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Abstract 

Testing of delay faults is one of the important problems in the semiconductor industry. 

Most common delay fault has been transition delay fault (TDF) model due to the easy 

measurability and closeness to the standard stuck-at-fault (SAF) model. The main 

difficulty of the test generation for these models is related to the exponential complexity 

of the task that makes the methods for SAF and TDF test generation not scalable.    

In this thesis, a new method, algorithms, and tools are developed, which have linear 

complexity, and are therefore scalable and can be efficient also for complex circuits. 

Differently from the traditional approach of generating tests by structural analysis of 

circuits, which is the reason of the exponential complexity, the new proposed method is 

based on transforming the SAF test directly to the TDF test. The transformation is based 

on analysis of the fault table of SAF test and recombining the SAF test patterns to satisfy 

the conditions of TDF testing. The proposed approach is implemented by creating two 

tools: a novel fault simulator for evaluating the TDF cover of the given SAF test, and a 

generator of additional test pairs to improve the TDF cover close to the value of SAF 

cover. 

Experimental research with using traditional ISCAS’85 benchmark circuits showed the 

feasibility and efficiency of the new approach, and demonstrated a speed-up of TDF test 

generation compared to the traditional structural approach. 
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Annotatsioon 

Testide genereerimine viivitusriketele digitaalskeemides 

Viivitusrikete testimine on elektroonikatööstuses üks olulisi probleeme. Kõige levinum 

viivitusrikke tüüp on  siirdeviivitusrike (SVR) tänu lihtsale mõõdetavusele ja standardse 

konstantrikke (KR) mudeli lähedusele. Testide genereerimise peamised raskused nende 

mudelite kasutamisel on seotud ülesande eksponentsiaalse keerukusega, mille tõttu KR- 

ja SVR-testide genereerimise meetodid skaleeruvad halvasti keerukate skeemide puhul. 

Selles magistritöös on väljatöötatud uus meetod, algoritmid ja tööriistad, milliste 

omaduseks on lineaarne keerukus ja mis seetõttu skaleeruvad hästi ja on efektiivsed ka 

keerukate skeemide jaoks. Erinevalt traditsioonilisest lähenemisest, milleks on testide 

genereerimine skeemide struktuurse analüüsi abil, mis ongi eksponentsiaalse keerukuse 

põhjuseks, põhineb uus väljatöötatud meetod KR-testi teisendamisel otse SVR-testiks. 

Teisendus põhineb KR-testi rikete tabeli analüüsil ja KR-testi vektorite 

rekombineerimisel, et täita SVR testimise tingimusi. Uue lähenemisviisi rakendamiseks 

projekteeriti töös kaks tööriista: uudne rikete simulaator etteantud KR-testi poolt 

saavutatava SVR-katte hindamiseks ja täiendavate testipaaride generaator SVR-katte 

parandamiseks, et saavutada KR-katte tase. 

Eksperimentaaluuringud, milles kasutati traditsioonilisi ISCAS'85 katseskeeme, 

demonstreerisid uue lähenemisviisi teostatavust ja tõhusust ning tõestasid SVR-testide 

genereerimise suuremat kiirust, võrreldes traditsioonilise struktuurse lähenemisviisiga 

testide genereerimisele. 
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1 Introduction 

The aim of this thesis is test sequence generation for testing transition delay faults (TDF) 

in combinational circuits from the given set of test patterns, which generated for stuck-

at-faults (SAF). Alongside of generating test sequence this work also focuses on 

improving fault coverage for transition delay fault (TDF).  

The rest of this chapter discusses on different test methods and delay faults simulation 

methods.   

1.1 Background and Problem 

Transition delay is a common issue in the semiconductor industry where the 

manufacturing process costs a large amount of money due to chip identification and 

elimination. To reduce the cost as well as the number of faulty chips, proper investment 

in chip testing and diagnosis can be a game-changing decision for the manufacturing 

process. The need for delay testing arises from here. The main objective of the delay test 

is to detect the faults and to make sure that the design meets the desired performance 

specifications [1]. 

Nowadays, there have been plenty of fault models to perform the transition delay tests. 

Here, the single stuck-at-fault model is considered as the classical fault [2][3]. Other fault 

models such as transition delay fault, gate delay fault, and bridging fault, which are 

mainly non-classical faults. 

A vital aspect of guaranteeing high-quality chip fabrication is effective fault analysis 

through a transition delay test. A better fault diagnosis algorithm, along with a better test 

generation system, can bring efficiency and achievement as well. Timing issues and cost 

efficiency are the main reason for the transition delay test generation. The use of stuck-at 

fault pattern generation [4] in the diagnosis of transition delay test generation is the main 

contribution of this thesis. 
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1.2 Goal of thesis 

The goal of this work was to develop a new method for generating tests of Transition 

Delay Faults (TDF) using the tests generated for Stuck-at-Faults (SAF) and the SAF fault 

table. For this work, we had to develop two separate algorithms where the first algorithm 

works on generating transition delay faults (TDF) test, and the second algorithm helps to 

improve the fault coverage by using additional test patterns.  

Alongside these two algorithms, we also worked on another algorithm which helps to 

update the fault vectors and calculate the fault coverage.  
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1.3 Organization of thesis 

The thesis is organized as follows. 

 

In chapter 2, a brief discussion about digital test methods and fault simulation and fault 

diagnosis. Chapter 2 also discuss about Turbo-Tester.  

 

Chapter 3 discusses different delay fault simulation method.  

 

In chapter 4, a brief discussion about developed new method for transition delay test 

generation and the algorithm for improving delay fault coverage.  

 

Chapter 5 is about the experimental results. 

 

Conclusions or summary of work is presented in chapter 6. 

 

Appendix and References are listed after the conclusion.  
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2 Overview of digital test methods 

2.1 Fault models 

While generating the transition delay test and fault diagnosis processes, we need to 

represent corresponding test patterns and logical faults. Here we discuss the popular fault 

models from stuck-at fault models to bridging fault models. These are also divided into 

transistor-level faults, gate-level faults, delay faults, and many more. 

 

2.1.1 Stuck-at-fault model 

Stuck-at Fault Model is the most used gate-level fault model. It is a signal line stuck at a 

logic ‘0’ or ‘1’, which is referred to as stuck-at 0 and stuck-at 1, respectively. Also, 

assuming that the value cannot be changed anyway. 

It is a logic fault model that is related to timing issues. The stuck-at fault generally 

represents a slight physical defect where for a circuit with ‘N’ signal lines, the number of 

possible stuck-at faults is ‘2N’. 

From figure 1, the input value of the NAND gate is ‘11’and the output value is ‘0’. Due 

to the stuck-at-0 fault in input line 1, the actual input of this NAND gate is stuck at ‘01’. 

And so the output response becomes ‘1’. To sharpen this stuck-at 0 faults in input line 1, 

we must apply ‘1’ at that line, and on the other front, we need to use non-effect signal ‘1’. 

 

 

Figure 1 A NAND gate stuck-at fault illustration. 
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2.1.2 Transition Delay Fault Model 

In general, transition delay fault models are divided into two categories; the first one is 

path delay fault, and the second one is the transition delay fault. Path delay fault model 

spreads the circuit path from flip-flop to flip-flop where transition delay fault occurs at a 

single gate input or output in the circuit, which also has an excessive delay. Figure 2 

shows a transition delay fault as ‘slow-to-rise’ and ‘slow-to-fall.’ It is Similar to a stuck-

at fault fixed at ‘0’ or ‘1’. 

A pair of sequence test vectors has to be applied to detect the delay faults for both. Here, 

the first vector set considered to be the first state on the target signal line, and the second 

one is the specific fault along with the effect to a primary output. The model consists of a 

modeling flip-flop which is shown in Figure 2(a) initializes to 1 and an AND gate. When 

we apply ‘00’, ‘11’, and ‘10’, we will get a corresponding output from the model. But, 

when we use ‘01’, the output response will be ‘00’. 

Similarly, modeling flip-flop initialized to 0 in Figure 2(b). Here, when we apply ‘10’, the 

output comes ‘11’, which is supposed to be ‘10’. This is how slow-to-fall fault is 

modelled. 

