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ABSTRACT 

This thesis addresses several issues in value at risk modelling and conditional variance 

estimation. Firstly, the aim of this thesis is to give a clear overview and evaluate the 

goodness-of-fit of selected nonlinear autoregressive volatility models in forecasting value at 

risk and to conclude whether using these models will bring significant advantages over 

calculating the value at risk with more naïve alternatives. Financial institutions among others 

could benefit from adopting a more complex method of computing value at risk, therefore this 

thesis is intended for further use in risk management and portfolio allocation problems. 

Secondly, this thesis analyses whether using Student-t distribution improves the goodness-of-

fit of selected conditional variance models compared to the Gaussian distribution. Thirdly, if 

the sample size has a clear impact on the forecasting results. The models used in this thesis 

are the GARCH, EGARCH, GJR-GARCH and ARMA model. 

In the first part of the paper, an overview of different value at risk and conditional 

variance models will be given together with their performance measurement techniques. Also, 

well known stylised properties of financial returns will be discussed and previous empirical 

studies analysed. The second part of the paper is devoted to an empirical analysis using 

nonlinear conditional variance models in estimating value at risk of different assets over 

several observation periods and distributions. 

The results of the empirical analysis confirmed the benefits of using more 

sophisticated volatility models over naïve alternatives. Also, conditional variance models 

estimated with the Student-t distribution provided more accurate results compared to the 

Gaussian distribution. Thirdly, it was not possible to conclude that the sample size has a clear 

effect on the accuracy of selected models. 

Keywords: volatility modelling, autoregressive models, volatility forecasting, GARCH, 

EGARCH, GJR, Value at Risk, VaR 

JEL Classification: C13, C53, C58, G15, G17  
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Heteroskedasticity 

GARCH – Generalised Autoregressive Conditional Heteroskedasticity 
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ISE – Istanbul Stock Exchange 
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MC Simulation– Monte Carlo Simulation 
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POF-test – Proportion of Failure test 

RMSE – Root Mean Squared Error 
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INTRODUCTION 

“It is not the strongest or the most intelligent who will survive but those who can best 

manage change.” 

Charles Darwin 

 

Robert Engle stated in his Nobel Lecture that the advantage of knowing about risks is 

that we can change our behaviour to avoid them. Of course it is not possible to avoid all risks, 

since it is tied to our everyday lives, but managing risk has become an inseparable part of 

financial decisions. The stock market crash in the late 1980s, the dot-com bubble of 2000, the 

financial crisis of 2007-2008 and numerous other events proved the need for trustworthy risk 

management models, as volatility reached new highs. The increased focus on risk 

management over the past decades has led to the development of various techniques and 

models, some more widely used than others. Value at risk is one of the financial risk 

quantifying methods that has been the cornerstone of the risk management revolution in the 

past decade. The method measures the worst expected outcome over a given horizon under 

normal market conditions at a given confidence level (Jorion 2001). The model is very 

intuitive, which is one of the reasons why it is widely used by financial institutions. It has also 

been accepted by the Basel Committee on Banking Supervision as a preferred approach to 

measuring market risk (Basel 2006). Despite the fact that there are several ways of calculating 

the measure, according to a survey by Perignon and Smith, most of the commercial banks that 

are using such models do so by calculating the historical value at risk and putting the same 

weight on all observations (Perignon and Smith 2009). This can prove troublesome if 

volatility fluctuations increase and the estimated value at risk would most likely 

underestimate the computed possible loss. This provides an incentive to search for more 

sophisticated value at risk models that capture the changes in the variance more accurately. 

Since the Autoregressive Conditional Heteroskedasticity model was developed by 

Engle in 1982, volatility modelling has been one of the most popular research subjects in 

financial time-series analysis (Bollerslev 1992). Over the years, several extensions to this 
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popular modelling strategy have appeared. Autoregressive volatility models can be used in 

various areas including portfolio allocation and optimisation, risk management problems and 

pricing financial options to name a few. Autoregressive conditional heteroskedasticity models 

are more dependent on recent variance information opposed to putting the same weight on all 

observations as for the simple historical average volatility. Considering that conditional 

variance shocks are usually followed by high volatility periods, using these autoregressive 

models could produce more accurate results compared to the simple historical volatility. 

Therefore, value at risk models could also benefit from using the nonlinear autoregressive 

volatility methods. 

This thesis addresses several issues in value at risk modelling and conditional variance 

estimation. The aim of this thesis is to give a clear overview and evaluate the goodness-of-fit 

of selected nonlinear autoregressive volatility models in forecasting value at risk and to 

conclude whether using these models will bring significant advantages over calculating the 

value at risk with more naïve alternatives. Financial institutions among others could benefit 

from adopting a more complex method of computing value at risk which is why this thesis is 

intended for further use in risk management and portfolio allocation problems. There were 

three research questions formulated in this thesis: 

1. Do generalised ARCH volatility models show better goodness-of-fit and forecasting 

accuracy than naïve alternatives when estimating conditional variance and VaR? 

2. Does using Student-t distribution show advantages in modelling conditional 

variance over Gaussian distribution? 

3. Does using larger sample sizes improve the goodness-of-fit and forecasting 

performance of conditional variance and value at risk models? 

In order to answer these research questions, different nonlinear volatility models were used in 

estimating value at risk, more specifically the generalised Autoregressive Conditionally 

Heteroscedastic (GARCH) model developed by Bollerslev (1986), the exponential GARCH 

(EGARCH) model introduced by Nelson (1991), the GJR-GARCH model developed by 

Glosten, Jagannathan and Runkle (1993) and the simple ARMA model by Whittle (1951). 

The reason for choosing GARCH models over several other methods used for forecasting 

volatility comes from previous researches including Bollerslev (1986), McMillan (2000), 

Goyal (2000), which show the superiority of these models over many others. The ARMA 

model was selected to compare the GARCH models to a simple alternative.  
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The empirical analysis focuses on calculating the value at risk of four different single 

assets over different samples and distributions. The DAX index (DAXR) represents equity, 

US 10Y Treasury note futures (TYR) represents fixed income, US Dollar index represents the 

movements in currencies and S&P GSCI Index represents the commodity asset class. The 

particular financial instruments were chosen since they are widely used as benchmarks in their 

asset class and are commonly traded. Asset classes behave differently in various economic 

cycles, which is why observing chosen models across several assets makes an interesting 

research subject. The calculations can be extended to a portfolio of assets, however in which 

case one should consider estimating correlations between these assets as well. Despite the fact 

that there are several studies on modelling conditional variance and value at risk, there are not 

many cross-asset analyses that combine the two. 

The paper is divided into four main parts. Chapter 1 gives an overview of the theory of 

risk management, focusing on Value at Risk and the different methods of calculating it. 

Chapter 2 analyses the stylised properties of financial returns and the background literature of 

volatility modelling and forecasting. Chapter 3 is dedicated to discussing the previous 

empirical studies on estimating VaR with nonlinear volatility models to see if the results in 

this thesis are in line with other research done on this topic. In Chapter 4, an empirical 

analysis is conducted using nonlinear conditional variance models for estimating value at risk 

across different assets, distributions and sample sizes. 
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1. RISK MANAGEMENT: VALUE AT RISK – A 

LITERATURE REVIEW 
 

"We have no future because our present is too volatile. We have only risk 

management..." 

William Gibson (Pattern Recognition)
1
 

 

 The instability of financial markets provides motivation for financial institutions, 

corporations and individuals alike to manage risk. The increased focus on risk management 

over the past decades has led to the development of various techniques and models, some 

more widely used than others. This research focuses on a financial risk quantifying model 

called Value at Risk (VaR form here forward), which has been one of the cornerstones of the 

risk management revolution in the past decade (Jorion 2001). The choice to choose VaR over 

several other methods came from its wide area of use in information reporting, controlling and 

managing risk, and since it is being adopted en masse by institutions all over the world (Ibid.). 

Still, according to Perignon and Smith (2009), most of the commercial banks that are using 

VaR models, do so by using the historical simulation method (discussed in chapter 1.2). 

Therefore, financial institutions could benefit from adopting a more complex method of 

computing VaR, which is one of the possible applications of this research. 

This chapter will cover the world of value at risk in four sections. The first section is 

devoted to the development of value at risk and the Basel framework. Section 2 discusses the 

different approaches to modelling value at risk, their formulas and empirical literature. 

Section 3 analyses the performance measurement of value at risk and conclusions will be 

discussed at the end of the chapter. 

 

 

                                                 
1
 Quote by William Gibson from his book „Pattern Recognition“, a New York Times bestseller, 2005, 

Berkley Publishing 
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1.1. The story of quantifying risk 

Philippe Jorion describes risk as the volatility of unexpected outcomes, generally the 

value of assets or liabilities of interest (Jorion 2001). The instability has been high in financial 

markets, which has raised the need for a measure that quantifies risk of possible loss of an 

asset or a portfolio. Value at Risk is one of those methods, measuring the worst expected 

outcome over a given horizon under normal market conditions at a given confidence level 

(Ibid.). The model is very intuitive, which is one of the reasons why it is widely used by 

financial institutions. The concept of VaR dates back to the late 1980s and early 1990s, when 

during the stock market crash billions of dollars were lost because of poor supervision and 

management of financial risk (Jorion 2001). In 1980, the SEC imposed haircuts for financial 

institutions due to the volatility in US interest rates, which were based on a statistical analysis 

of historical market data. These restrictions reflected the possible loss for a company over one 

month using the .95-quantile (Dale 1996). One can see that even though they were not called 

the value at risk at that time, it was a VaR measure. The development of RiskMetrics
TM

 by 

J.P.Morgan at 1994 popularised the use of value at risk, although by then many desks were 

already using it (Lang 2000). The Basel Committee approved the use of VaR for large enough 

banks to base their required regulatory capital in 1996 (Basel 1996)
2
. Moreover, from the 

introduction of Basel II in 2004, VaR became the preferred approach for measuring market 

risk (Basel 2006). 

Despite being widely used, there has been some criticism towards the model as well. 

Einhorm (2008) discussed the inefficiency of VaR in extreme situations, since the model 

focuses on given confidence levels and ignores the rare very large losses
3
. He compared the 

value at risk model to an airbag that works all the time, only to fail at a car accident. Although 

he may be somewhat right with his statement, there is still yet to be found a model that is 

more useful and widely adopted than VaR. 

 

                                                 
2
 It is not obligatory for US banks to use VaR as an internal regulatory capital measure (Perignon 2009). 

3
 For more information on the limits of VaR, see Roundtable: The Limits of VaR. Derivatives Strategy, 

April 1998. It consisted of: Kolman Joe, Michael Onak, Philippe Jorion, Nassim Taleb, Emanuel Derman, Blu 

Putnam, Richard Sandor, Stan Jonas, Ron Dembo, George Holt, Richard Tanenbaum, William Margrabe, Dan 

Mudge, James Lam and Jim Rozsypal. 
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1.2. Value at Risk models 

Value at risk measures the expected maximum (or worst) loss within a target horizon 

and a given confidence interval (Jorion 2001). There are three main methods to calculating 

value at risk, however each of them have many variations within. This section is going to give 

an overview of those three methods and discuss their strengths and shortcomings. Those 

approaches are the simple historical simulation, variance-covariance method and the Monte 

Carlo simulation. 

To compute the VaR of an asset or a portfolio, one would need the value of the 

portfolio, the volatility, confidence level and a predetermined time horizon. The formula for 

computing VaR, assuming that asset returns are normally distributed is brought in equation 

1.1 (Jorion 2001). 

                   (1.1) 

where   is the selected confidence level,   is the volatility or standard deviation of the 

portfolio and    is the initial mark-to-market value of the current portfolio. The historical 

method uses actual daily returns from a specified period in the past and identifies the loss that 

exceeds with a chosen probability.
4
 The VaR estimates could then be plotted to a histogram 

from which the loss that is exceeded under a specified probability is easily obtainable. The 

model works on the assumption that the historical price changes act as a good proxy for 

current portfolio returns, however which may sometimes lead to distorted VaR estimates 

(Dowd 1998). Figure 1.1 shows the S&P500 index return histogram and value at risk with 

probability of 5%. The historical simulation method is often used due to its simplicity as it 

does not include the correlations of assets, only aggregated portfolio returns are needed. 

Another benefit is the ability to account for heavy tails in the data since there is no assumption 

of normal distribution (Jorion 2001). According to a survey conducted by Perignon and Smith 

on the use of VaR in commercial banks for the year 2005, 73% of banks disclose their VaR 

method report using the historical simulation (Perignon and Smith 2009). This can prove 

troublesome, as the historical simulation method estimates the future possible loss based on 

past returns, taking into account only the events that have occurred during the analysed period 

and putting the same weight on all observations. If the volatility fluctuations would increase, 

                                                 
4
 Usually probability of 0.1, 0.05 or 0.01 is selected, however one ought to be careful when choosing a 

probability too low since it can make model validation difficult (Jorion 2001). 
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the historical simulation model would most likely underestimate the computed possible loss. 

Also, the sampling variation of the historical method is usually higher than for other methods 

if the sample size is too short (Jorion 2001). This provides a good motivation to search for 

improvements to the simple historical method. 

 

 

Figure 1.1 S&P500 index return histogram and Value at Risk 

Source: Compiled by the author 

The Monte Carlo (MC) Simulation
5
 method produces random outcomes for a specified 

set of risks. The process starts by specifying the financial variables and parameters like 

volatility and correlation, which can be derived from option prices or historical data. After 

defining the variables, fictitious price paths are simulated which form a distribution of returns. 

From that generated distribution, a VaR measure can be obtained. The MC method has similar 

properties as the historical simulation, however the hypothetical changes in prices are created 

by random draws instead of sampled from past data (Jorion 2001). One of the benefits of the 

MC method is that the returns are not assumed to be normally distributed, which is often the 

case in financial data. The model is also very flexible, being capable of including numerous 

                                                 
5
 Statistical method dating back to the 1930s and 1940s, which entails generating random outcomes 

according to a probability distribution and a set of input parameters. It is used in variety of problems in many 

fields of sciences (Maginn 2007). 
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exposures, like the time variation in volatility, extreme scenarios, specified cashflows etc. 

(Ibid). However, the computational time can be rather large when analysing portfolios with 

many assets. Also, one has to be careful when specifying assumptions as the estimated results 

may be distorted when done wrongly (Ibid.). 

