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Annotatsioon

Viimasel kümnendil on arvutinägemise valdkonnas tehtud palju edusamme ja selles
uuringus kasutatakse ühte väljatöötatud meetodit tegeliku elu probleemide lahendamiseks.
Sügav närvivõrk nõuab aga kõrge arvutusvõime ja suure mäluga süsteeme, mis võivad
olla piiranguks. Selle uurimistöö eesmärk on välja töötada tõhus madalate kuludega ja
energiasäästlik sügava närvivõrgu mudel, mis on võimeline klassifitseerima erinevaid
sõidukiklasse, näiteks autosid, kaubikuid, veoautosid, haagiseid, haagiseid, mootorrattaid,
busse ja teisi. Selle odava süsteemi saavutamiseks rakendaksime siirdeõpet olemasole-
vatele mobiilsete sügavate närvivõrkude mudelitele, kasutades kohandatud andmekogumit.
Väljatöötatud mudel oleks kasutusel TPU-põhisel Google Corali kiirendi riistvaral. Selles
uuringus vaadatakse üle mõned sõidukite klassifitseerimisel praegu rakendatavad algorit-
mid, seejärel võetakse treenitud närvivõrgu mudel olemasolevate kaaludega, treenitakse
seda meie kohandatud andmekogumiga ja kontrollitakse mudelit. Eesmärk on klassifit-
seerida ja tuvastada korraga rohkem kui üks sõiduk (objekt). See tees illustreerib, millised
peamised hüperparameetrid mõjutavad treenitud närvivõrgu mudeli jõudlust.

ii



Abstract

There has been a lot of advancement in the last decade in the field of computer vision
and this research makes use of one of the developed methods to solve a real life problem.
However, deep neural network require systems with high computational abilities and large
memory which could be a constraint. The purpose of this research is developing an efficient
low cost and energy efficient deep neural network model that is capable of classifying
different classes of vehicles such as cars, vans, lorry, trailer, trailer-trucks, motorcycles,
buses and others. In order to achieve this low cost system we would apply transfer learning
on existing mobile deep neural network models using a custom data-set. The developed
model would be deployed on a TPU based Google Coral accelerator hardware. This
research reviews some currently implemented algorithms in the vehicle classification space
then proceed to take a trained neural network model with existing weights, train it with
our custom dataset and verify the model. The goal is to classify and detect more than one
vehicle(object) simultaneously. This thesis illustrates which key hyper parameters affect
the performance of a trained neural network model.
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1. Introduction

1.1 Background

The study on various methods to classify different classes of vehicles is not new however,
we believe advancements made in two very interesting areas of research which are em-
bedded systems and computer vision can be put to good use in solving this problem. The
computer vision space is an area that has advanced tremendously since 2012 [1] and the ad-
vancement in this field could be used to a large extent with good results to achieve the task
at hand. There has also been a lot of development in the field of embedded systems with the
introduction of specialized hardware accelerators which are used to speed up the execution
of computer vision algorithms[2] such as a CNN object detection model. These convo-
lutional neural networks require specialized hardware for fast execution of deep neural
network algorithms because CNN are repeatedly executing the multiple-accumulate(MAC)
operations massively and these accelerators can handle the massive matrix multiplications
required for neural networks at very fast speeds while consuming much less power.

1.1.1 Motivation

This thesis that is initiated by the larger research project, bridges two very interesting
areas of research, computer vision and embedded systems which the writer believes
are the bedrock of artificial intelligence hence the reason why working on this topic is
alluring. The sudden renaissance of CNN was sparked by the annual Imagenet Large
Scale Visual Recognition Challenge(ILSVRC) [3] where different institutions demonstrate
new advancement and algorithms to improve large scale object recognition. AlexNet won
the Imagenet competition in 2012 [1], since then CNN have been adopted to solve many
real life problems which involve object detection and object classification. The choice
for using Convolutional neural networks is because they have very good accuracy levels
in computer vision field hence the reason why they are widely used in solving Object
detection problems including the one this research is solving.
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1.1.2 Objectives of this research

The objectives of this work are;

� To collect and prepare a custom dataset from different sources for vehicle classifica-
tion.

� To select and train an existing object detection model with the new custom
dataset(using transfer learning).

� Optimize the model for deployment on an edge based TPU accelerator.
� Test the performance of the model.

It was noticed that in some dataset most vehicles types are broadly grouped under ’cars’
however in this research we have created a custom dataset containing specific classes of
vehicles such as car, bus, van, truck, lorry, trailer, truck-trailer, motorcycle, long-low and
long high. We have also developed an object detection CNN model suited for an embedded
device to classify different types of vehicles. As will be later seen in section 3.3 the output
model was deployed on a coral edge TPU accelerator and tested to see its performance in
detecting and classifying the different vehicle types.

The output of this work can also impact customer charging systems for parking lots where
car owners are charged for parking and in ships which are used to move cars where the
car owners are sometimes charged different prices for the conveying space based on the
type of vehicle. Currently, human attendants are needed to identify and verify the type
of vehicles. This problem is one of the reasons this research seeks to develop a low cost
solution in which the output model could be integrated into a system with a camera to view
the car and classify what type of car it is. Such Proposed system would have to be a low
cost energy saving system comprising a hardware with limited number of interfaces to
connect the camera and limited processing capabilities to accelerate neural processing in
achieving acceptable accuracy in vehicle type detection.