 

 

 

 

 

 

Figure 2 Modelling of transistion delay fault 
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2.1.3 Bridging Fault Model 

During the process of VLSI, two segments in the interconnection area may result in logic 

errors while getting too close to each other. Here, to create a stuck-at fault bridging 

between a signal line to VDD is analogous.  

Figure 3 contains the most common bridging fault models, which are wire-AND, wire-

OR, and dominant [5]. In the wire-AND model, logic 0 controls the two bridged nodes. 

That means either of two nodes being ‘0’ or will lead to ‘0’.  

Similarly, if the wire-OR model provides a 1-dominant bridging fault, the value of the 

two shorted wire is ‘1’ and also generates ‘1’ on both lines. In the predominant spanning 

deficiency, the sign an incentive on one line is driven by the impulse on the other line 

with more grounded capacity. 

 

 

 

Figure 3 Modeling of bridging fault 
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2.1.4 Other Fault Models 

There are lots of variety of fault models; for instance, we can classify transistor-level 

stuck-at fault [6] as stuck-on and stuck-off . Stuck-off can be modelled as a conventional 

stuck-at fault as well. The performance of a stuck-on fault is never conducted because a 

stuck-on fault always conducts a transistor.  

IDDQ fault [7] power supply current is larger than the expectation, but the circuit may 

pass logical testing but it’s in a static condition, and it can be utilized in any transistor-

level stuck-at fault testing. 

 

2.2 Test generation methods 

Test generation is a way of producing an effective set of vectors that will achieve high 

fault coverage for a specific fault model. Due to imperfect design or manufacturing 

process, it is possible to have defects in chip. The main purpose of test generation is to 

produce a set of test vectors that will help to detect any fault in the chip. Figure 4 

illustrates a high-level concept of test generation. In this figure, the circuit at the top is 

defect free, and for any defective chip, which is functionally different from the defect-

free one there must exist some input that can differentiate the two [8]. 

 

 

 

 

           Figure 4 Conceptual view of test generation 
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If the ATPG engine is capable of delivering high-quality test patterns that achieve high 

fault coverages and small test sets, DFT would no longer be necessary. It is difficult and 

unrealistic to generate vectors targeting all possible defects that could potentially occur 

during the manufacturing process. 

 

2.2.1 Random test generation 

Random test generation is one of the most simple methods for generating vectors. The 

disadvantages of RTG are that due to difficult-to-test-faults, the test set size may grow 

enormous, and the fault coverage may not be adequately high. At the primary inputs, logic 

values are randomly generated in RTG. Since the pseudo-random number generator is 

used, the random test set is not truly random [8].  

A random test set T is measured as the probability that a random test set can detect entire 

stuck-at faults in the circuit. For N random vectors, the test quality 𝑡𝑁 defines the 

probability that all the detectable stuck-at faults are detected by these random vectors N. 

Therefore, the test quality of a random test set greatly depends on the CUT  [8]. 

For example, consider a circuit with an eight-input AND gate (or equivalently a cone of 

seven two-input AND gates), illustrated in Figure 5 While achieving a logic 0 at the 

output of the AND gate is quite easy but to get a logic 1 is bit difficult. A logic 1 requires 

all the inputs to be at logic 1 itself. If the random pattern generation assigns each primary 

input value with an equal probability of logic 1 or logic 0, the chance of getting eight 

logic 1’s simultaneously would only be 0.58 = 0.0039. Especially, the AND gate output 

stuck-at-0 fault would be challenging to test by the RTG. These faults are known as 

random-pattern resistant faults [8]. 

 

 

 

 

Figure 5 Two equivalent circuits 
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The quality of a random test set totally depends on the underlying circuit. More random-

pattern resistant faults will reduce the quality of the random test set. In order to overcome 

the problem of targeting random-pattern resistant faults, biasing is required so that the 

input vectors are not viewed as uniformly distributed [8]. 

Another issue with the random test generation is the number of random vectors needed. 

Given a circuit with n primary inputs, there are clearly 2𝑛 possible input vectors [8]. The 

probability of detecting fault f  by any random vector can be expressed as: 

𝑑𝑓 =
𝑇𝑓

2𝑛
 

where 𝑇𝑓is the set of vectors that detects fault f . As a result, the probability that a random 

vector will not detect f  is: 

𝑒𝑓 = 1 − 𝑑𝑓 

Thus, for given N random vectors, the probability that none of the N vectors detects fault 

f is: 

The probability that at least one out of N vectors will detect fault f is: 

 

1 − (1 − 𝑑𝑓)
𝑁 

 

If the detection probability, 𝑑𝑓 , for the hardest fault is known, N can be calculated by the 

following inequality 

1 − (1 − 𝑑𝑓)
𝑁 ≥ 𝑝 

where p is the probability that N vectors should detect fault f . 
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2.3 Fault simulation and fault diagnosis 

Fault simulation is the process that figures out the detected and undetected faults, which 

mainly comes for testing and simulating stuck-at failures than can be easily adapted to 

test and simulate transition faults [9]. It is more challenging than logic simulation because 

when affecting one, the amount of computation is proportional to the number of test 

patterns, circuit size, and the number of modeled faults. It also noted that fault simulation 

is a reverse process of ATPG to a certain extent [10]. 

Basically, a fault simulator applies all the generated test patterns to the target fault as well 

as the fault set. After then simulate failures and observe output responses. We can call a 

circuit a suitable circuit if the output of the faulty circuit is different from the expected; 

otherwise, we get a detected fault. To improve fault simulation performance, various fault 

simulation techniques have been developed. We have Serial Fault Simulation, Parallel 

Fault Simulation, Parallel-Pattern Fault Simulation, Deductive Fault Simulation, 

Concurrent Fault Simulation, Differential Fault Simulation to be mentioned.  

Now, in any example, we simply illustrate fault simulation, and fault detection is a natural 

process due to the outputs of the fault-free and faulty circuits being either 1 or 0, and they 

are different. But in practical cases, the decision of fault detection is a bit more 

complicated than we think. For instance, suppose the stuck-at-zero fault occurs at the 

enable input and is forced to 0. Then the tri-state buffer’s output is floating. Now, the 

fault is detected or not is unclear, because the logic value of a floating signal accidentally 

Figure 6 Detection of a fault 
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corrects or maybe the same as the correct value. Finally, some faults may cause the faulty 

circuit behavior to deviate significantly from the right response; for example, stuck-at 

faults on clock signals. 

2.4 Turbo-Tester as a toolbox for test 

Turbo tester (TT) is a powerful tool for testing digital circuits. It can work on both 

Windows and Linux operating systems. Turbo tester (TT) can be used for different 

purposes such as test patterns generation, Build in self-test emulation, Fault simulation, 

Multi valued simulation, Test set optimization, and many more [11].  

 

Figure 7 presents the flow of the turbo tester system. Test pattern generators and fault 

simulators are available for combinational and sequential circuits. Combinational circuits 

can be tested by random, deterministic and genetic algorithm based methods, while for 

sequential designs a random ATPG is available [11].  

.  

 

 

Figure 7 System flow of Turbo Tester [11] 
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All the tools in the Turbo Tester system operate on the design model of Structurally 

Synthesized Binary Decision Diagrams (SSBDD). Unlike Binary Decision Diagrams 

(BDDs), they are capable of representing gate-level structural faults [11]. 

In Turbo Tester, there are two options for generating SSBDDs: 

 1. Macro-level SSBDDs  

2. Gate-level SSBDDs  

In the gate-level SSBDDs, each gate is represented by corresponding BDD, and the circuit 

model does not differ from ordinary gate-level model. 

In Figure 8, the design interface of the Turbo Tester system is presented. 

 

 

All of the Turbo Tester Automated Test Pattern Generators (ATPG) are able to reading 

information about detected faults from a test pattern file that are already exists. This 

means that the ATPGs of the system can be run in an arbitrary sequence, where one ATPG 

generates test patterns covering a set of faults, and another test pattern generator continues 

to target the faults not detected by the previous one [11]. 

