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1. Introduction 

Nowadays the technical progress in microcontrollers, cameras and algorithms widely opened the 

way for multiple devices to be able to calculate the data coming from the sensors allowing them 

to create maps of the surrounding environment and to detect their own position on them. Lots of 

technologies were created to solve the problem called “SLAM”, which stands for “Simultaneous 

Localization and Mapping” – the computational problem of constructing or updating a map of the 

unknown environment while simultaneously keeping track of an device’s location within it. 

Needless to say that those technologies are widely used in the world, for example, in small 

vacuum-cleaner robots, hospital and guard robots, even autonomous cars – lots of major 

automotive manufactures like Volvo, Ford and Tesla are testing their driverless car systems – 

autonomous ships and aircraft. [1][2][3]. Even the rovers like Spirit and Opportunity are able to 

create a map of the unknown planet and plan their way to the point that the developers told them 

to go. The last, but not the least important thing – the robots using SLAM technologies are able to 

successfully operate in the areas that are dangerous for the humans – in flooded areas, irradiated 

and burning buildings, under collapsed roofs of the caves and in places, which humans still cannot 

reach, like other planets and satellites. 

My inspiration is that with current technologies and rapid development in microcontrollers and 

sensors almost anyone is able to find the solution to the problem of SLAM and create the platform 

that is cheap, mobile, powerful, and is able to monitor the environment around it and calculate its 

position based on the obtained data from multiple non-industrial grade sensors like RGB-D (Red-

Green-Blue-Depth) cameras, sonars, infrared detectors etc. with reasonable quality and cost. 

Therefore, in this master thesis I am going to design and build a mobile platform, equip it with the 



 

 

Microsoft Kinect camera and use it to implement and compare a couple of SLAM algorithms. The 

thesis will present the modifications to the existing open source algorithms so they could be able 

to make use of the measurements made by the compass and gyroscope module, along with tactile 

feedback sensors and sonar sensors. Both the SLAM algorithms and the control program will be 

implemented in C++, using Robot Operating System framework (ROS) to handle compiling, 

installing, saving and comparing sets of data gained from all the algorithms.  

2. Background 

The current understanding of the problem is that most algorithms require lots of processing power 

and various high-end sensors like LIDAR (Light Identification Detection and Ranging), which are 

very precise but expensive to the point that only big groups and companies could afford to use 

them. Less algorithms tend to use only cameras, both standard cameras we have in our 

smartphones and RGB-D cameras, because they offer the most flexible and accurate sensing for 

localization and mapping while still being low-cost and compact. Even less algorithms combine 

data from different kinds of sensors to get a better result. [4][5][6][7] 

While most of the works are explaining their observations and solutions on the SLAM problem, 

they often do not create any kind of platform for the camera and use their own hands to move it 

around the building. From my opinion these solutions are very ineffective, because for obtaining 

more observations of the environment around the camera it should be able to move around freely, 

exploring the unknown areas and map them and update information about the already mapped 

ones. 

3. Methodology 

First, I need to check and compare the hardware and software I will need to use in my project and 

check them for compatibility issues, and also research the current algorithms, their possibilities 

and drawbacks, and choose a few of them for implementation. Second, I will design, test, print 

and build a platform keeping in mind the motors, microcontrollers, sensors and battery supply and 

their positions on the platform. Third part is setting up the algorithms on the platform and making 

the tests to see which one works better in which conditions. All the algorithms would be tested in 

two different environments – the standard room full of furniture and the corridor with opened and 

unopened doors and occasional passers-by. The success of the research would be the 

comparison between the maps different algorithms provide, their computation speed and 

hardware usage, and the differences in setup difficulties. 

 

4. Research Schedule 

№ Description Completion date 

1 
Make a research on current SLAM solutions and sensors; Choose 

sensors and algorithms for implementation 
27.12.2016 

2 Select the hardware for the mobile platform 30.01.2017 



 

 

3 
Design the mobile platform based on the selected hardware; Print 

platform 
28.02.2017 

4 
Set up the hardware on the platform; Install all the recommended 

software; Check that the setup is correct. 
14.03.2017 

5 

Implement and test selected SLAM algorithms on the chosen 

scenarios; Make comparisons; Choose the best algorithm in every 

scenario 

01.05.2017 

6 Finish composing the thesis and presentation 15.05.2017 
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FOREWORD 

The main idea of building a platform and make it run by itself was following me for a long period. 

Ever since I was a kid I always liked to play and work with mechanisms and technical equipment – 

building robots and cars from LEGO, helping my father in repairing home devices and ever upgrading 

some of the toys I had to be better at some characteristics, like making the RC car accelerate much 

faster by short-circuiting some specific pins on the motherboard or designing and creating the RC 

Boat for participating in competition. Those tendencies grew in me, and when it was the time to attend 

university, I already knew that the Mechatronics is the only way that will help me in my ambitions. 

The topic is the continuation of my Bachelor degree thesis, in which I was modifying my old RC off-

road truck to get the hold of the programming, wiring and control techniques, and to implement a 

basic Visual SLAM algorithm utilizing one small camera to get information of the environment. The 

new solution is way faster and accurate and is designed and built from scratch based on the problems 

I had experienced before. 

I want to express my gratitude to the Mechatronics and Robotics Department of ITMO for teaching 

me and helping me through the studying years, MT.Lab for providing me with necessary equipment 

and personally to Dmitry Kupriyanov, who opened the world of microcontrollers for me and lit my 

curiosity for studying them. I would also like to thank the head of TUT Mechatronics Department 

Professor Mart Tamre and the head of ITMO Mechatronics Department Ph.D. Yuri Monakhov for 

giving me the opportunity to study in Mechatronics Double Degree program and Robert Hudjakov 

and Svetlana Perepelkina for helping me with writing this thesis. 
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EESSÕNA 

Põhieesmärk platvormi ehitamisel ja selle autonoomseks tegemisel oli panna ta mind pikaks ajaks 

järgima. Ma olen lapsest saati armastanud mängida ja töötada mehhanismide ja tehniliste 

seadmetega - ehitada roboteid ja autosid LEGO klotsidest, aidata isal parandada koduseadmeid ja 

isegi arendada oma mänguasju paremaks mõnes aspektis nagu näiteks parandades puldiga auto 

kiirendust lühistades emaplaadil mõned teatud jalad või konstrueerides puldiga paate 

võistluseesmärgil. Need huvid on minus aja jooksul tugevnenud ning kui aeg oli minna ülikooli, siis 

ma juba teadsin, et mehhatroonika on ainus viis mu ambitsioone tõeks teha. Käesolev teema on jätk 

minu bakalaureusetööle, milles ma kohendasin oma vana puldiga maastikuautod, õppimaks 

programmeerimist, kaabeldamist ja juhtimistehnikaid, eesmärgiga korjata ümbruskonnast kaamera 

vahendusel informatsiooni loomaks Visual SLAM algoritmi abil kaart. Käesolevas töös loodud 

lahendus on kiirem ja täpsem ning on loodud alustades puhtalt lehelt lahedamaks probleeme, mida 

kohtasin varem. 

Ma soovin tänada ITMO Mehhatroonika ja Robootika instituuti minu õpetamise ja abistamise eest 

möödunud õppeaastate jooksul. MT laborit minu varustamise eest ning personaalselt Dmitry 

Kupriyanovit, kes avas mulle mikrokontrollerite maailma ning süütas minu uudishimu nende vastu. 

Lisaks soovin tänada TTÜ Mehhantroonika instituudi direktorit Professor Mart Tamret ja ITMO 

Mehhatroonika instituudi direktorit Ph.D. Yuri Monakhovit võimaluse eest õppida Mehhatroonika 

topelkraadiõppe programmis ning Robert Hudjakovi ja Svetlana Perepelkinat abi eest selle lõputöö 

kirjutamisel.  



 

10 
 

LIST OF ABBREVIATIONS 

ROS – Robot Operating System 

SLAM – Simultaneous localization and mapping 

GPIO – General Purpose Input and Output 

SSD – Sum of Squared Differences 

SIFT - Scale-Invariant Feature Transform 

SURF - Speeded Up Robust Feature 

NARF - Normal Aligned Radial Feature 

BRIEF - Binary Robust Independent Elementary Feature 

FAST - Features from Accelerated Segment Test 
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CHAPTER 1 

1. INTRODUCTION 

This thesis was created as a part of MSc Mechatronics Double Degree program between the Tallinn 

Technical University and Saint-Petersburg ITMO University. The topic is a continuation of the 

Bachelor thesis, and the main objective is to create a robust solution to the SLAM problem, which 

should be cheaper, easier to set up and use than existing solutions. 

This work aims for completion of the following tasks: 

1. Design and build a mobile platform 

2. Create a control program 

3. Implement four SLAM algorithms and compare them 

The second chapter explains the primary technology behind the solution, describes and justifies the 

choices in hardware and software. 

The third chapter gives an overview on the development stage of the project, showing how to install, 

setup and utilize the ROS framework and the SLAM algorithms, provides information about the 

control programs and algorithms behind the operation of the platform and shows the steps of 

designing the prototype of the platform. 

The fourth chapter shows the results of the work –the comparison between the selected algorithms. 
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CHAPTER 2 

2. DESIGN 

2.1. SLAM and Visual SLAM 

One of the most basic yet important features of intelligent mobile robots is the ability to navigate 

autonomously. Autonomous robots are capable of safely exploring their surroundings without 

colliding with obstacles. For navigation in the unknown environment, the robot should build a map of 

its surroundings and be able to know its position on the generated map at the same time. [1] 

SLAM – Simultaneous Localization and Mapping – is a term for algorithms that build maps of an 

existing unknown environment while being able to perform localization in that area. This method is 

widely used in robotics and often plays the main role in creation of the autonomous robot. It allows 

robots and autonomous vehicles to build a map of the environment or to update a preexisting map 

with new information while constantly keeping track of their position on such map. The method of 

SLAM allows to combine two independent processes – navigation and mapping – into a continuous 

cycle of consistent calculations, in which the result of one process is an input information for the 

other. This way the trajectory of the robotic platform and the mapping information about the 

surrounding area is estimated in real time without the need for any present knowledge of the location. 

[2] [3] A solution to a SLAM problem would allow robots to make maps without any human assistance.  

 

2.1.1. History of SLAM 

The researches in SLAM area were conducted in multiple universities and other institutions since 

1986, where the origins of SLAM problem were presented at the 1986 IEEE Robotics and Automation 

Conference that took place in San Francisco. The work that started the researches on SLAM 

technology was the “On the Representation and Estimation of Spatial Uncertainty” made in 1986 by 

R.C. Smith and P. Cheeseman [4]. In this paper the method for estimating the nominal relationship 

and expecting error between coordinate frames that represent the relative locations of objects was 

described. The method could be used to answer the such questions as whether a camera attached 

to a robot platform is likely to have a particular reference object in its field of view. The method made 

it possible to decide in advance whether an uncertain relationship is known accurately enough for a 

required task and if not – how much of an improvement in locational knowledge a proposed sensor 

will provide. 

Next work in this field of research was “Estimating Uncertain Spatial Relationships in Robotics” by 

R.C. Smith and P. Cheeseman in 1990 [5]. It described the representation for spatial information, 
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called “stochastic map”, and included the methods of creating a map, extracting information from 

sensors and revising it as new information is collected. The map they presented contained the 

estimates of the relationship between the objects on the map and their uncertainties, given all the 

available information. As an advance over the previous approaches on the problem was the fact that 

the estimates were probabilistic by the nature, and the development of the procedures in the state-

estimation and filtering theory provided a solid basis for the followed extensions. 

The “Simultaneous Map Building and Localization for an Autonomous Mobile Robot” (1991) by J.J. 

Leonard and H.F. Durrant-Whyte [6] discussed the problem of estimation of the robot position without 

a priori information. That problem was difficult because of the conflict between the main processes 

of SLAM – localization and mapping. For precision moving the mobile robot should have an accurate 

representation of the environment, but for building an accurate map the robot’s location should be 

known precisely. In this paper the SLAM problem was presented as “chicken-egg” problem, means 

that the two processes are working recursively, and the first one’s output is a next one’s input. For 

overcoming the issue the authors used an array of ultrasonic sensors mounted on the servo motors 

of the robot, which gave them an ability to sense the accurate information about the robot’s 

surroundings from the very beginning and to have a correct tracking of the extracted features to 

provide precise positioning.  

A conceptual break-through came when the problem of simultaneous navigation and localization, 

which was first described as estimated, was found to be convergent. The relations between the points 

on the map, which a lot of researches tried to decrease, played a major role in the solution of the 

problem, and the more relations there were the more accurate solution was generated. Most of the 

theory of convergence and multiple results were achieved by M. Csorba in the works “A new 

approach to simultaneous localization and map building” [7] and “Simultaneous Localization and Map 

Building” [8], which were published in 1996 and 1997 respectively. It was shown that correlations 

arise from the errors in the vehicle and the map estimates; these correlations were identified as 

fundamentally important to the solution of the SLAM problem, and ignoring these correlations lead 

to inconsistencies in map generation and position estimation. The provided results show that it is 

possible to start the robot in the unknown location in an unknown environment and be able to build 

a map by which to navigate.  

