

Department of Electrical Power Engineering and
Mechatronics

The Implementation of the Algorithm for
Constructing Maps and Automatic
Navigation Using an Autonomous

Mobile Wheeled Platform

MASTER THESIS

MECHATRONICS PROGRAM

Student Anton Isakov

Student code 163841

Supervisor Robert Hudjakov

 Svetlana Perepelkina

Tallinn, 2017

AUTHOR’S DECLARATION

Hereby I declare, that I have written this thesis independently.

No academic degree has been applied for based on this material.

All works, major viewpoints and data of the other authors used in this thesis have been referenced.

Thesis is completed under the supervision of Robert Hudjakov and Svetlana Perepelkina

“.......” 201…..

Author:

/signature /

Thesis is in accordance with terms and requirements

 “.......” 201….

Supervisor: ….........................

/signature/

Accepted for defence

“.......”....................201… .

Chairman of theses’ defence commission:

/signature/

TTU

School of Engineering

THESIS TASK

Student Anton Isakov, 163841MV

Study programme, main speciality: MAHM Mechatronics

Supervisor: PhD, Robert Hudjakov (TUT)

Supervisor: PhD, Svetlana Perepelkina (ITMO)

Thesis topic:

(in English) The implementation of the algorithm for constructing maps and automatic

navigation using an autonomous mobile wheeled platform.

(in Estonian) Kaardi loomise ja autonoomse navigeerimise algoritmi teostus mobiilsele

ratastega platformile.

Thesis proposal

1. Introduction

Nowadays the technical progress in microcontrollers, cameras and algorithms widely opened the

way for multiple devices to be able to calculate the data coming from the sensors allowing them

to create maps of the surrounding environment and to detect their own position on them. Lots of

technologies were created to solve the problem called “SLAM”, which stands for “Simultaneous

Localization and Mapping” – the computational problem of constructing or updating a map of the

unknown environment while simultaneously keeping track of an device’s location within it.

Needless to say that those technologies are widely used in the world, for example, in small

vacuum-cleaner robots, hospital and guard robots, even autonomous cars – lots of major

automotive manufactures like Volvo, Ford and Tesla are testing their driverless car systems –

autonomous ships and aircraft. [1][2][3]. Even the rovers like Spirit and Opportunity are able to

create a map of the unknown planet and plan their way to the point that the developers told them

to go. The last, but not the least important thing – the robots using SLAM technologies are able to

successfully operate in the areas that are dangerous for the humans – in flooded areas, irradiated

and burning buildings, under collapsed roofs of the caves and in places, which humans still cannot

reach, like other planets and satellites.

My inspiration is that with current technologies and rapid development in microcontrollers and

sensors almost anyone is able to find the solution to the problem of SLAM and create the platform

that is cheap, mobile, powerful, and is able to monitor the environment around it and calculate its

position based on the obtained data from multiple non-industrial grade sensors like RGB-D (Red-

Green-Blue-Depth) cameras, sonars, infrared detectors etc. with reasonable quality and cost.

Therefore, in this master thesis I am going to design and build a mobile platform, equip it with the

Microsoft Kinect camera and use it to implement and compare a couple of SLAM algorithms. The

thesis will present the modifications to the existing open source algorithms so they could be able

to make use of the measurements made by the compass and gyroscope module, along with tactile

feedback sensors and sonar sensors. Both the SLAM algorithms and the control program will be

implemented in C++, using Robot Operating System framework (ROS) to handle compiling,

installing, saving and comparing sets of data gained from all the algorithms.

2. Background

The current understanding of the problem is that most algorithms require lots of processing power

and various high-end sensors like LIDAR (Light Identification Detection and Ranging), which are

very precise but expensive to the point that only big groups and companies could afford to use

them. Less algorithms tend to use only cameras, both standard cameras we have in our

smartphones and RGB-D cameras, because they offer the most flexible and accurate sensing for

localization and mapping while still being low-cost and compact. Even less algorithms combine

data from different kinds of sensors to get a better result. [4][5][6][7]

While most of the works are explaining their observations and solutions on the SLAM problem,

they often do not create any kind of platform for the camera and use their own hands to move it

around the building. From my opinion these solutions are very ineffective, because for obtaining

more observations of the environment around the camera it should be able to move around freely,

exploring the unknown areas and map them and update information about the already mapped

ones.

3. Methodology

First, I need to check and compare the hardware and software I will need to use in my project and

check them for compatibility issues, and also research the current algorithms, their possibilities

and drawbacks, and choose a few of them for implementation. Second, I will design, test, print

and build a platform keeping in mind the motors, microcontrollers, sensors and battery supply and

their positions on the platform. Third part is setting up the algorithms on the platform and making

the tests to see which one works better in which conditions. All the algorithms would be tested in

two different environments – the standard room full of furniture and the corridor with opened and

unopened doors and occasional passers-by. The success of the research would be the

comparison between the maps different algorithms provide, their computation speed and

hardware usage, and the differences in setup difficulties.

4. Research Schedule

№ Description Completion date

1
Make a research on current SLAM solutions and sensors; Choose

sensors and algorithms for implementation
27.12.2016

2 Select the hardware for the mobile platform 30.01.2017

3
Design the mobile platform based on the selected hardware; Print

platform
28.02.2017

4
Set up the hardware on the platform; Install all the recommended

software; Check that the setup is correct.
14.03.2017

5

Implement and test selected SLAM algorithms on the chosen

scenarios; Make comparisons; Choose the best algorithm in every

scenario

01.05.2017

6 Finish composing the thesis and presentation 15.05.2017

5. References

1. “Autonomous Driving | Intellisafe | Volvo Cars” [Online]. Available:

http://www.volvocars.com/intl/about/our-innovation-brands/intellisafe/autonomous-

driving [Accessed: March 2017]

2. “FORD TARGETS FULLY AUTONOMOUS VEHICLE FOR RIDE SHARING IN 2021”

[Online]. Available:

https://media.ford.com/content/fordmedia/fna/us/en/news/2016/08/16/ford-targets-fully-

autonomous-vehicle-for-ride-sharing-in-2021.html [Accessed: March 2017]

3. “Autopilot | Tesla” [Online]. Available: https://www.tesla.com/autopilot [Accessed: March

2017]

4. Robert Tubman, Johan Potgieter, Khalid Mahmood Arif, 2016, “Efficient Robotic SLAM by

Fusion of RatSLAM and RGBD-SLAM”, School of Engineering and Advanced

Technology, Massey University, Auckland, New Zealand

5. Andrew Davison, “The History and Future of Visual SLAM - Keynotes”, Imperial College,

London

6. “Google Releases LiDAR SLAM Algorithms, Teases Innovative Mapping Solution”

[Online]. Available: http://www.spar3d.com/news/software/google-releases-lidar-slam-

algorithms-teases-innovative-mapping-solution/ [Accessed: March 2017]

7. Felix Endres, Jürgen Hess, Nikolas Engelhard, Jürgen Sturm, Daniel Cremers, Wolfram

Burgard, 2012, “An Evaluation of the RGB-D SLAM System”, 2012 IEEE International

Conference on Robotics and Automation, RiverCentre, Saint Paul, Minnesota, USA, May

14-18, 2012

Student: ……………………...... “.......” 201….

/signature/

Supervisor: ……………………. “.......”. 201….

/signature/

6

TABLE OF CONTENTS

FOREWORD .. 8

EESSÕNA .. 9

LIST OF ABBREVIATIONS .. 10

CHAPTER 1 ... 11

1. INTRODUCTION .. 11

CHAPTER 2 ... 12

2. DESIGN .. 12

2.1. SLAM and Visual SLAM ... 12

2.1.1. History of SLAM .. 12

2.1.2. Visual SLAM ... 13

2.1.3. SLAM Problem definition .. 15

2.2. Algorithms ... 16

2.2.1. SLAM Process .. 16

2.2.2. Feature detection .. 17

2.3. SLAM Algorithms .. 28

2.3.1. Hector SLAM .. 28

2.3.2. Gmapping ... 30

2.3.3. ORB-SLAM ... 32

2.3.4. RGBDSLAM ... 34

2.4. Robot Operating System (ROS) ... 36

2.4.1. Filesystem Level ... 36

2.4.2. Computation Graph Level .. 37

2.4.3. Community Level .. 40

2.4.4. Other ROS Concepts.. 41

CHAPTER 3 ... 44

3. DEVELOPMENT .. 44

3.1. ROS Installation .. 44

3.2. Prerequisites ... 45

3.2.1. OpenNI ... 45

3.2.2. Depthimage_to_laserscan .. 46

3.2.3. Laser_Scan_Matcher ... 48

3.2.4. Camera_calibration .. 48

3.3. Algorithms ... 50

7

3.3.1. Hector SLAM .. 51

3.3.2. Gmapping ... 52

3.3.3. RGBDSLAM-v2 .. 52

3.3.4. ORB_SLAM2 .. 53

3.4. Mobile platform ... 54

3.4.1. Requirements ... 54

3.4.2. Microsoft Kinect .. 55

3.4.3. Raspberry Pi 3 .. 56

3.4.4. Motors and Motor Shield .. 57

3.4.5. Power Supply ... 59

3.4.6. Solidworks Model ... 61

3.5. Control programs .. 63

CHAPTER 4 ... 64

4. RESULTS ... 64

4.1. Evaluated characteristics ... 64

4.2. Analysis of the results .. 65

4.3. Conclusion .. 68

CHAPTER 5 ... 69

5. SUMMARY ... 69

5.1. Summary .. 69

5.2. Kokkuvõte ... 70

LIST OF REFERENCES .. 71

8

FOREWORD

The main idea of building a platform and make it run by itself was following me for a long period.

Ever since I was a kid I always liked to play and work with mechanisms and technical equipment –

building robots and cars from LEGO, helping my father in repairing home devices and ever upgrading

some of the toys I had to be better at some characteristics, like making the RC car accelerate much

faster by short-circuiting some specific pins on the motherboard or designing and creating the RC

Boat for participating in competition. Those tendencies grew in me, and when it was the time to attend

university, I already knew that the Mechatronics is the only way that will help me in my ambitions.

The topic is the continuation of my Bachelor degree thesis, in which I was modifying my old RC off-

road truck to get the hold of the programming, wiring and control techniques, and to implement a

basic Visual SLAM algorithm utilizing one small camera to get information of the environment. The

new solution is way faster and accurate and is designed and built from scratch based on the problems

I had experienced before.

I want to express my gratitude to the Mechatronics and Robotics Department of ITMO for teaching

me and helping me through the studying years, MT.Lab for providing me with necessary equipment

and personally to Dmitry Kupriyanov, who opened the world of microcontrollers for me and lit my

curiosity for studying them. I would also like to thank the head of TUT Mechatronics Department

Professor Mart Tamre and the head of ITMO Mechatronics Department Ph.D. Yuri Monakhov for

giving me the opportunity to study in Mechatronics Double Degree program and Robert Hudjakov

and Svetlana Perepelkina for helping me with writing this thesis.

9

EESSÕNA

Põhieesmärk platvormi ehitamisel ja selle autonoomseks tegemisel oli panna ta mind pikaks ajaks

järgima. Ma olen lapsest saati armastanud mängida ja töötada mehhanismide ja tehniliste

seadmetega - ehitada roboteid ja autosid LEGO klotsidest, aidata isal parandada koduseadmeid ja

isegi arendada oma mänguasju paremaks mõnes aspektis nagu näiteks parandades puldiga auto

kiirendust lühistades emaplaadil mõned teatud jalad või konstrueerides puldiga paate

võistluseesmärgil. Need huvid on minus aja jooksul tugevnenud ning kui aeg oli minna ülikooli, siis

ma juba teadsin, et mehhatroonika on ainus viis mu ambitsioone tõeks teha. Käesolev teema on jätk

minu bakalaureusetööle, milles ma kohendasin oma vana puldiga maastikuautod, õppimaks

programmeerimist, kaabeldamist ja juhtimistehnikaid, eesmärgiga korjata ümbruskonnast kaamera

vahendusel informatsiooni loomaks Visual SLAM algoritmi abil kaart. Käesolevas töös loodud

lahendus on kiirem ja täpsem ning on loodud alustades puhtalt lehelt lahedamaks probleeme, mida

kohtasin varem.

Ma soovin tänada ITMO Mehhatroonika ja Robootika instituuti minu õpetamise ja abistamise eest

möödunud õppeaastate jooksul. MT laborit minu varustamise eest ning personaalselt Dmitry

Kupriyanovit, kes avas mulle mikrokontrollerite maailma ning süütas minu uudishimu nende vastu.

Lisaks soovin tänada TTÜ Mehhantroonika instituudi direktorit Professor Mart Tamret ja ITMO

Mehhatroonika instituudi direktorit Ph.D. Yuri Monakhovit võimaluse eest õppida Mehhatroonika

topelkraadiõppe programmis ning Robert Hudjakovi ja Svetlana Perepelkinat abi eest selle lõputöö

kirjutamisel.

10

LIST OF ABBREVIATIONS

ROS – Robot Operating System

SLAM – Simultaneous localization and mapping

GPIO – General Purpose Input and Output

SSD – Sum of Squared Differences

SIFT - Scale-Invariant Feature Transform

SURF - Speeded Up Robust Feature

NARF - Normal Aligned Radial Feature

BRIEF - Binary Robust Independent Elementary Feature

FAST - Features from Accelerated Segment Test

11

CHAPTER 1

1. INTRODUCTION

This thesis was created as a part of MSc Mechatronics Double Degree program between the Tallinn

Technical University and Saint-Petersburg ITMO University. The topic is a continuation of the

Bachelor thesis, and the main objective is to create a robust solution to the SLAM problem, which

should be cheaper, easier to set up and use than existing solutions.

This work aims for completion of the following tasks:

1. Design and build a mobile platform

2. Create a control program

3. Implement four SLAM algorithms and compare them

The second chapter explains the primary technology behind the solution, describes and justifies the

choices in hardware and software.

The third chapter gives an overview on the development stage of the project, showing how to install,

setup and utilize the ROS framework and the SLAM algorithms, provides information about the

control programs and algorithms behind the operation of the platform and shows the steps of

designing the prototype of the platform.

The fourth chapter shows the results of the work –the comparison between the selected algorithms.

12

CHAPTER 2

2. DESIGN

2.1. SLAM and Visual SLAM

One of the most basic yet important features of intelligent mobile robots is the ability to navigate

autonomously. Autonomous robots are capable of safely exploring their surroundings without

colliding with obstacles. For navigation in the unknown environment, the robot should build a map of

its surroundings and be able to know its position on the generated map at the same time. [1]

SLAM – Simultaneous Localization and Mapping – is a term for algorithms that build maps of an

existing unknown environment while being able to perform localization in that area. This method is

widely used in robotics and often plays the main role in creation of the autonomous robot. It allows

robots and autonomous vehicles to build a map of the environment or to update a preexisting map

with new information while constantly keeping track of their position on such map. The method of

SLAM allows to combine two independent processes – navigation and mapping – into a continuous

cycle of consistent calculations, in which the result of one process is an input information for the

other. This way the trajectory of the robotic platform and the mapping information about the

surrounding area is estimated in real time without the need for any present knowledge of the location.