The variance-covariance method (also sometimes analytical method or the delta-

normal method) assumes that the financial returns are normally distributed, which makes the 

computation relatively easy. To calculate the VaR figures, one has to estimate the variances 

and covariances of the standardised instruments in the portfolio
6
. The easiest is to obtain the 

statistics from the historical data. Together with the portfolio weighs of the standardised 

positions and the covariance matrix, it is possible to calculate the VaR estimates. The problem 

with this approach is that most of the financial returns have heavy tailed distributions (see 

subsection 2.1.2.), suggesting that the extreme values are more common than normal 

distribution presumes, which might lead to underestimating VaR (Jorion 2001). To improve 

the quality of the method, it is possible to conduct the delta-gamma version of the model. This 

is done by taking the second order approximations of the returns and adding a convexity 

coefficient to the equation (Damodaran 2007). The delta-gamma approach is sometimes used 

when calculating the value at risk of options, however it makes the calculations a lot more 

complex and therefore will not be used in this research. 

The three main methods were discussed referring to historical financial data, however 

it is possible to use forecasted volatilities and correlations in the computation of VaR for a 

search of improvement in the results. There have been several studies applying GARCH 

family models in VaR estimation, including Hung (2008), McMillan (2008), Vlaar (2000), 

Giot (2004) and Perignon (2008). However, it is important to keep the time horizon in mind, 

when using forecasted volatility in value at risk estimation. Financial institutions and 

investors, who have actively traded portfolios usually estimate a 1-day ahead forecast, 

whereas non-financial and institutional investors prefer longer horizons (Linsmeier 1996). 

Choosing a long-term forecast period entails some problems, which will be discussed in 

chapter 2, under volatility modelling. 

 

                                                 
6
 It is important for the instruments to be standardised to provide useful estimates. For example, a five-

year coupon bond could be broken down into five zero-coupon bonds (Damodaran 2007). 
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1.3. Value at Risk performance measurement 

For a model to be useful in practice, one has to know the accuracy of the outcome. The 

same applies for VaR models, since without proper validation we can never be sure we have 

reasonable risk estimates. The performance of value at risk models is measured by backtesting 

the results, which entails comparing the actual trading results to the risk measures generated 

by the model (Angelovska 2013). There are different ways to backtest a VaR model, one 

possibility is to use the Proportion of Failure test (POF-test) developed by Kupiec, which 

examines the losses that exceeded VaR (Kupiec 1995). The aim of the POF-test is to find out 

whether the number of exceptions is consistent with the confidence level (Ibid.). The number 

of parameters required to implement a POF-test is small and it is best conducted as a 

likelihood-ratio (LR) test
7
. The null hypothesis for this test is that the model is behaving well 

and the expected failure rate is not significantly different from the failure rate suggested by 

the confidence interval. The null hypothesis formula for the POF-test is brought in equation 

1.2 (Dowd 2006):  

              
 

 
     (1.2) 

where   is the number of exceptions,   is the number of observations,    is the observed 

failure rate and   is the failure rate suggested by the confidence interval. The formula for 

computing the test statistic is brought in equation 1.3 (Kupiec 1995): 

              
          

    
 

 
  
   

 
 

 
 
      (1.3) 

If the computed       statistic is larger than the critical value of the chi-squared distribution, 

the null hypothesis will be rejected and one can conclude the model to be inaccurate
8
 (Jorion 

2001). A shortcoming of the POF-test is that it only considers the frequency of exceptions and 

                                                 
7
 The Likelihood-ratio (LR) test is a statistical test to compare models by calculating the ratio between 

the maximum probabilities of results using two alternative hypothesis. The decision whether to accept or reject 

the null hypothesis is based on the value of the LR-statistic. If the value is too large compared to the critical 

value, the null hyphothesis is rejected. The likelihood-ratio test is widely used and very powerful according to 

statistical decision theory (Jorion 2001).  
8
 Chi-squared distribution (χ² distribution) is a probability distribution that is widely used in hyphothesis 

testing and confirming the goodness-of-fit of statistical models (Jorion 2001). 
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not the time they occur. This may prove to be a problem if the model produces clustered 

results (Campbell 2005). 

Another backtesting method, also developed by Kupiec, is the Time until first failure 

(TUFF) test, which measures the time it takes for the first exception to occur (Kupiec 1995). 

The assumptions are similar to the previously described POF-test and the likelihood-ratio test 

statistic is described in equation 1.3: 

               
         

 
 

 
    

 

 
 
        (1.3) 

where   denotes the time it takes for the first exception to occur. Similarly to the POF-test, if 

the test statistic is below the critical value, the model is accepted as accurate and if not, the 

null hypothesis is rejected. There has been some criticism toward the TUFF method for 

exhibiting too low power to identify bad VaR models (Dowd 1998), which is why it will not 

be used in this research.  

The two backtesting models did not take into account the clustering of VaR 

violations
9
, which is important when modelling risk with autoregressive volatility. Large 

losses that appear in succession tend to be more dangerous than individual exceptions 

(Christoffersen 2004). The Christoffersen’s Interval Forecast Test, developed by 

Christoffersen, takes into account the frequency of VaR violations as well as the time when 

they occur (Christoffersen 1998). The log-likelihood testing framework is the same as for the 

models proposed by Kupiec, but a separate statistic for independence of violations is added 

(Jorion 2001). The computational procedure
10

 is slightly more difficult compared to the two 

previously described models as seen from equation 1.3: 

             
                    

      
     

         
        

    (1.3) 

where     is the number of days when condition   occured assuming that condition   occurred 

on the previous period,   is the probability of registering a violation conditional on state   the 

day before. As one can see from the equation, the model takes into account the consistency of 

exceptions to the VaR model. It is also possible to combine the       statistic and the 

Kupiec’s POF-test, which would allow one to examine whether the violation was due to 

                                                 
9
 During 1998, J.P.Morgan experienced 20 exceptions to its VaR model and half of which were closely 

clustered. As a result, the bank revised its VaR models substantially. (Jorion 2001). 
10

 Discussed in Christoffersen (1998) and Jorion (2001) in more detail 
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inaccurate coverage or clustered exceptions, however it is advisable to always run the tests 

separately as well (Campbell 2005). 
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2. VOLATILITY MODELLING AND FORECASTING – A 

LITERATURE REVIEW 
 

Chapter 1 discussed the theory and methods of value at risk modelling and 

performance measurement. Three main methods for calculating value at risk were presented: 

the historical simulation method, the Monte Carlo simulation method and the variance-

covariance method. One of the most important inputs for calculating value at risk is the 

standard deviation. Most commonly the historical average volatility is used, however 

considering that conditional variance shocks are usually followed by high volatility periods, 

using autoregressive models could produce more accurate results compared to the simple 

historical volatility. Therefore, value at risk models could also benefit from using the 

nonlinear autoregressive volatility methods. 

This chapter will cover the vast literature of volatility modelling and forecasting from 

the earliest papers, dating back decades, to newer research papers with more recent data. The 

aim of this chapter is to discuss the stylised facts of financial returns and give an overview of 

the theory on volatility modelling and forecasting. This chapter will be divided into four 

sections. Section 2.1 discusses the stylized properties of financial returns, Section 2.2 analyses 

the alternative volatility modelling methods, Section 2.3 is dedicated to ARCH volatility 

models and Section 2.4 discusses the forecasting performance measurement. 

2.1. Stylized properties and statistical issues of financial returns 

Over the last decades, from the works of Mandelbrot (1963) and Fama (1965), many 

academics have explored the properties of financial asset dynamics, discovering regularities 

in the financial markets. One may think that since the information influencing the returns of 

different asset classes varies, the markets will exhibit different properties. Besides, how could 

the properties of milling wheat futures be similar to the ones of GBP/USD exchange rate or 

Apple Inc stock? However, numerous studies, including Cont (2001), Malmsten and 
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Teräsvirta (2010), show that from a statistical point of view, the asset prices do have 

significant similarities. Five of these stylized properties will be discussed in this section to set 

an important framework for this research. The five stylized facts are volatility clustering, 

heavy tails, return asymmetry, leverage effect and absence of autocorrelation. 

2.1.1 Volatility clustering 

Volatility is the measure of amplitude and frequency of price fluctuations over a time 

period. The research in volatility clustering dates back to Mandelbrot (1963) and Fama 

(1965), indicating that the volatility changes over time and showing the positive 

autocorrelation in the lags of daily commodity returns as well as stock index returns. This was 

also the finding of Engle and Bollerslev (1986) with weekly USD/CHF spot prices, Engle and 

Bollerslev (1993) with USD, Deutsche mark and GBP as well as Ding and Granger (1996) 

with S&P500 stock index returns, including numerous other researches. Therefore stating that 

large price changes tend to be followed by large price changes and small price changes are to 

be followed by small price changes. This kind of persistence has been the cornerstone of 

volatility modelling over the years.  

2.1.2 Heavy tails 

Another stylized property of financial returns is that in most cases the probability 

distribution is not Gaussian
11

 (normal distribution) in the sense that the returns have more 

mass in the centre and have fatter tails. This means the unconditional probability distributions 

of financial returns are leptokurtic. Mandelbrot (1963) addressed the insufficiency of using a 

normal distribution in modelling the financial asset returns as well as many other authors, 

including Fama (1963) and (1965), Mandelbrot and Taylor (1967) to name a few. Analysing 

the heavy tails has been an important subject in risk management and is necessary to take into 

account when calculating Value at Risk. Mandelbrot (1963 and 1997) used a method to 

measure the tails by representing the sample moments as a function of sample size. Jansen 

and de Vries (1991), Longin (1996) and some others have used the extreme value method 

instead, analysing the large movements in the data. No matter the method, heavy tails and 

                                                 
11

 Gaussian distribution, also known as the bell curve, first published by Carl Friedrich Gauss (1809) in 

his monograph "Theoria motus corporum coelestium in sectionibus conicis solem ambientium" 
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leptokurtosis in financial returns is something that needs to be addressed and will be discussed 

later in this paper to see if our data confirms this stylised fact. 

2.1.3 Return asymmetry 

Return asymmetry in financial data means that large downward movements or 

drawdowns in asset prices do not have equally large upward movements. Lins (2009) found in 

his paper that for stocks and indices, it typically takes longer to gain 5% than to lose 5%. 

Jensen observed the returns of DJIA to see if the probability to find relatively large negative 

returns is higher than positive returns for short investment horizons. He concluded that the 

downward movements are faster than the upward ones, therefore indicating a gain-loss 

asymmetry in the data (Jensen 2003). There have also been articles finding that return 

asymmetry is less clear in emerging markets and in individual stocks compared to indices that 

are mostly used (Karpio 2006). Cont found in his paper that this property is not particularly 

strong in exchange rates as well, as there is a higher symmetry in up and down moves (Cont 

2001). Despite the different findings, there are volatility forecasting models that take this 

stylised property into account and will later be analysed and compared to other models to see 

if there is significant improvement in the output. 

2.1.4 Leverage effect 

Another stylised property of financial returns is the leverage effect, which is related to 

the return asymmetry. Leverage effect means that the volatility of an asset is negatively 

correlated with the returns of that asset (Cont 2001). This was first analysed by Black (1973, 

1976), who found that volatility tends to increase after large downward movements in stock 

prices. There can be many explanations for why this effect exists, one discussed by Andersen 

(2005) is the effect of “volatility feedback”, stating that “heightened volatility requires an 

increase in the future expected returns to compensate for the increased risk, in turn 

necessitating a drop in the current price to go along with the initial increase in the volatility” 

(Andersen 2005). On the other hand, Bouchaud (2001) suggests that the leverage effect could 

in fact arise from simple panic on the market following a negative price shock. There is 

evidence of such an effect across assets, however Pagan (1996) found it to be less clear for 

interest rates. Nevertheless, this phenomenon could bring problems when modelling and 
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forecasting volatility with simple, more naive models. However there are models developed to 

take the leverage effect into account, which will be discussed later in this paper. 

2.1.5 Absence of autocorrelation 

The last stylized fact discussed in this section is the absence of autocorrelation. That 

means there are no significant correlations in price increments and financial asset returns. 

This statistical property is often cited as support for the efficient market hypothesis (Cont 

2001). The intuition for the absence of autocorrelation is discussed by Fama (1991), stating 

that if price changes would be correlated, then a statistical arbitrage would be available with 

positive expected earnings, which will therefore reduce correlations. He goes on to argue that 

autocorrelation may be present in very short time scales, since the market has to react to new 

information. Cont (1997) brings out in his research that the autocorrelation of the price 

changes decays to zero in a few minutes, which is why it is safe to assume it to be zero for 

practical purposes. However when looking at weekly and monthly returns, some 

autocorrelation might be present (Cont 2001). 

2.2. Alternative volatility modelling methods 

There are numerous methods for modelling volatility, the list of alternative volatility 

models described in this subsection is not conclusive. Some examples of naive models were 

chosen to illustrate the easiest alternatives to ARCH-family models. 

The most straightforward possibility for volatility estimation is to use the simple 

historical volatility model, which can be measured by the variance or standard deviation of 

returns over a chosen period. The result can then be used as the volatility forecast for 

subsequent periods. This method is widely used in option pricing models for example Black 

and Scholes (1973). The standard deviation of returns is computed using equation 2.1 

   
 

   
        

 

   
     (2.1) 

where   is the volatility of an asset;    is the return of an asset over the period t; T is the 

number of observations and   is the average return over period T. 

The simple moving average process is brought in equation 2.2 
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     (2.2) 

where the forecasted volatility for the next period is   ; and the number of observations 

included in the simple moving average is n. 

Several authors including Merton (1980), Potebra and Summers (1986), French, 

Schwert and Stambaugh (1987) and Schwert and Seguin (1990) have used this technique to 

compute monthly stock return variance estimates by taking the average of the squared daily 

returns. However, Bollerslev (1992) argues that this does not make efficient use of the data. 

The main shortcoming of using a simple historical model is the trade-off between examining a 

large sample and trying to avoid including data that is too old and is therefore obsolete 

(Figlewski 2004). In periods of low volatility, the historical model could produce fair results, 

however when shocks occur, the estimate moves further away from reality. An extension to 

the described simple moving average process is the autoregressive moving average (ARMA) 

model
12

, first described by Whittle (1951), which combines the autoregressive AR(p) and 

moving average MA(q) parts of asset returns. The ARMA(1,1) model is brought in equation 

2.3 

                    (2.3) 

where L is the lag operator;    is the observation variable, therefore         ;    is the 

white noise disturbance term, therefore          and   is the constant term. There are 

many variations to the general ARMA model
13

, however which will not be discussed further 

in this research. 