 

2.1.2. Visual SLAM 

In the last couple of decades the area of the mobile robotics and autonomous platforms has attracted 

significant attention from researchers all around the world, which resulted in multiple breakthroughs 

and technological advances. Mobile robots are able to perform complicated tasks autonomously, 

while in the past they required assistance from human personnel. The range of applications contains 

various fields, such as medical, military and domestic. In those applications mobile robots are 

required to accomplish complex tasks requiring navigation in an unknown, complex indoor and 
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outdoor environments without any human input. As a result, the SLAM problem was studied in detail 

and various techniques have been proposed to solve the localization problem. 

The research on SLAM grew heavily for the last decade, with multiple institutions developing new 

algorithms, sensors and solutions. The continuous improvement of the computation capabilities of 

microcontrollers and the quality of sensors have made it possible for SLAM applications to be used 

outside of the pure test environments, and nowadays they are able to work even outdoors. With the 

major progress in algorithms, multiple sensors could be used to solve the SLAM problem. 

1. Mono-camera. The algorithms like PTAM, VSLAM and others work with the video stream 

from the single camera that moves relative to the environment, detecting keypoints between the 

video frames and trying to link them one to another. The performance and the quality of the obtained 

map is not so good, but it depends on the algorithm. 

2. Stereo camera. The algorithms work with a pair of cameras with known parameters, good 

calibration and the distance between them. Other work is similar to the mono-camera algorithms – 

they detect keypoints on the images and link them between cameras and between consecutive 

frames. Usage of two cameras provides them with better results at detecting and tracking keypoints. 

3. Multi-camera. Same as #2, but they use a matrix of cameras for detecting points. Very 

computer performance-hungry, but good results. 

4. RGBD cameras and LIDARs. They provide the system with the point clouds eliminating the 

need for detecting them on the frames. RGBD (Red-Green-Blue-Depth) cameras give out the video 

stream and the point cloud in front of the camera and cost not so much, while LIDARs give out a 

point cloud of the full terrain around the robot, work much faster and deliver much more information 

than any of the above, but have high prices for a middle-end solution. 

In every implementation of SLAM the first thing is to create a map of the environment around the 

robot. The most easiest and cheapest way to do so is to use optic sensors. 

Visual SLAM implies the usage of an array of cameras or a LIDAR to detect the robot’s location with 

help from the odometry and accelerometers installed. LIDARs are more preferable due to their rapid 

data obtainment, precise distance information and very high angle of sight (typically full 360 degree 

view), but the severe con of their typical price makes them less preferable for most of the projects. 

On the other side, using cameras we can obtain much more information about the robot’s 

surroundings than any other type of sensor. With RGB-D cameras it is possible to receive data about 

thousands points around the robot and with the usage of specialized algorithms to compare these 

points to the database, understanding the camera’s location, the size and the shape of the object in 

front of it, and also the material and color. 

There are also the combined systems that unite best parameters of cameras and LIDARs, but due 

to their complexity and cost, using these systems is only practical in high-quality projects, where the 

extreme precision is most necessary. In most cases the prototypes of such systems could not be 



 

15 
 

moved to mass production, which forces the developers into searching for different variants of the 

optical systems. 

One of the possible solutions includes using monocular vision, because it saves most of the 

advantages of the cameras while keeping the production at a satisfactory cost. But to the problem of 

analyzing the video stream adds another, most severe disadvantage of Visual SLAM – necessity of 

searching for correlations in obtained images. In most of the cases modern systems collect data 

using multiple algorithms and present the maps as a set of points, lines or simple geometrical objects. 

This data could help in viewing the surface around the robot as a coarse sketch. 

Techniques that use stereo vision could deliver the high-quality information due to the accurate 

measurements and precise calibration of the cameras. But despite all of the benefits of this solution 

it did not got wide spread in the Visual SLAM projects. The complexity of calculations required for 

computation of geometric parameters of the environment become the practical limit of such technics 

for obtaining real-time models in SLAM. 

In my thesis I decided to use the Visual SLAM solution that implies the usage of RGB-D camera to 

get the information about the robot platform’s environment. 

 

2.1.3. SLAM Problem definition 

The problem of consistently matching (aligning) various 3D point clouds taken from different point of 

views into a complete model is known as registration. The goal of this process is to find the relative 

positions and orientations of the separately acquired point clouds in a global coordinate framework. 

The key idea to perform this task is to identify corresponding points between the data sets then find 

a transformation that minimizes the distance (alignment error) between the corresponding points. 

The process is repeated until the alignment errors falls below a given threshold: at this point the 

registration is said to be complete. 

To perform point clouds matching, usually the following steps are used: 

1. From the two consecutive noisy point clouds that we want to match, keypoints that best represent 

the scene in both set of points are extracted. 

2. For each keypoint, a feature descriptor is computed. 

3. Correspondences between the extracted features in both point clouds are estimated using the 

feature descriptors and their XYZ positions in the datasets. 

4. The point clouds are assumed to be noisy and not all correspondences are valid, so bad 

correspondences that contribute negatively to the registration process are rejected. 
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5. From the remaining set of good correspondences, an initial rough transformation between the two 

point clouds is estimated. 

6. Refinement of the matching between the point clouds is performed using the ICP (Iterative Closest 

Point) or the NDT (Normal Distribution Transform) algorithms. 

Generally speaking, a keypoint (also known as “interest point”) is simply a point that has been 

identified as relevant in some way. Whether any point of the point cloud is considered as keypoint or 

not depends on the used “keypoint detector”. Raw point clouds extracted from a stereo camera 

system are usually noisy and the feature descriptors needed for the registration process are 

expensive to compute at every point. This is why keypoints are usually used to identify a small 

number of locations where computing feature descriptors is likely to be most effective. 

There is no strict definition for what constitutes a keypoint detector, but a good keypoint detector will 

find points which have the following properties: 

1. Sparseness: Typically, only a small subset of points in the scene are keypoints 

2. Repeatability: If a point is determined to be a keypoint in one point cloud, a keypoint should 

also be found in a second point cloud taken from a different view point. Such keypoint will 

be called “Stable”. 

3. Distinctiveness: The area surrounding each keypoint should have a unique shape or 

appearance that can be captured by some feature descriptor. 

Interest points are usually placed at corners of shapes and where the color/brightness gradient is the 

highest. There are various methods to find keypoints, and each technique has its specific output. [9] 

 

 

2.2. Algorithms 

2.2.1. SLAM Process  

A SLAM algorithm essentially consists of the following steps: 

1. Data acquisition; in this step measurements from the sensors, e.g. laser scanner or video 

camera, are gathered. 

2. Feature extraction; a number of characteristic, and thereby easily recognizable, landmarks 

are selected from the data set. 

3. Feature association; landmarks from previous measurements are associated with landmarks 

from the most recent measurement. 

4. Pose estimation; the relative change between the landmarks and the position of the vehicle 

is used to estimate the new pose of the vehicle. 
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5. Map adjustment; the map is updated according to the new pose and the corresponding 

measurements. 

The five tasks are continuously repeated and a trajectory of position estimates and a map is built up. 

In the case of visual SLAM, a landmark can be anything that is easily recognizable by a visual sensor, 

e.g. 

 a corner, 

 an edge, 

 a dot in a protruding color. 

The robot extracts landmarks from the data and searches through its database to see if there are 

any matches with old landmarks. Extracted landmarks that are not found in the database are added 

and landmarks giving a match in the database are used to estimate the change of the robot’s pose. 

This is done by measuring the change in distance and angle to the old landmarks. When the new 

pose is estimated the robot uses this estimate and the measurements to adjust the positions of the 

landmarks. SLAM can be regarded as a hen and egg problem. A proper map is needed to get a 

proper pose estimate and a proper pose estimate is needed to get a proper map. [10] 

 

2.2.2. Feature detection 

In computer vision, and more specifically in object recognition, many techniques are based on the 

detection of points of interests on object or surfaces. This is done through the extraction of features. 

In order to track these points of interests during a motion of the camera and/or the robot, a reliable 

feature has to be invariant to image location, scale and rotation. A few methods are briefly presented 

here: 

 Moravec Corner detection algorithm [11] 

 Harris and Stephens Corner detection algorithm [12] 

 SIFT - Scalar Invariant Feature Transform, by David Lowe [13] 

 SURF - Speeded Up Robust Feature [14] 

 NARF - Normal Aligned Radial Feature [15] 

 BRIEF - Binary Robust Independent Elementary Feature [16] 

 FAST - Features from accelerated segment test [17] 

There are two aspects concerning a feature: the detection of a keypoint, which identifies an area of 

interest, and its descriptor, which characterizes its region. Typically, the detector identifies a region 

containing a strong variation of intensity such as an edge or a corner, and its center is designed as 

a keypoint. The descriptor is generally computed by measuring the main orientations of the 

surrounding points, leading to a multidimensional feature vector which identifies the given keypoint. 
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Given a set of features, a matching can then be performed in order to associate some pairs of 

keypoints between a couple of frames. 

 

 

Moravec Corner detection algorithm 

One of the earliest corner detection algorithm. It defines a corner as a point with low self-similarity. 

The algorithm tests each pixel in the image to see if a corner is present, by considering how similar 

a patch centered on the pixel is to nearby, largely overlapping patches. The similarity is measured 

by taking the sum of squared differences between the corresponding pixels of two patches. A lower 

number indicates more similarity. 

If the pixel is in a region of uniform intensity, then the nearby patches will look similar. If the pixel is 

on an edge, then nearby patches in a direction perpendicular to the edge will look quite different, but 

nearby patches in a direction parallel to the edge will result in only in a small change. If the pixel is 

on a feature with variation in all directions, then none of the nearby patches will look similar. 

The corner strength is defined as the smallest SSD (Sum of squared differences) between the patch 

and its neighbours (horizontal, vertical and on the two diagonals). The reason is that if this number 

is high, then the variation along all shifts is either equal to it or larger than it, so capturing that all 

nearby patches look different. 

If the corner strength number is computed for all locations, that it is locally maximal for one location 

indicates that a feature of interest is present in it. 

As pointed out by Moravec, one of the main problems with this operator is that it is not isotropic: if an 

edge is present that is not in the direction of the neighbours (horizontal, vertical, or diagonal), then 

the smallest SSD will be large and the edge will be incorrectly chosen as an interest point. [11] 

 

 

Harris Corner 

Known as the Harris corner operator, this is one of the earliest detector, as it was proposed in 1988 

by Harris and Stephens [12] as an improved version over Moravec’s. It considers the differential of 

the corner score with respect to direction directly, instead of using shifted patches. The notion of 

corner should be taken in a wide sense as it allows to detect not only corners, but edges and more 

generally, keypoints. It is done by computing the second moment matrix (or auto-correlation matrix) 

of the image intensities, describing its local variations. One of the main limitation with the Harris 

operator, at least in its original version, concerns the scale invariance as the matrix should be 

recomputed for a different scale. [18] 
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Without loss of generality, we will assume a grayscale 2-dimensional image is used. Let this image 

be given by �. Consider taking an image patch over the area (�, �) and shifting it by (�, �). The 

weighted sum of squared differences (SSD) between these two patches, denoted �, is given by: 

 �(�, �) =���(�, �)��(� + �, � + �) − �(�, �)�
�

��

 (1.1) 

�(� + �, � + �) can be approximated by a Taylor expansion [19]. Let �� and �� be the partial 

derivatives of I, such that 

 �(� + �, � + �) ≈ �(�, �) + ��(�, �)� + ��(�, �)� (1.2) 

This produces the approximation 

 �(�, �) ≈���(�, �)���(�, �)� + ��(�, �)��
�

��

 (1.3) 

 

Which can be written in matrix form 

 �(�, �) ≈ (� �)�(
�
�) (1.4) 

Where A is the structure tensor, 

 � =���(�, �) �
��
� ����

���� ��
� � = �

〈��
�〉 〈����〉

〈����〉 〈��
�〉

�

��

 (1.5) 

This matrix is a Harris matrix, and angle brackets denote summation over (�, �). If a circular window 

�(�, �) is used, then the response will be isotropic. 

A corner (or in general an interest point) is characterized by a large variation of � in all directions of 

the vector (� �). By analyzing the eigenvalues of �, this characterization can be expressed in the 

following way: � should have two "large" eigenvalues for an interest point. Based on the magnitudes 

of the eigenvalues, the following inferences can be made based on this argument: 

1. If �� ≈ 0 and �� ≈ 0 then this pixel (�, �) has no features of interest. 

2. If �� ≈ 0 and �� has some large positive value, then an edge is found. 

3. If �� and �� have large positive values, then a corner is found. 

Harris and Stephens note that exact computation of the eigenvalues is computationally expensive, 

since it requires the computation of a square root, and instead suggest the following function ��, 

where � is a tunable sensitivity parameter: 

 �� = �� �� − �( �� + ��)
� = det(�) − � ������(�) (1.6) 
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Therefore, the algorithm does not have to actually compute the eigenvalue decomposition of the 

matrix � and instead it is sufficient to evaluate the determinant and trace of � to find corners, or rather 

interest points in general. 

The Shi–Tomasi [20] [21] corner detector directly computes min (��, ��) because under certain 

assumptions, the corners are more stable for tracking. This method is also sometimes referred to as 

the Kanade-Tomasi corner detector. 

The value of � has to be determined empirically, and in the literature values in the range 0.04–0.15 

have been reported as feasible. There is a possibility of avoiding setting the parameter � by using 

Noble's [22] corner measure ��
�  which amounts to the harmonic mean of the eigenvalues: 

 ��
� = 2

det(�)

�����(�) + ��
 (1.7) 

� being a small positive constant, 

The covariance matrix for the corner position is ���, i.e. 