In this thesis, we work with automated test pattern generators (ATPG), where we generate 

a table of test patterns for a circuit that helps us to detect transition delay faults. 

 

 

 

 

 

Figure 8 Turbo Tester Design Interface [11] 



 

24 

3 Overview of delay fault simulation methods 

3.1 Delay fault model 

There are three delay fault models to be considered: The first one is the transition fault 

model, the second gate-delay fault model, and the final one is the path-delay fault model.  

In the simple design, it is assumed that each gate has a given fall delay from almost every 

input to the output pin, and here the interconnects have given rise delays. This happens 

because the gate pin to pin delays and the interconnect delays can be combined. Transition 

Gate-delay models are used to defects lumped at gates when the path-delay model 

addresses deficiencies that are distributed over several barriers for representing delay.  

The delay fault for the transition fault model affects only one gate in the circuit—

generally two transition faults associated with each of the gates. The first one is a slow-

to-rise fault, and the second one is a slow-to-fall fault. It seems that each fault-free circuit 

has some simple delay. Under the transition fault model, the extra delay is large enough 

to prevent the transition from reaching any primary output. No matter if it is at the time 

of observation or not, and the delay faults increase this delay frequently. 

In other words, we can observe the delay fault independently. Whether the transition 

propagates through a long or a short path to any primary output, this model is also referred 

to as the gross-delay fault model. Now, to detect a transition fault from a combinational 

circuit, it is always necessary to apply two input vectors, V =<1 2>. Here the first vector 

initializes the channel, which is 1, and the second vector activates the fault and 

propagates, which is 2. Also, Vector 2 can be found using stuck-at fault test generation 

tools. 

For instance, while testing a slow-to-rise transition, we have to initialize the first vector 

fault site to 0, and the second vector fault site to a stuck-at-0 fault at fault. What are the 

advantages then? The main advantage of the transition fault model is that the number of 

faults in the circuit is relatively small; also, the stuck-at fault test generation and fault 

simulation tools can be easily modified for handling transition faults. 

The gate-delay fault model is quantitative. It takes into account that the circuit delays to 

determine the ability of a test to detect a gate-delay defect. But, it is necessary to specify 

the delay size of the fault. The limitations of the gate-delay fault model are as similar as 

the transition fault model. The main advantage of this model is that the number of faults 

is linear, which is also identical to the number of gates in the circuit. Here, under the path-
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delay fault, if the delay of any of its paths exceeds a specified limit, then the model of a 

circuit is considered faulty. 

A delay defect on a path can be observed through the path by propagating a transition. 

However, a path-delay fault specification consists of a physical path and a transformation 

that will be applied at the beginning of the path. Where the delay or length of the path 

represents the sum of the setbacks of the gates and interconnections on that path. The 

major limitation of this fault model is, the number of paths in the circuit can be vast, and 

for this reason, testing all path-delay faults in the circuit is considered to be impractical. 

3.2 Transition delay fault simulation 

In the transition fault model, the delay fault occurs either in a rising and falling transition. 

There are two kinds of transition faults. 

1. Slow-to-rise 

2. Slow-to-fall 

Generally, the transition faults depend on the input and outputs of logic gates. As time 

becomes larger, the slow-to-rise fault behaves like an s-a-0 fault. In the same way, the 

slow-to-fall transition behaves like an s-a-1 fault. In addition, to propagate the effect of 

the transition, a transition follows that a test for transition fault should create an applicable 

transition at the pointy of the fault [12]. 

Initialization and transition propagation are the two definite patterns required for the 

transition fault. As the name illustrates, the initialization pattern places the initial 

transition value at the point of the fault. Then final transition value is placed at the point 

of the fault by the transition propagation pattern, and after that, it propagates the effect to 

a primary output. Figure 9 illustrates how the two pattern sequence creates a transition. 
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Figure 9   Two pattern sequence creating a transition 

 

From figure 9, we can be able to see that in the inputs, initial transition values are placed, 

and then the final transition values are placed by the transition propagation pattern. The 

pattern that detects the corresponding stuck-at-fault and the transition propagation is 

identical [12]. 

Let us discuss the path delays on the size of the delay faults, the minimum delay size 

detectable by the test of the transition fault will always differ . Let us consider an example 

shown in figure 10.  
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                                            Figure 10  Effects of path delays on the size of detectable delay faults 

 

The logic values and transitions are given on the signals. From figure 10, we can see, the 

transitions at the primary inputs A, B, C, D, and E occurs at time 0 while the time at the 

primary output Z is 12 units. It is very difficult to say how small a delay fault could be 

before it is not detectable. The path delay is defined as the sum of the delay through the 

gates along the path [12]. All the delay faults on this path of size should be greater than 

the difference between the measured time, i.e., the time at the primary output and the path 

delay should always be detectable. Nevertheless, it not always true in all the case. To have 

a clear look, see figure 10, the slow-to-rise transition fault on the input A creates a 

sensitized path to the primary output Z. Here the measured time is 12 units, and the delay 

along the sensitized path is 10 units. Therefore the difference is 2 units.  Hence this pair 

of patterns cannot detect delay faults of  4 units [12]. 

3.3 Simulation strategy 

The transition fault simulator is a stuck-at-fault simulator intensified to identify the logic 

gates that experience a transition in a pattern relative to the prior pattern. The Parallel 

Pattern Single Fault Propagation (PPSFP) simulator is used here because of its efficiency. 

Here, the concepts of multiple pattern evaluation and single-fault propagation are merged 
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to perform a simulation involving two values: Zero delay and 256 patterns per pass. Let 

us see how the PPSFP fault simulator works by the following algorithm.  

1. Create a list of transition faults whose test coverage is to be evaluated  

2. Assign the logic values to be placed at the primary inputs for the set of 256 

patterns, 

3. Regulate the previous states of primary inputs for this set of 256 patterns. 

4. Perform a machine rank order simulation for the current set of 256 patterns along 

with the 256 previous states. 

5. Simulate for each remaining transition fault by single fault propagation. 

For each fault perform the following steps 

a. Determine which of the 256 patterns accomplished a transition at the point of 

the fault by comparing the current state values with the previous state values. 

b. Consider only the patterns that experienced a transition and propagate fault 

values at the forward beginning at the point of the fault and continued until 

there are no longer different values from the good machine ranked values 

c. Eliminate the fault from further simulation when a fault becomes detectable 

at an observable point. 

6. Repeat the steps from 2-5 until all the patterns are simulated. 

Transition fault simulation makes sure that a delay fault of arbitrary size is observed at a 

measurable time by a set of test patterns. Compare to the traditional method our proposed 

method is much more efficient. We described the proposed method, and the experiment 

results in chapters four and five.  

 

3.4 Transition delay fault test generation 

Transition delay fault test generation is the opposite task to fault simulation, where for 

each fault, a test pair must be generated, where the first pattern initializes the state of the 

circuit, and the second pattern produces the transition of the signal from the state value to 

the opposite value. Then, the transition of the signal (the opposite value) must be 

propagated to the observable output of the circuit. 
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The figure 11 illustrates the test generation process for the fault “slow-to-rise” 0→1 on 

the line F of the circuit. For initialization of the state 0 on the line F, we have to apply the 

input signals A = 1 and B= 1. This is the first step of the process.  

On the second step we have to produce the change of the signal 1→0 on the input A, and 

propagate this transition via NAND gate to the fault site F, and produce there the rise of 

the signal 0→1. For that, we need to keep the state on the input B = 1.  

Further, to propagate the transition on F to the output E, we need the signal G = 1, and 

for that, in its turn, we have to apply the input signal C = 0 (or D = 0).  

If there is delay of the signal on the line F (due to the signal delay in the previous NAND 

gate), this delay will manifest himself as the fault “slow-to-rise” 0→1 on the site F. The 

delay fault propagates further to the output E, and because of the invertor of the output 

gate, the delayed signal transforms to the delay “slow to fall”. 

The signals generated in the first step for initialization purposes are notated in the circuit 

in blue color, and the signals generated in the second step of SAF generation are notated 

in the circuit in red color. The values “x” of signals mean “don’t care”, because they are 

not involved in the test generation process. 