1.2 Literature Review

To the best of our knowledge there is no similar research done previously which entails
developing a CNN model for detecting different types of vehicles which runs on an embed-
ded device. This work will develop a model(using transfer learning), validate and optimize
it for embedded systems. There are previous researches which have proposed different
methods and algorithms one of such employs a sensor which comprises a magnetome-
ter and microphone for vehicle classification and emergency vehicle detection [4]. This
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method requires the noise made by the car in order to carry out its classification task which
is not suitable for this task since we would also be classifying stationary vehicles at times.
One study makes use of principal component analysis(PCA) for vehicle classification, it
uses adaptive multi-class principal component analysis [5]. One other method uses an
eigen vector which is generated for each car and compared with an earlier generated vector
subclass for each vehicle type [6]. Another method makes use of the structural based
features of the vehicles to differentiate them [5]. Zhen Dong also developed a method
for vehicle classification using a semi-supervised neural network which makes use of the
frontal view of vehicles to classify them [7]. Our task will view vehicles from all angles,
reason why this method can’t be adopted for the current task. Using sparse representation,
vehicle classification can also be achieved based on comprehensive sensing, this method
was proposed by [8]. One other method combines an artificial neural network and K
nearest neighbor techniques in the classification of vehicles, this method employs the use
of acoustic signals generated by moving vehicles to classify them [9]. One other paper
developed a method for vehicle identification from visual based dimension estimation, a
vehicle mask is generated which is basically the binary representation of the vehicle gotten
from a calibrated camera by getting the 2D projection of a simple 3D model [10]. Ma
used edge based features in determining the class of vehicles. This style augments edge
points to repeatable and discriminate features from a fixed angle when the vehicles are
viewed [11]. [12] developed a novel vehicle matching algorithm that computes and gives
two vehicle observation of either being the same or different. A support vector machine
model has also been used to propose a method for vehicle classification, it was achieved
by generating eigen vectors from the frontal view of the vehicles [13].

1.3 Overview

Some of the above mentioned methods showed good results however they are not suitable
for the current task since we require a low energy saving and low cost device which
will not be able to provide the required computational power and resources required by
most of these methods to achieve accurate results. Our method employs a small and
efficient neural network to tackle the vehicle classification problem because we would
like to fit our solution into a low cost embedded device. For this reason, MobileNet and
MobileDet, which are convolutional neural network models were selected because these
model characteristics closely align with the objective in this vision application project.

Convolutional neural networks is not a recent discovery of the millennial but was high-
lighted by a lot of research groups in the 1980s who came up with a lot of prepositions on
how the CNN could be used in solving image recognition problems[1]. It did not have as
much success and attention in implementation in the earlier years because at the time there
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were some constraints such as limited computational resources and thus the computational
power needed by neural network was unavailable. However, this narrative has changed
since 2012 and Deep neural networks have had the best results in solving image recognition
problems and will continue to get all the attention and focus by most research groups until
another method better than CNN is probably brought to fore for solving image vision task.

For persons not so familiar or hearing about convolutional neural network for the first
time,the question to be addressed is what is a convolutional neural network and what does
it comprise of. It is important to note that the whole essence of neural networks (artificial
neural networks CNN) is they are designed to be similar as the human brain. The human
brain is made up of individual cells called neurons and these neurons learn by processing
information through the human five senses but majorly through vision. In similar fashion,
CNN comprises of neurons connected together to form a network with a primary function
of pattern recognition[14]. a basic network of neurons is a feed-forward network which
has an input layer, hidden layer and an output layer as shown in figure 1 however CNN are
far more complicated than this. As earlier mentioned the network of neurons is set up to
learn pattern recognition and the learning pattern could either by supervised learning or
unsupervised learning[14].

Figure 1. Basic Feedforward Neural Network[14]

For supervised learning, the input to the network is labelled, we could assume our network
of neurons is a child learning about different type of cars, where each car type is shown
to the network until its able to spot the difference between the various car classes fed to
it. The expected end result of the learning process is that when a picture which was not
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among the labelled ones is shown to it, it should be able to predict the car type with the
least acceptable error rate[14]. Its also important to note that overfitting should be avoided
while training, this issue arises when the neurons are trained in such a way that they are
not flexible enough to make correct predictions outside the labels which it has been trained
with.

Convolutional neural networks contain neurons which self optimize by learning[14]. As
regards the architecture of CNN, they have three layers which include , the convolutional
layer, the pooling layer and the fully connected layer as shown in figure 2. The convolu-
tional layer receives the pixel values from the input and extracts feature maps from the
images, the pooling layer downsizes the extracted samples while the fully connected layer
attempts to give class points for regression and classification[14].

Figure 2. Basic CNN Architecture[14]

[15] showed that the input into a convolution layer which is an image can be represented
as a product of three inputs which are, the image’s width w, the image’s height h, and the
color channels which will be represented as Pin. Therefore the input into a convolution
layer can be shown as Pin × w × h. Then after the convolution is applied on the input the
output which will have a size of Pout × wout × hout can be shown as,

out
(
Pout j

)
= bias

(
Pout j

)
+

Pim −1∑
k

weight
(
Pout j , k

)
? input (k) (1.1)

The architecture of the models we selected, MobileDet and MobileNet are based on
convolutional neural networks. Also both models were developed for mobile devices
taking into account the limited resources of computation and size of mobile devices.
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MobileNets provides a good network architecture and a set of two hyper parameters for
low latency and small models that can be fitted in the design for embedded system vision
application [16]. These models are smaller when compared with other models such as
YOLO and SSD restnet [17]. MobileNet and MobileDet are also efficient for visual tasks
and will suit this work [17].
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2. Method

In this chapter the applications and tools used to carry out the experiments are briefly
reviewed. The overall process and evaluation parameters are also explained.

2.1 Overview of tools and applications

Convolutional neural networks provide the best results when compared to other classifi-
cation techniques as demonstrated by [1]. hence the reason why for this implementation
we have chosen to use CNN as the algorithm for classification of the various classes of
vehicles. A new convolutional neural network architecture will not be developed, however
the road map is to take an existing object classification model with very good accuracy
and train this model on a newly created dataset that has been developed uniquely for this
research. The model chosen for the purpose of transfer learning is the Mobilnet model
proposed by [16] and MobileDet proposed by [18] both from Google. MobileNet is a
deep neural network model based on the architecture developed by [16]. The chosen
approach is supervised learning based on transfer learning. The chosen models were
created specifically for mobile and embedded systems at the cost of a minute decrement in
accuracy because of the reduction in size of the models[16][18].