Another possibility is to use the exponentially weighted moving average of historical 

volatility which increases the impact of more recent observations on the forecast. The EMWA 

model is specified in equatiation 2.4: 

    
     

         
       (2.4) 

where lambda 0       is the decay factor, which typically takes a value between 0.94 and 

0.97 (Ding 2010). One has to note that a single volatility forecast applies to all future time 

                                                 
12

 The ARMA(p,q) model was popularised by George E. P. Box and Gwilym Jenkins in 1971 (Box and 

Jenkins 1970, revised 1976). 
13

 Mostly used variations to the original ARMA(p,q) include ARIMA, vector ARIMA (VARIMA), non-

linear ARMA (NARMA), frictional ARIMA (FARIMA), seasonal ARIMA, ARIMAX and many others. For 

further research in this field see Hannan, Deistler and Manfred (1988), Schwert (1989) and Xiong (2002). 
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horizons. The EWMA volatility estimation approach is supported by RiskMetrics
TM;14,15

, a set 

of techniques and data to measure market risks in portfolios of different assets and their 

derivatives (Lang 2000). 

A different approach is to measure the implied volatility, which can be derived from 

options valuation, for example the Black and Scholes (1973) formula. Naturally, this volatility 

is dependent on the expectations of market participants and can therefore be called the 

markets forecast of volatility. This method has been considered by Hsieh Manas-Anton 

(1988), Jorion (1988), Lyons (1988) and Engle and Mustafa (1992) to name a few. Bollerslev 

(1992) states in his research, that although the volatility estimates could be rather accurate, 

not all assets have exchange traded options. Also, problems could arise from market 

inefficiencies and higher spreads. 

2.3. ARCH volatility forecasting models 

Autoregressive conditionally heteroscedasticity (ARCH) models, introduced by Engle 

(1982), are widely used non-linear models that take into account the persistence of volatility. 

In ARCH(q) models, the variance is dependent on lagged squared deviations where q is the 

number of lags included in the model. Since the introduction of the ARCH model, several 

hundred research papers applying this modelling strategy to financial time-series data has 

already appeared (Bollerslev 1992). However, empirical evidence, including Bodurtha and 

Mark (1991) and Attanasio (1991), show that to catch the dynamic of conditional variance, 

one has to select a high number of lags (high ARCH order). This can make the calculations 

burdensome, since a large number of parameters have to be estimated. The autoregressive 

conditional heteroscedasticity model is specified in equation 2.5, where the variance is 

forecasted as the moving average of past error terms (Engle 2012), 

  
         

      (2.5) 

                  (2.6) 

                                                 
14

 RiskMetrics Technical Document description (Riskmetrics 1996). 
15

 RiskMetrics
TM

 was released in 1994 and was spun off from J.P.Morgan four years later in 1998. Over 

the years it has become an internationally-accepted standard for measuring VaR (Lang 2000). 



24 

 

where yt is an asset return and zt belongs to an i.i.d. process as an unobservable random 

variable, with variance equal to 1 and mean equal to 0;                      . 

Conditional variance is denoted by   
  in the equation and parameters         . The 

formula for error term, denoted as   , is shown in equation 2.5. The specified model is an 

ARCH(1) model, with one lagged residual term, however any number of lags can be used
16

. 

As seen from the equation, the forecasted error variance at time t is based on the information 

from the previous period t – 1, making the model autoregressive. Also, knowing the past 

errors, the model leaves no uncertainty on the estimated squared error at time t (Engle 2012).  

2.3.1 GARCH model 

Four years after the previously described ARCH model by Engle (1982), an extension 

was developed by Bollerslev (1986), called the generalised autoregressive conditionally 

heteroscedastic (GARCH) model. The proposed model was a solution to the high-order 

problem in ARCH, since the generalized model includes lagged squared deviations and 

lagged variances, reducing the number of estimated parameters. The most used form of this 

model is the GARCH(1,1) model, however it can be extended to a GARCH(p,q) formulation 

with q lags of the squared error and p lags of the conditional variance. But according to 

Bollerslev (1988) and numerous other researches, a general GARCH(1,1) model is found to 

suffice in most applications. 

ARCH models are very widely used in time-series analysis, possibly for their 

simplicity and goodness-of-fit. GARCH is the generalised form of the ARCH model. In 

GARCH(1,1), the conditional variance is also dependent on its own previous lags, but has 

decreasing weights that never go completely to zero (Engle 2012). An advantage of GARCH 

models is that the returns are not assumed to be Gaussian, solving the heavy tails problem (see 

subsection 2.1.2.), also the model is able to account for volatility clustering (Bauwens 2012). 

The equation is brought below (equation 2.7), 

      
         

           
     (2.7) 

                                                 
16

 Empirical evidence, including Bodurtha and Mark (1991) and Attanasio (1991), show that often a 

large number of lags will be needed to catch the dynamic of conditional variance, however to reduce the number 

of parameters, an ad hoc linearly declining lag structure was often imposed in some earlier applications. For 

more information see Engle (1982), Engle (1983) and Bollerslev (1992). 
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where   
  is the conditional variance; parameters are denoted as  ,   and  , where   is the 

long-term average value;      
  is the volatility of the previous period and          

  is the 

fitted variance from the previous period (Andersen, 2005). The positivity of   
  is ensured by 

a restriction that parameters           and    .  

The estimation process of this model is fairly simple, the maximum log-likelihood will 

be used. Although it is an efficient model, there are some problems arising. Figlewski (2004) 

proposed three main shortcomings of this model: the impacts of the shocks are independent of 

its sign, therefore not taking into account the asymmetry in the data; the models require a 

large number of observations to behave well; long horizon forecasts are not as informative 

since the model converges to the long-run variance. These limitations of the GARCH model 

will also be tested with the data used in this research, to see whether these shortcomings are 

evident or not
17

. 

2.3.2 GJR-GARCH model 

The GARCH model proposed by Bollerslev (1986) assumes that positive and negative 

shocks of the same magnitude will influence the future conditional variances identically. This 

comes from squaring the lagged error and therefore losing the sign of the lagged residuals. 

However, past researches including Nelson (1991) and Glosten (1993) show that there are 

asymmetric properties present in financial data, with negative shocks resulting in larger future 

volatility (see subsection 2.1.3. and 2.1.4.) compared to positive price shocks. There are some 

models that address this asymmetry and leverage effect, two of which will be used in this 

paper. 

GJR-GARCH (GJR)
18

 model developed by Glosten, Jagannathan and Runkle (1993) is 

an extension of GARCH where an additional term is added to account for asymmetries in the 

data. The additional ARCH term is with the sign of the past innovation and assigns stronger 

impact to the past negative volatility shocks on the future conditional variances. The formula 

for GJR(1,1) model is brought in equation 2.8: 

                                                 
17

 For more extensive research on GARCH(p,q) models, see Bollerslev et al.(1992), Bera and Higgins 

(1993), Bollerslev et al. (1993), Diebold and Lopez (1996), Pagan (1996), Palm (1996), Shephard (1996), 

Giraitis et al. (2006), Nakatani and Teräsvirta (2009). 
18

 Also known as TARCH for Threshold ARCH, developed by Zakoian (1994). 
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                           (2.8) 

where I is the indicator function, a dummy variable, which takes a value of 1, when        

and value of 0, when        (Andersen, 2005). The coefficient of the asymmetry term is 

denoted as  , and it is seen from the equation that when    , negative shocks will have a 

larger impact on conditional variance than positive shocks. Also one can notice that 

GARCH(1,1) model is nested inside the GJR(1,1) model, therefore if there are no leverage 

effects (coefficients are zero), then the model reduces to the GARCH(1,1) model. That means 

it is possible to test these models against each other with the likelihood ratio test
19

, which 

however is not the purpose of this research. 

2.3.3 EGARCH model 

Another asymmetric generalized ARCH model used in this paper is called the 

exponential GARCH (EGARCH) model, introduced by Nelson (1991). This model uses 

logarithmic form of conditional variance and accounts for both magnitude and sign of the 

volatility shock. The model is described as EGARCH(p,q), with q lags of the squared error 

and p lags of the conditional variance just like the generalized ARCH model and similarly, the 

EGARCH(1,1) formulation is mostly used due to less computational difficulty and goodness-

of-fit based on empirical evidence (Nelson 1991). The formula for EGARCH(1,1) model is 

brought in equation 2.9 (Andersen and Bollerslev 2006): 

           
                                             

            (2.9) 

where   
  is the conditional variance,               

   is the fitted variance from the previous 

period and          
     (Andersen, 2005). Unlike the generalized ARCH model, there are no 

restrictions on the parameters   and   for the conditional variance to be nonnegative due to 

the logarithmic variance. Similarly to the previously described GJR-GARCH model, values of 

the leverage term     assignes a larger impact for negative shocks on the conditional 

variance. According to research by Andersen (2006), EGARCH model can often be somewhat 

more difficult to estimate and analyze numerically compared to other models, since the 

interest is in point forecasts for     
 , not          

  . The three previously discussed ARCH 

                                                 
19

 A statistical test proposed by Cai, Fan and Yao (2000) and Fan, Zhang and Zhang (2001), that is used 

to test the goodness-of-fit of two models through hypothesis testing. 
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models will be estimated on the data and results analyzed later in the paper together with the 

comparison of the models. 

2.3.4 Other ARCH models 

The number of ARCH models developed over the years is vast, some more widely 

used than others. The aim of this subsection is not to give an overview of all the models 

developed, rather than mention some more remarkable extensions to the general ARCH 

model. 

The three ARCH models discussed in Chapters 2.3.1-2.3.3 all imply that the shocks to 

the conditional volatility decay at an exponential rate. They can therefore be called short 

memory volatility models. Since in many occasions the forecasted period sought after is 

longer than one period ahead, researchers have tried to model long-memory volatility models. 

One of those models proposed by Baillie, R. T., Bollerslev, T. and Mikkelsen, H. O. (1996) is 

the Fractionally Integrated GARCH (FIGARCH) model, where the volatility forecasts will 

decay at a slow hyperbolic rate. This makes the forecasts of longer horizons more accurate 

compared to regular models. Fractionally integrated EGARCH (FIEGARCH) developed by 

Bollerslev and Mikkelsen (1996) has similar properties, but introducing logarithmic 

conditional variance to the equation. 

Other considerable extensions to the ARCH family models include the threshold 

GARCH model (TGARCH) by Zakoian (1994), the AGARCH by Engle (1990), the IGARCH 

by Engle and Bollerslev (1986), the NGARCH of Higgins and Bera (1992), APARCH model 

proposed by Ding, Granger, and Engle (1993), the H-GARCH of Hentshel (1995), NA-

GARCH and the V-GARCH models suggested by Engle (1993). 

2.4. Forecasting performance measurement 

There are many methods to evaluate the performance of econometric models. In 

simple regressions, R
2
, the standard forecast criteria is often used. However, this is not 

appropriate for volatility models according to Andersen (1998) due to the “inherent noise in 

the return generating process”. This calls for a different approach. In order to measure the 

performance of selected models, an appropriate benchmark should be selected. In this thesis, 
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realised volatility will be used for that purpose, since it provides a natural benchmark for 

model evaluation, it is easily computable and at the same time very intuitive. The formula for 

calculating realised volatility is in equation 2.10, 

           
 

 
   

  
        (2.10) 

where RV is the realised volatility, m is the  number of trading days in a year (usually 252), t 

is the counter representing a trading day, n is the  number of trading days in the 

measurement period and Rt is the continuously compounded daily returns. The daily returns 

used in the realised volatility equation as well as estimating the models, are calculated 

logarithmically (equation 2.11), 

    
  

  
      (2.11) 

where R represents the continuous return of an asset in period T, S0 is the initial price and ST is 

the price at time T. Since realised volatility depends on past information, it is not suitable for 

out-of-sample forecast evaluation. However, when modelling volatility, it is possible to take 

that into account and decrease the period used, keeping some of the data for later evaluation 

or just obtain additional, more up to date information when possible. 

In addition to evaluating the forecasting ability for selected models, the comparison 

between them is also of interest. For that reason, the root mean squared error (RMSE)
20

, 

Akaike information criterion (AIC) and Bayesian information criterion (BIC) will be 

computed. The formula for RMSE is brought in equation 2.12, 

      
 

 
          
 
        (2.12) 

where    is the observed volatility on period t,     is the volatility forecast and N is the number 

of days in the data set (Ladokhin 2009). The root mean squared error measures the error in 

terms of average deviations. According to Ladokhin, RMSE is a very popular error function 

among practitioners, but is not always the best measure when comparing models Ladokhin 

(2009). When doing the latter, calculating the Akaike information criterion is a widely used 

                                                 
20

 See Poon (2005) for more information on different error functions 
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method. The formulation for Akaike information criterion, introduced by Akaike (1974)
21

 is 

in equation 2.13, 

                   (2.13) 

where k is the number of parameters in the model and L is the maximised value of the 

likelihood function for the model. Akaike information criterion makes adjustments to the 

likelihood function to take into consideration the number of parameters, which might be 

different across models. Another widely used method to compare models is the Bayesian 

information criterion, developed by Schwarz (1978). The BIC formula
22

 is shown in equation 

2.14, 

                        (2.14) 

where L is the maximised value of the likelihood function, n is the number of observations 

and k is the number of parameters to be estimated. 

To measure the goodness-of fit of selected models as well as compare the models to 

each other, the correlation between the modelled volatility and realised volatility is sometimes 

computed. The equation for calculating the correlation for time-series data is brought in 

equation 2.15, 

         
                 

    
    (2.15) 

where X and Y identifes the two time-series,    is the standard deviation of values in time-

series X and    is the standard deviation of values in time-series Y. E(X) and E(Y) represent 

the mean values of time-series data values from X and Y (Sayal 2004). 

                                                 
21

 For further reading about AIC, see Anderson (2008) and Liu, Yang (2011). 
22

 For limitations of the BIC formula, see Giraud (2014). 
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3. RESULTS OF EMPIRICAL STUDIES 

Since the early 1990s, when value at risk started to gain acceptance among 

practitioners, there has been a search for ways to improve the risk quantifying measure. There 

are numerous studies addressing this issue and backtesting different variations of VaR models 

across assets. Chapter 1 analysed three main methods for calculating value at risk and 

standard deviation of financial returns was a key variable in all of them. Instead of using 

simple historical average volatility, which according to Bollerslev (1992), Figlewski (2004) 

and numerous other studies underestimates the standard deviation in high volatility periods, 

one could use more sophisticated models in search of better VaR estimates. Chapter 2 

discussed the developments in volatility modelling over the last three decades and confirmed 

the benefits of using autoregressive models over more naïve methods. This chapter is going to 

give an overview of the results in empirical studies estimating the value at risk with ARCH 

volatility models and the empirical evidence will later be compared to the results of this thesis 

to see whether they reach the same conclusions or not. 

