
THESIS ON INFORMATICS AND SYSTEM ENGINEERING C130

Combination of Pedagogical Strategies and
Teaching Techniques for Teaching Computer

Science Basics to Novices

OLGA MIRONOVA

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Department of Software Science

This dissertation was accepted for the defence of the degree Doctor of
Philosophy in Computer Science on June 15, 2017.

Supervisors: Associate Professor Tiia Rüütmann

School of Engineering,
Department of Mechanical and Industrial Engineering
Tallinn University of Technology
Tallinn, Estonia

Associate Professor Enn Õunapuu
School of Information Technologies,
Department of Software Science
Tallinn University of Technology
Tallinn, Estonia

Opponents: Professor Dana Dobrovská
Department of Pedagogical and Psychological Studies
Czech Technical University in Prague

Associate Professor Pedro Isaias
Institute for Teaching and Learning Innovation
The University of Queensland, Australia

Defence of the thesis: October 18, 2017, Tallinn

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of
Technology has not been submitted for any academic degree.

Olga Mironova

Copyright: Olga Mironova, 2017
ISSN 1406-4731
ISBN 978-9949-83-155-5 (publication)
ISBN 978-9949-83-156-2 (PDF)

INFORMAATIKA JA S TEHNIKA C130ÜSTEEMI

Pedagoogika strateegiate ja õpetamise
tehnikate kombinatsioon informaatika

algkursuse õpetamisel algajatele

OLGA MIRONOVA

5

Table of Contents

LIST OF PUBLICATIONS ... 9

AUTHOR’S CONTRIBUTION TO THE PUBLICATIONS 10

INTRODUCTION ... 11

Motivation for the Study and Research Object .. 11

Research Questions .. 13

Methodology and Novelty .. 14

Organization of the Thesis ... 16

Abbreviations .. 17

List of Figures ... 18

List of Tables ... 20

1 REVIEW OF THE STATE OF THE ART ... 21

1.1 The Overview ... 21

1.1.1 Computer Science Trends on the International Level 21

1.1.2 Teaching Computer Science ... 21

1.1.3 Level of Knowledge of Matriculants at Tallinn University of
Technology (non-IT Specialities) ... 24

1.2 Computer Science Basics course for non-IT at Tallinn University of
Technology ... 26

1.2.1 The Course Description .. 26

1.2.2 The Course Outcomes .. 27

1.3 Conclusion and discussion ... 29

2 THE COMPUTER SCIENCE BASICS COURSE INNOVATION 31

2.1 The Background ... 31

2.2 E-course .. 32

2.3 Prior Knowledge ... 35

2.4 Learning Style .. 37

2.4.1 Learners’ Types According to Richard M. Felder 39

6

2.4.1.1 Active and Reflective Learners .. 39

2.4.1.2 Sensing and Intuitive Learners ... 39

2.4.1.3 Inductive and Deductive Learners .. 40

2.4.1.4 Visual and Verbal Learners .. 40

2.4.1.5 Sequential and Global Learners .. 40

2.4.2 Teaching Techniques to Address All Learning Styles 40

2.4.3 Educational Process in Accordance with Students’ Preferences 41

2.5 Conclusion and discussion ... 44

3 STATISTICAL ANALYSIS ... 46

3.1 The Method of Analysis - Student’s t-test .. 46

3.2 The Formulae Used .. 46

3.3 The Initial Data ... 47

3.4 Calculations .. 49

3.5 Numerical Results of the Experiment ... 51

3.6 Conclusion and discussion ... 56

4 PROGRAMMING FOR BEGINNERS .. 57

4.1 The Programming Introductory Tool ... 57

4.1.1 Object with its Properties and Methods 59

4.1.2 Events ... 60

4.1.3 Parallel and Sequential Processing ... 61

4.1.4 Data .. 61

4.1.5 Conditional Statements ... 63

4.1.6 Iterations ... 63

4.1.7 Subroutines ... 64

4.2 Coding Based on Scratch ... 65

4.2.1 Python ... 66

4.2.2 Visual Basic for Applications ... 67

4.3 Modelling and Algorithmization .. 68

4.4 Applied Active Teaching and Learning Methods............................... 70

7

4.4.1 The Visualization of the Processes ... 71

4.4.2 E-learning ... 72

4.4.3 Face-to-face Lessons .. 73

4.5 Positive Outcome of Applied Teaching Techniques 75

4.6 ‘Basics of Applications Development and Programming’ for School
Pupils and Schoolteachers .. 76

4.7 Teaching Scratch .. 78

4.7.1 Scratch Courses in the World ... 78

4.7.2 Scratch Courses in Estonia ... 80

4.7.3 Analysis .. 81

4.8 Conclusion and discussion ... 82

CONCLUSIONS ... 83

Answers to the Research Questions ... 83

Contributions .. 85

Future Work ... 87

REFERENCES .. 88

ACKNOWLEDGEMENTS .. 100

ABSTRACT .. 101

KOKKUVÕTE .. 103

Appendix A ... 105

Appendix B ... 111

Appendix C ... 119

Appendix D ... 139

Appendix E .. 149

Appendix F .. 155

Appendix G ... 157

Appendix H ... 159

Appendix I ... 162

Appendix J ... 165

Appendix K ... 169

8

Appendix L .. 174

CURRICULUM VITAE ... 175

ELULOOKIRJELDUS .. 177

9

LIST OF PUBLICATIONS
All publications are reprinted in the appendixes of the thesis.

The work of this thesis is based on the following publications:

A Mironova, O.; Rüütmann, T.; Amitan, I.; Vilipõld, J.; Saar, M. (2013).
Computer Science E-Courses for Students with Different Learning Styles.
In: Annals of Computer Science and Information Systems, 1: Federated
Conference on Computer Science and Information Systems, September
8–11, 2013. Kraków, Poland. IEEE, 735−738.

B Mironova, O.; Amitan, I.; Vendelin, J.; Saar, M.; Rüütmann, T. (2014).
Strategies for the Individualization of an Informatics Course. Annals of
Computer Science and Information Systems, 2: Federated Conference on
Computer Science and Information Systems, September 7–10, 2014.
Warsaw, Poland. IEEE, 835−840.

C Mironova, O.; Amitan, I.; Vendelin, J.; Vilipõld, J.; Saar, M. (2016).
Maximizing and personalizing e-learning support for students with
different backgrounds and preferences. Interactive Technology and Smart
Education, 13 (1), 19−35, 10.1108/ITSE-09-2015-0025.

D Mironova, O.; Amitan, I.; Vendelin, J.; Vilipõld, J.; Saar, M. (2015).
Object-Oriented Programming for non-IT Students: Starting from
Scratch. International Journal of Engineering Pedagogy, 5 (4), 22−28,
10.3991/ijep.v5i4.4734.

E Mironova, O.; Amitan, I.; Vilipõld, J.; Saar, M. (2016). Active learning
methods in programming for non-IT students. Proceedings of
International Conference on e-Learning 2016: 10th International
Conference on e-Learning; Funchal, Madeira, Portugal; 1 – 3 July 2016.
IADIS Press, 239−242.

10

AUTHOR’S CONTRIBUTION TO THE PUBLICATIONS
In articles mentioned below the main author is the author of present thesis.

A The author’s contribution was the idea and the implementation of the
model of the Computer Science Basics course.

B The author’s contribution was the development of the course model and
teaching approach. In addition, the author was responsible for data
collection and analysis, computations and writing the publication.

C The author’s contribution was the development of chosen teaching
approach and data and analysis.

D The author’s contribution was the development of the idea of the teaching
approach to object-oriented programming for non-IT students.

E The author’s contribution was the revision and systematization of learning
techniques, which are used in programming module of the Computer
Science Basics course.

11

INTRODUCTION
E-learning and blended learning [1] are rapidly developing world-wide systems.
Currently, it is not possible to imagine any educational process without e-
components or a holistic e-learning system. The main aim of such systems is to
provide quality knowledge in a convenient form for its consumer – a learner.

At the same time, abundance of educational information and learning
materials does not guarantee perfect knowledge. Educational materials should be
carefully structured to cater for learners’ needs and preferences with the aim to
provide them with quality knowledge and guarantee the learning success.

All present-day knowledge in education is changing so fast that educators
cannot predict what the 21th century students will need to know tomorrow.
Instead, teachers should be helping to develop learning skills and strategies so that
learners will be able to learn whatever they need to.

A combined set of knowledge, skills and attitudes is essential to
strengthen productivity, entrepreneurship and excellence in an environment,
which is based on technologically complex and sustainable products, processes
and systems. Similarly, educators could improve the quality and nature of
education.

Thereby, the objective of education today is to teach students more
effectively using fundamental knowledge and modern techniques.

In present study the author aims to demonstrate that maximizing and
personalizing learning support, which is composed of successful teaching
strategies and techniques, greatly helps students with different backgrounds and
preferences to reach the high level of knowledge.

Motivation for the Study and Research Object

Nowadays Computer Science is an imprescriptible part of any curriculum, and its
content develops and changes fast. The general aim of this science is to develop
logical, analytical and computational thinking by using computer on the highest
level in any field of its applying.

One of the central places in modern computer education takes the concept
Computational thinking [2, 3], which embraces:

 the ability to think algorithmically;
 the ability to think in terms of decomposition;
 the ability to think in generalisations, identifying and making use of

patterns;
 the ability to think in abstractions, choosing good representations;
 the ability to think in terms of evaluation [4].

12

Computational thinking skills enable pupils to access parts of the
Computing subject content. Importantly, they relate to thinking skills and problem
solving across the whole curriculum and though life in general. Computational
thinking is a series of thinking activities of human being who apply the methods
and theories of Computer Science to simplify, insert, transform and simulate
problems [5]. Computational thinking includes skills such as conceptualizing at
multiple levels of abstraction, defining and clarifying a problem by breaking it
down into relational components, and testing and retesting plausible solutions [6].

Based on contemporary literature, it can be argued that Computer Science
teaching and learning has been considered to be difficult [7]. There are a number
of reasons for this. Firstly, Computer Science subjects involve complex
conceptual understandings, the acquisition of basic knowledge, highly technical
terms and problem-solving skills. Secondly, students need to have proficiency in
technical and practical skills with a range of hardware and software. Finally,
Computer Science courses must include strong collaborative learning
opportunities between students, their peers and teachers to develop problem-
solving skills and apply complex theory to practical applications [8].

In addition, some challenges are related to teachers’ own difficulties or
the fact that the students have difficulty in understanding the material and in
problem solving [9].

According to the author’s opinion, basic challenges, which learners and
teachers can face, are clearly classified and introduced in [10].

It should be certainly noted here that named sources also suggest ways to
solve named issues. All these techniques successfully work and bring positive
results.

Having reviewing the literature and on the basis of colleagues’ and
author’s own experience in Computer Science Basics teaching the author should
mark that new approach to teaching computing is needed. The novelty of the
present thesis is the combination of two facts in teaching: “what learners know
before me” and “how they learn with me”. The second concept in this approach
is programming basics teaching technique. This technique is based on
visualization and building algorithms rather than syntax and uses the first
programming language as a support in future learning.

The author’s experience in Computer Science Basics teaching is
connected with teaching first year non-IT students at university, schoolteachers
and school pupils of different ages. They all have one common feature – they are
all beginners in computing. However, they all differ in their degree of motivation:
university students are non-motivated or low-motivated group; schoolteachers are
more motivated and school pupils are very motivated learners.

13

There is need to specify that Computer Science Basics content for these
groups of learners also differs. University students have compulsory course in
their curriculum, which consists of two parts: informative work and introduction
to programming. Courses for schoolteachers and school pupils are non-mandatory
and include only programming basics.

In order to apply the proposed theory into practice and to check its validity
it has been decided to conduct an experiment with the Computer Science Basics
course of the Department of Software Science at Tallinn University of
Technology.

There was also an additional reason for this experiment - the course and
approach to teaching needed revision. This course turned out to be rather difficult
for most of the first year non-IT students. It resulted in lack of motivation and low
examination grades. Moreover, as students’ feedback showed in 2010, their
comprehension of Computer Science Basics topics was at the critical level – 1,6
out of a possible 5. As follows from surveys of the first-year students, it was
associated with a low level of school knowledge and, as a result, heavy perception
of the subject.

Enumerated facts demonstrated that it was necessary to redesign the
educational material and restructure the learning and teaching processes in the
way that course content would be easy to understand but would still achieve the
goals. The literature reviewed showed that more adaptive learning tools and taking
into account individual properties of each student would motivate them and, as a
result, would lead to better assimilation of new knowledge.

Moreover, it became necessary to develop an approach that should help
beginners in Computer Science Basics and particularly in programming to
overcome first difficulties in this field. In recent years, due to the rapid
development of visual programming environments such as Scratch [11, 12], which
is aimed just to beginners, it became possible to facilitate the transition to a coding.

Thereby, computing courses taught by the author began to serve as a
material for the experiment and the area for applying the new approach to teaching
and learning.

The central object of present research is the set of teaching strategies that
could help first-year non-IT students to overcome difficulties related to the study
of Computer Science Basics. These strategies are obtaining the information about
learners’ prior knowledge and their learning styles with their subsequent
integration into the model of the student.

Research Questions

General research question of this thesis is “How to help novices to overcome
complexity of Computer Science Basics learning?”

14

After literature analysis this question has been divided into two sub-questions:

The first is “How to combine study about learners’ level of readiness with
theory of learning styles?”

The second is “How to use this combination in practice with the aim to
individualize teaching and learning?”

To answer these questions it is necessary to work out new teaching
strategy and apply it in practice with the aim to validate the correctness of chosen
approach.

Moreover, basis on the conducted research, the author attempts to give
some recommendations on the use of appropriate forms, methods and organization
of educational process.

The author has identified these questions based on the literature review,
Computer Science Basics course teaching experience and main difficulties in
teaching and learning processes. Moreover, main students’ learning challenges,
which have been identified during some years, were taken into account.

Methodology and Novelty

The author tackled named research questions by developing the teaching and
learning model, which can help first year non-IT students to overcome the
difficulties when studying Computer Science Basics course.

Regarding the methodology used, the author choice was action research
because only during the teaching practice it is possible to identify and after to fix
problems in teaching techniques used.

Experimental data for the research were collected from test results,
learning styles questionnaire and university study information system. Test results
were used to define students’ level of readiness for new information perception
and analysing their progress. Learning styles questionnaire was the basic for
defining students’ preferences.

Grades and feedback from study information system were used to follow
students’ progress and validity of teachers’ work. Collected data were analysed
quantitatively and qualitatively: calculations and observations.

Present research includes stages of the experiment with Computer Science
Basics course content, its modernization, learning materials innovation and
teaching model improving. The last one includes pedagogical and didactical
techniques that should provide students with necessary conditions for successful
study. Main strategy here is combined and applied information about learners’
prior knowledge and their learning styles according to Richard M. Felder [13].

15

In addition, the author has developed new didactical strategy, which can
help non-IT learners, which are usually beginners in coding, to grasp the main
programming concepts. This methodology is based on the implementation of the
visual programming elements before serious textual coding. Moreover, this visual
programming environment and its elements are the basic tool for visualization in
textual coding.

The novelty of the chosen approach is combination of teaching and
pedagogical strategies with the aim to achieve maximum individualization in
teaching and learning processes. These combined techniques are:

 e-support for students – students should have an opportunity to study
efficiently not only in class;

 taking into account students’ level of prior knowledge - “what
learners know before me”;

 taking into account students’ learning styles - “how they learn with
me”.

This approach has been studied and has found its practical use in the
Computer Science Basics course for the first-year non-IT students at the
Department of Software Science at Tallinn University of Technology.

The practical novelty of this thesis lies in the teaching approach to
programming courses for beginners. This approach has been developed based on
global trends in teaching programming basics and focuses mostly on the model
and algorithm building and their visualization, rather than teaching syntax and
coding techniques. For novices the visual environment performs the role of the
first programming language and afterwards acts as the tool for visualization and
algorithm representation in further training.

Contributions of this thesis are:

 the new approach to Computer Science Basics teaching - the new
combination of pedagogical strategies, which was successfully
applied on practice;

o this approach is designed to the first year non-IT university
students with the aim to overcome main difficulties during
the learning process;

 designed and applied technique for teaching programming for the
novices;

o this technique is designed to motivate non-IT students and to
interest school pupils and schoolteachers in learning
programming basics.

16

Organization of the Thesis

In Chapter 1 of this thesis the author presents an overview about the state-of-the-
art in the related fields of the problem investigated in the thesis. In addition, this
chapter provides a short overview of the situation in the teaching of Computer
Science on the international level and in Estonia. The author gives an overview of
the Computer Science Basics course for first year non-IT students at Tallinn
University of Technology with its outcomes and main difficulties.

Chapter 2 describes the Computer Science Basics course innovation,
which consists of three stages named “e-course”, “prior knowledge” and “learning
style”. The main idea here is students dividing into groups according to their
backgrounds and learning preferences. In addition, this part of the thesis gives an
overview of Richard M. Felder learning style theory, which was the basics of the
third stage of the experiment.

In Chapter 3 the author of the thesis statistically analyses the experimental
data using Student’s t-test for the comparison of the two means and describes
original results of the research.

Chapter 4 provides readers with some didactical recommendations for
teaching programming basics for the beginners and describes some active learning
methods that can be applied during the programming studying. The main concept
of this part of the thesis is an introduction to the basics of programming through a
visual programming implementation to the Computer Science Basics course.
Visual programming environment Scratch was chosen as the introductive tool for
non-IT beginners. In addition, in this chapter of the thesis the author describes
how it became possible to overcome the main difficulties in programming
concepts learning and teaching to non-IT beginners. The main principles there is
model-based programming teaching and the visualization of the algorithms.

17

Abbreviations
CS Computer Science

ECDL European Computer Driving License

IT Information Technology

PC Personal Computer

TUT Tallinn University of Technology

UML Unified Modelling Language

VBA Visual Basic for Applications

ÕIS Õppeinfosüsteem (Study Information System)

18

List of Figures
Figure 1.1 The averages of the beginning test .. 25

Figure 2.1 Computer Science Basics topics comprehension after the first step of
the experiment .. 34

Figure 2.2 The distribution of the set of practical tasks and tests 36

Figure 2.3 Computer Science Basics topics comprehension after the second step
of the experiment .. 37

Figure 2.4 The increase of the number of the visual and active learners in the test
group... 41

Figure 2.5 Examination results (%) of both students’ group 43

Figure 2.6 Computer Science Basics topics comprehension after the third step of
the experiment .. 43

Figure 2.7 The model of the course individualization .. 45

Figure 3.1 Test group students’ test results in September 2013 47

Figure 3.2 Reference group students’ test results in September 2013 48

Figure 3.3 Test group students’ test results in September 2014 48

Figure 3.4 Reference group students’ test results in September 2014 49

Figure 3.5 The reference group progress in 2013/2014 52

Figure 3.6 The reference group progress in 2014/2015 53

Figure 3.7 The test group progress in 2013/2014 ... 53

Figure 3.8 The test group progress in 2014/2015 ... 53

Figure 3.9 The reference group progress in 2013/2014 54

Figure 3.10 The reference group progress in 2014/2015.................................... 55

Figure 3.11 The test group progress in 2013/2014 ... 55

Figure 3.12 The test group progress in 2014/2015 ... 55

Figure 4.1 A Scratch object and its properties ... 60

Figure 4.2 Blocks for changing the properties of an object 60

Figure 4.3 Some blocks to start the event handling script 60

Figure 4.4 Realization of the parallel and sequential processes 61

Figure 4.5 Commands of a Data group .. 62

19

Figure 4.6 A variable declaration in Scratch .. 62

Figure 4.7 A variable and list images on Scratch stage 63

Figure 4.8 The branching in Scratch .. 63

Figure 4.9 The iterations in Scratch ... 64

Figure 4.10 The user’s block creation .. 64

Figure 4.11 The user-defined block and its use in the main script 65

Figure 4.12 The indentations in Python and Scratch .. 66

Figure 4.13 VBA procedure and analogous Scratch block 67

Figure 4.14 The indentations in VBA .. 67

Figure 4.15 UML Activity diagram ... 68

Figure 4.16 Scratch Project .. 69

Figure 4.17 Python code ... 69

Figure 4.18 VBA code.. 69

Figure 4.19 The Local Window in VBA .. 71

Figure 4.20 Python online visualizing tool... 72

Figure 4.21 Average exam grades during the experiment 76

Figure 4.22 Loops with Scratch in CS50.. 79

Figure 4.23 Conditions and Boolean Expressions with Scratch in CS50 79

20

List of Tables
Table 2.1 The increase of the number of the visual and active learners in test group
 .. 42

Table 2.2 Numerical results of both students’ group ... 43

Table 3.1 Both groups’ results and sizes .. 49

Table 3.2 The means and standard deviations in Septembers 50

Table 3.3 The standard errors of the difference between the two means 50

Table 3.4 Experimental t values ... 50

Table 3.5 The degrees of freedom .. 51

Table 3.6 Both groups’ results in Januaries.. 51

Table 3.7 The means in Septembers ... 51

Table 3.8 The means in Januaries .. 52

Table 3.9 The reference groups progress ... 54

Table 3.10 The test groups progress ... 54

Table 4.1 Number of students with strong learning preferences 58

Table 4.2 Average exam grades during the experiment 75

Table 1 Reference group’s results .. 167

Table 2 Test group’s results ... 169

Table 3 Theoretical t values ... 171

Table 4 Exams results during the experiment .. 172

21

1 REVIEW OF THE STATE OF THE ART
This chapter provides a background information about Computer Science new
trends and teaching. In addition, current chapter brings an overview of present
situation in the level of knowledge in computing field of matriculants at Tallinn
University of Technology. As well, this thesis reader can find general information
about the TUT Computer Science Basics course for the first year non-IT
specialities in this chapter.

1.1 The Overview

In recent years has greatly increased the interest in IT, particularly at schools. In
this regard, several countries have carried out thorough investigations of the use
of information technology and courses on Computer Science in different
educational institutions. Analyses have shown that most of the courses do not meet
the needs. As a result, several new curricula have been proposed to improve the
situation.

1.1.1 Computer Science Trends on the International Level

In 2011 the new CS standard, "CSTA K-12 Computer Science Standards" was
created in USA [13]. It sets out the basic requirements for the various areas and
levels of the curricula. A number of courses and subject syllabuses were created
on this basis. One of the most outstanding is the new CS syllabus “AP Computer
Science Principles” [15] created under the support of US National Science
Foundation. The work started in 2011 and the course is complete in 2016.

The documents mentioned above are based on the notion of
"Computational Thinking", which defines general principles for describing the
problems and solving them by means of software systems, including such
concepts as abstraction and modelling, algorithms, data and information,
programming, communicating and collaborating. A large part of the concepts is
related to algorithms and programming [16].

In 2012 a comprehensive study "Shut down or restart?" was published by
The Royal Society United Kingdom [17]. The research brought out significant
shortcomings and offered ways to solve them. "Computer Science: A Curriculum
for Schools" [18] was set up and published, where Computational Thinking is the
main idea. Starting from September 2014 the course Computing (Computer
Science + Information Technology + Digital Literacy) is included in the United
Kingdom schools curricula [19].

1.1.2 Teaching Computer Science

What is the Best Way to Teach Computer Science to Beginners? Some discussions
about the answer to this question can be founded in article [20]. The author of this
thesis do agree with the statement that it is not possible to teach programming

22

using PowerPoint, students need a visualization of their code. Undoubtedly,
described presentation platform is useful tool. However, what about the novices
who do not have any programming experience? Do not they need to see something
simpler to start with?

The teaching of programming concepts and algorithms forms a
fundamental part of any Computer Science and Engineering degree [21].
Moreover, Computer Science should be taught to non-IT students with the aim to
develop their algorithmic thinking and general skills. There are many differing
ideas about what exactly should be taught to them. The main point of disagreement
there is programming - should it be included in curricula for non-IT students or
not and what is the proportion of it.

 Computer Science includes a quantity of topics and has a quantity of
definitions [22, 23]. However, it should be clear what Computer Science means
for non-IT students and what kind of knowledge it brings. The main issue for
educators here is to create a curriculum, which meets the needs of students
regardless of their specialty. Knowledge, which students obtain should be
applicable and have the potential for further development.

With regard to students, it should be noted that the majority of them
always face difficulties throughout the learning process. This implies another
challenge for teachers – to help students to overcome these difficulties using
modern techniques and methods in cooperation with fundamental educational
principles.

The choice of topics for the Computer Science course is greatly simplified
by university requirements and restrictions. Moreover, there are obligatory
computer skills and knowledge, without which it is impossible to work with the
computer.

Curricula are composed. The next milestone is to attract non-IT student’
interest to any IT subject. On this stage the teacher requires not only his
knowledge in this area, but also pedagogical skills and the ability to apply them
in practice.

Literature review shows that there are plenty of attempts to reform
Computer Sciences courses and all of them lead to success in selected area.
Teachers and scientists working on the development of Computer Science and on
the best way to teach it.

Doctoral thesis [24] analyses the challenges of the instructional process at
a university of technology from the viewpoints of students, teachers and the
university administration. One of the raised questions concerns the difficulties
students encounter when they study computer programming. The question is
examined and thoroughly studied. However, in present thesis author's opinion,
such aspect as the individualization of teaching and learning is not taken into

23

account here. Students are considered in general with their general difficulties. It
can be assumed that students’ difficulties in the introductory programming course
arose not only from the mentioned reasons such as lack of time or motivation to
study, but also from the fact that the everyone’s learning manner is quite different.

Several challenges and ways of their solutions this thesis reader can find
in article [25]. Some principles and methods of active learning in Computer
Science and effective using of knowledge about students’ preferences can be
founded there. Non-motivated students - this is a common problem of this study
and present doctoral work. Here it should be noted that the introduction to
programming could begin with something attractive to understand the basics, for
example with Scratch. This tool raises students’ motivation and performs the role
of a program action visualizer.

Computer Science courses for business computing students were
considered in article [26]. The research participants made 10 causal attributions
that were either cultural or specific to computer programming. The study
outcomes can be used to suggest ways to energize unmotivated students. Main
research method there is interview method; however, the author believes that
anonymous surveys provide much more information. In addition, it is possible to
learn more if students are not aware of an ongoing experiment or research.

Basic practices in education reform on software programming courses for
non-IT-majoring undergraduates readers can find in [27]. Main concerns there are
textbook revising, teaching model reforming, student demand orientating,
knowledge transferring, teaching procedure designing and teamwork conducting.
However, the aspects of the student's personality are not taken into account. How
do they perceive the learning material transferred to them? Is textbook revising
enough for successful assimilation of knowledge?

In study [28] was founded that students with no experience in
programming languages, is actually quite amenable to relating well to the
principles of programming in logic as long as those principles were presented
them in an adequate way. Educators motivated them through presenting
applications of their interest, focusing on possible interdisciplinary uses. The
author of this work is totally agree with active learning theory, however using it
teacher have to know who students in his class are. For some kind of students this
kind of work does not suit by reason of their individual learning style.

The paper [29] presents an approach of teaching computer programming
courses to first year students using agile principles and practices of pair
programming [30, 31]. It intended to increase the chances of engaging first year
students and assist the teachers to reflect on their teaching as well as their students’
learning. It is ideal situation when students and teacher are partners in the learning
process, but is it always possible, especially when we are talking about first-year
non-motivated students whose prior knowledge is at zero level?

24

Considered sources show, Computer Science is quite complicated for all
kind of learners, especially for non-IT and novices in this field. These difficulties
arise due to various reasons: complexity of learning materials, types of learning
materials, lack of knowledge base, lack of supporting materials and etcetera. At
the same time, it should be noted that there are variety of strategies, which works
successfully and greatly helps learners to overcome these challenges. However,
practice and literature show that problems in this field remain and they must be
solved using pedagogical and didactical techniques in their combinations with
Computer Science.

