of the goals here is to measure the cost and analyze whether it’s worth it.

There are many studies about maintenance and development aid as benefits and

completeness and up-to-datedness as qualities [15].

Another type of publication about documentation is based on the survey and interviews

conducted within different organizations [8]. They bring out different results based on

online-survey and interviews from information seeking and documentation point of view.

They also observe some of the respondents after the interviews and illustrate the

14

differences of reality versus initial opinion. For example, they assess that 32% of the time

goes for coding and only 4% on communication. It turns out that the corresponding

numbers by observing are 12% and 22%. Based on the same diagram, then only 5% of

the time goes for documentation. In addition, a majority of respondents agree that the

quantity of documentation in all aspects is either rudimentary or acceptable, not very

detailed. When it comes to the level of documentation and satisfaction with search results

while seeking information, then in most of the cases people evaluate documentation very

important (over 75%), but on the other hand, only around 40% document particular

information.

A phrase “limited to 100 words” is in use as a recommendation to describe the product

architecture overview and goals for upcoming release [16]. This is against the challenges

and recommendations that author was writing about earlier.

In conclusion, there are publications on the topic and some of them agree and some have

disagreed with each other. In this paper, the author tries to fill the gap of maintaining

knowledge in the software team in a way that it would compliant with Agile principles as

much as possible, because of the need to satisfy the client.

15

3 Background

This existing literature-based section briefly describes the body of knowledge, which is

relevant to the approach of the current research. Firstly, the fundamental basics of Agile

are described. After that, one sub-part of development is taken into focus – the analysis

before development and together with that always comes requirements engineering and

documentation. After mapping down the major challenges which come from either

traditional or Agile RE, documenting itself is taken apart in terms of benefit, cost, and

quality. The frequency, format, and thoroughness of documentation depend on the agility

of the team. Therefore, the concept of traditional requirements engineering is introduced

and then in comparison, the basics of Agile RE are brought out to the reader.

3.1 The concept of Agile software development

“The “Agile Movement” in software industry saw the light of day with the Agile Software

Development Manifesto published by a group of software practitioners and consultants

in 2001”. Shortly said, the core characteristics of agile methods are simplicity and speed.

The development team should concentrate only on delivering functions needed

immediately and this must be done fast. The Agile team is constantly collecting feedback

from the client and reacting to received information accordingly. They decently answer a

question “What makes a development method an agile one?”. The method can be

considered Agile if it’s incremental (small software releases with rapid changes),

cooperative (customer and developers or analyst are constantly working together),

straightforward (the method itself is easy to learn and modify) and adaptive (able to make

last moment changes) [3]. Next, the author writes about some basic and well-known

methods of Agile software development.

3.1.1 Methods

This sub-chapter assumes that the reader has some knowledge about the Agile framework.

Therefore, the different Agile methods are not elaborated to the details but shortly

described with main roles (responsibilities) and practices included within each method.

16

Extreme programming(XP):

Extreme programming first started in 2001 as a “simple opportunity to get the job done”.

It is mostly based on short incremental iterations to deliver a complex system in the long

run. XP consists of five phases: Exploration, Planning, Iterations to release,

productionizing, Death [3].

The roles are divided between the programmer, customer, tester, tracker, coach,

consultant, and manager. Main practices defined in XP are planning game, small/short

releases, simple design, testing and refactoring, pair programming, collective ownership,

continuous integration, 40-hour week, on-site customer, coding standards and open

workspace. The author believes that this XP together with Scrum, which will be described

next describe the majority of the fundamental content of Agile [3].

Scrum

The term 'scrum' originally derives from a strategy in the game of rugby where it denotes

“getting an out-of-play ball back into the game” with teamwork. Scrum concentrates on

how the team should work in order to produce flexible, productive and adaptive systems

[3].

Scrum consists of pre-planning phase, where the product backlog list and high-level

design of the system are created. It is followed by development phase or phases and is

finalized with post-game phase [3].

The roles are Scrum master, product owner, scrum team, customer and management. The

main practices are effort estimation, sprint (iteration in XP), sprint planning meeting,

sprint backlog, daily scrum and sprint review meeting. Scrum dictates that the length and

scope of the sprint cannot be changed after the content has been agreed on [3].

Crystal family

The Crystal Family of methodologies includes a different number of methods and

selecting the most suitable one for every project, depending on its size and criticality.

There are certain values that are common for each method – incremental development

cycles and emphasis on communication and cooperation of people. There exists Crystal

17

Clear, Crystal Orange, and Crystal Orange Web. They mostly differ by project,

development team size, and tools [3].

They all suggest progress tracking by milestones, direct user involvement, automated

regression testing, workshops for products and two users viewing per release as policy

standards. Crystal Clear also emphasizes using user stories, whereas the Orange

requirements documentation. They also say that team itself is responsible for the delivered

product [3].

The main roles they mentioned are a sponsor, senior designer, programmer, designer-

programmer, UI or database designer, usage expert, technical facilitator, business analyst-

designer, architect, mentor, and user. They all can be divided into sub-roles. Besides that,

the Clear is for one team and the Orange is for multiple teams [3].

Staging, revision and review, monitoring, parallelism for multiple teams, holistic

diversity strategy, methodology-tuning technique, user viewings, reflection workshops

are known as the main practices of Crystal family methodologies [3].

Feature Driven Development(FDD)

FDD does not focus on the entire development process, but mostly building and design

phase. It is designed to work together with other Agile methods and claimed to be suitable

for critical systems [3].

It consists of five phases, where design and building are carried out: developing an overall

model, building a features list, planning by feature, designing and building by feature [3].

The roles are divided into key roles, supporting roles and additional roles. Key roles are

a project manager, chief architect, development manager, chief programmer, class owner

and domain expert. Supporting roles are comprised of release manager, language/lawyer

guru, build engineer, toolsmith, and system administrator. Three others that are always

needed are testers, deployers, and technical writers. One team member can fulfill the jobs

of many roles [3].