Currently there exists different datasets such as Coco and Imagenet however these datasets
do not differentiate the different classes of vehicles hence there was need to create a custom
dataset which would capture the different classes of vehicles. The dataset seperates vehicles
into cars, truck, van, trucks, truck trailer, bus, log-low, long-high, lorry, motorbikes and
persons, 11 classes in all. For the creation of the dataset to increase the supervised learning
rate during transfer learning annotation of the dataset is carried out. Upon completion of
the training, the models were optimzed for deployment on the accelerator. The chosen
accelerator for the task, the Coral USB accelerator. The optimized neural network models
which have been trained with the new data set and deployed on this device for testing and
inference.

Its important to point out that there are two aspects to be dealt with, one is the training of
the network and the second is inference. The first aspect, which is training the network
involves feeding a lot of labelled images to the deep neural network which can be termed
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forward projection to enable the network arrive at its initial model weight parameters after
which the adopted weights are adjusted based on how well the predictions go, this could be
termed back propagation[19].The second aspect is inference which involves using a trained
model with its weight to carry out predictions on a set of new inputs. The former is mostly
carried out on CPU and GPU while accelerators are specially designed for the latter.

2.1.1 Neural Network Models

For the task at hand we have a constraint of power and computational capacity because
the solution is to be deployed on an embedded device which does not possess the compu-
tational capacity of a traditional central processing unit hence this is the reason for the
use of MobileNet and MobileDet as the chosen models. MobileNets neural network was
specifically designed for deployment on embedded and mobile devices[16].

The concept behind MobileNet is making use of depthwise seperable convolutional blocks
instead of expensive convolutional layers[20] as depicted in figure 3. For the development
of MobileNet, instead of following the general trend of developing a deeper and more
complicated architecture a neural network and a set of two hyper parameters were devel-
oped to come up with a low latency minute model that can be easily deployed on a mobile
or an embedded device[16]. BN stands for batch normlization which is a technique that
is used to address the issue of internal covariate shift when training convolutional neural
networks[21]. Batch normalization acts as a standardizer by regularizing the inputs to a
layer for every mini-batch[21]. It also helps to reduce the number of training steps required
for training the neural network[21]. ReLU stands for rectified linear unit[22]. It is an
activation function employed in building alot of CNN architectures[22]. The seleceted
activation function is a key parameter to the success of training a neural network[22]. This
activation function enables gradients to flow when it has an input that is positive[22]. The
MobileDet model has a similar neural network architecture with MobileNet as depicted in
figure 3 however the difference for MobileDet is its first 1 X 1 convolution is joined with
its subsequent depthwise convolution to form a regular convolution[18].
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Figure 3. Depthwise Separable Convolution[16]

To achieve object detection task of this work both models are fused with the one stage
single shot detector(SSD) which will enable the placement of the bounding boxes on the
model’s prediction during inference[18]. Two stage detectors such as faster RCNN will be
too slow for this task[18].

2.1.2 Method of Optimization

DNN has shown the best result for computer vision task and more recent works keep
producing deeper networks with layers which can vary from 7 layers to hundreds or even
much more[23].

A deep neural network could require large amount of megabytes to store weights, also dur-
ing inferencing billions of floating points calculation are involved[23] hence the embedded
device in the scope of this project will have several constraints such as not been able to
provide the computational power required for such calculations and the device does not
have the storage space to warehouse such large network hence researchers have come up
with several methods which has enabled the resizing of the DNN model to a smaller size.

One of such method which is used for reduction of model size which is employed for this
implementation is quantization which instead of making use of 32 bit floating point, 8bit
floating points are used for weights and activation[23].
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Studies have also shown that the datatype in which the model weights are computed
and stored affects the training, performance and efficiency of the developed deep neural
network[19]. Datatype such as 32 bit floating point are mostly used during training while
lower numeric precision datatype could be adopted during inference[19].

Figure 4 shows the range of the model size after quantization of the trained neural network
model. This enabled the deployment of the model on the coral USB accelerator. The size
of most models before quantization during the experiments was about 15MB however after
quantization model sizes reduced to less than 5MB.

Figure 4. Model Size After Quantization

2.1.3 Google Coral TPU Accelerator

In achieving the goal of this project to develop a neural network model for vehicle classifi-
cation small enough in size to fit into an embedded device with low power consumption,
a specialized embedded hardware which is designed primarily for handling deep neural
network is required because this will help in achieving better performance of the trained
model during testing and usage[2]. The reason why we can’t use just any type of embedded
hardware is because deep neural network algorithms carry out massive multiply and accu-
mulate operations (MAC) which deep neural network accelerators are designed specially
for. In order to deal with the huge amount of MAC operations these accelerators possess
massively parallel processing engines, each parallel processing engine has a multiplier and
adder in it arithmetic and logic unit (ALU)[2]. Most of the MAC operations are carried out
in the convolutional layer and fully connected layer of the DNN[19].
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Figure 5. Google Coral TPU Accelerator[24]

The accelerator used for this implementation is the Google Coral TPU accelerator. The
Coral TPU accelerator provides edge TPU as a co-processor attached to a computer. This
accelerator helps with speeding up the inferencing of the trained neural network model
however it only supports tensor flow lite models. The Coral TPU accelerator is a USB 3.0
Type-C socket that is supported on Windows, Mac and Linux operating systems. It is an
application specific integrated circuit that is capable of performing four trillion operations
per second that was designed by Google to accelerate the inferencing of TensorFlow lite
models. The benefit of using the TPU accelerator is that it enhances local processing and
reduces latency as there is no need for constant internet.
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2.1.4 Dataset Preparation

In renaissance and success of convolutional neural network in the computer vision field the
improvement and quality of the current datsets available for training these neural networks
have played a major role. The key success of deep neural networks is their ability to learn
from a lot of labelled images[25]. CNN which have been pre-trained on large dataset
such as ILSVRC have been seen to have very good results[25] This goes to show that our
dataset also determines how well the trained model will perform. Annotation involves
placing bounding boxes in a picture which contains the class or classes the model is meant
to detect after its been trained[26].