Thus, it can be concluded that if described teaching strategies work, then
they should work even better and more effectively and bring better results if they
are merged successfully.

It should be mentioned there that the course, which is considered in
current thesis as a model of research is not only programming course and its
innovation and modernization is the deep work with all the components of the
educational process: learners, teachers, methodologies, materials and content.

1.1.3 Level of Knowledge of Matriculants at Tallinn University of
Technology (non-IT Specialities)

Annually, in the beginning of the programming course for school pupils at TUT,
the author of the thesis carries out short surveys about computer science at
Estonian schools. Their results show that the current situation in teaching and
learning computing is quite discrepant. According received responses some
schools do not have Computer Science lessons at all or this is an elective subject
with small number of pupils. In some schools it is taught only for two or three
years, which is a very short period to prepare students for the next, university
level.

This drawback is associated with two main reasons. The first one being
that there is no nationwide computer science curriculum in Estonia. The second
one is that Computer Science subjects are not mandatory in Estonian schools.

A logical consequence of these reasons is the situation where each
schoolteacher introduces learners to the material at his own discretion: certain
pupils draw in Paint or in SketchUp, others learn the computer hardware in theory,
etc. In connection with this, the level of PC skills among non-IT learners falls
every year and reduces to commonplace Facebook usage or playing games.

The following diagram shows the last years statistics about non-IT students testing
at the beginning of the Computer Science Basics course (Fig. 1.1). The test content
is based on the topics described in the European Computer Driving License
(ECDL) [32]. Test questions and tasks focused on creating documents and

25

presentations, processing spreadsheets, and elementary knowledge in
programming.

The feasible maximum number of points is 100. As can be seen, the level
of computer skills is quite low and steadily decreasing. Moreover, during the last
year of the research it fell sharply by more than 19 points.

Figure 1.1 The averages of the beginning test

Students’ feedback about the test results shows that they do not have
enough prior knowledge for TUT Computer Science Basics course for three main
reasons:

 at school they did not interested in computing;
 their skills were enough for daily studies at school (small documents

and presentation);
 at school they were not taught these topics.

In the present Computer Science Basics course the author has to consider
mentioned facts and build the curricula accordingly.

It should be mentioned there that recently programming, robotics and so
forth courses for school pupils are carried out throughout in Estonia. Such courses
are held at Tallinn University of Technology to and author of the thesis takes part
there as a programming teacher of the course named ‘Basics of Applications
Development and Programming’. These courses are very popular among learners
from 10 to 18 years who are interested in IT (Chapter 4).

Nevertheless, pupils who have obtained sufficient informatics-knowledge
at their schools or additional courses often become IT students at university level.
Unfortunately, they are not current Computer Science Basics course audience.

61.3

60.2
58.1

55.7
54.8

42.1
40

45

50

55

60

65

2010/11 2011/12 2012/13 2013/14 2014/15 2015/16

N
um

be
r

of
 p

oi
nt

s
fo

r
th

e
te

st

(m
ax

 1
00

 p
oi

nt
s)

Academic year

26

It should be noted there that several countries research shows decrease in
the level of the computer skills in schools. Especially deep research has been
performed in US CSTA [33] and UK [34].

1.2 Computer Science Basics course for non-IT at Tallinn University
of Technology

1.2.1 The Course Description

The Computer Science Basics course belongs to the curriculum of the Department
of Software Science at Tallinn University of Technology its name is Informatics
[35].

The aim of the Computer Science Basics course, designed for the first
year non-IT students, is creation of applications by using standard PC equipment
and developing object-oriented computational thinking. In this context the term
Computational thinking is can be interpreted as looking at a problem in a way that
a computer can help person to solve it.

The International Society for Technology in Education and the Computer
Science Teachers Association defines Computational thinking as:

 Formulating problems in a way that enables us to use a computer and
other tools to help solve them;

 Logically organizing and analysing data;
 Representing data through abstractions such as models and

simulations;
 Automating solutions through algorithmic thinking (a series of

ordered steps);
 Identifying, analysing, and implementing possible solutions with the

goal of achieving the most efficient and effective combination of steps
and resources;

 Generalizing and transferring this problem solving process to a wide
variety of problems [36].

Computational thinking is the thought processes involved in problem-
solving so that the solutions are represented in a form that can be effectively
carried out by an information-processing agent [37].

Building the Computer Science Basics course, the author of the thesis and
the author’s colleagues try to follow mentioned Computational thinking
definitions and compose learning and teaching materials accordingly.

The course lasts two semesters and number of weekly study hours is two
or three. Group size is usually 20-30 students.

27

The learning process starts with processing information and creating
applications using MS Excel spreadsheets: formulas, diagrams, built-in functions,
tables, conditions, sorting and search, requests, diagrams and other facilities.
Moreover, students learn the general principles of the different types of the
documents creation and processing using MS Word and MS PowerPoint. In
addition, Google tools as an alternative to the Microsoft products are used in the
teaching and learning process. Model-based and object-oriented approaches are
applied during the study.

Further, during the course second part, students learn the basics of
programming in practice and the main principles of modelling and
algorithmization. Python and Visual Basic for Applications (VBA) have been
picked out as the programming languages for the second section of this course.

It should be noted that the programming part of the course is usually
sufficiently complicated for most of the non-IT students, especially for the
humanitarians. This issue is solved by implementing visual programming
elements in the course curriculum and helps students to take on board the main
programming concepts (Chapter 4). Positive results of the named strategy is
demonstrated in [38, 39].

The set of practical assignments depends on the students’ specialization:
economics, social, chemistry and civil engineering.

During the course instructors apply classic face-to-face classroom
methods, group works and independent learning in Moodle e-environment [40].

The author and author’s colleagues have chosen Moodle for learning and
teaching for three reasons:

 Moodle is increasingly used in schools and universities;
 Moodle is used in Tallinn University of Technology;
 Moodle continuously develops.

The last one gives teachers a huge amount of different opportunities for
individualizing the learning process, such as adjustment of the learning pace, for
example, as well as increase and variety in the number of learning assignments.
Furthermore, students get a diversity of ways to learn and possibilities for self-
tests in the e-part of the Computer Science Basics course. During the study time,
they can choose between different kinds of teaching materials and use what they
prefer based on their knowledge and learning styles.

1.2.2 The Course Outcomes

In the Computer Science Basics course its authors adhere to principles outlined in
Computer Science Curricula 2013, such as:

28

 Computer science curricula should be designed to provide students
with the flexibility to work across many disciplines.

 Computer science curricula should be designed to prepare graduates
for a variety of professions, attracting the full range of talent to the
field.

 Computer science curricula should be designed to prepare graduates
to succeed in a rapidly changing field [41].

Named principles are especially important for the Computer Science Basics
course building and developing because its audience are first-year non-IT students
who have to apply their IT-knowledge during their study at university and in
future work.

The main learning outcomes that are documented in ÕIS [42] in the Computer
Science Basics course are listed below. ÕIS is e-environment, where students and
teachers get information about the courses and curricula, students declare courses,
keep results and give anonymous feedback on their educational process. Detailed
courses descriptions this thesis reader can find in Appendix.

Student who complete the course:

 acquires independent work skills bases;
 logically and argumentatively explains selected tools and methods

feasibility for solving the task - has the computational thinking skills
 knows and applies general principles, methods and tools of the

documents creation;
 is familiar with the general principles of creating applications,

methods and tools;
 acquires the foundations of problem analysis and system modelling;
 analyses relations between objects and provides rationale for the

algorithms and methods applied;
 is familiar with the nature of data and objects and can specify them

and use them in programs;
 is familiar with and describes, using VBA/Python and UML activity

diagrams, the main activities occurring in programs and algorithms;
 is familiar with the nature and main concepts of object-oriented

programming;
 composes programs consisting of multiple procedures and organizes

the data flow between them using parameters and arguments.

The purpose of this study is to demonstrate a teaching approach and some
teaching strategies in the Computer Science Basics course for the first year non-
IT students at the Department of Software Science. The author suggests some
solutions for making the course, which is usually complicated, more dynamic and

29

attractive, thereby raising students’ interest and keeping their motivation with the
aim of achieving the learning outcomes set.

1.3 Conclusion and discussion

Based on the foregoing it should be noted that most of above-mentioned sources
consider difficulties, which is related to teaching Computer Science Basics and
programming to novices and techniques to solve them.

However, the author should note that some aspects have not been taken
into account in considered researches.

First, it is necessary to understand the differences between students in a
classroom and their learning styles. It is necessary to build the educational process
proceeding from this knowledge.

Secondly, before submitting educational material to students, it is useful
to analyse it from the point of view of any student. What is more, it is necessary
to consider that pupils’ level of prior knowledge can be very different. On this
stage questions like How will a student perceive this material? Does learner have
enough prior knowledge to understand this? Should student teach something else
for this? - are very useful and help to analyse the educational material and make
it better.

Thirdly, for novices it should be clear from what and how they start to
write their first program. Maybe their first outcome should not be a written
program but be only a model, assembled from available parts? This starting level
should be simple and understandable for all of them.

Fourthly, is it possible to visualize programs execution for making it more
clearly without any additional tools on the basic level?

Fifthly, in programming teaching to non-IT students, it is necessary to
determine the required amount of knowledge. Should students know any
particular programming language or it is enough for them to have skills to build
an algorithm for the problem solving and be able to explain it to specialists?

Finally, it is necessary to motivate non-motivated students and maintain
high level of interest among all learners.

Concerning Computer Science Basics course at Department of Software
Science of Tallinn University of Technology the author should mark that during
present research this course has been entirely updated. This reconstruction starts
with the renovation of educational material and its presentation to students and
continues with the development of the system of the teaching programming for
beginners. During this process the author and author’s colleagues proceed from
the actual needs of today's learners and their learning preferences.

30

Furthermore, proceeding from the fact that this course is designed for the
first year university students, Computer Science Basics at schools have to be
certainly considered during these updates. It is necessary to take into account first
year students’ prior knowledge to provide them with new, quality and
contemporary knowledge.

In the current study for innovating the Computer Science Basics course and
individualization of the learning process the author can name the main strategies
– students dividing into groups according to their backgrounds and a maximally
effective use of e-environment with its possibilities.

In the conclusion, it is necessary to note that people learn in different ways
and all kind of learners should be provided with the best conditions to acquire
knowledge.

Having studied literature the author of this thesis has chosen three main
directions in research, has combined them and has gradually applied them in
practice. These directions are:

 continuous e-support for students during their learning process;
 taking into account students’ level of prior knowledge;
 taking into account students’ learning styles.

Using above-mentioned combined strategies the author intends to help non-
IT students to overcome main difficulties in studying Computer Science Basics.

In the next chapter of this thesis the author presents stages of the experiment
with the Computer Science Basics course modification and gives an overview of
the basics of the chosen methodology. New teaching strategy has been created
based on this experiment.

31

2 THE COMPUTER SCIENCE BASICS COURSE
INNOVATION

In the current chapter of this thesis the author presents the Computer Science
Basics course modification and innovation experiment stages and gives an
overview of the basics of the chosen methodology – student division according to
their backgrounds and preferences. The basis for the division according to
preferences is Richard M. Felder’s learning styles theory [43]. Under the
background the author of this thesis understands a level of prior knowledge of
each student.

 Thus, the author has succeeded to combine the learning style theory and
prior knowledge level. This combination has allowed to individualize learning
even more deeper by considering each student as a set of certain parameters. These
parameters has gave instructors the opportunity to compile teaching materials,
which are necessary and useful exactly for each student.

This chapter is based on the paper A (Mironova, O.; Rüütmann, T.;
Amitan, I.; Vilipõld, J.; Saar, M. Computer Science E-Courses for Students with
Different Learning Styles).

2.1 The Background

The main keynote of university is continuous communication and close
collaboration between pupils, educators and scientists. Unfortunately, university
instructors cannot provide all students with one-to-one tutoring. However, this
fact has not affected the main aim of the educational process – to guarantee high-
quality knowledge and modern skills. The teachers work there is the art – the art
to present and transfer knowledge and skills regardless of the circumstances.

During the experiments with the Computer Science Basics course
structure and content, were considered the differences in students’ characteristics,
especially their background (the faculty and the level of prior knowledge) and
their preferred learning styles. The question remained how to achieve as much
individualization of teaching as possible, using the existing time and personnel
resources.

Since 2010, a group of lecturers started applying a new approach to the
design of the Computer Science Basics courses for economics, social, chemistry
and civil engineering faculties. Considering the fact that students is the centre of
learning and they actively constructing this process [44], innovations should be
targeted to them. Year by year this approach has become more flexible and
adaptive to the nature and preferences of every student.

At the beginning, educators, who were involved in the experiment, have
randomly divided all the students into equal reference and test groups. The

32

division is not linked to the students’ specialization. The average number of
members in each group is about 150; it varies depending on the annual general
number of students at Tallinn University of Technology. It should be noted that
students are not aware of the research.

The reference group is taught using the same course materials but these
students are not supported with any additional systems. The students of the test
group are directed in choosing their e-learning materials based on the data
obtained through the tests in the e-environment.

The intention here is to compare the results of these two groups at the
beginning and at the end of the course.

At the beginning of the course the students are tested to find out their level
of knowledge in the Computer Science Basics. Experience has shown that such
testing is necessary for the development of the course content. The purpose is to
keep track with new times and main trends, as the Computer Science is one of the
fastest-developing sciences [45, 46].

The nature of the tests for both groups is similar and based on the concepts
defined in the European Computer Driving License. The assignments focus on
some principles of the work with the PC, like creating text documents and
presentations, handling information using the spreadsheets, and elementary
programming knowledge. Tests include both practical and theoretical tasks.

The programming category of the questions was added to the test some
years ago and is currently it develops rapidly. The author bears in mind that a new
elective course “Basics of Applications Development and Programming” was
recently included in the secondary school curriculum in Estonia (Chapter 4).
Some of these materials are also used at Tallinn University of Technology for
teaching programming basics for first year non-IT students.

2.2 E-course

Higher education institutions are taking opportunities offered by the eLearning
community to design and offer educational environments that accommodate
various learners’ educational needs [47]. E-learning allows modern learners with
a personal computer, connected to the internet to attend the course anywhere and
at any time. It is very important for students to participate in the educational
process, to get the material or submit the homework, on time regardless of whether
the person is or is not at the university.

The first phase of the Computer Science Basics course innovation, which
was named “e-course”, includes the adaptation of educational materials for
Moodle e-environment.

Uploading a set of lecture materials and exercises into a learning
environment does not ensure that students comprehend it and obtain necessary

33

knowledge. Therefore, in order to make study materials suitable for an e-course
all teaching materials (theory as well as materials for practice) were thoroughly
revised. The aim was to provide an effective delivery of the online content. To
achieve this goal was aimed at working out a new pedagogical and didactic policy
as well as strategies for the new e-course.

Theoretical materials were innovated and supported first of all with
learning videos. It should be noted that in the Computer Science Basics course is
used not only video lectures but also short screen-captures, which explain the most
complicated tasks. Creating these videos, the course teachers adhered to the
principles of Khan Academy [46].

Practical tasks of the course were reconsidered and supplemented with
various group and pair work tasks and self-tests. With regard to self-tests it should
be noted that learners are afraid to make mistakes especially when they doing
something for evaluation. Because of this fear, they do not analyse their mistakes
and make them repeatedly. Self-tests give students the opportunity to solve tasks
calmly focusing on content, not on grade. During this educational work learners
can much more think and analyse it.

These innovations made the Computer Science Basics course more
dynamic and attractive for the first year non-IT students. Both groups, the test and
the reference group got access to this renewed course.

At the same time, educators have not abandoned the standard lessons in
computer classes because e-learning cannot completely replace live dialogue
between learner and teacher. Face-to-face lessons were held as usual but now
instructors got many advantages. Due to the e-lectures and visual explanations in
Moodle they had more time for practical training in contact lessons. It is necessary
to mention that students have no access to practical exercises unless they solve the
tests, which are based on the theoretical material of each topic. Thereby students
come to the lessons already sufficiently prepared for the practical tasks. Often they
get a few small practical tasks in the e-environment and afterwards, in class, they
use already ready solutions to solve the bigger tasks.

It is generally known that effective computing is impossible without
practice. During face-to-face lessons students work in pairs or groups gives an
opportunity to try the obtained knowledge in practice. Moreover, such kind of
work develops teamwork skills, which is very important, especially for the first
year students during their first semester.

In such case, the role of the classical educator is slightly different – the
lecturer becomes more of a supporter in the students’ teamwork of their learning
assignments.

During contact lessons learners have an opportunity to ask questions
related to their homework and share their practical skills and experience with the

34

rest of the group. Practical knowledge transferred in such a way is obtained much
faster than in standard lectures. This fact was confirmed by the results of students’
feedback retrieved from ÕIS (Fig. 2.1).

Figure 2.1 Computer Science Basics topics comprehension after the first step of the
experiment

In their feedback students named another advantage of such practical
lessons: they have an opportunity to get support or to ask something not only from
their teacher (sometimes they hesitate to do it) but from other students, too. It
should be mentioned that this form of support is equally important and useful for
both sides: the one who gets it and, especially, for the one who gives it. To detect,
explain and, afterwards, to correct a mistake in calculations or in the program code
is a substantial practical skill in Computer Science subjects.

In addition, in an e-environment students get their practical assignments
in accordance with their specialities. However, these assignments are still united
under a common subject topic. For example, students from the economics
department get more tasks related to table calculations; social sciences students
implement the information filtration, statistics calculations and various requests.

It should be noted that the course materials are organized sequentially and
it is not possible to get a new portion of theoretical materials and practical tasks
without solving the previous ones. Thanks to checking opportunities in the e-
environment, like tests or self-tests, teachers do not have to spend time on routine
inspection of the assignments at all. Using the automated checking tools gives
students an opportunity to learn within their own pace. They do not have to wait
for the feedback on the assignments from the lecturer and his/her manual
permission to proceed onto the next level. E-checking systems do it faster and as
many times, as is needed.

1.6

2.5

0 1 2 3 4 5

At the beginning of the experiment

After transition to e-learning

35

In addition to the aspects mentioned above it should be noted that now, in
the renewed course, teachers and learners started to use e-course forums very
actively. This way the students get an opportunity for online communication and
fast online help. The aim was to show that they can get support and advice any
time, and can share their ideas, problems and solutions. Through these forums the
course instructors often get perfect brainchildren for group work and individual
assignments.

Another advantage that non-IT students have when they participate in the
e-course is that their technical skills improve.

Transition to Moodle e-environment gave educators the opportunity to
follow students’ progress and it became fairly easy to get the statistical data of
different samples for analysis, development and improvement of the implemented
learning methods.

It makes no sense now to recount all the advantages that the author achieved
during the first stage of the modification of the Computer Science Basics course.
Such benefits have already been systematized and described in detail [49].
However, the first positive results of the work: students’ feedback and increase in
academic achievements. The author does not present specific data in numbers in
this work because the transition of the course into e-learning took place a long
time ago.

For confirmation the correctness of the chosen direction here should be
mentioned the study, which provides evidence that a well facilitated e-learning
setting can indeed enhance learning motivation and student efficacy [50]. In
addition, the results from this research have provided insights to educators who
are keen on using technology in their teaching.

2.3 Prior Knowledge

Starting from the second stage, which the author entitles “prior knowledge”,
experimental work takes place only with students from the test group. The
students of the reference group were taught as usual.

 The impetus for this step of the experiment was the fact that the majority
of students do not have enough knowledge acquired in school to study the
Computer Science Basics course at TUT.

At the beginning of the course educators start with dividing the students
into three e-streams based on their readiness for Computer Science Basics course.
This division was realized through an e-test and implemented in Moodle e-
environment. The students, however, were not aware of the experiment.

Questions of the test have different level of complexity and different
“price” (in points). Test questions content is based on the knowledge, which are
necessary to start the TUT Computer Science Basics course.

36

In the described division it was proceeded from the level of students’
knowledge required to start the course. Those students whose e-test results were
more than 85 points was named “experts”, “advanced users’’” result was between
60 and 85 points, other students were called “beginners”.

The named groups of students receive different amounts of practical and
theoretical tasks in Moodle, with different levels of difficulty. To move to the next
topic the mandatory set of exercises has to be solved. In the e-environment, the
“beginners” have to solve their set of tasks and “advanced users’” tasks before
they get access to “experts’” exercises – the main material of the course
curriculum. “Advanced users” have to solve their tasks and then can proceed to
main topics.

Figure 2.2 The distribution of the set of practical tasks and tests

These additional sets of tasks are catered for exactly what learners need
to know for the current Computer Science Basics course. Students do not need to
pay for any additional IT-courses anymore and they get all the materials and
assignments centrally, in one place – Moodle e-course, in parallel with their main
studies.

To automate and speed up the checking of the increased number of tasks
a special e-tests system was developed.

Thereby, it was possible to increase the amount of practical assignments
for students with different levels of readiness without increasing the subject hours
and students’ load. This stage of the course innovation gave the course teachers
an appropriate level of the students’ readiness for face-to-face lessons.

The above mentioned method provided the Computer Science Basics
course teachers with actual and important information about what the learners
knew before starting the course – their school level of knowledge. Every year
educators get an overview of the current situation of Computer Science subjects

0% 25% 50% 75% 100%

Expert

Advanced

Beginner

Basic set for expert Additional set for advanced Additional set for beginners

37

at secondary schools in our country. Moreover, according to the results, they are
able to provide students with all necessary learning materials.

Students’ feedback again shows the raise of the level of the subject
understanding that confirms the properly of the chosen research strategy (Fig. 2.3)

Figure 2.3 Computer Science Basics topics comprehension after the second step of the
experiment

2.4 Learning Style

The third part of the innovation experiment with the course modification is the
“learning style” phase and it was also realised in Moodle e-environment. This
stage is a continuation of the test group’s students division into groups. In
addition, it was possible to maximize the use of Moodle e-opportunities.

Major work in the chosen direction is studying and analysis of students’
data and adaptation of the curricula [51] and teaching materials in accordance with
their interests, goals, preferences and individual characteristics.

 The term “learning styles” means the understanding and acceptance that
every person learns differently. For learners this is preferential way, in which they
absorb, process, grasp and retain an information.

Learner’s preferences and requirements play an important role in
educational process. In the literature, there are a variety of learning style models.
These deep researches about the individualization of learning depending on
students’ characteristics [52 - 55]. They all have similar features based on
psychology and physiology. Moreover, a great deal of learning strategies have
worked out with the aim to help learners to study better. In addition, adaptive and
intelligent web-based educational systems should be mentioned in source
[56].These systems build a learner’ preferences, goals and knowledge model and

1.6

2.5

3.7

0 1 2 3 4 5

At the beginning of the experiment

After transition to e-learning

After fixing the level of knowledge

38

after use it during the interaction with the learner. Named interaction aim is to
adapt to the needs of that learner. With the knowledge of different styles, the
system can offer valuable advice and instructions to students and teachers to
optimise students’ learning process [57].For example the research [58] focuses on
the consideration of learning styles and cognitive traits in adaptive web-based
educational systems. Authors investigate the benefits of incorporating learning
styles and cognitive traits in these systems.

Short review of the different learner’s models with references this thesis
reader can find in [59].

In the current Computer Science Basics course Felder-Silverman model
[60], was picked out as the basis for the distribution. According to this model
developed by, a student’s learning style may be defined by the answers to four
questions:

1. What type of information does the student preferentially perceive:
sensory or intuitive?

2. What type of sensory information is most effectively perceived:
visual or verbal?

3. How does the student prefer to process information: actively or
reflectively?

4. How does the student characteristically progress toward
understanding: sequentially or globally [61]?

This model has caused the author's interest during the study and finally
was chosen because it was constructed by experiences in engineering pedagogy.

There should be noted Richard M. Felder’s merits in the field of
engineering pedagogy: Global Award for Excellence in Engineering Education,
International Federation of Engineering Education Societies (2010) and Lifetime
Achievement Award in Engineering Education, American Society for
Engineering Education (2012).

Similar study outcomes readers can find in [62]. Authors aim to introduce
a personalized e-learning system based on the concepts of learning styles and
particularly the Felder and Silverman Learning Style Model. In research [63]
authors describe a personalized e-learning system, which can automatically adapt
to the interests, habits and knowledge levels of learners. The differences between
the learners are determined according to their previous knowledge of the matter,
their learning style, their learning characteristics, preferences and goals.
Theoretical justification of different aspects of personalization a framework for
personalized e-learning development can be founded in [64]. The same authors
propose ideas allows to adapt knowledge management principles to improve
personalized e-learning processes and look at the topic of personalization of e-

39

learning even more widely [65]. Research [66] introduces an idea towards
developing a personalized learning system based on automatic approach.

2.4.1 Learners’ Types According to Richard M. Felder

Learning styles are characteristic cognitive, affective, and psychological
behaviours that serve as relatively stable indicators of how learners perceive,
interact with, and respond to the learning environment [67]. Students learn best
when instruction and learning context match their learning style.

Depending on their learning style, Felder differentiates between the following
groups of learners [68]:

 active and reflective;
 sensing and intuitive;
 inductive and deductive;
 visual and verbal;
 sequential and global.

For better comprehension of the topic the author gives a brief description of
the learners’ types in according with Richard Felder’s theory [69].

2.4.1.1 Active and Reflective Learners

An active learner is a person who feels comfortable at active experimentation than
reflective observation. Active learners acquire new knowledge best by doing,
discussing and explaining it to others; they work well in groups. Active learners
do not learn much in situations that require them to be passive. They tend to be
experimentalists.

Reflective learners do not learn much in situations that provide no
opportunity to think about the information being presented. They think, learn and
work better by themselves or with at most one other person. Reflective learners
tend to be theoreticians.

2.4.1.2 Sensing and Intuitive Learners

Sensing learners like learning facts, data, and experimentation. They like solving
problems by standard well-known methods and dislike “surprises”. Sensors are
patient with detail but do not like complications. These learners are good at
memorizing facts. They are careful but may be slow. Very often this slowness puts
them at a disadvantage in time. This manifests itself in timed tests: sensors may
have to read questions several times before beginning to answer them, they
frequently run out of time.

 Intuitive learners prefer principles and theories. They like innovation and
dislike repetition. Intuitors are bored by detail and welcome complications. They
are good at grasping new concepts, quick but may be careless. Intuitive learners

40

are more comfortable with symbols than are sensors. Intuitors may also do poorly on
timed tests but there takes place a different reason: the impatience with details.
Intuitive learners may start answering questions before they have read them
thoroughly and to make careless mistakes.

2.4.1.3 Inductive and Deductive Learners

It is generally known induction is a reasoning progression that proceeds from
particulars (observations, measurements, data) to generalities (governing rules, laws,
theories). Deduction proceeds in the opposite direction. In induction one infers
principles; in deduction one deduces consequences.

Inductive learners prefer to learn a body of material by seeing specific cases
first (observations, experimental results, numerical examples) and working up to
governing principles and theories by inference These learners need motivation for
learning. They need to see the phenomena before they can understand and appreciate
the underlying theory.

Deductive learners prefer to begin with general principles and to deduce
consequences and applications.

 An effective way to reach both groups is to follow the scientific method in
classroom presentations: first induction, then deduction.

2.4.1.4 Visual and Verbal Learners

Visual learners remember best what they see: pictures, diagrams, flow charts, time
lines, films, demonstrations. If something is simply said to them, they will probably
forget it.