 
1

〈��
�〉〈��

�〉 − 〈����〉
�
�
〈��
�〉 −〈����〉

−〈����〉 〈��
�〉

� (1.8) 

 

 

SIFT 

The Scalar Invariant Feature Transform (SIFT) is a method presented by David Lowe [13], now 

widely used in robotics and computer vision. This is a method to detect distinctive, invariant image 

feature points, which easily can be matched between images to perform tasks such as object 

detection and recognition, or to compute geometrical transformations between images. 

The main idea of the SIFT method is to define a cascade of operations following an increasing 

complexity, so that the most expensive operations are only performed to the most probable 

candidates. 

1. Scale-invariant feature detection. 

The first step relies on a pyramid of Difference-of-Gaussian (DoG) in order to be invariant to scale 

and orientation. Lowe's method for image feature generation transforms an image into a large 

collection of feature vectors, each of which is invariant to image translation, scaling, and rotation, 

partially invariant to illumination changes and robust to local geometric distortion. These features 

share similar properties with neurons in primary Visual cortex that are encoding basic forms, color 

and movement for object detection in primate vision. [23] Key locations are defined as maxima and 

minima of the result of difference of Gaussians function applied in scale space to a series of 

smoothed and resampled images. Low contrast candidate points and edge response points along 
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an edge are discarded. Dominant orientations are assigned to localized keypoints. These steps 

ensure that the keypoints are more stable for matching and recognition. SIFT descriptors robust to 

local affine distortion are then obtained by considering pixels around a radius of the key location, 

blurring and resampling of local image orientation planes. 

2. Feature matching and indexing 

Indexing consists of storing SIFT keys and identifying matching keys from the new image. Lowe used 

a modification of the k-d tree algorithm called the Best-bin-first search method [24] that can identify 

the nearest neighbors with high probability using only a limited amount of computation. The BBF 

algorithm uses a modified search ordering for the k-d tree algorithm so that bins in feature space are 

searched in the order of their closest distance from the query location. This search order requires 

the use of a heap-based priority queue for efficient determination of the search order. The best 

candidate match for each keypoint is found by identifying its nearest neighbor in the database of 

keypoints from training images. The nearest neighbors are defined as the keypoints with minimum 

Euclidean distance from the given descriptor vector. The probability that a match is correct can be 

determined by taking the ratio of distance from the closest neighbor to the distance of the second 

closest. 

Lowe rejected all matches in which the distance ratio is greater than 0.8, which eliminates 90% of 

the false matches while discarding less than 5% of the correct matches. To further improve the 

efficiency of the best-bin-first algorithm search was cut off after checking the first 200 nearest 

neighbor candidates. For a database of 100,000 keypoints, this provides a speedup over exact 

nearest neighbor search by about 2 orders of magnitude, yet results in less than a 5% loss in the 

number of correct matches. [25] 

3. Cluster identification by Hough transform voting 

Hough Transform is used to cluster reliable model hypotheses to search for keys that agree upon a 

particular model pose. Hough transform identifies clusters of features with a consistent interpretation 

by using each feature to vote for all object poses that are consistent with the feature. When clusters 

of features are found to vote for the same pose of an object, the probability of the interpretation being 

correct is much higher than for any single feature. An entry in a hash table is created predicting the 

model location, orientation, and scale from the match hypothesis. The hash table is searched to 

identify all clusters of at least 3 entries in a bin, and the bins are sorted into decreasing order of size. 

Each of the SIFT keypoints specifies 2D location, scale, and orientation, and each matched keypoint 

in the database has a record of its parameters relative to the training image in which it was found. 

The similarity transform implied by these 4 parameters is only an approximation to the full 6 degree-

of-freedom pose space for a 3D object and also does not account for any non-rigid deformations. 

Therefore, Lowe used broad bin sizes of 30 degrees for orientation, a factor of 2 for scale, and 0.25 

times the maximum projected training image dimension (using the predicted scale) for location. The 

SIFT key samples generated at the larger scale are given twice the weight of those at the smaller 

scale. This means that the larger scale is in effect able to filter the most likely neighbours for checking 
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at the smaller scale. This also improves recognition performance by giving more weight to the least-

noisy scale. To avoid the problem of boundary effects in bin assignment, each keypoint match votes 

for the 2 closest bins in each dimension, giving a total of 16 entries for each hypothesis and further 

broadening the pose range. 

4. Model verification by linear least squares 

Each identified cluster is then subject to a verification procedure in which a linear least squares 

solution is performed for the parameters of the affine transformation relating the model to the image. 

The affine transformation of a model point  [� �]�  to an image point [� �]�  can be written as below: 

 �
�
�
�= �

�1 �2
�3 �4

��
�
��+ �

��
��� (1.9) 

Where the model translation is [�� ��]�  and the affine rotation, scale, and stretch are represented 

by the parameters m1, m2, m3 and m4. To solve for the transformation parameters the equation 

above can be rewritten to gather the unknowns into a column vector. 

 �
� � 0 0 1 0
0 0 � � 0 1
⋯      

�
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⎡
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�4
��
��⎦

⎥
⎥
⎥
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⎤

= �

�
�
.
.

� (1.10) 

This equation shows a single match, but any number of further matches can be added, with each 

match contributing two more rows to the first and last matrix. At least 3 matches are needed to 

provide a solution. This linear system could be written as 

 ��� ≈ � (1.11) 

Where A is a known m-by-n matrix (usually with m > n), � is an unknown n-dimensional parameter 

vector, and � is a known m-dimensional measurement vector. 

Therefore, the minimizing vector �� is a solution of the normal equation 

 ����� = ��� (1.12) 

The solution of the system of linear equations is given in terms of the matrix (���)����, called the 

pseudoinverse of �, by 

 �� = (���)����� (1.13) 

which minimizes the sum of the squares of the distances from the projected model locations to the 

corresponding image locations. 
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5. Outlier detection 

Outliers can now be removed by checking for agreement between each image feature and the model, 

given the parameter solution. Given the linear least squares solution, each match is required to agree 

within half the error range that was used for the parameters in the Hough transform bins. As outliers 

are discarded, the linear least squares solution is re-solved with the remaining points, and the 

process iterated. If fewer than 3 points remain after discarding outliers, then the match is rejected. In 

addition, a top-down matching phase is used to add any further matches that agree with the projected 

model position, which may have been missed from the Hough transform bin due to the similarity 

transform approximation or other errors. 

The final decision to accept or reject a model hypothesis is based on a detailed probabilistic model. 

[26] This method first computes the expected number of false matches to the model pose, given the 

projected size of the model, the number of features within the region, and the accuracy of the fit. A 

Bayesian probability analysis then gives the probability that the object is present based on the actual 

number of matching features found. A model is accepted if the final probability for a correct 

interpretation is greater than 0.98. Lowe's SIFT based object recognition gives excellent results 

except under wide illumination variations and under non-rigid transformations. [27] 

 

 

SURF 

The Speeded Up Robust Feature (SURF) provides a robust detector and descriptor [14], that can be 

used in computer vision tasks like object recognition or 3D reconstruction. It is partly inspired by the 

SIFT descriptor, both are using local gradient histograms. The main difference concerns the 

performance, lowering the computational time through an efficient use of integral images for the 

image convolutions, Hessian matrix-based detector (optimized through approximations of the second 

order Gaussian partial derivatives), and sums of approximated 2D Haar wavelet responses for the 

descriptor. The standard version of SURF is several times faster than SIFT and claimed by its authors 

to be more robust against different image transformations than SIFT. [28] 

The algorithm has three main parts: interest point detection, local neighborhood description and 

matching. 

1. Detection. 

SURF uses square-shaped filters as an approximation of Gaussian smoothing. (The SIFT approach 

uses cascaded filters to detect scale-invariant characteristic points, where the difference of 

Gaussians (DoG) is calculated on rescaled images progressively.) Filtering the image with a square 

is much faster if the integral image is used: 
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 �(�, �) =���(�, �)

�

���

�

���

 (1.14) 

The sum of the original image within a rectangle can be evaluated quickly using the integral image, 

requiring evaluations at the rectangle's four corners. 

SURF uses a blob detector based on the Hessian matrix to find points of interest. The determinant 

of the Hessian matrix is used as a measure of local change around the point and points are chosen 

where this determinant is maximal. In contrast to the Hessian-Laplacian detector by Mikolajczyk and 

Schmid [28], SURF also uses the determinant of the Hessian for selecting the scale, as is also done 

by Lindeberg [29]. Given a point � = (�, �) in an image �, the Hessian matrix �(�, �) at point � and 

scale �, is: 

 �(�, �) = �
���(�, �) ���(�, �)

���(�, �) ���(�, �)
� (1.15) 

Where ���(�, �) etc. is the convolution of the second-order derivative of gaussian with the image 

�(�, �) at the point �. 

The box filter of size 9×9 is an approximation of a Gaussian with σ=1.2 and represents the lowest 

level (highest spatial resolution) for blob-response maps. [30] 

 

2. Scale-space representation and location of points of interest 

Interest points can be found at different scales, partly because the search for correspondences often 

requires comparison images where they are seen at different scales. In other feature detection 

algorithms, the scale space is usually realized as an image pyramid. Images are repeatedly 

smoothed with a Gaussian filter, then they are subsampled to get the next higher level of the pyramid. 

Therefore, several floors or stairs with various measures of the masks are calculated: 

 ������� = ������� ������ ���� ∗ �
���� ������ �����

���� ������ ����
� (1.16) 

The scale space is divided into a number of octaves, where an octave refers to a series of response 

maps of covering a doubling of scale. In SURF, the lowest level of the scale space is obtained from 

the output of the 9×9 filters. 

Hence, unlike previous methods, scale spaces in SURF are implemented by applying box filters of 

different sizes. Accordingly, the scale space is analyzed by up-scaling the filter size rather than 

iteratively reducing the image size. The output of the above 9×9 filter is considered as the initial scale 

layer at scale s=1.2 (corresponding to Gaussian derivatives with  � = 1.2). The following layers are 

obtained by filtering the image with gradually bigger masks, taking into account the discrete nature 

of integral images and the specific filter structure. This results in filters of size 9×9, 15×15, 21×21, 
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27×27... Non-maximum suppression in a 3×3×3 neighborhood is applied to localize interest points in 

the image and over scales. The maxima of the determinant of the Hessian matrix are then 

interpolated in scale and image space with the method proposed by Brown, et al. [31]. Scale space 

interpolation is especially important in this case, as the difference in scale between the first layers of 

every octave is relatively large. [30] 

3. Descriptor 

The goal of a descriptor is to provide a unique and robust description of an image feature, e.g., by 

describing the intensity distribution of the pixels within the neighbourhood of the point of interest. 

Most descriptors are thus computed in a local manner, hence a description is obtained for every point 

of interest identified previously. 

The dimensionality of the descriptor has direct impact on both its computational complexity and point-

matching robustness/accuracy. A short descriptor may be more robust against appearance 

variations, but may not offer sufficient discrimination and thus give too many false positives. 

The first step consists of fixing a reproducible orientation based on information from a circular region 

around the interest point. Then we construct a square region aligned to the selected orientation, and 

extract the SURF descriptor from it. [30] 

3.1. Orientation assignment 

In order to achieve rotational invariance, the orientation of the point of interest needs to be found. 

The Haar wavelet responses in both x- and y-directions within a circular neighbourhood of radius 6� 

around the point of interest are computed, where � is the scale at which the point of interest was 

detected. The obtained responses are weighted by a Gaussian function centered at the point of 

interest, then plotted as points in a two-dimensional space, with the horizontal response in the 

abscissa and the vertical response in the ordinate. The dominant orientation is estimated by 

calculating the sum of all responses within a sliding orientation window of size �/3. The horizontal 

and vertical responses within the window are summed. The two summed responses then yield a 

local orientation vector. The longest such vector overall defines the orientation of the point of interest. 

The size of the sliding window is a parameter that has to be chosen carefully to achieve a desired 

balance between robustness and angular resolution. [30] 

3.2. Descriptor based on the sum of Haar wavelet responses 

To describe the region around the point, a square region is extracted, centered on the interest point 

and oriented along the orientation as selected above. The size of this window is 20�. 

The interest region is split into smaller 4x4 square sub-regions, and for each one, the Haar wavelet 

responses are extracted at 5x5 regularly spaced sample points. The responses are weighted with a 

Gaussian (to offer more robustness for deformations, noise and translation). 

 



 

26 
 

4. Matching 

By comparing the descriptors obtained from different images, matching pairs can be found.  

 

 

NARF 

The Normal Aligned Radial Feature (NARF) is presented by Bastian Steder in [32]. It is meant to be 

used on single range scan obtained with 3D laser range finders or stereo camera. This feature is 

available in the Point Cloud Library (PCL) [33], which is part of the Robot Operating System (ROS), 

but also released as a standalone library. Its detector looks for stable areas with significant change 

in vicinity, which can be identified from different viewpoints. The descriptor characterizes the area 

around the keypoint by calculating a normal aligned range value patch and finding the dominant 

orientation of the neighboring pixels. 

This algorithm extends SIFT’s concepts. It works by iterating over all interest points in the range 

image ��, for every point �� it creates a small image patch by looking at it along it’s normal. The 

normal is the Z-axis of the image patch's local coordinate system where �� is at (0,0). The Y-axis is 

the world coordinate system Y-Axis. The X-axis aligns accordingly. All neighbours within the radius 

r around �� are transfered into this local coordinate system. 

