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Introduction

Greater energy efficiency and the extensive use of renewable energy sources (RES) in the
production of electricity are essential to the reduction of carbon emissions due to human
activity [2]. However, high fluctuations in photovoltaic (PV) and wind generated
electricity pose a serious problem to the power grid [3], [4]. The current inflexibility of
electricity consumption and increased RES integration in the grid make it increasingly
difficult to match renewable energy supply with electricity demand and therefore avoid
blackouts [5]. With the drive towards power independence, the accelerated rise in the
share of wind and PV in the total energy portfolio will further heighten this challenge in
the coming years [6]. The swift matching of electricity demand with renewable energy
supply is necessary to ensure the stability and efficiency of the distribution network and
meet European goals for the Net Zero Scenario [7].

The intermittent production of renewable electricity calls for flexibility in how energy
is consumed, including in consumption by buildings [8]. In Europe, buildings account for
approximately 40% of final energy consumption and 36% of greenhouse gas emissions
[9]. Almost half of this energy demand is incurred from heating, which is currently not
available for grid balancing, as covered by sources other than electricity. The shift
towards renewable energy sources and nearly zero energy buildings (nZEBs) influences
the choice of technologies used for heating and its control [10], [11]. Low energy
consumption makes it possible to use low-temperature heating and high-temperature
cooling systems, which have lower distribution losses and higher efficiency. In modern
buildings, these systems have increasingly involved the use of heat pumps, which causes
electrification of heating demand [12], [13]. High targets for emission reductions and the
call for energy independence further drive the electrification of thermal demand, which
would make it available to the flexibility market [13]-[15] and help balance the grid.
Buildings often include active (hot water tanks) or passive thermal storage, i.e., structural
thermal mass (STM), such as massive floors, used often in underfloor heating (UFH)
systems. The activation of these storage systems, could potentially provide thermal
demand flexibility, meaning that heating times could be shifted to some extent without
compromising indoor climate comfort [16]. This flexibility could also be applied in grid
flexibility services [17].

Flexibility services are divided into two main types: incentive-based and price-based
[7]. When applied to the space heating demand of buildings, heating power and heating
times differ from that required by typical constant room temperature control. These can
be altered by temperature setpoint changes, which can either reduce or increase
consumption at any given time. Reducing temperature setpoints can provide flexibility
and enable energy savings simultaneously, if not compensated for at later times, to ensure
a suitable indoor climate [18].

When providing flexibility or energy savings using dynamic heating control, the effects
on indoor thermal comfort must be carefully considered. It is especially challenging
to ensure comfort in the case of low-power and inert heating systems like UFH,
even with a constant setpoint. The main reason is the lengthy time constant,
which prevents a reaction to sudden changes, such as fluctuations in solar or internal
heat gains. The delayed reaction causes large fluctuations in indoor temperature,
as thermostats respond only after a significant deviation from the setpoint.
Proportional-integral(-derivative) (PI(D)) controllers could offer more precise control,
but these are time-consuming to tune manually when the delay is long.



To simultaneously enable comfort and energy flexibility and energy savings in practice
with dynamic setpoints, various preventive or predictive methods, e.g., model predictive
control (MPC), have been developed [8], [19]. Such control algorithms need to be
carefully designed, tested, and validated for applicability [20]. During initial development
and testing, building performance simulations (BPS) have proven to be a suitable tool for
speeding up the testing process for different building types, climates, and usage profiles.
Simulations have also made it possible to compare different algorithms under the same
boundary conditions.

Simulations, however, always introduce simplifications into a system. In the case of
heating system control, simplifications in BPSs occur in the building model (an ideally
mixed room temperature, one floor/radiator temperature, a heat emitter with an
imprecise mass), in control process components (idealized pumps and valve-actuator
pairs, the absence of delays), as well as in control logic (idealized control, default PID
parameters). While some details have already been thoroughly discussed in previous
literature, others have not had to be considered before. It is proving increasingly important
to understand processes with short time spans due to emerging incentive-based
flexibility methods. For example, optimal PI(D) parameters for UFH have not yet been
fully considered, and there has been little discussion of thermo-electric wax actuator
modelling, its effect on energy performance yet to be demonstrated (l11).

In this thesis, firstly, the potential for reducing carbon emissions from the heating
systems of low energy buildings by applying different dynamic control algorithms is
analyzed. When the energy source includes fluctuating renewable energy, primary
energy is optimized. When the energy source is constant, final energy consumption is
minimized. Secondly, as an idealized control process was initially used for the heating
system performance analysis, the effect of control parameters and modelling
simplifications on the results is analyzed and quantified. The analysis focuses primarily
on UFH as a widely used but challenging-to-control system.