 Verbal learners remember much of what they hear and more of what they
hear and then say. They get a lot out of discussion, prefer verbal explanation to visual
demonstration, and learn effectively by explaining things to others.

2.4.1.5 Sequential and Global Learners

Sequential learners follow linear reasoning processes when solving problems. These
persons can work with material when they understand it partially or superficially.
Sequential learners may be strong in convergent thinking and analysis. They learn
best when material is presented in a steady progression of complexity and difficulty.

 Global learners make intuitive leaps and may be unable to explain how they
came up with solutions. They may have great difficulty working with partially or
superficially understood material. Global learners may be good at divergent thinking
and synthesis. These learners sometimes do better by jumping directly to more
complex and difficult material.

2.4.2 Teaching Techniques to Address All Learning Styles

Based on the above definitions of learning styles Richard Felder has formulated
some teaching techniques that should fit all of them.

41

 Motivate learning.
 Provide a balance of concrete information and abstract concepts.
 Balance material that emphasizes practical problem-solving methods with

material that emphasizes fundamental understanding.
 Provide explicit illustrations of intuitive patterns and sensing patterns and

encourage all students to exercise both patterns.
 Follow the scientific method in presenting theoretical material.
 Use pictures, schematics, graphs, and simple sketches liberally before,

during, and after the presentation of verbal material. Show films. Provide
demonstrations, hands-on, if possible.

 Use computer-assisted instruction.
 Do not fill every minute of class time lecturing and writing on the board.
 Provide opportunities for students to do something active besides

transcribing notes.
 Assign some drill exercises to provide practice in the basic methods being

taught but do not overdo them. Also provide some open-ended problems
and exercises that call for analysis and synthesis.

 Give students the option of cooperating on homework assignments to the
greatest possible extent.

 Applaud creative solutions, even incorrect ones.
 Talk to students about learning styles.

2.4.3 Educational Process in Accordance with Students’ Preferences

Through a test, the author learned that the majority of the course participants
in the test group were active and visual learners and they had very strong
preferences for their learning process. These preferences were detected according
to the Felder’s test [70], which was held at the beginning of the Computer Science
Basics course (in the fall semester). As shows Figure 2.4, each year the number
of active and, especially, visual students increases (Table. 2.4).

Figure 2.4 The increase of the number of the visual and active learners in the test group

22%

30%
34% 35%

13%
18%

21%
25%

0%
5%

10%
15%
20%
25%
30%
35%
40%

2012/13 2013/14 2014/15 2015/16

Visual learners Active learners

42

Table 2.1 The increase of the number of the visual and active learners in test group

 2012/13 2013/14 2014/15 2015/16

Total 78 89 75 84

Visual learners 17 27 26 29

Active learners 10 16 16 21

Throughout the educational process, students were provided with
necessary learning materials and activities in accordance with Felder’s
instructions [71].

For students’ motivation different kind of assignments are used in the
course: exercises based on other courses; projects, which are based on learners’
experience and related to their work (many students work in parallel with their
studies). Such assignments are very useful especially for inductive and global
learners.

Active learners automatically received more group work and group
homework assignments. Besides they got opportunities to help others – active
learners could check and correct other students’ works and assignments in Moodle
(of course, a teacher controls this results and grades). The excellent guide to the
effective design and management of students’ team is the research [72] with its
references.

Moreover, active students answered questions in the e-course forums and
took the role of a tutor in face-to-face classes. It should be mentioned that they did
it with pleasure and thereby their level of motivation constantly increased.

For visual learners, a great variety of visual representation of the
educational materials (that was already mentioned above) was provided: video
lessons, screenshots, and short video fragments of practical assignments.

Sensing learners got exercises, which were connected with solving real
problems associated with other subjects or related to life situations.

Interests and preferences of the other types of learners were also taken
into account: balanced educational material, intervals in class time to give students
an opportunity to think and discuss about what they have been told etcetera.

The results of the experiment showed a positive trend in the acquisition
of knowledge. Students of the test group managed with all practical assignments
much better than students from the reference group. They did it with a great desire
and showed more initiative in their work.

As shown in Figure 2.5, during the experiment examination results of the
test group students were better. Numerical results are shown in the Table 2.2.

43

Figure 2.5 Examination results (%) of both students’ group

Table 2.2 Numerical results of both students’ group

 2013/14 2014/15 2015/16
 Reference Test Reference Test Reference Test

Examination
passed

70 85 56 71 64 81

Examination
failed

19 4 19 4 20 3

Total 89 89 75 75 84 84

Finally, students’ feedback showed that course topics comprehension was
4.5 points out of a possible 5 points. (Fig. 2.6).

Figure 2.6 Computer Science Basics topics comprehension after the third step of the
experiment

79%

21%

75%

25%

76%

24%

96%

4%

95%

5%

97%

3%
0%

20%
40%
60%
80%

100%
120%

Examination
passed

Examination
failed

Examination
passed

Examination
failed

Examination
passed

Examination
failed

2013/14 2014/15 2015/16

Reference group Test group

1.6

2.5

3.7

4.5

0 1 2 3 4 5

At the beginning of the experiment

After transition to e-learning

After fixing the level of knowledge

After fixing the learning styles

44

To sum up it should be noted that the feedback, received from the students’
groups, was also different. The test group shows higher motivation for further
learning compared to the reference group.

Similar directions in personalization of learning and teaching in electronic
educational environment of the university can be found in article [73]. The source
discusses issues about the pedagogical design of electronic educational
environment of the university. The criteria for the design of a pedagogical scenario
for each learning and teaching style are defined and described there.

2.5 Conclusion and discussion

Present chapter presented to readers three stages of the experiment with the
Computer Science Basics course modification: “e-course”, “prior knowledge” and
“learning styles”. Named steps include such kind of innovations as:

 the course transference to Moodle electronic environment;
 training materials update and new materials creation;
 teaching students in accordance with their prior knowledge and

learning preferences;
 new teaching strategies.

During the experiment, there was a positive dynamics in the students'
understanding of the subject. This fact shows the correctness of the chosen
methodology. Furthermore, this correctness was confirmed by results of the
examination among the students of the two groups, test and reference.

As a result of the described experiment the author of the thesis and
author’s colleagues got the first part of the new Computer Science Basics course
for first year non-IT students. Chosen strategy and techniques have allowed
educators to teach students more effectively and learners got the opportunity to
grasp new knowledge more quickly and systematically.

Classroom activities of teachers and students took place in mutual
communication. Therefore, the guidance and the formative role of the teacher of
the renewed Computer Science course was realized in the creation and review of
the theoretical material and the material in practical classes.

During the process of upgrading the Computer Science Basics course, the
author has created the model of individualization of the educational process in an
e-environment, which considers the level of students’ prior knowledge and their
preferences in the learning process (Fig. 2.7). On the author opinion, this approach
to the individualization of learning was applied for the first time.

45

Figure 2.7 The model of the course individualization

Applying this model, the author of this thesis and the Computer Science
Basics course instructors try to find an individual approach to each student in the
e-course and make it more dynamic, flexible and attractive for first year non-IT
students.

The next chapter provides readers with statistical analysis of the described
experiment and the result, which once again confirms the correctness of the
chosen direction in the current research.

46

3 STATISTICAL ANALYSIS
In the previous chapter innovation stages of the first part of the Computer Science
Basics course were described. Throughout the experiment, positive students’
feedback and good exam results showed the positive effect of the course and
curriculum modifications. Finally, it was decided to examine the data with
statistical methods with the aim to check and demonstrate the correctness of the
chosen approach to an educational process. The main aim of current chapter is
statistical analysis of the experiment results.

This chapter is based on the paper B (Mironova, O.; Amitan, I.; Vendelin,
J.; Saar, M.; Rüütmann, T. Strategies for the Individualization of an Informatics
Course.) and C (Mironova, O.; Amitan, I.; Vendelin, J.; Vilipõld, J.; Saar, M.
Maximizing and personalizing e-learning support for students with different
backgrounds and preferences.)

3.1 The Method of Analysis - Student’s t-test

As the method of the hypothesis testing, the author chooses Student’s t-test [74]
for comparison of two means. This statistical method is used to see if two sets of
data differ significantly. This test assumes a normal distribution of samples and
not significant differences between the standard deviations of either samples.

The testing aim is to show that there were no significant differences
between the test and reference group students in September, while in January the
results are significantly different.

3.2 The Formulae Used

For calculations the author uses the formulae for the averages x (1) and
corresponding standard deviation S for both groups (2):

n

x
x

n

i
i

 1

 (1)

1

1

2

n

xx
S

n

i
i

 (2)

After that, the standard error was calculated using the formula 3.

)1(

1 1

22

nn

xxxx
n

i

n

i
fiRfRiTestTest

 (3)

47

Finally, using formula 4 author calculates the experimental value expt :

fRTest xx
t

exp

 (4)

In addition, to compare this value with theory we need to calculate the degree of
freedom df using formula 5:

22 ndf (5)

3.3 The Initial Data

As initial data for calculations, the author chose September 2013 and 2014
students’ test results of the test and reference groups, and the same groups’ results
in January 2014 and 2015. All numerical results are presented in the Appendix of
the current thesis.

 It should be mentioned here that students of those two group, test and
reference, solved the same test with similar questions at the beginning and at the
end of the semester.

All the considered samples are distributed normally (Fig. 3.1 – Fig. 3.4).

Figure 3.1 Test group students’ test results in September 2013

0 20 40 60 80 100

Number of points for the test

Test group, results distribution. September 2013
49.5

48

Figure 3.2 Reference group students’ test results in September 2013

Figure 3.3 Test group students’ test results in September 2014

0 20 40 60 80 100

Number of points for the test

Reference group, results distribution. September 2013

0 20 40 60 80 100

Number of points for the test

Test group, results distribution. September 2014

46.8

38.8

49

Figure 3.4 Reference group students’ test results in September 2014

Table 3.1 Both groups’ results and sizes

 September 2013 September 2014

 Reference
group

Test group Reference
group

Test group

Test results
(points)

Number of students

0 - 59 72 79 62 68

60 - 84 17 10 13 7

85 - 100 0 0 0 0

Samples sizes (n) 89 89 75 75

3.4 Calculations

The means x and the corresponding standard deviations S are calculated
by using the formulae 1 and 2:

0 20 40 60 80 100

Number of points for the test

Reference group, results distribution. September 2014
38.7

50

Table 3.2 The means and standard deviations in Septembers

 September 2013 September 2014

Testx 6.49
89

4413
 7.38

75

2898

ferenceRx 8.46
89

4164
 8.38

75

2912

TestS 78.10
189

94.10222

 55.17

175

28.22793

ferenceRS 93.12
189

62.14721

 63.17

175

75.23010

Now it can be seen see that there is no significant difference between the
standard deviations in either groups. It means that it is possible to continue with
Student tests.

The standard error of the difference between the two means is calculated
by using formula 3:

Table 3.3 The standard errors of the difference between the two means

 September 2013 September 2014

79.1

)189(89

62.1472194.10222

 87.2
)175(75

75.2301028.22793

Experimental t value is calculated using formula 4:

Table 3.4 Experimental t values

 September 2013 September 2014

expt 56.1
79.1

58.4979.46

 07.0
87.2

83.3864.38

To compare this value with the theoretical tht we need to calculate the

degree of freedom using formula 5:

51

Table 3.5 The degrees of freedom

 September 2013 September 2014

df 1762892 1482752 df

Using formulae 1 to 4 the author then calculated both groups’ results in
January 2014 and 2015:

Table 3.6 Both groups’ results in Januaries

 January 2014 January 2015

Testx 2.90
89

8029
 2.89

75

6687

ferenceRx 4.77
89

6896
 0.75

75

5621

TestS 61.7
189

94.5092

 46.9

175

08.6622

ferenceRS 93.11
189

22.12518

 82.12

175

79.12161

 50.1
)189(89

22.1251894.5092

 84.1
)175(75

79.1216108.6622

expt 49.8
50.1

44.7721.90

 73.7
84.1

95.7416.89

3.5 Numerical Results of the Experiment

Using the table of theoretical tht values with the corresponding degree of freedom

(Table 3 in the Appendix), it was founded that the means of September’s results
are not different at any critical level (Table 3.7 The means in Septembers):

Table 3.7 The means in Septembers

September 2013 September 2014

52

65.156.1

exp

 thtt
65.107.0

exp

 thtt

This means that at the beginning of the course both groups of students,
the test and reference, had the same level of knowledge.

January 2015 results are the opposite – the means are different at critical
levels.

Table 3.8 The means in Januaries

January 2014 January 2015

29.349.8

exp

 thJan tt
29.373.7

exp

 thJan tt

These results show that the students who were taught using the presented
system of the learning process individualization obtained knowledge much better
than the others did.

The progress of both groups is graphically shown in the Figure 3.5 -
Figure 3.8.

Figure 3.5 The reference group progress in 2013/2014

0 20 40 60 80 100

Number of points for the test

Reference group progress

September 2013 January 2014
46.8 77.4

53

Figure 3.6 The reference group progress in 2014/2015

Figure 3.7 The test group progress in 2013/2014

Figure 3.8 The test group progress in 2014/2015

0 20 40 60 80 100

Number of points for the test

Reference group progress

September 2014 January 2015

0 20 40 60 80 100

Number of points for the test

Test group progress

September 2013 January 2014

0 20 40 60 80 100

Number of points fot the test

Test group progress

September 2014 January 2015

38.8 75.0

49.5
90.2

38.7 89.2

54

In addition, the progress of both groups is demonstrated in the Table 3.9
and Table 3.10 and in the Figure 3.9 - 3.12:

Table 3.9 The reference groups progress

 Reference group

 September
2013

January
2014

September
2014

January
2015

Test results
(points)

Number of students

0-59 72 1 62 9

60-84 17 68 13 47

85-100 0 20 0 19

Total 89 89 75 75

Table 3.10 The test groups progress

 Test group

 September
2013

January 2014
September

2014
January 2015

Test results
(points)

Number of students

0-59 79 0 68 1

60-84 10 21 7 20

85-100 0 68 0 54

Total 89 89 75 75

Figure 3.9 The reference group progress in 2013/2014

72

17

1

68

20

0

20

40

60

80

Test results (points) 0-59 60-84 85-100

N
um

be
r

of
 s

tu
de

nt
s

Reference group September 2013 Reference group January 2014

55

Figure 3.10 The reference group progress in 2014/2015

Figure 3.11 The test group progress in 2013/2014

Figure 3.12 The test group progress in 2014/2015

62

13

0
9

47

19

0

10

20

30

40

50

60

70

Test results (points) 0-59 60-84 85-100

N
um

be
r

of
 s

tu
de

nt
s

Reference group September 2014 Reference group January 2015

0

79

10
00

21

68

0

20

40

60

80

100

Test results (points) 0-59 60-84 85-100

N
um

be
r

of
 s

tu
de

nt
s

Test group September 2013 Test group January 2014

68

7
01

20

54

0
10
20
30
40
50
60
70
80

Test results (points) 0-59 60-84 85-100

N
um

be
r

of
 s

tu
de

nt
s

Test group September 2014 Test group January 2015

56

These results confirm the validity of current study and the chosen method
of course material and learning individualization.

3.6 Conclusion and discussion

The statistical analysis presented in the current part of the thesis and its numerical
results show positive outcomes of the strategy used.

The calculations with two relevant groups, the test and reference,
demonstrate significant differences in achievements at the end of the first part of
the Computer Science course.

In the next chapter the author attempts to solve main issues related with
difficulties, which non-IT beginners face in the second part of the Computer
Science Basics course. This course section focuses on the programming basics
and usually is sophisticated for the majority of the non-IT first year students.

57

4 PROGRAMMING FOR BEGINNERS
As was mentioned previously, in Chapter 1, the Computer Science Basics

course for non-IT first year students consists of two parts. Accordingly, it is
necessary to improve and develop the second part, programming basics, in order
to make it more affordable and attractive for the audience. Considering this
improving it is necessary one more time to note that this part of the course is
particularly difficult for non-IT first year students.

 The difficulties in teaching programming have been described and
systematized in researches [75, 76].

 Due to the fact that all first year non-IT students, who learn the Computer
Science Basics course have a minimum level of knowledge in programming field,
it was decided to change the teaching strategy and first of all concentrate on the
algorithmization and modelling rather than coding.

As experience shows, the main programming concepts that are complicated
for the non-IT learners’ understanding are:

 object and its properties and methods;
 events;
 parallel and sequential processing;
 data: variables and lists;
 conditional statements;
 iterations (cycles);
 subroutines.

At the same time, they are the most important concepts in programming and
there is no opportunity to learn and teach without them.

Present chapter is based on papers D (Mironova, O.; Amitan, I.; Vendelin, J.;
Vilipõld, J.; Saar, M. Object-Oriented Programming for non-IT Students: Starting
from Scratch) and E (Mironova, O.; Amitan, I.; Vilipõld, J.; Saar, M. Active
learning methods in programming for non-IT students).

4.1 The Programming Introductory Tool

As was mentioned in article [77], the key challenge in learning programming is to
acquire different sets of skills at the same time. In recent years, the demand for
programmers and student interest in programming have grown rapidly, and
introductory programming courses have become increasingly popular. Learning
to program is hard however [78].

As practice and experience show, for better comprehension, it is good to
graphically demonstrate and provide an opportunity to try out things that are hard
to understand. This is especially important for visual and active learners with

58

strong preferences who are the main part of the audience on the Computer Science
Basics course. Their numbers are demonstrated in the Table 4.1.

Table 4.1 Number of students with strong learning preferences

 2012/13 2013/14 2014/15 2015/16

Total 156 178 150 168
Visual
learners

36 62 57 67

Active
learners

27 16 16 21

A new and rapidly upcoming way in teaching programming basics is
visual programming using an environment, which has been created especially for
learning. The most popular are aforementioned Scratch, Snap! [79], Blockly [80]
graphical tools, which are usable via browser. They make the programming
process much easier for the beginners, especially for non-IT, who have not any
experience in building algorithms, programming and coding.

Prominent advantages of using visual programming, like motivation,
interest and enthusiasm during the study, this thesis reader can found in different
sources [81 - 83].

Regardless of the students’ age, Scratch greatly helps to grasp the basics
and develop obtained knowledge. The research [84] results also showed that
students could successfully learn important concepts of Computer Science,
although there were problems with some concepts such as repeated execution,
variables, and concurrency.

Moreover, Scratch gives advanced users the opportunity to extend the
vocabulary through custom programming blocks written in JavaScript [85].

In the presented Computer Science Basics course the graphical
programming environment Scratch is used as a supporting tool before VBA or
Python. After a few years of practice, the course instructors came to the conclusion
that Scratch is an effective introductory tool to understand both the object-oriented
approach and the functionality of a program. This conclusion is reinforced by
some facts:

 syntax errors are impossible in Scratch;
 Scratch works as an interpreter;
 graphical command blocks give an excellent visual picture of the different

controls, used in the program;
 Scratch is simple and expressive, it makes understanding the behaviour of

created objects easier.

59

The author of this doctoral thesis has founded the support in chosen
approach to programming basics in [86]. The main idea of this approach is a
visualization of any program. Without any doubt, visualization plays an important
role in teaching programming basics for novices. The author of this thesis is totally
agrees with this statement.

However, it should be noted that in present research Scratch visual
programming environment is considered as a basic tool for visualization. Thus,
Scratch performs two roles in described teaching approach: new programming
language, which is used for introduction to textual programming and after, on the
next stage, it is the instrument for the explanation and visualization.

In this chapter, the author discusses the design principles that guided her
development of Scratch and her strategies for making programming accessible
and engaging for everyone.

With regard to object-oriented programming, creation of objects in Scratch is
provided by drawing or importing graphics. Scratch objects are named sprite and
each one has its own properties and methods. Combining the blocks for each
object creates the methods. Some of the blocks are used to show the reaction of
the object to some events. Thus, it can be seen here the main aspects of object-
oriented programming resulting in an attractive animation.

Brennan and Resnick [87] have identified seven concepts with examples,
which people tend to use when they program in Scratch:

1. Sequences;
2. Loops;
3. Events;
4. Parallelism;
5. Conditionals;
6. Operators;
7. Data.

Based on these concepts and personal experience in programming teaching let
the author demonstrate how Scratch solves issues in the problem areas in
programming basics, which were mentioned above:

4.1.1 Object with its Properties and Methods

Each Scratch object named Sprite has properties like the name, coordinates,
direction, rotation style, etc. (Fig. 4.1).

60

Figure 4.1 A Scratch object and its properties

Most of such properties can change their values by some method (script
in Scratch) or a user may change them manually.

Figure 4.2 shows some blocks used to change properties of an object.

Figure 4.2 Blocks for changing the properties of an object

 These blocks make it quite easy to understand the property concept.

4.1.2 Events

There is a rather long list of pre-defined events that can be handled by Scratch
scripts. An event is handled by a script (method) starting with a special block.
Some of the event blocks are shown in Figure 4.3.

Figure 4.3 Some blocks to start the event handling script

 Using an event block in the beginning of the script students had better
understand how are organized the application and the relations between scripts.

61

4.1.3 Parallel and Sequential Processing

Running each script is considered a separate process. Scripts that handle the same
event will be running in parallel after the event occurs. For example, the left scripts
in Figure 4.4 are performing at the same time and they implement the reaction on
the “click” event. The right script is the same actions but they are executed
sequentially.

Figure 4.4 Realization of the parallel and sequential processes

 It should be noted that it is easy to follow and explain the difference due
to animation: the right figure side – the object firstly jumps and then moves; the
left side – the object is jumping and moving at the same time.

4.1.4 Data

Variable is one of the basic concepts in all programming languages. Its meaning
in programming differs from its use in mathematics, which first year students
know from secondary school. As to lists, and especially indexation of the list
elements, these are absolutely new concepts for the first year non-IT students and
usually cause learning difficulties and mistakes in usage.

The graphical environment Scratch provides clarity in understanding the
meaning of a variable and list concepts. All variables and lists have to be created
manually before using them in a script. Using the command “Make a Variable” or
“Make a List” in the Data group (Fig. 4.5) of the blocks students try out, see and
this way understand it better as a named place in the computer memory.

The approach is very useful and worth considering in further
programming activities. Thereby students become familiar with the programming

62

term “variable declaration”, which, in its turn, will be used later, during a
programming in VBA.

Figure 4.5 Commands of a Data group

Figure 4.6 A variable declaration in Scratch

Furthermore, the users have to define the scope of the created variable or
list, which leads them to understanding the meanings of global (in Scratch “For
all sprites”) and local variables (in Scratch “For this sprite only”) and
demonstrates the difference between these two terms (Fig. 4.6). If an object (sprite
in Scratch) is active, only global and local variables and lists can be used - it can
be seen immediately. Thereby students obtain the concept of the data scope faster
and better.

A variable and list images on Scratch stage (Fig. 4.7) give students an
overview of their values and some properties (e.g. length), which can be changed
manually and/or in a program.

In addition, due to Scratch animation, learners can follow how program
processes list elements – during the process indexes of the elements are blinking.
Terms “list element” and “element index” become clear too because they are
visible.

63

Moreover, there are two ways to fill a list with elements or clear a list:
manually and in the program. This greatly helps students in using lists in other
programing languages.

Figure 4.7 A variable and list images on Scratch stage

It should be also noted that learners have to define the scope of the created
variable or list, which leads them to better understanding the meanings of global
and local variables and demonstrates the difference between these two.

4.1.5 Conditional Statements

Using branching blocks in Scratch helps students to compose if-sentences. For
example, it becomes clear why they have not written the second condition in them
(Fig. 4.8).

Figure 4.8 The branching in Scratch

4.1.6 Iterations

Using Scratch blocks makes it easy to show students how iterations work – after
its implementation learners immediately see the result: multiple iterations of
chosen blocks (Fig. 4.9).

64

Figure 4.9 The iterations in Scratch

This construction of the iteration and branching blocks gives a clear
picture about the actions inside these blocks.

4.1.7 Subroutines

The ability to split a big task into smaller pieces plays an important role in
structured programming. This is the most preferred approach in building
programs.

The majority of algorithmic languages support the definition of
subroutines and functions, used in creating the code for the pieces of the project.
Procedures without parameters provide an initial idea. One of the main methods
of transferring data to subroutines is using the parameters. The authors’ experience
shows that this is the most confusing topic for a beginner.

Scratch 2.0, the new version of Scratch, provides teachers and learners
with a perfect opportunity to make this issue easier. Learners can create and use
their own Scratch blocks, where the definition of parameters is included (Fig.
4.10).

Figure 4.10 The user’s block creation

65

Students learn to create a clear structure in their project. They divide their
task into logical parts and create necessary user blocks, providing them with
parameters. Now the main script can use standard and user-defined blocks,
transferring the necessary data by means of parameters. Figure 4.11 shows the
definition and calling of the user-defined blocks.

Figure 4.11 The user-defined block and its use in the main script

4.2 Coding Based on Scratch

The next Computer Science Basics course step is to proceed with other
programming systems. Some lessons of practicing with Scratch tools make this
transition easier.

It should be mentioned that according the annual students’ feedback
Scratch is the most popular module in the course. Students emphasize that just
Scratch gives them an overview of the model of the problem and ways of its
solution.

The similar approach to current “coding based on Scratch” can be
founded in the doctoral thesis [88] that formulates and evaluates a pedagogical
technique whose goal is to help beginners learn the basics of computer
programming. However, this visual environment should not be considered only as
an introduction to programming. It must be recognized as an excellent tool for
presenting algorithms and models. Despite the fact that Scratch was not created to
solve complicated tasks, it can surely play two roles in educational process:
introduction to programming and visualizing the algorithms and models in textual
coding. Its second role is especially important for non-IT learners and beginners.

It should be noted that in the current teaching approach, aimed to non-IT
novices, the choice of the programming language is not as important as the
development of students’ algorithmic thinking and ability to build models. Based
on Scratch learners get the holistic picture of the issue and can follow the
algorithm. These skills are very useful for learners throughout their study and in
future work.

66

4.2.1 Python

Python is an open source high-level computer programming language, developed
in the end of the 80’s by Guido Van Rossun in the Netherlands. Python is not one
of the most widely used languages today, but statistics indicates that it is among
the top ten languages [89].

A programming language for novices must enable the novice to learn
these concepts without interference from the details of the programming language
[90]. Python supports structured programming and procedural styles. This
language does not require any declaration of simple variables, which makes work
with it easier for the beginners. It has a large standard library. It is an open source
and is available to all students. The language is a high-level language and has
syntax, which allows programmers to express concepts in fewer lines of code than
would be possible in some other languages.

Discussion about Python as an introductive programming language in
high school can be found in [91]. Switch to Python for all first year Tartu
University students and its success is described in [92]. Research [93] shows that
due to Python having a simple syntax, if compared to other languages, it was easier
to introduce programming concepts to High-School students, emphasizing
programming and problem solution. Article [94] suggests that Python is an
excellent choice for teaching an object-oriented Computer Science. Authors of the
have been very pleased with the use of Python, finding that it affords a clear,
coherent, and consistent presentation of object-oriented programming.

As practice shows, during programming in Python beginners usually face
problems with indentations in their code. These indentations play a great role in
Python and their misapplication can ruin the entire program. And again, Scratch
helps to solve this problem: command blocks, which are situated inside iteration
blocks and if-blocks, have the same indentation level as commands in Python (Fig.
4.12).

Figure 4.12 The indentations in Python and Scratch

67

The course main Python topics are covered in the textbook [95]. Similar
ideas about Scratch and Python can be observed in [96].

4.2.2 Visual Basic for Applications

As was mentioned earlier, Scratch and Visual Basic for Applications (VBA) have a
lot in common. For example, a number of graphic objects can be placed into MS Excel
applications. There are a number of VBA methods, which have equivalents in the
form of Scratch blocks (e.g. set colour). Therefore, the coding part of the course starts
with graphical objects animation in Excel. After that students solve tasks related to
their speciality.