From this example we can see, that the TDF test generation (as example, in case of “slow-

to-rise” 0→1) for the given node F can be considered as a procedure consisting of two 

tasks: 

1. initialization of the state of the circuit on F = 0, using backward signal justification 

procedure, and 

Figure 11 Test generation process 
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2. test generation for detecting if there is a fault „slow-to-rise“, i.e. that instead of 

the transition of the signal on F, it remains constant.  

It is easy to see, that the second step is equivalent to the test generation for the SAF type 

of fault F  0.  

The same consideration takes place also for detecting the TDF fault “slow-to-fall” 1→0.  

It is well known that the SAF test generation procedure, consisting of three tasks: signal 

initialization, signal propagation, and signal backward propagation for justification of 

assigned signals, has exponential complexity [2]. The same is valid for the first step of 

the described procedure of initialization, because it involves also the task of signal 

justification. 

From that, the motivation of this research work grew out: to avoid the cost expensive 

exponential TDF test generation using structural circuit analyses, investigate the 

feasibility of deriving the TDF test directly from the test set generated already for the 

SAF type of faults, which is the standard approach regarding test generation for digital 

circuits. 

The following chapters of the thesis are devoted to development of this new approach to 

TDF test generation. 
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4 Development of a new method for transition delay test 

generation 

4.1 General idea of the method 

The goal of the master thesis is test sequence generation for testing transition delay faults 

(TDF) in combinational circuits from the given set of test patterns, which were generated 

for stuck-at-faults (SAF). While for testing each SAF fault, a single test pattern  tj  is 

sufficient, then for testing each TDF, a pair T =  (ti, tj) of test patterns is needed. The first 

pattern ti  is for initialization of the circuit, whereas the second pattern tj activates a TDF 

fault and propagates its effect to some primary output. 

The test pair T =  (ti, tj) can be also generated in a deterministic way by an Automated test 

Pattern Generation (ATPG) tool if available. However, the complexity of the generation 

of two pattern sequences for TDF is much higher than single pattern generation for SAF. 

In this thesis the goal is to extend the SAF test, generated by single pattern ATPG to the 

TDF test. To solve this task, two algorithms were developed, described in the next 

sections. In this Section, the concept of these algorithms is present. 

 

 

Consider a circuit in Fig.12, which consists a combinational part  

y = (x1 & x2)  (x3 & x4) 

 

between 4-bit registers X and a register Y with highlighted trigger y as the output of the 

circuit. The pattern tj  can be found using Stuck-at-Fault test generation tools. For 

example, in Fig 12, a pattern X = (1101) is applied with expected value 1 at the output y. 

The pattern activates two SAF faults  SAF/0 at the inputs x1 and  x2. In this circuit the 

faults are propagated along the highlighted in red paths. Note, all other faults on the 

Figure 12 Combinational circuit between two registers with applied single input pattern 
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internal lines of these two paths are also detected. The faults x1  0 and x2  0 serve as 

representative faults of all faults detected by the pattern X = (1101). 

 

 
 

Figure 13 Test information regarding the test pattern applied to circuit in Fig 12 

 

In Fig.13, a test information regarding the test pattern applied to circuit in Fig.12 is 

presented, which consists of the Table of test patterns, SAF table and TDF table. In SAF 

table, the detected faults  x1  0 and x2  0 are highlighted in red (note, the notation of 

faults is opposite to the signal values on the lines). No faults at x3 and  x4 are detected, 

which is notated by symbol x. Also, no TDF fault is detected, because this is the first 

pattern, and the circuit is not initialized. 

Fig. 14 illustrates the situation of testing a slow-to-rise Transition Delay Fault on the input 

x1. Two test patterns (a pair of patterns) X1 = (1101) and  X2 = (0101) are applied to the 

inputs of the combinational part of the circuit with ` The pattern activates a path from  x1 

to y , highlighted in red , along which all TDF are detected.  

Note, the second pattern X2 detects also two SAF x1  1 and x3  1 (the path from x3 is 

highlighted with black bold lines). However, at the input x3 no TDF is detected, because 

there is no transition at  x3 produced by this test pair.  

 

 
 

Figure 14 Combinational circuit between two registers with applied two input patterns 
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Figure 15 Test information regarding the test pattern applied to circuit in fig 11 

 

 
 

Figure 16 TDF test generation for the circuit depicted in Fig.12 using Algorithm 1 

 

In the following, the idea of manipulations of the test information (test pattern table and 

fault table) generated by ATPG for detecting a set of single patters for detecting SAF 

faults. Such an information is presented in the leftmost table in Fig.16, where the test 

pattern table and fault table are combined. The table represents 4 test patterns and 4 input 

variables. The entries of the table represent the values of variables for the given 4 patterns. 

By red the cases, where a fault is detected, are marked. For example in the first row two 

1s mean that the SAF-type faults  x1  0 and x2  0 are detected. If a SAF is detected, this 

will be a prerequisite, that there is a possibility that also a TDF is detected. The condition 

of detecting the TDF is to have in this place a transition. 

Algorithm 1 was developed for creating the TDF Fault table as a matrix with entries 0, 1 

and x, where 0 means that at this pattern the TDF/(1→0) is detected, 1 means that at this 

pattern the TDF/(0→1) is detected, and x, if no TDF is detected. 

The first row in the TDF fault table will contain only symbols x, because no TDF can be 

detected by the first test pattern. The latter can serve only as initialization of the circuit. 

In the second row we analyses the variables where SAF is detected and check if there is 

also a transition. If yes, then we mark the respective TDF as detected, if not then no TDF 

is detected. The middle table in Fig.16 illustrates the result of this analysis for all the rows 
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of the SAF table. The right-most TDF cover table stores step-by-step the current states of 

the analysis carried out for all rows of the SAF table.  

There entries of the TDF cover table mean the following: x – means no TDF not yet 

detected, 0  – means TDF/(1→0) is detected, 1 – means TDF/(0→1) is detected, and ja – 

means that both faults TDF/(1→0) and TDF/(0→1) are detected. 

From the presented example, it can be seen that the sequence of 4 test patterns, which 

detects 100% of SAF faults (with total of 8 faults), only  half of TDF faults, i.e.50% are 

covered. 

The second part of TDF generation consists of adding additional test patterns to the TDF 

test sequence by selecting useful patterns from the initial SAF test set generated by the 

single pattern ATPG. 

 
 

Figure 17 Full process of TDF test generation for the circuit depicted in Fig.12 using Algorithms 1 and 2 

 

The idea of Algorithm 2 is illustrated in Fig.17. The initial test sequence of 4 patterns will 

be now extended. In each step, a pattern is chosen which satisfies at least for one variable 

the following two conditions: 

- The fault TDF/(0→1) is not detected, but SAF/1 is detected,  

- The fault TDF/(1→0) is not detected, but SAF/0 is detected.  

If one of these conditions is satisfied, the pattern will be included into the sequence, 

otherwise the search continues. The algorithm is finished if either all TDF are detected, 

or a scan through the given test pattern table will not be able to find any more pattern 

which would satisfy one of these two conditions.   
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4.2 Using  Turbo-Tester for generating input data for delay test 

generation 

Turbo tester is an automated test pattern generator (ATPG) and capable of reading 

information about already detected faults from a test pattern file.  

In this thesis, we use Turbo-Tester for generating input data, more specifically test 

patterns and Stuck at Fault (SAF) table. We use deterministic test pattern generator in our 

case [11].  

4.2.1 Deterministic test pattern generator 

Command:  generate 

Input:  SSBDD model file (.agm)  

Output: test pattern file (.tst), list of redundant faults (.red) 

Syntax:  generate [options] <design> 

Design:  Name of the design file without .agm extension. 

 

options:  

-backtracks <number>  Maximal number of backtracks. Default is 10.  

-test_per_fault  Generates test for every fault in the circuit. Preserves don’t 

care    values. 

-vector_limit<limit>   Maximal number of generated patterns. Default is 1000.  

-fault_table    Perform fault simulation for the final patterns.  

-infile<file>    Read data about covered faults from test patterns file file. 