The main objectives of this thesis are the following:
e To determine the energy saving potential of the applicable dynamic control
algorithms of low-temperature heat emitters by analyzing the following:
o the primary energy minimization potential of radiator heating with an MPC,
based on continuous market signal and dynamic comfort limits (1),
o potential final energy savings applying temperature setback heating and a
pre-heating control methodology in nZEBs (V);
e To estimate the effect of detailed UFH control modelling on BPS results by
analyzing the following:
o the effect of UFH Pl controller parameters on energy performance and
indoor air temperature of the building (l1),
o the determination of Pl parameters for optimal performance of UFH (Il),
o the modelling of wax actuators for HVAC applications (llI, 1V),
o the effect of wax actuator modelling on BPS results (ll1).

Objectives were achieved primarily through the following:

e experiments carried out in a test building to calibrate building and mass flow
models and experiments under laboratory conditions to calibrate the wax
actuator model,

e building and component modelling in dynamic building simulation programs,
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e parameter optimization in the case of Pl and wax motor parameters and scenario
optimization in MPC control,

e co-simulation using several different programs for the implementation of the
MPC simulation framework,

e simulations to determine the influence of modelling or control changes on BPS
results.

This thesis is based on three peer-reviewed journal articles and two conference papers.

In article I, we analyzed the general potential of timing the heating of a residential
building according to the variable availability of renewables for decreasing primary
energy demand [1]. | developed and implemented in a co-simulation framework an
easy-to-apply and adaptable model-predictive control algorithm for low temperature
radiators that makes it possible increase the level of renewable energy usage and employ
peak shaving through preheating (or pre-cool-down) without lowering the level of
comfort.

In article I, we determined PI controller parameters for UFH in different ways. Since
hydronic UFH systems (especially in low-energy buildings) have long time constants,
which discourage manual tuning of Pl parameters, automatic methods were tested.
Energy consumption and control precision were evaluated for all parameter combinations
determined. Simpler methods were compared with more elaborate solutions, and
optimal parameters were identified.

In article Ill, we developed an empirical model for a wax actuator for UFH based on
extensive laboratory measurements. The modelled wax actuator, together with other
control process details, was tested in BPSs. The complexity of the control process model
increased with the stepwise addition of optimal controller parameters, a signal delay,
a non-linear valve curve, signal modulation, and the wax actuator. Both PI and
thermostat (on/off) controllers were employed.

In paper IV, we calibrated and compared physical and characteristic models for wax
actuators in a simple experiment. Wax motor parameters were thus optimized, and the
precision of piston displacement and volume flow modelling were evaluated in the two
models.

In paper V, we developed a variation of the pre-heating control algorithm for the
temperature setback approach and analyzed the resulting final energy saving potential
in offices. Using estimated time constants, a suitable heat-up time was continuously
calculated during night and weekend setbacks so that a temperature approaching the
comfort setpoint would coincide with the occupancy start time. UFH was compared to
radiators, and both well and poorly insulated constructions, as well as light and massive
ones, were analyzed.

Practical outcomes and the novelty of this thesis are as follows:
e The first time-dependent empirical model of a thermo-electric actuator (wax
motor) in BPS was developed for HVAC applications, and its effect on BPS energy
results was estimated.
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Optimal Pl parameters for UFH were determined that allow room temperature
to follow the setpoint almost ideally if continuous mass flow control is applied.
This made it possible to reduce energy consumption referenced to on/off control
by 9%. Parameters that perform well could be achieved using a simple calculation
based on data from a test running for a weekend.

A dynamic primary energy factor signal instead of a price signal was applied to
optimize dynamic heating operation in a simulated residential room. An MPC
algorithm was developed with the dual purpose of minimizing emissions and
maintaining a comfortable indoor climate.

The algorithm developed was an MPC that could be easily applied and adapted,
simple enough to allow for STM activation in regular residential buildings,
eliminating the necessity for complex measurements, expert knowledge of the
building and its control, or expensive computations.

As a practical consideration, it was found that business-as-usual Pl control
simulation did not reflect actual mass flows in the system. In most cases, when PI
control was used with a wax motor, mass flows were similar to on/off mass flows,
making it possible to substitute Pl simulations with on/off simulations with a small
deadband and shifted setpoint.