The rational unified process(RUP)

18

RUP is developed to support UML. The core of RUP is defined in a matrix which consists

of phases and workflows, where the latest is taking place during phases in parallel. Phases

are inception, elaboration, construction, and transition. The workflows are business

modeling, requirements, analysis & design, implementation, test, configuration & change

management, project management, and environment [3].

RUP defines thirty roles and the casting is rather conventional with the exception of roles

defined for business-modeling and environment phase – business-process analyst,

business designer, business-model reviewer, course developer and toolsmith [3].

The main practices are to deliver software incrementally, manage requirements, use

component-based architectures, visually model software, verify software quality and

control changes to software [3].

Dynamic Systems Development Method(DSDM)

The fundamental idea behind DSDM is that instead of fixing the amount of functionality

in a product, and then adjusting time and resources to reach that functionality, it is

preferred to fix the latest, and then adjust the amount of functionality accordingly [3].

It consists of five phases: feasibility study, business study, functional model iteration,

design and build iteration, and implementation. First two are done once, last three are

done incrementally [3].

Main roles are (senior) developers, technical coordinator, ambassador and/or adviser user,

a visionary, and an executive sponsor. It includes active user involvement, empowering

teams to make decisions, focusing on frequent delivery of products, designing to fit for

business purpose, making changes reversible, baselining requirements at a high level,

testing throughout the lifecycle, collaborative approach shared by stakeholders [3].

Adaptive software development(ASD)

Fundamentally, ASD is about “balancing on the edge of chaos” – its aim is to provide a

framework with enough guidance to prevent projects from falling into chaos. It is carried

out in three phases: speculating, collaborating, and learning. The names should emphasize

the change in every phase. ASD is more component-oriented than task-oriented, which in

practice means focusing on the quality of the tasks rather than the tasks itself. ASD is also

19

known to be mission-driven, time-boxed, change-tolerant, risk-driven and iterative as

other Agile methods [3].

When it comes to the roles, then ASD originates from organizational and management

culture, especially from collaborating teams. However, this does not describe team

structures in detail. An execute sponsor is responsible for overall project and some

participants in application development session are only listed [3].

It does not offer many day-to-day practices. The main problem with ASD is that most

practices are described as what should be done, not could be done [3].

There is also an Open Source Software Development, which is not relevant to this study

since it mostly focuses on the work of volunteers. In addition, Kanban method is being

described [17].

The goal of the Kanban method is to maximize the workflow and shorten the average

time to complete one item by limiting the amount in progress. Kanban board is widely

used to visualize the process by using several columns, while each of them representing

a stage in the software development process. The workflow will progress, because

psychologically a person does not want to keep the one column full of items, but to move

them to next column [17].

Kanban is relatively new to software engineering but it has existed in manufacturing for

two decades. Kanban is similar to Scrum but does not define certain roles, the length of

the sprint is not fixed, and changes are allowed to be made during the process.

As can be seen, all methodologies have some core similarities and at the same time several

differences. In the end, it all depends on the team, the project, the stakeholder and the

cultural background which method is being used. All of them agree on 4 basic Agile

principles [3]:

▪ Individuals and interactions over processes and tools.

▪ Working software over comprehensive documentation.

▪ Customer collaboration over contract negotiation.

▪ Responding to change over following a plan.

20

Now, the content dives deep into one sub-part of Agile development – the analysis, which

is connected with the documentation and requirements engineering. It does not matter if

it will take hours, days, weeks or months, a bit of analysis in some format needs to be

done before a programmer can literally start writing code. In Agile methods, it is done

continuously in short (2-4 weeks) cycles, whilst the traditional Waterfall or V-Model aim

to do it for the whole system at once [4].

3.2 The basics of traditional Requirements Engineering

This section is based on the book “Requirements Engineering fundamentals, 2nd Edition”

written by Klaus Pohl and Chris Rupp [4]. They write a very solid concept of RE and

some parts of it are relevant to this paper.

According to past studies, 60% of all errors in development projects come from the phase

of requirements engineering and they are discovered once the project has been deployed

to a production environment. Developers tend to implement what they believe the

incomplete requirements claim to be saying. The cost of fixing the errors in final step is

20 times higher than in the phase of requirements engineering. In order to discover faults

and gaps later in systems, the concept of requirements engineering will be introduced [4].

In order continue the word “requirement” is being defined. It can be either

▪ A condition or capability needed by a user to solve a problem or achieve an

objective.

▪ A condition or capability that must be met or processed by a system or system

component to satisfy a contract, standard, specification, or other formally imposed

documents.

▪ A documented representation of a condition or capability as in (1) or (2).

The phrase “Requirements engineering” is defined as follows:

▪ It is a systematic and disciplined approach to the specification and management

of requirements with the following goals:

o Knowing the relevant requirements, achieving a consensus among the

stakeholders about these requirements, documenting them according to

given standards, and managing them systematically.

21

o Understanding and documenting the stakeholders’ desires and needs, they

specifying and managing requirements to minimize the risk of delivering

a system.

The traditional RE is defined with the following four core activities:

▪ Elicitation, where with different techniques the requirements are obtained from

the stakeholder and other sources.

▪ Documentation, where the elicited requirements are described adequately.

▪ Validation and negotiation, where it is being guaranteed that predefined quality

criteria are met and documented requirements are validated and negotiated early

on.

▪ Management, where it is made sure that any measures that are necessary to

structure requirements and prepare them so that they can be used, maintained and

implemented are taken.

The person or shall it be said requirements engineer must be capable of analytic thinking,

be emphatical, have good communication conflict resolution, and moderation skills, be

persuasive and self-confident.

3.3 Challenges of Agile RE and traditional RE

There are many challenges which the teams encounter on the daily basis when trying to

follow either Agile or traditional RE principles. For instance, customer availability,

budget and schedule estimation, inappropriate architecture, neglecting non-functional

requirements contractual limitations and requirements, requirements change and change

evaluation, minimal documentation and reliance on tacit knowledge, insufficiency of the

user story format, difficulties in the prioritization of requirements, imprecise effort

estimates, team maturity, and coordination between teams [7], [11]- [14], [18].