A star pattern with n beams is projected on the image patch. For each beam a score in [-0.5,0.5] is 

calculated. Beams have a high score if there are lots of intensity changes in the cells lying under the 

beam. This is calculated by comparing each cell with the next adjacent one. Additionally cells closer 

to the center contribute to the score with a higher weight (2 in the middle, 1 at the edge). 

Finally the dominant orientation of the patch is calculated to make it invariant against rotations around 

the normal. [34] 

 

 

BRIEF 

The Binary Robust Independent Elementary Feature (BRIEF) presented in [16] is an efficient 

alternative for the descriptor, based on binary strings computed directly from image patches, and 

measures the Hamming distance instead of the �� norm commonly used for high dimension 

descriptors. As the binary comparison can be performed very efficiently, the matching between 

several candidates can be done much faster. The use of a BRIEF descriptor supposes the keypoints 

are already known, this can be done with a detector such as SIFT or SURF. A deeper study is 

available in the PhD thesis of Calonder [32], who is the main author of the BRIEF features. The main 

interest of this descriptor resides in its performance. 
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FAST 

Features from accelerated segment test (FAST) is a corner detection method, which could be used 

to extract feature points and later used to track and map objects in many computer vision tasks. 

FAST corner detector was originally developed by Edward Rosten and Tom Drummond, and 

published in 2005 [17]. The most promising advantage of the FAST corner detector is its 

computational efficiency. Referring to its name, it is fast and indeed it is faster than many other well-

known feature extraction methods, such as difference of Gaussians (DoG) used by the SIFT, SUSAN 

and Harris detectors. Moreover, when machine learning techniques are applied, superior 

performance in terms of computation time and resources can be realised. The FAST corner detector 

is very suitable for real-time video processing application because of this high-speed performance. 

FAST corner detector uses a circle of 16 pixels (a Bresenham circle of radius 3) to classify whether 

a candidate point � is actually a corner. Each pixel in the circle is labeled from integer number 1 to 

16 clockwise. If a set of N contiguous pixels in the circle are all brighter than the intensity of candidate 

pixel � (denoted by ��) plus a threshold value � or all darker than the intensity of candidate pixel � 

minus threshold value �, then � is classified as corner. The conditions can be written as: 

Condition 1: A set of N contiguous pixels S, ∀ � ∈  �, the intensity of x (��) >  �� + threshold � 

Condition 2: A set of N contiguous pixels S, ∀ � ∈  �, �� <  �� −  � 

So when either of the two conditions is met, candidate � can be classified as a corner. There is a 

tradeoff of choosing N, the number of contiguous pixels and the threshold value �. On one hand the 

number of detected corner points should not be too many, on the other hand, the high performance 

should not be achieved by sacrificing computational efficiency. Without the improvement of machine 

learning, N is usually chosen as 12. A high-speed test method could be applied to exclude non-

corner points. [35] 
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2.3. SLAM Algorithms 

2.3.1. Hector SLAM 

Hector_mapping is a SLAM approach that can be used without odometry as well as on platforms that 

exhibit roll/pitch motion (of the sensor, the platform or both). It leverages the high update rate of 

modern LIDAR systems like the Hokuyo UTM-30LX and provides 2D pose estimates at scan rate of 

the sensors (40Hz for the UTM-30LX). While the system does not provide explicit loop closing ability, 

it is sufficiently accurate for many real world scenarios. The system has successfully been used on 

Unmanned Ground Robots, Unmanned Surface Vehicles, Handheld Mapping Devices and logged 

data from quadrotor UAVs. [36] 

To be able to represent arbitrary environments an occupancy grid map is used, which is a proven 

approach for mobile robot localization using LIDARs in real-world environments [37]. As the LIDAR 

platform might exhibit 6DOF motion, the scan has to be transformed into a local stabilized coordinate 

frame using the estimated attitude of the LIDAR system. Using the estimated platform orientation 

and joint values, the scan is converted into a point cloud of scan endpoints. Depending on the 

scenario, this point cloud can be preprocessed, for example by downsampling the number of points 

or removal of outliers. For the presented approach, only filtering based on the endpoint z coordinate 

is used, so that only endpoints within a threshold of the intended scan plane are used in the scan 

matching process. 

1. Map Access 

The occupancy grid maps discrete nature limits the precision that could be achieved and also does 

not allow the direct computation of interpolated values or derivatives. For this reason an interpolation 

scheme allowing sub-grid cell accuracy through bilinear filtering is employed for both estimating 

occupancy probabilities and derivatives. Intuitively, the grid map cell values can be viewed as 

samples of an underlying continuous probability distribution. 

Given a continuous map coordinate ��, the occupancy value �(��) as well as the gradient 

∆�(��) = (
��

��
(��),

��

��
(��)) can be approximated by using the four closest integer coordinates 

���.  .��. Linear interpolation along the x- and y-axis then yields 
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(1.17) 

The derivatives can be approximated by: 
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It should be noted that the sample points/grid cells of the map are situated on a regular grid with 

distance 1 (in map coordinates) from each other, which simplifies the presented equations for the 

gradient approximation. 

2. Scan Matching 

Scan matching is the process of aligning laser scans with each other or with an existing map. Modern 

laser scanners have low distance measurement noise and high scan rates. A method for registering 

scans might yield very accurate results for this reason. For many robot systems the accuracy and 

precision of the laser scanner is much higher than that of odometry data, if available at all. 

The approach is based on optimization of the alignment of beam endpoints with the map learnt so 

far. The basic idea using a Gauss-Newton approach is inspired by work in computer vision [34]. 

Using this approach, there is no need for a data association search between beam endpoints or an 

exhaustive pose search. As scans get aligned with the existing map, the matching is implicitly 

performed with all preceding scans. 

3. Multi-Resolution Map Representation 

Any hill climbing/gradient based approach has the inherent risk of getting stuck in local minima. As 

the presented approach is based on gradient ascent, it also is potentially prone to get stuck in local 

minima. The problem is mitigated by using a multi-resolution map representation similar to image 

pyramid approaches used in computer vision. In our approach, we optionally use multiple occupancy 

grid maps with each coarser map having half the resolution of the preceding one. However, the 

multiple map levels are not generated from a single high resolution map by applying Gaussian 

filtering and downsampling as is commonly done in image processing. Instead, different maps are 

kept in memory and simultaneously updated using the pose estimates generated by the alignment 

process. This generative approach ensures that maps are consistent across scales while at the same 

time avoiding costly downsampling operations. The scan alignment process is started at the coarsest 

map level, with the resulting estimated pose getting used as the start estimate for the next level, 

similar to the approach presented in [32]. A positive side-effect is the immediate availability of coarse 

grained maps which can for example be used for path planning [36] 
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2.3.2. Gmapping 

According to the findings of J. M. Santos, D. Portugal, and R. P. Rocha [38], KartoSLAM, 

HectorSLAM and Gmapping produce the most accurate maps. These algorithms despite having quite 

similar performance from map accuracy point of view, are actually conceptually different. That’s, 

HectorSLAM is based on EKF (extended Kalman filter), while Gmapping is based on Rao-

Blackwellized particle filtering (RBPF) occupancy grid mapping. Based on the results presented in 

[39], gmapping can potentially perform well on a limited processing power robotic system such as 

ours. The algorithm uses a relatively small number of particles to represent the SLAM posterior and 

reduces the computational effort required to perform resampling to successfully build very accurate 

maps.  

The gmapping offers a flexible way to optimizing the mapping process to fit the application specific 

needs by tuning some mapping parameters such as number of particles used by RBPF, the 

displacement step to process new scan and the resampling threshold. [1] 

This approach applies two concepts that have previously been identified as key pre-requisites for 

efficient particle filter implementations (see Doucet et al. [40]), namely the computation of an 

improved proposal distribution and an adaptive resampling technique. 

The algorithms need to draw samples from a proposal distribution � in the prediction step in order to 

obtain the next generation of particles. Intuitively, the better the proposal distribution approximates 

the target distribution, the better is the performance of the filter. For instance, if we were able to 

directly draw samples from the target distribution, the importance weights would become equal for 

all particles and the resampling step would no longer be needed. Unfortunately, in the context of 

SLAM a closed form of this posterior is not available in general. As a result, typical particle filter 

applications [3, 18] use the odometry motion model as the proposal distribution. This motion model 

has the advantage that it is easy to compute for most types of robots.  

This proposal distribution, however, is suboptimal especially when the sensor information is 

significantly more precise than the motion estimate of the robot based on the odometry, which is 

typically the case if a robot equipped with a laser range finder (e.g., with a SICK LMS). Imagine a 

situation in which the meaningful area of the observation likelihood is substantially smaller than the 

meaningful area of the motion model. When using the odometry model as the proposal distribution 

in such a case, the importance weights of the individual samples can differ significantly from each 

other since only a fraction of the drawn samples cover the regions of state space that have a high 

likelihood under the observation model. As a result, one needs a comparably high number of samples 

to sufficiently cover the regions with high observation likelihood.  

A common approach – especially in localization – is to use a smoothed likelihood function, which 

avoids that particles close to the meaningful area get a too low importance weight. However, this 

approach discards useful information gathered by the sensor and, at least to our experience, often 

leads to less accurate maps in the SLAM context. To overcome this problem, one can consider the 
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most recent sensor observation �� when generating the next generation of samples. By integrating 

�� into the proposal one can focus the sampling on the meaningful regions of the observation 

likelihood. According to Doucet [41], the distribution 

 ���������
(�) , ����

(�) , ��, ����� =
���������

(�) , ������������
(�) , �����

���������
(�) , ����

(�) , �����
 (1.20) 

is the optimal proposal distribution with respect to the variance of the particle weights. [39] The 

variables would be explained later in the chapter. 

When modeling a mobile robot equipped with an accurate sensor, e.g. a laser range finder, it is 

convenient to use such an improved proposal since the accuracy of the laser range finder leads to 

extremely peaked likelihood functions. In the context of landmark-based SLAM, Montemerlo et al. 

[42] presented a Rao-Blackwellized particle filter that uses a Gaussian approximation of the improved 

proposal. This Gaussian is computed for each particle using a Kalman filter that estimates the pose 

of the robot. This approach can be used when the map is represented by a set of features and if the 

error affecting the feature detection is assumed to be Gaussian. With this algorithm the idea of 

computing an improved proposal is transferred to the situation in which dense grid maps are used 

instead of landmark-based representations.  

Each time a new measurement tuple (����, ��) is available, the proposal is computed for each particle 

individually and is then used to update that particle. This results in the following steps: 

1. An initial guess ��
�(�)  = ����

(�)  ⊕ ���� for the robot’s pose represented by the particle � is obtained 

from the previous pose ����
(�)   of that particle and the odometry measurements ���� collected since 

the last filter update. Here, the operator ⊕ corresponds to the standard pose compounding operator, 

as in [47]. 

2. A scan-matching algorithm is executed based on the map ����
(�)  starting from the initial guess ��

�(�). 

The search performed by the scan-matcher is bounded to a limited region around ��
�(�). If the scan-

matching reports a failure, the pose and the weights are computed according to the motion model 

(and the steps 3 and 4 are ignored).  

3. A set of sampling points is selected in an interval around the pose ���
�(�) reported scan-matcher. 

Based on this points, the mean and the covariance matrix of the proposal are computed by pointwise 

evaluating the target distribution  ���������
(�) , ������������

(�) , ����� in the sampled positions ��. During 

this phase, also the weighting factor �(�) is computed. 

4. The new pose ��
(�) of the particle � is drawn from the Gaussian approximation ����

(�), ��
(�)� of the 

improved proposal distribution.  

5. Update of the importance weights. 

6. The map �(�)  of particle i is updated according to the drawn pose ��
(�) and the observation ��.  
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After computing the next generation of samples, a resampling step is carried out depending on the 

value of ����. [39] 

2.3.3. ORB-SLAM 

ORB-SLAM is a versatile and accurate SLAM solution for Monocular, Stereo and RGB-D cameras. 

It is able to compute in real-time the camera trajectory and a sparse 3D reconstruction of the scene 

in a wide variety of environments, ranging from small hand-held sequences of a desk to a car driven 

around several city blocks. It is able to close large loops and perform global relocalisation in real-

time and from wide baselines. It includes an automatic and robust initialization from planar and non-

planar scenes. [43] 

This is the first open-source SLAM system for monocular, stereo and RGB-D cameras, including loop 

closing, relocalization and map reuse. The RGB-D results shows that by using Bundle Adjustment 

(BA) it achieves more accuracy than state-of-the-art methods based on ICP or photometric and depth 

error minimization. By using close and far stereo points and monocular observations the stereo 

results are more accurate than the state-of-the-art direct stereo SLAM. A lightweight localization 

mode that can effectively reuse the map with mapping disabled. 

ORB-SLAM2 for stereo and RGB-D cameras is built on the monocular feature-based ORB-SLAM 

[44], whose main components are summarized here for reader convenience. The system has three 

main parallel threads: 1) the Tracking to localize the camera with every frame by finding feature 

matches to the local map and minimizing the reprojection error applying motion-only BA, 2) the Local 

Mapping to manage the local map and optimize it, performing local BA, 3) the Loop Closing to detect 

large loops and correct the accumulated drift by performing a pose-graph optimization. This thread 

launches a fourth thread to perform full BA after the pose-graph optimization, to compute the optimal 

structure and motion solution. 