During the second part of the Computer Science Basics course, the course
teachers provide beginners with some ready-made procedures, to be used as “black-
boxes”. For example, procedures are used that correspond to Scratch blocks such as
“wait” (Fig. 4.13), “move”, “glide”, “touching” etc.

Figure 4.13 VBA procedure and analogous Scratch block

This enables a faster transition to more sophisticated tasks in VBA. If
students build and understand an algorithm (verbally, on paper and/or using
Scratch), they can compose the textual solution using the existing procedures and
their own commands. The course main VBA topics are covered in the textbook
[97].

In addition, it should be noted that writing a program in VBA using
already mentioned indentations is very useful and effective for beginners to
understand better the program structure and better represent the result (Fig. 4.14).

Figure 4.14 The indentations in VBA

68

4.3 Modelling and Algorithmization

Thus, the visual programming environment Scratch makes the first beginners’ steps
to programming field easier. Firstly, it motivates students due to its graphics and
animation and, at the same time, helps them to follow the created objects´ behaviour.
Secondly, it has not any syntax errors. Finally, Scratch is a remarkable tool for
introducing a problem solution algorithm.

The Computer Science Basics course teachers always try to provide students’
applications with a similar content. If a student has created a model in UML and the
same application in Scratch, it is easier for him to "translate" it into the VBA or
Python. Thus, if a learner understands the content of the model and the algorithm, it
is easier also to understand the syntax of any language. The visual programming using
flowchart is the best way for the beginners to create a program for general purpose
[98].

The following example is about solving a typical textbook task where the
program generates a random number and asks the user to guess it. Here we see the
steps of solving the task: UML activity diagram (Fig. 4.15), the script from Scratch
project implementing the behaviour of the cat (Fig. 4.16) and finally the program code
in Python (Fig. 4.17) and VBA (Fig. 3.18).

Figure 4.15 UML Activity diagram

69

Figure 4.16 Scratch Project

Figure 4.17 Python code

Figure 4.18 VBA code

70

4.4 Applied Active Teaching and Learning Methods

Various tests have been carried out to identify students’ levels of prior knowledge
in the second part of the Computer Science Basics course during 2012-2015.
Unfortunately, all of them showed that non-IT students’ level is zero level. On this
basis, it was decided not to divide all the students according to their level of
knowledge during the second semester but to offer them more visual materials and
practical tasks based on their learning preferences.

Thereby one of the main objectives of teaching of programming basics to
novices was to explain to students what is a model and an algorithm, and how they
can be represented. In addition, it is necessary to mention the fact that most of the
students were against the programming and claimed that this kind of knowledge
is needless for them. Thus, teachers received one more task – to rework the
programming module of the Computer Science course with the aim to increase
students’ motivation.

During the current research the author frequently mentions the term
motivation. This is caused by the fact that the work on the improvement of the
Computer Science course is aimed at students and their interest, which is
inseparable from motivation. This is an abstract concept that is difficult to measure
[99]. However, some general categories of motivation, such as intrinsic and
extrinsic factors, were identified and measured [100].

To raise and keep students’ motivation in the learning process it is
necessary to make the routine learning process more attractive and dynamic for
them [101, 102]. A research into the motivations of students for studying
programming is described in the article [103]. Results raise a number of questions
for the teaching of programming. Achievements of the study in learning
motivation indicate that teachers need to provide opportunities for students to
develop their thinking [104].

The best way to interest and involve students in the learning process – has
been proved to be their active participation in it. It is necessary to mention here
that active learning can support learners’ development of the four capacities in
many ways. For example, they can develop as:

 successful learners through using their imagination and creativity,
tackling new experiences and learning from them, and developing
important skills including literacy and numeracy through exploring
and investigating while following their own interests;

 confident individuals through succeeding in their activities, having
the satisfaction of a task accomplished, learning about bouncing back
from setbacks, and dealing safely with risk;

71

 responsible citizens through encountering different ways of seeing the
world, learning to share and give and take, learning to respect
themselves and others, and taking part in making decisions;

 effective contributors through interacting together in leading or
supporting roles, tackling problems, extending communication skills,
taking part in sustained talking and thinking, and respecting the
opinions of others [105].

In the current section of the thesis, relying on literature and personal
experience, the author try to suggests some ways for making programming more
engaging for non-IT learners with the aim of raising their interest.

4.4.1 The Visualization of the Processes

As mentioned above, the course teachers build UML activity diagrams to describe
algorithms in complicated tasks. A verbal description and pseudo code are been
using as well. Now, when Scratch projects are created as an introduction to
programming, they can also be used to visualize, formulate and describe the
problem.

At the beginning, the teacher provides the students with a prepared model,
which is analysed in a group. The analysis is followed by writing the program
code according to the diagrams. Later on, students have to create the models
themselves.

It has to be once more mentioned that according to tests most of the
Computer Science Basics course students are visual learners. For them it is very
important to see “how it works”. Scratch, with its elements of attractiveness, helps
those students to understand the main idea of creating an application.

VBA already has a built-in visualising tool: students can follow the code
execution using the Locals Window (Fig. 4.19).

Figure 4.19 The Local Window in VBA

72

It automatically displays all the names of the declared variables in the
current procedure, their types and their values. When the Locals Window is
visible, it is automatically updated every time – students can see and check each
step and its result in their program.

Python does not have such an opportunity, but still needs to be visualised.
Computer Science Basics course teachers show students the Online Python Tutor
[106]. Using the visualizing tool, the students can follow each step of their code
and check the values and types of the variables, as well as the order of the
operators during the execution. It has to be noted that this tool has some
drawbacks, as it does not support the Python graphics, time functions and work
with files. However, for the beginners in programming it gives the understanding
of the code execution (Fig. 4.20)

Figure 4.20 Python online visualizing tool

4.4.2 E-learning

As was mentioned above, during the semester all students work in Moodle e-
environment. This independent work mostly consists of grasping the new
material, taking self-tests and other learning tasks.

For better understanding, the theoretical material should be presented to
non-IT students in simple and clear forms. A multitude of books and any other
materials provided for them does not mean that they are useful for the students;
moreover, this can be intimidating for the beginners.

During the Computer Science Basics course development and evolution
the author of the thesis and lecturers who were involved in the experiment have
been trying to adapt theoretical teaching materials for the e-environment and
deliver it to students in most suitable forms (Chapter 2). The main conclusions
here are to provide students with small portions of the learning material and
maximally visualize them. In this context, a small portion does not mean that
students will lack some knowledge – it means that they are provided with well-

73

filtered materials, which are adapted to non-IT beginners. A great role here is
played by short teaching videos that explain the main programming concepts and
usage cases.

After each new topic students have to fulfil corresponding tests. Modern
testing systems provide the course instructors with a variety of test types and,
using them the course the author have worked out a test system which uses tasks
similar to the pre-prepared program tasks.

As experience shows, the most effective type of the test, which greatly
helps non-IT students, is “fill in the gaps” type. Students get the problem
description and the corresponding program text with some gaps and their task is
to fill in gaps and check their results afterwards. Doing this, students learn the
syntax and learn to understand the algorithm. In addition, tests, where students
have to make the program text out of sentences arranging them in the correct
order, teach students to see and understand a model of the proposed tasks.

It is very useful for the students to check and correct their classmates’
programs. This activity develops such an important skill as the ability to read and
understand a code written by another person. Moodle environment provides
teachers with this opportunity and they periodically use it in the course.

It should be mentioned that students’ independent work in Moodle is
divided into stages, which are ordered and a transition to the next stage is possible
only after finishing the previous one. Such course construction helps the course
teachers to monitor the current situation in students’ knowledge. Moreover, such
a system brings a competitive note into the learning process and makes it more
attractive.

4.4.3 Face-to-face Lessons

Practice is one of the most important steps in learning the art of computer
programming [107]. It should not be expected from non-IT students and especially
from the beginners that they immediately start to write a program code after the
first explanations. The best option here is a simple copying task from the teacher’s
screen projected on the board. During this copying students do not think about
why it is so, their interests are limited to the fact that they need to copy some text
on time and afterwards check whether the program works. It is great if they are
able to do it on their own, however, usually students are not able to check and
correct it due to incomprehension of the solution. To make the situation more
positive, the author has worked out some strategies that can help to involve
students in the coding process during face-to-face lessons.

Firstly, it should be mentioned that during the programming module of
the Computer Science Basics course, the majority of the created applications are
small games that students can play – one more motivating factor. Using Scratch,

74

students make games and within the process, learn to understand their algorithms.
Scratch gives an opportunity to test and, if necessary, correct the algorithm
immediately without thinking about the syntax. Afterwards, when an algorithm is
already clear, it is simple to translate it to VBA or Python, concurrently learning
the syntax. Thus, a teaching tool like Scratch already adds an element of
attractiveness to the course. Paper [108] suggests the effectiveness of similar
approach to reduce initial difficulties for freshmen learning programming
concepts.

Secondly, as a group-work assignment during a face-to-face lesson it is
possible to offer students a possibility to play a game: they have the algorithm of
a program and each student in the class should write one line in the code. The
named method is quite controversial, but it is useful at the beginning of coding,
when students just learn the basics. Afterwards, when each student has his/her
own programming style, it is not so useful. However, it teaches to understand
others’ manners, proves, and demonstrates why one solution can be better and
more logical than another can. However, there it is important to know what kind
of learners are in the class. Therefore, it is possible to implement this kind of work
only when the instructor is familiar with the audience.

It should be noted that this is important knowledge in any subject, not only
in programming. In addition, this game greatly helps teachers to maintain a high
level of students’ attention during the lesson.

The next assignment for students, which are successfully applied,
especially before practical tests, is correction of mistakes in a program text. As
usual, students have their task description and corresponding program, which does
not work at all or does not work properly. The number of mistakes is also known.
The mistakes are different: from simple misprints to syntax or logical errors. As
the author’s experience shows, such assignments are useful if offered as pair work.
Here the group work skills are developing among students and they learn to
understand the program code. Besides, in such a way students learn the syntax by
discussing it.

In addition, compared to the previous learning task, the new system works
more effectively. This is a bonus. During the semester students can collect the
bonus points and, if necessary, use them at the final exam. Students can get these
points, for example, for solving some additional tasks in the lesson, at home or in
Moodle environment. Usually the bonus system is determined at the beginning of
the semester and sometimes it is an additional reason for students to attend the
lesson.

There should be noted that attendance affects the quality of knowledge
and there are many reasons why it can facilitate grades, such as:

75

 lectures, class discussions, and other activities during class provide
additional information beyond the textbook, class notes, and handouts;

 students can relearn information in class that they read in the textbook and
handouts;

 students have increased opportunities to learn instructor’s expectations
and ask for clarification on assignments;

 students have increased opportunities to establish collaborative learning
with classmates [109].

When new theoretical material is explained, the course teachers often use
ready-made programs to introduce some topics to learners. In such a case, it is
advisable to prepare, in advance, some mistakes in the code and within the
discussion, correct them together with students. This way, new concepts are
assimilated much better and students learn to respond to different types of errors
and afterwards are not afraid of them.

The teaching strategies mentioned above are the main types that the author
applies in the Computer Science Basics course and they are aimed at raising
students’ interest in the programming subject by better engaging them into the
learning process. As students’ feedback shows, these methods work and bring
positive results. It is necessary to apply different strategies in teaching, not only
in programming, with the aim of varying students’ learning and educators
teaching experience and style.

4.5 Positive Outcome of Applied Teaching Techniques

As was mentioned above, programming basics for the first year students, who are
non-interested in this field, is complicated. However, during the experiment with
visual programming and active teaching, the course teachers have noticed the
positive trend in learners’ academic results. Average exam grades for last
academic years are demonstrated in the Table 4.2 and in the Figure 4.21:

Table 4.2 Average exam grades during the experiment

Academic
year

2010/11 2011/12 2012/13 2013/14 2014/15 2015/16

Average
grade

2.5 2.7 3.0 4.0 4.2 4.3

76

Figure 4.21 Average exam grades during the experiment

More detailed results, which were collected during the experiment, can be
found in the Appendix of the current thesis.

Thus, it can be noticed that the visual environment Scratch and applied active
teaching techniques really help beginners in their starting in a programming field.
Scratch helps to grasp main concepts and keeps students’ interest and motivation on
the high level. In combination with the active teaching methods used, the course
teachers managed to achieve good results in teaching programming basics.

4.6 ‘Basics of Applications Development and Programming’ for
School Pupils and Schoolteachers

Computer Science is necessary at modern schools for nowadays children. Results
of the research [110] provide strong evidence to justify learning Computer Science
in middle schools. The improvements in learning, teaching efficiency, and
affective factors are easily discerned in the transition to secondary school
Computer Science.

Speaking about programming for beginners, it should be noted that the
non-mandatory course ‘Basics of Applications Development and Programming’
has been included in the curriculum of Estonian secondary schools starting from
year 2011. The course was created based on the experience of Department of
Software Science at TUT in teaching students for many years their main
challenges in the beginning of the programming study. In considered course
development authors and educators try to keep up with the times and trends in
computer education as [111, 112].

This practical school course duration is 35 hours, basic tools there are
Scratch, VBA and Python. The course consists of three components:

2.5 2.7
3.0

4.0 4.2 4.3

2010/11 2011/12 2012/13 2013/14 2014/15 2015/16

Academic year

Average grades during the experiment

77

 methods and tools for creating applications;
 modelling and algorithmic principles;
 programming bases.

Unfortunately, there are no enough teachers for teaching this course in
Estonia. It is the biggest problem in named course promotion.

In order to use and develop this new course and after get good results in
teaching pupils the first need is to teach schoolteachers. At the present moment
the majority of Estonian schoolteachers do not use knowledge of programming or
very often do not have it.

Furthermore, primary and secondary school teachers are also very
interested in using Scratch for teaching pupils but they have lack of knowledge
and experience.

People often do a mistake that Scratch is only for programmers, teachers
of Computer Science or for interested children. It is one more reason to show to
schoolteachers how they can use Scratch for all school subjects for making their
teaching process more attractive and dynamic for modern children [113].

That is why now TUT Department of Software Science is teaching
Scratch for schoolteachers. This course is much deeper than Scratch courses for
students because it has more methodical and didactic problems and tasks related
to different subjects. Educators are using different methods of teaching, like group
works, lessons-presentations and making curricula for future work.

Thus, the Department of Software Science at Tallinn University of
Technology and the author of this thesis have created and constantly develop the
following programming courses for beginners:

 ‘Basics of Applications Development and Programming’ for school
pupils from 15 to 18 years;

 ‘Basics of Applications Development and Programming’ for
schoolteachers;

 ‘Programming basics’ for children from 10 to 14 years.

The first of them is aimed to learners, who are already interested in
programming and want to enhance their knowledge. The second one, for school
teachers, is dedicated to didactic problems and their solutions. The main tools here
are Scratch, VBA and Python. The volume of each of these components varies
within 35 hours depending on the level of knowledge and skills, as well as the
needs of learners. Scratch course for teachers and its outcomes are presented in
[114]. Similar approach can be found in two-day workshop for teachers, which is
described in article [115].

78

The author of this thesis suggests to teachers, who are new in the teaching
of Computing, to read the article [116]. This study is able to offer guidance to
teachers on how develop their Computing teaching skills. In addition,
schoolteachers can familiarize with paper aimed to propose e-Learning model as
an educational concept to teach introduction to programming for secondary school
learners [117]. The objective of this model is to determine the components
involved by applying collaborative learning in e-Learning, to enhance students’
motivation and understanding in the subject Information and Communication
Technology, specifically in topic introduction to programming. In addition, the
author could suggest to Scratch teachers to join ScratchEd community [118]. This
is an online community where Scratch educators share stories, exchange
resources, ask questions and find people.

The last Programming Basics course is addressed to the younger
generation with the aim to kindle their interest to IT and particularly to
programming. Due to the age and level of knowledge learners of this course create
applications only in visual environment Scratch.

For named programming courses new learning materials [119 - 121] were
specially developed at the Department of Software Science at Tallinn University
of Technology. The short report about Scratch in TUT this thesis reader can find
in the presentation [122] from Scratch Conference 2013 [123].

For those learners who are interested in Scratch and want to develop their
computational thinking, free/open-source web application Dr. Scratch [124] was
designed in Spain [125]. Learners and instructors can use this tool to analyse
Scratch projects and receive feedback on the quality of the programs [126].

4.7 Teaching Scratch

After TUT programming courses description it is necessary to give an overview
of the several programming courses, which use Scratch for teaching. This
overview should help readers to recognize the differences between them and the
course, which is described in this thesis.

4.7.1 Scratch Courses in the World

Currently a variety of the programming courses for beginners is developed in the
world. Some of them are free, some are not; some courses are online, some are
using blended learning principles. They all are different, but programming using
Scratch is their main principle. It is not possible to describe and analyse all the
courses in the current research, however consider some of them.

Firstly, Harvard University new programming course CS50, which was
launched in autumn 2015 [127]. This course considers C programming language
foundations based on some Scratch blocks (Fig. 4-21 and Fig. 4-22), which help

79

to understand main programming principles. Scratch is used there during the first
2 weeks.

Figure 4.22 Loops with Scratch in CS50

Figure 4.23 Conditions and Boolean Expressions with Scratch in CS50

Secondly ‘A Computer Science Principles Course’ [128], developed by
the UTeach Institute at The University of Texas at Austin. Summary table [129]
shows that one of the programming environments of this course is Scratch.

80

In addition is worth paying attention that Snap! - Scratch language
implementation is one of the programming environments in the course ’The
Beauty and Joy of Computing’ developed at the University of California, Berkeley
[130].

Free online short course – ‘Scratch - Teach Computer Programming in
Schools’ [131] introduces learners to Scratch and its advantages in an educational
setting, reviews the features and functions of the Scratch interface, and how to
program using the Scratch software application. Programming course consists of
5 modules:

 Module 1: Introduction to Scratch;
 Module 2: Scratch Interface;
 Module 3: Scratch Tutorials;
 Module 4: Scratch Cards;
 Module 5: Scratch Assessment.

‘Introduction to Programming with Scratch in Education’ course [132] at
the University of Northern Iowa takes learners through the ins and outs of
programming with Scratch and prepare for introducing students to Scratch. The
course schedule is:

Unit 1 - Getting Started with Scratch;

Unit 2 - Scratch for Storytelling;

Unit 3 - Scratch with Text Interaction;

Unit 4 - Scratch with mouse/keyboard interaction;

Unit 5 - Using Lists in Scratch.

The course ‘Code Yourself! An Introduction to Programming’ teaches
learners how to program in Scratch, an easy to use visual programming language.
More importantly, it introduces learners to the fundamental principles of
computing and it helps them think like a software engineer [133].

One more course, which could be mentioned here, is free online course
from Harvey Mudd College – ‘Programming in Scratch’ [134]. It should be noted
that separate Python course [135] could be found there as well.

More various programming courses this thesis reader can find in: [136 -
139].

4.7.2 Scratch Courses in Estonia

In Estonia there are not so many programming courses for novices, which use
Scratch.

81

 The University of Tartu has developed Scratch teaching material for
students [140]. This educational material consists of fourteen units, which cover
the main Scratch topics. Short videos with explanations and practical assignments
are used there.

In addition, there is one more ‘Scratch’ course [141], which consists of
four parts with short videos, text materials and practical assignments.

Short report, which includes information about programming courses in
Estonia can be founded in [142].

4.7.3 Analysis

The above-mentioned review shows that programming courses can be divided into
two types:

 courses, which include Scratch as the main programming tool;
 courses, which include Scratch (more precisely, its elements) as the

introductive tool to serious textual coding.

The first type has been mainly developed to meet the interests of younger
students. No previous programming skills are required there. In these courses,
elementary school students are introduced to fundamental programming concepts.
Students learn how to create animations, computer games, and interactive projects
using Scratch. Throughout these courses students create their own computer
games and share them with their instructors and classmates.

The number of courses of the second type is far less. Those courses are
aimed to university students and include some Scratch blocks for visual
explanation of the basics programming concepts.

The teaching approach to the programming course, which is described in
current thesis, is slightly different. Despite the fact that the course ‘Basics of
Applications Development and Programming’ is also an introduction to
programming the main aim there is to develop students’ algorithmic thinking
using certain programming tools.

 The TUT programming course combines four programming
environments: UML, Scratch, Python and VBA, which proportions vary
depending on the age of learners, their level of knowledge and skills. Moreover,
this course is able to be of interest to students of all ages from 10 years.

Practical assignments also vary depending on the audience, however the
teaching algorithm is the same: students construct models of the tasks and try to
solve them using aforementioned environments. This approach focuses mostly on
the model, algorithm and their visualization, rather than teaching syntax and
coding techniques. The basic principle here: if a student is able to build a holistic

82

model and create an algorithm, then student is able to implement it on any certain
language.

4.8 Conclusion and discussion

In conclusion, it is necessary to note that success in programming basics learning
and teaching to novices depends on many above considered aspects. Most
important of them is the proper choice of starting point – the first programming
language or programming environment. This language should raise pupils’
interest, be useful in future learning and be a tool for the visualization. As practise
shows, Scratch is a perfect tool for grasping modern concepts in building
applications and it greatly helps students in their future study and professional
work.

 In addition, the use of a proper pedagogical technique is important at the
stage of the beginning of the teaching programming. The correct method of
teaching that includes active learning methods in combination with blended
learning provides success in whole learning and teaching process.

Based on the above said, it should be concluded that in this thesis
described methodology is based on mostly on the model, algorithm and their
visualization, rather than teaching syntax and coding techniques. In this case, the
choice of the programming language for a textual coding is up to the teacher,
which is aware of the needs of students and monitors trends in programming
languages.

The main aim of chosen approach is to develop students’ algorithmic
thinking and teach them how they can build a model and follow an algorithm of
any problem. To achieve this goal the author and author’s colleagues try to provide
students’ applications with a similar content using different programming
systems.

Moreover, it is necessary to explain to the first-year students that
knowledge and skills that they gain in this course are useful for them throughout
the study and in future work. To achieve this goal the author and author’s
colleagues provide students’ tasks and assignments that are close to real life.

Visualized tools like Scratch are a good way to introduce and, afterwards,
better and faster understand the main concepts of object-oriented approach. In
addition, Scratch makes it easier to write a programming code in any language
when these concepts are already understood. After “the first level understanding”,
any programming process for non-IT students and especially for the beginners
should be visualized in any case using suitable instruments.

83

CONCLUSIONS
This chapter answer the research questions, summarizes the main results of this
thesis, and proposes the future work.

Answers to the Research Questions

During the study the author of this thesis could get the answers to the questions
raised at the beginning of the experiment.

General research question was “How to help novices to overcome
complexity of Computer Science Basics learning?” This question was divided into
two sub-questions:

“How to combine study about learners’ level of readiness with theory of
learning styles?”

“How to use this combination in practice with the aim to individualize
teaching and learning?”

Answers were identified during the study – new teaching approach was
developed and successfully applied in practice.

 Firstly, students should have the opportunity to learn not only in
classes.

o Taking this fact into account course teaching and learning
were transferred into Moodle e-environment that has given
teachers and students more opportunities for effective teaching
and successful learning.

 Secondly, non-IT students usually have not enough prior IT-
knowledge before any Computer Science course. Moreover, TUT
matriculants’ level of computer skills has been steadily decreasing.

o Solving this issue the author and author’s colleagues, who
were involved in the experiment, have found a solution –
students division into groups according to their prior
knowledge. This division has given course instructors an
overview of students’ level and accordingly their needs in
additional learning materials. Applying this idea the author
could provide all students with learning materials, which are
suitable just for them.

 In third place, there is the known fact that all people learn in different
ways. However, regardless of this all kind of learners should be
provided with the best conditions to acquire knowledge.

o Solving this problem the author has divided students into
groups according to their learning preferences according to
Richard Felder’s theory of learning styles. This division has

84

provided students with appropriate learning materials and
assignments.

 Fourthly, teaching programming foundations to students, who do not
have prior knowledge and especially interest and motivation in named
field, is complicated for teachers. At the same time such learning
process is difficult for these students.

o Solving the situation the author and author’s colleagues have
worked out and have applied the teaching system, which has
greatly helped them and students in programming basics
teaching and learning. The main idea of this approach is the
implementation of the visual programming before any textual
coding. In addition, the experiment has shown that the
majority of modern students are visual and active learners –
these types of learners need something dynamic and attractive.
Students, who have been taught in this manner, understand
programming basics better and more quickly than others do.
Using Scratch they can create a model and an algorithm and
after to translate it to VBA or/and Python. It is necessary to
add here that VBA and Python have their own visualizing
tools, which have been actively used in the second module of
the Computer Science Basics course.

o Moreover, Scratch has added some attractiveness to the
programming course that has affected to students’ interest and
motivation.

o In addition, during the practical part of this research, contact
lessons, the author had the opportunity to implement active
learning methods in practice and finally give
recommendations on the use of appropriate forms, methods
and organization of training.

The innovated teaching approach was able to increase students’ interest
and motivation, which is a very important aspect especially for the first year
students at university. Students could overcome main above named difficulties
and received better results.

Moreover, during the experiment variety of new teaching materials for
different students’ groups was developed. These materials can be used not only
for university students. School pupils and schoolteachers, who are interested in
Computer Science Basics and who are beginners in this field, can be taught using
this educational set.

In addition, the author would like to emphasize again that the content of
the material, which is adapted to students’ prior knowledge level and to their

85

learning styles, helps them better deal with a learning material and is an important
factor in learning individualizing.

Contributions

During the research, having received answers on the research questions, the author
of this doctoral thesis has created blended teaching and learning model, which is
based on students’ prior knowledge and preferences in learning process and is
realized in Moodle e-environment.

Through the teaching model, which was developed on the TUT Computer
Science Basics course it was possible to deeply explore students’ personal
character traits and preferences using Richard M. Felder’s learning styles theory
and combine this significant information with important data about students’ prior
knowledge level. The operability and effectiveness of this combination were
statistically confirmed during some years of the experiment.

Moreover, according to the experiment results, the author could
individualize the teaching and learning processes and significantly improve their
quality. Thus, it was possible to show the effectiveness of the theory of combining
aforementioned teaching strategies.

Due to this combination blended teaching and learning model for
Computer Science Basics course for beginners has been worked out. This course
model provides the essential support for students with appropriate learning
materials and activities and accordingly helps them to achieve higher level of
knowledge.

The main attainment of developed model is effectiveness of teaching and
accordingly success in learning, which were achieved by maximal teaching and
learning flexibility and individualization. Such aspect has not been taken in the
account to the necessary extent in previously considered researches. Teaching
model, presented in this doctoral work, proceeds from each student’s needs,
preferences and learning style. Each student here has been considered as a set of
certain parameters, which compile his/her individuality and determine the
maximally effective route through training materials in the learning process.

To conclude it should be noted that the main novelty of this thesis is firstly
combined two teaching strategies: teaching according with learners’ prior
knowledge level and learners’ learning styles. Chosen methodology can be
understood as an in-depth examination of the learners’ data with the aim of
extracting useful information from it to cater for flexible and more effective
teaching and learning.

In reference to teaching programming to novices, this thesis author has
presented the teaching technique, which is based on visual programming using
Scratch. The novelty of presented approach is using of Scratch in teaching and

86

learning – it plays two significant roles here: the first and introductive
programming language and the basic visualizing instrument for representing an
algorithm during a textual coding.

The main idea of this strategy is to teach beginners in programming how
to build a model of solving problem and create an algorithm of its solution using
visual environment. When algorithm building using Scratch is clear for a learner
and main programming principles were studied, it is the right moment for
switching to textual coding.