In this paper, one challenge and its consequences are examined – minimal documentation

and relying on tacit knowledge. Yes, it is up to the team itself how often and how much

and what to document, but since the golden rule does not exist based on the investigated

body of knowledge, this paper tries to figure that out. Whilst traditional approaches try to

produce enough documentation to answer all the questions that may arise in the future,

then the writer or analyst needs to anticipate those questions in concise and

22

understandable manner. This may lead to writing too much documentation. On the other

hand, the analyst should not spend much time on producing documentation in order not

to waste valuable time. [18]

There are consequences to the minimal documentation such as miscommunication

between a software delivery team and the customer, especially in large projects and

different geographical locations [11]. A similar problem may appear if teams are big

enough to not work in the same room nor building. Then again, the problem of finding

enough time for that still exists.

Figure 1 below presents one option to view usefulness and amount of documentation. [19]

Figure 1. Amount and usefulness of documentation.

In order to evaluate the validity of this graph and give a solution to the challenge stated

above, the next chapter describes documentation more closely.

3.4 Documentation

Use of information or also known as documentation comes from seeking of the

information, which is derived from the need for information. Those are based on

individual’s internal cognitive structures, emotional dispositions, and affective reactions,

which are dictated by their current environment. Documentation is just one form of

information use that is under focus in this paper [8].

The documentation itself is a wide notion, especially in software development. Therefore,

several definitions are brought out to understand the concept [15]:

▪ Documentation is a written description of software systems.

▪ Documentation is expected to provide precise information about the systems.

23

▪ Documentation can refer to the product manual that developers created for non-

developer users.

▪ Documentation is created for communication among software engineers.

▪ Documentation can refer to different artifacts, including requirements, design,

code, code comment, test cases etc.

▪ Documentation can be presented in different formats, such as traditional text,

graphical models (for example UML) or dynamic hypertext systems.

In a decent article written in 2014 by several authors, the quality, benefit, and cost

attributes of a document are concluded and listed in Table 2. Those attributes do not apply

only to documentation in the context of requirements engineering, but software

engineering in general. This chapter is mostly based on this study and the attributes of

documentation cost, benefit and quality are brought out. [15]

Table 1 below sums up the pre-mentioned attributes of a documentation.

Table 1. The benefit, quality and cost attributes of the documents.

Benefit attributes Quality attributes Cost attributes

Development aid

Management decision aid

Maintenance aid

Architecture comprehension

Code comprehension

Perceived importance

Reduction in effort

Actual usage

Accessibility

Accuracy

Author-related

Completeness

Correctness

Information organization

Format

Readability

Similarity

Spelling and Grammar

Traceability

Trustworthiness

Up-to-date-ness

Development

Maintenance

Usage

Document size(length)

Under Related work (Chapter 2) it is stated that over 75% of organizations under the study

value the documentation as important, while under 40% of companies document

particular information [8]. The gap between them can be connected to the following

artifacts: documenting solutions and instructions, knowledge about application domain,

24

decisions concerning alternatives in implementation, specifics/lessons learned, general

view as architecture/design model and concrete implemented solution details (code). The

popularity of the usage depends on the organization.

3.4.1 Documenting based on traditional RE

If chapter above summarizes documenting in general, then when going deep into

requirements engineering in a traditional way, then even more details can be documented.

For example, the introduction of the document should consist of the purpose of the

document, system coverage, stakeholders related to the document, definitions, acronyms,

abbreviations, references and a short overview [4].

Then there’s General Overview section, which should contain system environment,

architecture description, system functionality, user and target audience, constraints, and

assumptions.

In order to stay in scope for this paper, no more details are described. What is important,

is the level of details. If a person in the Agile project has enough resources to document

the requirements or solution, then he has a proper model to do so - following the quality

attributes and concept of requirements engineering.

3.4.2 Documenting based on Agile principles

The summary of the previous chapter does not explicitly agree with one of the four core

values of Agile Manifesto [1]: Working software over comprehensive documentation. It

is seen as infeasible or at least, as not cost effective. The scope of the documentation is

quite often limited and focuses only on the core aspects of the system [18].

Interestingly, Extreme Programming, Scrum, Rational Unified Process and Open Source

Development state that documentation should be done in the very last phase of the

development, where the whole system has been deployed into production and no more

new features will be delivered for the customer. None of them specify, what if the MVP

of the project has been delivered, but the client requires more features. The question, who

updates the documents and what should be modeled or documented throughout the project

is not explicitly defined.

25

Crystal family and its methodologies say that progress should be tracked by milestones,

not with documentation. There’s also a difference whether they talk about Crystal Orange

or Crystal Clear method. The first demands UI design documents and inter-team

specification, whilst the Clear only screen drafts and design sketch [3].

None of the methods specify, which role should be responsible for documentation, except

Feature Driven development and Crystal family. In FDD Build engineer or Technical

Writer are taking care of it. The first manages the publishing of documentation, the last

one prepares user documentation. In Crystal family, a role of the writer is being

mentioned to be responsible for documents. For the sake of simplicity, the further content

will use the word “analyst”.

It is needed to understand that the best documentation should not be an excuse if the

project is supposed to deliver software, but fails to do so. However, this does not mean

that it is generally unimportant. As a balanced solution, the documentation needs to be

light-weight enough that it is easy to read and write but thorough enough to not give false

information to the reader [19]. The final decision what to document in Agile teams comes

down to the team and project. If the customer and the team have decided what is needed

to document in the project, then this decision should be followed and again follow-upped

later.

26

4 Case Study design

This chapter explains how the case study is designed in order to solve the problems stated

in previous chapters. The study itself is done to fill the gap described in Chapter 2 and

Chapter 3. The identified gap is taken under investigation for both academic and industrial

purposes. The author believes that the results of this case study can be a great contribution

to the software industry.

The objective and a purpose of the study is to investigate if and how the Agile methods

can coexist together with principles of proper documentation point of view. The second

purpose of this study is to formulate a conclusion how it can be done with the lowest cost

for the client and the software team in the long term.