[2] [3] A solution to a SLAM problem would allow robots to make maps without any human assistance.

2.1.1. History of SLAM

The researches in SLAM area were conducted in multiple universities and other institutions since

1986, where the origins of SLAM problem were presented at the 1986 IEEE Robotics and Automation

Conference that took place in San Francisco. The work that started the researches on SLAM

technology was the “On the Representation and Estimation of Spatial Uncertainty” made in 1986 by

R.C. Smith and P. Cheeseman [4]. In this paper the method for estimating the nominal relationship

and expecting error between coordinate frames that represent the relative locations of objects was

described. The method could be used to answer the such questions as whether a camera attached

to a robot platform is likely to have a particular reference object in its field of view. The method made

it possible to decide in advance whether an uncertain relationship is known accurately enough for a

required task and if not – how much of an improvement in locational knowledge a proposed sensor

will provide.

Next work in this field of research was “Estimating Uncertain Spatial Relationships in Robotics” by

R.C. Smith and P. Cheeseman in 1990 [5]. It described the representation for spatial information,

13

called “stochastic map”, and included the methods of creating a map, extracting information from

sensors and revising it as new information is collected. The map they presented contained the

estimates of the relationship between the objects on the map and their uncertainties, given all the

available information. As an advance over the previous approaches on the problem was the fact that

the estimates were probabilistic by the nature, and the development of the procedures in the state-

estimation and filtering theory provided a solid basis for the followed extensions.

The “Simultaneous Map Building and Localization for an Autonomous Mobile Robot” (1991) by J.J.

Leonard and H.F. Durrant-Whyte [6] discussed the problem of estimation of the robot position without

a priori information. That problem was difficult because of the conflict between the main processes

of SLAM – localization and mapping. For precision moving the mobile robot should have an accurate

representation of the environment, but for building an accurate map the robot’s location should be

known precisely. In this paper the SLAM problem was presented as “chicken-egg” problem, means

that the two processes are working recursively, and the first one’s output is a next one’s input. For

overcoming the issue the authors used an array of ultrasonic sensors mounted on the servo motors

of the robot, which gave them an ability to sense the accurate information about the robot’s

surroundings from the very beginning and to have a correct tracking of the extracted features to

provide precise positioning.

A conceptual break-through came when the problem of simultaneous navigation and localization,

which was first described as estimated, was found to be convergent. The relations between the points

on the map, which a lot of researches tried to decrease, played a major role in the solution of the

problem, and the more relations there were the more accurate solution was generated. Most of the

theory of convergence and multiple results were achieved by M. Csorba in the works “A new

approach to simultaneous localization and map building” [7] and “Simultaneous Localization and Map

Building” [8], which were published in 1996 and 1997 respectively. It was shown that correlations

arise from the errors in the vehicle and the map estimates; these correlations were identified as

fundamentally important to the solution of the SLAM problem, and ignoring these correlations lead

to inconsistencies in map generation and position estimation. The provided results show that it is

possible to start the robot in the unknown location in an unknown environment and be able to build

a map by which to navigate.

2.1.2. Visual SLAM

In the last couple of decades the area of the mobile robotics and autonomous platforms has attracted

significant attention from researchers all around the world, which resulted in multiple breakthroughs

and technological advances. Mobile robots are able to perform complicated tasks autonomously,

while in the past they required assistance from human personnel. The range of applications contains

various fields, such as medical, military and domestic. In those applications mobile robots are

required to accomplish complex tasks requiring navigation in an unknown, complex indoor and

14

outdoor environments without any human input. As a result, the SLAM problem was studied in detail

and various techniques have been proposed to solve the localization problem.

The research on SLAM grew heavily for the last decade, with multiple institutions developing new

algorithms, sensors and solutions. The continuous improvement of the computation capabilities of

microcontrollers and the quality of sensors have made it possible for SLAM applications to be used

outside of the pure test environments, and nowadays they are able to work even outdoors. With the

major progress in algorithms, multiple sensors could be used to solve the SLAM problem.

1. Mono-camera. The algorithms like PTAM, VSLAM and others work with the video stream

from the single camera that moves relative to the environment, detecting keypoints between the

video frames and trying to link them one to another. The performance and the quality of the obtained

map is not so good, but it depends on the algorithm.

2. Stereo camera. The algorithms work with a pair of cameras with known parameters, good

calibration and the distance between them. Other work is similar to the mono-camera algorithms –

they detect keypoints on the images and link them between cameras and between consecutive

frames. Usage of two cameras provides them with better results at detecting and tracking keypoints.

3. Multi-camera. Same as #2, but they use a matrix of cameras for detecting points. Very

computer performance-hungry, but good results.

4. RGBD cameras and LIDARs. They provide the system with the point clouds eliminating the

need for detecting them on the frames. RGBD (Red-Green-Blue-Depth) cameras give out the video

stream and the point cloud in front of the camera and cost not so much, while LIDARs give out a

point cloud of the full terrain around the robot, work much faster and deliver much more information

than any of the above, but have high prices for a middle-end solution.

In every implementation of SLAM the first thing is to create a map of the environment around the

robot. The most easiest and cheapest way to do so is to use optic sensors.

Visual SLAM implies the usage of an array of cameras or a LIDAR to detect the robot’s location with

help from the odometry and accelerometers installed. LIDARs are more preferable due to their rapid

data obtainment, precise distance information and very high angle of sight (typically full 360 degree

view), but the severe con of their typical price makes them less preferable for most of the projects.

On the other side, using cameras we can obtain much more information about the robot’s

surroundings than any other type of sensor. With RGB-D cameras it is possible to receive data about

thousands points around the robot and with the usage of specialized algorithms to compare these

points to the database, understanding the camera’s location, the size and the shape of the object in

front of it, and also the material and color.

There are also the combined systems that unite best parameters of cameras and LIDARs, but due

to their complexity and cost, using these systems is only practical in high-quality projects, where the

extreme precision is most necessary. In most cases the prototypes of such systems could not be

15

moved to mass production, which forces the developers into searching for different variants of the

optical systems.

One of the possible solutions includes using monocular vision, because it saves most of the

advantages of the cameras while keeping the production at a satisfactory cost. But to the problem of

analyzing the video stream adds another, most severe disadvantage of Visual SLAM – necessity of

searching for correlations in obtained images. In most of the cases modern systems collect data

using multiple algorithms and present the maps as a set of points, lines or simple geometrical objects.

This data could help in viewing the surface around the robot as a coarse sketch.

Techniques that use stereo vision could deliver the high-quality information due to the accurate

measurements and precise calibration of the cameras. But despite all of the benefits of this solution

it did not got wide spread in the Visual SLAM projects. The complexity of calculations required for

computation of geometric parameters of the environment become the practical limit of such technics

for obtaining real-time models in SLAM.

In my thesis I decided to use the Visual SLAM solution that implies the usage of RGB-D camera to

get the information about the robot platform’s environment.

2.1.3. SLAM Problem definition

The problem of consistently matching (aligning) various 3D point clouds taken from different point of

views into a complete model is known as registration. The goal of this process is to find the relative

positions and orientations of the separately acquired point clouds in a global coordinate framework.

The key idea to perform this task is to identify corresponding points between the data sets then find

a transformation that minimizes the distance (alignment error) between the corresponding points.

The process is repeated until the alignment errors falls below a given threshold: at this point the

registration is said to be complete.

To perform point clouds matching, usually the following steps are used:

1. From the two consecutive noisy point clouds that we want to match, keypoints that best represent

the scene in both set of points are extracted.

2. For each keypoint, a feature descriptor is computed.

3. Correspondences between the extracted features in both point clouds are estimated using the

feature descriptors and their XYZ positions in the datasets.

4. The point clouds are assumed to be noisy and not all correspondences are valid, so bad

correspondences that contribute negatively to the registration process are rejected.

16

5. From the remaining set of good correspondences, an initial rough transformation between the two

point clouds is estimated.

6. Refinement of the matching between the point clouds is performed using the ICP (Iterative Closest

Point) or the NDT (Normal Distribution Transform) algorithms.

Generally speaking, a keypoint (also known as “interest point”) is simply a point that has been

identified as relevant in some way. Whether any point of the point cloud is considered as keypoint or

not depends on the used “keypoint detector”. Raw point clouds extracted from a stereo camera

system are usually noisy and the feature descriptors needed for the registration process are

expensive to compute at every point. This is why keypoints are usually used to identify a small

number of locations where computing feature descriptors is likely to be most effective.

There is no strict definition for what constitutes a keypoint detector, but a good keypoint detector will

find points which have the following properties:

1. Sparseness: Typically, only a small subset of points in the scene are keypoints

2. Repeatability: If a point is determined to be a keypoint in one point cloud, a keypoint should

also be found in a second point cloud taken from a different view point. Such keypoint will

be called “Stable”.

3. Distinctiveness: The area surrounding each keypoint should have a unique shape or

appearance that can be captured by some feature descriptor.

Interest points are usually placed at corners of shapes and where the color/brightness gradient is the

highest. There are various methods to find keypoints, and each technique has its specific output. [9]

2.2. Algorithms

2.2.1. SLAM Process

A SLAM algorithm essentially consists of the following steps:

1. Data acquisition; in this step measurements from the sensors, e.g. laser scanner or video

camera, are gathered.

2. Feature extraction; a number of characteristic, and thereby easily recognizable, landmarks

are selected from the data set.

3. Feature association; landmarks from previous measurements are associated with landmarks

from the most recent measurement.

4. Pose estimation; the relative change between the landmarks and the position of the vehicle

is used to estimate the new pose of the vehicle.

17

5. Map adjustment; the map is updated according to the new pose and the corresponding

measurements.

The five tasks are continuously repeated and a trajectory of position estimates and a map is built up.

In the case of visual SLAM, a landmark can be anything that is easily recognizable by a visual sensor,

e.g.

 a corner,

 an edge,

 a dot in a protruding color.

The robot extracts landmarks from the data and searches through its database to see if there are

any matches with old landmarks. Extracted landmarks that are not found in the database are added

and landmarks giving a match in the database are used to estimate the change of the robot’s pose.

This is done by measuring the change in distance and angle to the old landmarks. When the new

pose is estimated the robot uses this estimate and the measurements to adjust the positions of the

landmarks. SLAM can be regarded as a hen and egg problem. A proper map is needed to get a

proper pose estimate and a proper pose estimate is needed to get a proper map. [10]

2.2.2. Feature detection

In computer vision, and more specifically in object recognition, many techniques are based on the

detection of points of interests on object or surfaces. This is done through the extraction of features.

In order to track these points of interests during a motion of the camera and/or the robot, a reliable

feature has to be invariant to image location, scale and rotation. A few methods are briefly presented

here:

 Moravec Corner detection algorithm [11]

 Harris and Stephens Corner detection algorithm [12]

 SIFT - Scalar Invariant Feature Transform, by David Lowe [13]

 SURF - Speeded Up Robust Feature [14]

 NARF - Normal Aligned Radial Feature [15]

 BRIEF - Binary Robust Independent Elementary Feature [16]

 FAST - Features from accelerated segment test [17]

There are two aspects concerning a feature: the detection of a keypoint, which identifies an area of

interest, and its descriptor, which characterizes its region. Typically, the detector identifies a region

containing a strong variation of intensity such as an edge or a corner, and its center is designed as

a keypoint. The descriptor is generally computed by measuring the main orientations of the

surrounding points, leading to a multidimensional feature vector which identifies the given keypoint.

18

Given a set of features, a matching can then be performed in order to associate some pairs of

keypoints between a couple of frames.

Moravec Corner detection algorithm

One of the earliest corner detection algorithm. It defines a corner as a point with low self-similarity.

The algorithm tests each pixel in the image to see if a corner is present, by considering how similar

a patch centered on the pixel is to nearby, largely overlapping patches. The similarity is measured

by taking the sum of squared differences between the corresponding pixels of two patches. A lower

number indicates more similarity.

If the pixel is in a region of uniform intensity, then the nearby patches will look similar. If the pixel is

on an edge, then nearby patches in a direction perpendicular to the edge will look quite different, but

nearby patches in a direction parallel to the edge will result in only in a small change. If the pixel is

on a feature with variation in all directions, then none of the nearby patches will look similar.

The corner strength is defined as the smallest SSD (Sum of squared differences) between the patch

and its neighbours (horizontal, vertical and on the two diagonals). The reason is that if this number

is high, then the variation along all shifts is either equal to it or larger than it, so capturing that all

nearby patches look different.

If the corner strength number is computed for all locations, that it is locally maximal for one location

indicates that a feature of interest is present in it.

As pointed out by Moravec, one of the main problems with this operator is that it is not isotropic: if an

edge is present that is not in the direction of the neighbours (horizontal, vertical, or diagonal), then

the smallest SSD will be large and the edge will be incorrectly chosen as an interest point. [11]

Harris Corner

Known as the Harris corner operator, this is one of the earliest detector, as it was proposed in 1988

by Harris and Stephens [12] as an improved version over Moravec’s. It considers the differential of

the corner score with respect to direction directly, instead of using shifted patches. The notion of

corner should be taken in a wide sense as it allows to detect not only corners, but edges and more

generally, keypoints. It is done by computing the second moment matrix (or auto-correlation matrix)

of the image intensities, describing its local variations. One of the main limitation with the Harris

operator, at least in its original version, concerns the scale invariance as the matrix should be

recomputed for a different scale. [18]

19

Without loss of generality, we will assume a grayscale 2-dimensional image is used. Let this image

be given by �. Consider taking an image patch over the area (�, �) and shifting it by (�, �). The

weighted sum of squared differences (SSD) between these two patches, denoted �, is given by:

 �(�, �) =���(�, �)��(� + �, � + �) − �(�, �)�
�

��

 (1.1)

�(� + �, � + �) can be approximated by a Taylor expansion [19]. Let �� and �� be the partial

derivatives of I, such that

 �(� + �, � + �) ≈ �(�, �) + ��(�, �)� + ��(�, �)� (1.2)

This produces the approximation

 �(�, �) ≈���(�, �)���(�, �)� + ��(�, �)��
�

��

 (1.3)

Which can be written in matrix form

 �(�, �) ≈ (� �)�(
�
�) (1.4)

Where A is the structure tensor,

 � =���(�, �) �
��
� ����

���� ��
� � = �

〈��
�〉 〈����〉

〈����〉 〈��
�〉

�

��

 (1.5)

This matrix is a Harris matrix, and angle brackets denote summation over (�, �). If a circular window

�(�, �) is used, then the response will be isotropic.

A corner (or in general an interest point) is characterized by a large variation of � in all directions of

the vector (� �). By analyzing the eigenvalues of �, this characterization can be expressed in the

following way: � should have two "large" eigenvalues for an interest point. Based on the magnitudes

of the eigenvalues, the following inferences can be made based on this argument:

1. If �� ≈ 0 and �� ≈ 0 then this pixel (�, �) has no features of interest.

2. If �� ≈ 0 and �� has some large positive value, then an edge is found.

3. If �� and �� have large positive values, then a corner is found.

Harris and Stephens note that exact computation of the eigenvalues is computationally expensive,

since it requires the computation of a square root, and instead suggest the following function ��,

where � is a tunable sensitivity parameter:

 �� = �� �� − �(�� + ��)
� = det(�) − � ������(�) (1.6)

20

Therefore, the algorithm does not have to actually compute the eigenvalue decomposition of the

matrix � and instead it is sufficient to evaluate the determinant and trace of � to find corners, or rather

interest points in general.