As earlier mentioned in section 1.2, to the best of our knowledge this research is novel
because our model is trained specifically for classifying different classes of vehicles on
an embedded device. Most of the datasets available have all vehicles classified under the
broad category of cars, bus and truck but ours captures more vehicle categories. In order to
achieve the goal of developing a trained model, a new custom dataset was developed by
getting pictures from google web and all from a private source. A total of 42,000 images
formed the custom data set, all annotated to reflect the 11 classes as shown in figure 6.
The classes of vehicles captured in the dataset are 10 and they include car, bus, van, truck,
machine, long-low, long-high, trucktrailer, trailer, motorbike and lorry including person.

The data set was split in a ratio of 70 percent to 30 percent respectively, 70 percent was
used for training while 30 percent of the images was employed for evaluation of the trained
model.

Figure 6. 11 Classes in the Custom Dataset
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2.1.5 Annotation of Dataset

The annotating tool used in this research was LabelImg[27]. It was developed to be used
in a python IDE. LabelImg was used in this research to place bounding boxes on all the
identified 11 classes in the pictures of the custom data set. The below figure 7 shows
what the LabelImg application looks like when launched and how the custom dataset was
annotated.

Figure 7. LabelImg annotating tool[27]

As annotations involve placing bounding boxes on identified classes[26] in order to have
excellent results during inference all the 42,000 images were annotated using LabelImg
before commencement of the training phase.
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2.1.6 Gradient Descent Optimization Algorithms

Gradient descent is one of the most common known way of optimizing neural networks[28].
Different algorithms exists which are employed to optimize gradient descent for neural
networks[28]. Two of such algorithms are Momentum and RMSprop which are used for
optimizing stochastic gradient descent in this research.

Momentum is represented by equation 2.1, where J(θ) is the objective function, (η) is the
learning rate and (γ) is the momentum term. Momentum helps SGD to head in the right
direction and dampens oscillation while the learning rate (η) determines the size of step
taken[28].

vt = γvt−1 + η∇θJ(θ)

θ = θ − vt
(2.1)

RMSprop can be represented by equation 2.2. RMSprop is an adaptive optimizer, it works
by adapting the learning rate (η) based on the parameters. 0.9 represents (β) in equation
2.2 a value suggested by Hinton [28]. E [g2] represents the moving average of the squared
gradient and δC

δw
represents the differentiation of the cost function with respect to the weight.

E
[
g2
]
t
= 0.9 ∗ E

[
g2
]
t−1

+ (1− 0.9)

(
δC

δw

)2

wt = wt−1 −
η√
E [g2]t

δC

δw

(2.2)

2.2 Deep Neural Network Frameworks

Due to the complicated nature of convolutional neural networks special frameworks or
environments are required for their set up, training and testing.In this section we review
some of the most popular DNN frameworks available for working with neural network
models. Examples of such frameworks specially suited for deep neural network processes
include;

� Pytorch - This is an open source deep neural network framework developed by
Facebook for performing functions such as implementing new CNN architectures
and training of CNN models[29]. Some benefits of using Pytorch is that it supports
APIs for programming languages in Python, Java and C++[30][29]. It also offers
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flexibility during the creation of a neural network architecture[30]. Pytorch also
allows the training of a neural network model on distributed environments and also
allows the user to work with multiple GPUs[29]. Pytorch can be run on both CPU
and GPU[29].

� Caffe(Convolutional Architecture for Fast Feauture Embedding) - is also an open
source state of the art deep neural network framework developed by scientist from
UC Berkeley[31]. Caffe was built as an integrated toolkit for testing, training, fine-
tuning and implementation of models[31]. It was originally built in C++ but also
has a python interface[30]. Some benefits of Caffe is that it has well documented
illustration for training and fine-tuning neural network models[31]. It has a feature
that allows for the binding of Python and MATLAB, a benefit for researcher who
want to work with both languages[31]. It also supports training for both CPU and
GPU.

� MXNet - It is a deep neural network library developed by Apache software founda-
tion. This library is supported by web service providers such as Azure(Microsoft)
and Amazon Web Service(AWS)[30]. This DNN library core language is C++ how-
ever MXNet supports as much as 8 languages and they include Scala, Julia, Python,
R, Lua and Go[32]. One benifit of MXNet is its coverage of more programming
languages as it offers the flexibility of exporting trained models for use in different
languages[30].

� TensorFlow - The TensorFlow library is an open source application developed by
Google for working with deep neural networks[33]. Tensor flow supports deep learn-
ing APIs such as Keras. Its an environment where different libraries, dependencies
and algorithms such as numpy, pandas are made available for the special type of
numerical computation required by deep neural network[34]. TensorFlow supports
distributed training and also supports the use of multiple GPUs[33]. TensorFlow
was designed primarily for machine learning system that run on large scale and in
variegated environments[35]. The possibility of being able to map the nodes of the
dataflow graph of TensorFlow across different computational devices running on
one system such as a system which has GPUs, CPUs with multicore or a system
running on a cluster provides flexibility to developers who want to use it[35].

2.2.1 Selected Framework

The framework used for this research was TensorFlow. TensorFlow supports training on
CPU and GPU. One of the reason why this platform was selected was because TensorFlow
provides a wide range of pre-trained quantized aware models trained on similar dataset
made available in the TensorFlow zoo. The TensorFlow API is also flexible and easy to
use. It also provided a monitoring interface, Tensor Board, which was used in monitoring
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the training process. This made it easy to track changes during the experiments carried
out during this research. There are currently two versions of Tensor flow, version 1 and 2.
The version 1.15 of Tensoflow was used because more quantized pre-trained models are
available for TensorFlow 1 version.

2.3 Overview of process

One of the early steps taken during this work in order to get good results involved gathering
various pictures to form the custom dataset. The pictures contained in the data set were
acquired from google web pictures and other private sources using an edge based camera.
Data preparation is the most time consuming aspect when dealing with the training of
convolutional neural network so this was the first aspect tackled. It also involved annotating
the pictures in order to capture the 11 classes to be predicted in this work. Then separating
the 42,000 annotated pictures into a training and test folder respectively. Training had 70
percent while 30 percent was separated for evaluation. The pictures were annotated using
LabelImg. Figure 8 shows the data preparation process.