Due to the limited length and scope, this study is classified as single-case and holistic,

because most of the software teams are using bits and pieces from Agile and traditional

software development principles from the standpoint of documentation.

4.1 Research questions, propositions, and hypotheses

Based on everything that is written in previous chapters, the following is known

▪ Agile principles do not emphasize writing long documents.

▪ Agile principles emphasize continuous delivery through incremental development

cycles.

▪ Proper and detailed documentation tend to be rather long than short when it comes

to the number of pages.

▪ Those documents are needed to be structured in order to maintain knowledge in

the team in an understandable way.

▪ The balance in finding time for second and fourth statement is not known.

Therefore, the following research question and sub-questions are solved with this study:

▪ How to write proper and detailed documentation in software development team,

whose work is based on Agile principles?

o What format, processes and how deep details are used in order to write

documentation in Agile projects?

27

o What is the most efficient balance between writing and keeping

documentation up to date versus continuous delivery of new features for

the stakeholders in terms of time-investment?

o When is the best time to write documentation for the software project?

Affiliated from research questions the following propositions and for some hypotheses

are stated:

Table 2. Propositions and hypotheses

Number Proposition Hypotheses

1 If the concept of Agile or any

other model would offer the

perfect solution, then all the

analysts would be using it

2 If writing proper

documentation would not be

time-consuming then

everybody would do it

Writing proper

documentation is considered

mostly as time-consuming

activity

3 If one model or method of

software development would

lack something then, it would

be replaced by a segment of

an another model

The majority of respondents

use a mix of different models

4 If there would be always

certain format, structure or

method of documentation

defined for every project in

any size, then the

corresponding person would

use this

The format, methods, and

structure of documentation

depends on the time-

management skill of the

analyst

5 If the client or customer

requires another feature to be

built into the system, then in

most cases according to the

previously defined contract, a

team would do so

6 If there is a client who pays

for the product to be

delivered, then analyst would

Analysts tend to choose

satisfying business needs

28

fulfill the requirement as fast

and with high quality as

possible

over writing proper

documentation

7 If an analyst would have to

write proper documentation,

then he would do it within

work time

None of the analysts work

overtime to write

documentation

8 If an analyst would have

certain time span weekly or

monthly to write proper

documentation then it would

help to maintain knowledge

in the long run

4.2 Case and data selection

The purpose of the embedded case under investigation is to get knowledge about the

documentation processes, then the format about documentation and lastly the time-

investment in it. In order to gather proper data, a survey with open questions is created.

The supported questions can be found in Appendix 1. Based on the questions, interviews

are conducted among the analysts in a software company (Helmes AS) which is today

offering consulting and software development service for business-critical problems. The

work of this company is based on 34 self-organizing teams (altogether 252 people), where

most of them are currently profitable. The non-profitable teams are considered as just

started. The company was founded in 1998 and the quarterly turnover is a little bit over

7 000 000€. [20].

Becoming more detailed, the respondents in the survey and interviews are not all

employees, but the analysts or consultants for product owners since the company mostly

follows Scrum (Section 3.1.1). The analyst is a person between the client and the

developers. On the one hand the analyst must perform business analysis, but on the other

hand, he or she must also have a fairly decent understanding of the technical details of

software development. The following are the expected tasks for the analyst in everyday

work:

29

1. Eliciting requirements according to the client’s need. Also, the analyst should be

ready to offer alternative solutions based on the technical complexity and business

case priority.

2. Analyzing those requirements to the level where they can be estimated and developed.

3. Making sure that the solution is stored in documents, diagrams or different models.

4. Understanding the business in order to guide the programmer during development.

5. In some cases, testing the solution before deployment.

Every team in Helmes should have 1-2 analysts so the expected pool of participants in

the interviews is 6-8 people. There is not a study to be found, which can relate to this

topic in a way that it can be replicated 100%.

4.3 Data collection procedures

As mentioned the data is conducted through interviews. Interviews are supported by the

questions derived from the hypotheses in Section 4.1. The author sent a call to all the

analysts in Helmes so that volunteers who liked to contribute to solving the research

questions could do that. Face-to-face interviews lasted for 30-45 minutes depending on

the interviewee. Interviews are recorded and then transcribed into digital text, which is

qualitatively analyzed with RQDA software. The purpose of the interview is to get data

about different ways of documenting in software development teams, whereas the work

of the team mostly depends on the stakeholders and their requirements. The link to the

audio and transcribed text files is in Appendix 2.

4.4 Analysis procedures

Based on the answers from the interviews and the help of RQDA the author performs

qualitative thematic analysis on the results [10]. The goal of the analysis is to find

information about the following:

▪ What Agile methods were used in the teams

▪ Processes and methods used for documentation and keeping it up to date

▪ Different formats of documentation

▪ Time spent on reading and writing the documentation

▪ Time spent on delivering new solutions to the client

30

▪ The balance and correlation between cost and benefit of documentation

The results are summarized, structured and compared with the theoretical framework in

Chapters 2-3. Based on that, it is evaluated whether the teams are compliant with agile

methods or not, what documentation principles are followed and what are the correlations

between those. This is done through pattern matching and explanation building [9].

Finally, a proper summary through discussion is offered to the reader of this paper with

answers to the research questions and (dis)approval of the hypotheses.

4.5 Validity procedures

In order to guarantee the credibility, transferability, dependability, and confirmability the

following measurements were used [21]:

1. The researcher has been studying Business Information technology for 3 years and is

working in the software development company.

2. The respondents were expected to participate on their own initiative to make a

contribution to the corresponding field. Therefore, the honesty is guaranteed.

3. Before the implementation of the designed case study, debriefing with the author’s

supervisor and mentor at work are done.

4. Creating a pilot interview among 1-2 analysts to get feedback about the formulation

of the survey in order to improve it for other participants.