Using Scratch students have the opportunity not only create a model, but
also they learn such main programming concepts as conditional statements,
iterations and data. Subsequently it is much easier to learn and apply a syntax of
any particular programming language, having basic knowledge in the visual
environment.

Thus, in the present research all shortcomings, which were discovered in
the sources considered by the author [20 - 31], were taken into account:

 If students do not have any experience and motivation, it is necessary
to start with something simple and attractive. Scratch here is the
optimal solution.

 The optimal set of learning topics for the first year students was
selected. This set fully satisfies the needs of students at the university
and also gives them the necessary basis for the expansion of their
knowledge.

 Difficulties in learning arise for different reasons. In this study, at least
two reasons were eliminated: the lack of prior knowledge and
difficulties with the perception of the learning material.

 Personalization of training was achieved by considering of the
characteristics of each student.

 One of the distinguishing features of this study was the fact that
students were not aware of the experiment. This condition also
reinforced the reliability of it results.

Moreover, the presented approach to Computer Science Basics teaching to
novices follows the main principles of computational thinking [2 – 4, 36] -
students have been taught:

 to formulate problems in a way that enables to use a computer and
other tools to help solve them;

 to organize data logically and analyse it;
 to represent data through models;
 to automate solutions through a series of ordered steps;
 to identify, analyse and implement possible solutions with the goal to

achieve the most efficient and effective combination of steps;

87

 to generalize and transfer a problem solving process to a wide variety
of problems.

Future Work

At the present time Computer Science contents develops and changes fast. New
generation of learners needs contemporary and extensive knowledge in this field.
In connection with this situation, the main goal of nowadays educators is to
provide contemporary learners with such kind of knowledge.

Pedagogical sciences also do not stand still. Combining leading trends in
both directions is possible to reach success in teaching providing students with
high quality educational materials and learning activities.

Now the author of this thesis is head of the working group, which develops
wider course, which name is IT Foundations and which includes variety of
educational topics. The author intends to continue developing the created teaching
approach for novices in the chosen style and direction, trying to adapt it maximally
to learners with different preferences as much as possible.

In addition, using the worked out programming teaching strategy, the
author continues to develop and promote programming basics courses for
beginners and all learners who are interested in the acquisition of new knowledge.
The lastly named group – learners who fill the interest – is excellent material to
experiment with content of educational material and to try something new in
teaching.

Based on this thesis results it could be concluded that there are no
unreachable aims in educational process. Desire and motivation are needed,
backed up by science and positive results.

88

REFERENCES
[1] Bonk, C. J. & Graham, C. R. Handbook of blended learning: Global

Perspectives, local designs. San Francisco, CA: Pfeiffer Publishing.

[2] Wing M. J, Computational Thinking, Communications of the ACM, vol.
49(3), 33-35, 2006.

[3] Report of a Workshop on The Scope and Nature of Computational
Thinking, USA National Academy of Sciences, 2010.

[4] Andrew Csizmadia, Paul Curzon, Mark Dorling, Simon Humphreys,
Thomas Ng, Cynthia Selby, John Woollard. Computational Thinking - A
guide for teachers. 2015 Available at:
http://www.computingatschool.org.uk/computationalthinking

[5] Ying Li, Yu Liu, Pan Shu. Teaching Research and Practice of Blended
Learning Model Based on Computational Thinking. Frontiers in
Education Conference (FIE), 2015. 32614 2015. IEEE

[6] Miller, L. D. Improving learning of computational thinking using creative
thinking exercises in CS-1 computer science courses. Frontiers in
Education Conference, 2013 IEEE. 1426-1432.

[7] Linschner, R. Programming Language and Tools for Deep Learning
(Elecrtonic Version). 2002. Available at:
http://www.cs.utexas.edu/users/csed/doc_consortium/DC99/lischner-
abstract.html

[8] Yuwanuch Gulatee, Barbara Combes. Identifying the Challenges in
Teaching Computer Science Topics Online. Proceedings of the EDU-
COM 2006 International Conference. Engagement and Empowerment:
New Opportunities for Growth in Higher Education, Edith Cowan
University, Perth Western Australia, 22-24 November 2006.

[9] Sue Sentence, Andrew Csizmadia. Computing in the curriculum:
Challenges and strategies from a teacher’s perspective. Education and
Information Technologies. March 2017, Volume 22, Issue 2, 469–495.

[10] Challenges of Teaching GCSE Computer Science. Available at:
https://teachcomputing.wordpress.com/2016/07/10/challenges-of-
teaching-gcse-computer-science/

[11] MIT Media Lab, 2016. Scratch - Imagine, Program, Share.
Available at: http://scratch.mit.edu/

[12] Maloney, J., et al. The scratch programming language and
environment. Trans. Comput. Educ., 10(4):1–15, Nov. 2010.

89

[13] RESOURCES IN SCIENCE AND ENGINEERING
EDUCATION. Richard Felder's Home Page. Available at:
http://www4.ncsu.edu/unity/lockers/users/f/felder/public/

[14] CSTA K–12 Computer Science Standards. 2011. Available at:
http://csta.acm.org/Curriculum/sub/K12Standards.html

[15] AP Computer Science Principles, 2011-2016. Available at:
https://advancesinap.collegeboard.org/stem/computer-science-principles

[16] CSTA Computational Thinking Task Force. Available at:
http://csta.acm.org/Curriculum/sub/CompThinking.html

[17] UK. The Royal Society. „Shut down or restart?“ The way forward
for computing in UK schools. Available at:
https://royalsociety.org/~/media/Royal_Society_Content/education/polic
y/computing-in-schools/2012-01-12-Computing-in-Schools.pdf

[18] UK. Computing in the national curriculum: a guide for secondary
teachers. Available at:
http://www.computingatschool.org.uk/data/uploads/cas_secondary.pdf

[19] Computing: a curriculum for schools, Computing at School
Working Group. Available at: http://www.computingatschool.org.uk,
2011

[20] Mark Guzdial. What’s the Best Way to Teach Computer Science
to Beginners? Communications of the ACM. 2015, Vol. 58, no. 2. 12-13.

[21] Roels, R., Mestereaga, P. and Signer, B. An Interactive Source
Code Visualisation Plug-in for the MindXpres Presentation Platform.
Springer International Publishing Switzerland 2016. S. Zvacek et al.
(Eds.): CSEDU 2015, CCIS 583, 169–188, 2016.

[22] Lowther, J., What is Computer Science? Available at:
https://www.cs.mtu.edu/~john/whatiscs.html

[23] Denning, P., Is Computer Science Science? Communications of
the ACM, 2005, Vol. 48, No. 4, 27 – 31.

[24] Kinnunen, P., Challenges of Teaching and Studying
Programming at a University of Technology – Viewpoints of Students,
Teachers and the University. 2009. Doctoral Dissertation.

[25] Isabel C. Moura, Natascha van Hattum-Janssen. Teaching a CS
introductory course: An active approach. Computers & Education. 56
(2011), 475–483.

90

[26] Hawi N., Causal attributions of success and failure made by
undergraduate students in an introductory-level computer programming
course. Computers & Education. 54 (2010), 1127–1136.

[27] Shaobing Song, Ge Yu. Education Reform on Software
Programming Courses for Non-IT-Majoring Undergraduates. The 6th
International Conference on Computer Science & Education (ICCSE
2011).

[28] Veronica Dahl, Gemma Bel-Enguix, Diana Cukierman,
M.Dolores Jiménez-Lopez. Logic Programming: Teaching Strategies for
Students with no Programming Background. WCCCE '10.

[29] Bassey Isong, Ohaeri Ifeoma and Naison Gasela. On the
Integration of Agile Practices into Teaching: an approach to overcoming
teaching and learning challenges of programming. 2015 International
Conference on Computational Science and Computational Intelligence.
doi 10.1109/CSCI.2015.153

[30] Maurer, F. and Martel, S. “Extreme programming: Rapid
development for web-based applications,” IEEE Internet Computing.,
vol. 6, no. 1, 86–90, Jan./Feb.2002

[31] Manifesto for Agile Software Development. Available at:
http://www.agilemanifesto.org

[32] ECDL Foundation, 2016. ECDL Foundation. Available at:
http://www.ecdl.com

[33] Running On Empty: the Failure to Teach K–12 Computer Science
in the Digital Age, Association for Computing Machinery (ACM), and
Computer Science Teachers Association (CSTA). 2011. Available at:
http://csta.acm.org

[34] Shut down or restart? The way forward for computing in UK
schools, UK Royal Academy of Engineering, 2012

[35] Informaatika mitteinformaatikutele. Available at:
https://docs.google.com/presentation/d/1skl44TVbctNU6ISBkFVmWq
m34cDMxVU1cipsXExaQs0/edit#slide=id.p4

[36] International Society for Technology in Education and the
Computer Science Teachers Association. (2011). Operational definition
of computational thinking for K-12. Available at:
http://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf

[37] Phillip Snalune. The benefits of computational thinking. ITNOW
(Winter 2015) 57 (4): 58-59 doi:10.1093/itnow/bwv111. Available at:

91

http://itnow.oxfordjournals.org/content/57/4/58.full.pdf+html?sid=8d51
2e08-08ca-4c07-83fe-024176b512f1

[38] Geoffrey G. Roy, Joel Kelso, Craig Standing, "Towards a Visual
Programming Environment for Software Development," Proceedings on
Software Engineering: Education & Practice, 1998, 381-388.

[39] Min Hu, "A Case Study in Teaching Adult Students Computer
Programming", Proceedings of the 16th Annual NACCQ, 2003, 287-291.

[40] Moodle, 2016. Open-source learning platform. Available at:
https://moodle.org/

[41] ACM, IEEE Computer Society, Computer Science Curricula
2013: Curriculum Guides for Undergraduate Degree Programs in
Computer Science. December 20, 2013.

[42] Study Information System, Tallinn University of Technology.
Available at: http://ois.ttu.ee

[43] LEARNING STYLES. Available at:
http://www4.ncsu.edu/unity/lockers/users/f/felder/public/Learning_Style
s.html

[44] Qingguo Zhou, Jiong Wu, Ting Wu, Jun Shen, Rui Zhuou.
Learning Network Storage Curriculum With Experimental Case Based on
Embedded Systems. 2015 Wiley Periodicals, Inc., 187-194.

[45] College Board, 2015. AP Computer Science Principles. Available
at: https://advancesinap.collegeboard.org/stem/computer-science-
principles

[46] Computer Science Teachers Association, 2015. Computational
Thinking Task Force. Available at:
http://csta.acm.org/Curriculum/sub/CompThinking.html

[47] Allaa Barefah, Elspeth McKay. Designing for Online Learning
Environments: Towards an ePedagogy Development Model. 2015 IEEE
Conference on e-Learning, e-Management and e-Services. 175-180.

[48] Khan Academy, 2015. Khan Academy. Available at:
https://www.khanacademy.org/

[49] Broadbent, B., 2002. ABCs of e-Learning: Reaping the Benefits
and Avoiding the Pitfalls. 1st ed. NY: John Wiley & Sons, Inc.

[50] Kris M.Y. Law, Victor C.S. Lee, Y.T. Yu, Learning motivation
in e-learning facilitated computer programming courses. Computers &
Education, 55 (2010), 218–228

92

[51] Bashinski, S. M., 2002. Adapting the Curriculum to Meet the
Needs of Diverse Learners. PBS Teachers. Available at:
http://www.pbs.org/teachers/earlychilhood/articles/adapting.html

[52] Kolb, D., 1984. Experiential Learning. Engle Cliffs: Prentice
Hall.

[53] Dunn, R. (2003). The Dunn and Dunn learning style model and
its theoretical cornerstone. In R. Dunn & S. Griggs (Eds.), Synthesis of
the Dunn and Dunn learning styles model research: Who, what, when,
where and so what (pp. 1–6). New York: St. John’s University.

[54] George Lucas Educational Foundation, 2014. Project-Based
Learning. Available at: http://www.edutopia.org/project-based-learning

[55] Gregorc, A.F. (2015). Mind Styles & Gregorc Style Delineator.
Available at: http://gregorc.com

[56] Brusilovsky, P. & Peylo, C. (2003). Adaptive and intelligent web-
based educational systems. International Journal of Artificial Intelligence
in Education, 13 (2–4, Special Issue on Adaptive and Intelligent Web-
based Educational Systems), 159–172.

[57] Huong May Truong. Integrating learning styles and adaptive e-
learning system: Current developments, problems and opportunities.
Computers in Human Behavior 55 (2016), 1185–1193

[58] Sabine Graf, Tzu-Chien Liu, Kinshuk, Nian-Shing Chen, Stephen
J.H. Yang. Learning styles and cognitive traits – Their relationship and its
benefiits in web-based educational systems. Computers in Human
Behavior 25 (2009) 1280–1289

[59] Ebru Özpolat, Gözde B. Akar. Automatic detection of learning
styles for an e-learning system, Computers & Education 53 (2009) 355–
367.

[60] Felder, R. M. and Spurlin, J. E., 2005. Applications, Reliability,
and Validity of the Index of Learning Styles. Intl. Journal of Engineering
Education, 21(1), 103-112.

[61] Felder, R.M. and Brent, R. Understanding Students Differences,
Journal of Engineering Education, 2005, 94(1), 57-72.
http://dx.doi.org/10.1002/j.2168-9830.2005.tb00829.x

[62] Amiera Syazreen Mohd Ghazali, Siti Fadzilah Mat Noor, Saidah
Saad. Review of Personalized Learning Approaches and Methods in e-
Learning Environment. The 5th International Conference on Electrical
Engineering and Informatics 2015

93

[63] Aleksandra Klasnja-Milicevic, Boban Vesin, Mirjana Ivanovic,
Zoran Budimac. E-Learning personalization based on hybrid
recommendation strategy and learning style identification. Computers &
Education, 56 (2011) 885–899.

[64] M. Sedleniece and S. Cakula. Framework for personalized
elearning model, 457–462. doi:10.1016/j.procs.2013.12.011

[65] Cakula, S. and Sedleniece, M. Improvement of Personalized e-
Learning Framework Using Principles of Knowledge Management. In:
WSEAS, Recent Researches in Information Science and Application;
2013

[66] Amiera Syazreen Mohd Ghazali, Siti Fadzilah Mat Noor, Saidah
Saad. Review of Personalized Learning Approaches and Methods in e-
Learning Environment. The 5th International Conference on Electrical
Engineering and Informatics 2015

[67] Keefe, J.W., “Learning Style: An Overview,” in Keefe, J.W., ed.,
Student Learning Styles: Diagnosing and Prescribing Programs, Reston,
Va.: National Association of Secondary School Principals, 1979.

[68] Felder, R.M and Soloman, B.A (n. d.) Learning styles and
strategies. Available at:
http://www4.ncsu.edu/unity/lockers/users/f/felder/public/ILSdir/styles.ht
m

[69] Felder, R. M. and Silverman, L. K., 1988. Learning and Teaching
Styles in Engineering Education. Engr. Education, 7(78), 674-681.

[70] Soloman, B. A. and Felder, R.M. (n. d.). Index of Learning Styles
Questionnaire. Available at:
http://www.engr.ncsu.edu/learningstyles/ilsweb.html

[71] Felder, R.M. and Spurlin, J. Applications, Reliability, and
Validity of the Index of Learning Styles. Intl. Journal of Engineering
Education, 2005, 21(1), 103-112. Available at:
http://www4.ncsu.edu/unity/lockers/users/f/felder/public/ILSdir/ILS_Va
lidation%28IJEE%29.pdf

[72] Oakley, B., Felder, R., Brent, R., & Elhajj, I. (2004). Turning
student groups into effective teams. Journal of Student Centered
Learning, 2(1), 9–34.

[73] Toktarova, V., Panturova, A. Learning and Teaching Style
Models in Pedagogical Design of Electronic Educational Environment of
the University. Mediterranean Journal of Social Sciences. MCSER

94

Publishing, Rome-Italy. 2015. Vol 6 No 3 S7, 281-290.
Doi:10.5901/mjss.2015.v6n3s7p281

[74] Student's t-Tests. Available at:
http://www.physics.csbsju.edu/stats/t-test.html

[75] Robins, A., Rountree, J. and Rountree, N., 2003. Learning and
Teaching Programming: A Review and Discussion. Computer Science
Education, 13(2), 137-172.

[76] Kak, A., 2014. Teaching Programming. Available at:
https://engineering.purdue.edu/kak/TeachingProgramming.pdf

[77] Sohail Iqbal Malik & Jo Coldwell-Neilson. A model for teaching
an introductory programming course using ADRI. Education and
information technologies. Springer Science+Business Media New York
2016. DOI 10.1007/s10639-016-9474-0

[78] Anthony Robins, Janet Rountree, and Nathan Rountree. Learning
and Teaching Programming: A Review and Discussion. Computer
Science Education 2003, Vol. 13, No. 2, 137–172.

[79] Snap! Available at: https://snap.berkeley.edu/

[80] Blocky. Google Developers. Available at:
https://developers.google.com/blockly/

[81] Jose-Manuel Saez-Lopez, Marcos Roman-Gonzalez, Esteban
Vazquez-Cano. Visual programming languages integrated across the
curriculum in elementary school: A two year case study using “Scratch”
in five schools. Computers & Education 97 (2016), 129-141.

[82] Andrea Minuto, Fabio Pittarello, Anton Nijholt. Smart material
interfaces for education. Journal of Visual Languages and Computing
31(2015), 267–274

[83] K. Brennan and M. Resnick, "Imagining, Creating, Playing,
Sharing, Reflecting: How Online Community Supports Young People as
Designers of Interactive Media," in Emerging Technologies for the
Classroom, ser. Explorations in the Learning Sciences, Instructional
Systems and Performance Technologies, C. Mouza and N. Lavigne, Eds.
Springer New York, Jan. 2013, pp. 253-268.

[84] Orni Meerbaum-Salant, Michal Armoni, Mordechai (Moti) Ben-
Ari. Learning computer science concepts with Scratch.
http://dx.doi.org/10.1080/08993408.2013.832022

[85] Sayamindu Dasgupta, Shane M. Clements, Abdulrahman Y. idlbi,
Chris Willis-Ford, and Mitchel Resnick. Extending Scratch: New

95

Pathways into Programming. 2015 IEEE Symposium on Visual
Languages and Human-Centric Computing.

[86] M. Resnick, B. Silverman, Y. Kafai, J. Maloney, A. Monroy
Hernandez, N. Rusk, E. Eastmond, K. Brennan, A. Millner, E.
Rosenbaum, and J. Silver, "Scratch: Programming for All,"
Communications of the ACM, vol. 52, p. 60, Nov. 2009.

[87] Brennan, K., & Resnick, M. (2012). Using artifact-based
interviews to study the development of computational thinking in
interactive media design. American Educational Research Association
Meeting. Vancouver, BC: Canada. Available at:
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012
_CT.pdf

[88] Juha Sorva, Visual Program Simulation in Introductory
Programming Education. Doctoral thesis. 2012

[89] TIOBE the software quality company. Available at:
http://www.tiobe.com/tiobe-index/

[90] Randy Kaplan. Choosing a First Programming Language.
SIGITE’10

[91] L. Grandell. “Why Complicate Things? Introducing
Programming Language in High School using Phyton”. Australasian
Computing Education Conference, Vol. 52, 2006.

[92] Vambola Leping, Marina Lepp, Margus Niitsoo, Eno Tõnisson,
Varmo Vene, Anne Villems. Python Prevails. International Conference
on Computer Systems and Technologies - CompSysTech’09.

[93] Luiz Carlos Begosso, Luiz Ricardo Begosso, Emiliana Martins
Gonçalves, Jean Rafael Gonçalves. An approach for teaching algorithms
and computer programming using Greenfoot and Python. Proceedings -
Frontiers in Education Conference, 2012

[94] Goldwasser, Michael H. and Letsche David. Using Python To
Teach Object-Oriented Programming in CS1. In Innovation and
Technology in Computer Science Education. Proceedings of The 13th
Annual Conference on Innovation and Technology in Computer Science
Education. Vol. 40. New York: ACM, 42-46.

[95] Tutvumine Pythoniga. Available at:
http://rlpa.ttu.ee/python/Python.pdf

[96] C. Vorderman, Computer Coding for Kids - A Unique Step-by-
step Visual Guide, From Binary Code to Building Games. London, DK
Children, 2014.

96

[97] Sissejuhatus VBAsse. Available at:
http://rlpa.ttu.ee/vba/VBA.pdf

[98] Kanis Charntaweekhun, Somkiat Wangsiripitak. Visual
Programming using Flowchart. ISCIT1 2006.

[99] Ball, S. (1977). Motivation in education. Academic Press.

[100] Entwistle, N. (1998). Motivation and approaches to learning:
Motivating and conceptions of teaching. In Brown et al. (Eds.),
Motivating students. Kogan Page.

[101] George Lucas Educational Foundation, 2014. Coding in the
Classroom. Available at: http://www.edutopia.org/topic/coding-
classroom

[102] George Lucas Educational Foundation, 2014. Project-Based
Learning. Available at: http://www.edutopia.org/project-based-learning

[103] Jenkins, T. (2001). The motivation of students of programming.
In Proceedings of ITiCSE 2001: The 6th annual conference on innovation
and technology in computer science education. 53–56.

[104] Lawson, R. J. The Effect of Viva Assessment on Students’
Approaches to Learning and Motivation. International Review of Social
Sciences and Humanities. Vol. 2, No. 2 (2012), 120-132.

[105] About active learning. Available at:
http://www.educationscotland.gov.uk/learningandteaching/approaches/a
ctivelearning/about/what.asp

[106] Learn Programming by Visualizing Code Execution Available at:
http://www.pythontutor.com

[107] Brenda Cheanga, Andy Kurniaa, Andrew Limb, Wee-Chong
Oonc. On automated grading of programming assignments in an
academic institution. Computers & Education 41 (2003), 121–131.

[108] Roberto A. Bittencourt, David Moises B. dos Santos, Carlos A.
Rodrigues, Washington P. Batista, Henderson S. Chalegre. Learning
Programming with Peer Support, Games, Challenges and Scratch.
doi:10.1109/FIE.2015.7344222

[109] Crede, M., Roch, S. G., and Kieszczynka, U. M. 2010. Class
attendance in college: a meta-analytic review of the relationship of class
attendance with grades and student characteristics. Review of Educational
Research. 80, 2 (Jun. 2010), 272–295.

97

[110] MICHAL ARMONI, ORNI MEERBAUM-SALANT, and
MORDECHAI BEN-ARI, From Scratch to “Real” Programming. ACM
Transactions on Computing Education, Vol. 14, No. 4, Article 25, 2015.

[111] Exploring Computer Science. Available at:
http://www.exploringcs.org/

[112] National Science Foundation. Retrieved from:
http://www.nsf.gov/

[113] M. Resnick, J. Maloney, A. Monroy-Hernández, and others,
Scratch: Programming for All, Communications of the ACM, vol. 52
(11), pp. 60-67, 2009

[114] Nathan Bean, Joshua Weese, Russell Feldhausen, R. Scott Bell.
Starting From Scratch. Developing a Pre-Service Teacher Training
Program in Computational Thinking. 2015.
doi.ieeecomputersociety.org/10.1109/FIE.2015.7344237

[115] Patricia Haden, Joy Gasson, Krissi Wood, Dale Parsons. Can You
Learn To Teach Programming in Two Days? ACE ’16 Canberra, ACT
Australia. http://dx.doi.org/10.1145/2843043.2843063

[116] Sue Sentance & Andrew Csizmadia. Computing in the
curriculum: Challenges and strategies from a teacher’s perspective. Educ
Inf Technol (2016). doi:10.1007/s10639-016-9482-0

[117] Vitri Tundjungsari. E-Learning Model for Teaching
Programming Language for Secondary School Students in Indonesia.
2016 13th International Conference on Remote Engineering and Virtual
Instrumentation (REV). 262-266

[118] ScratchEd. Available at: http://scratched.gse.harvard.edu/

[119] Vilipõld, J., Antoi, K., Amitan, I. Rakenduste loomine ja
programmeerimise alused. Valikkursus gümnaasiumitele. Available at:
http://rlpa.ttu.ee/RLPA_opik.pdf

[120] Rakenduste loomine Scratchiga. Available at:
http://rlpa.ttu.ee/scratch/Rakenduste_loomine_Scratchiga.pdf

[121] Rakenduste loomine Scratchiga. Available at:
http://rlpa.ttu.ee/scratch/Scratch_20/Scratch_20_P.html

[122] The Use of Scratch in Estonia. Available at:
https://drive.google.com/drive/folders/0Bwxop-
tjmpUXdXBjNGZueHdsUzg

[123] Scratch - Connecting Worlds. Available at:
http://www.scratch2013bcn.org/

98

[124] Dr.Scratch. Available at: http://www.drscratch.org/

[125] J. Moreno-Leon and G. Robles. Analyze your Scratch projects
with Dr. Scratch and assess your computational thinking skills. In Scratch
Conference 2015, Amsterdam, The Netherlands, August 12-15, 2015,
Proceedings, 48-53, 2015.

[126] J. Moreno-Leon and G. Robles. Dr. Scratch: a Web Tool to
Automatically Evaluate Scratch Projects. DOI:
http://dx.doi.org/10.1145/2818314.2818338

[127] David J. Malan, SC50. Available at: https://cs50.harvard.edu/

[128] A Computer Science Principles Course. Available at:
https://cs.uteach.utexas.edu/

[129] Available CS Courses. Available at: http://apcsprinciples.org/

[130] The Beauty and Joy of Computing. Available at:
http://bjc.berkeley.edu/

[131] Scratch - Teach Computer Programming in Schools. Available at:
https://alison.com/courses/Scratch-Teach-Programming-in-Schools

[132] Introduction to Programming with Scratch in Education.
Available at: https://uni-cs4hs-scratch.appspot.com/preview

[133] Code Yourself! An Introduction to Programming. Available at:
https://www.coursera.org/learn/intro-programming

[134] Programming in Scratch. Available at:
https://www.edx.org/course/programming-scratch-harveymuddx-
cs002x-1

[135] CS For All: Introduction to Computer Science and Python
Programming. Available at: https://www.edx.org/course/cs-all-
introduction-computer-science-harveymuddx-cs005x-0

[136] Scratch Programming for Elementary School Students. Available
at:
http://cty.jhu.edu/ctyonline/courses/computer_science/scratch_program
ming_elementary.html

[137] Programming for Kids. Available at:
https://www.udemy.com/programming-from-scratch/

[138] Adventures in Scratch Programming Course. Available at:
https://www.idtech.com/kids/tech-camps/courses/adventures-in-
programming-with-scratch/

99

[139] Scratch1: Getting started with Scratch. Available at:
https://www.yorksj.ac.uk/ils/digitaltraining/bookable-
courses/programming-courses/

[140] Scratchi materjalid. Available at: https://courses.cs.ut.ee/t/scratch

[141] ‘Scratch’. Available at: http://scratchime.weebly.com/

[142] Work done in Estonia for increasing society’s commitment in
ICT. Available at:
https://sisu.ut.ee/sites/default/files/ict/files/eno_tonisson.pdf

100

ACKNOWLEDGEMENTS
First, I would like to thank everyone who have advised and supported me during
my PhD studies.

I would like to thank professor Rein Kuusik for providing guidance and
encouragement in finishing this thesis.

I would like to thank my supervisors, Tiia Rüütmann and Enn Õunapuu
for their guidance.

In addition, I would like to thank my Master’s thesis supervisors – Irina
Amitan and Jüri Vilipõld for their continuous motivation and support.

I am thankful students for participating in experiments.