[11] 

 

For generating the test patterns and SAF table, the command  looks like below :  

generate  -backtracks 1000 -fault_table C880 

To get better fault coverage, the number of backtracks depends on different circuits. By 

using this command, Turbo-tester generates the following report: 

 

Reading SSBDD-model file c880.agm... OK 

Allocating test patterns... OK 

Generating tests... 

Tested 1550 

Untestable 0 

Aborted 0 

Fault coverage: 100.000000 
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Fault efficiency: 100.000000 

84 Vectors 

30 Backtracks 

Time, used by process: 0.014000 

Fault Simulation... OK 

Time, used by process: 0.030000 

Writing test patterns file c880.tst... OK 

 

In the .tst file, test patterns and SAF patterns table are generated, which we use as input 

for delay test generation. Alongside the patterns, it also generated the fault coverage 

vector and the number of fault coverage as well [11].  

4.3 Algorithm for converting stuck-at-fault table to delay fault table 

This algorithm was developed for creating the transition delay fault(TDF) table as a 

matrix with entries 0, 1 and x, where 0 means that at this pattern the TDF/(1→0) is 

detected, 1 means that at this pattern the TDF/(0→1) is detected, and x, if no TDF is 

detected. 

 

……………………………………………………………………………………………. 

Algorithm 1- Converting stuck-at-fault table to delay fault table 

…………………………………………………………………………………………….

. 

Input: Test patterns table, SAF table, Mapping table.  

Output: Delay fault table.  

Notation: 

t- Number of total pattern. 

i- nodes 

j- variables 

VT- Variable table. 

FT- Fault table 

………………………………………………………………………………………………………... 

1. FOR all test patterns  t = 2,3, …, T 

2. FOR all nodes i = 0,1, …, n 

3. IF in FT node (t,i)  x THEN find j = NVA (i) 

4. IF in VT var (t,j) = 0 THEN 

5. IF in VT var (t-1,j) = 0, THEN in FT (t,i) := x 

6. IF in VT var (t,j) = 1 THEN 
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7. IF in VT var (t-1,j) = 1, then in FT (t,i) := x 

8. END FOR 

9. Remove the row t=1 from FT 

10. END FOR 

…………………………………………………………………………………………… 

4.3.1 Tables for SAF faults 

 

Fault table (FT): 

Table 1 Converting SAF to Delay Fault Table 

Test Nodes 

t 

i 

0 1      …      

n 

1 

Node (i)  

{0,1,x} 

2 

 

… 

T NVA (i) 

 

Variable table (VT) 

(simulated 

test patterns): 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Test Variables 

t 

j 

0 1    …     m 

1 

Var (j)  {0,1,} 

2 

 

 

T 

Test Variables 

t 

j 

0 1    …     

m 

1 

Var (j)  

{0,1} 

2 

 

 

T 
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The table above (Table 1) explains the working principle of the proposed algorithm step 

by step.  

The main goal of algorithm 1 is to Converting stuck-at-fault table to delay fault table. As 

an input of this program three table needed to start analysis, variable table, simulation 

table, and mapping table. For creating the mapping table from agm model we had to 

develop another program.  

The algorithm starts working from the second pattern of SAF table. First it check the node 

whether it is not X ((t,i)  x). If it finds stuck at fault either stuck-at-0 or stuck-at-1 it go 

to the variable table using mapping value. In the variable table, it checked two patterns 

(t,j) and (t-1,j). If any transition happens (0 to 1 or 1 to 0) between those two patterns, we 

detect a delay fault and then update the Stuck at fault to delay fault. The process will 

continue through the last node of delay fault table. The first row in the TDF fault table 

will contain only symbols x, because no TDF can be detected by the first test pattern. The 

latter can serve only as initialization of the circuit. The new FT is the fault table for delay 

faults, where 0 means detection of the fault 1 → 0,1 means detection of the fault 0 → 1, 

and X means no fault is detected. 

 

4.3.2 Mapping table 

The aim of creating the mapping table is to work with Fault table and variable table. The 

number of nodes and variables are different, so we have to map the nodes from the fault 

table to variable in the variable table. For creating this table, we need the agm model of 

circuit. An agm model of C17 circuit is given below:  

STAT#    15 Nods,  14 Vars,  9 Grps,  5 Inps,  0 Cons,  2 Outs 

 

MODE#   STRUCTURAL 

 

 

VAR#   0:  (i_______)  "i_5" 

VAR#   1:  (i_______)  "i_4" 

VAR#   2:  (i_______)  "i_3" 

VAR#   3:  (i_______)  "i_2" 

VAR#   4:  (i_______)  "i_1" 

 

VAR#   5:  (________)  "i_3" 

GRP#    0: BEG =   0, LEN =   1 ----- 

   0   0:  (____) ( 0 0)  V = 2     "i_3" 

 

VAR#   6:  (________)  "inst_0>o" 

GRP#    1: BEG =   1, LEN =   2 ----- 

   1   0:  (I___) ( 1 0)  V = 5     "inst_0>i_1" 

   2   1:  (I___) ( 0 0)  V = 4     "i_1" 
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VAR#   7:  (________)  "inst_1>o" 

GRP#    2: BEG =   3, LEN =   2 ----- 

   3   0:  (I___) ( 1 0)  V = 1     "i_4" 

   4   1:  (I___) ( 0 0)  V = 5     "inst_1>i_2" 

 

VAR#   8:  (________)  "inst_2>o" 

GRP#    3: BEG =   5, LEN =   2 ----- 

   5   0:  (I___) ( 1 0)  V = 7     "inst_2>i_1" 

   6   1:  (I___) ( 0 0)  V = 3     "i_2" 

 

VAR#   9:  (________)  "inst_3>o" 

GRP#    4: BEG =   7, LEN =   2 ----- 

   7   0:  (I___) ( 1 0)  V = 0     "i_5" 

   8   1:  (I___) ( 0 0)  V = 7     "inst_3>i_2" 

 

VAR#   10:  (________)  "inst_4>o" 

GRP#    5: BEG =   9, LEN =   2 ----- 

   9   0:  (I___) ( 1 0)  V = 8     "inst_4>i_1" 

   10   1:  (I___) ( 0 0)  V = 6     "inst_0>o" 

 

VAR#   11:  (________)  "inst_5>o" 

GRP#    6: BEG =   11, LEN =   2 ----- 

   11   0:  (I___) ( 1 0)  V = 9     "inst_3>o" 

   12   1:  (I___) ( 0 0)  V = 8     "inst_5>i_2" 

 

VAR#   12:  (_o______)  "o_2" 

GRP#    7: BEG =   13, LEN =   1 ----- 

   13   0:  (____) ( 0 0)  V = 11     "inst_5>o" 

 

VAR#   13:  (_o______)  "o_1" 

GRP#    8: BEG =   14, LEN =   1 ----- 

   14   0:  (____) ( 0 0)  V = 10     "inst_4>o" 

 

The agm model describes which node connected to which variable. GRP indicates the 

position of nodes, and V indicates the position of variables.  

 

4.3.3 Fault coverage and fault vector 

The Turbo-Tester generates the fault vector and fault coverage for stuck-at fault. By using 

algorithm 1 we got delay fault table from stuck at fault table. Then the next step is to 

update the fault vector to get fault coverage for delay fault. In this scenario, we had to 

develop another program that updates the fault vector and calculates the fault coverage 

for delay fault.  

Equation to calculate the fault coverage is given below: 

faultCoverage :=.COVERAGE<numberOfDetectedFaults> / <numberOfFaults> = 

<Percentage> %  
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……………………………………………………………………………………………. 

Algorithm for update the fault vector and calculate the fault coverage 

……………………………………………………………………………………………. 

 

Input: Fault table.  

Output: Fault vector, Fault coverage.   

Notation: 

FL=Length of Fault table 

FV =Fault value  

INDEX = Index of loop starting from 0 

CL = variable 

……………………………………………………………………………………………

…………. 