31

5 Results

The results are analyzed qualitatively by first becoming familiar with the data, then

generating initial codes, which are the basis for initial themes [9]. Next, the themes are

reviewed and finalized. The themes and frequency of theme-related code occurrence are

available in Table 3. Each of the themes is described in more detail in the sub-parts of

this Chapter 5.

Table 3. The themes with occurrences of the analysis.

Final Theme Frequency of occurrence

Being Agile with different methods 74

Role of an analyst 16

Documentation cost and benefit 36

Format and details of documentation 27

Process of documentation 29

Updating documentation 10

Usage of tasks and wiki 53

Most of the themes are in correlation with the questions asked in the interviews (Appendix

1). “Being Agile with different methods” have the most occurrences because every used

Agile method is used as separate code, while the Updating documentation is related two

only one code. When the author uses terms “task” or “wiki”, then based on the interviews,

JIRA and Confluence made by Atlassian are the tools used in every team [2]. JIRA and

Confluence are also meant in the next parts of the thesis, if the researcher says “task” or

“wiki”. In the next sub-chapters the summary and short discussion of the themes are

written.

32

5.1 Respondents being Agile

Here, it is shortly described the respondents and the way of how they consider themselves

working in Agile teams. Eventually, the author managed to conduct interviews with 7

analysts and 1 team lead from 8 different teams. The work experience of the respondents

is from half a year to 5 years and they all say that in general, their job is to be a “link” or

a “middle-man” between the customer and the development team. Mainly, the detailed

role of an analyst is the same as written in Chapter 4.2. Most of the teams have one

analyst, who is responsible for both business and system analysis. One team has system

analyst separately, who is also a former lead developer. Also, a couple of teams have a

separate analyst from client side with who the analysis of software systems is done in

cooperation. The majority of documentation is done by analysts.

All of them confidently acknowledge that they are working in Agile teams, except one

interviewee, who has doubts “We have had problems with increased scope, which is not

very Agile. We did not deploy something small with value into production”.

When it comes to the usage of different Agile methodologies consciously, then none of

the teams have taken one certain concept and follow it. It turns out that the teams are

deliberately working in 1-2 weeks flexible sprints while engaging the customer and

managing the process on either Scrum or Kanban board, which are described in section

3.1.1. Some of them mention different practices such as code review, sprint planning,

retrospective, user stories, stand-ups, continuous deployment, planning poker, pair-

programming, time-boxing, analysis workshop prioritization with the client, but that is

all. The list seems fairly short though compared to the methods summarized in section

3.1. The majority takes the combination of methods into use on the go based on the current

need and experience. As only one example, one analyst states: “During the time the

methods have changed a bit. We did not have a continuous deployment at first. Everything

is constantly in the change and we adapt depending on the situation“. Therefore,

hypothesis number for proposition number 3 is proved and assumption for the main

research question exists. Figure 2 illustrates the Agile methods and frequency of

occurrence. It has to be said, that actually the teams are using more methods, but they just

could not think of all of them during the interview, because the methods are considered

too “normal” part of work.

33

Figure 2. The frequency of mentioned Agile methods.

In addition, the product backlog for the teams, of course, varies through time, but the

average of estimated hours ready for development is approximately one month and one

week. The aimed average size of one task or story is 2-3 days.

5.2 Process of documentation

Firstly, the process of documentation depends on many things such as the scope of the

requirement, team size, agreement with the customer, the customer being in public or

private sector, habits and innovation in the team. For example, one analyst says:

“Documentation is not extra activity, it’s part of the work and it is done during analysis.

I always do it on the go”. Then, there were others who say the opposite. Based on all the

answers and acknowledging that the details differ, the results for generic documentation

process is presented as business process diagram in Figure 7 which is in Appendix 3 due

to the size. The main difference between teams is the amount of repeating the activities

and time spent on one. For modeling author uses Academic Signavio [22].

As can be seen, the flow cannot begin if a developer does not have the task assigned by

the analyst. This is the most important precondition with what all the analysts agree with.

Furthermore, the first parallel gateway describes the way of eliciting requirements from

the customer. It can be only one or all of them. After initial analysis of the scope and size

of the task, analyst either starts creating the first task in JIRA or wiki page in Confluence.

Then, after deeper analysis, the analyst specifies the task and/or wiki in parallel with

8

6

5

6

8

3

1

2

4

1 1

2

1 1

0

1

2

3

4

5

6

7

8

9

34

modeling diagrams or creating prototypes and mock-ups about the solution. Most of the

analysts do it together with analysis. After validating the summary with the customer,

about half of the analyst structure, correct the documentation with creating links between

corresponding tasks and wiki. Then, the development and testing process begins and it

only leads to the fulfillment of requirements if something unexpected does not appear

during the process.

The green tasks are considered as activities contributing to documentation. The one and

only red activity on the diagram is labeled as the essential part of Agile development,

which actually creates the final documentation in order to guarantee proper knowledge

maintenance in the team. Without it, the information about the requirements and the

solution tends to be spread around in many places. Unfortunately, the latest is not done

by all respondents, because they claim it is not worth the time investment. Especially,

when they cannot get past from the first XOR gateway.

5.3 Format and details of documentation

By saying “format and details”, the researcher means the alternative ways of

documentation (pure text, models, diagrams, tables, meeting memo) and how deep

technical details are used in writing the description for tasks or overall solution in the

wiki.

Firstly, only one of the respondents deliberately has read and practiced the concept of

requirements engineering and she is quite satisfied with the results. But none of the others,

have heard about it. Interesting is that during interviews it came out that most of them

have actually used many practices of RE. Therefore, it can be stated that most of the work

is done based on experience and skill to adapt to different situations.

When it comes to the format, then it turns out that all of them use pure text, tables, activity

diagrams, sequence diagrams, tables, prototypes, mock-ups altogether. In some cases, one

supports another and vice versa. One respondent says that they had even used XSD. It is

also discussed that the format depends on the reader. Complex integrations tend to be

created in sequence diagrams for developers and business process or activity diagrams

for the customers. Though, it is not within the scope of this thesis to find the correlation

between the popularity of format of the documentation and the business requirement.