There have been several studies applying ARCH family models in VaR estimation, 

some selected research papers are brought in Table 3.1 together with the models, datasets and 

conclusions withdrawn from the analysis. The list is not conclusive, however these papers 

have been selected for their contribution on the topic, interesting results and differences in 

datasets. Most of the previous researches in Table 3.1 use the variance-covariance method of 

estimating value at risk and some do so by ignoring the covariances between the assets in the 

portfolio. This can prove to be a problem in some cases, however according to Lucas (2000), 

the more sophisticated VaR models based on the estimates of variance-covariance matrices do 

not perform significantly better compared to univariate value at risk models that only require 

conditional variance estimates. 

One issue that was addressed by some of the researchers was the size of the sample. 

Hendricks (1996), Danielsson (2002) and Vlaar (2000) found that increased sample size 

generated better VaR results. On the contrary, Frey and Michaud (1997) and Hoppe (1998) 

argued smaller amount of data to be more accurate due to better capturing the behavioural 
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change in the trading activity (Hoppe 1998). Angelidis, Benos and Degiannakis (2004) 

conducted a research that included numerous different GARCH variations in VaR estimation 

process on five popular equity indices, where one of the goals was to analyse the sample size 

problem (Angelidis 2004). A rolling sample of 500, 1000, 1500 and 2000 observations 

showed no significant differences in the model performance. Nevertheless this is an issue 

worth addressing when modelling VaR. 

Table 3.1 Empirical studies on VaR estimation 

Author (year) Model Dataset Conclusions 

Angelidis (2004) GARCH variations 5 equity indices: S&P500, 

NIKKEI 225, DAX30, 

CAC40, FTSE100 

EGARCH outperformed 

others; no significant 

differences in sample sizes 

Aydin and Korkmaz 

(2002) 

GARCH (1,1), 

EWMA 

ISE-30 index GARCH (1,1) outperformed 

EWMA 

Bali (2007) 10 popular GARCH 

variations 

Daily S&P 500 data from 

1950-2000 

EGARCH best overall 

performance 

Berkowitz and O’Brien 

(2002) 

ARMA (1,1), 

GARCH (1,1) 

Historical data of six banks GARCH outperformed 

ARMA 

Engle (2001) ARCH and 

GARCH  

Portfolio of Nasdaq, DJIA, 

10-year treasury bonds 

Both models performed very 

well 

Frey and Michaud (1997), 

Hoppe (1998) 

ARCH models Variety of datasets Smaller sample size leads to 

more accurate VaR estimates 

Galdi (2007) EWMA, GARCH, 

Stochastic volatility 

Preferred shares of  

Petroleo Brasileiro SA 

EWMA suffered fewer 

violations than GARCH 

Giot and Laurent (2003) ARCH models Six commodities GARCH performed well, 

complex APARCH was 

superior 

Hendricks (1996), 

Danielsson (2002), Vlaar 

(2000) 

ARCH models Variety of datasets Increased sample size 

generated better VaR 

estimates 

Jansky and Rippel (2011) ARMA(q), 

GARCH, EGARCH 

Six world stock indices 

from 2004–2009 

GARCH and EGARCH 

outperformed ARMA 

McMillan et al (2008) GARCH models Euro exchange rate 

intraday data 

GARCH outperformed more 

complex models  

Orhan (2011) GARCH (1,1) Six ISE indices before and 

during financial crisis 

GARCH(1,1) behaved well 

during the crisis 

Source: Compiled by the author 

 Majority of research papers that compared nonlinear volatility models found GARCH 

outperforming other alternatives. The performance measurement was often done by 
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comparing the AIC and BIC of volatility models or POF, TUFF and Christoffersen’s Interval 

Forecast Test of value at risk estimates (see section 1.3 and 2.4). Aydin and Korkmaz 

analysed the VaR estimates for Istanbul Stock exchange index (ISE-30) using GARCH(1,1) 

and EWMA (used in Riskmetrics
TM

) as volatility inputs and concluded that the first 

outperforms the latter (Aydin and Korkmaz 2002). The same result was reached by Berkowitz 

and O’Brien (2002) and Jansky and Rippel (2011) when comparing the GARCH model with 

ARMA. These papers used the returns of several banks and indices as samples, but a different 

conclusion was made by Galdi (2007) when using the data of a single stock (Preferred shares 

of Petroleo Brasileiro SA). Galdi (2007) concluded, that although GARCH(1,1) model 

behaved well, the EWMA model suffered fewer violations compared to the generalised 

ARCH formula. There has not been many papers on estimating value at risk using the returns 

of single stocks, however the good performance of the GARCH volatility model seems to be 

evident in most cases.  

 Another popular extension of the ARCH family is the EGARCH model, which uses 

the logarithmic form of conditional variance and accounts for both magnitude and sign of the 

volatility shock (see subsection 2.3.3). It has been found effective in high volatility periods, 

where good VaR estimates are vital. Bali (2007) analysed the value at risk of S&P500 using 

ten most popular GARCH variations over the period of 1950-2000 (Bali 2007). The 

observation period is long, containing several shocks to the market and different economic 

cycles. The EGARCH(1,1) model outperformed other variations, capturing the conditional 

variance most accurately. Angelidis conducted a similar paper on five equity indices 

(S&P500, NIKKEI 225, DAX30, CAC40, FTSE100) and reached the same conclusion 

(Angelidis 2004). Despite EGARCH being often favoured during high volatility periods, 

Orhan found GARCH(1,1) capturing the variance effectively as well when he observed the 

VaR estimates on six Istanbul Stock Exchange indices before and during the financial crisis 

(Orhan 2011).  

3.1. Conclusions  

Empirical studies have not resolved the issue of appropriate sample size and do not 

agree on the most effective volatility models for estimating value at risk. The sampling 

periods and datasets are different and further research on this topic is necessary. Nevertheless, 
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the generalised ARCH model seems to be performing well and even outperforming many 

alternative models according to several papers. During periods of high volatility, the 

exponential GARCH has proven useful, since it accounts for both magnitude and sign of the 

volatility shock, capturing the conditional variance more accurately than other models. 

It should also be noted that there has not been many cross-asset analysis conducted on 

this topic. Most researchers focus on a stock index or list of indices, not comparing the results 

of different asset classes, which can be beneficial when computing value at risk on a well 

diversified portfolio. 
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4. VALUE AT RISK USING FORECAST VOLATILITY – AN 

EMPIRICAL ANALYSIS 
 

The aim of this research was to evaluate the goodness-of-fit of nonlinear 

autoregressive volatility models in estimating value at risk. So far, the thesis researched and 

analysed the value at risk and volatility modelling techniques as follows. Chapter 1 presented 

the literature review and necessary tools for estimating value at risk. Chapter 2 discussed the 

stylized facts of financial returns and the theory of volatility modelling and forecasting. The 

empirical results of previous studies on modelling value at risk with forecasted nonlinear 

autoregressive volatility models was brought in Chapter 3, raising several interesting research 

problems. There are three main research questions raised in thesis. Firstly, whether using 

sophisticated volatility models brings significant advantages over using more naïve 

alternatives; secondly, if using Student-t distribution over Gaussian distribution improves the 

goodness-of-fit of selected models and thirdly, if the number of observations have a clear 

impact on the forecasting results. Numerous previous empirical analysis found GARCH(1,1) 

volatility model outperforming other alternatives, hence the comparison between different 

models in this thesis as well. Also, the sample size issue raised by some academics will be 

tested with 500, 1000 and 2000 observations to see whether the results differ significantly. 

This chapter is divided into seven sections, from describing the data and models to 

evaluating the estimated conditional variance and value at risk models as well as discussing 

the results. In the end of this chapter, a conclusion will be made to which extent the results are 

in line with previous findings and suggestions for further research will be offered. To reach 

the desired conclusions, one day ahead out-of-sample forecasting performance of four 

nonlinear volatility models will be evaluated and compared. The analysis uses cross-asset 

datasets with different sample sizes, including one equity index, a bond index, a currency 

index and a commodity index, all with 500, 1000 and 2000 observations.  
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4.1. Describing the data 

Since this research focuses on cross-asset analysis of value at risk, daily closing price 

data of 4 different financial instruments were chosen. These instruments are the DAX index, 

US 10Y Treasury note futures, US dollar index and S&P GSCI index. Table 4.1 shows the 

chosen instruments, their Bloomberg tickers, asset classes and regions. The sample consists of 

daily return data from 01/01/2006 – 01/12/2015 with sample sizes of 500, 1000 and 2000 to 

compare the effect of different amounts of data on estimation results. Using the selected 

sample, 300 step-ahead forecasts of the conditional variance will be estimated using a rolling 

window of 200, 700 and 1700 observations. All the data is retrieved from Bloomberg 

database. 

Table 4.1 Financial instruments 

Security name Security code Bloomberg ticker Asset class Region 

DAX Stock index DAX DAX Index Equity Europe 

10Y US Treasury Note Futures TY TY1 Comdty Fixed Income US 

US Dollar index DXY DXY Curncy Currency World 

S&P GSCI Index spot CME SPG SPGSCI Index Commodity World 

Souce: Bloomberg (2015). Compiled by the author 

 The particular financial instruments were chosen since they are widely used as 

benchmarks in their asset class and are commonly traded. Asset classes behave differently in 

various economic cycles, which is why observing chosen models across several assets makes 

an interesting research subject. Figures 4.1 - 4.4 illustrate the daily price movements and 

returns of chosen financial instruments from 01/01/2006 – 01/12/2015. All the returns have 

been calculated logarithmically (see equation 2.10). It is possible to see from the figures, that 

high volatility periods tend to be followed by higher volatility periods and low volatility 

periods followed by periods of lower volatility, which was also concluded by Madelbrot 

(1963) and Fama (1965). This kind of persistence in the volatility of financial returns indicate 

that there is conditionally heteroscedastic error term present in the data which is why GARCH 

models would be appropriate to capture the variance (see chapter 2). 
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Figure 4.1 Daily prices and returns of DAX from 01/01/2006 – 01/12/2015 

Source: Bloomberg (2015); Compiled by the author 

 The Deutsche Boerse AG German Stock index (DAX) represents the total return of 30 

selected German blue chip stocks that trade on the Frankfurt Stock Exchange. The base value 

is 1000 as of December 31, 1987 (Bloomberg 2015). DAX index has shown significant gains 

over the observation period as seen from Figure 4.1 with large movements during the 

financial crisis of 2008 and 2009. 

 

 

Figure 4.2 Daily prices and returns of TY from 01/01/2006 – 01/12/2015 

Source: Bloomberg (2015); Compiled by the author 

 The fixed income asset class is represented by the 10-year US Treasury Note futures 

(TY), trading on the Chicago Board of Trade. The value of one contract is 100 000 USD and 

it consists of US Treasury Notes with a maturity of at least 6.5 years, but not more than 10 
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years from the first day of the delivery month (Bloomberg 2015). As one would expect, the 

returns in Figure 4.2 are much more stable compared to the equity index described below. 

Although it seems there have been negative shocks during 2008 and 2009 as well as 2013. 

 

 

Figure 4.3 Daily prices and returns of DXY from 01/01/2006 – 01/12/2015 

Source: Bloomberg (2015); Compiled by the author 

 The US Dollar index (DXY) indicates the general value of the USD by averaging the 

exchange rates between the USD and major world currencies. It is computed by the 

Intercontinental Exchange (ICE) and uses the rates supplied by some 500 banks (Bloomberg 

2015). The return graph of DXY is rather noisy compared to the treasury futures, however 

there seem to be less outliers present in the data.  

 

 

Figure 4.4 Daily prices and returns of SPG from 01/01/2006 – 01/12/2015 

Source: Bloomberg (2015); Compiled by the author 
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 S&P GSCI Index represents the general price movements in the commodity markets 

and is widely recognised as a leading benchmark in the asset class (Bloomberg 2015). The 

index, similarly to DAX, has seen large fluctuations over the observation period (Figure 4.4). 

During the financial crisis in 2008, the index lost nearly 60% of its value, being the single 

biggest movement from its creation in the beginning of 1970. 

 The descriptive statistics of selected financial instruments is brought in table 4.2, 

where DAX, TY, DXY and SPG represent the price information and DAXR, TYR, DXYR 

and SPGR represent the information about the respective returns. As seen from table 4.2, the 

mean returns of all financial assets are practically zero, even slightly negative in the case of 

SPGR partly due to the global financial crisis, but also general downward trend in commodity 

prices. The standard deviation of returns is higher for DAXR and SPGR, showing that 

equities and commodities have been relatively more volatile than currencies and fixed 

income. One can see that TYR, DXYR and SPGR have negative skewness, which is usual 

among financial data (see section 2.1). Also, all of the returns are leptokurtic, meaning they 

have more mass in the centre and have fatter tails. The return asymmetry and excess kurtosis 

is not problematic, however it is reasonable to take it into account when modelling volatility 

and estimating value at risk. 

Table 4.2 Descriptive statistics of selected financial assets from 01/01/2006 – 01/12/2015 

Security/ 

Statistic Mean Median Max Min 

Std. 

Dev. Skewness Kurtosis 

No. 

Obs 

DAX 7268,75 6921,37 12374,73 3666,41 1798,17 0,7233 2,9424 2521 

TY 121,35 123,67 135,66 104,08 8,53 -0,4352 2,0607 2500 

DXY 82,21 80,93 100,33 71,33 5,94 0,9568 3,7946 2578 

SPG 552,47 560,63 890,29 306,77 116,02 -0,0141 2,1874 2499 

DAXR 0,00029 0,00102 0,1080 -0,0743 0,0144 0,0273 8,8905 2520 

TYR 0,00006 0,00013 0,0354 -0,0263 0,0040 -0,1197 8,0568 2499 

DXYR 0,00004 0,00000 0,0252 -0,0273 0,0051 -0,0237 5,0166 2577 

SPGR -0,00010 0,00040 0,0721 -0,0845 0,0152 -0,2711 6,2467 2498 

Source: Compiled by the author 

 Figures 4.1 – 4.4 show that the financial asset price data are not stationary, while this 

might be the case for return series. However, it is possible to test this with the Augmented 

Dickey-Fuller test (ADF test), which is an extension to the previously developed Dickey and 

Fuller (1979) test. The ADF test is designed to test for the unit root in the sample and if the t-
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statistic is highly negative, it is possible to conclude that the data is stationary. The test results 

are brought in table 4.3. It can be seen from table 4.3 that the test statistic is highly negative in 

all cases, meaning that it is possible to reject the null hypothesis and conclude that the data is 

stationary with a significance level of more than 1%. 