Limitations of the work include the following:

The primary energy factor was assumed to correlate directly with CO2 emissions,
though in practice, it is often determined by politics.

Analysis of the potential of the heating control algorithms and the influence of
control modeling was limited to the room level, with little simulation and analysis
conducted at the whole-building level.

Various case studies and comfort criteria were utilized in different analyses,
limiting the direct comparability of the results.

The wax motor model was developed using an extensive set of measurements,
but its influence on simulation results was only tested using constant temperature
setpoints.

The performance estimation of different control algorithms and parameters was
only carried out in simulations, using calibrated models, though.
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Notations

Abbreviations

aFRR
BPS
CO:
CpP

D

FAT
FCR
FE(D)
FFR
HR
HVAC
LS
MAE
MC
mFRR
MPC
nZEB
on/off
PCM
PE(D)
PEF
PI(D)
PV
PWM
(V)RES
STM
TABS
UFH
VC
WM

Symbols

a,b

XTST@mMaogo

Automatic Frequency Restoration Reserve
Building performance simulation

Carbon dioxide

Control parameters

Delay

Full activation time

Frequency Containment Reserve

Final energy (demand)

Fast Frequency Reserve

Heat recovery

Heating, ventilation, and air-conditioning
Load shifting

Mean absolute error

Modulation control

Manual frequency restoration reserve
Model predictive control

Nearly zero energy building

Thermostat control(ler) with binary (on or off) output
Phase change material

Primary energy (demand)

Primary energy factor
Proportional-integral(-derivative) control(ler)
Photo-voltaic (solar panels)

Pulse width modulation

(Variable) Renewable energy sources
Structural thermal mass

Thermally activated building systems
(Hydronic) underfloor heating

Valve curve

Wax motor

calculated parameters
heat capacity

specific heat capacity
damping
displacement

error

full transmittance of solar radiation
heat loss coefficient
full hours

solar irradiation
proportional gain
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tortau

0]
Subscripts

auth

bp

D

DAT

Db
dead/d
exceed
fall / f
FAT

flu

h

HO
hold / h
i/y

in

melt
min

n

o

estimated parameters

process gain

time delay (melting heat in physical WM model)
mass

number of something

air change rate at a pressure difference of 50 Pascals
thermal zone's occupancy

primary energy factor

energy consumption

air leakage of a building envelope at a pressure difference of 50 Pascals
thermal resistance

second-order transfer function from the heating signal
temperature

time

temperature change speed

integration time

tracking time

control signal

thermal transmittance or input voltage

volumetric flow

violation index

angular frequency

exogenous variable vector

difference

time constant

heating power

authority-corrected
breaking point

delay

full deactivation time
deadband

dead

over the limit

fall

full activation time
liquid state

heating

initial value of enthalpy
hold

cycle counter / general index
indoor

melting process
minimum

night

operative
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oh

out
out_lim
rise /r
set

sol / solid
sup

uc

w

wnd

overheating
outdoor
outside of limits
rise

setpoint

solid state
supply
undercooling
wax motor
weekend
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1 Background

1.1 Low energy heating applications

This thesis focuses on low energy heating applications in buildings and mostly excludes
high power and high temperature energy wasting systems. Heating constitutes a large
share of total building energy consumption [13]. To reduce energy consumption of
buildings, the European directive on the energy performance of buildings states that all
new buildings must be nZEBs [21]. This would reduce total heating consumption for new
buildings, but the share would still be significant in most parts of Europe, due to cold or
moderate climates.

Heating demand can be met by a variety of sources, but low carbon emissions can be
ensured with the use of solar thermal, biofuel boilers, efficient district heating (DH),
and heat pumps, assuming a high share of renewables in the power mix. As the efficiency
of heat pumps and district heating production is higher when system water temperatures
are low [22], [23], their use also assumes the use of lower temperatures in room heat
emitters, and this favors the use of large surface heat emitters such as UFH and large
radiators. The trend towards the use of low-temperature heat emitters is also appearing
on the building side, as less heat is needed in nZEBs. People often choose UFH because
it reduces thermal asymmetry and there are no visible devices.