35

The conversation about the details varies based on their habits and shaped work processes.

Details can reflect only business requirements about the system or on the other hand the

length and data type of the field on the certain pop-up window. One analyst tells:

“Documentation should be done as less as possible and as much as needed”. Whilst the

other explains: Since it is public sector, then the documentation must be very detailed.”

Teams working for a private sector tend to stick with fewer details though, except for the

case where the documentation is the one and only tool of communication due to the reason

that client’s development team is located in another country. Table 4 below concludes the

cause-effect relationships that came out during the interviews.

Table 4. The cause-effects of details of the documentation.

Cause Effect

The experience of developer differed in the

team

The details of documentation tended to

depend on the developer for who the task

was assigned to

The client was from either public or private

sector

The details strongly depended on the sector

where the client was from.

The target group for reading the

documentation differed

The details depended on whether the reader

was a business stakeholder or a developer. In

the first case, the analysts tended to stick

with activity diagrams. The second case

includes complex sequence diagrams.

Especially in the context of integrating

systems

Systems had changed and documentation

may have gotten outdated

The details were written on a high-level,

hence the systems changed, the

documentation had not needed an update.

Theories about proper documentation were

long and time-consuming

The level of details was only based on the

experience

Creating a thorough class and object

diagrams were only done at the beginning of

the project

They tended to stay outdated due to huge

time-consumption

The analyst did not have time to write the

minor details about every solution

The developer adds them to the task

comments during the development

5.4 Keeping documentation up to date

Figure 3 below illustrates the percentage of covered and updated documentation. One

respondent does not have enough information about it and another one is working with

36

such new project that the documentation has not needed an update. Another analyst said

that the 100% of the system is covered with documentation, but with JIRA tasks only,

which means the essential (colored red) part in the process diagram is not accomplished.

So, if a new person should join the team then he would get updated information about the

system, but as the analyst also agrees – it is not very convenient.

Figure 3. The percentage of covered and updated documentation.

Those are the facts about the current situation. Another thing is the process of updating

it. In other words, when and how often? The work process is very individual but based

on the data, there are two high-level options for documenting and updating

1. Everything is done on the go together with analysis

2. Separate time is booked on the calendar during the week to follow-up the action points

afterward.

Some say that option 1 is less time consuming and they have not used option two because

there are many other things going on and booking separate time is impossible. Two

analysts even confess that during the day the work is very intensive, so they do it after

work time when everybody has gone home. Previously was stated that priority number 1

is to have new work for the developer and then after that, the analyst can focus on

documentation. When it comes to updating the documentation, then the analysts would

definitely choose writing about new features than updating the old ones.

0% 20% 40% 60% 80% 100% 120%

1

2

3

4

5

6

7

Updated Covered

37

The environment for updating the documents also varies. For some teams, old solutions

are stored in Microsoft Word documents while the others use shared Confluence and then

there are teams who only use JIRA task descriptions. In conclusion, there is no right or

wrong answer – what is known for sure is that a time for that needs to be found and it

depends on the time-management skill and experience of the analyst. Therefore, based on

sections 5.2-5.4 hypothesis for propositions 2, 4 and 6 are proved and 7 is not proved.

5.5 Benefit and cost of documentation

Now the “why” question – why analysts write documentation and what is beneficial about

it? During the interviews, they were given a list of benefit attributes based on “Cost,

quality, and benefits of software development documentation: a systematic mapping”.

[15]. From that list, they chose 2 most important ones. The results are in Figure 4.

Figure 4. The most important benefit attributes.

Definitely, the results cannot be the only basis to rely on, because the pool of respondents

is not vast, but the overall idea that reflected from the answers was that documentation is

meant for:

1. Developers, because an analyst does not always have time to answer questions about

specifications face-to-face.

2. Customer’s representative, a new team member, a new potential customer or 3rd party

partner to get a quick overview of the solution. Sending a link to the wiki is more

0

1

2

3

4

5

6

38

effective in flexible and intense Agile world than describing the solution many times

to different people.

In most of the teams the client expects and assumes proper documentation, but often they

do not read it at all. For example, one of the answers is “They did not have any

expectations, but maybe in the contract, it was promised to do it. Most probably they

expect but they do not check. They sometimes wanted the drawings and diagrams, which

they used for understanding the system by themselves.” About the benefit for the

developer, it is said: “Ideally developer uses the documentation only, but sometimes the

face to face communication is needed. Very rarely developer talked directly with the

client and the analyst documented afterward.” To sum up, all the respondents agree that

documentation is important to aid corresponding parties in Agile teams. Theoretically,

everything should be documented 100%, but due to other priorities, it is almost never like

that. One reason for this is the cost of it.

The arithmetical average of the results about the ratio between time-investment into

writing and reading documentation by others during one work-week is reflected in Figure

5. When it is said “writing” documentation then it is meant everything colored red in

Figure 7Error! Reference source not found.. Reading, on the other hand, is more d

ifficult to evaluate. During the interviews, it was tried to figure that out by taking into

consideration the questions from developers or client and developed features, which differ

from the originally written specification. In some cases, it is impossible to evaluate it due

to the many of stakeholders.

39

Figure 5. The time investment of documentation during the work week.

The smallest number of hours investing time into documentation us 2 hours and largest

32 hours. Figure 6 shows the relation between time investment, the percentage of

documentation coverage, level of details and whether the analysts use option 1 or 2, which

are mentioned at the end of section 5.4.

Figure 6. The relation between writing time, coverage, details, and timing.

Green columns use option 1 of the timing of documentation. Level of details is low when

analyst only sticks with JIRA descriptions. It is average when he writes documentation

with diagrams to the wiki and links JIRA tasks with it. The level is considered high if the

content of documentation is very detailed, the majority of the solutions are up to date and

0% 5% 10% 15% 20% 25% 30% 35%

Reading time Writing time

0%

20%

40%

60%

80%

100%

120%

Average Average Low High Very high High High

Coverage Writing time

40

covered with both description and modeled diagrams. One obvious connection between

writing time and level of details is that the less time analyst invests in documentation the

less detailed it is. Since the percentage of coverage strongly depends on the length and

size of the project, then the only relation here is that the coverage does not depend only

on writing time. One can invest 10% of the time in a week in the documentation but gets

system 100% covered, whilst the other analyst can invest 40% and get system 60%

covered, but with more details. The decision, which is more important lies on the

shoulders of the working habits of the team and the requirements from the client.