The Shi–Tomasi [20] [21] corner detector directly computes min (��, ��) because under certain

assumptions, the corners are more stable for tracking. This method is also sometimes referred to as

the Kanade-Tomasi corner detector.

The value of � has to be determined empirically, and in the literature values in the range 0.04–0.15

have been reported as feasible. There is a possibility of avoiding setting the parameter � by using

Noble's [22] corner measure ��
� which amounts to the harmonic mean of the eigenvalues:

 ��
� = 2

det(�)

�����(�) + ��
 (1.7)

� being a small positive constant,

The covariance matrix for the corner position is ���, i.e.

1

〈��
�〉〈��

�〉 − 〈����〉
�
�
〈��
�〉 −〈����〉

−〈����〉 〈��
�〉

� (1.8)

SIFT

The Scalar Invariant Feature Transform (SIFT) is a method presented by David Lowe [13], now

widely used in robotics and computer vision. This is a method to detect distinctive, invariant image

feature points, which easily can be matched between images to perform tasks such as object

detection and recognition, or to compute geometrical transformations between images.

The main idea of the SIFT method is to define a cascade of operations following an increasing

complexity, so that the most expensive operations are only performed to the most probable

candidates.

1. Scale-invariant feature detection.

The first step relies on a pyramid of Difference-of-Gaussian (DoG) in order to be invariant to scale

and orientation. Lowe's method for image feature generation transforms an image into a large

collection of feature vectors, each of which is invariant to image translation, scaling, and rotation,

partially invariant to illumination changes and robust to local geometric distortion. These features

share similar properties with neurons in primary Visual cortex that are encoding basic forms, color

and movement for object detection in primate vision. [23] Key locations are defined as maxima and

minima of the result of difference of Gaussians function applied in scale space to a series of

smoothed and resampled images. Low contrast candidate points and edge response points along

21

an edge are discarded. Dominant orientations are assigned to localized keypoints. These steps

ensure that the keypoints are more stable for matching and recognition. SIFT descriptors robust to

local affine distortion are then obtained by considering pixels around a radius of the key location,

blurring and resampling of local image orientation planes.

2. Feature matching and indexing

Indexing consists of storing SIFT keys and identifying matching keys from the new image. Lowe used

a modification of the k-d tree algorithm called the Best-bin-first search method [24] that can identify

the nearest neighbors with high probability using only a limited amount of computation. The BBF

algorithm uses a modified search ordering for the k-d tree algorithm so that bins in feature space are

searched in the order of their closest distance from the query location. This search order requires

the use of a heap-based priority queue for efficient determination of the search order. The best

candidate match for each keypoint is found by identifying its nearest neighbor in the database of

keypoints from training images. The nearest neighbors are defined as the keypoints with minimum

Euclidean distance from the given descriptor vector. The probability that a match is correct can be

determined by taking the ratio of distance from the closest neighbor to the distance of the second

closest.

Lowe rejected all matches in which the distance ratio is greater than 0.8, which eliminates 90% of

the false matches while discarding less than 5% of the correct matches. To further improve the

efficiency of the best-bin-first algorithm search was cut off after checking the first 200 nearest

neighbor candidates. For a database of 100,000 keypoints, this provides a speedup over exact

nearest neighbor search by about 2 orders of magnitude, yet results in less than a 5% loss in the

number of correct matches. [25]

3. Cluster identification by Hough transform voting

Hough Transform is used to cluster reliable model hypotheses to search for keys that agree upon a

particular model pose. Hough transform identifies clusters of features with a consistent interpretation

by using each feature to vote for all object poses that are consistent with the feature. When clusters

of features are found to vote for the same pose of an object, the probability of the interpretation being

correct is much higher than for any single feature. An entry in a hash table is created predicting the

model location, orientation, and scale from the match hypothesis. The hash table is searched to

identify all clusters of at least 3 entries in a bin, and the bins are sorted into decreasing order of size.

Each of the SIFT keypoints specifies 2D location, scale, and orientation, and each matched keypoint

in the database has a record of its parameters relative to the training image in which it was found.

The similarity transform implied by these 4 parameters is only an approximation to the full 6 degree-

of-freedom pose space for a 3D object and also does not account for any non-rigid deformations.

Therefore, Lowe used broad bin sizes of 30 degrees for orientation, a factor of 2 for scale, and 0.25

times the maximum projected training image dimension (using the predicted scale) for location. The

SIFT key samples generated at the larger scale are given twice the weight of those at the smaller

scale. This means that the larger scale is in effect able to filter the most likely neighbours for checking

22

at the smaller scale. This also improves recognition performance by giving more weight to the least-

noisy scale. To avoid the problem of boundary effects in bin assignment, each keypoint match votes

for the 2 closest bins in each dimension, giving a total of 16 entries for each hypothesis and further

broadening the pose range.

4. Model verification by linear least squares

Each identified cluster is then subject to a verification procedure in which a linear least squares

solution is performed for the parameters of the affine transformation relating the model to the image.

The affine transformation of a model point [� �]� to an image point [� �]� can be written as below:

 �
�
�
�= �

�1 �2
�3 �4

��
�
��+ �

��
��� (1.9)

Where the model translation is [�� ��]� and the affine rotation, scale, and stretch are represented

by the parameters m1, m2, m3 and m4. To solve for the transformation parameters the equation

above can be rewritten to gather the unknowns into a column vector.

 �
� � 0 0 1 0
0 0 � � 0 1
⋯

�

⎣
⎢
⎢
⎢
⎢
⎡
�1
�2
�3
�4
��
��⎦

⎥
⎥
⎥
⎥
⎤

= �

�
�
.
.

� (1.10)

This equation shows a single match, but any number of further matches can be added, with each

match contributing two more rows to the first and last matrix. At least 3 matches are needed to

provide a solution. This linear system could be written as

 ��� ≈ � (1.11)

Where A is a known m-by-n matrix (usually with m > n), � is an unknown n-dimensional parameter

vector, and � is a known m-dimensional measurement vector.

Therefore, the minimizing vector �� is a solution of the normal equation

 ����� = ��� (1.12)

The solution of the system of linear equations is given in terms of the matrix (���)����, called the

pseudoinverse of �, by

 �� = (���)����� (1.13)

which minimizes the sum of the squares of the distances from the projected model locations to the

corresponding image locations.

23

5. Outlier detection

Outliers can now be removed by checking for agreement between each image feature and the model,

given the parameter solution. Given the linear least squares solution, each match is required to agree

within half the error range that was used for the parameters in the Hough transform bins. As outliers

are discarded, the linear least squares solution is re-solved with the remaining points, and the

process iterated. If fewer than 3 points remain after discarding outliers, then the match is rejected. In

addition, a top-down matching phase is used to add any further matches that agree with the projected

model position, which may have been missed from the Hough transform bin due to the similarity

transform approximation or other errors.

The final decision to accept or reject a model hypothesis is based on a detailed probabilistic model.

[26] This method first computes the expected number of false matches to the model pose, given the

projected size of the model, the number of features within the region, and the accuracy of the fit. A

Bayesian probability analysis then gives the probability that the object is present based on the actual

number of matching features found. A model is accepted if the final probability for a correct

interpretation is greater than 0.98. Lowe's SIFT based object recognition gives excellent results

except under wide illumination variations and under non-rigid transformations. [27]

SURF

The Speeded Up Robust Feature (SURF) provides a robust detector and descriptor [14], that can be

used in computer vision tasks like object recognition or 3D reconstruction. It is partly inspired by the

SIFT descriptor, both are using local gradient histograms. The main difference concerns the

performance, lowering the computational time through an efficient use of integral images for the

image convolutions, Hessian matrix-based detector (optimized through approximations of the second

order Gaussian partial derivatives), and sums of approximated 2D Haar wavelet responses for the

descriptor. The standard version of SURF is several times faster than SIFT and claimed by its authors

to be more robust against different image transformations than SIFT. [28]

The algorithm has three main parts: interest point detection, local neighborhood description and

matching.

1. Detection.

SURF uses square-shaped filters as an approximation of Gaussian smoothing. (The SIFT approach

uses cascaded filters to detect scale-invariant characteristic points, where the difference of

Gaussians (DoG) is calculated on rescaled images progressively.) Filtering the image with a square

is much faster if the integral image is used:

24

 �(�, �) =���(�, �)

�

���

�

���

 (1.14)

The sum of the original image within a rectangle can be evaluated quickly using the integral image,

requiring evaluations at the rectangle's four corners.

SURF uses a blob detector based on the Hessian matrix to find points of interest. The determinant

of the Hessian matrix is used as a measure of local change around the point and points are chosen

where this determinant is maximal. In contrast to the Hessian-Laplacian detector by Mikolajczyk and

Schmid [28], SURF also uses the determinant of the Hessian for selecting the scale, as is also done

by Lindeberg [29]. Given a point � = (�, �) in an image �, the Hessian matrix �(�, �) at point � and

scale �, is:

 �(�, �) = �
���(�, �) ���(�, �)

���(�, �) ���(�, �)
� (1.15)

Where ���(�, �) etc. is the convolution of the second-order derivative of gaussian with the image

�(�, �) at the point �.

The box filter of size 9×9 is an approximation of a Gaussian with σ=1.2 and represents the lowest

level (highest spatial resolution) for blob-response maps. [30]

2. Scale-space representation and location of points of interest

Interest points can be found at different scales, partly because the search for correspondences often

requires comparison images where they are seen at different scales. In other feature detection

algorithms, the scale space is usually realized as an image pyramid. Images are repeatedly

smoothed with a Gaussian filter, then they are subsampled to get the next higher level of the pyramid.

Therefore, several floors or stairs with various measures of the masks are calculated:

 ������� = ������� ������ ���� ∗ �
���� ������ �����

���� ������ ����
� (1.16)

The scale space is divided into a number of octaves, where an octave refers to a series of response

maps of covering a doubling of scale. In SURF, the lowest level of the scale space is obtained from

the output of the 9×9 filters.

Hence, unlike previous methods, scale spaces in SURF are implemented by applying box filters of

different sizes. Accordingly, the scale space is analyzed by up-scaling the filter size rather than

iteratively reducing the image size. The output of the above 9×9 filter is considered as the initial scale

layer at scale s=1.2 (corresponding to Gaussian derivatives with � = 1.2). The following layers are

obtained by filtering the image with gradually bigger masks, taking into account the discrete nature

of integral images and the specific filter structure. This results in filters of size 9×9, 15×15, 21×21,

25

27×27... Non-maximum suppression in a 3×3×3 neighborhood is applied to localize interest points in

the image and over scales. The maxima of the determinant of the Hessian matrix are then

interpolated in scale and image space with the method proposed by Brown, et al. [31]. Scale space

interpolation is especially important in this case, as the difference in scale between the first layers of

every octave is relatively large. [30]

3. Descriptor

The goal of a descriptor is to provide a unique and robust description of an image feature, e.g., by

describing the intensity distribution of the pixels within the neighbourhood of the point of interest.

Most descriptors are thus computed in a local manner, hence a description is obtained for every point

of interest identified previously.

The dimensionality of the descriptor has direct impact on both its computational complexity and point-

matching robustness/accuracy. A short descriptor may be more robust against appearance

variations, but may not offer sufficient discrimination and thus give too many false positives.

The first step consists of fixing a reproducible orientation based on information from a circular region

around the interest point. Then we construct a square region aligned to the selected orientation, and

extract the SURF descriptor from it. [30]

3.1. Orientation assignment

In order to achieve rotational invariance, the orientation of the point of interest needs to be found.

The Haar wavelet responses in both x- and y-directions within a circular neighbourhood of radius 6�

around the point of interest are computed, where � is the scale at which the point of interest was

detected. The obtained responses are weighted by a Gaussian function centered at the point of

interest, then plotted as points in a two-dimensional space, with the horizontal response in the

abscissa and the vertical response in the ordinate. The dominant orientation is estimated by

calculating the sum of all responses within a sliding orientation window of size �/3. The horizontal

and vertical responses within the window are summed. The two summed responses then yield a

local orientation vector. The longest such vector overall defines the orientation of the point of interest.

The size of the sliding window is a parameter that has to be chosen carefully to achieve a desired

balance between robustness and angular resolution. [30]

3.2. Descriptor based on the sum of Haar wavelet responses

To describe the region around the point, a square region is extracted, centered on the interest point

and oriented along the orientation as selected above. The size of this window is 20�.

The interest region is split into smaller 4x4 square sub-regions, and for each one, the Haar wavelet

responses are extracted at 5x5 regularly spaced sample points. The responses are weighted with a

Gaussian (to offer more robustness for deformations, noise and translation).

26

4. Matching

By comparing the descriptors obtained from different images, matching pairs can be found.

NARF

The Normal Aligned Radial Feature (NARF) is presented by Bastian Steder in [32]. It is meant to be

used on single range scan obtained with 3D laser range finders or stereo camera. This feature is

available in the Point Cloud Library (PCL) [33], which is part of the Robot Operating System (ROS),

but also released as a standalone library. Its detector looks for stable areas with significant change

in vicinity, which can be identified from different viewpoints. The descriptor characterizes the area

around the keypoint by calculating a normal aligned range value patch and finding the dominant

orientation of the neighboring pixels.

This algorithm extends SIFT’s concepts. It works by iterating over all interest points in the range

image ��, for every point �� it creates a small image patch by looking at it along it’s normal. The

normal is the Z-axis of the image patch's local coordinate system where �� is at (0,0). The Y-axis is

the world coordinate system Y-Axis. The X-axis aligns accordingly. All neighbours within the radius

r around �� are transfered into this local coordinate system.

A star pattern with n beams is projected on the image patch. For each beam a score in [-0.5,0.5] is

calculated. Beams have a high score if there are lots of intensity changes in the cells lying under the

beam. This is calculated by comparing each cell with the next adjacent one. Additionally cells closer

to the center contribute to the score with a higher weight (2 in the middle, 1 at the edge).

Finally the dominant orientation of the patch is calculated to make it invariant against rotations around

the normal. [34]

BRIEF

The Binary Robust Independent Elementary Feature (BRIEF) presented in [16] is an efficient

alternative for the descriptor, based on binary strings computed directly from image patches, and

measures the Hamming distance instead of the �� norm commonly used for high dimension

descriptors. As the binary comparison can be performed very efficiently, the matching between

several candidates can be done much faster. The use of a BRIEF descriptor supposes the keypoints

are already known, this can be done with a detector such as SIFT or SURF. A deeper study is

available in the PhD thesis of Calonder [32], who is the main author of the BRIEF features. The main

interest of this descriptor resides in its performance.

27

FAST

Features from accelerated segment test (FAST) is a corner detection method, which could be used

to extract feature points and later used to track and map objects in many computer vision tasks.