While systems in nZEBs that use a heat pump or low-temperature DH and UFH or
radiators require flow temperatures from ca 30-50 °C on the secondary side, when a
traditional DH or boiler system is used, the primary side temperature is from 70-90 °C,
and the secondary circuit temperature is from 40-70 °C. In the case of boiler systems,
buffer tanks are usually added to stabilize the system’s operation and temperature.
In the case of heat pumps, tanks are used for the same purpose, though the temperature
fluctuations are smaller. In the case of inverter heat pumps, the tanks are often
unnecessary if the volume of the heating system is sufficiently large, as the inverter can
vary the power and not overheat the water. Using the tank increases investment costs,
requires additional mechanical room space, and reduces efficiency due to additional heat
loss.

A typical low temperature heating system schematic is shown in Figure 1. The heat
production can be provided by (inverter) heat pump, (low temperature) district heating,
or, if needed, by higher temperature source and mixing the lower temperature for input.
The system is assumed not to have a buffer storage tank. The parts modelled in the scope
of this thesis (heat emitters, thermostats, manifold valves, and actuators) are enclosed
in the red box. In the context of this thesis, the room and heat emitter and the flows in
the circuit are modelled, but the interaction between different circuits and the heat
source were not included.

[ e e e e ———
» 1
Heat 1 Radiator(s) 1
production ! Thermostats I
(providing | :
required | UFH manifold
supply ] with actuators + o 1
temperature) T valves UFH circuits 1
1

Figure 1. Low energy heating applications. The scope of the model is enclosed in the red box.

16



1.2 Intermittent heating control

Heat output of the hydronic systems can be influenced by supply temperature, and by
the mass flow. The supply water temperature is classically adjusted to match the outdoor
temperature (heating curve) to ensure that there is more heating capacity available at
lower outdoor temperatures and less at higher ones with the same mass flow. The supply
temperature is maintained by the heat source or by mixing higher and lower temperature
water.

The mass flow is controlled using a valve for each circuit or radiator, and a manual or
electric actuator opening and closing each valve. In both UFH and radiator solutions,
the actuator has evolved from one with a fixed valve position, to one with room-based
manual on/off or continuous control, and finally, to one with automatic feedback control
using a local sensor or room controller. In the latter case, the emitters can be controlled
using a set temperature value (setpoint). The setpoint can be user-defined or have a range
within which a user can modify it. Newer thermostatic valve heads employ microcontrollers
to gather data, learn, and use predictive control (described in section 1.4).

Energy consumption depends on external boundary conditions and internal gains,
as well as on the selected room temperature (see section 1.3 for typical temperatures).
Accordingly, the method of periodically decreasing the temperatures of heating systems
in buildings, often called intermittent heating or the setback approach, is a widely used
method for saving energy both historically and up to the present day. The temperature
reduction can be applied to either the heating curve or the room temperature setpoint.
Temperatures would be reduced when rooms are vacant, or the occupants are sleeping.
An example usage profile for offices is shown in Figure 2A.

The optimization of intermittent heating is not a new topic [24]. In several studies, an
energy saving potential of up to 20% has been demonstrated [25]—[27]. In single cases,
observed reductions have been much higher or much lower, e.g., up to 70% [28] or
ca 4% [29]. The main factors determining the savings potential are the thermal time
constant for the building (which depends on the thermal mass of the construction,
energy efficiency, and the power of the heat emitter), the outdoor temperature,
the setback time, etc. In the studies mentioned, the buildings investigated were mostly
moderately insulated. The effect of energy-efficiency on room temperatures during
intermittent heating is shown in Figure 2B. Intermittent heating is not considered a
feasible solution for massive and low energy buildings [24],[30], while a lower thermal
time constant enables larger savings with intermittent heating [27].

A B O
Occupancy §
©

[

Qo

£

o]

Vacancy IS
o

o

o

Mon Tue Wed Thu Fri Sat Sun

Figure 2. A: A typical intermittent occupancy/heating profile [31); B: Typical temperature profiles
for two buildings with such control; purple represents the energy-efficient building and blue,
a typical building (adapted from [27]).
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The use of setback control requires higher power than constant operation to ensure
quick heat-up [32]. As a consequence, the dimensioning of these systems is standardized
with additional power (over-dimensioning). While in the case of systems such as gas or
pellet boilers, more power does not mean a significant increase in investment cost,
the price of a heat pump increases significantly with an increase in power. A typical
cost-reduction for modern low energy buildings is thus achieved using low peak-power
heating systems. This results in systems with no extra power available for heat-up.
The setback algorithms must, therefore, be able to consider both the available and
required power of the heating system to perform effectively.