Table 4.3 The Augmented Dickey-Fuller test results 

Augmented Dickey-Fuller test 

Test critical values 1% level 5% level 

 -3,432792 -2,862505 

Security t-statistic Probability 

DAXR -50,02701 0,0001 

TYR -49,67963 0,0001 

DXYR -49,99469 0,0001 

SPGR -22,76462 0,0001 

Source: Compiled by the author 

Since nonlinear volatility models are used in this research, it is appropriate to test for 

the linearity of the data to see whether nonlinear models are the best choice. One possible way 

of testing for non-linearity is to use the BDS test developed by Brock, Dechert and 

Sheinkman (1987). The BDS test detects nonlinear serial dependencies in the data and 

therefore can be used to ascertain whether the data are noisy as well as determining the 

goodness-of-fit of estimated models. However, the mentioned test will not indicate what type 

of non-linearity is present in the data (Brooks 2000). In this case, the test is conducted on raw 

financial returns which is why the goodness-of-fit is not determined, however it is possible to 

conclude whether the data is non-linear. The test uses first-differencing (or detrending) in 

order to remove the linear structure from the data.
23

 The BDS test results are brought in table 

4.4 and they show that the test statistics for the standardised residuals are highly significant in 

all cases. This indicates the non-linearity in the data and justifies the use of non-linear models.  

Now that there is evidence of the non-linearity and stationarity of the data, it would be 

appropriate to test whether there are ARCH effects in the returns. The theory behind the 

autoregressive conditionally heteroscedastic effects in the data was described in chapter 2, 

meaning that there is autocorrelation in the squared residuals. 

 

                                                 
23

 The null hyphothesis is that the remaining residuals are i.i.d, independent and indentically distributed 

Brock, Dechert and Sheinkman (1987). 
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Table 4.4 Test results for non-linearity using Brock, Dechert, Scheinkma (BDS) test  

BDS test 

 Dimension 2 Dimension 3 

Security Statistic Std.Error z-stat. Prob Statistic Std.Error z-stat. Prob 

DAXR 0,014477 0,001834 7,894762 0,0000 0,032362 0,002907 11,13208 0,0000 

TYR 0,011476 0,001708 6,718090 0,0000 0,025961 0,002708 9,586297 0,0000 

DXYR 0,006601 0,001649 4,002922 0,0001 0,017140 0,002621 6,539752 0,0000 

SPGR 0,016247 0,001798 9,036805 0,0000 0,034736 0,002853 12,17623 0,0000 

Source: Compiled by the author 

To test for the autocorrelation, a heteroscedasticity ARCH test should be performed on 

the ARMA(1,1) model. If the F-statistic turns out to be statistically significant, it is possible to 

conclude that there is ARCH effect present in the data. The ARMA(1,1) model is described in 

section 2.2 and the test results for the ARCH effects for selected financial assets is in table 

4.5. 

Table 4.5 Heteroskedasticity test results for DAXR, TYR, DXYR and SPGR 

Security F-Statistic Prob. F (2,2582) 

DAXR 110,1865 0,0000 

TYR 17,37725 0,0000 

DXYR 47,35708 0,0000 

SPGR 82,56607 0,0000 

Source: Compiled by the author 

Table 4.5 shows that the F-statistic and the associated critical value allows the null 

hypothesis to be rejected, indicating that the lags of the squared residuals have coefficient 

values not significantly different from zero. This means that the ARCH effect is present in the 

data of all chosen financial instruments and ARCH-type models are appropriate for estimating 

volatility. 

4.2. Describing the conditional variance models 

The conditional variance models used in this analysis were selected based on previous 

empirical studies including Aydin and Korkmaz (2002), Berkowitz and O’Brien (2002) and 

Bali (2007), discussed in more length in Chapter 3. The GARCH(1,1), EGARCH(1,1) and 
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GJR-GARCH(1,1) outperformed other volatility models in several occasions by producing 

more accurate conditional variance estimates, which is why they will be compared in this 

analysis. Also, to conclude whether using more sophisticated volatility models outperform 

more naïve alternatives, simple ARMA(1,1) model will also be included. All the models will 

be calculated using the Student-t and Gaussian distribution with sample sizes of 500, 1000 

and 2000. The estimated models for DAXR are shown in table 4.6, the models for TYR, 

DXYR and SPGR are shown in appendix 3. When performing another heteroscedasticity 

ARCH test on the estimated GARCH(1,1) models to see if there are any ARCH effects left in 

the residuals, it can be seen that the values of the F-statistics are very low, showing that the 

ARCH effects are not significant anymore. This means that the model explains all of the 

conditional heteroscedasticity present in the data. The corresponding values for the F-statistics 

are presented in Table 4.7. 

One characteristic of GARCH volatility models, also observable in this case, is that 

the sum of the coefficients of the lagged squared error and the lagged conditional variance is 

close to unity. This shows the high persistency of the shocks to the conditional variance, 

which is useful when considering the dynamical properties of volatility. This means that high 

volatility in this period would be followed by high volatility in the next period, which is in 

line with economic literature, including Engle and Bollerslev (1986) and Ding and Granger 

(1996) (see subsection 2.1.1). It can also be seen that the variance intercept C has very low 

value, indicating that the long-term variance is not affecting the volatility estimates as much 

as recent shocks. It is not possible to interpret the parameter values of EGARCH(1,1) models 

as intuitively as for GARCH or GJR-GARCH models since it is in the logarithmical form. 

However, the signs of ARCH and GARCH coefficients have to be positive and the leverage 

coefficient negative (also observable in table 4.6), since large negative shocks will increase 

the variance in the next period. The GJR-GARCH(1,1) model, which is also an asymmetric 

nonlinear extension to the general ARCH model, also includes a leverage effect, however in a 

non-logarithmic form. Therefore, the leverage coefficient is positive (γ˃0) and the lagged 

negative shocks will have larger impact on the conditional variances in the future. The 

estimated leverage coefficients for GJR-GARCH(1,1) models are rather large, which could 

lead to overestimating the movements in the variance and needs be tested through comparing 

the goodness-of-fit of selected models. 
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Table 4.6 Conditional variance models for DAXR from 01/01/2006 – 01/12/2015 

Distribution No. Obs Model Constant (ω) GARCH (α) ARCH (β) Leverage (γ) 

Gaussian 

500 

GARCH(1,1) 4,484E-06 0,8763 0,0989   

Std error (2,982E-06) (0,0324) (0,0252)   

EGARCH(1,1) -0,5334 0,9392 0,1465 -0,1349 

Std error (0,1450) (0,0169) (0,0416) (0,0299) 

GJR-GARCH(1,1) 6,949E-06 0,8728 0,0038 0,1584 

Std error (1,085E-06) (0,0282) (0,0240) (0,0442) 

1000 

GARCH(1,1) 2,975E-06 0,9100 0,0695 

 Std error (1,776E-06) (0,0184) (0,0126)   

EGARCH(1,1) -0,4386 0,9501 0,1450 -0,1283 

Std error (0,0921) (0,0103) (0,0261) (0,0183) 

GJR-GARCH(1,1) 4,586E-06 0,8914 0,0119 0,1356 

Std error (1,725E-06) (0,0193) (0,0092) (0,0263) 

2000 

GARCH(1,1) 2,823E-06 0,9041 0,0840 

 Std error (1,024E-06) (0,0107) (0,0092) 

 
EGARCH(1,1) -0,2258 0,9734 0,1269 -0,1323 

Std error (0,0282) (0,0033) (0,0173) (0,0103) 

GJR-GARCH(1,1) 3,732E-06 0,9033 0,0000 0,1590 

Std error (8,909E-07) (0,0117) (0,0000) (0,0165) 

Student-t 

500 

GARCH(1,1) 4,075E-06 0,8590 0,1245 

 Std error (3,224E-06) (0,0383) (0,0363) 

 
EGARCH(1,1) -0,5233 0,9405 0,1823 -0,1640 

Std error (0,1917) (0,0216) (0,0561) (0,0407) 

GJR-GARCH(1,1) 5,996E-06 0,8626 0,0066 0,2044 

Std error (3,099E-06) (0,0356) (0,0304) (0,0647) 

1000 

GARCH(1,1) 2,643E-06 0,9004 0,0868 

 Std error (1,940E-06) (0,0245) (0,0218) 

 
EGARCH(1,1) -0,4178 0,9527 0,1612 -0,1642 

Std error (0,1139) (0,0127) (0,0373) (0,0278) 

GJR-GARCH(1,1) 4,146E-06 0,8850 0,0017 0,1991 

Std error (1,827E-06) (0,0234) (0,0160) (0,0453) 

2000 

GARCH(1,1) 2,508E-06 0,8941 0,1059   

Std error (1,299E-06) (0,0157) (0,0170)   

EGARCH(1,1) -0,2324 0,9730 0,1381 -0,1536 

Std error (0,0394) (0,0045) (0,0227) (0,0161) 

GJR-GARCH(1,1) 3,314E-06 0,9009 0,0000 0,1753 

Std error (1,020E-06) (0,0143) (0,0000) (0,0245) 

Source: Compiled by the author 
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Table 4.7 Heteroskedasticity test results for DAXR, TYR, DXYR and SPGR 

Security F-Statistic Prob. F (4,2578) 

DAXR 1,736043 0,1392 

TYR 1,442077 0,2175 

DXYR 0,871353 0,4803 

SPGR 1,073233 0,3681 

Source: Compiled by the author 

Another observation that can be seen in the variance models is the difference in 

estimated values of various sample sizes. Increasing the sample size from 500 to 1000 has 

larger effect on the estimates than increasing from 1000 to 2000 observations. However, to 

conclude whether larger sample sizes provide more accurate results, additional tests will be 

conducted in the next section. 

4.3. Evaluation of the models 

In order to evaluate the goodness-of-fit of estimated models, the Akaike information 

criterion (AIC), Bayesian information criterion (BIC) and root mean squared error (RMSE) 

will be computed. The latter is done by comparing the conditional variance produced by the 

estimated models to the realised volatility of the same period. In addition, the correlation 

between the modelled volatility and the realised volatility will be provided. In the end of this 

section, the forecasting qualities of the models will be evaluated by computing one day-ahead 

volatility forecasts and comparing the results to realised volatility. One goal of this thesis was 

to assess if using more sophisticated variance models brings significant advantage over naïve 

models, which is why the simple ARMA(1,1) model is also included. 

Before evaluating the models, an illustrative figure of the conditional variances is 

shown to give an idea how the estimated variances of these models move throughout the 

observation period. This can be seen in figure 4.5, where the estimated conditional variances 

of the models for DAXR are brought, including the 200 days-ahead out-of-sample forecasts. 

The inferred conditional variance forecasts were made by fitting the model to the actual 

realised variances. 
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Figure 4.5 Conditional variance forecasts for DAXR  

Source: Compiled by the author 

 Figure 4.5 illustrates the leverage effect of the asymmetric models, where the x-axis 

describes the number of observations and y-axis the fitted conditional variance. The 200 step-

ahead forecasts might not be not very accurate, however it can already be seen that the out-of-

sample results do not differ much between the models. The conditional variance seems to be 

lower in the case of GARCH(1,1) and higher for the GJR-GARCH(1,1) model due to the 

higher leverage in the latter. It can also be seen that the fitted variances of the EGARCH 

model seem to be sharper and die out quicker compared to the other models. The large shocks 

in the beginning of the inferred variance illustrate the volatility during 2007-2009, which was 

also seen to be higher in the return graphs. 

 All the computed AIC, BIC and RMSE values are brought in appendix 4 and the best 

models according to the criteria are shown in table 4.8. The correlation and RMSE were 

calculated by comparing the 300 step-ahead estimated volatility to the realised standard 

deviation over selected periods. The higher the correlation is, the better the goodness-of-fit of 
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a model. The lower the values are for AIC and BIC criteria as well as RMSE, the better the 

model. 

Table 4.8 shows that EGARCH(1,1) outperformed other models significantly, having 

the lowest AIC and BIC values in almost every dataset, distribution and number of 

observations. GARCH(1,1) was the second performing variance model, showing good results 

when comparing the RMSE and correlation with realised volatility, however could not 

compete with EGARCH(1,1) nor GJR-GARCH(1,1) in AIC and BIC tests. The simple 

ARMA(1,1) was not as successful in capturing the conditional variance as the other 

alternatives. This can be seen from significantly higher AIC and BIC values (appendix 4) and 

it confirms the benefit of using more sophisticated volatility models over simple naïve 

models. This is in line with previous research, including Bali (2007), (Angelidis 2004), 

Berkowitz and O’Brien (2002) and Jansky and Rippel (2011), where GARCH(1,1) and 

EGARCH(1,1) conditional variance models outperformed the ARMA(1,1) model. 

When comparing the Gaussian and Student-t distribution, it can be seen that there was 

slight improvement in the performance of the models according to all criteria. The AIC and 

BIC values were lower in almost all cases and most of the times models estimated with 

Student-t distribution showed higher correlation with the realised volatility. This helps to 

confirm the stylized fact discussed in subsection 2.1.2, that financial returns are not normally 

distributed and are usually heavy tailed (leptokurtic), which is why using Student-t 

distribution is beneficial. 

The sample size issue was analysed in this thesis as well by estimating every selected 

model under 500, 1000 and 2000 observations. Previous empirical studies discussed in 

Chapter 3 did not agree on the benefits or disadvantages of using different sample sizes. 