FAST corner detector was originally developed by Edward Rosten and Tom Drummond, and

published in 2005 [17]. The most promising advantage of the FAST corner detector is its

computational efficiency. Referring to its name, it is fast and indeed it is faster than many other well-

known feature extraction methods, such as difference of Gaussians (DoG) used by the SIFT, SUSAN

and Harris detectors. Moreover, when machine learning techniques are applied, superior

performance in terms of computation time and resources can be realised. The FAST corner detector

is very suitable for real-time video processing application because of this high-speed performance.

FAST corner detector uses a circle of 16 pixels (a Bresenham circle of radius 3) to classify whether

a candidate point � is actually a corner. Each pixel in the circle is labeled from integer number 1 to

16 clockwise. If a set of N contiguous pixels in the circle are all brighter than the intensity of candidate

pixel � (denoted by ��) plus a threshold value � or all darker than the intensity of candidate pixel �

minus threshold value �, then � is classified as corner. The conditions can be written as:

Condition 1: A set of N contiguous pixels S, ∀ � ∈ �, the intensity of x (��) > �� + threshold �

Condition 2: A set of N contiguous pixels S, ∀ � ∈ �, �� < �� − �

So when either of the two conditions is met, candidate � can be classified as a corner. There is a

tradeoff of choosing N, the number of contiguous pixels and the threshold value �. On one hand the

number of detected corner points should not be too many, on the other hand, the high performance

should not be achieved by sacrificing computational efficiency. Without the improvement of machine

learning, N is usually chosen as 12. A high-speed test method could be applied to exclude non-

corner points. [35]

28

2.3. SLAM Algorithms

2.3.1. Hector SLAM

Hector_mapping is a SLAM approach that can be used without odometry as well as on platforms that

exhibit roll/pitch motion (of the sensor, the platform or both). It leverages the high update rate of

modern LIDAR systems like the Hokuyo UTM-30LX and provides 2D pose estimates at scan rate of

the sensors (40Hz for the UTM-30LX). While the system does not provide explicit loop closing ability,

it is sufficiently accurate for many real world scenarios. The system has successfully been used on

Unmanned Ground Robots, Unmanned Surface Vehicles, Handheld Mapping Devices and logged

data from quadrotor UAVs. [36]

To be able to represent arbitrary environments an occupancy grid map is used, which is a proven

approach for mobile robot localization using LIDARs in real-world environments [37]. As the LIDAR

platform might exhibit 6DOF motion, the scan has to be transformed into a local stabilized coordinate

frame using the estimated attitude of the LIDAR system. Using the estimated platform orientation

and joint values, the scan is converted into a point cloud of scan endpoints. Depending on the

scenario, this point cloud can be preprocessed, for example by downsampling the number of points

or removal of outliers. For the presented approach, only filtering based on the endpoint z coordinate

is used, so that only endpoints within a threshold of the intended scan plane are used in the scan

matching process.

1. Map Access

The occupancy grid maps discrete nature limits the precision that could be achieved and also does

not allow the direct computation of interpolated values or derivatives. For this reason an interpolation

scheme allowing sub-grid cell accuracy through bilinear filtering is employed for both estimating

occupancy probabilities and derivatives. Intuitively, the grid map cell values can be viewed as

samples of an underlying continuous probability distribution.

Given a continuous map coordinate ��, the occupancy value �(��) as well as the gradient

∆�(��) = (
��

��
(��),

��

��
(��)) can be approximated by using the four closest integer coordinates

���. .��. Linear interpolation along the x- and y-axis then yields

�(��) ≈
� − ��
�� − ��

�
� − ��
�� − ��

�(���) +
�� − �

�� − ��
�(���)�

+
�� − �

�� − ��
�
� − ��
�� − ��

�(���) +
�� − �

�� − ��
�(���)�

(1.17)

The derivatives can be approximated by:

29

��

��
(��) ≈

� − ��
�� − ��

��(���) − �(���)� +
�� − �

�� − ��
��(���) − �(���)� (1.18)

��

��
(��) ≈

� − ��
�� − ��

��(���) − �(���)� +
�� − �

�� − ��
��(���) − �(���)� (1.19)

It should be noted that the sample points/grid cells of the map are situated on a regular grid with

distance 1 (in map coordinates) from each other, which simplifies the presented equations for the

gradient approximation.

2. Scan Matching

Scan matching is the process of aligning laser scans with each other or with an existing map. Modern

laser scanners have low distance measurement noise and high scan rates. A method for registering

scans might yield very accurate results for this reason. For many robot systems the accuracy and

precision of the laser scanner is much higher than that of odometry data, if available at all.

The approach is based on optimization of the alignment of beam endpoints with the map learnt so

far. The basic idea using a Gauss-Newton approach is inspired by work in computer vision [34].

Using this approach, there is no need for a data association search between beam endpoints or an

exhaustive pose search. As scans get aligned with the existing map, the matching is implicitly

performed with all preceding scans.

3. Multi-Resolution Map Representation

Any hill climbing/gradient based approach has the inherent risk of getting stuck in local minima. As

the presented approach is based on gradient ascent, it also is potentially prone to get stuck in local

minima. The problem is mitigated by using a multi-resolution map representation similar to image

pyramid approaches used in computer vision. In our approach, we optionally use multiple occupancy

grid maps with each coarser map having half the resolution of the preceding one. However, the

multiple map levels are not generated from a single high resolution map by applying Gaussian

filtering and downsampling as is commonly done in image processing. Instead, different maps are

kept in memory and simultaneously updated using the pose estimates generated by the alignment

process. This generative approach ensures that maps are consistent across scales while at the same

time avoiding costly downsampling operations. The scan alignment process is started at the coarsest

map level, with the resulting estimated pose getting used as the start estimate for the next level,

similar to the approach presented in [32]. A positive side-effect is the immediate availability of coarse

grained maps which can for example be used for path planning [36]

30

2.3.2. Gmapping

According to the findings of J. M. Santos, D. Portugal, and R. P. Rocha [38], KartoSLAM,

HectorSLAM and Gmapping produce the most accurate maps. These algorithms despite having quite

similar performance from map accuracy point of view, are actually conceptually different. That’s,

HectorSLAM is based on EKF (extended Kalman filter), while Gmapping is based on Rao-

Blackwellized particle filtering (RBPF) occupancy grid mapping. Based on the results presented in

[39], gmapping can potentially perform well on a limited processing power robotic system such as

ours. The algorithm uses a relatively small number of particles to represent the SLAM posterior and

reduces the computational effort required to perform resampling to successfully build very accurate

maps.

The gmapping offers a flexible way to optimizing the mapping process to fit the application specific

needs by tuning some mapping parameters such as number of particles used by RBPF, the

displacement step to process new scan and the resampling threshold. [1]

This approach applies two concepts that have previously been identified as key pre-requisites for

efficient particle filter implementations (see Doucet et al. [40]), namely the computation of an

improved proposal distribution and an adaptive resampling technique.

The algorithms need to draw samples from a proposal distribution � in the prediction step in order to

obtain the next generation of particles. Intuitively, the better the proposal distribution approximates

the target distribution, the better is the performance of the filter. For instance, if we were able to

directly draw samples from the target distribution, the importance weights would become equal for

all particles and the resampling step would no longer be needed. Unfortunately, in the context of

SLAM a closed form of this posterior is not available in general. As a result, typical particle filter

applications [3, 18] use the odometry motion model as the proposal distribution. This motion model

has the advantage that it is easy to compute for most types of robots.

This proposal distribution, however, is suboptimal especially when the sensor information is

significantly more precise than the motion estimate of the robot based on the odometry, which is

typically the case if a robot equipped with a laser range finder (e.g., with a SICK LMS). Imagine a

situation in which the meaningful area of the observation likelihood is substantially smaller than the

meaningful area of the motion model. When using the odometry model as the proposal distribution

in such a case, the importance weights of the individual samples can differ significantly from each

other since only a fraction of the drawn samples cover the regions of state space that have a high

likelihood under the observation model. As a result, one needs a comparably high number of samples

to sufficiently cover the regions with high observation likelihood.

A common approach – especially in localization – is to use a smoothed likelihood function, which

avoids that particles close to the meaningful area get a too low importance weight. However, this

approach discards useful information gathered by the sensor and, at least to our experience, often

leads to less accurate maps in the SLAM context. To overcome this problem, one can consider the

31

most recent sensor observation �� when generating the next generation of samples. By integrating

�� into the proposal one can focus the sampling on the meaningful regions of the observation

likelihood. According to Doucet [41], the distribution

 ���������
(�) , ����

(�) , ��, ����� =
���������

(�) , ������������
(�) , �����

���������
(�) , ����

(�) , �����
 (1.20)

is the optimal proposal distribution with respect to the variance of the particle weights. [39] The

variables would be explained later in the chapter.

When modeling a mobile robot equipped with an accurate sensor, e.g. a laser range finder, it is

convenient to use such an improved proposal since the accuracy of the laser range finder leads to

extremely peaked likelihood functions. In the context of landmark-based SLAM, Montemerlo et al.

[42] presented a Rao-Blackwellized particle filter that uses a Gaussian approximation of the improved

proposal. This Gaussian is computed for each particle using a Kalman filter that estimates the pose

of the robot. This approach can be used when the map is represented by a set of features and if the

error affecting the feature detection is assumed to be Gaussian. With this algorithm the idea of

computing an improved proposal is transferred to the situation in which dense grid maps are used

instead of landmark-based representations.

Each time a new measurement tuple (����, ��) is available, the proposal is computed for each particle

individually and is then used to update that particle. This results in the following steps:

1. An initial guess ��
�(�) = ����

(�) ⊕ ���� for the robot’s pose represented by the particle � is obtained

from the previous pose ����
(�) of that particle and the odometry measurements ���� collected since

the last filter update. Here, the operator ⊕ corresponds to the standard pose compounding operator,

as in [47].

2. A scan-matching algorithm is executed based on the map ����
(�) starting from the initial guess ��

�(�).

The search performed by the scan-matcher is bounded to a limited region around ��
�(�). If the scan-

matching reports a failure, the pose and the weights are computed according to the motion model

(and the steps 3 and 4 are ignored).

3. A set of sampling points is selected in an interval around the pose ���
�(�) reported scan-matcher.

Based on this points, the mean and the covariance matrix of the proposal are computed by pointwise

evaluating the target distribution ���������
(�) , ������������

(�) , ����� in the sampled positions ��. During

this phase, also the weighting factor �(�) is computed.

4. The new pose ��
(�) of the particle � is drawn from the Gaussian approximation ����

(�), ��
(�)� of the

improved proposal distribution.

5. Update of the importance weights.

6. The map �(�) of particle i is updated according to the drawn pose ��
(�) and the observation ��.

32

After computing the next generation of samples, a resampling step is carried out depending on the

value of ����. [39]

2.3.3. ORB-SLAM

ORB-SLAM is a versatile and accurate SLAM solution for Monocular, Stereo and RGB-D cameras.

It is able to compute in real-time the camera trajectory and a sparse 3D reconstruction of the scene

in a wide variety of environments, ranging from small hand-held sequences of a desk to a car driven

around several city blocks. It is able to close large loops and perform global relocalisation in real-

time and from wide baselines. It includes an automatic and robust initialization from planar and non-

planar scenes. [43]

This is the first open-source SLAM system for monocular, stereo and RGB-D cameras, including loop

closing, relocalization and map reuse. The RGB-D results shows that by using Bundle Adjustment

(BA) it achieves more accuracy than state-of-the-art methods based on ICP or photometric and depth

error minimization. By using close and far stereo points and monocular observations the stereo

results are more accurate than the state-of-the-art direct stereo SLAM. A lightweight localization

mode that can effectively reuse the map with mapping disabled.

ORB-SLAM2 for stereo and RGB-D cameras is built on the monocular feature-based ORB-SLAM

[44], whose main components are summarized here for reader convenience. The system has three

main parallel threads: 1) the Tracking to localize the camera with every frame by finding feature

matches to the local map and minimizing the reprojection error applying motion-only BA, 2) the Local

Mapping to manage the local map and optimize it, performing local BA, 3) the Loop Closing to detect

large loops and correct the accumulated drift by performing a pose-graph optimization. This thread

launches a fourth thread to perform full BA after the pose-graph optimization, to compute the optimal

structure and motion solution.

ORB-SLAM2 as a feature-based method preprocess the input to extract features at salient keypoint

locations. The input images are then discarded and all system operations are based on these

features, so that the system is independent on the sensor being stereo or RGB-D. This system

handles monocular and stereo keypoints, which are further classified as close or far.

Stereo keypoints are defined by three coordinates xs = (uL; vL; uR), being (uL; vL) the coordinates

on the left image and uR the horizontal coordinate in the right image. For stereo cameras, the

algorithm extract ORB in both images and for every left ORB it searches for a match in the right

image. This can be done very efficiently assuming stereo rectified images, so that epipolar lines are

horizontal. Then it generates the stereo keypoint with the coordinates of the left ORB and the

horizontal coordinate of the right match, which is subpixel refined by patch correlation. For RGB-D

cameras, it extracts ORB features on the image channel and, as proposed by Strasdat et al. [8], it

synthesizes a right coordinate for each feature, using the associated depth value in the registered

33

depth map channel, and the baseline between the structured light projector and the infrared camera,

which for Kinect and Asus Xtion cameras we approximate to 8 cm.

A stereo keypoint is classified as close if its associated depth is less than 40 times the stereo/RGB-

D baseline, as suggested in [44], otherwise it is classified as far. Close keypoints can be safely

triangulated from one frame as depth is accurately estimated and provide scale, translation and

rotation information. On the other hand, far points provide accurate rotation information but weaker

scale and translation information. Far points are triangulated when they are supported by multiple

views.

Monocular keypoints are defined by two coordinates �� = (��; ��) on the left image and correspond

to all those ORB for which a stereo match could not be found or that have an invalid depth value in

the RGB-D case. These points are only triangulated from multiple views and do not provide scale

information, but contribute to the rotation and translation estimation.

One of the main benefits of using stereo or RGB cameras is that, by having depth information from

just one frame, a specific structure from motion initialization is not needed as in the monocular case.

At system startup a keyframe is created with the first frame, set its pose to the origin, and create an

initial map from all stereo keypoints.

The system performs bundle adjustment to optimize the camera pose in the Tracking (motion-only

BA), to optimize a local window of keyframes and points in the Local Mapping (local BA), and after a

loop closure to optimize all keyframes and points (full BA).

Loop closing is performed in two steps, firstly a loop has to be detected and validated, and secondly

the loop is corrected optimizing a pose-graph. In contrast to monocular ORBSLAM, where scale drift

may occur [44], the stereo/depth information makes scale observable and the geometric validation

and pose-graph optimization no longer require dealing with scale drift and are based on rigid body

transformations instead of similarities.

In ORB-SLAM2 a full BA optimization is incorporated after the pose-graph to achieve the optimal

solution. This optimization might be very costly and therefore it performs in a separate thread,

allowing the system to continue creating map and detecting loops. However, this brings the challenge

of merging the bundle adjustment output with the current state of the map. If a new loop is detected

while the optimization is running, the optimization is aborted and proceed to close the loop, which

will launch the full BA optimization again. When the full BA finishes, the updated subset of keyframes

and points optimized by the full BA are merged, with the non-updated keyframes and points that

where inserted while the optimization was running. This is done by propagating the correction of

updated keyframes (i.e. the transformation from the non-optimized to the optimized pose) to non-

updated keyframes through the spanning tree. Non-updated points are transformed according to the

correction applied to their reference keyframe.