ORB-SLAM2 as a feature-based method preprocess the input to extract features at salient keypoint 

locations. The input images are then discarded and all system operations are based on these 

features, so that the system is independent on the sensor being stereo or RGB-D. This system 

handles monocular and stereo keypoints, which are further classified as close or far.  

Stereo keypoints are defined by three coordinates xs = (uL; vL; uR), being (uL; vL) the coordinates 

on the left image and uR the horizontal coordinate in the right image. For stereo cameras, the 

algorithm extract ORB in both images and for every left ORB it searches for a match in the right 

image. This can be done very efficiently assuming stereo rectified images, so that epipolar lines are 

horizontal. Then it generates the stereo keypoint with the coordinates of the left ORB and the 

horizontal coordinate of the right match, which is subpixel refined by patch correlation. For RGB-D 

cameras, it extracts ORB features on the image channel and, as proposed by Strasdat et al. [8], it 

synthesizes a right coordinate for each feature, using the associated depth value in the registered 
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depth map channel, and the baseline between the structured light projector and the infrared camera, 

which for Kinect and Asus Xtion cameras we approximate to 8 cm.  

A stereo keypoint is classified as close if its associated depth is less than 40 times the stereo/RGB-

D baseline, as suggested in [44], otherwise it is classified as far. Close keypoints can be safely 

triangulated from one frame as depth is accurately estimated and provide scale, translation and 

rotation information. On the other hand, far points provide accurate rotation information but weaker 

scale and translation information. Far points are triangulated when they are supported by multiple 

views. 

Monocular keypoints are defined by two coordinates ��  = (��; ��) on the left image and correspond 

to all those ORB for which a stereo match could not be found or that have an invalid depth value in 

the RGB-D case. These points are only triangulated from multiple views and do not provide scale 

information, but contribute to the rotation and translation estimation. 

One of the main benefits of using stereo or RGB cameras is that, by having depth information from 

just one frame, a specific structure from motion initialization is not needed as in the monocular case. 

At system startup a keyframe is created with the first frame, set its pose to the origin, and create an 

initial map from all stereo keypoints. 

The system performs bundle adjustment to optimize the camera pose in the Tracking (motion-only 

BA), to optimize a local window of keyframes and points in the Local Mapping (local BA), and after a 

loop closure to optimize all keyframes and points (full BA). 

Loop closing is performed in two steps, firstly a loop has to be detected and validated, and secondly 

the loop is corrected optimizing a pose-graph. In contrast to monocular ORBSLAM, where scale drift 

may occur [44], the stereo/depth information makes scale observable and the geometric validation 

and pose-graph optimization no longer require dealing with scale drift and are based on rigid body 

transformations instead of similarities. 

In ORB-SLAM2 a full BA optimization is incorporated after the pose-graph to achieve the optimal 

solution. This optimization might be very costly and therefore it performs in a separate thread, 

allowing the system to continue creating map and detecting loops. However, this brings the challenge 

of merging the bundle adjustment output with the current state of the map. If a new loop is detected 

while the optimization is running, the optimization is aborted and proceed to close the loop, which 

will launch the full BA optimization again. When the full BA finishes, the updated subset of keyframes 

and points optimized by the full BA are merged, with the non-updated keyframes and points that 

where inserted while the optimization was running. This is done by propagating the correction of 

updated keyframes (i.e. the transformation from the non-optimized to the optimized pose) to non-

updated keyframes through the spanning tree. Non-updated points are transformed according to the 

correction applied to their reference keyframe. 

ORB-SLAM2 follows the policy introduced in monocular ORB-SLAM of inserting keyframes very 

often and culling redundant ones afterwards. The distinction between close and far stereo points 
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allows to introduce a new condition for keyframe insertion, which can be critical in challenging 

environments where a big part of the scene is far from the stereo sensor. In such environment a 

sufficient amount of close points is required to accurately estimate translation, therefore if the number 

of tracked close points drops below �� and the frame could create at least �� new close stereo points, 

the system will insert a new keyframe. It was found empirically that �� = 100 and �� = 70 works well 

in all experiments. 

A Localization Mode is also incorporated, which can be useful for lightweight long-term localization 

in well mapped areas, as long as there are not significant changes in the environment. In this mode 

the Local Mapping and Loop Closing threads are deactivated and the camera is continuously 

localized by the Tracking using relocalization if needed. In this mode the tracking leverages visual 

odometry matches and matches to map points. Visual odometry matches are matches between ORB 

in the current frame and 3D points created in the previous frame from the stereo/depth information. 

These matches make the localization robust to unmapped regions, but drift can be accumulated. 

Map point matches ensure drift-free localization to the existing map. [44] [46] 

 

2.3.4. RGBDSLAM 

RGBDSLAMv2 is a SLAM solution for RGB-D cameras. It provides the current pose of the camera 

and allows to create a registered point cloud or an octomap. It features a GUI interface for easy 

usage, but can also be controlled by ROS service calls, e.g., when running on a robot. 

This is one of the first RGB-D SLAM systems that took advantage of the dense color and depth 

images provided by RGB-D cameras. Compared to the first version, several extensions were 

introduced that aim at further increasing the robustness and accuracy. In particular, the use of an 

environment measurement model (EMM) is proposed to validate the transformations estimated by 

feature correspondences and the iterative closest point (ICP) algorithm. Extensive experiments show 

that this RGB-D SLAM system allows to accurately track the robot pose over long trajectories and 

under challenging circumstances. To allow other researchers to use the software, reproduce the 

results, and improve on them, the system is released under an open-source license. [47] 

As a first step the depth and RGB-images are collected with synchronized timestamps. Then features 

are extracted from the RGB-image by a feature extraction algorithm. RGBDSLAM has multiple 

feature extraction algorithms implemented. The implementations have different pros and cons in 

different environments and they differ in computation time. The algorithms implemented are SURF, 

SIFT and ORB. In the next step of the algorithm extracted features are projected to the depth image. 

This step introduces some uncertainty into the chain of operations. Mainly due to the synchronization 

mismatch between depth and RGB-images, but also because of interpolation between points with 

large differences in depth. The fact that a minor misprojection of a feature lying on an object border 
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on to the depth image can result in a big depth error makes features picked at object borders 

unreliable. [47] 

To find a 6D transform for the camera position in this noise the RANSAC algorithm is used. Features 

are matched with earlier extracted features from a set of 20 images in the standard configuration. 

The set consists of a subset including some of the most recent captured images and another subset 

including images randomly selected from the set of all formerly captured images. Three matched 

feature pairs are randomly selected and are used to calculate a 6D transform. All feature pairs are 

then evaluated by their Euclidian distance to each other. Pairs whose Euclidian distance is below a 

certain threshold are counted as inliers. From these inliers a refined 6D transform is calculated using 

GICP. 

RANdom SAmple Consensus, or RANSAC for short, is an iterative algorithm used to adapt the 

parameters of a mathematical model to experimental data. RANSAC is a suitable method when a 

data set contains a high percentage of outliers, i.e. measurements that suffer from measurement 

errors so large that the validity of the measurements is low. The method was first presented in the 

beginning of the eighties in Fischler and Bolles [48] and was suggested to be a suitable method for 

automated image analysis.  

Assume a mathematical model that has n free parameters which can be estimated given a set of 

measurements, P. The number of measurements in P has to be greater than n, #P > n. Let S and T 

be two different varying subsets of P. Given the assumptions the RANSAC algorithm works as 

follows: 

1. Randomly select a subset of the measurements in P and call it S. Use S to make a first 

estimate of the n free parameters of the model. 

2. Use the current estimate of the model to select a new subset of points, T , from the 

measurements that are within some error tolerance from the model. 

3. If T contains more measurements than some given limit then re-estimate the free parameters 

of the model according to this new subset. Calculate a measure of how well T and the model 

coincide, store that value and select a new subset S. 

4. If T does not contain more measurements than the given limit, randomly select a new subset 

S from P and start all over again. 

5. If none of the selected subsets hold more measurements than the limit, exit in failure, or if 

the maximum number of iterations has been reached, exit. 

The method is characterized by three parameters: 

1. The error tolerance used to determine when data is not part of the model. 

2. The maximum number of iterations in the algorithm. 

3. The minimum value on the number of measurements in a subset to be used for parameter 

estimation. 
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The big advantage with RANSAC is the robust way it handles outliers in the data set. The drawbacks 

with RANSAC is that it does not guarantee any solution, nor that a given solution is optimal. 

Furthermore the three parameters mentioned above are to a large extent problem specific, which 

means that experimental adjustment to the specific case treated is required. [47] 

 

 

2.4. Robot Operating System (ROS) 

ROS is an open-source meta-operating system for robots. It provides the services that are expected 

from an operating system, including hardware abstraction, low-level device control, implementation 

of commonly-used functionality, message-passing between processes, and package management. 

It also provides tools and libraries for obtaining, building, writing, and running code across multiple 

computers. 

The ROS runtime "graph" is a peer-to-peer network of processes (potentially distributed across 

machines) that are loosely coupled using the ROS communication infrastructure. ROS implements 

several different styles of communication, including synchronous RPC-style communication over 

services, asynchronous streaming of data over topics, and storage of data on a Parameter Server. 

ROS is a distributed framework of processes (aka Nodes) that enables executables to be individually 

designed and loosely coupled at runtime. These processes can be grouped into Packages and 

Stacks, which can be easily shared and distributed. ROS also supports a federated system of code 

Repositories that enable collaboration to be distributed as well. This design, from the filesystem level 

to the community level, enables independent decisions about development and implementation, but 

all can be brought together with ROS infrastructure tools. 

ROS is divided into three conceptual levels: the filesystem level, the computation graph level, and 

the community level. [49] 

 

2.4.1. Filesystem Level 

The filesystem level is the organization of the ROS framework on a machine (see Fig.2.1). At the 

heart of the ROS’s organization of software is the package. A package may contain ROS runtime 

execution programs, which are called nodes, a ROS-independent library, datasets, configuration 

files, third-party software, or any software that should be organized together [48]. The goal of the 

packages is to provide easy to use functionality in a well-organized manner so that software may be 

reused for many different projects. This organization, along with object-oriented programming, allows 

packages to act as modular building blocks, working harmoniously together to accomplish the 
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desired end-state. Packages typically follow a common structure and usually contain the following 

elements: package manifests, message types, service types, headers, executable scripts, a build 

file, and runtime processes [48]. Package manifests provide metadata about a package, such as the 

name, author, version, description, license information, and dependencies. Packages may also 

contain message types, which define the structure of data for messages sent within ROS, and service 

types, which define the request and response data structures for services. Also within the filesystem 

level are repositories, which are a collection of packages sharing a common version control system. 

Both packages and repositories help make ROS a modular system. [47] 

 

Figure 2.1. ROS Filesystem level scheme 

 

2.4.2. Computation Graph Level 

The computation graph level is where ROS processes data within a peer-to-peer network (See 

Fig.2.2). The basic elements of ROS’s computation graph level are nodes, messages, topics, 

services, bags, Master, and Parameter Server. Nodes are the small-scale workhorses of ROS, 

subscribing to topics to receive information, performing computations, controlling sensors and 

actuators, and publishing data to topics for other nodes to use [50]. The rosnode tool is a useful 

command-line tool for displaying information about ROS nodes. The command, rosnode list, displays 

all active nodes running on the ROS Master. A package may have many nodes within it to accomplish 

a group of computation and tasks, in which they all communicate with each other through topics and 

services via messages. 
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The primary method in which nodes pass data to each other is by publishing messages to topics. A 

message is simply a structure of data so it is in a useful, standard format for other nodes to use. 

Standard types, such as integer, floating point, and Boolean, are supported as well as arrays. The 

command rosmsg list prints all messages available to the ROS Master. The key to the modularity of 

ROS is the method in which nodes typically communicate with each other through topics. 

Rather than communicating directly with each other, nodes usually communicate through topics. 

Topics are named hubs in which nodes can publish and subscribe and are the crux of what makes 

ROS an object-oriented and modular environment. Nodes that generate data are only interested in 

publishing that data, in the correct message format, to the correct topic. Nodes that require data 

simply subscribe to the topics of interest to pull the required information. This method of publishing 

and subscribing to topics decouples the production of information from the consumption of 

information. It allows nodes within different packages to work harmoniously with each other even 

though they may have different origins and functions. The rostopic command-line tool is useful for 

displaying debugging information about ROS topics. To display all active topics, the command 

rostopic list is utilized. The command rostopic info <topic_name> prints the message type accepted 

by the topic and publishing and subscribing nodes. Another useful command-line tool is rostopic 

echo <topic_name>, which prints messages published to a topic. The commands rostopic hz 

<topic_name> and rostopic bw <topic_name> displays the publishing rate and the bandwidth used 

by a topic, respectively. Additionally, data can be manually published to a topic by using the rostopic 

pub <topic_name> command. 