When Hendricks (1996), Danielsson (2002) and Vlaar (2000) found that increased sample 

size improved the performance of estimated models, Frey and Michaud (1997) and Hoppe 

(1998) argued that smaller amount of data could be more accurate due to better capturing the 

behavioural change in the trading activity (Hoppe 1998). As seen from appendix 4, there is no 

clear evidence that increased sample size improves or decreases the performance in estimated 

models. For TYR, smaller number of observations showed better correlation and RMSE 

values, however for DAXR, the result was opposite. DXYR and SPGR had the best results 

when estimating the models with 1000 observations. Therefore it is not possible to conclude 

that sample size has clear effect on the results of conditional variance estimates. 
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Table 4.8 Model evaluation and comparison, best models according to the criteria 

Symbol Distribution No. Obs Correlation RMSE AIC BIC 

DAXR 

Gaussian 

500 GARCH(1,1) GARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

1000 GARCH(1,1) GARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

2000 GARCH(1,1) GARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

Student-t 

500 GARCH(1,1) GARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

1000 GARCH(1,1) GARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

2000 GARCH(1,1) GARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

TYR 

Gaussian 

500 GJR(1,1) GJR(1,1) EGARCH(1,1) EGARCH(1,1) 

1000 EGARCH(1,1) GARCH(1,1) GARCH(1,1) GARCH(1,1) 

2000 EGARCH(1,1) GJR(1,1) GJR(1,1) GJR(1,1) 

Student-t 

500 GJR(1,1) GARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

1000 EGARCH(1,1) GJR(1,1) EGARCH(1,1) GARCH(1,1) 

2000 EGARCH(1,1) GARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

DXYR 

Gaussian 

500 GARCH(1,1) GARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

1000 EGARCH(1,1) GJR(1,1) EGARCH(1,1) EGARCH(1,1) 

2000 EGARCH(1,1) GJR(1,1) EGARCH(1,1) EGARCH(1,1) 

Student-t 

500 GARCH(1,1) GARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

1000 EGARCH(1,1) GARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

2000 EGARCH(1,1) GJR(1,1) EGARCH(1,1) EGARCH(1,1) 

SPGR 

Gaussian 

500 GARCH(1,1) GARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

1000 GARCH(1,1) GARCH(1,1) EGARCH(1,1) GARCH(1,1) 

2000 GARCH(1,1) GARCH(1,1) EGARCH(1,1) GARCH(1,1) 

Student-t 

500 GARCH(1,1) GJR(1,1) EGARCH(1,1) EGARCH(1,1) 

1000 EGARCH(1,1) GARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

2000 GARCH(1,1) GARCH(1,1) GJR(1,1) GARCH(1,1) 

Count 
ARMA(1,1) GARCH(1,1) EGARCH(1,1) GJR(1,1) 

0 36 48 12 

Source: Compiled by the author 
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4.4. VaR forecast evaluation 

The value at risk of chosen assets was calculated using the conditional variance 

models, mean returns and the z-values of selected confidence intervals. The observation 

period is the same as for conditional variance models, from 01/01/2006 – 01/12/2015 using 

the daily asset returns. The value at risk violations were computed from the previously 

estimated 300 step-ahead conditional variance forecasts. Table 4.9 illustrates the best 

volatility models for calculating value at risk according to each asset, distribution and number 

of observations. The number of violations to the VaR estimates for each asset is shown in 

appendix 5. The calculations were done using the variance-covariance method of estimating 

value at risk and since the assets were analysed separately instead of in a portfolio, no 

covariances between the assets were needed. The estimated VaR values can also be used in a 

portfolio, since according to Lucas (2000), the more sophisticated value at risk models based 

on the estimates of variance-covariance matrices do not perform significantly better compared 

to univariate value at risk models that only require conditional variance estimates. 

The value at risk evaluation results are in line with conditional variance results shown 

in section 4.3. Comparing all selected models in different distributions, samples and asset 

returns, GARCH(1,1) and EGARCH(1,1) volatility models outperform the GJR(1,1) model, 

however the differences were often rather small. In section 4.3, the correlation and RMSE 

values of DAXR conditional variance forecasts favoured the GARCH(1,1) model strongly 

similarly as in Table 4.9. The results for the other assets were slightly more mixed. When 

comparing the estimated value at risk violations across different distributions, the Student-t 

distribution appears to outperform the Gaussian distribution, having slightly less violations 

across the samples. This is in line with the stylised fact discussed in subsection 2.1.2, that 

financial returns are not normally distributed and it proved beneficial taking this into account 

when modelling VaR. When comparing the differences in value at risk violations across 

various sample sizes, no significant pattern emerges. Therefore it cannot be concluded that the 

number of observations have clear impact on the goodness-of-fit of value at risk models and 

on the accuracy of its forecasts. 
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Table 4.9 Evaluation of VaR estimates using conditional variance forecasts 

Symbol Distribution No. Obs VaR (90%) VaR (95%) VaR (99%) 

DAXR 

Gaussian 

500 GARCH(1,1) GARCH(1,1) GARCH(1,1) 

1000 GARCH(1,1) GARCH(1,1) GARCH(1,1) 

2000 GARCH(1,1) GARCH(1,1) GARCH(1,1) 

Student-t 

500 GARCH(1,1) GARCH(1,1) GARCH(1,1) 

1000 GJR(1,1) GARCH(1,1) GARCH(1,1) 

2000 GARCH(1,1) GARCH(1,1) GARCH(1,1) 

TYR 

Gaussian 

500 EGARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

1000 GJR(1,1) GJR(1,1) GJR(1,1) 

2000 EGARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

Student-t 

500 GARCH(1,1) GARCH(1,1) GARCH(1,1) 

1000 GARCH(1,1) GARCH(1,1) GARCH(1,1) 

2000 EGARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

DXYR 

Gaussian 

500 EGARCH(1,1) EGARCH(1,1) GJR(1,1) 

1000 GJR(1,1) GARCH(1,1) GJR(1,1) 

2000 GARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

Student-t 

500 EGARCH(1,1) EGARCH(1,1) GARCH(1,1) 

1000 GARCH(1,1) GARCH(1,1) GARCH(1,1) 

2000 GARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

SPGR 

Gaussian 

500 GJR(1,1) GJR(1,1) EGARCH(1,1) 

1000 EGARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

2000 EGARCH(1,1) EGARCH(1,1) GARCH(1,1) 

Student-t 

500 GJR(1,1) EGARCH(1,1) EGARCH(1,1) 

1000 EGARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

2000 EGARCH(1,1) EGARCH(1,1) EGARCH(1,1) 

Count 
GARCH(1,1) EGARCH(1,1) GJR(1,1) 

31 31 10 

Source: Compiled by the author 

4.5. Conclusions 

This empirical analysis compared the volatility models in estimating Value at Risk of 

four different assets. DAX index (DAXR) represented equity, US 10Y Treasury note futures 

(TYR) represented fixed income, US Dollar index represented the movements in currencies 

and S&P GSCI Index represented the commodity asset class. The dataset was selected from 

01/01/2006 – 01/12/2015 daily asset returns with samples of 500, 1000 and 2000 
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observations. Four conditional variance models were used in this analysis: GARCH(1,1), 

EGARCH(1,1), GJR-GARCH(1,1) and ARMA(1,1) model, all estimated with Gaussian as 

well as Student-t distribution. There were three main research questions raised in thesis. 

Firstly, whether using sophisticated volatility models brings significant advantages over using 

more naïve alternatives, secondly if using Student-t distribution improves the goodness-of-fit 

of selected models and thirdly if the number of observations have a clear impact on the 

forecasting results. 

The evaluation of estimated conditional variances of selected models favoured 

sophisticated volatility models over the more naïve alternative. The AIC and BIC values were 

significantly better for GARCH(1,1) and EGARCH(1,1) models compared to the simple 

ARMA(1,1) model. Overall, the EGARCH(1,1) and GARCH(1,1) models outperformed the 

GJR(1,1) model in all criteria, however the differences were less significant when comparing 

value at risk estimates. When comparing different distributions, the Student-t distribution 

managed to capture the changes in the variance more accurately compared to the Gaussian 

distribution, which is in line with previous empirical analysis. The value at risk violations and 

conditional variance performance results varied across different sample sizes which is why it 

is not possible to conclude that the sample size has a clear effect on the accuracy of selected 

models. 

4.6. Suggestions for further research 

Although using nonlinear autoregressive volatility models to estimate Value at Risk 

showed advantages over naïve alternatives, there are some certain limitations. As seen from 

figure 4.5, when the forecasting horizon increases, the benefits of selected models decrease. 

However, financial institutions are often interested in estimating longer period forecasts. The 

decrease in benefits of selected models was also expected since the GARCH models converge 

to the long-run variance when the forecasting period is increased enough (see subsection 

2.3.4). This is called the dying-out effect and it puts significant restrictions on the models 

when there is a desire to produce longer forecasts. To illustrate this shortcoming, the long-run 

(400 days step-ahead) conditional variance forecasts for DAXR using the selected models are 

brought in figure 4.6, where the x-axis describes the number of observations and y-axis the 
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conditional variance forecast. It can be seen that the dying-out effect happens in a rather short 

period of time. The value is very close to the average already in about 200 step-ahead 

forecasts for the GARCH model and in about 100 step-ahead forecasts for asymmetric 

models. Therefore, concluding that the leverage effect of EGARCH and GJR model increase 

the dying-out effect further. This indicates that in order to get better results for long-run 

volatility forecasting, it could be appropriate to consider different models where this effect is 

dampened, like FIGARCH and FIEGARCH models (see subsection 2.3.4). 

 

Figure 4.6 Long-run conditional variance forecasts for DAXR 

Source: Compiled by the author 

Another suggestion for further research would be to use impulse-response analysis on 

the VaR estimates that use forecasted volatility. This would show how the selected models 

behave under large volatility shocks, which is an important feature considering risk 

management problems. Section 4.3 illustrated the fitted variances of the volatility models 

during calm periods as well as financial recession and the variances differed across models 
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noticeably. During large downward movements the conditional variances of EGARCH 

models were higher due to the leverage effect, however possibly overestimating the variance 

in some occasions. The GARCH model on the other hand seemed to react more slowly to 

volatility shocks, which could lead to not capturing the whole variance in the returns. All in 

all, more research on this issue would be appropriate. 

 This thesis focused on estimating value at risk of single assets, however in many 

occasions, risk measures of a portfolio is required. In that case, forecasted conditional 

variances could be beneficial as well, but one should also consider forecasting asset 

correlations. There are several models for this purpose, like VEC-GARCH model developed 

by Bollerslev, Engle, and Wooldridge (1988); BEKK model by Engle and Kroner (1995); 

Orthogonal GARCH by Alexander and Chibumba (1997) and MGARCH models proposed by 

Bollerslev (1990) to name a few. The conditional correlation models differ in complexity, 

however advantages over using only conditional variance forecasts could be achieved when 

estimating value at risk for several asset portfolios. 
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SUMMARY 

In light of several stock market crashes and financial crises over the past decades, 

financial practitioners and academics alike have been searching for ways to improve risk 

measures and value at risk models have been the cornerstone of this risk management 

revolution. The increased focus on risk management over the past decades has led to the 

development of various techniques and models, some more widely used than others. Since the 

development of Autoregressive Conditional Heteroscedasticity models by Engle in 1982, 

volatility modelling has become one the most popular research subjects in financial time-

series analysis with several extensions to the original model appeared. This thesis analysed 

the use of nonlinear autoregressive volatility models on estimating value at risk across 

different asset classes. 

The thesis presented several conditional variance and value at risk modelling concepts 

as follows. Chapter 1 gave an overview of the theory of risk management, focusing on Value 

at Risk and the different methods of calculating it. Chapter 2 analysed the stylised properties 

of financial returns and the background literature of volatility modelling and forecasting. The 

stylised facts were the volatility clustering in financial data, the heavy tails and return 

asymmetry, the leverage effect and the absence of autocorrelation. Chapter 3 was dedicated to 

discussing the previous empirical studies on estimating VaR with nonlinear volatility models 

to see if the results in this thesis are in line with other research done on this topic. In Chapter 

4, an empirical analysis was conducted using nonlinear conditional variance models for 

estimating value at risk across different assets, distributions and sample sizes. 

Three research questions were raised in the beginning of this thesis. Firstly, whether 

using sophisticated conditional variance models brings significant advantages over using 

more naïve alternatives; secondly, if using Student-t distribution over Gaussian distribution 

improves the goodness-of-fit of selected models and thirdly, if the number of observations 

have a clear impact on the forecasting results. Previous empirical evidence discussed in 

Chapter 3 showed the superiority of EGARCH and GARCH models over more simple 

alternatives. When comparing the different distributions on conditional variance models then 
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according to previous analysis, the Student-t distribution outperforms Gaussian distribution 

by providing more accurate results. The evidence on the sample size is twofold, while some 

papers found that increased sample size improved the performance of estimated models, 

others argued that smaller amount of data could be more accurate due to better capturing the 

changes in the financial returns. 

To answer these research questions, four autoregressive volatility models were 

selected to estimate value at risk. The models are the GARCH(1,1), EGARCH(1,1), GJR-

GARCH(1,1) and ARMA(1,1) model, which were chosen based on previous empirical 

evidence. The ARMA(1,1) model was included to compare the GARCH variations to a more 

naïve alternative. All the selected models were estimated using the Student-t as well as 

Gaussian distribution. The empirical analysis was conducted on four different financial assets, 

the DAX index (DAXR) which represents the equity returns, US 10Y Treasury note futures 

(TYR) which represents the returns of fixed income assets, US Dollar index which represents 

the movements in currencies and the S&P GSCI Index which represents the commodity asset 

class. The sample used in the empirical analysis consisted of daily returns from 01/01/2006 – 

01/12/2015 with sample sizes of 500, 1000 and 2000 to compare the effect of different 

amounts of data on estimation results. Using the selected sample, 300 step-ahead forecasts of 

the conditional variance were estimated using a rolling window of 200, 700 and 1700 

observations.  

In order to evaluate the goodness-of-fit of estimated conditional variance models, the 

Akaike information criterion (AIC), Bayesian information criterion (BIC) and root mean 

squared error (RMSE) were computed. The latter was done by comparing the conditional 

variance produced by the estimated models to the realised volatility of the same period. In 

addition, the correlation between the modelled volatility and the realised volatility was 

provided. To evaluate the value at risk estimates, daily violations across samples were 

computed. 

The evaluation of estimated conditional variances of selected models favoured 

sophisticated volatility models over the more naïve alternative. The results showed that 

GARCH(1,1) and EGARCH(1,1) models outperformed the ARMA(1,1) and GJR(1,1) models 

in nearly every criteria. When comparing different distributions across models, the Student-t 

distribution managed to capture the changes in the variance more accurately compared to the 

Gaussian distribution. Both of these results are in line with previous studies discussed in 
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Chapter 3. The conditional variance performance results and value at risk violations varied 

across different sample sizes, which is why it was not possible to conclude that the sample 

size has a clear effect on the accuracy of selected models. The previous empirical evidence 

showed different results as well, which is why more research on this topic is needed. 