ORB-SLAM2 follows the policy introduced in monocular ORB-SLAM of inserting keyframes very

often and culling redundant ones afterwards. The distinction between close and far stereo points

34

allows to introduce a new condition for keyframe insertion, which can be critical in challenging

environments where a big part of the scene is far from the stereo sensor. In such environment a

sufficient amount of close points is required to accurately estimate translation, therefore if the number

of tracked close points drops below �� and the frame could create at least �� new close stereo points,

the system will insert a new keyframe. It was found empirically that �� = 100 and �� = 70 works well

in all experiments.

A Localization Mode is also incorporated, which can be useful for lightweight long-term localization

in well mapped areas, as long as there are not significant changes in the environment. In this mode

the Local Mapping and Loop Closing threads are deactivated and the camera is continuously

localized by the Tracking using relocalization if needed. In this mode the tracking leverages visual

odometry matches and matches to map points. Visual odometry matches are matches between ORB

in the current frame and 3D points created in the previous frame from the stereo/depth information.

These matches make the localization robust to unmapped regions, but drift can be accumulated.

Map point matches ensure drift-free localization to the existing map. [44] [46]

2.3.4. RGBDSLAM

RGBDSLAMv2 is a SLAM solution for RGB-D cameras. It provides the current pose of the camera

and allows to create a registered point cloud or an octomap. It features a GUI interface for easy

usage, but can also be controlled by ROS service calls, e.g., when running on a robot.

This is one of the first RGB-D SLAM systems that took advantage of the dense color and depth

images provided by RGB-D cameras. Compared to the first version, several extensions were

introduced that aim at further increasing the robustness and accuracy. In particular, the use of an

environment measurement model (EMM) is proposed to validate the transformations estimated by

feature correspondences and the iterative closest point (ICP) algorithm. Extensive experiments show

that this RGB-D SLAM system allows to accurately track the robot pose over long trajectories and

under challenging circumstances. To allow other researchers to use the software, reproduce the

results, and improve on them, the system is released under an open-source license. [47]

As a first step the depth and RGB-images are collected with synchronized timestamps. Then features

are extracted from the RGB-image by a feature extraction algorithm. RGBDSLAM has multiple

feature extraction algorithms implemented. The implementations have different pros and cons in

different environments and they differ in computation time. The algorithms implemented are SURF,

SIFT and ORB. In the next step of the algorithm extracted features are projected to the depth image.

This step introduces some uncertainty into the chain of operations. Mainly due to the synchronization

mismatch between depth and RGB-images, but also because of interpolation between points with

large differences in depth. The fact that a minor misprojection of a feature lying on an object border

35

on to the depth image can result in a big depth error makes features picked at object borders

unreliable. [47]

To find a 6D transform for the camera position in this noise the RANSAC algorithm is used. Features

are matched with earlier extracted features from a set of 20 images in the standard configuration.

The set consists of a subset including some of the most recent captured images and another subset

including images randomly selected from the set of all formerly captured images. Three matched

feature pairs are randomly selected and are used to calculate a 6D transform. All feature pairs are

then evaluated by their Euclidian distance to each other. Pairs whose Euclidian distance is below a

certain threshold are counted as inliers. From these inliers a refined 6D transform is calculated using

GICP.

RANdom SAmple Consensus, or RANSAC for short, is an iterative algorithm used to adapt the

parameters of a mathematical model to experimental data. RANSAC is a suitable method when a

data set contains a high percentage of outliers, i.e. measurements that suffer from measurement

errors so large that the validity of the measurements is low. The method was first presented in the

beginning of the eighties in Fischler and Bolles [48] and was suggested to be a suitable method for

automated image analysis.

Assume a mathematical model that has n free parameters which can be estimated given a set of

measurements, P. The number of measurements in P has to be greater than n, #P > n. Let S and T

be two different varying subsets of P. Given the assumptions the RANSAC algorithm works as

follows:

1. Randomly select a subset of the measurements in P and call it S. Use S to make a first

estimate of the n free parameters of the model.

2. Use the current estimate of the model to select a new subset of points, T , from the

measurements that are within some error tolerance from the model.

3. If T contains more measurements than some given limit then re-estimate the free parameters

of the model according to this new subset. Calculate a measure of how well T and the model

coincide, store that value and select a new subset S.

4. If T does not contain more measurements than the given limit, randomly select a new subset

S from P and start all over again.

5. If none of the selected subsets hold more measurements than the limit, exit in failure, or if

the maximum number of iterations has been reached, exit.

The method is characterized by three parameters:

1. The error tolerance used to determine when data is not part of the model.

2. The maximum number of iterations in the algorithm.

3. The minimum value on the number of measurements in a subset to be used for parameter

estimation.

36

The big advantage with RANSAC is the robust way it handles outliers in the data set. The drawbacks

with RANSAC is that it does not guarantee any solution, nor that a given solution is optimal.

Furthermore the three parameters mentioned above are to a large extent problem specific, which

means that experimental adjustment to the specific case treated is required. [47]

2.4. Robot Operating System (ROS)

ROS is an open-source meta-operating system for robots. It provides the services that are expected

from an operating system, including hardware abstraction, low-level device control, implementation

of commonly-used functionality, message-passing between processes, and package management.

It also provides tools and libraries for obtaining, building, writing, and running code across multiple

computers.

The ROS runtime "graph" is a peer-to-peer network of processes (potentially distributed across

machines) that are loosely coupled using the ROS communication infrastructure. ROS implements

several different styles of communication, including synchronous RPC-style communication over

services, asynchronous streaming of data over topics, and storage of data on a Parameter Server.

ROS is a distributed framework of processes (aka Nodes) that enables executables to be individually

designed and loosely coupled at runtime. These processes can be grouped into Packages and

Stacks, which can be easily shared and distributed. ROS also supports a federated system of code

Repositories that enable collaboration to be distributed as well. This design, from the filesystem level

to the community level, enables independent decisions about development and implementation, but

all can be brought together with ROS infrastructure tools.

ROS is divided into three conceptual levels: the filesystem level, the computation graph level, and

the community level. [49]

2.4.1. Filesystem Level

The filesystem level is the organization of the ROS framework on a machine (see Fig.2.1). At the

heart of the ROS’s organization of software is the package. A package may contain ROS runtime

execution programs, which are called nodes, a ROS-independent library, datasets, configuration

files, third-party software, or any software that should be organized together [48]. The goal of the

packages is to provide easy to use functionality in a well-organized manner so that software may be

reused for many different projects. This organization, along with object-oriented programming, allows

packages to act as modular building blocks, working harmoniously together to accomplish the

37

desired end-state. Packages typically follow a common structure and usually contain the following

elements: package manifests, message types, service types, headers, executable scripts, a build

file, and runtime processes [48]. Package manifests provide metadata about a package, such as the

name, author, version, description, license information, and dependencies. Packages may also

contain message types, which define the structure of data for messages sent within ROS, and service

types, which define the request and response data structures for services. Also within the filesystem

level are repositories, which are a collection of packages sharing a common version control system.

Both packages and repositories help make ROS a modular system. [47]

Figure 2.1. ROS Filesystem level scheme

2.4.2. Computation Graph Level

The computation graph level is where ROS processes data within a peer-to-peer network (See

Fig.2.2). The basic elements of ROS’s computation graph level are nodes, messages, topics,

services, bags, Master, and Parameter Server. Nodes are the small-scale workhorses of ROS,

subscribing to topics to receive information, performing computations, controlling sensors and

actuators, and publishing data to topics for other nodes to use [50]. The rosnode tool is a useful

command-line tool for displaying information about ROS nodes. The command, rosnode list, displays

all active nodes running on the ROS Master. A package may have many nodes within it to accomplish

a group of computation and tasks, in which they all communicate with each other through topics and

services via messages.

38

The primary method in which nodes pass data to each other is by publishing messages to topics. A

message is simply a structure of data so it is in a useful, standard format for other nodes to use.

Standard types, such as integer, floating point, and Boolean, are supported as well as arrays. The

command rosmsg list prints all messages available to the ROS Master. The key to the modularity of

ROS is the method in which nodes typically communicate with each other through topics.

Rather than communicating directly with each other, nodes usually communicate through topics.

Topics are named hubs in which nodes can publish and subscribe and are the crux of what makes

ROS an object-oriented and modular environment. Nodes that generate data are only interested in

publishing that data, in the correct message format, to the correct topic. Nodes that require data

simply subscribe to the topics of interest to pull the required information. This method of publishing

and subscribing to topics decouples the production of information from the consumption of

information. It allows nodes within different packages to work harmoniously with each other even

though they may have different origins and functions. The rostopic command-line tool is useful for

displaying debugging information about ROS topics. To display all active topics, the command

rostopic list is utilized. The command rostopic info <topic_name> prints the message type accepted

by the topic and publishing and subscribing nodes. Another useful command-line tool is rostopic

echo <topic_name>, which prints messages published to a topic. The commands rostopic hz

<topic_name> and rostopic bw <topic_name> displays the publishing rate and the bandwidth used

by a topic, respectively. Additionally, data can be manually published to a topic by using the rostopic

pub <topic_name> command.

In addition to publishing messages to topics, nodes can also exchange a request and response

message as part of a ROS service. This is useful if the publish and subscribe (many-to-many)

communication method is not appropriate, such as a remote procedure call. A ROS node that

provides data offers a service under a string name, and a client node that requires data calls the

service by sending the request message and awaiting the response. Active services can be displayed

by utilizing the command rosservice list, and information about a service can be found by using

rosservice info <service_name>. [50]

Bags are a method for recording and storing ROS message data. This is a powerful tool that allows

users to store, process, analyze, and visualize the flow of messages. Bags are created utilizing the

rosbag tool, which subscribes to one or more ROS topics and stores message data as they are

received. This stored data can be replayed in ROS to the same topics, as if the original nodes were

sending the messages. This tool is useful for conducting experiments using a controlled set of data

streams to test different algorithms, sensors, actuators, and controllers. To record data, the

command rosbag record <topic_names> should be used. To view information about a bagfile already

created, the command rosbag info <bag_file> should be utilized. The command rosbag play

<bag_file> can be used to publish messages from topics just as if they were being played for the first

time. When rosbag is utilized to play data, the time synchronization is based on the global timestamp

when the bagfile was recorded. It is recommended that when playing back data using rosbag play to

39

use rosparam set sim_time true and rosbag play <bag_file> --clock in order to run the recorded

system with simulated timestamps.

A launch file is method of launching multiple ROS nodes, either locally or remotely, as well as

establishing parameters on the ROS Parameter Server. It is useful for running large projects, which

may have many packages, nodes, libraries, parameters, and even other launch files, which all can

be started via one launch file rather than individually running each node separately. The roslaunch

tool uses extensible markup language (XML) files that describe the nodes that should be run,

parameters that should be set, and other attributes of launching a collection of ROS nodes. The

roslaunch tool is utilized by using the command roslaunch <package_name> <file.launch>.

The ROS Master acts as a domain name system server, storing topics and services registration

information for ROS nodes. ROS Master provides an application program interface (API), a set of

routines and protocols, tracking services and publishers and subscribers to topics. A node notifies

ROS Master if it wants to publish a message to a topic. When another node notifies the master that

it wants to subscribe to the same topic, the master notifies both nodes that the topic is ready for

publishing and subscribing. The master also makes callbacks to nodes already online, which allows

nodes to dynamically create connections as new nodes are run. The ROS Master is started with the

command roscore and must be used to run nodes in ROS. The ROS Master also provides the

Parameter Server. The ROS Parameter Server can store integers, floats, Boolean, dictionaries, and

lists and is meant to be globally viewable for non-binary data. The parameter server is useful for

storing global variables such as the configuration parameters of the physical characteristics of a

robot. ROS parameters can be displayed by utilizing the command rosparam list. A user can also set

a parameter from the command line by using rosparam set <parameter_name> <parameter_value>.

Parameters can also be loaded from a .yaml file by using the command rosparam load

<parameters.yaml>.

Names have an important role within ROS. Every node, topic, service, and parameter has a unique

name. This architecture allows for decoupled operation that allows large, complex systems to be

built. ROS supports command-line remapping of names, which means a compiled program may be

reconfigured at runtime to operate in a different computation graph topology. This means that the

same node can be run multiple times, publishing difference messages to separate topics. [49]

40

Figure 2.2. ROS Computational level

2.4.3. Community Level

The ROS Community Level consists of ROS distributions, repositories, the ROS Wiki, and ROS

Answers (See Figure 2.3), which enable researchers, hobbyists, and industries to exchange

software, ideas, and knowledge in order to progress robotics communities worldwide. ROS

distributions are similar to the roles that Linux distributions play. They are a collection of versioned

ROS stacks, which allow users to utilize different versions of ROS software frameworks. Even while

ROS continues to be updated, users can maintain their projects with older more stable versions and

can easily switch between versions at any time.

ROS does not maintain a single repository for ROS packages; rather, ROS encourages users and

developers to host their own repositories for packages that they have used or created. ROS simply

provides an index of packages, allowing developers to maintain ownership and control over their

software. Developers can then utilize the ROS Wiki to advertise and create tutorials to demonstrate

the use and functionality of their packages. The ROS Wiki is the forum for documenting information

about ROS, where researchers and developers contribute documentation, updates, links to their

repositories, and tutorials for any open-sourced software they have produced. ROS Answers is a

community-oriented site to help answer ROS-related questions that users may have. [51]

41

Figure 2.3. ROS Community level

2.4.4. Other ROS Concepts

Unified Robot Description Format

The unified robot description format (URDF) package contains an XML file that represents a robot

model. The URDF is another tool within ROS that makes it a modular system. Rather than creating

a unique process for different styles of robots, nodes are created without regard for the robot that will

utilize them. The URDF file provides the necessary, robot-specific, information so nodes may conduct

their procedures. A URDF file is written so that each link of the robot is the child of a parent link, with

joints connecting each link, and joints are defined with their offset from the reference frame of the

parent link and their axis of rotation [51]. In this way, a complete kinematic model of the robot is

created. A tree diagram can be visualized utilizing the urdf_to_graphiz tool as shown on Figure 2.4.

42

Figure 2.4. URDF tree diagram example

Coordinate and Transform frames

Figure 2.5. ROS view_frames command example

43

A robotic system typically has many three-dimensional coordinate frames that change over time. The

tf ROS package keeps track of multiple coordinate frames in the form of a tree structure (See Fig.1.5).

Just as the URDF manages joints and links, the tf package maintains the relationships between

coordinate frames of points, vectors, and poses, and computes the transforms between them. The tf

package operates in a distributed system; all ROS components within the system have access to

information about the coordinate frames. The transform tree can also be viewed by developers for

debugging by utilizing the view_frames tool as shown in Figure 2.5. Additional command-line tools

for the tf package are rosrun tf tf_monitor, rosrun tf tf_echo <source_frame> <target_frame>, and

roswtf, which, respectively, monitors delays between transforms of coordinate frames, prints

transforms between coordinate frames, and aids in debugging. [51]

44

CHAPTER 3

3. DEVELOPMENT

3.1. ROS Installation

Both the Raspberry Pi 3 and the control PC have Ubuntu 16.04 LTS as the main operating system,

so the installation, as described in [59]:

First, we need to set up the ROS repository and add the required keys to our system to gain access

to the packages.