1. Initialize count vector  

2. FOR all test pattern i = 0, 1, 2... FL 

3. FOR all test pattern j = FV[0], FV[1], FV[2]... FV[N-1] 

4. IF j = 0 THEN count[0][INDEX] set to 1 

5. IF j = 1 THEN count[1][INDEX] set to 1 

6. IF j = X THEN count[2][INDEX] set to 1 

7. Initialize res vector for store result 

8. Initialize variables for count &, ZERO, and ONE  

10. FOR all test pattern i = 0, 1, 2.... CL 

11.  if x and x then x 

 if 0 and x then 0 

 if 0 and 0 then 0 

 if x and 0 then 0 

 if 1 and x then 1 

 if 1 and 1 then 1 

 if x and 1 then 1 

 if & and x then & 

 if x and & then & 

11. Input total number of fault 

12 calculate Fault coverage 

 

The principle of this algorithm is to update fault vectors and calculate fault coverage.  
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4.4 Algorithm for improving delay fault coverage by recombining the 

stuck-at-fault test patterns 

 

Algorithm 2 was developed to get better fault coverage by adding additional test 

patterns to the  

TDF test sequence by selecting useful patterns from the initial SAF test set generated by 

the 

single pattern ATPG. a pattern is chosen which satisfies at least for one variable the 

following two conditions: 

- The fault TDF/(0→1) is not detected, but SAF/1 is detected,  

- The fault TDF/(1→0) is not detected, but SAF/0 is detected. 

 

…………………………………………………………………………………………… 

Algorithm 2- improving delay fault coverage by recombining the stuck-at-fault test 

patterns 

……………………………………………………………………………………………. 

 

Input: Test patterns table, Fault table, Mapping table. 

Output: Delay fault table.  

Notation: 

p=Number of new pattern added to FT and VT tables. 

t= The number of the first pattern to be added. 

k= The number of the second patterns to be added. 

i- nodes 

j- variables 

VT- Variable table. 

FT- Fault table 

………………………………………………………………………………………………………... 

1. p : = T           

2. FOR all test patterns  t = 1,2, …, T         

3. FOR all test patterns k = 1,2,…, T        

4. Copy the pattern FT(t) into FT(p+1)  (*** new first pattern into FT-table) 

5. Copy the pattern VT(t) into VT(p+1)  (*** new first pattern into VT-table) 

6. Copy the pattern FT(k) into FT(p+2)  (*** new second pattern into FT-table) 

7. Copy the pattern VT(k) into VT(p+2) (*** new second pattern into VT-table) 
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8. Success := 0   (*** flag initialization to remember the event of new fault 

detection) 

9. FOR all nodes i = 0,1, …, n  (*** processing of the bits of a new added test 

pattern pair) 

10. IF in FT node(p+2,i)  x THEN find j = NVA (i)  (*** bit analysis starts) 

11. IF in VT var(p+2,j) = 0 THEN  (*** condition for detection the fault 1→0) 

12. IF in VT var(p+1,j) = 0, THEN in FT node(p+2,i) := x  (*** fault is not detected) 

13. ELSE Success := 1  (*** fault 1→0 is detected) 

14. IF in VT var(p+2,j) = 1 THEN  (*** condition for detection the fault 0→1) 

15. IF in VT var(p+1,j) = 1, THEN in FT node(p+2,i) := x  (*** fault is not detected) 

16. ELSE Success :=1  (*** fault 0→1 is detected) 

17. IF Success = 1 then p = p +2  (*** the added two patterns stay in the tables, 

otherwise    

               they will be removed and p will be not changed) 

18. END FOR                   

29. END FOR 

20. END FOR 
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4.4.1 Tables for recombinig the stuck-at-fault test patterns 

 
Fault table (FT): 

Table 2 Recombining the stuck-at-patterns 

Test Nodes 

t 

i 

0 1      …      

n 

1 

Node (i)  

{0,1,x} 

2 

 

… 

T NVA (i) 

P+1 

P+2 

 

Variable table (VT) 

(simulated 

test patterns): 

 

 

 

 

 

 

 

 

  

 

 
 

 

 

 

 

 

 

 

 

 

Test Variables 

t 

j 

0 1    …     

m 

1 

Var (j)  

{0,1,} 

2 

 

 

T 

Test Variables 

t 

j 

0 1    …     

m 

1 

Var (j)  

{0,1} 

2 

 

 

T 

P+1 

P+2 
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The table above (Table 2) explains the working principle of the proposed algorithm 2 step 

by step.  

The concept of the Algorithm 2 is as follows: 

Take from both tables the first vectors and put them in the end of the tables, and apply for 

the two last vectors the Algorithm 1.  

1. If no new faults will be detected by this pair of vectors, remove the pair.  

2. If at least one new fault was detected, keep these two vectors. 

This step will be repeated for all possible pairs of the patterns generated for SAF faults. 

The algorithm consists of three embedded loops: 

1. The t-loop runs through all pairs (t,k) where t is changing t = 1,2,…, T 

2. The k-loop runs through all pairs (t,k) where t = const, and k is changing 

k = 1,2,…,T 

3. The i-loop runs through all bits of the given pattern pair (t,k), and checks if in 

the i-bit a new fault can be detected;  

The algorithm contains a lot of redundancy, since the analysis of the same pattern pair 

(t,k) will be several times analyzed. On the other hand, the regularity of the approach 

keeps the algorithm simple. The length of the test can be further minimized using any 

fault coverage minimization algorithm, which allows to remove non-effective test pairs. 

By implementing the algorithm 2 we got an updated fault table and variable table with 

additional row. Then we have to use the algorithm (4.3.3) to update the fault table for the 

latest result (New fault vector and fault coverage).  
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5 Experimental Results 

5.1 The goals of experiments and characteristics of benchmark circuits 

The goal of this work was to develop a new method for generating tests of Transition 

Delay Faults (TDF) using the tests generated for Stuck-at-Faults (SAF) and the SAF fault 

table. It is well known that the test generation for SAF is a very complex task and not 

scalable for complex circuits. The reason of the complexity is the combinatorics of the 

test generation task. Compared to SAF test generation, where the patterns are generated, 

the TDF test generation is even more complex, because instead of single patterns in the 

TDF case the test pairs (sequences of two patterns) have to be generated, which makes 

the combinatorics of the task even more complex.  

The idea of the proposed method stands in recombining the test patterns generated for 

SAF, so that for each SAF pattern a proper other pattern from the same test pattern set 

was found to create a pair of patterns capable to detect the selected delay faults. 

The main question of the feasibility and capability of the new method was, if there is in 

the test pattern set for each SAF a suitable pattern existing to form the needed pair for the 

respective TDF. 

The task of TDF test generation was divided into two steps:  

(1) a simulation phase, where for each detected SAF it was checked, if the 

previous test pattern in the test set had the proper signal value to produce signal 

transition for the respective SAF;  

(2) a test generation phase, where for the not yet detected SAF, a suitable pattern 

was found from the same table to produce signal transition for the respective SAF. 

The goal of the experiments was threefold:  

(1) to demonstrate the feasibility and efficiency of the proposed new method,  

(2) to compare the achieved TDF coverage with SAF coverage of the given set of 

test patterns, and  

(3) to compare the time costs of the new proposed TDF test generation with SAF 

test generation time costs. 

The experiments were carried out with Benchmark circuits’ family ISCAS’85. The most 

important parameters of the circuits are highlighted in Table 3.  
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Table 3 ISCAS’85 benchmark circuits and their characteristics 

Name 
Number of 

input 

Number of 

outputs 

Number of 

Nods 

Number of 

faults 

1 2 3 4 5 

C432 36 7 487 974 

C880 60 26 775 1550 

C499 41 32 1097 2194 

C1355 41 32 1097 2194 

C1908 33 25 1394 2788 

C2670 233 140 2075 4150 

C3540 50 22 2784 5568 

C5315 178 123 4319 8638 

C6288 32 32 4864 9728 

C7552 207 108 5795 11590 

 

Table 3 represents the following characteristics: numbers of inputs, numbers of outputs, 

numbers of nodes and numbers of faults. The number of faults is always equal to the 

double number of nodes, where each to each node two SAF corresponds (SAF/0, and 

SAF/1), and two TDF faults („slow-to-rise“, and „slow-to-fall“).  The parameters of 

circuits characterize in some extent the complexity of the circuit for test generation 

purposes. On one hand, the bigger is the number of nodes and the less is the number of 

outputs, the more difficult is to find a test pattern for faults. On the other hand, the bigger 

is the) number of inputs, the easier is to generate a test pattern. Another factor, which 

influences on the difficulty of test generation is the internal structure of embedded fanout 

reconvergencies which are the causes of the conflicts arising during propagation of faults 

to observable outputs. The arising conflicts in their turn will cause backtracks during test 

generation process for resolving the contradiction of signals. 