The purpose of this research was fulfilled and two of the three questions raised in the 

beginning of the thesis were answered. However, this thesis used only one step-ahead 

conditional variance forecasts, which is not always the desired estimation period. Financial 

institutions are often interested in longer-term value at risk forecasts. Section 4.3 and 4.6 

illustrated the problems in long-run volatility forecasting and concluded that GARCH 

volatility models might not be appropriate for this task. There are long-memory volatility 

models like FIGARCH and FIEGARCH, which could be beneficial, however further research 

on this topic is required. 

 Another suggestion to improve the value at risk models was to use the impulse-

response analysis on VaR estimates. This would show how the selected models behave under 

large volatility shocks, which is an important feature considering risk management problems. 

Estimated conditional variances showed higher values for asymmetric models during large 

negative volatility shocks, however to better quantify the benefits in these periods, more 

research would be appropriate. 
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APPENDICES 

Appendix 1. Index price graphs 

 

 

Source: Compiled by the author  

2,000

4,000

6,000

8,000

10,000

12,000

14,000

06 07 08 09 10 11 12 13 14 15

DAX Index

300

400

500

600

700

800

900

06 07 08 09 10 11 12 13 14 15

S&P GSCI Index

100

110

120

130

140

06 07 08 09 10 11 12 13 14 15

US 10Y Treasury Futures

70

75

80

85

90

95

100

105

06 07 08 09 10 11 12 13 14 15

US Dollar Index



65 

 

Appendix 2. Matlab code example for estimating and evaluating conditional 

variance models for DAXR 

Import the financial data under the name DAXR 

 

r=DAXR(2001:2500); 

r2=DAXR(1501:2500); 

r3=DAXR(501:2500); 

N=length(r); 

N2=length(r2); 

N3=length(r3); 

 

For estimating with Gaussian distribution: 

model111 = garch(1,1); 

[fit111,~,LogL111] = estimate(model111,r); 

model112 = egarch(1,1); 

[fit112,~,LogL112] = estimate(model112,r); 

model113 = gjr(1,1); 

[fit113,~,LogL113] = estimate(model113,r); 

[aic,bic] = aicbic([LogL111,LogL112,LogL113],[3,4,4],N); 

model121 = garch(1,1); 

[fit121,~,LogL121] = estimate(model121,r2); 

model122 = egarch(1,1); 

[fit122,~,LogL122] = estimate(model122,r2); 

model123 = gjr(1,1); 

[fit123,~,LogL123] = estimate(model123,r2); 

[aic2,bic2] = aicbic([LogL121,LogL122,LogL123],[3,4,4],N2); 

model131 = garch(1,1); 

[fit131,~,LogL131] = estimate(model131,r3); 

model132 = egarch(1,1); 

[fit132,~,LogL132] = estimate(model132,r3); 

model133 = gjr(1,1); 

[fit133,~,LogL133] = estimate(model133,r3); 

[aic3,bic3] = aicbic([LogL131,LogL132,LogL133],[3,4,4],N3); 

 

Source: Compiled by the author  
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Appendix 2 continues 

 

For estimating with Student-t distribution: 

model211 = garch('Distribution', 't','GARCHLags',1,'ARCHLags',1); 

[fit211,~,LogL211] = estimate(model211,r); 

model212 = egarch('Distribution', 't','GARCHLags',1,'ARCHLags',1,'LeverageLags',1); 

[fit212,~,LogL212] = estimate(model212,r); 

model213 = gjr('Distribution', 't','GARCHLags',1,'ARCHLags',1,'LeverageLags',1); 

[fit213,~,LogL213] = estimate(model213,r); 

[aic4,bic4] = aicbic([LogL211,LogL212,LogL213],[3,4,4],N); 

model221 = garch('Distribution', 't','GARCHLags',1,'ARCHLags',1); 

[fit221,~,LogL221] = estimate(model221,r2); 

model222 = egarch('Distribution', 't','GARCHLags',1,'ARCHLags',1,'LeverageLags',1); 

[fit222,~,LogL222] = estimate(model222,r2); 

model223 = gjr('Distribution', 't','GARCHLags',1,'ARCHLags',1,'LeverageLags',1); 

[fit223,~,LogL223] = estimate(model223,r2); 

[aic5,bic5] = aicbic([LogL221,LogL222,LogL223],[3,4,4],N2); 

model231 = garch('Distribution', 't','GARCHLags',1,'ARCHLags',1); 

[fit231,~,LogL231] = estimate(model231,r3); 

model232 = egarch('Distribution', 't','GARCHLags',1,'ARCHLags',1,'LeverageLags',1); 

[fit232,~,LogL232] = estimate(model232,r3); 

model233 = gjr('Distribution', 't','GARCHLags',1,'ARCHLags',1,'LeverageLags',1); 

[fit233,~,LogL233] = estimate(model233,r3); 

[aic6,bic6] = aicbic([LogL231,LogL232,LogL233],[3,4,4],N3); 

 

Estimating the ARMA(1,1) model: 

model001 = arima(1,0,1); 

[fit001,~,LogL001] = estimate(model001,r); 

[aic01,bic01] = aicbic([LogL001,LogL112,LogL113],[3,4,4],N); 

model002 = arima(1,0,1); 

[fit002,~,LogL002] = estimate(model002,r2); 

[aic02,bic02] = aicbic([LogL002,LogL122,LogL123],[3,4,4],N2); 

model003 = arima(1,0,1); 

[fit003,~,LogL003] = estimate(model003,r3); 

[aic03,bic03] = aicbic([LogL003,LogL132,LogL133],[3,4,4],N3); 

 

Source: Compiled by the author  
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Appendix 2 continues 

 

The rolling-window process: 

RW1 = 200; 

sample = r(1: RW1,1); 

[fitS111,~,~] = estimate(model111, sample); 

RWF(1, 1) = forecast(fitS111,1, 'Y0', sample); 

for t = RW1:N(1,1)-1; 

sample = r( t - RW1 +1 : t ); 

[fitS111,~,~] = estimate(model111, sample); 

RWF(t-RW1+1+1, 1) = forecast(fitS111,1, 'Y0', sample); 

t; 

end; 

 

RW1 = 700; 

sample = r(1: RW1,1); 

[fitS111,~,~] = estimate(model111, sample); 

RWF(1, 1) = forecast(fitS111,1, 'Y0', sample); 

for t = RW1:N(1,1)-1; 

sample = r( t - RW1 +1 : t ); 

[fitS111,~,~] = estimate(model111, sample); 

RWF(t-RW1+1+1, 1) = forecast(fitS111,1, 'Y0', sample); 

t; 

end; 

 

RW1 = 1700; 

sample = r(1: RW1,1); 

[fitS111,~,~] = estimate(model111, sample); 

RWF(1, 1) = forecast(fitS111,1, 'Y0', sample); 

for t = RW1:N(1,1)-1; 

sample = r( t - RW1 +1 : t ); 

[fitS111,~,~] = estimate(model111, sample); 

RWF(t-RW1+1+1, 1) = forecast(fitS111,1, 'Y0', sample); 

t; 

end; 

 

Forecasting: 
Vf1 = forecast(fit231,200,'Y0',r4);  

V1 = infer(fit231,r4);  

Vf400g = forecast(fit131,400,'Y0',r4);  

Vf2 = forecast(fit232,200,'Y0',r4);  

V2 = infer(fit232,r4);  

Vf400e = forecast(fit222,400,'Y0',r4);  

Vf3 = forecast(fit233,200,'Y0',r4);  

V3 = infer(fit233,r4);  

Vf400j = forecast(fit123,400,'Y0',r4); 
 

Source: Compiled by the author  
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Appendix 2 continues 

 

Plotting the figures: 
figure(1)  

subplot(2,2,1)  

plot(V1,'Color',[.7,.7,.7])  

hold on  

plot(N4+1:N4+200,Vf1,'r','LineWidth',2)  

xlim([1,N4+200])  

legend('Inferred','Forecast','Location','Northwest')  

title('GARCH Cond.Var. DAXR')  

hold off  

subplot(2,2,2)  

plot(V2,'Color',[.7,.7,.7])  

hold on  

plot(N4+1:N4+200,Vf2,'r','LineWidth',2)  

xlim([1,N4+200])  

legend('Inferred','Forecast','Location','Northwest') 

title('EGARCH Cond.Var. DAXR')  

hold off 

subplot(2,2,3)  

plot(V3,'Color',[.7,.7,.7])  

hold on  

plot(N4+1:N4+200,Vf3,'r','LineWidth',2)  

xlim([1,N4+200])  

legend('Inferred','Forecast','Location','Northwest')  

title('GJR Cond.Var. DAXR')  

hold off  

 

figure(2)  

subplot(2,2,1)  

plot(Vf400g,'r','LineWidth',2)  

title('GARCH Cond.Var F.cast DAXR')  

subplot(2,2,2)  

plot(Vf400e,'r','LineWidth',2)  

title('EGARCH Cond.Var F.cast DAXR')  

subplot(2,2,3)  

plot(Vf400j,'r','LineWidth',2)  

title('GJR Cond.Var F.cast DAXR') 

 

Source: Compiled by the author  
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Appendix 3. Conditional variance models for TYR, DXYR and SPGR 

 

Distribution No. Obs Model Constant (ω) GARCH (α) ARCH (β) Leverage (γ)

GARCH(1,1) 4,770E-07 0,900000 0,050000

Std error 3,698E-07 0,023489 0,022914

EGARCH(1,1) -0,175630 0,984782 0,073325 0,003671

Std error 0,174883 0,015053 0,041273 0,019961

GJR-GARCH(1,1) 4,770E-07 0,900000 0,050000 0,000000

Std error 3,701E-07 0,024020 0,031783 0,000000

GARCH(1,1) 4,804E-07 0,900000 0,050000

Std error 2,568E-07 0,013748 0,014649

EGARCH(1,1) -10,000000 0,134608 0,162462 -0,079335

Std error 2,496200 0,215570 0,070179 0,033505

GJR-GARCH(1,1) 4,804E-07 0,900000 0,050000 0,000000

Std error 2,569E-07 0,014221 0,022672 0,000000

GARCH(1,1) 2,831E-07 0,906662 0,081200

Std error 2,064E-07 0,008043 0,009788

EGARCH(1,1) -0,094146 0,991199 0,106415 -0,007429

Std error 0,018598 0,001671 0,012375 0,006090

GJR-GARCH(1,1) 2,000E-07 0,944304 0,053340 -0,017646

Std error 1,570E-07 0,005395 0,007050 0,007749

GARCH(1,1) 4,770E-07 0,900000 0,050000

Std error 4,123E-07 0,029057 0,028164

EGARCH(1,1) -0,135445 0,988354 0,065797 0,011940

Std error 0,184165 0,015830 0,042638 0,024453

GJR-GARCH(1,1) 4,770E-07 0,900000 0,050000 0,000000

Std error 4,126E-07 0,029493 0,039718 0,000000

GARCH(1,1) 2,000E+00 0,958165 0,020130

Std error 1,703E-07 0,008691 0,008615

EGARCH(1,1) -0,164946 0,985847 0,057605 -0,017707

Std error 0,134959 0,011592 0,027444 0,016614

GJR-GARCH(1,1) 2,000E-07 0,957525 0,023466 -0,004756

Std error 1,719E-07 0,009809 0,018115 0,019286

GARCH(1,1) 2,000E-07 0,943827 0,044073

Std error 1,788E-07 0,008126 0,008637

EGARCH(1,1) -0,051157 0,995479 0,085511 -0,002028

Std error 0,029488 0,002643 0,016427 0,010931

GJR-GARCH(1,1) 2,000E-07 0,943990 0,053567 -0,018613

Std error 1,785E-07 0,008183 0,013015 0,015097

TYR
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Gaussian
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1000

2000

500

1000

2000

 
Source: Compiled by the author 
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Appendix 3 continues 

 

 

Distribution No. Obs Model Constant (ω) GARCH (α) ARCH (β) Leverage (γ)

GARCH(1,1) 2,000E-07 0,935389 0,053158

Std error 3,246E-07 0,013015 0,014587

EGARCH(1,1) -0,011597 1,000000 -0,056832 0,084257

Std error 0,000027 0,000001 0,000765 0,003492

GJR-GARCH(1,1) 9,914E-07 0,824160 0,130054 -0,056020

Std error 6,396E-07 0,027737 0,032438 0,036670

GARCH(1,1) 2,000E-07 0,942186 0,046702

Std error 2,357E-07 0,008061 0,008857

EGARCH(1,1) -0,037458 0,996733 0,047724 0,047174

Std error 0,024978 0,002264 0,012297 0,007335

GJR-GARCH(1,1) 2,000E-07 0,947775 0,055908 -0,034363

Std error 2,204E-07 0,007362 0,011224 0,013071

GARCH(1,1) 2,287E-07 0,941473 0,058527

Std error 2,315E-07 0,007661 0,009583

EGARCH(1,1) -0,036599 0,996398 0,072099 0,024132

Std error 0,016193 0,001534 0,011989 0,005194

GJR-GARCH(1,1) 2,000E-07 0,950732 0,047695 -0,011542

Std error 1,946E-07 0,005761 0,007917 0,008827

GARCH(1,1) 2,000E-07 0,930208 0,064958

Std error 4,165E-07 0,021262 0,025894

EGARCH(1,1) -0,018114 0,999132 -0,044717 0,087543

Std error 0,001328 0,000037 0,032716 0,005366

GJR-GARCH(1,1) 2,000E-07 0,941312 0,089288 -0,083866

Std error 3,821E-07 0,020316 0,033209 0,035508

GARCH(1,1) 2,000E-07 0,939579 0,051775

Std error 2,904E-07 0,012524 0,014211

EGARCH(1,1) -0,010712 0,999348 0,041045 0,056229

Std error 0,024851 0,002232 0,015831 0,010722

GJR-GARCH(1,1) 2,000E-07 0,946929 0,064537 -0,046091

Std error 2,680E-07 0,011675 0,017856 0,020677

GARCH(1,1) 2,000E-07 0,947209 0,046624

Std error 2,274E-07 0,008346 0,009072

EGARCH(1,1) -0,020303 0,998127 0,072477 0,026315

Std error 0,020593 0,001938 0,015135 0,007693

GJR-GARCH(1,1) 2,000E-07 0,949314 0,052489 -0,016971

Std error 2,236E-07 0,008287 0,011148 0,012993

DXYR

Student t

Gaussian

500

1000

2000

500

1000

2000

 
Source: Compiled by the author 
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Appendix 3 continues 