Figure 8. Data preparation

The experiments were carried out in python environment, version 3.6. For the embedded
device used during this thesis, Google Coral TPU accelerator, it is only compatible with
models saved in the edge TPU tflite format. The edge TPU tflite files used were gotten
from models trained on the Tensorflow neural network framework.

The method of approach used was transfer learning which means selecting a pre-trained
neural network model which already has defined weights. Training it with a new custom
dataset that has been annotated showing the different classes of vehicles. Since its Ten-
sorflow API being used, models which had been pre-trained on the tensor flow API were
chosen.

Three quantized-aware object detection models were used to carry out the research and
they are SSD-MobileNet V1, SSD-MobileNet V2 and SSD-MobileDet. These models
were chosen because when optimized and compiled their sizes are small enough to fit into
the coral usb-accelerator. The checkpoint files of these three models are available on the
coral website and could also be gotten from the TensorFlow zoo. All 3 pretrained models
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Figure 9. Conversion to tflite format[24]

were initially trained for detecting 90 objects on the coco dataset.

The next phase was preparing the Tensorflow API on a Linux operating system(Ubuntu)
with 12GB RAM and later on Google colab with 15GB RAM. The set up of the Tensorflow
API in both environments involved installing the required packages and libraries needed
to train and carry out inference on a neural network. Packages such as numpy, tfslim,
matplotlib were required for the training of the imported pre-trained models. The next
phase involved converting the annotated files into CSV format and then the CSV files were
converted to tf.record files. tf record is the file format required by the tensor flow models
to receive the files for training.

Each model’s pipeline configuration files were edited to reflect the new environment path
and respective classes. Other parameters which were configured during the experiment
for each model were the batch size, checkpoint path, training record and other hyper-
parameters. Its ensured that the hyper-parameter changes were documented for tracking
result during the experiment.

The first experiment involved training the last layers of the pretrained model to see the
result. The second experiment involved training all the layers of the models in order to
obtain lower loss values. The outcome is shown in Chapter 3. Once training of each
selected model was completed, each model’s checkpoint files was converted to the frozen
graph and .pb file format.

The MobileNet SSD version 1, version 2 and MobileDet used for this experiment are
quantized aware versions. The trained output files were converted to the edge TPU tflite
format because the chosen hardware for inference testing, coral TPU accelerator, which
only supports edge TPU tensor flow lite model format. Once the tensorflow model was
compiled, it was deployed on the TPU accelerator. The below figure 9 shows the process
flow.
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2.4 Model Evaluation Parameters

For the evaluation of the models trained with the custom data set there are a few parameters
which will be used as a metric to know how good or how well the trained model turned out.

2.4.1 Loss

In the field of computer vision when evaluating object detection models one parameter is
the loss. As mentioned by [15], the loss function can be represented as shown in equation
2.3

loss =
N∑
i−1

yi log (pi) + (1− yi) log (1− pi) (2.3)

where the loss function is a binary cross entropy for convolutional neural network. The
loss function is adjusted by a process called back propagation [15]. Back propagation can
be defined as an algorithm which is used to get the gradient of the loss function based on
the input variables[36]. The adjustment of the loss function is an iterative process,as the
weights of the model are continuously adjusted until the loss is minimum[15].

2.4.2 Precision

Another way to evaluate the performance of a trained neural network object detection
model is to the calculate the precision. The precision can be determined by comparing the
number of positive matches between the reference objects and the output objects [37]. The
quality of matching for a model can be computed using equation 2.4

precision =
# of correctly detected objects

# of all detected objects
=
ND − UM

ND

(2.4)

Where ND is the number of all detected objects and UM is the number of unmatched
objects in the output of the model[37][38]. The mean average precision(mAP) is computed
at the end of each model training based on an intersection over union threshold of ratio
0.5:0.95, 0.50 and 0.75. IOU thresholds are used to determine the average precision
evaluation results of a neural network model during its training.
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2.4.3 Intersection over Union

Intersection over union is used to measure the level of overlap between two bounding
boxes. The first bounding box represents the one predicted by the trained model and the
second bounding box is the object’s real bounding box[39]. This is also one of the hyper
parameters set up in the architecture of the convolutional neural network before training is
commenced. This parameter is captured as the ’IoU’ threshold.

Intersection over union can be computed using equation 2.5

IoU =
TP

FP + TP + FN
(2.5)

where TP is true positive, FP is false positive and FN is false negative [39]. True positive
corresponds with correctly matched objects as discussed in 2.4.2, false positive represents
the number of unmatched objects in the output of the model[38].
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3. Experiments and Results

In this chapter, the experiments and results of this research will be outlined. Table 1 outlines
the models considered for this section. SSD MobileNet version 1 and 2 have speeds that
are suitable for this research and their quantized aware models were available including
ModileDet which was built for mobile devices and also incorporates full convolution in
its architecture [18]. The availability of a quantized aware model was an important factor
taken into consideration during the selection of models because after training, the quantized
aware models can be deployed on an embedded device with limited space.