Finally, I would like to thank my family for their great patience and
support.

101

ABSTRACT
The goal of this doctoral thesis is to analyse the existing and develop new teaching
technique for teaching Computer Science Basics to novices.

Present work describes teaching strategies and their combinations, which
are used to compile and teach the Computer Science Basics course developed
during last years, from 2010. This course is aimed to the first year non-IT students
at Tallinn University of Technology and it acts as a model of present research.

The aim of developed strategies is to achieve better results in teaching and
learning through the combination of Richard M. Felder learning style theory and
students’ prior knowledge level. The main research methodology of this thesis is
based on the known principles of blended learning.

During the present research the teaching approach to the Computer
Science basics was studied, reviewed and developed. Moreover, the content of
teaching materials was greatly renewed in accordance with the results of the study.

To study the teaching approach and achieve the research goal various tests
were carried out to identify students’ levels of knowledge and learning
preferences. Throughout the long-term experiment, the first year non-IT students,
who are beginners in Computer Science field, were divided into groups according
to tests outcomes. These groups were formed of students with different levels of
prior knowledge and learning styles. During their study students have got learning
materials that were developed based on knowledge, which course instructors have
got from tests. The chosen teaching approach comprises a combination of
successful strategies, such as e-support and students’ background study, to
enhance their positive effect.

Furthermore, the author of this work considers, analyses and develops the
main techniques and principles of programming teaching for the beginners in this
field. There under the beginners the author of the thesis understands non-IT
students, school pupils and schoolteachers who are starting to learn programming
basics.

The first important result of this research is new combination of known
teaching strategies – worked out course teaching model, which can be successfully
applied for the teaching in other Computer Science courses. The success of chosen
strategy is demonstrated by comparing the achievements of the test groups, who
were taught using the developed strategies, with the reference groups, who were
taught in a conventional manner. Renewed and supplemented learning materials
were provided for the students considering the two main aspects: the level of their
prior knowledge and their preferred learning style.

102

The second achievement of this thesis is the programming foundations
teaching methodology, which is developed and applied in practice in the
Computer Science Basics course as well as in additional courses in Tallinn
University of Technology. The main idea of this approach is model-based
programming teaching that is founded on the visual programming, which is
integrated into courses before any serious coding. The goal of this methodology
is to make clear main principles of modelling and algorithmization and
accordingly give students the knowledge base for exploring the textual coding.

The Computer Science Basics course for the first year non-IT students
from economics, social, chemistry and civil engineering faculties at Tallinn
University of Technology and courses for school pupils and schoolteachers are as
a model of teaching and learning using this strategy. Despite the fact that TUT
matriculant’s level of prior IT-knowledge constantly decreasing the author of this
thesis has worked out the new teaching model, which provides support for
students with appropriate learning materials, and help them to achieve high level
of knowledge.

Combining abovementioned results it could be claimed that the main
contribution of the undertaken work is new successful teaching strategy for
teaching Computer Science Basics to novices.

103

KOKKUVÕTE
Antud doktoritöö eesmärk on analüüsida olemasolevat, ning arendada uut
õppetehnikat üldinformaatika õpetamiseks algajatele.

See uurimistöö kirjeldab õpetamisstrateegiat, mida on kasutatud viimastel
aastatel – alates aastast 2010 – välja töötatud üldinformaatika kursuse arendamisel
ja õpetamisel algajatele. Kursus on suunatud Tallinna Tehnikaülikooli esimese
aasta mitte IT eriala üliõpilastele.

Esitatud õpetamisstrateegia põhieesmärk on parimate tulemuste
saavutamine õppimises ja õpetamises, kombineerides Richard M. Felderi
õppestiilide teooriat ning tudengite eelteadmiste taset. Kasutatud metodoloogia
baseerub segaõppe tuntud printsiipidel.

Doktoritöö käigul oli uuritud, analüüsitud ja arendatud
õpetamislähenemine Informaatika algkursusel. Pealegi kursuse sisu ja materjalid
olid uuendatud vastavalt töö tulemustele.

Õppurite teadmiste taseme määramisel ja nende õppimisstiilil põhineva
õppeprotsessi eelistuste tuvastamiseks viidi läbi suur hulk erinevaid teste. Selles
pikaajalises eksperimendis jagati esimese aasta mitte IT-eriala üliõpilased
vastavalt testi tulemustele rühmadesse. Seega moodustati grupid, mis vastasid
õppurite eelnevatele teadmiste (eelteadmistele) tasemetele ja õpistiilidele
vastavalt testide tulemustele. Valitud lähenemine sisaldab selliste edukate
strateegiate nagu e-tugi ja õppurite õpistiili taustauuring ühendamist nende
positiivse koosmõju suurendamiseks.

Peale selle käesoleva töö autor vaatleb, analüüsib ning arenda
programmeerimise õpetamise põhiprintsiipe algajatele selles valdkonnas.
Algajatena määratleb töö autor mitte IT-eriala üliõpilasi, kooliõpilasi ja õpetajaid,
kes hakkavad õppima programmeerimise aluseid.

Doktoritöö esimeseks tulemuseks on uus õppestrateegiate kombinatsioon
- valmis õpetamismudel, mida saab kasutada teiste arvuti kursuste õpetamisel.
Strateegia edu demonstreerib testirühmade tulemuste tasemete võrdlemine –
paremaid tulemusi saavutasid need, kelle õpetamisel kasutati väljatöötatud
strateegiaid võrreldes nendega, keda õpetati tavapärasel viisil.

Teiseks doktoritöö tulemuseks on väljatöötatud strateegia
programmeerimise õpetamiseks, mida on rakendatud praktikasse Tallinna
Tehnikaülikoolis nii informaatika õpetamise kursustel kui ka täiendusõppe
kursustel. Selle lähenemise peamiseks ideeks on programmeerimise õpetamine
mudeli põhjal, mis põhineb visuaalsel programmeerimisel ja on integreeritud
kursusesse enne tõsist programmeerimiskoodi kirjutamist, võimaldades selle läbi
eelnevalt lihtsalt ja loomulikult selgeks teha modelleerimise ja algoritmimise

104

põhiprintsiibid, mis tagavad teadmiste baasi erinevate programmeerimiskeelte
õppimiseks.

Innovaatiline informaatika kursus, milles uuendatud ja täiendatud
õppematerjalid arvestavad kahte peamist aspekti, eelteadmiste taset ja eelistatud
õpistiili, on mudelina läbiviidud uuringus. Kursus on suunatud majandus-,
sotsiaal-, keemia- ja ehitusteaduskonna tudengitele. Hoolimata sellest, et TTÜsse
sisseastujate IT alaste teadmiste tase on pidevalt halvenenud, on autor suutnud
välja töötada õpetamismudeli, mis toetab õppureid asjakohaste õppematerjalidega
ja aitab neil saavutada kõrget teadmiste taset.

Kokkuvõttes saab öelda, et doktoritöö põhitulemus on uus edukas
õpetamistehnika üldinformaatika õpetamisel algajatel

105

Appendix A

Mironova, O.; Rüütmann, T.; Amitan, I.; Vilipõld, J.; Saar, M. (2013). Computer
Science E-Courses for Students with Different Learning Styles. In: Annals of
Computer Science and Information Systems, 1: Federated Conference on
Computer Science and Information Systems, September 8–11, 2013. Kraków,
Poland. IEEE, 735−738.

���������	
��� ����������������������������������!������������������������������"���!!���������������������������������!��
��������#���������������$���������������������������� �����!������������������������������������$���#���������!�����������������������$���%�����
#��$�����������&�!!����������$�����������������'��'��������������!�������������!�� �����������!��������������$���(������������������������"���!!�������������������������������������$�����������$�������!����������������������)��������������������������������!�������������������������������������*+*,-./012-*/,,3*,44.*,3�56789:;<=�;>�9�?9@A5�>B>:5C�9=6�;:�;>�9?DC<>:�;CE<>>;F?5�:<�E@56;8:�;:>�F5G9H;<7@�<H5@�I9@�:<<6;>:9=:�I7:7@5�>;=85�:G5�>B>:5C�E9@9C5:5@>�>G<J�9�G;AG�@9:5<I�8G9=A5+�K??�L=<J?56A5�;>�8G9=A;=A�><�I9>:�:G9:�J5�89==<:A;H5�>:765=:>�JG9:�:G5B�J;??�=556�:<�L=<J�:<C<@@<J+�*=D>:596M�J5�>G<7?6�F5�G5?E;=A�:G5C�65H5?<E�:G5;@�?59@=;=A>L;??>�><�:G9:�:G5B�J;??�F5�9F?5�:<�?59@=�JG9:5H5@�:G5B�=556:<+�*I�J5�89=�98G;5H5�:G9:M�J5�J;??�G9H5�J<@?6D8?9>>�5=A;D=55@>M�E5<E?5�JG<�9@5�;==<H9:;H5�9=6�@5><7@85I7?+4N59@=;=A�>:B?5>�9@5�8G9@98:5@;>:;8�8<A=;:;H5M�9II58:;H5M�9=6E>B8G<?<A;89?�F5G9H;<7@>�:G9:�>5@H5�9>�@5?9:;H5?B�>:9F?5�;=6;D89:<@>�<I�G<J�?59@=5@>�E5@85;H5M�;=:5@98:�J;:GM�9=6�@5>E<=6:<�:G5�?59@=;=A�5=H;@<=C5=:+�O:765=:>�?59@=�F5>:�JG5=�;=D>:@78:;<=�9=6�?59@=;=A�8<=:5P:�C9:8G�:G5;@�?59@=;=A�>:B?5+1=65@>:9=6;=A�>:765=:>Q�6;II5@5=:�?59@=;=A�>:B?5>�;>�<=5�<I:G5�C;6E<;=:>�<I�5II58:;H5�56789:;<=+�-G5�9;C�<I�:G5�@5>59@8G65>8@;F56�;=�:G5�9@:;8?5�J9>�:<�9F<?;>G�C;>C9:8G5>�F5:J55=>:765=:>Q�8<CC<=�?59@=;=A�>:B?5>�9=6�:598G;=A�>:B?5>�;=5D?59@=;=A�9=6�C9L5�:598G;=A�;=�5=A;=55@;=A�C<@5�5II58:;H5+�K88<@6;=A�:<�R5?65@�9=6�S@5=:�TUVM�>:765=:>�?59@=�;=�C9=BJ9B>�W�FB�>55;=A�9=6�G59@;=AX�@5I?58:;=A�9=6�98:;=AX�@59><=D;=A�?<A;89??B�9=6�;=:7;:;H5?BX�C5C<@;>;=A�9=6�H;>79?;>;=AX6@9J;=A�9=9?<A;5>�9=6�F7;?6;=A�C9:G5C9:;89?�C<65?>+

2?9>>@<<C�98:;H;:;5>�<I�:598G5@>�9=6�>:765=:>�:9L5�E?985�;=C7:79?�8<CC7=;89:;<=+�-G5@5I<@5M�:G5�A7;69=85�9=6�:G5�I<@DC9:;H5�@<?5�<I�:G5�:598G5@�>G<7?6�F5�@59?;Y56�;=�:G5�8@59:;<=9=6�@5H;5J�<I�:G5<@5:;89?�C9:5@;9?�9=6�:G5�C9:5@;9?�;=�E@98:;D89?�8?9>>5>+�Z<J5H5@M�C<>:�<I�:G5�?59@=;=A�E@<85>>5>�9@5�;=D6;H;679?�?59@=;=A�98:;H;:;5>�9=6�G5@5�>5?ID@5A7?9:;<=�<I�:G5>:765=:�;>�@59?;>56+�-G5�:9>L�<I�:G5�:598G5@�;=�:G;>�89>5�;>�:<E@<H;65�>:765=:>�J;:G�9�>7EE<@:;H5�?59@=;=A�5=H;@<=C5=:[C<:;H9:5M�A7;65�9=6�>7EE<@:+�*:�>G<7?6�F5�=<:56�:G9:�?59@=;=A>G<7?6�F5�F9>56�<=�;=6;H;679?�E5@><=9?;:B�:@9;:>+�-G;>�5=D>7@5>�>7885>>I7?�98\7;>;:;<=�<I�L=<J?56A5+**+]4-Z/0/N/3̂O;=85�_̀ÙM�J5�G9H5�9EE?;56�9�I?5P;F?5M�969E:;H5�9EE@<98G:<�:598G;=A�8<CE7:5@�>8;5=85�;=�-9??;==�1=;H5@>;:B�<I�-58GD=<?<AB+�-G5�C9;=�;659�<I�:G;>�C5:G<6�J9>�>:765=:>�6;H;>;<=;=:<�A@<7E>�988<@6;=A�:<�:G5;@�E@;<@�>7Fa58:�L=<J?56A5+�-G5:9>L>�J5@5�9?><�<I�6;II5@5=:�?5H5?�9=6�;:�G9>�A;H5=�H;>;F?5�@5D>7?:>�W�:G5�?5H5?�<I�L=<J?56A5�G9>�;=8@59>56�TbV+�*=�:598G;=AJ5�G9H5�F55=�I<87>56�<7@�9::5=:;<=�<=�98:;H9:;=A�9=�;=6;H;6D79?�>:765=:Q>�?59@=;=A+�O:765=:>�?59@=�;=�6;II5@5=:�J9B>[�><C5�?;L5�:<�?;>:5=�:<�9=6:9?LM�JG;?5�:G5�<:G5@>�E@5I5@�:<�@596�:5P:>�<@�>:76B�FB�;=H5>:;DA9:;=A�:G5�8G9@:>M�6;9A@9C>�9=6�6@9J;=A>+�K=B�?59@=;=A�>:B?589=�A;H5�A<<6�@5>7?:>�;I�;:�;>�:;C5?B�;65=:;I;56�9=6�9�@;AG:�9EDE@<98G�;>�8G<>5=�9=6�9EE?;56+�-598G;=A�C7>:�:@9=>I5@�L=<J?56A5�9=6�>7EE<@:�?59@=;=AMF7:�;:�C7>:�9?><�F5�8<<E5@9:;H5�9=6�6;@58:56�:<J9@6�>:765=:>Q@5I?58:;<=�9=6�65H5?<EC5=:+�Z5?E;=A�>:765=:>�;=�I;=6;=A�9=6I<@C;=A�:G5;@�<J=�>:B?5�<I�?59@=;=A�W�>G<7?6�87>:<C;Y5�:G5?59@=;=A�E@<85>>�9;C56�9:�8@59:;=A�:G5�8<=6;:;<=>�I<@�598G>:765=:�I<@�:G5�C9P;C7C�65H5?<EC5=:�<I�G;>cG5@�9F;?;:;5>M9E:;:765>M�>9:;>I98:;<=�<I�8<A=;:;H5�=556>�9=6�;=:5@5>:>+O;=85�:G5�F5A;==;=A�<I�:G5�I9??�>5C5>:5@�_̀U_M�J5�G9H58<=678:56�5PE5@;C5=:>�;=�JG;8G�J5�G9H5�:@;56�:<�;65=:;IB:G5�C<>:�>7;:9F?5�?59@=;=A�98:;H;:;5>�I<@�>:765=:>M�F9>56�<=�9=;=6;H;679?�:5>:�<=�?59@=;=A�>:B?5>+�d̀ �̀>:765=:>�<I�58<=<C;8>M><8;9?�9=6�:58G=;89?�6;>8;E?;=5>�G9H5�F55=�;=H<?H56�;=�:G55PE5@;C5=:+�*=�:G5�5D5=H;@<=C5=:�]<<6?5�eG::E>[ccC<<D6?5+5D<E5+55cf�>:765=:>�J5@5�6;H;656�;=:<�:J<�5\79?�A@<7E><I�Ug̀�E9@:;8;E9=:>[�9�@5I5@5=85�A@<7E�9=6�9�:5>:�A@<7E+�

h��������#�������	
h�������!���#������������&�!!������i�������#�����/?A9�];@<=<H9M�*@;=9�KC;:9=M�jk@;�l;?;Em?6M�]5@;L5�O99@R987?:B�<I�*=I<@C9:;<=�-58G=<?<ABM�05E9@:C5=:�<I*=I<@C9:;8>M�2G9;@�<I�O<I:J9@5�4=A;=55@;=AM�-9??;==1=;H5@>;:B�<I�-58G=<?<ABM�KL9655C;9�:55�O:+�UgKM�-9??;==U_bUnM�4>:<=;94C9;?[�o<?A9+C;@<=<H9M�;@;=9+9C;:9=M�a7@;+H;?;E<?6MC5@;L5+>99@pq::7+55p -;;9�.kk:C9==R987?:B�<I�O<8;9?�O8;5=85>M�05E9@:C5=:�<I�*=67>:@;9?r>B8G<?<ABM�4>:<=;9=�25=:@5�I<@�4=A;=55@;=A�r569A<ABM-9??;==�1=;H5@>;:B�<I�-58G=<?<ABM�KL9655C;9�:55�O:+�dM-9??;==�U_bUnM�4>:<=;94C9;?[�:;;9+@77:C9==q::7+55
stuvwwxyz{|u}~�w�����wxwt�~wx�uz}wtwzvwuz�u���~wt�vywzvw�zx�z}ut��~yuz��|~w�|����������

������������������������v� ��������� ���

111

Appendix B

Mironova, O.; Amitan, I.; Vendelin, J.; Saar, M.; Rüütmann, T. (2014). Strategies
for the Individualization of an Informatics Course. Annals of Computer Science
and Information Systems, 2: Federated Conference on Computer Science and
Information Systems, September 7–10, 2014. Warsaw, Poland. IEEE, 835−840.

�� �
��������	
��
���������������������
�����������
�� !"#$�%&$%$�'& &�(� !&)�"#%�%"�!)&*%!+,�$%#)&*%$-�.&/&.$�"+�0���
�����������������������1��2��0����������������������������1����������������������3�����42��%5 &&�6�!*��$7&(%$8�$%#)&*%$-�9�(:; "#*)<�%5&���������������������0��
���1��� =>�=?@ABCDE@=B?�FGHIJKLKM�LN�I�JIOLPGQ�PHRHGSOLKM�TSJGPFTLPH�NQNUHVW�XYJJHKUGQZ�LU�LN�KSU�OSNNL[GH�US�LVIMLKH�IKQ�HPY\IULSKIG�OJS\HNN�TLU]SYU�HF\SVOSKHKUN�SJ�I�]SGLNUL\�HFGHIJKLKM�NQNUHVW�̂]H�VILK�ILV�S_�NY\]�NQNUHVN�LN�US�OJSRLPH�K̀STGHPMH�LK�I�\SKRHKLHKU�_SJV�_SJ�LUN�\SKNYVHJ�a�U]H�GHIJKHJW�b[YKPIK\H�S_�LK_SJVIULSK�PSHN�KSU�MYIJIKUHH�OHJ_H\U�̀KSTGHPMHW�̂HI\]LKM�VIUHJLIGN�N]SYGP�[H�\IJH_YGGQ�NUJY\UYJHP�US�\IUHJ�_SJ�U]H�KHHPN�IKP�OJH_HJHK\HN�S_�U]H�NUYPHKUNW��cdd�efghgijklmn�oipqdglrg�si�girsiggfsir�gltumjspi�sh�uvmirsir�hp�wmhj�jvmj�qg�umiipj�efglsuj�qvmj�jvg�xyjv�ugijtfn�hjtlgijh�qsdd�iggl�jp�oipq�jpzpffpq>�=ihjgml{�qg�hvptdl�|g�vgdesir�jvgz�jp�lg}gdpe�dgmfisir�hosddh�mil�hjfmjgrsgh�hp�jvmj�jvgn�qsdd�|g�m|dg�jp�dgmfi�qvmjg}gf�jvgn�iggl�jp>�c�upz|sigl�hgj�pw�oipqdglrg{�hosddh�mil�mjjsjtlgh�sh�ghhgijsmd�jp�hjfgirjvgi�efpltujs}sjn{�gijfgefgigtfhvse�mil�g~ugddgiug�si�mi�gi}sfpizgij�qvsuv�sh�|mhgl�pi�jguvipdprsumddn�upzedg~�mil�hthjmsim|dg�efpltujh{�efpughhgh�mil�hnhjgzh>��szsdmfdn{�qg�uptdl�szefp}g�jvg��tmdsjn�mil�imjtfg�pw�girsiggfsir�gltumjspi>�@vth�jvg�p|�gujs}g�pw�girsiggfsir�gltumjspi�jplmn�

sh�jp�gltumjg�hjtlgijh�qvp�mfg�fgmln�jp�girsiggf{�mil�lggedn�oipqdglrgm|dg�m|ptj�jguvisumd�wtilmzgijmdh>�Epzetjgf�husgiug�sh�mi�sijgrfmd�emfj�pw�jvg�utffsutdtz{�qvsuv�upijgijh�uvmirg�wmhj>�@vg�rgigfmd�msz�pw�jvsh�uptfhg�sh�jp�lg}gdpe�dprsumd{�mimdnjsumd�mil�upzetjmjspimd�jvsiosir�|n�thsir�jvg�upzetjgf�pi�jvg�vsrvghj�dg}gd>��Epihslgfsir�jvg�jmfrgj�mtlsgiug{�hg}gfmd�mjjgzejh�qgfg�zmlg�jp�lghsri�jvg�uptfhg�zmjgfsmd�si�jvg�qmn�jvmj�sj�qptdl�|g�gmhn�jp�tilgfhjmil�|tj�qptdl�hjsdd�muvsg}g�jvg�rpmdh>�?g}gfjvgdghh{�jvg�uptfhg�hggzgl�jp�|g�fmjvgf�lswwsutdj�wpf�zphj�pw�jvg�hjtlgijh>�=j�fghtdjgl�si�dpq�g~mzsimjspi�rfmlgh�mil�dmuo�pw�zpjs}mjspi>�=j�|gumzg�udgmf�jvmj�zpfg�mlmejs}g�dgmfisir�jppdh�mil�jmosir�sijp�muuptij�sils}sltmd�efpegfjsgh�pw�gmuv�hjtlgij�qptdl�zpjs}mjg�jvgz�mil{�mh�m�fghtdj{�qptdl�dgml�jp�|gjjgf�mumlgzsu�muvsg}gzgijh>�@vg��tghjspi�fgzmsigl�vpq�jp�muvsg}g�mh�ztuv�sils}sltmds�mjspi�pw�jgmuvsir�mh�ephhs|dg{�thsir�jvg�g~shjsir�jszg�mil�egfhpiigd�fghptfugh>�==>��c��A=���C��EA=�@=B?��B��@���EBDA����@vg�=iwpfzmjsuh�uptfhg�|gdpirh�jp�jvg�utffsutdtz�pw�jvg�=ihjsjtjg�pw�=iwpfzmjsuh�mj�@mddsii�Dis}gfhsjn�pw�@guvipdprn>�@vg�msz�pw�jvg�uptfhg{�lghsrigl�wpf�jvg�wsfhj�ngmf�ipik=@�hjtlgijh{�sh�ufgmjspi�pw�meedsumjspih�|n�thsir�hjmilmfl��E�g�tsezgij�mil�lg}gdpesir�p|�gujkpfsgijgl�upzetjmjspimd�jvsiosir>�@vg�dgmfisir�efpughh�hjmfjh�qsjv�efpughhsir�siwpfzmjspi�thsir��~ugd�hefgmlhvggjh��wpfztdmh{�lsmrfmzh{�|tsdjksi�wtiujspih�mil�wmusdsjsgh>�@vg�hgj�pw�efmujsumd�mhhsrizgijh�lgegilh�pi�jvg��������������usmds�mjspi��gupipzsuh{�hpusmd{�uvgzshjfn�mil�us}sd�girsiggfsir>���tfjvgf{�hjtlgijh�dgmfi�jvg�|mhsuh�pw�efprfmzzsir�si�efmujsug�mil�jvg�zmsi�efsiusedgh�pw�mdrpfsjvzs�mjspi>��njvpi�wpf�jguvisumd�lshusedsigh�mil��shtmd��mhsu�wpf�ceedsumjspi����c��wpf�vtzmisjmfsmih�vm}g�|ggi�esuogl�ptj�mh�jvg�efprfmzzsir�dmirtmrgh�wpf�jvg�hgupil�emfj�pw�jvsh�uptfhg>�=j�hvptdl�|g�ipjgl�jvmj�jvg�efprfmzzsir�emfj�pw�jvg�uptfhg�qmh�upzedsumjgl�wpf�zphj�pw�jvg�hjtlgijh{�ghegusmddn�wpf�jvg�vtzmisjmfsmih>�@vsh�shhtg�qmh�hpd}gl�|n�szedgzgijsir��ufmjuv�si�jvg�uptfhg�utffsutdtz>�@vsh�sijtsjs}g�rfmevsumd�
��

2��Bdrm��sfpip}m{�=fsim�czsjmi{���gdgim��gilgdsi{��gfsog��mmf��mutdjn�pw�=iwpfzmjspi�@guvipdprn{�Cgemfjzgij�pw�=iwpfzmjsuh{�Evmsf�pw��pwjqmfg��irsiggfsir{�@mddsii�Dis}gfhsjn�pw�@guvipdprn{�comlggzsm�jgg��j>�y�c{�@mddsii�yx�y�{��hjpism��zmsd���pdrm>zsfpip}m{�sfsim>mzsjmi{��gdgim>}gilgdsi{�zgfsog>hmmf��jjt>gg�� ��� �¡¢¢�£ ����mutdjn�pw��pusmd��usgiugh{�Cgemfjzgij�pw�=ilthjfsmd��hnuvpdprn{��hjpismi�Egijfg�wpf��irsiggfsir��glmrprn{�@mddsii�Dis}gfhsjn�pw�@guvipdprn{�comlggzsm�jgg��j>�¤{�@mddsii�yx�y�{��hjpism��zmsd��jssm>fttjzmii�jjt>gg�
¥¦§̈©©ª«¬®§̄°±©²³́µ¶©ª©¦·°©ª §̧¬̄©¦©¬̈©§¬§̧¹º»°©¦¼̈«©¬̈©·¬ª½¬̄§¦¹·°«§¬¼¾®°©¹®ºº¿ÀÁÂÃÀµ³ ÄÅ½Ǽ³¿́ÂµÁÇÈ²³́µ¶²ÂÇȨ́ ¼½¼ÊË§Ì¿²

ÇÍÀÎÀÁÎÏ³À́³ÎÂÀÎÁÈÐ²Â¿³³Ñ̈ ²³́µÊ½ÒÒÒ ÀÁÂ

119

Appendix C

Mironova, O.; Amitan, I.; Vendelin, J.; Vilipõld, J.; Saar, M. (2016). Maximizing
and personalizing e-learning support for students with different backgrounds and
preferences. Interactive Technology and Smart Education, 13 (1), 19−35,
10.1108/ITSE-09-2015-0025.