The best parameter for characterising the complexity of the circuit is the time cost of 

deterministic test pattern generation. For SAF test generation experiments we used the 

Turbo Tester tool, which has been developed in the lab. 
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5.2 Discussion of the results of experimental research 

The results of experiments are presented in Table 4, where the time costs for test 

generation and the achieved fault coverages are highlighted for both SAF test generation 

and TDF test generation. 

 

Table 4 Fault Coverage and Time cost 

Circuits 

SAF 

generation 

(Reference 

data) 

TDF generation (new method) 

After 1st step After 2nd step 
Gain in time 

cost 

Name 
# 

Faults 

Fault 

cover 

% 

Time, 

s 

Fault 

cover 

% 

Time, 

s 

Fault 

cover 

% 

Time, 

s 

Total 

time, 

s 

Gain, 

times 

1 2 3 4 5 6 7 8 9 10 

C880 1550 100 0.15 93.87 0.17 98.06 0.09 0.26 0,58 

C5315 8638 99.29 34.10 95.70 1.42 98.29 0.79 2.21 15 

C1908 2788 99.60 58.45 87.23 0.52 94.08 0.31 0.83 70 

C499 2194 99.63 65.85 86.82 0.35 93.02 0.22 0.57 116 

C1355 2194 99.63 66.45 86.28 0.32 92.98 0.21 0.53 125 

C6288 9728 99.30 129 94.73 0.51 98.36 0.36 0.87 148 

C432 974 95.55 36.70 64.98 0.09 84.49 0.05 0.14 262 

C3540 5568 95.68 810 85.91 1.09 95.68 0.56 1.65 491 

C2670 4150 95.68 1467 89.20 0.75 94.03 0.54 1.29 1137 

C7552 11590 97.28 5544 93.44 2.65 97.15 1.47 4.12 1345 

 

Columns 1 and 2 in Table 4 represent the circuits under test with the number of faults as 

the complexity parameter, columns 3 and 4 characterize the parameters of SAF test 

patterns – the fault coverage and time cost of generation, respectively, column pairs (5,6) 

and (7,8) represent the calculated in the work TDF test parameters (fault cover and test 

cost) for the first and second phases of test generation. The last two columns represent 

the main result of the work – the gain achieved by the new method compared to the 

reference method. 

Regarding the pairs of columns (5,6) and (7,8), the efficiency of two test generation 

phases are compared. The column (5) represents the TDF cover achieved by SAF test 

generation without any influence of the test set, whereas the column (7) represents the 

TDF cover achieved by recombination of test patterns produced by SAF test generator 

(by inserting purposely selected patterns in different places in the same test pattern 

sequence.  



 

48 

The results of the column 5 are achieved by the special fault simulator developed in the 

thesis, and the results of column 7 are achieved by the second tool – TDF test generator 

– developed in the thesis. 

The column 9 represents the total test generation time used by the two tools developed in 

the thesis. 

In Table 4, two results of the thesis are compared with the reference SAF test generator: 

the fault coverage, and the time cost of test generation. 

The column 10 illustrates the gain of time cost, achieved in this work compared with the 

reference SAF test generator. We see that the more complex is the circuit for structural 

deterministic test generation, the bigger is gain of using the TDF generator. In the best 

cases the gain is about three orders of magnitudes. Such a big difference between the 

methods is because the traditional deterministic test generation is using a search with 

exponential complexity, whereas the proposed method uses the search of linear 

complexity. 

An exception is the circuit c880 with very low structural complexity, where the proposed 

method looses to the structural test generator. But the loss is less than a second and hence, 

has no practical meaning. Such exceptions may happen only in case of very low 

complexity of circuits regarding structural test generation. 

Note, the TDF cover can never be better than SAF cover, because the condition of testing 

a TDF at a node in the circuit, the prerequisite for that is the existence of SAF test pattern. 

On the other hand, the ideal case of TDF test generation is to achieve the same fault cover 

as in case of SAF. In this experiment, this ideal result was achieved only for the circuit 

c3540 where both the SAF cover and TDF cover are equal 95.68%.  

In general, if the TDF cover, achieved by the proposed method, is less than the SAF cover, 

then to achieve the same fault coverage as for SAF, traditional TDF generation methods 

should be used, which however have high complexity and are very slow. 
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6 Conclusion 

This thesis aimed at proposing a new method for generating transition delay fault (TDF) 

tests using stuck-at-fault test (SAF) patterns. The goal for this research was to minimize 

the time cost of test generation and achieve delay fault coverage as much close to the SAF 

coverage as possible. 

Chapter two discusses fault models, test generation methods, fault simulation and fault 

diagnosis methods and Turbo – Tester tools, which was used in the work as the reference 

tool. In chapter three, an overview of delay fault simulation methods was given. Chapter 

four covers the details about proposed method. Chapter five represents and discusses the 

experimental research results.  

The practical results of the research work contribute with two new tools for development 

of delay test sequences: 

- TDF fault simulator for calculating the TDF cover for the given test pattern 

sequence, 

- TDF test generator for recombining the  set of test patterns, developed for 

detecting SAF faults, into another test pattern sequence for detecting TDF faults  

The experimental results show that the developed new method of TDF test generation for 

digital circuits can be characterized with the following properties: 

- it has linear complexity, and outperforms the reference method, which has 

exponential complexity 

- the method is well scaling due to its linear complexity, and can be efficiently use 

for high complexity digital circuits. 
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Appendix 1 – Program Description and Manual 

This sections describes how our experiments were performed. It contains a step by step 

explanation of  how transition delay fault generate and calculate the fault coverage. 

Each experiment has its separate folder and have some steps. 

1. The folders and files for the experiments can be downloaded through this link:  

https://github.com/ripon-

cse109/tdf/tree/master/TRANSITION%20DELAY%20TEST%20GENERATION%20U

SING%20STUCK-AT-FAULT%20TEST%20PATTERNS 

2. The experiment can be performed on both Windows and Linus operating system. 

3. The folder name Circuits contains ISCA’S 85 circuits which can be use for generating 

stuck-at-fault test patterns by using Turbo-Testor. 

4. The folder Mapping contains mapping.py, is a python code which is use to create the 

maping table from agm model. As a input pre_var.txt  have to be contain with an agm 

model.  

5. Sol.py in Algorithm 1 folder contain proposed algorithm 1 which generate the transition 

delay fault table in output.txt file. As a input we have to provide variable table, fault table 

from stuck-at-fault. Alongside this we also have to provide mapping table.  

6. Fcoverage.py  in fault coverage folder consist of python code to upadate fault vector 

and calculate fault coverage.  