1.3 Thermal comfort at dynamic control

Varying the room temperature setpoint can influence the thermal comfort of the
occupants. In most cases, rooms are not in constant use, and when they are not
occupied, temperatures do not need to fall within the usual comfort limits. During the
hours they are occupied, however, thermal comfort must be ensured. Typical usage
profiles are defined by ISO 18523-2:2018 [33], and comfort limits are defined by I1SO
standard 16798-1 [34] according to clothing level and activity. Standard values are often
defined by building class as an aid to designers. The limits, however, can vary if the
activity of room occupants changes.

The indoor climate class can be estimated according to the limits defined by I1SO
16798-1 and slack hours defined by ISO 16798-2 [35]. These standards allow a range of
20 to 23 °C during the heating period for a residential room with indoor climate class Il
(which buildings are usually designed for), where the activity level is 1.2 and the clothing
level, 1. Temperatures must stay within these limits, exceeding these for up to 3% of the
period of occupation during the heating period or 20% of the week (see Figure 3 for an
explanation). It is assumed that the occupants will increase the temperature if it remains
below this limit for a longer time. When different control algorithms are compared for
energy consumption, the ensured thermal comfort should be similar. This means that
the setpoint should be shifted to ensure the same climate class is achieved or that
temperature control must be sufficiently precise.

A Operative - Allowed tlm? , Cumulative .

temperature - ’,'/_ below setpoint operative

P ;
- /. VoS temperature
5 'II ’,-“ ;.r /‘\\:! ;‘, ______
! :l’/\ Y ,r/ l\‘ J . e -~
R \ Min. comfort limit “
\%/ \/
Setpoint shift

\4

P Time

Initial temperature ~ ------ Temperature after shifting

Figure 3. Allowed deviation of the room operative temperature and the required shift in temperature
setpoint (adapted from [36], [37]).

1.4 Predictive control

To guarantee thermal comfort for occupants while minimizing the energy demands of
dynamic heating operations, it inevitably becomes necessary to predict temperature
response [1]. In buildings with simple setback control mechanisms based on pre-defined
temperature setpoint schedules, there is a risk of discomfort when people arrive if the

18



temperature has not yet achieved its set value. On the other hand, energy is wasted if
the temperature is reached too soon.

A typical solution to this problem is to predict the heat-up time. The heat-up time can
be manually scheduled by the building manager or occupant as experience dictates,
but this does not allow for dynamic adjustments in response to ambient temperature
fluctuations and internal gains. In calculations of automatic heat-up time, the building is
often simplified as a single time constant model. The time constant for the cool-down
process is usually estimated, being considered dependent only on the building structure,
as in ISO 52016-1:2016 (previously 1ISO 13790) [38]. Based on this estimated time
constant and the estimated heating power, the heat-up time can be calculated.

In recent years, most intermittent heating control systems for low energy buildings
include advanced control methods to ensure an acceptable level of thermal comfort and
simultaneous energy savings [39]. There are several methods available to estimate the
heat-up time for both single and multi-zone cases [27], [40], [41]. For at least a decade,
smart thermostats for radiators have included programmable setpoints and have had the
ability to learn the heat-up time. To pre-program the setpoints, the behavior of the
tenants must, however, be regular and known beforehand. This mostly applies to office
buildings but not to residential buildings or public buildings, such as shopping centers,
concert halls, etc. In the case of residential buildings, a method by Ayr et al. locates the
tenants using their smartphones and switches off the heating when the distance from
home is large [42]. When the tenants approach the building, the heating is turned on
again. The savings achieved using the setback approach depend heavily on the behavior
patterns of tenants [43].

There are also more advanced systems that predict room temperature using different
dynamic constraints, making it possible to optimize control actions. Model predictive
control (MPC) solutions, for example, take comfort limits as constraints and optimize
control actions using a simplified model. Different objectives can be selected, while the
goal is often to achieve optimal energy consumption. The results measured are used to
improve control. The general operation of MPC is shown in Figure 4. MPC control has
been widely analyzed as method of building control [39]. MPCs applied to space heating,
using constraints that ensure thermal comfort, have been analyzed previously in several
different configurations [44]. The influence of different parameters, such as occupancy
data [31], [45], and the steps necessary to implement MPC in practice have also been
analyzed [46]. Still, a high level of complexity, low adaptability, and high cost are factors
which keep MPCs from being more widely implemented.
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Figure 4. General concept of MPC: process flow chart [47] and timeline (adapted from [48]).
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1.5 Grid-driven heating control

Not only does dynamic heating save energy, it can also be used to help balance the grid.
As the share of renewable energy in the power mix is ca 28% globally and is predicted to
be ca 38% by 2027 [6], the demand for energy storage [49] and demand-flexibility is
expected to increase in the near future. As the building sector consumes 30% of global
electrical energy [50] and thermal energy in addition to it, buildings should be considered
a potential source of flexibility.