According to the one respondent: Also, the developer updates the JIRA with comments

when small details are figured out.”. This is definitely a decent manner that contributes

to the more detailed documentation with low time consumption.

41

6 Discussion and future work

In this chapter, the answers to research questions are given together with ideas for the

future works for other researchers.

What format, processes and how deep details are used in order to write documentation

in Agile projects?

When it is said “format”, the author means whether the documentation is written in pure

text, using models and diagrams, prototypes or combination of them. “Details” mean if

documentation covers purely business requirements or also explanation with data types

and key-value pairs about how to fulfill the requirements. It turns out it depends on the

audience and the complexity of the task. Since the teams work adaptively in the Agile

environment, then the analyst must have enough experience to choose what format to use.

One should not forget making the ideas and solution understandable as concretely and

clearly as possible.

The core process of documentation is presented in Figure 7. Understandably the exact

sequence and repentance of the activities depend on the team and project, but generally,

this would be summarized process to follow in the Agile environment. One option for

related future articles is to explore the processes and format of documentation in either

huge corporations or small start-ups. Process offered here can be categorized as the happy

medium between those two.

What is the most efficient balance between writing and keeping documentation up to date

versus continuous delivery of new features for the stakeholders in terms of time-

investment?

The most important thing is to continue analyzing work to the point where the developer

has enough work to do, This rule should be never overridden because satisfying

stakeholder’s requirements is priority number one among all respondents. If the schedule

is not that intense, then wise analyst should use it for documentation. Firstly, it must be

guaranteed that the core framework, requirements and transactions are documented in

either wiki or task descriptions. It can be also combined with the job of analysis. Instead

of just thinking about the solution, it can be either written down or modeled. As can be

seen in Figure 6, then it is very difficult to say what is a golden rule in finding the balance.

42

Rather the team should internally and externally agree on the documentation habit and

follow it, whilst taking into account that over-documenting is time-consuming, especially

if the percentage of readers is quite low. On the other hand, the knowledge should stay in

the team and relying on tacit memories can become time-consuming on its own. An idea

for future work can be to observe the analysts in weekly basis and measure the exact time

they spend on documenting, analyzing, testing and communication.

When is the best time to write documentation for the software project?

As section 5.4 describes, there are two types of people – those who write documentation

with very small increments together with analysis and those who reserve a certain time

span at the end of work-day to follow-up the week for example. It is not said that it is

only black and white. Rather, there are people who tilted more to one side than another.

Overall tendency is that documentation should be written if other responsibilities are

handled. The author proposes to practice both methods for future case studies.

How to write proper and detailed documentation in software development team, whose

work is based on Agile principles?

The author proposes summarized practices based on the whole paper which can be

followed to answer the main research questions:

1. At first, making sure that developer has work to do

2. Documenting the core of the system with low-level details

3. Knowing what the customer expects from the bought service

4. Knowing the time-management skill and the discipline, whether to document on the

go or booking certain time during one period

5. Linking wiki, tasks and meeting notes together for the overview

6. Spending 1-2 hours per week on organizing and updating documentation

7. Asking the developer to supplement tasks by leaving comments after decisions about

small details

8. Adding “Documentation” column to the Kanban or Scrum board

9. Not getting stuck in old habits and spending some time in exploring new ones

43

7 Summary

It is known that traditional waterfall method is mostly replaced by agile methodologies in

software engineering. Agile Manifesto emphasizes communication, flexibility, and

adaptivity, which helps to improve the work processes of software development teams.

At the same time, while Agile presents minimalistic documentation, there is a solid body

of knowledge about requirements engineering and documentation in general, which

claims the opposite of Agile. Combining those two rises many challenges, which are

shortly described in section 3.3 and supported by many journal publications. Therefore,

the aim of this thesis Process, benefits, and cost of documentation among analysts in

Agile software development teams was to gather data from analysts about documentation

in Agile software teams and propose ideas how to improve the described situation.

Based on the gap in Chapters 2-3, the research questions, propositions, and hypotheses

are stated, which are a fundamental basis for the case study. To get data for the case study,

8 interviews were conducted with 7 analysts and 1 team lead in Estonian IT company

Helmes AS. After recording, the content is transcribed and then qualitatively and

thematically analyzed. The questions that were discussed during the interviews are in

Appendix 1.

The results are presented in Chapter 5. It is found that analysts in Agile teams tend to

work based on the tacit experience and use a mix of different methodologies. For

example, they all state that they work in Agile teams, but none of them used only one

certain methodology. They tend to use a mix of them together with steps of requirements

engineering, but not deliberately. The focus rather goes to delivering new business value,

not consciously practicing different techniques, which are described in Chapter 3.1.1.

Even if projects, teams, and customer differ in every self-organizing team, the generic

flow for documentation tends to be mutual. It is presented in Figure 7. It is extremely

important that the documentation process never starts if a programmer does not have

enough work to do. If this condition is filled, then the details, format, benefit, and cost of

documentation can be talked about. As with Agile methodologies, the format and level of

details depend also on the client’s expectation, the size of the task and habits of the analyst

to make the thoughts understandable as clearly and fast as possible. One can use a

combination of text and diagrams, whilst the other only uses task descriptions to store the

44

knowledge. It is considered essential to at least a trace about the solution in some kind of

form for others.

By arithmetic average, the analysts spend approximately 30% of their work time in

documentation and keeping it up to date, which means they see a benefit in it. By

documentation, it is meant structuring, correcting, and linking task descriptions, meeting

notes and wiki. The majority think that the most useful benefit is development aid. Many

analysts tend to do it together with a process of analysis, while the others like to reserve

a certain time span at the end of the workday and do everything at once in one week range.