In addition to publishing messages to topics, nodes can also exchange a request and response 

message as part of a ROS service. This is useful if the publish and subscribe (many-to-many) 

communication method is not appropriate, such as a remote procedure call. A ROS node that 

provides data offers a service under a string name, and a client node that requires data calls the 

service by sending the request message and awaiting the response. Active services can be displayed 

by utilizing the command rosservice list, and information about a service can be found by using 

rosservice info <service_name>. [50] 

Bags are a method for recording and storing ROS message data. This is a powerful tool that allows 

users to store, process, analyze, and visualize the flow of messages. Bags are created utilizing the 

rosbag tool, which subscribes to one or more ROS topics and stores message data as they are 

received. This stored data can be replayed in ROS to the same topics, as if the original nodes were 

sending the messages. This tool is useful for conducting experiments using a controlled set of data 

streams to test different algorithms, sensors, actuators, and controllers. To record data, the 

command rosbag record <topic_names> should be used. To view information about a bagfile already 

created, the command rosbag info <bag_file> should be utilized. The command rosbag play 

<bag_file> can be used to publish messages from topics just as if they were being played for the first 

time. When rosbag is utilized to play data, the time synchronization is based on the global timestamp 

when the bagfile was recorded. It is recommended that when playing back data using rosbag play to 
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use rosparam set sim_time true and rosbag play <bag_file> --clock in order to run the recorded 

system with simulated timestamps. 

A launch file is method of launching multiple ROS nodes, either locally or remotely, as well as 

establishing parameters on the ROS Parameter Server. It is useful for running large projects, which 

may have many packages, nodes, libraries, parameters, and even other launch files, which all can 

be started via one launch file rather than individually running each node separately. The roslaunch 

tool uses extensible markup language (XML) files that describe the nodes that should be run, 

parameters that should be set, and other attributes of launching a collection of ROS nodes. The 

roslaunch tool is utilized by using the command roslaunch <package_name> <file.launch>. 

The ROS Master acts as a domain name system server, storing topics and services registration 

information for ROS nodes. ROS Master provides an application program interface (API), a set of 

routines and protocols, tracking services and publishers and subscribers to topics. A node notifies 

ROS Master if it wants to publish a message to a topic. When another node notifies the master that 

it wants to subscribe to the same topic, the master notifies both nodes that the topic is ready for 

publishing and subscribing. The master also makes callbacks to nodes already online, which allows 

nodes to dynamically create connections as new nodes are run. The ROS Master is started with the 

command roscore and must be used to run nodes in ROS. The ROS Master also provides the 

Parameter Server. The ROS Parameter Server can store integers, floats, Boolean, dictionaries, and 

lists and is meant to be globally viewable for non-binary data. The parameter server is useful for 

storing global variables such as the configuration parameters of the physical characteristics of a 

robot. ROS parameters can be displayed by utilizing the command rosparam list. A user can also set 

a parameter from the command line by using rosparam set <parameter_name> <parameter_value>. 

Parameters can also be loaded from a .yaml file by using the command rosparam load 

<parameters.yaml>. 

Names have an important role within ROS. Every node, topic, service, and parameter has a unique 

name. This architecture allows for decoupled operation that allows large, complex systems to be 

built. ROS supports command-line remapping of names, which means a compiled program may be 

reconfigured at runtime to operate in a different computation graph topology. This means that the 

same node can be run multiple times, publishing difference messages to separate topics. [49] 
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Figure 2.2. ROS Computational level 

 

2.4.3. Community Level 

The ROS Community Level consists of ROS distributions, repositories, the ROS Wiki, and ROS 

Answers (See Figure 2.3), which enable researchers, hobbyists, and industries to exchange 

software, ideas, and knowledge in order to progress robotics communities worldwide. ROS 

distributions are similar to the roles that Linux distributions play. They are a collection of versioned 

ROS stacks, which allow users to utilize different versions of ROS software frameworks. Even while 

ROS continues to be updated, users can maintain their projects with older more stable versions and 

can easily switch between versions at any time. 

ROS does not maintain a single repository for ROS packages; rather, ROS encourages users and 

developers to host their own repositories for packages that they have used or created. ROS simply 

provides an index of packages, allowing developers to maintain ownership and control over their 

software. Developers can then utilize the ROS Wiki to advertise and create tutorials to demonstrate 

the use and functionality of their packages. The ROS Wiki is the forum for documenting information 

about ROS, where researchers and developers contribute documentation, updates, links to their 

repositories, and tutorials for any open-sourced software they have produced. ROS Answers is a 

community-oriented site to help answer ROS-related questions that users may have. [51] 
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Figure 2.3. ROS Community level 

2.4.4. Other ROS Concepts 

 

Unified Robot Description Format 

The unified robot description format (URDF) package contains an XML file that represents a robot 

model. The URDF is another tool within ROS that makes it a modular system. Rather than creating 

a unique process for different styles of robots, nodes are created without regard for the robot that will 

utilize them. The URDF file provides the necessary, robot-specific, information so nodes may conduct 

their procedures. A URDF file is written so that each link of the robot is the child of a parent link, with 

joints connecting each link, and joints are defined with their offset from the reference frame of the 

parent link and their axis of rotation [51]. In this way, a complete kinematic model of the robot is 

created. A tree diagram can be visualized utilizing the urdf_to_graphiz tool as shown on Figure 2.4. 
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Figure 2.4. URDF tree diagram example 

 

 

Coordinate and Transform frames 

 

Figure 2.5. ROS view_frames command example 
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A robotic system typically has many three-dimensional coordinate frames that change over time. The 

tf ROS package keeps track of multiple coordinate frames in the form of a tree structure (See Fig.1.5). 

Just as the URDF manages joints and links, the tf package maintains the relationships between 

coordinate frames of points, vectors, and poses, and computes the transforms between them. The tf 

package operates in a distributed system; all ROS components within the system have access to 

information about the coordinate frames. The transform tree can also be viewed by developers for 

debugging by utilizing the view_frames tool as shown in Figure 2.5. Additional command-line tools 

for the tf package are rosrun tf tf_monitor, rosrun tf tf_echo <source_frame> <target_frame>, and 

roswtf, which, respectively, monitors delays between transforms of coordinate frames, prints 

transforms between coordinate frames, and aids in debugging. [51]  
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CHAPTER 3 

3. DEVELOPMENT 

3.1. ROS Installation 

Both the Raspberry Pi 3 and the control PC have Ubuntu 16.04 LTS as the main operating system, 

so the installation, as described in [59]: 

First, we need to set up the ROS repository and add the required keys to our system to gain access 

to the packages. 

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/source
s.list.d/ros-latest.list' 

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key 421C365BD9FF1F71
7815A3895523BAEEB01FA116 

Then, after updating the Ubuntu repository list, the desktop version of ROS could be installed. 

sudo apt-get update 

sudo apt-get install ros-kinetic-desktop-full 

ROS provides 4 different configurations, the one I chose has all the required tools for building and 

evaluating the platform. 

After the successful installation, a rosdep tool should be initialized. Rosdep handles the installation 

of all of the dependencies of the packages and is required to run ROS system components. 

sudo rosdep init 

rosdep update 

Then, after adding the ROS environment variables to the bashrc script, the ROS framework is 

installed. 

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc 

source ~/.bashrc 

For the usage of the ROS packages the Workspace should be created. Workspace will contain all 

the tools and algorithms provided, and is the correct way of handling ROS packages. 

mkdir -p ~/catkin_ws/src 

cd ~/catkin_ws/src 

catkin_init_workspace 
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cd ~/catkin_ws/ 

catkin_make 

echo "source ~/devel/setup.bash " >> ~/.bashrc  

After these steps, the ROS Workspace under the name of “catkin_ws” is now created. 

 

3.2. Prerequisites 

For the SLAM algorithms to work we are required to install a couple of packages, which the 

algorithms depend on. 

 

3.2.1. OpenNI 

The OpenNI 2.0 API provides access to PrimeSense compatible depth sensors. It allows an 

application to initialize a sensor and receive depth, RGB, and IR video streams from the device. It 

provides a single unified interface to sensors and .ONI recordings created with depth sensors. 

OpenNI also provides a uniform interface that third party middleware developers can use to interact 

with depth sensors. Applications are then able to make use of both the third party middleware, as 

well as underlying basic depth and video data provided directly by OpenNI. [65] 

Installation requires the Rgbd_Launch package to be installed too. 

cd ~/catkin_ws/src 

git clone https://github.com/ros-drivers/rgbd_launch 

git clone https://github.com/ros-drivers/openni_launch.git 

rosdep install rgbd_launch 

rosdep install openni_launch 

cd ~/catkin_ws 

catkin_make 

After the successful compilation the OpenNI node could be launched. There is no need for special 

configuration, because the OpenNI comes with the optimized set of the variables. 
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3.2.2. Depthimage_to_laserscan 

The depthimage_to_laserscan package is essential when working with low cost setups like depth 

sensors or the Microsoft Kinect. It furthermore is essential when interfacing SLAM algorithms. 

It subscribes to the PointCloud2 topic that is provided by Kinect (Figure 3.1), selects a few rows of 

information in the center of it, approximates the parameters and outputs the LaserScan topic with 

the information look-alike as what the Laser scanner would provide (Figure 3.2). [66] 

 

Figure 3.1. The point cloud obtained from Kinect 
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Figure 3.2. The laser scan that was provided from the package 

The package should be cloned from Github.com into the workspace and built. 

cd ~/catkin_ws/src 

git clone https://github.com/ros-perception/depthimage_to_laserscan.git 

rosdep install depthimage_to_laserscan 

cd ~/catkin_ws/ 

catkin_make 

After the successful compilation of the project it could be configured and launched. 

It is a known practice of launching packages through prepared launch files, providing the nodes the 

required configurations and variables: 

1. Scan_height parameter, sets the height of the pixel row in the center that would be 

transformed into the laser scan; 

2. Scan_time parameter, sets the rate of which the Laserscan messages would be published; 

3. Output frame id, sets the name of the node; 

4. Range_min, sets the minimal range of the pointcloud data to be processed in meters; 

5. Range_max, sets the maximal range; 

6. Remapping the Image topic to the one the Kinect is providing; 

7. Remapping the Scan topic to the one which we would be using. 

The following code was used in the Launch file. 

<node pkg="nodelet" type="nodelet" name="depthimage_to_laserscan" args="load depthimage_to
_laserscan/DepthImageToLaserScanNodelet camera/camera_nodelet_manager"> 

      <param name="scan_height" value="10"/> 

      <param name="scan_time" value="0.033"/> 

      <param name="output_frame_id" value="/$(arg camera)_depth_frame"/> 

      <param name="range_min" value="0.45"/> 

      <param name="range_max" value="5.00"/> 

      <remap from="image" to="$(arg camera)/$(arg depth)/image_raw"/> 

      <remap from="scan" to="$(arg scan_topic)"/> 

</node> 
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3.2.3. Laser_Scan_Matcher 

The laser_scan_matcher package [67] is an incremental laser scan registration tool. The package 

allows to scan match between consecutive sensor_msgs/LaserScan messages, and publish the 

estimated position of the laser as a geometry_msgs/Pose2D or a tf transform.  

The package can be used without any odometry estimation provided by other sensors. Thus, it can 

serve as a stand-alone odometry estimator. Alternatively, several types of odometry input could be 

provided to improve the registration speed and accuracy. 

The package should be cloned to the workspace folder and built. 

cd ~/catkin_ws/src 

git clone https://github.com/ccny-ros-pkg/scan_tools.git 

rosdep install scan_tools 

cd ~/catkin_ws/ 

catkin_make 

 To ensure the odometry frame is calculated and received correctly, we need to provide the package 

with the next variables: 

1. fixed_frame – set to “map”, this is the frame that is fixed and is not moving; 

2. base_frame – set to “base_link”, this is the frame of the robot platform; 

3. use_odom – set to “false” due to our platform not having any odometry sensor. 

Other parameters should be configured already for the Kinect. 

 

3.2.4. Camera_calibration 

This is the package for calibrating the Kinect’s Depth and RGB cameras for achieving better quality 

of the data obtained from them. [68] 

The calibration is not necessarily, because the openni_camera driver provides default camera 

models out-of-the-box with reasonably accurate focal lengths (relating 3D points to 2D image 

coordinates). They do not model lens distortion, but fortunately the Kinect uses low-distortion lenses 

(|k1| ~= 0.1), so even the edges of the image are not displaced by more than a few pixels. 

The camera_calibration package is a part of the image_pipeline metapackage and could not be 

installed separately. 

cd ~/catkin_ws/src 

git clone https://github.com/ros-perception/image_pipeline.git 
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rosdep install image_pipeline 

cd ~/catkin_ws/ 

catkin_make 

For the calibration the special chessboard-like file should be printed and the size of the squares on 

it should be measured. 

Calibrating the RGB camera (Figure 3.3): 

rosrun camera_calibration cameracalibrator.py image:=/camera/rgb/image_raw camera:=/camera/r
gb --size 8x6 --square 0.0245 

Calibrating the Depth camera (Figure 3.4): 

rosrun camera_calibration cameracalibrator.py image:=/camera/ir/image_raw camera:=/camera/ir -
-size 8x6 --square 0.0245 

 

 

Figure 3.3. Calibration of the RGB camera of the Kinect.  
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Figure 3.4. Calibration of the Depth camera. 

Chess pattern that is printed on paper is detected by the package and the lens distortion parameters 

are written into the ~/.ros/camera_info/ folder, from where it is detected by any package that requires 

connection to the Kinect. 

 

3.3. Algorithms 

I chose 4 algorithms of SLAM, which belong to the two groups: 

1. Laser-based SLAM 

2. 3D occupancy grid SLAM 

For the Laser-based SLAM I selected Hector SLAM and Gmapping, and for 3D-based SLAM I chose 

RGBDSLAMv2 and ORB-SLAM2. 
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3.3.1. Hector SLAM 

For the usage of hector_mapping in ROS, a source of “sensor_msgs/LaserScan” data is required. 