There are different ways to influence the consumption side of the grid balance [7].
Demand side management (DSM) is an established strategy for controlling energy
demand, focusing on the overall energy usage of consumers and their consumption
behavior over time [51]. DSM, which originated during a time when maintaining constant
power from inflexible nuclear or lignite plants was paramount, has led to the practice of
load shifting (LS), which includes such DSM techniques as peak clipping or valley filling.
Given the fluctuating and sometimes negative electricity prices on markets like the
European Energy Exchange, the DSM potential for large industrial consumers has been
extensively studied [52], [53].

DSM activities are less common in a residential context, primarily involving static, daily
repeating time-of-use pricing schemes to encourage nighttime consumption [54].
Residential electricity use is typically analyzed for LS involving the shifting of clothes
washing times, etc. Analyses usually focus on the shifting of routine electricity use or
investigate electrical HYAC consumption. The use of heat pumps for the electrification of
heating can, however, combine space heating with thermal storage management (STM)
as a grid balancer [16], [55].

Space heating accounts for about 20% of the EU’s final energy demand [9]. Dynamically
controlling residential heating systems could, therefore, offer some flexibility potential
for stabilizing the grid [56]-[59]. Some heat pumps (HPs) are even now capable of
operating on the basis of external signals and shutting off during peak consumption
times, and there are now initial solutions for synchronizing heat pump operation with
local PV generation.

The grid operator has essentially two ways to influence energy consumption: using
the price of energy (see section 1.5.2) or offering special incentives to participate in grid
balancing (see section 1.5.3). Their application to the thermal demand of buildings would
require the dynamic control of systems that receive signals from the grid, and it would
be dependent on the building’s ability to shift the thermal load (section 1.5.1).

1.5.1 Potential for shifting thermal demand
Thermal demand in residential buildings is typically rigid, closely linked to interior
temperatures and therefore to the thermal comfort of occupants. To harness the
potential flexibility of these buildings, thermal storage is needed. This could involve the
use of technical storage systems such as hot water tanks [59], [60] or the inherent
structural thermal mass (STM) of the buildings themselves [61]-[63]. In the case of
technical storage systems, dedicated equipment must be acquired and housed within the
building. In contrast, STM is already present in the buildings and involves no additional
acquisition costs or space for implementation [64]. The cost of the necessary control
equipment and electronic thermostats is also significantly lower than that of hot water
storage tanks or other thermal storage systems [57], [64].

Generally, the STM of a building is the total heat capacity of its construction materials.
However, the thermal storage capacity of STM only becomes apparent and usable when
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temperature variations within a building allow its activation, meaning the charging and
discharging of a portion of that mass. This implies the need for variable setpoints or
minimum and maximum limits, rather than constant room setpoints. The process of
storing energy in the STM and load shifting due to temperature changes is shown in
Figure 5.

Historically, thermal mass activation research had focused on commercial cooling
needs, as these demanded a significant amount of electricity during peak load times in
the traditional power generation system with, for example, thermally activated building
systems (TABS) [65]—[68]. Heating activation was seldom discussed, as it was fueled using
non-time-dependent fossil fuels [69], [70]. STM activation for electricity flexibility is now
increasingly being discussed [16], [55], [63], [71]-[73]. In many studies, additional STM is
provided by incorporating phase change materials (PCM) in the building construction
[74].

Previous studies found that poorly insulated buildings can shift more energy but over
brief periods, whereas buildings with better insulation can shift less energy but over
extended periods [61], [63], [75], [76]. Further, it was shown that buildings with
inadequate insulation experience greater heat losses due to STM activation. In contrast,
extremely well-insulated buildings risk compromising comfort levels if STM activations
are not correctly timed or if internal and solar loads are not accurately forecasted [61],
[63], [77].
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Figure 5. Energy storage and release in a building structure with constant setpoint heating alongside
dynamic indoor temperatures during a heating action (adapted from [78]).

1.5.2 Price-based control

To validate the feasibility of thermal mass activation in residential buildings, suitable
control algorithms need to be designed. These algorithms should facilitate STM
activation in response to signals from the grid while maintaining constant thermal
comfort for occupants.