It depends on the self-discipline and personal habits.

To conclude everything, then the process of documentation in Agile teams must be agreed

upon internally and also with the customer in order to find a solid balance. An analyst can

start with documenting high-level description and if he is aware of his schedule and

assumptions from developer and client, then this is the fundamental basis to adapt to. If

analyst spends 1-2 hours per week to digitalize and update the knowledge, then this is

considered as “good enough” for new team members. In some cases, when the

integrations or tasks are complex, the analyst must be ready to spend more time on it and

the efficiency comes from doing it together with analysis. Commenting tasks and linking

them with wiki has a very small cost, but it turns out that a huge impact.

45

References

[1] J. H. Martin Fowler, "The Agile Manifesto," p. 7, 2001.

[2] Atlassian Corporation, "Software collaboration and development tools," Atlassian

Corportaion, 2002. [Online]. Available: https://www.atlassian.com/company.

[3] O. S. J. R. a. J. W. Pekka Abrahamsson, "Agile Software Development Methods:,"

p. 112, 2002.

[4] C. R. Klaus Pohl, Requirements Engineering Fundamentals, 2015.

[5] Inderscience Enterprises Ltd. , "Documentation strategies on agile software," p.

15, 2012.

[6] B. R. L. C. R. Baskerville, "Agile requirements engineering practices and

challenges: an empirical study," p. 32, 2010.

[7] C. S. A. M. L. d. V. Juliana Medeiros, "Requirements engineering in agile

projects: A systematic mapping based in evidences of industry," p. 15, 2015.

[8] J. v. G. J. M. D. W. Stefan Voigt, "A Study of Documentation in Agile Software

Projects," p. 6, 2016.

[9] M. H. A. R. B. R. ̈. ̈. PER RUNESON, CASE STUDY RESEARCH IN

SOFTWARE ENGINEERING. Guidelines and Examples, John Wiley & Sons,

Inc.,, 2012.

[10] "RQDA," [Online]. Available: http://rqda.r-forge.r-project.org/. [Accessed May

2018].

[11] S. i. s. S. M. M. D. S. S. Irum Inayat, "A systematic literature review on agile

requirements engineering," Elsevier, p. 15, 2014.

[12] C. L. D. D. M. P. Ville T. Heikkila, "A Mapping Study on Requirements

Engineering in Agile Software Development," p. 9, 2014.

[13] M. D. Wasim Alsaqaf, "Agile Quality Requirements Engineering Challenges:

First Results from a Case Study, Roel Wieringa," Reserach gate, p. 7, 2017.

[14] J. C. S. d. P. L. Armin Eberlein, "Agile Requirements Definition: A View from

Requirements Engineering," 2002.

[15] G. R. V. G.-Y. B. S. G. G. Junji ZhiShawn Shahnewaz, "Cost, benefits and quality

of software development documentation: A systematic mapping," p. 24, 2014.

[16] s. S. E. H. J. J. H. J. Irit Hadar, "Less is More: Architecture Documentation for

Agile Development," p. 4, 2013.

[17] V. MAHNIC, "Improving Software Development through Combination of Scrum

and Kanban," p. 8, 2014.

[18] D. A. E. D. F. M. Frauke Paetsch, "Requirements Engineering and Agile Software

Development," p. 6, 2003.

[19] A. Rüping, Agile documentation: A Pattern guide to producing lighweight

documents for software projects, John Wiley & Sonds Ltd, 2003, p. 245.

46

[20] "Inforegister," 2018. [Online]. Available: https://www.inforegister.ee/10364097-

HELMES-AS. [Accessed May 2018].

[21] A. K. Shenton, "Strategies for ensuring trustworthiness in qualitative research

projects," p. 14, 20014.

[22] Signavio, "Business process managament tool," Signavio, 2009. [Online].

Available: https://www.signavio.com/.

47

Appendix 1 – The survey for the analysts during the interview

1. How long have you been working in this team?

2. Is your main client from public or private sector?

3. Describe your role in the team. If possible, list the main responsibilities

4. Do you consider your team as Agile?

5. What Agile methods do you consciously use in your team? How do you combine

them?

6. How much have you heard about steps of requirements engineering? How many

do you consciously use?

7. How long is your product backlog? (e.g how much work do you have planned for

next iterations) Also how big are the average tasks?

8. Describe how knowledge is maintained in your team in the long run

9. Describe the process of documenting in your team (for example requirements or

solutions) – how, when and what

10. Describe the format that you follow when documenting (for instance pure text,

tables, models, diagrams, which diagrams, meeting notes)?

11. Describe the process of keeping the documentation up to date. What is the

percentage of up-to-date-ness?

12. When do you document the solution in terms of the whole project (on the go,

beginning, in the middle, on the end)?

13. What benefit attributes of documentation are the most important for your team

(pick 2)

14. What quality attributes of documentation are the most important for your team

(pick 2)

48

15. How much do you invest time in documentation during the week(including

keeping it up to date)?

16. How much time does your team or other persons you know invest in reading the

written documentation?

17. How much development time does your team invest in focusing on delivering new

features to the client on weekly basis?(doesn’t contain maintenance, knowledge

transfer, coaching)

18. How do you find the balance between delivering new features constantly and

documentation?

19. What is the client’s opinion about documentation?

20. Anything else to add?

49

Appendix 2 – the link to the interviews

This link with is maintained by Google Drive and belongs to the author. It has been made

accessible for everybody. In the folder, there are audio files together with transcribed

documents and text files.

https://drive.google.com/drive/folders/13HOCGFo-ks83SmUaTQNiYb-9b6-

xVhzH?usp=sharing

https://drive.google.com/drive/folders/13HOCGFo-ks83SmUaTQNiYb-9b6-xVhzH?usp=sharing
https://drive.google.com/drive/folders/13HOCGFo-ks83SmUaTQNiYb-9b6-xVhzH?usp=sharing

50

Appendix 3 – the process of documentation

Figure 7. The process of documentation