7. Algorithm 2 folder have sol.py, which execute the algorithm 2.  

 

 

 

 

 

https://github.com/ripon-cse109/tdf/tree/master/TRANSITION%20DELAY%20TEST%20GENERATION%20USING%20STUCK-AT-FAULT%20TEST%20PATTERNS
https://github.com/ripon-cse109/tdf/tree/master/TRANSITION%20DELAY%20TEST%20GENERATION%20USING%20STUCK-AT-FAULT%20TEST%20PATTERNS
https://github.com/ripon-cse109/tdf/tree/master/TRANSITION%20DELAY%20TEST%20GENERATION%20USING%20STUCK-AT-FAULT%20TEST%20PATTERNS


 

53 

Appendix 2 – Source Code 

Algorithm 1 ( sol.py) 

import time 

start_time = time.time() 

""" 

Open fault table as fault_text 

""" 

with open("fault.txt") as fault_text: 

    fault_val = list(fault_val.strip() for fault_val in fault_text) 

#------------------------------ 

""" 

Open simulation table as sim_text 

""" 

with open("simulation.txt")  as sim_text: 

    sim_val = list(sim_val.strip() for sim_val in sim_text) 

#------------------------------ 

""" 

Open variable table as var_text 

""" 

with open("var.txt") as var_text: 

    var_val = list(map(int, var_text.readline().split())) 

#------------------------------ 

""" 

storing fault table length and 

initiating variable for storing result 

""" 

fault_len = len(fault_val) 

res = [[] for resi in range(fault_len)] 

# initiate variables for count 0, 1, X 

count = 0 

countx = 0 

# Loop through fault table row 

for i in range(1, fault_len): 

    fault_row_len = len(fault_val[i]) 

    # for all patterns in fault table rows 

    for j in range (fault_row_len): 

        # calculating result if zero or one found in fault table 

        if fault_val[i][j] == '0' or fault_val[i][j] == '1': 

            if (sim_val[i][var_val[j]] == '1' or sim_val[i][var_val[j]] 

== 'h' or sim_val[i][var_val[j]] == 'H') and (sim_val[i-1][var_val[j]] == 

'0' or sim_val[i-1][var_val[j]] == 'l' or sim_val[i-1][var_val[j]] == 

'L'): 

                res[i].append('1') 

                count += 1 
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            elif (sim_val[i][var_val[j]] == '0' or sim_val[i][var_val[j]] 

== 'l' or sim_val[i][var_val[j]] == 'L') and (sim_val[i-1][var_val[j]] == 

'1' or sim_val[i-1][var_val[j]] == 'h' or sim_val[i-1][var_val[j]] == 

'H'): 

                res[i].append('0') 

                count += 1 

            else: 

                res[i].append('X') 

                countx += 1 

        else: 

            res[i].append('X') 

            countx += 1 

#------------------------------ 

# appending X in first row of result 

for i in range(fault_row_len): 

    res[0].append('X') 

    res_len = len(res) 

# output final table as output.txt  

with open("output.txt", "w") as output: 

    for i in range(res_len): 

        res_row_len = len(res[i]) 

        for j in range(res_row_len): 

            output.write(res[i][j]) 

        output.write("\n") 

fault_text.close() 

sim_text.close() 

var_text.close() 

print('process finished with ---> ', time.time()-start_time, ' 

seconds...') 

 

 

Fcoverage.py 

with open("fault.txt") as fault_text: 

    fault_val = list(fault_val.strip() for fault_val in fault_text) 

# print(fault_val) 

#------------------------------ 

fault_len = len(fault_val) 

 

count = [[] for i in range(3)] 

 

for i in fault_val[0]: 

    count[0].append(0) 

    count[1].append(0) 

    count[2].append(0) 

# print(count) 

for i in range(fault_len): 
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    index = 0 

    for j in fault_val[i]: 

        if j == '0': 

            count[0][index] = 1 

        elif j == '1': 

            count[1][index] = 1 

        elif j == 'X': 

            count[2][index] = 1 

        index += 1 

# print(count) 

res = [] 

count_len = len(count[0]) 

and_count = 0 

zero_count = 0 

one_count = 0 

for i in range(count_len): 

    if count[0][i] == 1 and count[1][i] == 1 and count[2][i] == 1: 

        res.append('&') 

        and_count += 1 

    elif count[0][i] == 1 and count[1][i] == 1 and count[2][i] == 0: 

        res.append('&') 

        and_count += 1 

    elif count[0][i] == 1 and count[1][i] == 0 and count[2][i] == 0: 

        res.append('0') 

        zero_count += 1 

    elif count[0][i] == 0 and count[1][i] == 0 and count[2][i] == 1: 

        res.append('X') 

    elif count[0][i] == 0 and count[1][i] == 1 and count[2][i] == 0: 

        res.append('1') 

        one_count += 1 

    elif count[0][i] == 0 and count[1][i] == 1 and count[2][i] == 1: 

        res.append('1') 

        one_count += 1 

    elif count[0][i] == 1 and count[1][i] == 0 and count[2][i] == 1: 

        res.append('0') 

        zero_count += 1 

# print(res) 

    print('number of & counted: ', and_count) 

print('number of one counted: ', one_count) 

print('number of zero counted: ', zero_count) 

total_num_of_fault = int(input('input total number of fault : ')) 

fault_coverage = (((and_count * 2) + one_count + zero_count) / 

total_num_of_fault)*100 

print(fault_coverage) 

with open("output_1.txt", "w") as output: 

    for i in res: 

        output.write(i) 
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Mapping.py 

var = [] 

with open("pre_var.txt") as pre_var: 

    for i in pre_var: 

        got = i.split() 

        # if i[0] == 'V' and i[1] == ' ': 

        temp = len(got) 

        if temp > 6: 

            # print('`', got[6], '`') 

            if got[6] == 'V' and got[7] == '=': 

                # print(got[8]) 

                var.append(i.split()[8]) 

var_len = len(var) 

print(var, 'len: ', var_len) 

with open("var.txt", "w") as output: 

    for i in range(var_len): 

            output.write(var[i]) 

            output.write(" ") 
 

 

Algorithm 2 (sol.py) 

import time 

start_time = time.time() 

""" 

Open fault table as fault_text 

""" 

with open("fault.txt") as fault_text: 

    fault_val = list(fault_val.strip() for fault_val in fault_text) 

#------------------------------ 

""" 

Open simulation table as sim_text 

""" 

with open("simulation.txt")  as sim_text: 

    sim_val = list(sim_val.strip() for sim_val in sim_text) 

#------------------------------ 

""" 

Open variable table as var_text 

""" 

with open("var.txt") as var_text: 

    var_val = list(map(int, var_text.readline().split())) 

    #------------------------------ 

""" 

storing fault table, simulation table length 

and then length of fault table row 



 

57 

""" 

fault_len = len(fault_val) 

sim_len = len(sim_val) 

fault_row_len = len(fault_val[0]) 

""" 

initial result table and make a temporary vector 

for store 'X' in 

""" 

res = [] 

temp_res = '' 

res_x = '' 

for i in range(fault_row_len): 

    res_x += 'X' 

for fault in fault_val: 

    res.append(fault) 

res.append(fault_val[0]) 

for i in range(sim_len): 

    sim_val.append(sim_val[i]) 

""" 

initial variables for count zero and one 

""" 

count_zero = 0 

count_one = 0 

# Loop through fault table row 

for i in range(1, fault_len): 

    index = 0 

    # for all patterns in fault table rows 

    for j in fault_val[i]: 

        # calculating result if zero or one found in fault table 

        if j == '0' or j == '1': 

            if (sim_val[i][var_val[index]] == '1' or 

sim_val[i][var_val[index]] == 'h' or sim_val[i][var_val[index]] == 'H') 

and (sim_val[i-1][var_val[index]] == '0' or sim_val[i-1][var_val[index]] 

== 'l' or sim_val[i-1][var_val[index]] == 'L'): 

                temp_res += '1' 

            elif (sim_val[i][var_val[index]] == '0' or 

sim_val[i][var_val[index]] == 'l' or sim_val[i][var_val[index]] == 'L') 

and (sim_val[i-1][var_val[index]] == '1' or sim_val[i-1][var_val[index]] 

== 'h' or sim_val[i-1][var_val[index]] == 'H'): 

                temp_res += '0' 

            else: 

                temp_res += 'X' 

        else: 

            temp_res += 'X' 

        index += 1 

    # appending calculated result in result variable 

    res.append(temp_res) 

    temp_res = '' 

res_len = len(res) 
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for i in range(res_len): 

    if not i & 1: 

        res[i] = res_x 

# output final fault table as fault_output.txt  

with open("fault_output.txt", "w") as output: 

    for i in res: 

        output.write(i) 

        output.write('\n') 

output.close() 

# output final simulation table as simulation_output.txt  

with open("simulation_output.txt", "w") as output: 

    for i in sim_val: 

        output.write(i) 

        output.write('\n') 

fault_text.close() 

sim_text.close() 

var_text.close() 

output.close() 

print('process finished with ---> ', time.time()-start_time, ' 

seconds...') 

 
 

 

 