Typically, the control signal is the price of electricity. Consumers can adjust their usage
based on this signal to pay less for energy. In case the common two-tariff rate is applied,
heating would start during the night, resulting in a control approach like the setback
method. Predictive control would need to consider the day-ahead electricity spot prices.
Some heat pumps already optimize their behavior on the basis of price, and more
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advanced methods for heat pumps have been developed [79]. Certain control methods
also ensure flexibility by exploiting a storage tank or building’s STM [74].

Some studies argue that price-based MPC is not the best way to drive flexibility as it
limits negative flexibility [80]. Instead, they propose a more flexible approach based
more indirectly on price. Moreover, to reduce carbon emissions from the local or central
grid, an ecological control signal might be preferred over an economic one. An ecological
signal such as the primary energy factor could more accurately reflect the level of
emissions [81].

Very few studies integrate residential building simulations with MPC and optimization
strategies that control STM activations to maximize comfort and LS potential [16], [62],
[82]. The LS potential of STM under model-based control is found to be lower than that
of rule-based control. This is partly due to the fact that MPC minimizes comfort violations
at the expense of a slightly reduced LS potential. The utility functions needed to optimize
a given system’s operation usually show that STM activations are only profitable for
limited periods, thus also restricting LS activities.

1.5.3 Participation in frequency restoration reserve

The incentive-based approach is employed to help maintain a constant power frequency
of 50 Hz across the grid throughout the day. The balance between production and
demand is projected and adjusted to determine the day-ahead price. Power grids rich in
renewable energy, however, often encounter sudden and unexpected intra-day
production changes that can destabilize the system. Imbalances can also occur during
regular operation, as a result, for example, of errors in the prediction of demand. Various
frequency restoration reserves have, therefore, been established to balance these
fluctuations either automatically or manually (see Table 1 for an overview of the Finnish
system).

Table 1. Reserve marketplaces in Finland (adapted from [83])

Abbreviation FFR FCR-D FCR-N aFRR mFRR
Fast Frequency Frequency Automatic Manual
Containment Containment Frequency Frequency
Name Frequency X .
Reserve Reserve for Reserve for Restoration | Restoration
Disturbances Normal Operation | Reserve Reserve
Activated In I:?rg.e freq. In Ia.rg.e freq. Used all the time Used.durmg Activated if
deviations deviations certain hours | necessary
Activation speed |In 1 second In seconds In 3 minutes In 5 minutes | In 15 minutes

In the Nordic countries, the reserves employed for standard operation are the Fast
Frequency Reserve (FFR) and the Frequency Containment Reserve (FCR). There is also
FCR for large disturbances. These reserves include production, consumption, and storage
that can be automatically leveraged in seconds or within three minutes [83]. During
certain hours, the automatic Frequency Restoration Reserve (aFRR), which has an
activation time of 5 minutes in the Nordic countries, can also be used. The balancing
market in the Baltic region is still in the development phase, so balancing services
employing FFR, FCR, and aFRR have not yet been fully developed [84].

If necessary, the manual Frequency Restoration Reserve (mFRR) can also be activated.
These tertiary control reserves, provided by the Transmission System Operator in most
countries, are called on to help correct prolonged deviations that cannot be addressed
using other upstream balancing services (FCR and aFRR) alone [85]. The mFRR is the
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slowest among these products and the only one currently available in the Baltic region.
In the Baltic countries, the maximum full activation time (FAT) of mFRR is 12.5 minutes
[86], while in the Nordic countries, it is 15 minutes. Depending on the region, the FAT for
mMFRR can be even shorter (e.g., 5 minutes according to [87]). The minimum duration for
which the reserve can be activated ranges from 15 minutes to 1 hour.

MFRR reserves mostly consist of safety production sources, storage options, or large
consumers such as factory lines. Generally, only large consumers (representing at least
1 MW [85]) can participate in the mFRR. Aggregators (Balancing Service Providers) can,
however, combine several smaller consumers (e.g., private heat pumps) into one
switchable unit and therefore enable participation for everyone [88]. These units are
called virtual power plants. Changing the demand of smaller consumers can be quicker
and more cost-efficient than switching production or storage sources on and off.
The aggregators transfer the signal to virtual power plant partners and override the
default control approach. In the case of heat pumps, frequency needs be set manually
[89]. The Transmission System Operator can require both upregulation of consumption
to participate in the downward mFRR reserve as well as downregulation of consumption
to participate in the upward mFRR reserve. In the Estonian market, the potential for both
mFRR downward and upward reserves has been shown to be insufficient to balance the
grid inside the country [84].