���������	�
��������
���
�����
������������������
���
� !"#��$�����
 %$ �!����
"&��#!'
(#!
"'&� �'"
)�'*
��((! �'+�,-�!#&��"
���
�! (! �, "./01
23456571
84361
9:3;16
<=/=61
>=6?=/36
<@43
>3/3AB/?
2=43C=
D114E������
��F������GH5
I3;=
;J3K
?5IL:=6;M./01
23456571
84361
9:3;16
<=/=61
>=6?=/36
<@43
>3/3AB/?
2=43C=
D114
N
OPQRSTNU21V3:3W360
16?A=4K561/3W360
=X/=146360
KLAA54;
Y54
K;L?=6;K
Z3;J
?3YY=4=6;
[1IC045L6?K
16?
A4=Y=4=6I=KUN
86;=41I;37=H=IJ65/50\
16?
D:14;
]?LI1;356N
>5/̂
R_
8KK
R
AÂ
R̀
X
_ab !��� �'
$��-
'#
'*�"
�#,&� �'cJ;;AMdd?V̂?53̂540dRQ̂RRQed8HD]XQ̀XPQRaXQQPaf#)�$#�� �
#�c
gh
i#j �+ !
gklmn
o'c
kpcqr
sbtuv (! �, "c
'*�"
�#,&� �'
,#�'���"
! (! �, "
'#
lg
#'* !
�#,&� �'"wt#
,#�x
'*�"
�#,&� �'c
� !��""�#�"y � !�$���"��*'w,#�t*
(&$$' �'
#(
'*�"
�#,&� �'
*�"
+ �
�#)�$#�� �
lzz
'�� "
"��,
gklm{|}��}
~�
�~������
���}
�������
��}
�~������GOPQRSTNU�=6=Y3;KN
[1443=4K
16?
A4=4=�L3K3;=K
Y54
�=[
P̂Q
/=146360
1I;373;3=K
36
;J=
I/1KK455:M
HJ=
73=Z5Y
�4==C
A356==4
;=1IJ=4KUN
86;=41I;37=
H=IJ65/50\
16?
D:14;
]?LI1;356N
>5/̂
R_
8KK
R
AÂ
PXRe
J;;AMdd?V̂?53̂540dRQ̂RRQed8HD]XQ̀XPQRaXQQPeOPQRSTNU�=7=/5A360
:5[3/=
/=146360
A41I;3I=K
;J45L0J
;=1IJ=4
=?LI1;356M
.L;I5:=K
5Y
;J=
2�]9��A3/5;UN
86;=41I;37=
H=IJ65/50\
16?
D:14;
]?LI1;356N
>5/̂
R_
8KK
R
AÂ
_SXaR
J;;AMdd?V̂?53̂540dRQ̂RRQed8HD]XQRXPQRSXQQQPo,, ""
'#
'*�"
�#,&� �'
)�"
�!��' �
'*!#&�*
��
�� !�$�
"&+",!��'�#�
�!#j�� �
+x
 � !�$�%"!�cgrmqlk
����
E����}�(
x#&
)#&$�
$�-
'#
)!�'
(#!
'*�"n
#!
��x
#'* !
�� !�$�
�&+$�,�'�#�n
'* �
�$ �"
&"
#&!
�� !�$�(#!
o&'*#!"
" !j�,
��(#!��'�#�
�+#&'
*#)
'#
,*##"
)*�,*
�&+$�,�'�#�
'#
)!�'
(#!
���
"&+��""�#��&�� $�� "
�!
�j��$�+$
(#!
�$$w
b$ �"
j�"�'
)))w � !�$���"��*'w,#���&'*#!"
(#!
�#!
��(#!��'�#�wE���
�������
~~~����������}��������� !�$�
�"
�
�$#+�$
�&+$�"* !
$��-���
! " �!,*
���
�!�,'�, 
'#
'* 
+ � (�'
#(
"#,� 'xw
t* 
,#����x����� "
�
�#!'(#$�#
#(
�#! 
'*��
ghk
�#&!��$"
���
#j !
gnqpk
+##-"
���
+##-
" !� "
j#$&� "n
�") $$
�"
�!#j�����
��
 �' �"�j 
!��� 
#(
#�$�� 
�!#�&,'"
���
����'�#��$
,&"'#� !
! "#&!, "
���" !j�, "w]:=41/?
3K
[5;J
�.��H]�
�
16?
H�9�D�]�
I5:A/316;̂
HJ=
540163W1;356
3K
1
A14;6=4
5Y
;J=�5::3;;==
56
�L[/3I1;356
];J3IK
O�.�]T
16?
1/K5
Z54CK
Z3;J
�54;3I5
16?
;J=
�.��DD
363;31;37=
Y54?303;1/
14IJ37=
A4=K=471;356̂{v $�' �
,#�' �'
���
�#)�$#��
��(#!��'�#�
,#!! ,'
�'
'�� 
#(
�#)�$#��w

����������
��
 ���¡��
¢
�¡£�¤¥¡¦�
�§
 �̈©����ª�
«

¦
¬®̄°
±²
³�£�́��¤
±¬µ
¶
·̧ ¹





































 

139 

Appendix D 
 

Mironova, O.; Amitan, I.; Vendelin, J.; Vilipõld, J.; Saar, M. (2015). Object-
Oriented Programming for non-IT Students: Starting from Scratch. International 
Journal of Engineering Pedagogy, 5 (4), 22−28, 10.3991/ijep.v5i4.4734. 

 





����������	
�����
���������������������
��
���
����
��
���������	��
	��

�

������������������� �!""�� �#��������
���$����%����!���� �#��"����!��&�&��'�((�)*���*�� (+,*-..+(���'*/0�1*12-1��*�������/!3��*��"��!�3��*�4����5��3��*�4�5�'65��!����*��!!��
!55�������/��%��7��#�
��&��5� 73�
!55���3��%����!����89:;<=>;?@AB�CDBEBFG�CHCBD�IBJKFEGDHGBE�H�GBHLAMFN�HCCDKHLA�MF�NBFBDHO�CDKNDHJJMFN�LKPDEB�QKD�GAB�QMDEG�RBHD�FKFST@�EGPIBFGE�HG�@HOOMFF�UFMVBDEMGR�KQ�@BLAFKOKNRW�XEGKFMHY�@AB�HPGAKDE�EPNNBEG�EKJB�ZHRE�QKD�HLAMBVMFN�[BGGBD�DBEPOGE�MF�CDKNDHJJMFN�MEEPBE�GAHG�HDB�PEPHOOR�LKJCOMLHGBI�QKD�GAB�[BNMFFBDEY��\]̂_̀�a_<b:?K[cBLGSKDMBFGBI�CDKNDHJJMFNW�dLDHGLAW�efgW�hRGAKFY� �*��
����	
�����#��"!��������&��5� 7�!���'�� �!""!�5��%7%��"%3�%$�&�!%���"'$���%3�%"!��'&���%�!�����&�����/���%3�!���'5!7�� �!�������!%�� 57� ��!������5������$��5�/�%����!73����&�!��&�"��!���!��i��j*�k���!��%��� ��i�� ���"!���#�����#��"!��������&��5� 7�'��#�%%���!5%�!����%�!5!��� ������#����&��j��i5�� ��!��$����"'$�������&��5� 7�#�����&���%'���!5�%�%*�l	�"'$�!����!5��&��j�� l��%�!�%j�55��&!��!55�%�$����%�"$%��5�!�����������!�7�#����&��i��j'5!���!���!�5�����'!�����'!����##����/�57�����&���� ��!5�i��5�*��!%�����"'$������$�!�������'��%�&!/����������5$���������!55��&���$����$5!�!��
!55�������/��%��7��#�
��&��5� 73��%����!3�!���&!/����������� �!���������!���$�%���!"���m��#��"!���%n*��
&����#��"!���%�5!%�%��i��%�"�%���%�!����$"�����#�i��j57�%�$�7�&�$�%��%��i�*����$'�%�o���%�p,�-,�%�$����%*��$��� ��&����$�%��i��!''57��5!%%���#!������#!����5!%%���"�"��&��%3� ��$'�i��j�!���5�!���� �����&������5������/����"���*��
&��"!���5�!���� ��$���"�%�����&����#��"!���%���$�%��!���5�%������5�i*���$����%�i&����"'5�����&����$�%���q� ��r$���%��&��#�$��!����%��#�'���5�"�!�!57%�%�!���%7%��"�"���55�� *�q� 	!��!�!57%����5!����%����i����������%�!���'��/�����!����!5��#����&��!5 ����&"%�!���"��&��%�!''5���*��q� �%�#!"�5�!��i��&��&���!�$����#��!�!�!���������%�!����!��%'���#7��&�"�!���$%���&�"����'�� �!"%*�q� �%�#!"�5�!��i��&�!����!����%������$%�� �4��(�7�&���!�����s�!���/��7���! �!"%�"!���!���/����%����$���� ����'�� �!"%�!���!5 ����&"%*�q� �%�#!"�5�!��i��&��&���!�$���!���"!��������'�%��#�����������������'�� �!""�� *�q� 	!����"'�%��'�� �!"%����%�%��� ��#�"$5��'5��'�����$��%�!����� !��o���!�!�#5�i����i�����&�"*�q� 	!��$%�� �!'&��!5�������%����'�� �!"%t���/�5�'�%�!5�����!i�� %�!���%�&�"�%3�"�/�"���%3�!���!��"!��������4��*�


&����$�%��%�!��%�i��&�!''5��!�������/�5�'"��������&����/����"�����#� ����!5�'$�'�%��!''5��!�����%�#�i!���%$�&�!%����$"����!���%'��!�%&����'����%%�� *�
&��%������'!����%���/���������$�5��� �!5 ����&"%�!���'�� �!""�� *�
&��!�"��#��&�%�'!����%������/�5�'�5� ��!53�!�!57���!5�!���!5 ����&"�����!%���� �%j�55%�!%�i�55�!%��&��!��5��7������/�%�� !���'���5�"%�!����!%j%����!�%7%��"!����i!7*�
&����$�%��!�"%�!����!�&�� ��&����%$5�%�����i����##�������$���� &�57�5��j���i!7%��5�!���� ����$����%�!����&������������������!''��!�&�����&����%���'������#���##�����������'�%�!��� ����� �����%%!�7�%j�55%�����$�5��� �!5 ����&"%*����&�%j�55%�&!/���������"'5�"���������%�"'5��!''5��!����%*����%&�$5�����"����������&!���&����#��"!���%���$�%��%��"%��������!�&���%�'&�%���!����#���"�%���#��&�������
�%�$����%*�
&��"!����%%$�%������!�&�� ��&��%$������&!/���������5���!����!���%7%��"�o������u+v3�upv*���i�/��3�i��%��55�#!���%�"��'���5�"%*�	��%�r$���573�i����7�����"'��/���&����$�%����������#��"�7�!�����7�!��!���#��"�%'���!5��7����%'���!5��7����#�����&����%��"��&��%����!�&��/���&�� �!5%*��#����%�/��!5�7�!�%w��)'���������i��"!���!5 ����&"���5!� $! �%�i�����&�%���#������!��� �!''5��!����%*�
&�%��!����7�&���!���4�%$!5��!%���#����''5��!����%�x4��y*�k��&!/����##��������!%��%�i&7�i��'��#�����������&����&��3��$���&����!���!�5����#��&�� %��&!��%&�$5��������%�������!���"!%��������#���&!��*���*�
�����4��k����
���	����
���
��
�����
���	����
���
��	���������������7�!�%3�%�/��!5���$�����%�&!/���!�������$���&���$ &���/�%�� !����%��#��&��$%���#���#��"!��������&��5� 7�!�����$�%�%������"'$����%������������##������%�&��5%*���!57%�%�&!/��%&�i���&!��"�%���#��&����$�%�%��������"�����&������%*��%�!���%$5�3�%�/��!5���i��$����$5!�&!/�������'��'�%�������"'��/���&��%��$!����*�����p,++��&����i�	��%�!��!��3�l	�
��z�+p�	�"'$��������������!��!��%l�i!%����!����u-v*����%��%��$���&���!%�����r$���"���%�#����&��/!���$%�!��!%�!���5�/�5%��#��&���$����$5!*����$"�����#���$�%�%�!���%$������%755!�$%�%�i�������!��������&�%��!%�%*������#��&��"�%���$�%�!���� ��%��&����i�	��%755!�$%�m���	�"'$������������������'5�%n�u1v����!����$������&��%$''�����#����!����!5�����������$��!�����x��y*�
&��i��j�%�!��������p,++�!����&����$�%���%�'5!�������������"'5��������p,+{*�
&�����$"���%�"���������!��/��!����!%�������&����������#�l	�"'$�!����!5�
&��j�� l3�i&��&���#���%� ����!5�'�����'5�%�#�����%������ ��&��'���5�"%�!���%�5/�� ��&�"��7�"�!�%��#�%�#�i!���%7%��"%3����5$��� �%$�&������'�%�!%�!�%��!������!���"���55�� 3�!5 ����&"%3��!�!�!�����#��"!����3�'�� �!""�� 3���""$���!��� �!�����55!���!��� *���5!� ��'!����#��&�������'�%��%���5!�������!5 ����&"%�!���'�� �!""�� �u0v*�|| }~~�����������������

















 

149 

Appendix E 
 

Mironova, O.; Amitan, I.; Vilipõld, J.; Saar, M. (2016). Active learning methods 
in programming for non-IT students. Proceedings of International Conference on 
e-Learning 2016: 10th International Conference on e-Learning; Funchal, 
Madeira, Portugal; 1 – 3 July 2016. IADIS Press, 239−242.





����������	
�
����������
��	��	����
����	�
�
���������
������������������ �����!"�#����$%���&���'(�)���)��*��+*�,����-./0123�45�675489.2:47�;</=7414>3?�@<A.829<72�45�675489.2:/B?��C=.:8�45�D452E.8<�F7>:7<<8:7>?�;.11:77�G7:H<8B:23�45�;</=7414>3�IJ.K<<9:.�2<<�D2L�MNI?�;.11:77�MOPMQ?�FB247:.��R��	����ST*�'U�'�V*��W�#T�V�V#U)X��V�#��)*"��V#��#*���#*�YT�����''���YT���)�V�"*�#*�YT����V#��#*��*V������� �W��"�#�YV�Y�U�V*�W���#T*�W��V#ZX*������Z S�V#U)*�#V��#�#T*�[*'��#"*�#��W� �W��"�#�YV��W�S�������\���*�V�#X��W�S*YT�����X��]V#����̂�ST*��U#T��V�VU��*V#�V�"*�V��U#���V�W���"�+����#T*�Y�U�V*��_T�YT��V�UVU���X�Y�"'��Y�#*)��"��*�)X��"�Y���)��##��Y#��*��#T*�*̀X����V����abcdefbag�hfbeieab�jfd�klbhmjbhlf�_�#T�#T*���"��W��YT�*�����#T*�V*#��*��������U#Y�"*V̂�n�op�	���q�����""����̀�V�YV�����Z Ŝ�rs��
�	�������
� ���*Y*�#�X*��V���W��"�#����#*YT�����X��V���'�)�X�)*�*��'������)�'��X��������*�#����*����Y��#*"'����X���W*̂�ST�V����*��V�*tU���X��"'��#��#��#�_��+����V#U)X���)��#�T�"*̂�u��V*tU*�#�X��V#U)*�#V�T��*�#�����V'�)�WW*�*�#�Y�"'U#����V+���V�#��W**��Y��W�)*�#���)�̀*��*�)X�W���#T*�WU#U�*�_��+���)��̀�*�#��'��#�Y�'�#*�*WW*Y#��*�X����#T*� SZ_���)̂�ST*�*W��*��#T*�"�����̀v*Y#��*��W�"�)*���Y�"'U#*��*)UY�#����W���#T*����Z S�V#U)*�#V�#�)�X��V�#��#*�YT�#T*"�#��̀*���_�XV�_*��Z��W��"*)����#*YT��Y���WU�)�"*�#��V���)�̀*��̀�*�#��W��)���Y�""������U�)�_�#T� SZV'*Y����V#V��#�#T*���WU#U�*�_��+'��Y*̂�� ��#T*�YU��*�#�_��+�#T*��U#T��V�#�X�#��W��)���V_*�V�#��tU*V#���V��̀�U#�T�_�#���YT�*�*�̀*##*���*VU�#V����#T*�#*�YT�����W�'�����""����̀�V�YV�W���#T*����Z S�V#U)*�#V�_T����*�̀*����*�V����#T�V�W�*�)̂�ws��	��	����
��R������wsr��xy��z{|}~�������|�}�y�u�"'U#*��*)UY�#����̀�V�YV�T��*�̀**����Y�U)*)���#������#T*�YU���YU����#�S�������\���*�V�#X��W�S*YT�����X��SS�����������)�T��*�̀**��Y��V���)�#*)�W����������Z S�V'*Y����#�*V���#����Ylciae�fjked���f�likjbh�a�����e���"*)�Y�U�V*���V#V�W���#_��V*"*V#*�V���)�V#U)*�#V�T��*�#_���Y�)*"�Y�T�U�V�_**+�X��#�Y�"'U#*��Y��VV*V̂�\VU���X�#T*�abcdefbag����U'�V��*��V��''����"�#*�X����V#U)*�#V��#T�V��U"̀*�����U���X�)*'*�)V����#T*�#�#����U"̀*���W�#T*�"�#��YU��#*)�V#U)*�#V̂��[U�����#T*�Y�U�V*��*Y#U�*�V��''�X�"�)*�����)�Y��VV�Y�W�Y*Z#�ZW�Y*�Y��VV���"�"*#T�)V��'����������U'�_��+���)�'����)*�V#U)*�#V�_�#T���)*'*�)*�#��*����������#T*����)�*�*Z*������"*�#�����)�*�������̂��ST*�W��V#� �W��"�#�YV�"�)U�*��V���W��"�#������_��+�VUYT��V�#*�#�'��Y*VV�����'�*V*�#�#���V���)�V'�*�)VT**#V�T��)����̂�ST*�_��+�#���V�T*�*���*��,����)���,�q�_*�q���#���)��,�]�Y*�̂� ���))�#�����_*�UV*������*�#���V��V������#*���#��*�#��#T*���Y��V�W#�'��)UY#V̂�ST*�'�����""����̀�V�YV�'��#��W�#T*� �W��"�#�YV�Y�U�V*���V#V�W�����*�V*"*V#*����)��#�V#��#V�_�#T�,Y��#YT��,Y��#YT�������̂�,Y��#YT��V������'T�Y���'�����""����*������"*�#��_T�YT��V��*�X���#U�#��*���)���*�#�X�T*�'V��*���*�V�#��#�+*����̀���)�#T*�"����Y��Y*'#V���)�#*�"V��W�"�)*��������)�'�����""����VUYT��V�#T*�)�#���

�������� ¡��¢�£¡�¤����¥���¦§���� �̈�©ª«¬

©®









 

155 

Appendix F 
Course code: IDK0021 

Course title: Informatics I 

ECTS credits: 4.00 

Assessment form: Pass/fail assessment 

Language: Estonian, English 

Teaching semester: autumn 

Course aims: "To develop logical, systematic and algorithmic reasoning skills 
and to further the ability of investigating in a systematic way the problems and 
tasks at hand. 
" To teach the fundamentals of the principles, methods and tools for creating 
applications, and to equip one with the skills of creating applications for 
processing economic data. 

Brief description of the course: The topic of the course is application 
development in the environment of general-purpose application software. 
During the course the main principles of application creation as well as its 
methods, tools and principal phases (problem specification, analysis, design, 
and realization) are considered.  
Central part of the course is devoted to creating applications for processing and 
analyzing data tables (e.g., Excel) - its common principles, methods and tools. 
The topics covered include data types and organization, expressions, formulas, 
named ranges, structure of tables, graphs, data sorting, queries, generation of 
total tables, communication between tables, and the creation and use of data 
models. 
Basics of economic and statistical models are considered. 

Learning outcomes in the course: " Acquires the foundations of independent 
working skills. 
" Can, in a logical and argued manner, justify the feasibility of tools and 
methods chosen for problem-solving. 
" Has basic knowledge and skills for describing and modelling data and 
processes. 
" Is familiar with the principles, methods and tools for creating documents. 
" Is familiar and can use basic knowledge for specifying, modelling, and 
designing documents. 
" Is familiar with common principles, methods and tools for creating 
applications and can use them for processing and analyzing data tables. 
" Has and can use basic knowledge of economic and statistical models. 



 

156 

Type of assessment: To receive the credits for the course, 3-4 homework 
assignments have to be submitted and defended and 1-2 current assignments or 
tests have to be passed. The number of homework assignments, current 
assignments and tests, as well as their content, are specified in the beginning of 
the semester.  
In order to receive credits, all homework assignments have to be defended and 
all current assignments and tests have to be accomplished. The evaluation of 
homework - passed or failed - is given based on the defence. In order to reach 
the threshold, the student's knowledge and skills on the topic of the respective 
assignment have to be at least 60%. There will be an additional test on the topic 
of homework assignments, current assignments and tests that have not been 
handed in on time, or have not been defended.  

Study literature: I. Amitan, J. Vilipõld. MS Excel. Rakenduste loomise 
põhielemendid. Tallinn, TTÜ 
J. Vilipõld. MS Excel. Rakenduste arendussüsteem Visual Basic. Tallinn. TTÜ 
E-õppele orienteeritud materjalid Web_is: e-õpikud, ekraanivisioonid, harjutus 

Prerequisite(s):  

Work load:  

 Full-time studies Distance learning 

Lectures  1.0  0.0 

Practices  2.0 26.0 

Exercises  0.0  0.0 

Independent study: Independent studying is done in the form of working with 
the theoretical materials and preparing the homework assignments. The amount 
of work in stationary form - 48 hours, in non-stationary form - 80 hours. 

Confirmed: 11.05.2009 

Study programmes that contain the course: HAAB02/09, HAAB02/11, 
HAJB08/09, HAJB08/12, HAJB08/14, HAKB02/09, HAKB02/10, 
HAKB02/14, TAAB02/09, TAAB02/15, TABB02/09, TASB08/09, 
TASB08/10, TASB08/12, TASB08/13, TASB08/14, TASB08/15, TASB08/16 

  



 

157 

Appendix G 
Course code: IDK0022 

Course title: Informatics II 

ECTS credits: 4.00 

Assessment form: Graded assessment 

Language: Estonian, English 

Teaching semester: spring 

Course aims:  To develop logical, systematic and algorithmic reasoning skills 
and to further the ability of investigating in a systematic way the problems and 
tasks at hand. 
 To give the fundamental knowledge and basic skills of object-oriented 
programming and the use of the VBA development tools of mainstream 
application software (e.g., Excel) for creating applications. 

Brief description of the course: The course addresses application creation in 
the VBA development environment using MS Excel. Basic principles, methods, 
and means of application creation and application lifecycle stages (specification, 
analysis, design, and realization) are covered. Object-oriented (OO) modelling 
and the UML language are important methods and means covered by the 
course. In the course of the study the following skills and knowledge are further 
developed: the use of objects and their properties, methods, and events; the 
control of program flow (choices and repetitions, parallel processes); multi-
procedural programs, the use of parameters, arguments, and joint data for 
organizing data flow between procedures, the use of tables and arrays in 
programs, and the composition and presentation of algorithms. The main kinds 
of MS Excel applications are considered, as well as the class diagram, the 
referencing of objects and their properties and methods and the use of events 
and event procedures.  
The nature of graphical objects, their properties, and methods are  examined. 
Emphasis is put on processing arrays and dynamic tables. Their creation, 
editing, and linking are considered, as well as the programmatic creation and 
alteration of diagrams and graphs based on them. Separately are treated user 
forms. 

Learning outcomes in the course:  Acquires the foundations of problem 
analysis and system modelling 
 Can analyze relations between systems and objects and provide rationale for 
the algorithms and methods applied.  
 Is familiar with the nature of data and objects and can specify and use them in 
programs.  
 Is familiar with and can describe using VBA and UML activity diagrams the 



 

158 

main activities occurring in programs and algorithms. 
 Can organize data communication between programs and worksheet tables and 
create and design user forms. 
 Can compose programs consisting of multiple procedures and organize data 
flow between them.  
 Can use graphical objects in programs and develop in VBA their movements 
and animation and drawings and schemes.  
 Can process typical tables and arrays of economic data by using VBA 
programs. 

Type of assessment: To receive credits for the course, 3-4 homework 
assignments have to be submitted and defended and current assignments or tests 
have to be passed. The number of homework assignments, current assignments 
and tests, as well as their content, are specified in the beginning of the semester.  
In order to fulfill the prerequisites for the subject, all homework assignments 
have to be defended and a given number of points from tests and running 
assignments has to be received. The evaluation of homework - passed or failed - 
is given based on the defense. To reach the threshold, the knowledge and skills 
on the topic of the respective assignment or test have to be at least 60%.  
In case of timely submission and successful defending of homework 
assignments and running assignments there is an opportunity of the possibility 
of determining the result in case of a very successful defending. 

Study literature: Vilipõld, J. MS Excel. Rakenduste arendussüsteem Visual 
Basic. Tallinn. TTÜ 
E-õppele orienteeritud materjalid Web'is: e-õpikud, ekraanivisioonid, 
harjutusvihikud, näited ja demod. 

Prerequisite(s): IDK0021 

Work load:  

 Full-time studies Distance learning 

Lectures  1.0  0.0 

Practices  2.0 26.0 

Exercises  0.0  0.0 

Independent study: Independent studying is performed in the form of working 
with the theoretical materials and preparing the homework assignments. The 
amount of work in stationary form - 48 hours, in non-stationary form - 80 hours. 

Confirmed: 11.05.2009 

Study programmes that contain the course: HAAB02/09, HAAB02/11, 
HAJB08/09, HAJB08/12, HAKB02/09, HAKB02/10, HAKB02/14, TAAB02/09, 
TAAB02/15, TABB02/09, TASB08/09, TASB08/14, TASB08/15, TASB08/16 



 

159 

Appendix H 
Course code: IDK0091 

Course title: Informatics I (engineering) 

ECTS credits: 4.00 

Assessment form: Pass/fail assessment 

Language: Estonian, Russian 

Teaching semester: autumn 

Course aims: To develop logical and analytical reasoning skills and to further 
the ability of investigating the problems and tasks at hand, in a systematic way. 
o teach the fundamentals of application creation principles, methods and tools, 
and to equip one with the skills of creating applications in a spreadsheet 
environment. 

Brief description of the course: The main topic of the course is application 
development in the spreadsheet environment. 
In the beginning of the course the main principles of application creation as well 
as its methods, tools and principal phases are considered. Object-oriented (OO) 
modelling and the UML language receive central attention. 
The environment is considered according to OO principles. While considering 
data, formulas and functions, the emphasis is first and foremost put on problems 
and applications arising in the field of engineering: mathematical formulas with 
complex structure and with different functions, logical expressions and 
conditional formulas etc.   
The use of tables has a central place in the course. The typical structures of the 
tables; the use of names and formulas in the tables; validation; the means for 
organizing tables, presenting queries, calculating summaries and totals are 
considered. Students also work  with multiple linked tables, and data models 
resembling structures used in databases are described.  
A part of the course is also an introduction to programming and the 
development system Visual Basic for Applications (VBA). Different types of 
programs and procedures are considered, also the use of simpler objects. 

Learning outcomes in the course: - Acquires the foundations of independent 
working skills. 
- Can, in a logical and argued manner, justify the feasibility of tools and 
methods chosen for problem-solving. 
- Is familiar with the principles of creating applications as well as the methods 
and tools used for it, and with the principal phases of the development process.  
- Is familiar with the capabilities of mainstream application software and 
environments and can use these (esp. spreadsheet software) efficiently to create 
applications. 



 

160 

- Can use different types of data, also formulas, expressions and internal 
functions of spreadsheet software (esp. Excel) in order to solve problems arising 
in the field of engineering. 
- Can create applications by using spreadsheet programs consisting of multiple 
linked tables that use formulas, validation, and lookup functions as well as table 
processing and data analysis tools. 
- Is familiar with the principles of programmatic control, has a general idea of 
the nature of processes occurring in programs and can create simpler programs 
in Visual Basic for Applications (VBA). 

Type of assessment: To receive credits for the course, 3-4 homework 
assignments have to be submitted and defended and 3-4 current assignments or 
tests have to be passed. The number of homework assignments, current 
assignments and tests, as well as their content, are specified in the beginning of 
the semester.  
For receiving credits, all homework assignments have to be defended and a 
given number of points from tests and running assignments has to be received. 
The evaluation of homework - passed or not passed - is given based on the 
defense. In order to reach the threshold, the knowledge and skills on the topic of 
the respective assignment or test have to be at least 60%. 
There will be an additional test on homeworks, assignments and tests that have 
not been handed in on time or have not been defended. 

Study literature: 1. I. Amitan, J. Vilipõld. MS Excel. Rakenduste loomise 
põhielemendid. Tallinn, TTÜ 
2. J. Vilipõld. MS Excel. Rakenduste arendussüsteem Visual Basic. Tallinn. 
TTÜ 
3. E-õppele orienteeritud materjalid Web_is: e-õpikud, ekraanivisioonid jm.  

Prerequisite(s):  

Work load:  

 Full-time studies Distance learning 

Lectures  1.0  0.0 

Practices  2.0 16.0 

Exercises  0.0  0.0 

Independent study: Independent studying is accomplished in the form of 
working with the theoretical materials and preparing the homework 
assignments. The amount of work in stationary form is 48 hours and in non-
stationary form - 80 hours. 

Confirmed: 28.11.2008 



 

161 

Study programmes that contain the course: AAAB02/09, AAGB02/09, 
AAVB02/09, EAEI02/09, EAEI02/15, EAKI02/09, EAKI02/15, EALB02/09, 