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/source
s.list.d/ros-latest.list'

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key 421C365BD9FF1F71
7815A3895523BAEEB01FA116

Then, after updating the Ubuntu repository list, the desktop version of ROS could be installed.

sudo apt-get update

sudo apt-get install ros-kinetic-desktop-full

ROS provides 4 different configurations, the one I chose has all the required tools for building and

evaluating the platform.

After the successful installation, a rosdep tool should be initialized. Rosdep handles the installation

of all of the dependencies of the packages and is required to run ROS system components.

sudo rosdep init

rosdep update

Then, after adding the ROS environment variables to the bashrc script, the ROS framework is

installed.

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

source ~/.bashrc

For the usage of the ROS packages the Workspace should be created. Workspace will contain all

the tools and algorithms provided, and is the correct way of handling ROS packages.

mkdir -p ~/catkin_ws/src

cd ~/catkin_ws/src

catkin_init_workspace

45

cd ~/catkin_ws/

catkin_make

echo "source ~/devel/setup.bash " >> ~/.bashrc

After these steps, the ROS Workspace under the name of “catkin_ws” is now created.

3.2. Prerequisites

For the SLAM algorithms to work we are required to install a couple of packages, which the

algorithms depend on.

3.2.1. OpenNI

The OpenNI 2.0 API provides access to PrimeSense compatible depth sensors. It allows an

application to initialize a sensor and receive depth, RGB, and IR video streams from the device. It

provides a single unified interface to sensors and .ONI recordings created with depth sensors.

OpenNI also provides a uniform interface that third party middleware developers can use to interact

with depth sensors. Applications are then able to make use of both the third party middleware, as

well as underlying basic depth and video data provided directly by OpenNI. [65]

Installation requires the Rgbd_Launch package to be installed too.

cd ~/catkin_ws/src

git clone https://github.com/ros-drivers/rgbd_launch

git clone https://github.com/ros-drivers/openni_launch.git

rosdep install rgbd_launch

rosdep install openni_launch

cd ~/catkin_ws

catkin_make

After the successful compilation the OpenNI node could be launched. There is no need for special

configuration, because the OpenNI comes with the optimized set of the variables.

46

3.2.2. Depthimage_to_laserscan

The depthimage_to_laserscan package is essential when working with low cost setups like depth

sensors or the Microsoft Kinect. It furthermore is essential when interfacing SLAM algorithms.

It subscribes to the PointCloud2 topic that is provided by Kinect (Figure 3.1), selects a few rows of

information in the center of it, approximates the parameters and outputs the LaserScan topic with

the information look-alike as what the Laser scanner would provide (Figure 3.2). [66]

Figure 3.1. The point cloud obtained from Kinect

47

Figure 3.2. The laser scan that was provided from the package

The package should be cloned from Github.com into the workspace and built.

cd ~/catkin_ws/src

git clone https://github.com/ros-perception/depthimage_to_laserscan.git

rosdep install depthimage_to_laserscan

cd ~/catkin_ws/

catkin_make

After the successful compilation of the project it could be configured and launched.

It is a known practice of launching packages through prepared launch files, providing the nodes the

required configurations and variables:

1. Scan_height parameter, sets the height of the pixel row in the center that would be

transformed into the laser scan;

2. Scan_time parameter, sets the rate of which the Laserscan messages would be published;

3. Output frame id, sets the name of the node;

4. Range_min, sets the minimal range of the pointcloud data to be processed in meters;

5. Range_max, sets the maximal range;

6. Remapping the Image topic to the one the Kinect is providing;

7. Remapping the Scan topic to the one which we would be using.

The following code was used in the Launch file.

<node pkg="nodelet" type="nodelet" name="depthimage_to_laserscan" args="load depthimage_to
_laserscan/DepthImageToLaserScanNodelet camera/camera_nodelet_manager">

 <param name="scan_height" value="10"/>

 <param name="scan_time" value="0.033"/>

 <param name="output_frame_id" value="/$(arg camera)_depth_frame"/>

 <param name="range_min" value="0.45"/>

 <param name="range_max" value="5.00"/>

 <remap from="image" to="$(arg camera)/$(arg depth)/image_raw"/>

 <remap from="scan" to="$(arg scan_topic)"/>

</node>

48

3.2.3. Laser_Scan_Matcher

The laser_scan_matcher package [67] is an incremental laser scan registration tool. The package

allows to scan match between consecutive sensor_msgs/LaserScan messages, and publish the

estimated position of the laser as a geometry_msgs/Pose2D or a tf transform.

The package can be used without any odometry estimation provided by other sensors. Thus, it can

serve as a stand-alone odometry estimator. Alternatively, several types of odometry input could be

provided to improve the registration speed and accuracy.

The package should be cloned to the workspace folder and built.

cd ~/catkin_ws/src

git clone https://github.com/ccny-ros-pkg/scan_tools.git

rosdep install scan_tools

cd ~/catkin_ws/

catkin_make

 To ensure the odometry frame is calculated and received correctly, we need to provide the package

with the next variables:

1. fixed_frame – set to “map”, this is the frame that is fixed and is not moving;

2. base_frame – set to “base_link”, this is the frame of the robot platform;

3. use_odom – set to “false” due to our platform not having any odometry sensor.

Other parameters should be configured already for the Kinect.

3.2.4. Camera_calibration

This is the package for calibrating the Kinect’s Depth and RGB cameras for achieving better quality

of the data obtained from them. [68]

The calibration is not necessarily, because the openni_camera driver provides default camera

models out-of-the-box with reasonably accurate focal lengths (relating 3D points to 2D image

coordinates). They do not model lens distortion, but fortunately the Kinect uses low-distortion lenses

(|k1| ~= 0.1), so even the edges of the image are not displaced by more than a few pixels.

The camera_calibration package is a part of the image_pipeline metapackage and could not be

installed separately.

cd ~/catkin_ws/src

git clone https://github.com/ros-perception/image_pipeline.git

49

rosdep install image_pipeline

cd ~/catkin_ws/

catkin_make

For the calibration the special chessboard-like file should be printed and the size of the squares on

it should be measured.

Calibrating the RGB camera (Figure 3.3):

rosrun camera_calibration cameracalibrator.py image:=/camera/rgb/image_raw camera:=/camera/r
gb --size 8x6 --square 0.0245

Calibrating the Depth camera (Figure 3.4):

rosrun camera_calibration cameracalibrator.py image:=/camera/ir/image_raw camera:=/camera/ir -
-size 8x6 --square 0.0245

Figure 3.3. Calibration of the RGB camera of the Kinect.

50

Figure 3.4. Calibration of the Depth camera.

Chess pattern that is printed on paper is detected by the package and the lens distortion parameters

are written into the ~/.ros/camera_info/ folder, from where it is detected by any package that requires

connection to the Kinect.

3.3. Algorithms

I chose 4 algorithms of SLAM, which belong to the two groups:

1. Laser-based SLAM

2. 3D occupancy grid SLAM

For the Laser-based SLAM I selected Hector SLAM and Gmapping, and for 3D-based SLAM I chose

RGBDSLAMv2 and ORB-SLAM2.

51

3.3.1. Hector SLAM

For the usage of hector_mapping in ROS, a source of “sensor_msgs/LaserScan” data is required.

The node uses tf for transformation of scan data, so the LIDAR does not have to be fixed related to

the specified base frame. Odometry data is not needed.

Kinect provides us with 3D pointcloud, and we are required to transform it to the laserscan. ROS has

a package “Depthimage_to_Laserscan”, which mimics the laser scanner by processing the Depth

images from Kinect and turning them to the format the laser scanners are delivering.

Installation with all of the dependencies is simple:

cd ~/catkin_ws/src

git clone https://github.com/tu-darmstadt-ros-pkg/hector_slam.git

rosdep install hector_slam

cd ~/catkin_ws/

catkin_make

After performing these commands the package “hector_slam” and all of its dependencies are built

and installed.

Subscribed topics:

1. /scan (sensor_msgs/LaserScan)

This is the topic delivered by “depthimage_to_laserscan” package used by the SLAM system.

2. /syscommand (std_msgs/String)

System command. If the string equals "reset" the map and robot pose are reset to their initial state.

Published topics:

1. /map_metadata (nav_msgs/MapMetaData)

2. /map (nav_msgs/OccupancyGrid)

These topics contain the map data, which is latched, and updated periodically.

3. /slam_out_pose (geometry_msgs/PoseStamped)

The estimated robot pose without covariance.

4. /poseupdate (geometry_msgs/PoseWithCovarianceStamped)

The estimated robot pose with an gaussian estimate of uncertainty.

52

3.3.2. Gmapping

Gmapping also requires a source of “sensor_msgs/LaserScan” data and is launched with

“depthimage_to_laserscan” package.

Gmapping requires an odometry source from the robot to understand correctly where the camera is

pointed at and where it moves. For achieve that goal the ROS provided “laser_scan_matcher”

package.

The installation is as follow:

cd ~/catkin_ws/src

git clone https://github.com/ros-perception/slam_gmapping.git

git clone https://github.com/ros-perception/openslam_gmapping.git

rosdep install slam_gmapping

rosdep install openslam_gmapping

cd ~/catkin_ws/

catkin_make

Gmapping requires the following variables to be set:

1. Scan – set to “/scan”, this is the topic from where Gmapping takes the laser scan information;

2. Base_frame – set to “base_link”, the frame connected to the robot platform;

3. Odom_frame – set to “odom”, the frame of the estimated odometry provided by

laser_scan_matcher node.

All other variables are good optimized.

3.3.3. RGBDSLAM-v2

RGBDSLAM-v2 takes Pointcloud2 messages and builds a map from them. It does not require

odometry information from the platform.

Installation is harder than any of the previous algorithms, because it requires a specially optimized

program g2o to be built before installing theh package itself.

git clone -b c++03 https://github.com/felixendres/g2o.git g2ofork

mkdir g2ofork/build

cd g2ofork/build

cmake .. -DCMAKE_INSTALL_PREFIX=/opt/g2ofork -DG2O_BUILD_EXAMPLES=OFF

nice make -j2 install

53

export G2O_DIR=/opt/g2ofork

cd ~/catkin_ws/src

git clone -b kinetic https://github.com/felixendres/rgbdslam_v2.git $WORKSPACE/src/rgbdslam

rosdep install rgbdslam

rosdep install rgbdslam_v2

cd ~/catkin_ws/

catkin_make

The compilation and installation of this package took two hours on the notebook.

It requires the following variables to be set:

1. config/topic_image_mono – set to “/camera/rgb/image_color”, the image from the camera

on the Kinect;

2. config/topic_image_depth – set to

“/camera/depth_registered/sw_registered/image_rect_raw”, the depth image from Kinect.

3.3.4. ORB_SLAM2

The main difference between this algorithm and the others that it does not require ROS to be installed

to work. Also, it installs as the separate program and should not be put into the ROS workspace.

The installation is simple, because the developers provided the special installation script that builds

everything needed and compiles the package itself.

cd ~/

git clone https://github.com/raulmur/ORB_SLAM2.git ORB_SLAM2

cd ORB_SLAM2

chmod +x build.sh

./build.sh

chmod +x build_ros.sh

./build_ros.sh

After the installation the path to the built ROS files should be set up for ROS to find the package files.

export ROS_PACKAGE_PATH=${ROS_PACKAGE_PATH}:~/ORB_SLAM2/Examples/ROS

The installation and compilation of this algorithm took 40 minutes on the notebook and slightly less
than 4 hours on the Raspberry Pi 3.

54

For an RGB-D input from Kinect’s topics /camera/rgb/image_raw and

/camera/depth_registered/image_raw the node ORB_SLAM2/RGBD should be started and provided

with the Vocabulary file and with the camera calibration file.

3.4. Mobile platform

The aim of this thesis was to build a mobile platform capable of navigate itself through an unknown

environment while being constantly building and updating the map of such environment.

3.4.1. Requirements

The platform should be compact and lightweight, easy to modify when required and should have

enough sensors and computational capacity to perform the calculations in real time. Nevertheless,

the components of the platform should be relatively inexpensive and be able to provide comparable

results.

To sum up, the main requirements for the platform:

1. Ability to be easily modified and disassembled

2. Ability to rotate while staying on one place

3. Be lightweight

4. Have low costs for production

To achieve the first requirement the platform should consist of multiple blocks that could be replaced

with ease, and also the use of the screws or any other holding materials should be minimized.

Second requirement is achieved by placing the engines in the corners of the rectangle shape, so the

centers of the wheels would form a square, with its center aligned with the center of the platform.

This way if the engines on the opposite sides would receive contrary control signals, the platform

would rotate around its center.

The platform was planned to be printed on the 3D printer, so the usage of ABS plastic was the best

solution to achieve relatively low weight of the platform while keeping the production costs at a

minimum.

55

3.4.2. Microsoft Kinect

Figure 3.5 Microsoft Kinect for Xbox 360

For SLAM purposes, the best and most accurate type of sensor would be LIDAR, because of the

wide range, speed and quality that they could provide, but their price blocks most of the low- and

medium-range applications. A cheaper alternative to LIDAR would be RGB-D (Red-Green-Blue-

Depth) cameras, which a capable of providing color and depth images simultaneously.

As a consumer-grade RGB-D camera, I pre-selected a few variants – Microsoft Kinect for Xbox 360

(See Fig.3.5), Microsoft Kinect for Xbox One and Asus Xtion Live – but after searching the market

for the availability the Asus Xtion Live was proved to be much harder to find because the production

of it has been stopped. Microsoft Kinect, as a sensor developed for the gaming consoles in the first

place and shipped most of the time in a single package with them, is still widely used by gamers and

researchers and still has a big share in the market as an easy-to-use RGB-D sensor.

Table 3.1 Comparison of Microsoft Kinect for Xbox 360 and Xbox One [52]

Feature Kinect for Xbox 360 Kinect for Xbox One

Color camera 640 x 480 @30 fps 1920 x 1080 @30 fps

Depth Camera 320 x 240 512 x 424

Working range (m) 0.4 - 4.5 0.5 - 8

Horizontal Field of View 57 degrees 70 degrees

Vertical Field of View 43 degrees 60 degrees

USB Standard 2.0 3.0

Market price From $20 for a used one $199 for a new, from $50 for a

used

56

According to Table 3.1, pros for using Kinect for Xbox One would be better color and depth cameras

specifications, bigger Field of View and working range, but the requirement for using only USB 3.0

standard for communication and way bigger price makes a Kinect for Xbox 360 a better option. Due

to its longer life span, there were a lot of projects including it in multiple applications, which results in

much bigger support by the community.

3.4.3. Raspberry Pi 3

Figure 3.6 Raspberry Pi 3 [53]

For the SLAM purposes the microcontroller should be able to run a Linux operating system, should

have an array of GPIO (General Purpose Input-Output) pins and a few USB 2.0 ports. A great

addition would be having a built-in Wi-Fi adapter for easier communication and troubleshooting the

board and ability to work from the external power supply. Most important – the CPU and GPU of the

microcontroller should have decent computing capabilities required for running SLAM algorithms in

real time.