Table 1. Potential Models For Experiments[40]

MODEL INFERENCE
SPEED(ms)

mAP QUANTIZED
AWARE

EfficientDet 39 33.6 Not yet
SSD MobileNet v1 29 18 Yes
SSD MobileNet v2 29 22 Yes
SSDLite MobileNet v2 27 22 Not yet
SSD MobileNet v3 43 15.4 Not yet
SSD MobileDet 113 24 Yes

List of selected convolutional neural network models for experiments;
i) MobileNet SSD v1
ii) MobileNet SSD v2
iii)MobileDet SSD

The above listed models were selected for the experiments in this research. The quantization
of a non quantized model is outside the scope of this research. The training parameters
such as number of training steps, evaluation steps and the dataset used were all the same for
all three highlighted models during the first two phases of testing. The approach adopted
for the test was to first train the last layers of the model with the new custom data set, this
idea was gotten from the coral website[24] which recommended 500 to 1000 training steps
for training the last layers. The Coral website also recommended at least 50,000 training
steps for training all the layers of the model.
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3.1 Experiment and Result of Training Last Layers of Models

The first experiment carried out was training the models with the number of training steps
set at 1000 and evaluation step 100. This was done in order to train only the last layers of
the model with the new dataset. The below results shows what was obtained for all the
three chosen models

3.1.1 MobileNet SSD v1 Last layers Training

As shown in figure 10 after 1000 steps the loss was still above 10 and the goal is to achieve
a loss that is less than 1 to get good results. With this outcome, it shows the training steps
for training MobileNet SSD v1 needed to be incremented further in order to achieve a loss
far less than the one achieved.

Figure 10. MobileNet SSD v1 last layer training Loss graph

3.1.2 MobileNet SSD v2 Last Layers Training

The outcome of training MobileNet SSD v2 for 1000 training steps is shown in figure 11
where the loss was at 7 at the end of the training. It also showed that more training steps
were needed to drive the loss value lower.
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Figure 11. MobileNet SSD v2 Last layer training

3.1.3 MobileDet Last Layer Training

For MobileDet SSD model at the end of 1000 training steps the loss was not near zero
however the loss was going downwards which was the desired trend as shown in figure 12.

Figure 12. MobileDet Last layer training

3.1.4 Result Table of Last Layers Training

The Table 2 below shows a comparison between the three models result after training their
last layers. It can be seen that the loss value and mean average precision values for all
models are not optimum. It was concluded that more training was required to achieve
better results.
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Table 2. Result of last layer training for all models

MODEL TOTAL LOSS mAP
MobileNet v1 11.2 0.001420
MobileNet v2 7.03 0.000933
MobileDet 5.6 0.000047

3.2 Training All Layers

The below table 3 shows some hyper parameters for the three models before commencing
the training of all the layers of the model. Most parameters highlighted in table 3 were the
default parameters captured in the three models pipeline configuration files when they were
trained to detect 90 objects in the Coco dataset. No changes were made aside the reduction
in the batch size because of the RAM capacity of the local system the TensorFlow API
environment was hosted on.

Table 3. All Layers Training Default Parameters

MODEL STEPS LEARNING
RATE

OPTIMIZER IoU
THRESHOLD

BATCH
SIZE

MobileNetv1 50000 0.2 momentum 0.6 2
MobileNetv2 50000 0.004 RMSprop 0.6 2
MobileDet 50000 0.8 momentum 0.6 2

3.2.1 Training All the Layers of MobileNet SSD v1

The results show that with the increase in the number of steps, the model is trained for
much longer and the loss graph captured in figure 13 shows a steady decline in the total
loss of mobilenet SSD v1 model being trained. Upon completion of training, the output
tflite graph file in pb format is compiled into an edge TPU tflite file and deployed on the
coral USB for inferencing to show the result seen in figure 14.
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Figure 13. MobileNet SSD 50000 Step Loss

The trained model is tested on a sample picture to see the outcome, below is the result of
the first inference as seen in figure 14. The result is poor because the bounding boxes are
not properly placed and the classification result not accurate.

Figure 14. MobileNet SSD v1 50000 step model inference
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3.2.2 Training All the Layers of MobileNet SSD v2

The model loss at the end of the training is shown in figure 15. When this loss is compared
with the last layer training loss in figure 11, it is much smaller because there was a steady
decline of the loss as the training went on.

Figure 15. MobileNet v2 50000 Step loss

The model file was also compiled and inferencing carried out to see its performance as
shown in figure16. Only one object is detected and its impossible to pick out which object
was detected with the placement of the bounding box.The result is also poor as there are
three cars that are clear enough for the model to pick out but was not detected.
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Figure 16. MobileNet SSD v2 50000 step model inference

3.2.3 Training All the Layers of MobileDet

The modileDet model loss was 1.94 after 50000 step training. The inference for this model
is shown below in figure 17.From the inference result, only one object is detected and the
bounding box placement is not precise. This can be attributed to the low mean average
precision value obtained after training the model.

Figure 17. MobileDet 50000 step model inference
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3.2.4 Comparing Model Result For All Layers Training

The Table 4 shows the final evaluation results for all three models after 50,000 training
steps. The very low mean average precision values is brought to fore in the inference
results shown in figures 14, 16 and 17 for all the models. Table 4 captures the total loss at
the end of training, the total loss is a summation of each model’s classification, localization
and regularisation loss. We capture the localization and classification loss because the
classification loss gives a pointer to how well the model is able to classify different objects
and the localization loss with the placement of bounding boxes. At the start of the models
training the goal was to achieve a total loss of less than 1 however from the results none of
the model’s loss was lower than 1.

,
Table 4. Result of all layers training for all models

MODEL TOTAL
LOSS

CLASSIFICATION
LOSS

LOCALIZATION
LOSS

mAP

MobileNet v1 3.37 1.72 0.57 0.00595
MobileNet v2 2.83 1.53 1.7 0.00736
MobileDet 1.94 0.87 0.30 0.12071

3.3 Hyper Parameter Tuning

From the results obtained in section 3.2 the model training went as required with the loss
value steadily decreasing during training. However from the results shown in table 4 the
precision values are low. This also translates to the results obtained during the inference.
The bounding boxes are not properly placed and some of classification are incorrect as
seen in figures 17, 16 and 14. An important point to note is the hyper parameters were not
modified but the default values adopted. However, based on the results it was pertinent to
tweak some of the hyper parameters in order to get a better result. [41] recommended an
increase in batch size and [42] suggested a reduction in learning rate. The below table 5
shows some of the changes made to the hyper parameters of the models used during the
experiment.