EALB02/12, EALB02/14, EATI02/09, EATI02/15, YAEB14/15, YAFB02/09, 
YAFB02/16, YAGB02/09, YAGB02/11, YAMB11/11, YASB02/09 

  



 

162 

Appendix I 
Course code: IDK0092 

Course title: Informatics II (engineering) 

ECTS credits: 4.00 

Assessment form: Graded assessment 

Language: Estonian, Russian 

Teaching semester: spring 

Course aims: To develop logical, analytical and algorithmic reasoning skills 
and to further the ability of investigating in a systematic way the problems and 
tasks at hand. 
To give the fundamental knowledge and basic skills of object-oriented 
programming and the use of the development tools of mainstream application 
software (esp. VBA) for creating applications. 

Brief description of the course: In the course of the study the following 
programming related skills and knowledge are furthered and made more 
specific in an object oriented environment: the use of objects and their 
properties, methods, and events; the control of program flow (choices and 
repetitions, parallel processes); multi-procedural programs, the use of 
parameters, arguments, and joint data for organizing data flow between 
procedures; the use of tables and arrays in programs; the composition and 
presentation of algorithms.  
The main kinds of MS Excel applications are considered, as well as the class 
diagram, the referencing of objects and their properties and methods and the use 
of events and event procedures. 
The nature of graphical objects, their properties, and methods are thoroughly 
examined. Topics of computer graphics are introduced: computer screen units, 
the use of different coordinate systems, coordinate conversion, drawing of 
scaled figures and schemes, the programming of movement of graphical objects 
and animation, etc. 
Emphasis is put on processing arrays and dynamic tables. Their creation, 
editing, and linking are considered, as well as the programmatic creation and 
alteration of diagrams and graphs based on them. Programs studying functions 
and depicting them graphically are considered. 

Learning outcomes in the course: - Acquires the foundations of problem 
analysis and system modelling. 
- Can analyze relations between systems and objects and provide rationale for 
the algorithms and methods applied.  
- Is familiar with the nature of data and objects and can specify them and use 
them in programs. 



 

163 

- Is familiar with and can describe using VBA and UML activity diagrams main 
activities occurring in programs and algorithms. 
- Is familiar with the nature and main concepts of object-oriented programming and 
can use object class diagrams. 
- Can compose programs consisting of multiple procedures and organize data flow 
between them.  
- Can use graphical objects in programs; develop scaled drawings and schemes, 
movements, and animation in VBA.  
- Can process tables and arrays by using VBA programs.  

Type of assessment: To receive credits for the course, 3-4 homework assignments 
have to be submitted and defended and 3-4 current assignments or tests have to be 
passed. The number of homework assignments, current assignments and tests, as 
well as their content, are specified in the beginning of the semester.  
In order to fulfil the prerequisites for the exam, all homework assignments have to 
be defended and a given number of points from tests and running assignments has 
to be received. The evaluation of homework - passed or failed - is given based on 
the defense. To reach the threshold, the knowledge and skills on the topic of the 
respective assignment or test have to be at least 60%. 
the possibility of determining the examination result in case of a very successful 
defending. 

Study literature: 1. J. Vilipõld. MS Excel. Rakenduste arendussüsteem Visual 
Basic. Tallinn, TTÜ. 
2. E-õppele orienteeritud materjalid Webis: e-õpikud, ekraanivisioonid, 
harjutusvihikud, näited ja demod. 

Prerequisite(s): IDK0091 

Work load:  

 Full-time studies Distance learning 

Lectures  1.0  0.0 

Practices  2.0 16.0 

Exercises  0.0  0.0 

Independent study: Independent studying is performed by working with the 
theoretical materials and preparing the homework assignments. The amount of 
work in stationary form - 48 hours, in non-stationary form - 80 hours. 

Confirmed: 11.12.2008 

Study programmes that contain the course: AAAB02/09, AAGB02/09, 
AAVB02/09, EAEI02/09, EAEI02/15, EAKI02/09, EAKI02/15, EALB02/09, 
EALB02/12, EALB02/14, EATI02/09, EATI02/15, MAHB02/09, MASB02/09, 
MASB02/15, MATB02/09, YAEB14/15, YAFB02/09, YAMB11/11 



 



165 

Appendix J 
Assestment method and assestment criteria in Computer Science Basics cours





���������������	
� ���������������������������������������������������������� �� !""#""$#%&�'()&#()*�+,(�-()&&#%�.,$#-,(/0�1234�56789:6�;<==�>939<?9�@AB�4CD9;C>E�255<F:D9:65�G3CDH><5<:F�CI�D7=6<H=9�6CH<35J0�K49�8953><H6<C:�CI�9234�CI�649�H>CL=9D5�<5�HC5698�2:8�649�879�8269�<5�3CDD7:<32698�<:�2�;9LL2598�9:?<>C:D9:60�MCD9;C>E5�2>9�25595598�25�9<649>�L9<:F�H25598�C>�I2<=98�GNOPJ0�K49�3C:69:65�CI�4CD9;C>E�54C7=8�3C>>95HC:8�6C�649�H>CL=9D�8953><H6<C:�2:8�4CD9;C>E�54C7=8�L9�42:898�<:�LQ�649�879�82690�K49�2339H62:39�CI�4CD9;C>E�<5�2�H>9>9R7<5<69�IC>�9S2D<:26<C:�233955<C:0�MCD9;C>ET�6426�<5�42:898�<:�C:�6<D9T�;<==�L9�2339H698T�<IU�V�2==�649�255<F:D9:65�42?9�L99:�5C=?98�V�:C:9�CI�649�H2>65�CI�649�5C=76<C:�3C:62<:�<DHC>62:6�9>>C>5�:C>�9>>C>5�<:�H><:3<H=9WJ�V�649�4CD9;C>E�<5�H>959:698�3C>>936=Q�2:8�233C>8<:F�6C�649�>9R7<>9D9:65�X�4CD9;C>E�6426�425�:C6�L99:�2339H698�425�6C�L9�3C>>93698�2:8�>957LD<66980�X:�288<6<C:2=�255955D9:6�;<==�42?9�6C�L9�H25598�C:�649�6CH<3�CI�4CD9;C>E5�6426�42?9�L99:�42:898�<:�2I69>�649�879�82690�X==�4CD9;C>E5�42?9�6C�L9�89I9:898�C>2==Q�87><:F�649�9S2D<:26<C:�Y�2�H>C3955�6426�62E95�H=239�9?9:�<:�649�3259�649�4CD9;C>E5�3C:62<:�:C�<DHC>62:6�9>>C>50�	�Z��������������������������������������� �� !""#""$#%&�'()&#()*�+,(�,%[")&#�*"")\%$#%&"]��1234�56789:6�425�6C�42:8�H255�̂A_�C:A5<69�255<F:D9:650�P7==I<==98�255<F:D9:65�IC>D�2:�288<6<C:2=�H>9>9R7<5<69�IC>�H255<:F�649�3C7>590�X55<F:D9:65�2>9�25595598�25�9<649>�L9<:F�H25598�C>�I2<=98�GNOPJ0�X:�255<F:D9:6�6426�425�:C6�L99:�H25598�425�6C�L9�>936<I<980����̀Z�������������������������������������� � !""#""$#%&�'()&#(),%�+,(�"#a+[*""#"$#%&�&#"&"]�X==�56789:65�;<==�>939<?9�̂A@�59=IA25595D9:6�69565�C:�649�6CH<35�5678<980�K49�H7>HC59�CI�649�69565�<5�IC>�649�56789:6�6C�59=IA?2=<8269�4<5O49>�H>CI<3<9:3Q0�K9565�2>9�25595598�25�9<649>�L9<:F�H25598�C>�I2<=98�GNOPJ0�X�6956�6426�425�:C6�L99:�H25598�425�6C�L9�>936<I<980�b�c���������������������������� � X==�=2L�;C>E�5C=76<C:5�42?9�6C�L9�H>9H2>98T�<:3=78<:F�649��59=IA25595D9:6�695650�������������d����̀������������������������������������� � !""#""$#%&�'()&#(),%�+,(�-()&&#%�'(#e)&"]�f:�C>89>�6C�>939<?9�H>9>9R7<5<69�IC>�9S2D<:26<C:�233955<C:��IC>�649�3C7>59T�56789:65�42?9�6CU�V� 5C=?9�2==�=2L�;C>E�H>CL=9D5W�V� 89I9:8�2339H698�4CD9;C>E5T�C:A5<69�255<F:D9:65�2:8�649�59=IA25595D9:6�69565W�V� L9�2L=9�6C�2:5;9>�288<6<C:2=�R7956<C:5�6426�2>9�>9=2698�6C�649�





169 

Appendix K 

Table 1 Reference group’s results 

September 2013 September 2014 January 2014 January 2015 

x f x f x f x  f

17 1 12 1 59 1 46 1 

22 1 14 1 60 5 50 1 

23 2 17 2 62 2 54 2 

25 2 18 1 63 1 56 4 

28 1 19 6 64 3 57 1 

30 1 21 4 65 2 60 1 

32 1 22 1 66 5 62 1 

33 2 23 1 67 2 63 2 

34 1 24 1 68 3 64 1 

36 2 26 1 69 2 65 4 

38 2 27 1 70 3 66 1 

39 1 28 3 71 2 67 3 

40 2 29 3 72 5 68 2 

41 1 31 2 73 2 69 2 

42 3 32 6 74 3 70 1 

43 1 34 5 75 1 71 3 

44 6 35 2 76 4 72 1 

46 6 37 3 77 1 74 1 



170 

47 2 42 2 78 7 75 8 

48 3 43 3 79 4 76 7 

50 4 44 1 80 1 77 1 

51 3 45 4 81 1 78 1 

52 1 50 1 82 3 79 2 

53 2 52 1 84 6 80 2 

54 4 53 1 86 1 81 2 

55 6 54 4 87 1 82 1 

56 2 56 1 91 1 85 1 

57 2 60 1 92 3 86 2 

58 1 61 2 94 1 87 7 

59 6 62 1 96 4 88 1 

60 2 64 1 98 2 96 1 

61 3 65 1 99 1 98 2 

63 1 67 1 100 6 99 1 

64 1 69 1 100 4 

65 2 73 1 

67 1 74 1 

68 1 76 2 

69 2 82 1 

74 2 

78 1 



171 

79 1 

Table 2 Test group’s results 

September 2013 September 2014 January 2014 January 2015 

x f x f x f x f

20 1 15 1 71 1 56 1 

23 1 17 3 75 1 67 1 

24 1 19 2 76 1 68 1 

27 1 21 4 77 2 69 1 

28 3 22 5 78 1 72 2 

30 1 23 1 79 4 76 2 

32 1 24 3 80 4 78 2 

33 1 25 3 81 4 79 6 

34 2 26 1 82 2 80 1 

35 2 27 4 83 1 81 1 

36 1 29 2 85 1 82 1 

37 1 31 4 86 4 83 1 

38 2 32 2 87 3 84 1 

39 1 34 3 88 3 85 3 

40 6 36 1 89 5 86 2 

42 3 38 2 90 7 87 2 



172 

43 2 39 2 91 4 88 3 

44 8 41 1 92 6 89 5 

46 4 42 1 93 2 91 2 

47 3 43 6 94 3 92 1 

48 7 45 3 95 1 93 3 

49 2 47 1 96 2 94 5 

50 1 50 1 98 16 95 4 

51 2 51 2 100 11 96 4 

52 4 52 1 97 4 

53 2 53 2 98 8 

54 3 54 1 99 2 

55 7 56 1 100 6 

56 2 60 1 

57 1 61 1 

58 1 65 1 

59 2 67 2 

61 3 69 1 

63 4 71 1 

69 2 72 1 

71 1 74 1 

75 1

78 1



173 

83 1

Table 3 Theoretical t values 

Degrees of 
freedom 

Probability 
0,1 0,05 0,01 0,001 

 1,65 1,96 2,58 3,29 



174 

Appendix L 

Table 4 Exams results during the experiment 

Academic 
year 

Number of 
students who 
did not attend 

the exam 

Grades Total 
number 

of 
students

Number of 
students 

who attend 
the exam 

Average 
grade 0 1 2 3 4 5 

2010/11 13 7 15 35 98 7 0 175 162 2,5 

2011/12 10 6 13 25 99 19 2 174 164 2,7 

2012/13 5 7 3 17 113 19 15 179 174 3,0 

2013/14 2 0 0 7 37 89 43 178 176 4,0 

2014/15 2 0 0 3 12 84 49 150 148 4,2 

2015/16 1 0 0 2 9 46 50 108 107 4,3 



175 

CURRICULUM VITAE 
Personal data 

Name: Olga Mironova 

Date of birth: 07.09.1978 

Place of birth: Tallinn, Estonia 

Citizenship: Estonian 

Contact data 

Address: Akadeemia tee 15a, 12618 Tallinn, Estonia 

Phone: +372 5210042 

E-mail: olga.mironova@ttu.ee 

Education 

2005–...Tallinn University of Technology, PhD 

2002–2004 Tallinn University of Technology, M. Sc 

1996–2001 Tallinn Pedagogical University, B. Sc, M. Sc 

1993–1996 Juhkentali Secondary School  

1985–1993 Suurpea primary school  

Language competence 

English Average  

Estonian Fluent   

Russian Mother tongue 

Professional employment 

01.01.2017–...    Tallinn University of Technology, School of Information 
Technologies, Department of Software Science, Lecturer (1,00) 

2015–31.12.2016 Tallinn University of Technology, Faculty of Information 
Technology, Department of Informatics, Chair of Software Engineering, 
Lecturer (1,00)  

2008–2015 Tallinn University of Technology, Faculty of Information 
Technology, Department of Informatics, Chair of Software Engineering, 
Assistant (1,00)  



176 

2006–2008 Tallinn University of Technology, Faculty of Information 
Technology, Department of Informatics, Chair of Software Engineering, 
Maternity leave (1,00)  

2004–2006 Tallinn University of Technology, Faculty of Information 
Technology, Department of Informatics, Chair of Software Engineering, 
Assistant (1,00)  

2002–2004 Tallinn University of Technology, Assistant (1,00) 

2001–2004 Tallinn Downtown Secondary School, Teacher (1,00) 



177 

ELULOOKIRJELDUS 
Isikuandmed 

Nimi: Olga Mironova 

Sünniaeg: 07.09.1978 

Sünnikoht: Tallinn, Eesti 

Kodakondsus: Eesti 

Kontaktandmed 

Aadress: Akadeemia tee 15a, 12618 Tallinn, Eesti 

Telefon: +372 5210042 

E-mail: olga.mironova@ttu.ee 

Hariduskäik 

2005–...Tallinna Tehnikaülikool, doktoriõppe  

2002–2004 Tallinna Tehnikaülikool, magistiõppe  

1996–2001 Tallinna Pedagoogikaülikool, bakalaureuse- ja magistriõppe 

1993–1996 Tallinna Juhkentali Gümnaasium  

1985–1993 Suurpea põhikool 

Keelteoskus 

Inglise keel Kesktase 

Eesti keel Kõrgtase 

Vene keel Emakeel 

Teenistuskäik 

01.01.2017–... Tallinna Tehnikaülikool, Infotehnoloogia teaduskond, 
Tarkvarateaduse instituut, Lektor (1,00) 

2015–31.12.2016 Tallinna Tehnikaülikool, Infotehnoloogia teaduskond, 
Informaatikainstituut, Tarkvaratehnika õppetool, Lektor (1,00)  

2008–2015 Tallinna Tehnikaülikool, Infotehnoloogia teaduskond, 
Informaatikainstituut, Tarkvaratehnika õppetool, Assistent (1,00)  

2006–2008 Tallinna Tehnikaülikool, Infotehnoloogia teaduskond, 
Informaatikainstituut, Tarkvaratehnika õppetool, Lapsepuhkus (1,00)  

2004–2006 Tallinna Tehnikaülikool, Infotehnoloogia teaduskond, 
Informaatikainstituut, Tarkvaratehnika õppetool, Assistent (1,00) 



178 

2002–2004 Tallinna Tehnikaülikool, tunnitasuline õppejõud (1,00) 

2001–2004 Tallinna Kesklinna Vene Gümnaasium, Õpetaja (1,00)  



179 

DISSERTATIONS DEFENDED AT  
TALLINN UNIVERSITY OF TECHNOLOGY ON  

INFORMATICS AND SYSTEM ENGINEERING 

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the
Third-Order Statistical Models. 1999. 

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility
Impairments – Case Studies and Views from Estonia. 1999. 

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-Business.
1999. 

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of Cost
Effective Hardware Solutions. 2001. 

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by
Decision Diagrams. 2001. 

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods
for Control Part of Digital Systems. 2002. 

11. Raul Land. Synchronous Approximation and Processing of Sampled Data
Signals. 2002. 

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis and
Reproduction of Periodic Components of Band-Limited Discrete-Time Signals. 
2002. 

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops:
Behavioral Analysis and Parameterization. 2003. 

14. Irina Astrova. On Integration of Object-Oriented Applications with
Relational Databases. 2003. 

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented
Business Modelling and Simulation. 2004. 

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of
Digital Systems. 2004. 



180 

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in
Maintenance-Free Batteries with Fixed Electrolyte. 2004. 

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to
Semiconductor Silicon. 2004. 

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication
Systems. 2005. 

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-
Aware, UML and Agent Based Approach. 2005. 

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based
Complementary JBS Structures. 2005. 

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja
elementide disainimine ja optimeerimine. 2005. 

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I.
2005. 

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum
Clique Problem. 2005. 

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой
фазы эпитаксиальных структур арсенида галлия с высоковольтным p-n 
переходом и изготовления диодов на их основе. 2006. 

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech Recognition.
2006. 

32. Erki Eessaar. Relational and Object-Relational Database Management
Systems as Platforms for Managing Softwareengineering Artefacts. 2006. 

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-
impedance. 2007. 

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired
Underwater Robot. 2007. 

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis
and Optimization of BIST. 2007. 

36. Eduard Petlenkov. Neural Networks Based Identification and Control of
Nonlinear Systems: ANARX Model Based Approach. 2007. 



181 

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case Studies
of Linguistic and Banking Data. 2007. 

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit
State Model Checking. 2007. 

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering:
A Unified View, Extensions and an Application to Inventory Management. 2008. 

40. Andrei Pokatilov. Development of National Standard for Voltage Unit Based
on Solid-State References. 2008. 

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear
Information Processing Methods: Case Studies of Estonian Islands 
Environments. 2008. 

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-
Level Decision Diagrams. 2008. 

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program
Transformations. 2008. 

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model –
Dependency Flow Graphs-Based Approach. 2008. 

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the
Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components. 
2009. 

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like
Networks on Chips. 2009. 

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children
Language. 2009. 

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation
Methods and Design Principles. 2009. 

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and
Synthesis for Nonlinear Control Systems. 2010. 

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of Attack
Trees. 2010. 



182 

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User
Interfaces. 2010. 

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and
Reasoning of Ad-Hoc Network Agents. 2010. 

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages.
2010. 

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability
Identification Techniques for Synchronous Sequential Circuits. 2010. 

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Integrated
Circuit for Portable Applications. 2011. 

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.
2011. 

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-
Silicon Carbide Contact Obtained by Diffusion Welding. 2011. 

62. Martin Jaanus. The Interactive Learning Environment for Mobile
Laboratories. 2011. 

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance
Measurement: Current Source Design and Implementation. 2011. 

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber
Attack Mitigation Strategies. 2011. 

65. Riina Maigre. Composition of Web Services on Large Service Models. 2011.

66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of Domains,
Requirements and Sofware. 2011. 

68. Juri Gavšin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting
Algorithms Using Tree-like Structures and HFSM Models. 2012. 

70. Anton Tšertov. System Modeling for Processor-Centric Test Automation.
2012. 

71. Sergei Kostin. Self-Diagnosis in Digital Systems. 2012.

72. Mihkel Tagel. System-Level Design of Timing-Sensitive Network-on-Chip
Based Dependable Systems. 2012. 

73. Juri Belikov. Polynomial Methods for Nonlinear Control Systems. 2012.

74. Kristina Vassiljeva. Restricted Connectivity Neural Networks based
Identification for Control. 2012. 



183 

75. Tarmo Robal. Towards Adaptive Web – Analysing and Recommending Web
Users` Behaviour. 2012. 

76. Anton Karputkin. Formal Verification and Error Correction on High-Level
Decision Diagrams. 2012. 

77. Vadim Kimlaychuk. Simulations in Multi-Agent Communication System.
2012. 

78. Taavi Viilukas. Constraints Solving Based Hierarchical Test Generation for
Synchronous Sequential Circuits. 2012. 

79. Marko Kääramees. A Symbolic Approach to Model-based Online Testing.
2012. 

80. Enar Reilent. Whiteboard Architecture for the Multi-agent Sensor Systems.
2012. 

81. Jaan Ojarand. Wideband Excitation Signals for Fast Impedance
Spectroscopy of Biological Objects. 2012. 

82. Igor Aleksejev. FPGA-based Embedded Virtual Instrumentation. 2013.

83. Juri Mihhailov. Accurate Flexible Current Measurement Method and its
Realization in Power and Battery Management Integrated Circuits for Portable 
Applications. 2013. 

84. Tõnis Saar. The Piezo-Electric Impedance Spectroscopy: Solutions and
Applications. 2013. 

85. Ermo Täks. An Automated Legal Content Capture and Visualisation
Method. 2013. 

86. Uljana Reinsalu. Fault Simulation and Code Coverage Analysis of RTL
Designs Using High-Level Decision Diagrams. 2013. 

87. Anton Tšepurov. Hardware Modeling for Design Verification and Debug.
2013. 

88. Ivo Müürsepp. Robust Detectors for Cognitive Radio. 2013.

89. Jaas Ježov. Pressure sensitive lateral line for underwater robot. 2013.

90. Vadim Kaparin. Transformation of Nonlinear State Equations into Observer
Form. 2013. 

92. Reeno Reeder. Development and Optimisation of Modelling Methods and
Algorithms for Terahertz Range Radiation Sources Based on Quantum Well 
Heterostructures. 2014. 

93. Ants Koel. GaAs and SiC Semiconductor Materials Based Power Structures:
Static and Dynamic Behavior Analysis. 2014. 

94. Jaan Übi. Methods for Coopetition and Retention Analysis: An Application
to University Management. 2014. 



184 

95. Innokenti Sobolev. Hyperspectral Data Processing and Interpretation in
Remote Sensing Based on Laser-Induced Fluorescence Method. 2014. 

96. Jana Toompuu. Investigation of the Specific Deep Levels in p-, i- and n-
Regions of GaAs p+-pin-n+ Structures. 2014. 

97. Taavi Salumäe. Flow-Sensitive Robotic Fish: From Concept to Experiments.
2015. 

98. Yar Muhammad. A Parametric Framework for Modelling of Bioelectrical
Signals. 2015. 

99. Ago Mõlder. Image Processing Solutions for Precise Road Profile
Measurement Systems. 2015. 

100. Kairit Sirts. Non-Parametric Bayesian Models for Computational 
Morphology. 2015. 

101. Alina Gavrijaševa. Coin Validation by Electromagnetic, Acoustic and 
Visual Features. 2015. 

102. Emiliano Pastorelli. Analysis and 3D Visualisation of Microstructured 
Materials on Custom-Built Virtual Reality Environment. 2015. 

103. Asko Ristolainen. Phantom Organs and their Applications in Robotic 
Surgery and Radiology Training. 2015. 

104. Aleksei Tepljakov. Fractional-order Modeling and Control of Dynamic 
Systems. 2015. 

105. Ahti Lohk. A System of Test Patterns to Check and Validate the Semantic 
Hierarchies of Wordnet-type Dictionaries. 2015. 

106. Hanno Hantson. Mutation-Based Verification and Error Correction in 
High-Level Designs. 2015. 

107. Lin Li. Statistical Methods for Ultrasound Image Segmentation. 2015. 

108. Aleksandr Lenin. Reliable and Efficient Determination of the Likelihood 
of Rational Attacks. 2015. 

109. Maksim Gorev. At-Speed Testing and Test Quality Evaluation for High-
Performance Pipelined Systems. 2016. 

110. Mari-Anne Meister. Electromagnetic Environment and Propagation 
Factors of Short-Wave Range in Estonia. 2016. 

111. Syed Saif Abrar. Comprehensive Abstraction of VHDL RTL Cores to ESL 
SystemC. 2016. 

112. Arvo Kaldmäe. Advanced Design of Nonlinear Discrete-time and Delayed 
Systems. 2016. 

113. Mairo Leier. Scalable Open Platform for Reliable Medical Sensorics. 2016. 

114. Georgios Giannoukos. Mathematical and Physical Modelling of Dynamic 
Electrical Impedance. 2016. 



185 

115. Aivo Anier. Model Based Framework for Distributed Control and Testing 
of Cyber-Physical Systems. 2016. 

116. Denis Firsov. Certification of Context-Free Grammar Algorithms. 2016. 

117. Sergei Astapov. Distributed Signal Processing for Situation Assessment in 
Cyber-Physical Systems. 2016. 

118. Erkki Moorits. Embedded Software Solutions for Development of Marine 
Navigation Light Systems. 2016.  

119. Andres Ojamaa. Software Technology for Cyber Security Simulations. 
2016. 

120. Gert Toming. Fluid Body Interaction of Biomimetic Underwater Robots. 
2016. 

121. Kadri Umbleja. Competence Based Learning – Framework, 
Implementation, Analysis and Management of Learning Process. 2017. 

122. Andres Hunt. Application-Oriented Performance Characterization of the 
Ionic Polymer Transducers (IPTs). 2017. 

123. Niccolò Veltri. A Type-Theoretical Study of Nontermination. 2017. 

124. Tauseef Ahmed. Radio Spectrum and Power Optimization Cognitive 
Techniques for Wireless Body Area Networks. 2017. 

125. Andre Veski. Agent-Based Computational Experiments in Two-Sided 
Matching Markets. 2017 

126. Artjom Rjabov. Network-Based Hardware Accelerators for Parallel Data 
Processing. 2017. 

127. Fatih Güllü. Conformity Analysis of E-Learning Systems at Largest 
Universities in Estonia and Turkey on the Basis of EES Model. 

128. Margarita Spitšakova. Discrete Gravitational Swarm Optimization 
Algorithm for System Identification. 2017. 


	Blank Page
	Blank Page
	Blank Page
	Blank Page