After searching for the microcontroller, that fits the requirements, I pre-selected three models from

different manufacturers – Raspberry Pi 3 (See Fig.3.6), Orange Pi Plus 2 and ODROID XU4.

Table 3.2 Comparison of Raspberry Pi 3, Orange Pi Plus 2 and ODROID XU4 [54]

Feature Raspberry Pi 3 Orange Pi Plus 2 ODROID XU4

SoC Vendor and Chip Broadcom BCM2837 Allwinner H3 Samsung Exynos 5422

CPU Instructions ARMv8 ARMv7 ARMv7

CPU Frequency 1.2GHz 1.5GHz 1.5GHz

57

Memory 1GB DDR2 2GB DDR3 2GB DDR3

Wi-Fi module installed Yes No Yes

Power requirements 5V 2.5A 5V 2A 5V 4A

GPIO support by OS Excellent Medium Medium

Community support Excellent Good at the launch Good at the launch

Comparing the specifications in Table 3.2, the ODROID X4 seems to be the best solution, followed

by Raspberry Pi 3. But after looking at forums dedicated to each of the three microcontrollers I noticed

multiple threads filled with complains about Orange Pi and ODROID’s flaws compared to the

Raspberry Pi. They included worse support from the manufacturer, hardware and software faults due

to the System-On-Chipset used, poor driver support and requirement to compile every tool needed

from scratch to avoid the typical problems. Raspberry Pi, on the other hand, has a wide community

dedicated to the software development and hardware optimization. The market share of Raspberry

Pi is also much wider than any competitors. Due to that, to low price of Raspberry board and the

better support from community and software developers I selected Raspberry Pi 3 as a main board

for my platform.

3.4.4. Motors and Motor Shield

Figure 3.7 Micro DC Gear motor and Amperka Motor Shield

The motors of the platform could not be connected to the microcontroller directly because of two

reasons – they often require much more current that the board could provide (up to 2A, while the

board’s maximum pin current is around 50-100mA), and the board is not protected from the induced

current from the motors and could be easily damaged.

58

The motors I selected for this project are Micro DC Gear motors with 1:48 Gear ratio (Figure 3.7,

left). The specification of the motors is shown in Table 3.3. The motors came with plastic wheels with

rubber tires, outer diameter 65mm and width of 26mm.

Table 3.3 Micro DC Gear motor specification

Feature Micro DC Gear motor

Gear Ratio 1:48

No-load speed (5V) About 208 RPM

Rated Torque (5V) 0.8 Kg*cm

No-load current (5V) <350 mA

Amperka Motor Shield (Figure 3.7, right) [55] – is an expansion shield capable of controlling motors

with voltages of 5-24V in the separate power supply mode and 7-12V in combined power supply

mode. The board is based on L298P chip, which has two separate channels, and could control:

1. A pair of DC motors

2. One two-phase step motor

3. One DC motor with current of 4A, if the channels are combined.

Moreover, the board has built-in protection for the inductive current from the motors, which is done

by placing diodes in the output line.

The motors are connected by pairs into two separate channels, which makes the control scheme

“tank-alike” – to rotate the platform the motors should spin in opposite directions. To achieve

maximum performance, the motors wheels should be placed in the corners of the square, this way

the platform’ rotation would be done around the center axis.

The Motor Shield requires 6-pin connection to the Raspberry Pi 3 board and a separate connection

to the power supply. Two of the Raspberry Pi 3 pins should support PWM (Pulse-Width modulation)

for controlling the rotation speed of the motors precisely, and another two are used for choosing the

direction of the motors.

As Fig.3.8 shows, the connection scheme is as follows:

Motor Shield’s pins 4 and 7 are setting the direction of the motors, and are connected to Raspberry

Pi 3’s pins 29 and 31. Pins 5 and 6 are responsible for motors’ speed, and are connected to the pins

32 and 33, which are the two separate PWM channels of Raspberry Pi 3. Ground and +5V pins are

connected to each other to provide power to Motor Shield’s logic.

Motors 1 and 2, located on the left side of the platform, are connected to the Channel A of the Motor

Shield, and motors 3 and 4 connected to the Channel B.

59

Motor Shield is also connected to the Power supply, which provides voltage and current to the

motors.

Figure 3.8 Motor Shield, Raspberry Pi 3 and Motors connection scheme

3.4.5. Power Supply

For the robot platform to be truly autonomous it should have an expedient power supply that is

capable of handling every component that it is connected to.

As a battery, I chose Lithium-Polymer battery Zippy 30C series 3S1P (Figure 3.9). The specifications

contain 11.1V output voltage, a decent capacity of 8000mAh, ability to discharge at 30C (30 *

8000mAh = 240A maximum), low weight of 644 grams and relatively light dimensions of

169x69x27mm. [56]

Figure 3.9. Zippy 30C 8000mAh battery

60

For the other components of the board the voltage requirements vary, and the Raspberry Pi 3

requires 5V 2.5A, the Microsoft Kinect for Xbox 360 requires 12V 1A and the motors are capable of

using from 4V to 9V.

To get the required voltage I used two DC-DC voltage converters, the first one is CPT C240505 Step-

Down DC/DC converter (Figure 3.10, right), and the second one is Amperka Troyka-Module Step-

Up DC/DC Converter (Figure 3.10, left). The specifications for the both converters are shown in Table

3.4.

Table 3.4 The specifications of the DC/DC converters [57] [58]

Feature CPT C240505 Amperka Troyka-Module

Integrated Circuit CPT C240505 Texas Instruments LM27313XMF

Input Voltage 9V-35V 2.7-14V

Output Voltage and Current 5V 5A 5-28V (Fixed at 12V), 1A

Full-load efficiency >85% >85%

Figure 3.10. Amperka DC/DC converter and CPT DC/DC converter

61

Figure 3.11 Power Supply schematic

On Figure 3.11 shown the electric connection scheme between the components of the platform.

The battery is connected to the CPT Step-Down converter, providing stable 5V to the Raspberry Pi

3 microcontroller and to the Motor Shield board, and the CPT Step-Down converter is connected to

the Amperka Step-Up converter that outputs the stable 12V to the Microsoft Kinect for Xbox 360.

The connection is done that way due to two reasons: first, the battery will not provide stable voltage

due to the basic principles of batteries – the bigger the charge is, the bigger the voltage. The Zippy

battery is built from 3 separate power cells, each working in 3.3-4.2 voltage range, and the resulting

voltage from the battery could be from 9.9V to 12.4V. Second, the Step-Up converters require the

input voltage to be stable to have consistency in output voltage, and also need the input to be at least

1.5V less than output.

3.4.6. Solidworks Model

After measuring the components and analyzing the requirements the prototype was modelled and

printed (Figure 3.12).

It could be seen that the engines are located in the corners of the platform and are held by the

separate parts, and the battery is placed on top of them. The top surface is made flat for easier

placement of any components that should be mounted.

The assembled prototype of the platform could be seen on Figure 3.13. This platform was used in

the tests described in the Chapter 4.

62

Figure 3.12. The prototype of the platform.

Figure 3.13. The fully assembled prototype of the platform.

63

3.5. Control programs

I have created two programs for controlling the platform. First one (“Joystick”) is dedicated to

establish the connection between the Dualshock 4 gamepad [69] and the laptop PC or Raspberry Pi

3, and the second one (“Control”) for operating the motors of the platform. The programs were

separated to achieve the goal of easier modification and upgradeability – the “Control” process could

receive any operation commands, if they are correctly formulated and posted to the specific topic,

and is independent from the source of these commands, and the “Joystick” process is sending the

commands to the topic without knowing, what program is going to receive it and what would it do

with these commands. This way, the platform could be controlled from various sources. The

communication between the programs is handled by the ROS framework. Both of the programs were

written in C++ language.

The “Joystick” program could be launched from both the laptop PC and the Raspberry Pi 3. It utilizes

the “joystick” library, explained in [70]. The program connects to the Dualshock 4 gamepad via USB

cable, detects any operation with it (e.g. button press, analog stick move, internal accelerator or

gyroscope data) and posts the information about it in ROS network in topic “/Joy” with the message

type “joy::joy”, which is explained in the following paragraph.

The “joy::joy” message type contains the information about all the buttons pressed and axes moved.

It was written to ease the ability of incorporating any specific buttons and axes in any program. Every

activity from the Dualshock 4 is posted into the separate stream, e.g. the event of pressing X could

be received from “message.btn1”, and the movement of the right stick is obtainable from

“message.axis1” and “message.axis0” for X-axis and Y-axis accordingly.

The “Control” program is launched on the Raspberry Pi 3. It utilizes the “wiringPi” library for

connecting to the Motor Shield and controlling the motors. Firstly, it establishes the connection to the

Motor Shield utilizing the GPIO pins, which were shown in Figure 3.8. Then, it starts receiving data

from the “/Joy” topic in “joy::joy” format and filters from it the information about left D-Pad and left

Analog stick. After that the control data is converted to the type which is suitable for the Motor Shield

and is sent to it.

This program supports both so-called “Digital” and “Analog” movement. In “Digital” mode the motors

are always working on the constant rate, when the buttons are pressed, and provide full throttle. In

“Analog” mode the motors could be handled more precisely, allowing the 1024 positions between

the full stop and full throttle.

64

CHAPTER 4

4. RESULTS

4.1. Evaluated characteristics

The comparison of the algorithms was made by the following criteria:

1. Time required to set up; The time required to compile, install and configure the algorithm.

2. Effective framerate of the algorithm; How fast the algorithm updates the map, the time

between the updates.

3. Overall map quality; How accurate the map compared to the test location.

4. Computation requirements; How computation-hungry the algorithm is, in terms of the CPU

usage on the platform.

Figure 4.1. The photograph of the testing location

On the Figure 4.1 could be seen the test location that was used to evaluate the results.

65

4.2. Analysis of the results

Table 4.1. Table of the results

Parameter Hector_slam Gmapping ORB_SLAM2 RGBDSLAMv2

Time required 2 hours 3 hours 4 hours Not compiled

Framerate 3 frames per

second

6 frames per

second

1 frame per 3

seconds

N/A

Map quality Fine Average Bad N/A

Computation 60% of the CPU 70% of the CPU 100% of the CPU N/A

The Table 4.1 contains the results of the algorithms, which would be explained in this chapter.

1. Time required to setup.

Hector_slam package was relatively easy to compile and build and it took 2 hours from the start.

Gmapping, on the other hand, required a few libraries to be built before itself, and there were troubles

in compilation, and after all the dependencies were satisfied and the compilation took around 3 hours.

The ORB_SLAM2 package was the easiest to compile, as it comes with all the dependencies and

the installation script that checkes everything and prompts messages if something is wrong. The

compilation of all of the dependencies and the package itself took nearly 4 hours on the Raspberry

Pi 3.

The RGBDSLAMv2 package showed the worst results. For the successful build it requires a

specially-configured library to be installed first, and that library requires compilation and installation

of system-based packages like QT5, Python3 and GPP. Sadly, QT5 is not supported by the ARM

CPU of the Raspberry Pi 3, and that made the package impossible to install and use at all.

2. Effective framerate.

Hector_slam package updated the map on an average of 3 frames per second with the minimal

framerates of 1 frame per 10 seconds.

Gmapping package was providing from 3 to 10 frames per second in map-building mode, with the

average framerate of 6 frames per second. There were frame drops for the maximum of 5 seconds

waiting for the next frame, but they were happening rarely.

ORB_SLAM2 package provided one frame in roughly 3 seconds, and never achieved more than 1

frame per second.

66

3. Map quality.

Figure 4.2. The map built by hector_slam package

67

Figure 4.3. The map built by Gmapping package

Figure 4.4. The map built by the ORBSLAM2 package, result 1

Figure 4.5. The map built by the ORBSLAM2 package, result 2

As seen on Figure 4.2, the hector_slam package has created the best map of the three algorithms.

The map has a few misaligned walls, but the overall quality is very good, the shape of the test location

could be easily described and there are minimum of the false points on the map.

The Gmapping package (Figure 4.3) showed worse results, but the shape of the test location could

be described as well. There are a lot of misaligned walls and false points, but they are mostly located

at the edges of the map.

The ORBSLAM2 package showed the worst results due to the computation constraints of the

Raspberry Pi 3. While the algorithm was capable of finding keypoints and detecting features, the

68

extreme low framerates led to the very bad quality of the map and incorrect estimated camera

positions. (Figures 4.4 and 4.5)

4. Computation requirements

Both hector_slam and Gmapping packages showed the CPU load around the 60-70%, with

Gmapping using slightly more due to the laser_scan_matcher process.

The ORBSLAM2 reached 100% of the CPU usage almost instantly, showing that it requires much

more performance that the Raspberry Pi 3 could provide.

4.3. Conclusion

After comparing and analyzing the results the following conclusions could be made:

1. The hector_slam provided the best results in the comparison. It was easy to set up, the

performance requirements are average and the map built by this algorithm was good.

2. The Gmapping package was faster at map building, but the resulting map contained errors

and misaligns.

3. ORBSLAM2 requires much more computation capabilities than the Raspberry Pi 3 has, and

due to that the resulting maps were poor quality. It is not recommended to use this algorithm

on the mobile robot.

69

CHAPTER 5

5. SUMMARY

5.1. Summary

In this thesis were described the steps required for implementation of SLAM algorithms from

choosing the sensors to designing the platform, setting up the algorithms and analyzing the results.

During the work the following goals were obtained:

1. The overview and comparison of the sensors were made;

An overview of the types of sensors, suitable for Visual SLAM, was presented. The RGBD

cameras were chosen as the best solution, because compared to the mono and stereo camera

setups, they could provide the depth information about the environment of the platform without

the need for detecting and comparing keypoints on consecutive frames. The LIDAR sensors

were considered as the possible solution, but were rejected due to the bigger expenses for

comparable results. As the RGBD sensor the Microsoft Kinect 360 camera was selected, as it

provides sufficient accuracy of depth data, has a lot of support in the community and is easy to

obtain, implement and use.

2. The prototype of the platform was created and assembled;

The platform was designed in Solidworks software and was printed on a 3D printer. It has enough

surface for mounting the hardware and is able to move around without wired connections.

3. The control program for the platform was created;

The program is capable of receiving control commands from any source in the specific format,

and is able to control the platform’s motors precisely in analog and digital modes.

4. The overview and comparison of the SLAM algorithms were made and analyzed.

The algorithms “hector_slam”, “Gmapping” and “ORBSLAM2” were implemented on the

platform, and the comparison between them was made. The criteria contained the time required

to set up the algorithms, the performance characteristics and computation usage, and the built

map quality. The “hector_slam” algorithm was chosen as a preferred one, because it created a

map with the minimum amount of the false points, used less CPU time than the other algorithms

and was the easiest to set up and configure.

It was shown, that the usage of Raspberry Pi 3 and the Microsoft Kinect 360 camera is a viable

solution for the implementation of 2D SLAM algorithms. The 3D SLAM algorithms require much more

computation capacities and are not recommended for the mobile platforms based on the low-

performance microcontrollers.