 

 

Distribution No. Obs Model Constant (ω) GARCH (α) ARCH (β) Leverage (γ)

GARCH(1,1) 4,867E-06 0,824328 0,143715

Std error 2,402E-06 0,036043 0,032704

EGARCH(1,1) -0,017037 0,998818 0,026108 -0,082621

Std error 0,013379 0,001572 0,017701 0,007821

GJR-GARCH(1,1) 4,867E-06 0,824328 0,143715 0,000000

Std error 2,416E-06 0,036456 0,041856 0,000000

GARCH(1,1) 6,592E-07 0,944481 0,052497

Std error 7,606E-07 0,008989 0,008212

EGARCH(1,1) -0,011635 0,999077 0,011146 -0,062393

Std error 0,007383 0,000782 0,007166 0,004408

GJR-GARCH(1,1) 2,000E-07 0,968281 0,000000 0,056312

Std error 4,968E-07 0,006087 0,000000 0,008563

GARCH(1,1) 5,325E-07 0,952113 0,046976

Std error 4,954E-07 0,005651 0,005812

EGARCH(1,1) -0,030430 0,996243 0,090931 -0,042526

Std error 0,012931 0,001464 0,011090 0,005581

GJR-GARCH(1,1) 3,217E-07 0,960125 0,015352 0,046225

Std error 4,752E-07 0,004952 0,005179 0,006883

GARCH(1,1) 4,867E-06 0,824328 0,143715

Std error 2,801E-06 0,051507 0,047599

EGARCH(1,1) -0,013701 0,999175 0,034883 -0,073597

Std error 0,019976 0,002228 0,029838 0,016783

GJR-GARCH(1,1) 4,867E-06 0,824328 0,143715 0,000000

Std error 2,802E-06 0,051509 0,060173 0,000000

GARCH(1,1) 6,423E-07 0,928649 0,071351

Std error 9,611E-07 0,016977 0,018109

EGARCH(1,1) -0,009378 0,999331 0,011950 -0,057371

Std error 0,011795 0,001227 0,010778 0,007671

GJR-GARCH(1,1) 2,000E-07 0,970986 0,000000 0,050252

Std error 5,405E-07 0,008066 0,000000 0,015012

GARCH(1,1) 3,580E-07 0,954333 0,045636

Std error 5,660E-07 0,007796 0,008143

EGARCH(1,1) -0,016755 0,998188 0,081649 -0,039992

Std error 0,014153 0,001620 0,014643 0,008290

GJR-GARCH(1,1) 2,000E-07 0,963654 0,014476 0,041763

Std error 4,995E-07 0,006363 0,008050 0,010926

SPGR

Student t

Gaussian
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500

1000

2000

 
Source: Compiled by the author 
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Appendix 4. Conditional variance model evaluation by asset class 

 

Distribution No. Obs Model AIC BIC

500 ARMA (1,1) -2963,30 -2950,6597

GARCH(1,1) 0,78580   0,00238   -3015,28 -3002,64

EGARCH(1,1) 0,59494      0,00403      -3030,77 -3013,91

GJR-GARCH(1,1) 0,69682      0,00454      -3028,41 -3011,55

1000 ARMA (1,1) -6019,075 -6004,35

GARCH(1,1) 0,60441   0,00297   -6110,92 -6096,20

EGARCH(1,1) 0,46800      0,00374      -6152,09 -6132,46

GJR-GARCH(1,1) 0,48568      0,00362      -6137,67 -6118,04

2000 ARMA (1,1) -11008,67 -10991,87

GARCH(1,1) 0,76434   0,00249   -11616,65 -11599,85

EGARCH(1,1) 0,58641      0,00484      -11729,36 -11706,95

GJR-GARCH(1,1) 0,64895      0,00492      -11716,07 -11693,67

500 GARCH(1,1) 0,73605   0,00456   -3023,46 -3010,81

EGARCH(1,1) 0,56083      0,00499      -3040,11 -3023,25

GJR-GARCH(1,1) 0,61642      0,00542      -3037,61 -3020,76

1000 GARCH(1,1) 0,58826   0,00310   -6143,32 -6128,60

EGARCH(1,1) 0,42253      0,00412      -6185,15 -6165,52

GJR-GARCH(1,1) 0,44816      0,00396      -6173,99 -6154,36

2000 GARCH(1,1) 0,75791   0,00459   -11672,34 -11655,53

EGARCH(1,1) 0,55953      0,00532      -11769,26 -11746,86

GJR-GARCH(1,1) 0,64179      0,00535      -11756,79 -11734,39

DAXR

Gaussian

Student t

Correlation RMSE

 

Source: Compiled by the author 
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Appendix 4 continues 

 

Distribution No. Obs Model AIC BIC

500 ARMA (1,1) -4355,3418 -4342,70

GARCH(1,1) 0,378499 0,000403 -4362,50 -4349,86

EGARCH(1,1) 0,533917 0,000473 -4368,02 -4351,17

GJR-GARCH(1,1) 0,543618 0,000325 -4360,50 -4343,64

1000 ARMA (1,1) -8709,7658 -8695,04

GARCH(1,1) 0,536083 0,000561 -8720,55 -8705,83

EGARCH(1,1) 0,588369 0,000652 -8715,93 -8696,30

GJR-GARCH(1,1) 0,482271 0,000573 -8718,55 -8698,92

2000 ARMA (1,1) -16104,35 -16087,55

GARCH(1,1) 0,276146 0,000663 -16437,70 -16420,90

EGARCH(1,1) 0,337499 0,000715 -16445,93 -16423,52

GJR-GARCH(1,1) 0,272029 0,000620 -16448,56 -16426,16

500 GARCH(1,1) 0,544667 0,000246 -4367,39 -4354,75

EGARCH(1,1) 0,739928 0,000260 -4373,31 -4356,46

GJR-GARCH(1,1) 0,782087 0,000252 -4365,39 -4348,54

1000 GARCH(1,1) 0,503038 0,000715 -8778,91 -8764,18

EGARCH(1,1) 0,679442 0,000570 -8783,57 -8763,94

GJR-GARCH(1,1) 0,514831 0,000555 -8776,98 -8757,35

2000 GARCH(1,1) 0,305634 0,000612 -16541,53 -16524,73

EGARCH(1,1) 0,392830 0,000668 -16548,76 -16526,35

GJR-GARCH(1,1) 0,293816 0,000701 -16540,99 -16518,59

TYR

Gaussian

Student t

Correlation RMSE

 

Source: Compiled by the author 
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Appendix 4 continues 

 

Distribution No. Obs Model AIC BIC

500 ARMA (1,1) -4043,36 -4030,72

GARCH(1,1) 0,8776 0,0007 -4145,23 -4132,59

EGARCH(1,1) 0,8761 0,0010 -4185,91 -4169,05

GJR-GARCH(1,1) 0,8300 0,0007 -4116,29 -4099,43

1000 ARMA (1,1) -8048,0846 -4030,72

GARCH(1,1) 0,8836 0,0008 -8171,67 -8156,95

EGARCH(1,1) 0,9181 0,0008 -8181,84 -8162,21

GJR-GARCH(1,1) 0,8879 0,0007 -8174,20 -8154,57

2000 ARMA (1,1) -15211,99 -15195,19

GARCH(1,1) 0,4158 0,0016 -15538,65 -15521,84

EGARCH(1,1) 0,5129 0,0014 -15562,96 -15540,55

GJR-GARCH(1,1) 0,4790 0,0014 -15553,72 -15531,32

500 GARCH(1,1) 0,8939 0,0007 -4169,90 -4173,16

EGARCH(1,1) 0,8900 0,0011 -4198,28 -4181,42

GJR-GARCH(1,1) 0,8353 0,0008 -4173,16 -4156,30

1000 GARCH(1,1) 0,8837 0,0008 -8210,42 -8195,69

EGARCH(1,1) 0,9263 0,0009 -8223,12 -8203,49

GJR-GARCH(1,1) 0,8785 0,0008 -8213,22 -8193,59

2000 GARCH(1,1) 0,3557 0,0015 -15592,57 -15575,77

EGARCH(1,1) 0,5359 0,0015 -15604,26 -15581,85

GJR-GARCH(1,1) 0,4636 0,0014 -15592,30 -15569,89

DXYR

Gaussian

Student t

Correlation RMSE

 

Source: Compiled by the author 
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Appendix 4 continues 

 

Distribution No. Obs Model AIC BIC

500 ARMA (1,1) -2997,26 -2984,61

GARCH(1,1) 0,6073 0,0037 -3103,23 -3101,23

EGARCH(1,1) 0,4460 0,0052 -3143,24 -3126,38

GJR-GARCH(1,1) 0,5511 0,0040 -3101,23 -3084,37

1000 ARMA (1,1) -6180,3324 -6165,61

GARCH(1,1) 0,6841 0,0037 -6368,70 -6394,78

EGARCH(1,1) 0,6329 0,0043 -6413,30 -6393,67

GJR-GARCH(1,1) 0,6238 0,0040 -6394,78 -6375,15

2000 ARMA (1,1) -10929,33 -10912,53

GARCH(1,1) 0,4722 0,0044 -11613,21 -11634,36

EGARCH(1,1) 0,3942 0,0050 -11635,65 -11613,25

GJR-GARCH(1,1) 0,3877 0,0048 -11634,36 -11611,96

500 GARCH(1,1) 0,6644 0,0035 -3145,68 -3133,04

EGARCH(1,1) 0,5439 0,0045 -3170,50 -3153,65

GJR-GARCH(1,1) 0,6335 0,0035 -3143,68 -3126,82

1000 GARCH(1,1) 0,6705 0,0037 -6430,09 -6415,36

EGARCH(1,1) 0,6713 0,0042 -6449,32 -6429,69

GJR-GARCH(1,1) 0,6385 0,0039 -6442,27 -6422,64

2000 GARCH(1,1) 0,4920 0,0043 -11697,32 -11709,32

EGARCH(1,1) 0,4377 0,0048 -11708,52 -11686,11

GJR-GARCH(1,1) 0,4143 0,0047 -11709,32 -11686,91

SPGR

Gaussian

Student t

Correlation RMSE

 

Source: Compiled by the author 
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Appendix 5. Value at risk evaluation by asset class 

Distribution No. Obs Model VaR (90%) VaR (95%) VaR (99%)

500 GARCH(1,1) 65           41           13           

EGARCH(1,1) 69             46             19             

GJR-GARCH(1,1) 69             44             17             

1000 GARCH(1,1) 34           21           9              

EGARCH(1,1) 36             26             13             

GJR-GARCH(1,1) 35             24             11             

2000 GARCH(1,1) 57           35           10           

EGARCH(1,1) 63             36             15             

GJR-GARCH(1,1) 62             40             15             

500 GARCH(1,1) 59           39           11           

EGARCH(1,1) 64             43             20             

GJR-GARCH(1,1) 63             41             17             

1000 GARCH(1,1) 35           22           9              

EGARCH(1,1) 36             26             13             

GJR-GARCH(1,1) 35             24             11             

2000 GARCH(1,1) 57           35           11           

EGARCH(1,1) 62             40             16             

GJR-GARCH(1,1) 61             37             15             

DAXR Violations

Gaussian

Student t

 

Distribution No. Obs Model VaR (90%) VaR (95%) VaR (99%)

500 GARCH(1,1) 36          23          6            

EGARCH(1,1) 33        22        4           

GJR-GARCH(1,1) 38          25          7            

1000 GARCH(1,1) 34          20          4            

EGARCH(1,1) 34          21          4            

GJR-GARCH(1,1) 33          20          4            

2000 GARCH(1,1) 32          17          3            

EGARCH(1,1) 30          17          3            

GJR-GARCH(1,1) 30          17          3            

500 GARCH(1,1) 39          23          6            

EGARCH(1,1) 46          24          8            

GJR-GARCH(1,1) 44          25          7            

1000 GARCH(1,1) 31          18          3            

EGARCH(1,1) 34          20          5            

GJR-GARCH(1,1) 32          20          5            

2000 GARCH(1,1) 31          17          3            

EGARCH(1,1) 29          17          3            

GJR-GARCH(1,1) 30          16          3            

TYR Violations

Gaussian

Student t

 

Source: Compiled by the author 
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Appendix 5 continues 

 

Distribution No. Obs Model VaR (90%) VaR (95%) VaR (99%)

500 GARCH(1,1) 51          32          14          

EGARCH(1,1) 45          31          14          

GJR-GARCH(1,1) 49          33          12          

1000 GARCH(1,1) 47          31          10          

EGARCH(1,1) 53          33          19          

GJR-GARCH(1,1) 47          32          10          

2000 GARCH(1,1) 27          15          6            

EGARCH(1,1) 29          14          3            

GJR-GARCH(1,1) 31          14          6            

500 GARCH(1,1) 49          32          13          

EGARCH(1,1) 43          29          15          

GJR-GARCH(1,1) 48          31          10          

1000 GARCH(1,1) 47          32          10          

EGARCH(1,1) 51          33          19          

GJR-GARCH(1,1) 47          32          10          

2000 GARCH(1,1) 28          13          4            

EGARCH(1,1) 29          13          3            

GJR-GARCH(1,1) 30          14          5            

DXYR Violations

Gaussian

Student t

 

Distribution No. Obs Model VaR (90%) VaR (95%) VaR (99%)

500 GARCH(1,1) 31          18          7            

EGARCH(1,1) 31          17          6            

GJR-GARCH(1,1) 29          15          7            

1000 GARCH(1,1) 32          16          7            

EGARCH(1,1) 26          14          7            

GJR-GARCH(1,1) 29          15          7            

2000 GARCH(1,1) 27          14          6            

EGARCH(1,1) 25          13          7            

GJR-GARCH(1,1) 25          14          8            

500 GARCH(1,1) 34          19          7            

EGARCH(1,1) 32          16          7            

GJR-GARCH(1,1) 30          16          8            

1000 GARCH(1,1) 32          16          7            

EGARCH(1,1) 26          14          7            

GJR-GARCH(1,1) 28          16          7            

2000 GARCH(1,1) 27          14          7            

EGARCH(1,1) 25          13          7            

GJR-GARCH(1,1) 25          14          7            

SPGR Violations

Gaussian

Student t

 

Source: Compiled by the author 