Table 5. Hyper Parameters Tuning

MODEL STEPS LEARNING
RATE

OPTIMIZER IoU
THRESHOLD

BATCH
SIZE

MobileNetv1 50000 0.079 momentum 0.6 32
MobileNetv2 50000 0.004 RMSprop 0.6 32
MobileDet 50000 0.079 momentum 0.6 32
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3.3.1 MobileNet SSD v1 Hyper Parameter Tuning Result

The below inference results from figures 18, 19 and 20 show the improvement in the
model’s performance when changes were made to some of the model’s hyper parameters.
The model’s learning rate was reduced from 0.2 to 0.079 and the batch size increased to
32. The lowest loss was also achieved after 23500 epochs which was 0.2 and this loss
value was constant till the training ended . After 25000 training steps, the mean average
precision value was 0.62. the inference result show that the bounding boxes are properly
placed and the objects in the picture properly classified. Figures figures 18, 19 and 20
show that MobileNet SSD v1 performance improved tremendously with an increase in the
batch size and reduction of the learning rate.

Figure 18. MobileNet v1 Hyper Parameter Change Inference result 1
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Figure 19. MobileNet v1 Hyper Parameter Change Inference result 2

Figure 20. MobileNet v1 Hyper Parameter Change Inference result 3
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3.3.2 MobileNet SSD v2 Hyper Parameter Tuning Result

There were also noticeable improvements in the performance of MobileNet SSD v2 after
the batch size was increased to 32. Figures 21, 22 and 23 show the improvements. The
lowest loss was also achieved after 50000 epochs. This model’s performance is the least
when compared with other two models. Some objects are still not detected and missed
during inference however all the model’s vehicle classification predictions are correct.

Figure 21. MobileNet v2 Hyper Parameter Change Inference result 1
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Figure 22. MobileNet v2 Hyper Parameter Change Inference result 2

Figure 23. MobileNet v2 Hyper Parameter Change Inference result 3
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3.3.3 MobileDet Hyper Parameter Tuning Result

The below inference results as seen in figures 24, 25 and 26 show the improvement for
MobileDet model’s performance when changes were made to some of the model’s hyper
parameters. The classification results were better and bounding box placement much
more precise. The model’s learning rate was reduced from 0.8 to 0.079 and the batch size
increased to 32. The lowest loss of 0.7 was also achieved after 25000 epochs.

Figure 24. MobileDet Hyper Parameter Change Inference result 1
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Figure 25. MobileDet Hyper Parameter Change Inference result 2

Figure 26. MobileDet Hyper Parameter Change Inference result 3
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3.3.4 Table of Result For Hyper Parameter Tuning

Table 6 shows the final evaluation results for all three models at the end of training after
the hyper parameters had been tuned. From the results we were able to achieve a loss
less than one for MobileDet SSD and MobileNet SSD v1. The models with lower loss
value had better prediction results. It can also be noticed that two models training steps
were reduced to 25000 from 50000 earlier in section 3.2 because they achieved the lowest
possible loss after 25000 steps hence there was no need training them further. The mean
average precision values are much higher when compared with the values in Table 4. Table
6 clearly shows that the decision to tune the hyper parameters resulted in better model
performance for all three models.

Table 6. Result After Tuning Hyper Parameters For Models

MODEL TRAINING STEPS TOTAL LOSS mAP
MobileNet v1 25000 0.2 0.62
MobileNet v2 50000 3.2 0.28
MobileDet 25000 0.7 0.45
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4. Analysis and Discussion

In this chapter the results obtained in chapter 3 will be analysed. The problems faced
during each stage of the research, how they were resolved and some learning points will
be discussed.

During the course of the experiment the following factors proved they were key to the
success of the trained convolutional neural network models. These factors are listed as
follows;

1) The quality of the dataset

2) The set hyper parameters of the model such as;

� learning rate
� Batch size

3) The length of time used to train the neural network.

These three mentioned factors were the basis for some of the issues that had to be tackled
during the course of this research. In section 3.3, a reduction in the learning rate and an
increase in the batch size led to improved inference results for MobileNet SSD v1 and
MobileDet SSD models. The increase in batch size was done based on recommendation
from [43][41] which proposed that higher batch size could lead to better result. The Batch
size was increased for MobileNet SSD v2 but the learning rate left the same.[42] suggested
a reduction in learning rate.

As earlier mentioned in Section 1, this experiment seeks to develop a model that will be
able to classify and detect different classes of vehicles and should be small enough in
size to fit into a mobile device such as the coral USB accelerator used in this experiment.
Time was taken to ensure that the custom dataset contained all the classes of vehicles to
enable the achievement of the end goal which is, to be able to detect these vehicle types
and classify them. The newly created custom data set contained all the 11 classes and most
pictures in the dataset were heterogeneous in that most of them contained not just one
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vehicle class but contained as much as four to five classes in each picture.

4.1 Determining the Number of Training Steps

Looking at the results obtained from section 3.2, A higher number of epochs(50000) did
not necessarily translate to a better inference result for all the models. When looking at
figure 13 it can be seen that when the training steps had gotten to 20000 we had already
achieved minimum loss for mobilenet SSD version 1. This was also reflected in table 6
because the minimum loss after making changes to the hyper parameters was achieved
after 20000 epochs for MobileNet SSD v1.

The determination of the adequate number of training steps required for training a neural
network model is still an active area of research as some researchers still use a trial
and evaluate approach[44]. Despite the advances made in the field of neural network,
determining some of the required parameters such as how many epochs are required is
determined through a black box approach[45]. Therefore at the start of this research it was
difficult to come up with an exact number to fix for the model training. Hence the choice of
an experimental method. Based on an object detection tutorial on the coral website, where
it was advised that to train the last layer of a model, 500 epochs could be used hence for
this experiment training started with 1000 epochs. The coral website also recommended
that to train all layer, 50000 epochs could be used hence the decision to start the next
experiment in section 3.2 with 50000 epochs when the results seen in section 3.1 showed
that the loss was still high after 1000 steps for all three models.