70

5.2. Kokkuvõte

See lõputöö kirjeldab samme, mis tuleb läbida autonoomse robotplatvormi ehitamisel, alates andurite

valikust kuni platvormi konstruktsioonini, algoritmide valikuni ja tulemuste analüüsini. Töö käigus jõuti

järgmiste tulemusteni:

1. Töös esitati erinevate andurite ülevaade ja võrdlus;

Anti ülevaade erinevates anduritüüpidest, mis sobivad „Visual SLAM“ meetodile. Parimaks

valikuks osutus RGBD tüüpi kaamera, sest erinevalt mono- ja stereokaameratest võimaldab

see edastada sügavusinformatsiooni ilma kuluka võtmepunktide kaevandamise ning

kaadrist kaadrisse erinevuste võrdlemise. Kaaluti ka LIDARi kasutamist, kuid sellest loobuti

suure hinna tõttu võrreldava tulemuse saamiseks. Konkreetselt kasutati töös Microsoft

Kinect 360 RGBD andurit, kuna see edastab piisava täpsusega sügavusinformatsiooni, on

kergesti kättesaadav, on laialdaselt toetatud ja kergesti integreeritav.

2. Loodi platvormi prototüüp;

Platvorm konstrueeriti Solidworks keskkonnas ja valmistati 3D printeri abil. Sellel on piisavalt

ühenduspunkte andurite, aku ja kontrolleri kinnitamiseks ning on võimeline juhtmevabalt ringi

liikuma.

3. Loodi platvormi juhtprogramm;

Programm võtab ettemääratud formaadis liikumiskäske suvalisest allikast ning suudab

mootoreid juhtida nii proportsionaalses kui ka lülitirežiimis.

4. Sai tehtud ülevaade ja võrdlus erinevatest SLAM algoritmidest.

Algoritmid „Hector SLAM“, „Gmapping“ ja „ORBSLAM2“ said rakendatud ka nimetatud

platvormil ja tehtud sai ka võrdlev analüüs. Võrreldi algoritmi ülesseadmiseks kuluvat aega,

algoritmide jõudluskarakteristikuid, arvutusressursside kasutust ja loodud kaardi kvaliteeti.

Analüüsi tulemusel osutus valituks „Hector SLAM“ algoritm, kuna see lõi vähima müraga

kaardi kasutades vähem arvutusvõimsust ning oli lihtne ülesseada.

Näidati, et Raspberry Pi 3 avuti ja Microsoft Kinect 360 kaamera on sobilik valik 2D SLAM

algoritmi teostuseks. 3D SLAM algoritmid nõuavad oluliselt rohkem arvutusvõimsust ning autor

ei soovita nende kasutamist mobiilsetel platvormidel, mis utiliseerivad madalavõimsuselist

mikrokontrollerit.

71

LIST OF REFERENCES

1. Y. Abdelrasoul, A. B. Sayuti HM Saman, P. Sebastian, "A Quantitative Study of Tuning ROS

Gmapping Parameters and Their Effect on Performing Indoor 2D SLAM" Electrical and

Electronic Engineering department, Universiti Teknologi PETRONAS

2. Leonard, J.J.; Durrant-whyte, H.F. (1991). "Simultaneous map building and localization for

an autonomous mobile robot", 'Intelligent Robots and Systems' 91. 'Intelligence for

Mechanical Systems, Proceedings IROS' 91. IEEE/RSJ International Workshop on: 1442–

1447

3. B. Hiebert-Treuer, "An Introduction to Robot SLAM (Simultaneous Localization And

Mapping)"

4. Smith, R.C.; Cheeseman, P. (1986). «On the Representation and Estimation of Spatial

Uncertainty». The International Journal of Robotics Research 5 (4): 56–68.

5. Smith, R.C.; Self, M.; Cheeseman, P. (1990). «Estimating Uncertain Spatial Relationships in

Robotics», Proceedings of the Second Annual Conference on Uncertainty in Artificial

Intelligence. UAI '86. University of Pennsylvania, Philadelphia, PA, USA: Elsevier. pp. 435–

461.

6. Leonard, J.J.; Durrant-whyte, H.F. (1991). "Simultaneous map building and localization for

an autonomous mobile robot", 'Intelligent Robots and Systems' 91. 'Intelligence for

Mechanical Systems, Proceedings IROS' 91. IEEE/RSJ International Workshop on: 1442–

1447

7. M. Csorba and H.F. Durrant-Whyte. "A new approach to simultaneous localization and map

building". In Proceedings of SPIE Aerosense, Orlando, 1996.

8. M. Csorba. "Simultaneous Localization and Map Building". PhD thesis, University of Oxford,

1997.

9. A. Meguenani, "Onboard Vision based SLAM on a Quadruped Robot", Istituto Italiano di

Tecnologia, Genova, Italy

10. F. Hjelmare, J. Rangsjö, "Simultaneous Localization And Mapping Using a Kinect™ In a

Sparse Feature Indoor Environment", Linköping 2012

11. H. Moravec (1980). "Obstacle Avoidance and Navigation in the Real World by a Seeing

Robot Rover". Tech Report CMU-RI-TR-3 Carnegie-Mellon University, Robotics Institute.

12. C. Harris and M. Stephens. "A Combined Corner and Edge Detector." In Proceedings of the

4th Alvey Vision Conference, pages 147–151, 1988

13. Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus H. Gross. "Surfels:

surface elements as rendering primitives". In SIGGRAPH, pages 335–342, 2000.

14. Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. "Speeded-Up Robust

Features (SURF)". Comput. Vis. Image Underst., 110:346–359, June 2008.

15. B. Steder, R. B. Rusu, K. Konolige, and W. Burgard. "NARF: 3D Range Image Features for

Object Recognition". In Workshop on Defining and Solving Realistic Perception Problems in

72

Personal Robotics at the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),

Taipei, Taiwan, 2010.

16. M. Calonder, V. Lepetit, C. Strecha, and P. Fua. "BRIEF: Binary Robust Independent

Elementary Features". In European Conference on Computer Vision, September 2010.

17. Rosten, Edward; Tom Drummond (2005). "Fusing points and lines for high performance

tracking" (PDF). IEEE International Conference on Computer Vision. 2: 1508–1511.

doi:10.1109/ICCV.2005.104.

18. Corner Detection (Online) https://en.wikipedia.org/wiki/Corner_detection

19. Taylor, Brook (1715). "Methodus Incrementorum Directa et Inversa [Direct and Reverse

Methods of Incrementation]" (in Latin). London. p. 21–23 (Prop. VII, Thm. 3, Cor. 2).

Translated into English in Struik, D. J. (1969). A Source Book in Mathematics 1200–1800.

Cambridge, Massachusetts: Harvard University Press. pp. 329–332.

20. J. Shi and C. Tomasi (June 1994). "Good Features to Track,". 9th IEEE Conference on

Computer Vision and Pattern Recognition. Springer.

21. C. Tomasi and T. Kanade (2004). "Detection and Tracking of Point Features". Pattern

Recognition. 37: 165–168. doi:10.1016/S0031-3203(03)00234-6

22. A. Noble (1989). "Descriptions of Image Surfaces (Ph.D.)". Department of Engineering

Science, Oxford University. p. 45.

23. Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G., Poggio, T., "A Theory of Object

Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in

Primate Visual Cortex", Computer Science and Artificial Intelligence Laboratory Technical

Report, December 19, 2005 MIT-CSAIL-TR-2005-082.

24. Beis, J.; Lowe, David G. (1997). "Shape indexing using approximate nearest-neighbour

search in high-dimensional spaces". Conference on Computer Vision and Pattern

Recognition, Puerto Rico: sn. pp. 1000–1006. doi:10.1109/CVPR.1997.609451.

25. Lowe, David G. (2004). "Distinctive Image Features from Scale-Invariant Keypoints".

International Journal of Computer Vision. 60 (2): 91–110.

doi:10.1023/B:VISI.0000029664.99615.94.

26. Lowe, D.G., "Local feature view clustering for 3D object recognition". IEEE Conference on

Computer Vision and Pattern Recognition,Kauai, Hawaii, 2001, pp. 682-688.

27. Scale-invariant feature transform (Online) https://en.wikipedia.org/wiki/Scale-

invariant_feature_transform

28. Mikolajczyk, K. and Schmid, C. 2002. An affine invariant interest point detector. In

Proceedings of the 8th International Conference on Computer Vision, Vancouver, Canada.

29. Lindeberg, Tony. "Feature detection with automatic scale selection", International Journal of

Computer Vision, 30, 2, pp. 77-116, 1998.

30. Speeded up robust feature (Online)

https://en.wikipedia.org/wiki/Speeded_up_robust_features

31. Brown, M. and Lowe, D., 2002. Invariant Features from Interest Point Groups. In: BMVC

2002: 13th British Machine Vision Conference, 2002-09-02 - 2002-09-05.

73

32. Michael Calonder. Robust, "High-Speed Interest Point Matching for Real-Time Applications"

(PhD Thesis), 2010.

33. Tony Lindeberg. "Scale-Space Theory in Computer Vision". Kluwer Academic Publishers,

Norwell, MA, USA, 1994.

34. B. Steder, R. B. Rusu, K. Konolige, W. Burgard. "Point Feature Extraction on 3D Range

Scans Taking into Account Object Boundaries"

35. Features from accelerated segment test (online)

https://en.wikipedia.org/wiki/Features_from_accelerated_segment_test

36. S. Thrun, W. Burgard, and D. Fox, "Probabilistic robotics". MIT Press, 2008.

37. B. D. Lucas and T. Kanade, "An iterative image registration technique with an application to

stereo vision (darpa)" in DARPA Image Understanding Workshop, Apr 1981, pp. 121–130.

38. J. M. Santos, D. Portugal, and R. P. Rocha, "An evaluation of 2D SLAM techniques available

in Robot Operating System," in 2013 IEEE International Symposium on Safety, Security, and

Rescue Robotics (SSRR), 2013, pp. 1–6

39. G. Grisetti, C. Stachniss, and W. Burgard, "Improved Techniques for Grid Mapping With

Rao-Blackwellized Particle Filters" IEEE Trans. Robot., vol. 23, no. 1, pp. 34–46, Feb. 2007.

40. A. Doucet, N. de Freitas, and N. Gordan, editors. "Sequential MonteCarlo Methods in

Practice". Springer Verlag, 2001

41. A. Doucet. "On sequential simulation-based methods for bayesian filtering". Technical report,

Signal Processing Group, Dept. of Engeneering, University of Cambridge, 1998

42. M. Montemerlo, S. Thrun D. Koller, and B. Wegbreit. "FastSLAM 2.0: An improved particle

filtering algorithm for simultaneous localization and mapping that provably converges". In

Proc. of the Int. Conf. on Artificial Intelligence (IJCAI), pages 1151–1156, Acapulco, Mexico,

2003

43. ORB-SLAM Project Webpage (Online) http://webdiis.unizar.es/~raulmur/orbslam/

44. R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, "ORB-SLAM: a versatile and accurate

monocular SLAM system" IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147–1163,

2015

45. L. M. Paz, P. Pinies, J. D. Tardos, and J. Neira, "Large-scale 6-DOF SLAM with stereo-in-

hand," IEEE Transactions on Robotics, vol. 24, no. 5, pp. 946–957, 2008.

46. Raúl Mur-Artal, and Juan D. Tardós. "ORB-SLAM2: an Open-Source SLAM System for

Monocular, Stereo and RGB-D Cameras". ArXiv preprint arXiv:1610.06475, 2016

47. RGBDSLAM (Online) http://wiki.ros.org/rgbdslam

48. Martin A. Fischler and Robert C. Bolles (1981), "Random Sample Consensus: A Paradigm

for Model Fitting with Apphcatlons to Image Analysis and Automated Cartography", SRI

International

49. Joshua S., "Utilizing Robot Operating System (ROS) in robot vision and control", Monterey,

California

50. ROS Packages (Online) http://wiki.ros.org/Packages

51. ROS Concepts (Online) http://wiki.ros.org/ROS/Concepts

74

52. QUICK REFERENCE: KINECT 1 VS KINECT 2 (Online)

http://www.imaginativeuniversal.com/blog/2014/03/05/Quick-Reference-Kinect-1-vs-Kinect-

2/

53. Raspberry Pi 3 Model B Technical Specifications (Online)

https://www.element14.com/community/docs/DOC-80899/l/raspberry-pi-3-model-b-

technical-specifications#

54. Raspberry Pi 3, Banana Pi M3, Orange Pi Plus 2, ODROID C2 Spec Comparison (Online)

https://www.loverpi.com/blogs/news/94801153-raspberry-pi-3-banana-pi-m3-orange-pi-

plus-2-odroid-c2-spec-comparison

55. Motor Shield [Amperka / Wiki] (Online) http://wiki.amperka.ru/продукты:motor-shield

56. ZIPPY Flightmax 8000mAh 3S1P 30C Lipo Pack (Online)

https://hobbyking.com/en_us/zippy-flightmax-8000mah-3s1p-30c-lipo-pack.html

57. CPT / Fulree DC-DC converters (Online) http://www.current-

logic.com/dcdc_converter_cpt_fulree.php

58. Повышающий стабилизатор напряжения (Troyka-модуль) (Online)

http://amperka.ru/product/troyka-dc-dc-booster

59. ROS Kinetic Installation (Online) http://wiki.ros.org/kinetic/Installation/Ubuntu

60. S. Kohlbrecher and J. Meyer and O. von Stryk and U. Klingauf (2011), "A Flexible and

Scalable SLAM System with Full 3D Motion Estimation", Proc. IEEE International

Symposium on Safety, Security and Rescue Robotics (SSRR)

61. F. Lu and E. Milios. "Globally consistent range scan alignment for environment mapping".

Journal of Autonomous Robots, 4:333–349, 1997.

62. F. Endres, J. Hess, J. Sturm, D. Cremers, W. Burgard, "3D Mapping with an RGB-D

Camera", IEEE Transactions on Robotics, 2014.

63. L. Joseph, "Learning Robotics Using Python", Birmingham, UK: Packt Publishing, 2015, pp.

56-57.

64. J.J. Leonard and H.J.S. Feder, "A computational efficient method for large-scale concurrent

mapping and localisation," in Robotics Research, The Ninth International Symposium

(ISRR’99), J. Hollerbach and D. Koditscheck, Eds. New York: Springer-Verlag, pp. 169–176,

2000.

65. OpenNI Programmers Guide (pdf)

https://s3.amazonaws.com/com.occipital.openni/OpenNI_Programmers_Guide.pdf

66. Depthimage to laserscan package (Online) http://wiki.ros.org/depthimage_to_laserscan

67. Laser Scan Matcher package (Online) http://wiki.ros.org/laser_scan_matcher

68. Camera Calibration package (Online) http://wiki.ros.org/camera_calibration

69. Sony Dualshock 4 Wireless Controller (Online) https://www.playstation.com/ru-

ru/explore/accessories/dualshock-4-wireless-controller/

70. Joystick API by R.H. Espinosa, 1998 (Online)

https://www.kernel.org/doc/Documentation/input/joystick-api.txt