The node uses tf for transformation of scan data, so the LIDAR does not have to be fixed related to 

the specified base frame. Odometry data is not needed. 

Kinect provides us with 3D pointcloud, and we are required to transform it to the laserscan. ROS has 

a package “Depthimage_to_Laserscan”, which mimics the laser scanner by processing the Depth 

images from Kinect and turning them to the format the laser scanners are delivering. 

Installation with all of the dependencies is simple: 

cd ~/catkin_ws/src 

git clone https://github.com/tu-darmstadt-ros-pkg/hector_slam.git 

rosdep install hector_slam 

cd ~/catkin_ws/ 

catkin_make 

After performing these commands the package “hector_slam” and all of its dependencies are built 

and installed. 

Subscribed topics: 

1. /scan (sensor_msgs/LaserScan) 

This is the topic delivered by “depthimage_to_laserscan” package used by the SLAM system. 

2. /syscommand (std_msgs/String) 

System command. If the string equals "reset" the map and robot pose are reset to their initial state. 

Published topics: 

1. /map_metadata (nav_msgs/MapMetaData) 

2. /map (nav_msgs/OccupancyGrid) 

These topics contain the map data, which is latched, and updated periodically. 

3. /slam_out_pose (geometry_msgs/PoseStamped) 

The estimated robot pose without covariance. 

4. /poseupdate (geometry_msgs/PoseWithCovarianceStamped) 

The estimated robot pose with an gaussian estimate of uncertainty. 
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3.3.2. Gmapping  

Gmapping also requires a source of “sensor_msgs/LaserScan” data and is launched with 

“depthimage_to_laserscan” package. 

Gmapping requires an odometry source from the robot to understand correctly where the camera is 

pointed at and where it moves. For achieve that goal the ROS provided “laser_scan_matcher” 

package. 

The installation is as follow: 

cd ~/catkin_ws/src 

git clone https://github.com/ros-perception/slam_gmapping.git 

git clone https://github.com/ros-perception/openslam_gmapping.git  

rosdep install slam_gmapping 

rosdep install openslam_gmapping 

cd ~/catkin_ws/ 

catkin_make 

Gmapping requires the following variables to be set: 

1. Scan – set to “/scan”, this is the topic from where Gmapping takes the laser scan information; 

2. Base_frame – set to “base_link”, the frame connected to the robot platform; 

3. Odom_frame – set to “odom”, the frame of the estimated odometry provided by 

laser_scan_matcher node. 

All other variables are good optimized. 

 

3.3.3. RGBDSLAM-v2 

RGBDSLAM-v2 takes Pointcloud2 messages and builds a map from them. It does not require 

odometry information from the platform. 

Installation is harder than any of the previous algorithms, because it requires a specially optimized 

program g2o to be built before installing theh package itself. 

git clone -b c++03 https://github.com/felixendres/g2o.git g2ofork 

mkdir g2ofork/build 

cd g2ofork/build 

cmake .. -DCMAKE_INSTALL_PREFIX=/opt/g2ofork -DG2O_BUILD_EXAMPLES=OFF 

nice make -j2 install 
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export G2O_DIR=/opt/g2ofork 

cd ~/catkin_ws/src 

git clone -b kinetic https://github.com/felixendres/rgbdslam_v2.git $WORKSPACE/src/rgbdslam 

rosdep install rgbdslam 

rosdep install rgbdslam_v2 

cd ~/catkin_ws/ 

catkin_make 

The compilation and installation of this package took two hours on the notebook. 

It requires the following variables to be set: 

1. config/topic_image_mono – set to “/camera/rgb/image_color”, the image from the camera 

on the Kinect; 

2. config/topic_image_depth – set to 

“/camera/depth_registered/sw_registered/image_rect_raw”, the depth image from Kinect. 

 

3.3.4. ORB_SLAM2 

The main difference between this algorithm and the others that it does not require ROS to be installed 

to work. Also, it installs as the separate program and should not be put into the ROS workspace. 

The installation is simple, because the developers provided the special installation script that builds 

everything needed and compiles the package itself. 

cd ~/ 

git clone https://github.com/raulmur/ORB_SLAM2.git ORB_SLAM2 

cd ORB_SLAM2 

chmod +x build.sh 

./build.sh 

chmod +x build_ros.sh 

./build_ros.sh 

After the installation the path to the built ROS files should be set up for ROS to find the package files. 

export ROS_PACKAGE_PATH=${ROS_PACKAGE_PATH}:~/ORB_SLAM2/Examples/ROS 

The installation and compilation of this algorithm took 40 minutes on the notebook and slightly less 
than 4 hours on the Raspberry Pi 3. 
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For an RGB-D input from Kinect’s topics /camera/rgb/image_raw and 

/camera/depth_registered/image_raw the node ORB_SLAM2/RGBD should be started and provided 

with the Vocabulary file and with the camera calibration file. 

 

3.4. Mobile platform 

The aim of this thesis was to build a mobile platform capable of navigate itself through an unknown 

environment while being constantly building and updating the map of such environment. 

 

3.4.1. Requirements 

The platform should be compact and lightweight, easy to modify when required and should have 

enough sensors and computational capacity to perform the calculations in real time. Nevertheless, 

the components of the platform should be relatively inexpensive and be able to provide comparable 

results. 

To sum up, the main requirements for the platform: 

1. Ability to be easily modified and disassembled 

2. Ability to rotate while staying on one place 

3. Be lightweight 

4. Have low costs for production 

To achieve the first requirement the platform should consist of multiple blocks that could be replaced 

with ease, and also the use of the screws or any other holding materials should be minimized. 

Second requirement is achieved by placing the engines in the corners of the rectangle shape, so the 

centers of the wheels would form a square, with its center aligned with the center of the platform. 

This way if the engines on the opposite sides would receive contrary control signals, the platform 

would rotate around its center. 

The platform was planned to be printed on the 3D printer, so the usage of ABS plastic was the best 

solution to achieve relatively low weight of the platform while keeping the production costs at a 

minimum. 
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3.4.2. Microsoft Kinect 

 

Figure 3.5 Microsoft Kinect for Xbox 360 

For SLAM purposes, the best and most accurate type of sensor would be LIDAR, because of the 

wide range, speed and quality that they could provide, but their price blocks most of the low- and 

medium-range applications. A cheaper alternative to LIDAR would be RGB-D (Red-Green-Blue-

Depth) cameras, which a capable of providing color and depth images simultaneously.  

As a consumer-grade RGB-D camera, I pre-selected a few variants – Microsoft Kinect for Xbox 360 

(See Fig.3.5), Microsoft Kinect for Xbox One and Asus Xtion Live – but after searching the market 

for the availability the Asus Xtion Live was proved to be much harder to find because the production 

of it has been stopped. Microsoft Kinect, as a sensor developed for the gaming consoles in the first 

place and shipped most of the time in a single package with them, is still widely used by gamers and 

researchers and still has a big share in the market as an easy-to-use RGB-D sensor. 

Table 3.1 Comparison of Microsoft Kinect for Xbox 360 and Xbox One [52] 

Feature Kinect for Xbox 360 Kinect for Xbox One 

Color camera 640 x 480 @30 fps 1920 x 1080 @30 fps 

Depth Camera 320 x 240 512 x 424 

Working range (m) 0.4 - 4.5 0.5 - 8 

Horizontal Field of View 57 degrees 70 degrees 

Vertical Field of View 43 degrees 60 degrees 

USB Standard 2.0 3.0 

Market price From $20 for a used one $199 for a new, from $50 for a 

used 
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According to Table 3.1, pros for using Kinect for Xbox One would be better color and depth cameras 

specifications, bigger Field of View and working range, but the requirement for using only USB 3.0 

standard for communication and way bigger price makes a Kinect for Xbox 360 a better option. Due 

to its longer life span, there were a lot of projects including it in multiple applications, which results in 

much bigger support by the community. 

 

3.4.3. Raspberry Pi 3 

 

Figure 3.6 Raspberry Pi 3 [53] 

For the SLAM purposes the microcontroller should be able to run a Linux operating system, should 

have an array of GPIO (General Purpose Input-Output) pins and a few USB 2.0 ports. A great 

addition would be having a built-in Wi-Fi adapter for easier communication and troubleshooting the 

board and ability to work from the external power supply. Most important – the CPU and GPU of the 

microcontroller should have decent computing capabilities required for running SLAM algorithms in 

real time. 

After searching for the microcontroller, that fits the requirements, I pre-selected three models from 

different manufacturers – Raspberry Pi 3 (See Fig.3.6), Orange Pi Plus 2 and ODROID XU4. 

Table 3.2 Comparison of Raspberry Pi 3, Orange Pi Plus 2 and ODROID XU4 [54] 

Feature Raspberry Pi 3 Orange Pi Plus 2 ODROID XU4 

SoC Vendor and Chip Broadcom BCM2837 Allwinner H3 Samsung Exynos 5422 

CPU Instructions ARMv8 ARMv7 ARMv7 

CPU Frequency 1.2GHz 1.5GHz 1.5GHz 



 

57 
 

Memory 1GB DDR2 2GB DDR3 2GB DDR3 

Wi-Fi module installed Yes No Yes 

Power requirements 5V 2.5A 5V 2A 5V 4A 

GPIO support by OS Excellent Medium Medium 

Community support Excellent Good at the launch Good at the launch 

Comparing the specifications in Table 3.2, the ODROID X4 seems to be the best solution, followed 

by Raspberry Pi 3. But after looking at forums dedicated to each of the three microcontrollers I noticed 

multiple threads filled with complains about Orange Pi and ODROID’s flaws compared to the 

Raspberry Pi. They included worse support from the manufacturer, hardware and software faults due 

to the System-On-Chipset used, poor driver support and requirement to compile every tool needed 

from scratch to avoid the typical problems. Raspberry Pi, on the other hand, has a wide community 

dedicated to the software development and hardware optimization. The market share of Raspberry 

Pi is also much wider than any competitors. Due to that, to low price of Raspberry board and the 

better support from community and software developers I selected Raspberry Pi 3 as a main board 

for my platform. 

 

3.4.4. Motors and Motor Shield 

 

Figure 3.7 Micro DC Gear motor and Amperka Motor Shield 

The motors of the platform could not be connected to the microcontroller directly because of two 

reasons – they often require much more current that the board could provide (up to 2A, while the 

board’s maximum pin current is around 50-100mA), and the board is not protected from the induced 

current from the motors and could be easily damaged.  



 

58 
 

The motors I selected for this project are Micro DC Gear motors with 1:48 Gear ratio (Figure 3.7, 

left). The specification of the motors is shown in Table 3.3. The motors came with plastic wheels with 

rubber tires, outer diameter 65mm and width of 26mm. 

Table 3.3 Micro DC Gear motor specification 

Feature Micro DC Gear motor 

Gear Ratio 1:48 

No-load speed (5V) About 208 RPM 

Rated Torque (5V) 0.8 Kg*cm 

No-load current (5V) <350 mA 

 

Amperka Motor Shield (Figure 3.7, right) [55] – is an expansion shield capable of controlling motors 

with voltages of 5-24V in the separate power supply mode and 7-12V in combined power supply 

mode. The board is based on L298P chip, which has two separate channels, and could control: 

1. A pair of DC motors 

2. One two-phase step motor 

3. One DC motor with current of 4A, if the channels are combined. 

Moreover, the board has built-in protection for the inductive current from the motors, which is done 

by placing diodes in the output line. 

The motors are connected by pairs into two separate channels, which makes the control scheme 

“tank-alike” – to rotate the platform the motors should spin in opposite directions. To achieve 

maximum performance, the motors wheels should be placed in the corners of the square, this way 

the platform’ rotation would be done around the center axis. 

The Motor Shield requires 6-pin connection to the Raspberry Pi 3 board and a separate connection 

to the power supply. Two of the Raspberry Pi 3 pins should support PWM (Pulse-Width modulation) 

for controlling the rotation speed of the motors precisely, and another two are used for choosing the 

direction of the motors. 

As Fig.3.8 shows, the connection scheme is as follows: 

Motor Shield’s pins 4 and 7 are setting the direction of the motors, and are connected to Raspberry 

Pi 3’s pins 29 and 31. Pins 5 and 6 are responsible for motors’ speed, and are connected to the pins 

32 and 33, which are the two separate PWM channels of Raspberry Pi 3. Ground and +5V pins are 

connected to each other to provide power to Motor Shield’s logic. 

Motors 1 and 2, located on the left side of the platform, are connected to the Channel A of the Motor 

Shield, and motors 3 and 4 connected to the Channel B. 



 

59 
 

Motor Shield is also connected to the Power supply, which provides voltage and current to the 

motors. 

 

Figure 3.8 Motor Shield, Raspberry Pi 3 and Motors connection scheme 

 

3.4.5. Power Supply 

For the robot platform to be truly autonomous it should have an expedient power supply that is 

capable of handling every component that it is connected to. 

As a battery, I chose Lithium-Polymer battery Zippy 30C series 3S1P (Figure 3.9). The specifications 

contain 11.1V output voltage, a decent capacity of 8000mAh, ability to discharge at 30C (30 * 

8000mAh = 240A maximum), low weight of 644 grams and relatively light dimensions of 

169x69x27mm. [56] 

 

Figure 3.9. Zippy 30C 8000mAh battery 
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For the other components of the board the voltage requirements vary, and the Raspberry Pi 3 

requires 5V 2.5A, the Microsoft Kinect for Xbox 360 requires 12V 1A and the motors are capable of 

using from 4V to 9V. 