The results obtained from section 3.1 helped deduce that more training steps were needed
to get a reduced loss value. Also the 3.2 helped note that 20000 training steps was adequate
for MobileNet SSD version 1 as increasing past that number could result to over-fitting the
trained model to the dataset[46] while more time was required for MobileNet SSD version
2 and MobileDet to achieve better results.

4.2 Hyper Parameters Adjustment (fine tuning the models)

The difference in results when section 3.2 and section 3.3 are compared goes a long way
to show that the model hyper parameters have a huge part to play in how well a trained
model turns out. However, there is no straight forward way to determine the optimum
hyper-parameters for a neural network model[45]. Mastering the art of understanding the
needed changes to be made sometimes requires years of expertise or trial and error method
could be adopted[45]. The output performance of the model, model training time are
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hugely dependent on hyper-parameters such as learning rate, batch size and weight decay
and their effects are tightly coupled with each other[45]. During the course of this research
using MobileNet SSD v1 as a case study, the below figures 27, 28 and 29 buttresses some of
the improvements in the classification and detection noticed when changes to the learning
rate and batch size was made.

Figure 27. Finetune MobileNet v1 Result comparison 1

Figure 28. Finetune MobileNet v1 Result comparison 2

Figure 29. Finetune MobileNet v1 Result comparison 3
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4.2.1 Batch Size Tuning

Batch size is an influential hyper parameter when configuring neural network for train-
ing[43]. During this research it was noticed that the increase in the batch size for MobileNet
SSD version 1 resulted in the model performing better. The batch size determines how
many images are used for training in one epoch and it impacts the time required for the
model to converge [43]. During the experiment in section 3.2. The experiment as carried
out in two python platforms as depicted in Table 7.

Table 7. Platforms Used for Tensor Flow API

Platform Hardware RAM(GB) Avg Time Per 100 Steps
Ubuntu Linux CPU 12 5sec
Google Colab Pro GPU 15 100secs

The batch sizes for all three models was 2 and the model training could be executed on a
Tensorflow API set up on a CPU based system with 12GB of RAM. When the batch size
was increased to 32 the training was executed on a Tensorflow API running on Google
Colab Pro with 15GB RAM because the CPU based TensorFlow API ran out of memory
during training. It was noticed that the time taken for every 100 training steps was about 3
to 5 secs with a lower batch size however when the batch sizes of the respective models
were increased the time for every 100 training step increased to approximately 100 secs as
can be seen in figure 30. The increase in batch size translated to a longer training time for
the same number of steps when previously executed with a lower batch size.

Figure 30. Increase in training step time due to batch size increase

From the results obtained in Section 3.3, an increase in the batch size led to improved
results for all three models however in varying degree but MobileNet SSD version 1
showed the best improvement with an increase in batch size. As specified in many research
papers [45][43] coming up with the best batch size for the task at hand requires some level
of experimental approach to achieve a batch size that will help the model converge and not
result in overfitting.
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4.2.2 Learning rate Tuning and Monitoring

Learning rates determine how much the weights in a neural network change in reaction
to an observed error in the training data[42]. [47] states that learning rate is the most
important hyper-parameter to be tuned when training deep neural networks. During the
experiment in section 3.3.1 the learning rate was reduced from 0.2 to 0.079 for MobileNet
SSD v1 and MobileDet which lead to improvement in the results shown in figure 28.
It was reduced based on discussion in [42] that a high learning rate doesn’t necessarily
translate to better results hence the reason to select a more conservative learning rate which
eventually provided better result. The learning rate of MobileNet SSD v2 was not modified
as it was considered to be moderate. [42] [47] stated the set learning rate determines the
convergence or divergence of the model being trained hence the importance of knowing
when to have a high or low learning rate.

In order to prevent over training of the models, the model loss values were monitored
during training to notice when the validation error starts to rise in order to stop training
based on recommendation from [46]. Data augmentation techniques such as random
horizontal flip and ssd random crop were employed to variate the data set during training.
The dataset was also sourced from different sources such as google and other private
sources in order to have a heterogeneous dataset.

4.2.3 SGD Optimizer Analysis

From Table 3 two of the selected models, MobileNet SSD v1 and MobileDet made use of
momentum algorithm for optimizing SGD while MobileNet SSD v2 made use of RMSprop.
Its noticed that both models with momentum optimizer achieved lower model loss values
and reached the value with fewer number of training steps when compared with the model
using RMSprop. This is reflected in the results shown in table 3.3.4, training steps column.
Also based on the inference results captured in section 3.3 it could be deduced that the
momentum SGD optimizer is better suited for the task at hand.
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5. Conclusion

In this work three convolutional neural network models were presented which are able to
detect and classify different vehicle types with varying degree of performance. Convo-
lutional neural network models were retrained to classify custom data classes such as 11
different vehicle types.

Based on the results obtained, MobileNet SSS v1 showed the best results in achieving
the task at hand however this does not imply that this model with the best result for this
work is better than MobileNet SSD v2 and MobileDet but has substantiated the notion
that developing a well trained neural network is determined by a number of factors as
shown in this work which include the dataset, the training time and the model’s set hyper
parameters. In the end, the results demonstrated that the tuning measures carried out during
this research worked in favor of MobileNet SSD v1.

The output of this work was tailored to be deployed on the coral USB accelerator and the
quantization of the trained model enabled the neural network to be deployed on the edge
device for inferencing. However the output models can be configured for deployment on
other edge computing devices for further test on its performance.

This work is unique because prior to the commencement of this research a neural network
model developed for classifying vehicle types for a low power device was not readily
available hence the output of this research could be used as a foundation for further research
such as developing a vehicle classifying model on other neural network frameworks aside
TensorFlow such as pytorch and caffe. Also, a novel CNN architecture could be developed
for the vehicle classification task unlike the transfer learning approach which was used for
this research. Another aspect for further research involves trying out new SGD optimizer
algorithms such as madgrad to see how it affects the model results.
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Appendix 2

0.2 GitHub Repository

The output files and code used for this project has been hosted in the below repository.

https://github.com/irohio/MasterThesisMay2021
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