To get the required voltage I used two DC-DC voltage converters, the first one is CPT C240505 Step-

Down DC/DC converter (Figure 3.10, right), and the second one is Amperka Troyka-Module Step-

Up DC/DC Converter (Figure 3.10, left). The specifications for the both converters are shown in Table 

3.4. 

Table 3.4 The specifications of the DC/DC converters [57] [58] 

Feature CPT C240505 Amperka Troyka-Module 

Integrated Circuit CPT C240505 Texas Instruments LM27313XMF 

Input Voltage 9V-35V 2.7-14V 

Output Voltage and Current 5V 5A 5-28V (Fixed at 12V), 1A 

Full-load efficiency >85% >85% 

 

 

 

Figure 3.10. Amperka DC/DC converter and CPT DC/DC converter 
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Figure 3.11 Power Supply schematic 

On Figure 3.11 shown the electric connection scheme between the components of the platform. 

The battery is connected to the CPT Step-Down converter, providing stable 5V to the Raspberry Pi 

3 microcontroller and to the Motor Shield board, and the CPT Step-Down converter is connected to 

the Amperka Step-Up converter that outputs the stable 12V to the Microsoft Kinect for Xbox 360. 

The connection is done that way due to two reasons: first, the battery will not provide stable voltage 

due to the basic principles of batteries – the bigger the charge is, the bigger the voltage. The Zippy 

battery is built from 3 separate power cells, each working in 3.3-4.2 voltage range, and the resulting 

voltage from the battery could be from 9.9V to 12.4V. Second, the Step-Up converters require the 

input voltage to be stable to have consistency in output voltage, and also need the input to be at least 

1.5V less than output. 

 

3.4.6. Solidworks Model 

After measuring the components and analyzing the requirements the prototype was modelled and 

printed (Figure 3.12). 

It could be seen that the engines are located in the corners of the platform and are held by the 

separate parts, and the battery is placed on top of them. The top surface is made flat for easier 

placement of any components that should be mounted. 

The assembled prototype of the platform could be seen on Figure 3.13. This platform was used in 

the tests described in the Chapter 4. 
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Figure 3.12. The prototype of the platform. 

 

Figure 3.13. The fully assembled prototype of the platform. 
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3.5. Control programs 

I have created two programs for controlling the platform. First one (“Joystick”) is dedicated to 

establish the connection between the Dualshock 4 gamepad [69] and the laptop PC or Raspberry Pi 

3, and the second one (“Control”) for operating the motors of the platform. The programs were 

separated to achieve the goal of easier modification and upgradeability – the “Control” process could 

receive any operation commands, if they are correctly formulated and posted to the specific topic, 

and is independent from the source of these commands, and the “Joystick” process is sending the 

commands to the topic without knowing, what program is going to receive it and what would it do 

with these commands. This way, the platform could be controlled from various sources. The 

communication between the programs is handled by the ROS framework. Both of the programs were 

written in C++ language. 

The “Joystick” program could be launched from both the laptop PC and the Raspberry Pi 3. It utilizes 

the “joystick” library, explained in [70]. The program connects to the Dualshock 4 gamepad via USB 

cable, detects any operation with it (e.g. button press, analog stick move, internal accelerator or 

gyroscope data) and posts the information about it in ROS network in topic “/Joy” with the message 

type “joy::joy”, which is explained in the following paragraph.  

The “joy::joy” message type contains the information about all the buttons pressed and axes moved. 

It was written to ease the ability of incorporating any specific buttons and axes in any program. Every 

activity from the Dualshock 4 is posted into the separate stream, e.g. the event of pressing X could 

be received from “message.btn1”, and the movement of the right stick is obtainable from 

“message.axis1” and “message.axis0” for X-axis and Y-axis accordingly. 

The “Control” program is launched on the Raspberry Pi 3. It utilizes the “wiringPi” library for 

connecting to the Motor Shield and controlling the motors. Firstly, it establishes the connection to the 

Motor Shield utilizing the GPIO pins, which were shown in Figure 3.8. Then, it starts receiving data 

from the “/Joy” topic in “joy::joy” format and filters from it the information about left D-Pad and left 

Analog stick. After that the control data is converted to the type which is suitable for the Motor Shield 

and is sent to it. 

This program supports both so-called “Digital” and “Analog” movement. In “Digital” mode the motors 

are always working on the constant rate, when the buttons are pressed, and provide full throttle. In 

“Analog” mode the motors could be handled more precisely, allowing the 1024 positions between 

the full stop and full throttle. 
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CHAPTER 4 

4. RESULTS 

4.1. Evaluated characteristics 

The comparison of the algorithms was made by the following criteria: 

1. Time required to set up; The time required to compile, install and configure the algorithm. 

2. Effective framerate of the algorithm; How fast the algorithm updates the map, the time 

between the updates. 

3. Overall map quality; How accurate the map compared to the test location. 

4. Computation requirements; How computation-hungry the algorithm is, in terms of the CPU 

usage on the platform. 

 

Figure 4.1. The photograph of the testing location 

On the Figure 4.1 could be seen the test location that was used to evaluate the results. 
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4.2. Analysis of the results 

Table 4.1. Table of the results 

Parameter Hector_slam Gmapping ORB_SLAM2 RGBDSLAMv2 

Time required 2 hours 3 hours 4 hours Not compiled 

Framerate 3 frames per 

second 

6 frames per 

second 

1 frame per 3 

seconds 

N/A 

Map quality Fine Average Bad N/A 

Computation 60% of the CPU 70% of the CPU 100% of the CPU N/A 

The Table 4.1 contains the results of the algorithms, which would be explained in this chapter. 

1. Time required to setup. 

Hector_slam package was relatively easy to compile and build and it took 2 hours from the start.  

Gmapping, on the other hand, required a few libraries to be built before itself, and there were troubles 

in compilation, and after all the dependencies were satisfied and the compilation took around 3 hours. 

The ORB_SLAM2 package was the easiest to compile, as it comes with all the dependencies and 

the installation script that checkes everything and prompts messages if something is wrong. The 

compilation of all of the dependencies and the package itself took nearly 4 hours on the Raspberry 

Pi 3. 

The RGBDSLAMv2 package showed the worst results. For the successful build it requires a 

specially-configured library to be installed first, and that library requires compilation and installation 

of system-based packages like QT5, Python3 and GPP. Sadly, QT5 is not supported by the ARM 

CPU of the Raspberry Pi 3, and that made the package impossible to install and use at all. 

2. Effective framerate. 

Hector_slam package updated the map on an average of 3 frames per second with the minimal 

framerates of 1 frame per 10 seconds. 

Gmapping package was providing from 3 to 10 frames per second in map-building mode, with the 

average framerate of 6 frames per second. There were frame drops for the maximum of 5 seconds 

waiting for the next frame, but they were happening rarely. 

ORB_SLAM2 package provided one frame in roughly 3 seconds, and never achieved more than 1 

frame per second. 
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3. Map quality. 

 

Figure 4.2. The map built by hector_slam package 
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Figure 4.3. The map built by Gmapping package 

 

Figure 4.4. The map built by the ORBSLAM2 package, result 1 

 

Figure 4.5. The map built by the ORBSLAM2 package, result 2 

As seen on Figure 4.2, the hector_slam package has created the best map of the three algorithms. 

The map has a few misaligned walls, but the overall quality is very good, the shape of the test location 

could be easily described and there are minimum of the false points on the map. 

The Gmapping package (Figure 4.3) showed worse results, but the shape of the test location could 

be described as well. There are a lot of misaligned walls and false points, but they are mostly located 

at the edges of the map. 

The ORBSLAM2 package showed the worst results due to the computation constraints of the 

Raspberry Pi 3. While the algorithm was capable of finding keypoints and detecting features, the 
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extreme low framerates led to the very bad quality of the map and incorrect estimated camera 

positions. (Figures 4.4 and 4.5) 

4. Computation requirements 

Both hector_slam and Gmapping packages showed the CPU load around the 60-70%, with 

Gmapping using slightly more due to the laser_scan_matcher process. 

The ORBSLAM2 reached 100% of the CPU usage almost instantly, showing that it requires much 

more performance that the Raspberry Pi 3 could provide. 

 

4.3. Conclusion 

After comparing and analyzing the results the following conclusions could be made: 

1. The hector_slam provided the best results in the comparison. It was easy to set up, the 

performance requirements are average and the map built by this algorithm was good. 

2.  The Gmapping package was faster at map building, but the resulting map contained errors 

and misaligns. 

3. ORBSLAM2 requires much more computation capabilities than the Raspberry Pi 3 has, and 

due to that the resulting maps were poor quality. It is not recommended to use this algorithm 

on the mobile robot. 
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CHAPTER 5 

5. SUMMARY 

5.1. Summary 

In this thesis were described the steps required for implementation of SLAM algorithms from 

choosing the sensors to designing the platform, setting up the algorithms and analyzing the results. 

During the work the following goals were obtained: 

1. The overview and comparison of the sensors were made; 

An overview of the types of sensors, suitable for Visual SLAM, was presented. The RGBD 

cameras were chosen as the best solution, because compared to the mono and stereo camera 

setups, they could provide the depth information about the environment of the platform without 

the need for detecting and comparing keypoints on consecutive frames. The LIDAR sensors 

were considered as the possible solution, but were rejected due to the bigger expenses for 

comparable results. As the RGBD sensor the Microsoft Kinect 360 camera was selected, as it 

provides sufficient accuracy of depth data, has a lot of support in the community and is easy to 

obtain, implement and use. 

2. The prototype of the platform was created and assembled; 

The platform was designed in Solidworks software and was printed on a 3D printer. It has enough 

surface for mounting the hardware and is able to move around without wired connections. 

3. The control program for the platform was created; 

The program is capable of receiving control commands from any source in the specific format, 

and is able to control the platform’s motors precisely in analog and digital modes. 

4. The overview and comparison of the SLAM algorithms were made and analyzed. 

The algorithms “hector_slam”, “Gmapping” and “ORBSLAM2” were implemented on the 

platform, and the comparison between them was made. The criteria contained the time required 

to set up the algorithms, the performance characteristics and computation usage, and the built 

map quality. The “hector_slam” algorithm was chosen as a preferred one, because it created a 

map with the minimum amount of the false points, used less CPU time than the other algorithms 

and was the easiest to set up and configure. 

It was shown, that the usage of Raspberry Pi 3 and the Microsoft Kinect 360 camera is a viable 

solution for the implementation of 2D SLAM algorithms. The 3D SLAM algorithms require much more 

computation capacities and are not recommended for the mobile platforms based on the low-

performance microcontrollers.  
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5.2. Kokkuvõte 

See lõputöö kirjeldab samme, mis tuleb läbida autonoomse robotplatvormi ehitamisel, alates andurite 

valikust kuni platvormi konstruktsioonini, algoritmide valikuni ja tulemuste analüüsini. Töö käigus jõuti 

järgmiste tulemusteni: 

1. Töös esitati erinevate andurite ülevaade ja võrdlus; 

Anti ülevaade erinevates anduritüüpidest, mis sobivad „Visual SLAM“ meetodile. Parimaks 

valikuks osutus RGBD tüüpi kaamera, sest erinevalt mono- ja stereokaameratest võimaldab 

see edastada sügavusinformatsiooni ilma kuluka võtmepunktide kaevandamise ning 

kaadrist kaadrisse erinevuste võrdlemise. Kaaluti ka LIDARi kasutamist, kuid sellest loobuti 

suure hinna tõttu võrreldava tulemuse saamiseks. Konkreetselt kasutati töös Microsoft 

Kinect 360 RGBD andurit, kuna see edastab piisava täpsusega sügavusinformatsiooni, on 

kergesti kättesaadav, on laialdaselt toetatud ja kergesti integreeritav. 

2. Loodi platvormi prototüüp; 

Platvorm konstrueeriti Solidworks keskkonnas ja valmistati 3D printeri abil. Sellel on piisavalt 

ühenduspunkte andurite, aku ja kontrolleri kinnitamiseks ning on võimeline juhtmevabalt ringi 

liikuma. 

3. Loodi platvormi juhtprogramm; 

Programm võtab ettemääratud formaadis liikumiskäske suvalisest allikast ning suudab 

mootoreid juhtida nii proportsionaalses kui ka lülitirežiimis.  

4. Sai tehtud ülevaade ja võrdlus erinevatest SLAM algoritmidest. 

Algoritmid „Hector SLAM“, „Gmapping“ ja „ORBSLAM2“ said rakendatud ka nimetatud 

platvormil ja tehtud sai ka võrdlev analüüs. Võrreldi algoritmi ülesseadmiseks kuluvat aega, 

algoritmide jõudluskarakteristikuid, arvutusressursside kasutust ja loodud kaardi kvaliteeti. 

Analüüsi tulemusel osutus valituks „Hector SLAM“ algoritm, kuna see lõi vähima müraga 

kaardi kasutades vähem arvutusvõimsust ning oli lihtne ülesseada. 

Näidati, et Raspberry Pi 3 avuti ja Microsoft Kinect 360 kaamera on sobilik valik 2D SLAM 

algoritmi teostuseks. 3D SLAM algoritmid nõuavad oluliselt rohkem arvutusvõimsust ning autor 

ei soovita nende kasutamist mobiilsetel platvormidel, mis utiliseerivad madalavõimsuselist 

mikrokontrollerit. 
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