Downregulation of demand is often more difficult than upregulation for many private
users. This is an opportunity for STM activation in massive and energy-efficient buildings,
giving them an advantage on the market. LS and participation in mFRR downward reserve
inevitably increases a building’s electric energy consumption assuming that thermal
discomfort is not increased. The impact of each LS action on electricity costs should be
assessed for effective participation in the mFRR. It should also be ensured that modelled
up- and down-regulation capacity is actually available to react to grid signals. A complete
understanding of the performance of each component of the heating system on a
15-minute timescale and performance of STM activation is, therefore, needed when
developing the control principles of a heating system for profitable and effective
participation in the mFRR.

1.6 Modelling of control processes

Analysis of building energy performance is most often carried out using white-box
simulation models. To use these models for the testing of electricity balancing control
algorithms in buildings, heat emitter control modelling must be reviewed. In typical BPSs
used to determine annual energy demand, heat emitters are not always separately
modelled but incorporated as ideal systems with ideal control that generate exactly the
heat needed to achieve the desired temperature in aroom. Depending on the goal of the
simulation, heat emitter models could be included, and the heating plant is sometimes
modelled in detail.

When modelled, the UFH is often simplified in BPS programs, reduced to a floor layer
with a different temperature, either with a specific thickness or virtually dimensionless.
The layer temperature develops from the heat transfer between the piping and the layer
material and is calculated according to logarithmic temperature differences. The return
temperature is calculated using the room heat balance and mass flow. Floor surface
temperature is estimated using the logarithmic temperature difference.

If modelled in detail, the mass flow is estimated using the design temperature drop
and feedback control according to the default PID controller or thermostat. Both the
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estimated room temperature fluctuations and mass flows depend, therefore, on controller
parameters. Valve effects are usually omitted from UFH modelling (a linear valve curve
is assumed). As most short delays in the system (valve opening delay, actuator delay,
temperature sensor delay, signal transmitting delay, calculation time) are omitted, their
effect is aggregated with the effect of controller parameters.

In most UFH simulations, it is not necessary to include short time delays, as the time
constants for the fluid and construction mass are orders of magnitude higher. The time
constant for the room temperature measurement can be as low as 2 minutes [90]. A delay
of 3-5 min (the heat-up time) for the actuator-valve mechanism is normally assumed when
itis being energized [91], [92]. Even together, these values are too low to have a significant
effect on the annual energy consumption of a building, especially if tenants adjust the
setpoint when the delay results in temperature fluctuations. Nevertheless, these short
delays may prove significant, for example, in simulations aimed at testing control
algorithms for rapid processes, such as reactions to grid signals from frequency markets.

Many existing studies on heating system performance and control have taken
simplified approaches to the modelling of control processes, and the impact of these
simplifications has not been well-documented. This thesis has thus placed a significant
focus on the detailed modelling of heating system control to quantify the full effect of PI
parameters (section 1.6.1) and wax motors (section 1.6.2) on UFH control.

1.6.1 Pl and its tuning methods

PID is well-known as one of the best and simplest feedback controllers for any process.
While PID can take different forms, the derivative part is usually dropped for buildings,
and PI controllers are used instead [93]. This is because the D part is more useful for very
fast processes where changes are in seconds. Even in the case of fast building processes,
such as ventilation airflow control, controller producers exclude the D part from default
PID parameters. Here we use the classical form (not the parallel form) of the Pl controller:

w(t) = K (E +%f Edt) (1)

where u is the (dimensionless) control signal and E is the difference between the setpoint
and measured air temperature in °C and acts as the feedback to the control. K is the
proportional gain, and ti is the integration time. In the case of parallel gains, the integral
part’s parameter integral gain Ki would be expressed as Ki=K/ti. The discretization of the
PI(D) controller can also vary depending on the software. In IDA ICE simulation software
[94], which was primarily used in this work, the implementation for each timestep is shown
in Figure 6, where hilimit and lolimit are the limits for the Pl output signal (0 and 1).

The PI parameters K and ti can be manually or automatically estimated (tuned),
or parameters pre-set by the controller or software producer can be used. If improper PI
parameters are chosen, the whole system can become unstable. Designers and
researchers, therefore, often turn to optimal or predictive solutions [95]. But advanced
solutions are not easy to implement, and the need for robust and reliable solutions with
minimal human interaction is evident [93], [96]. Therefore, sensitivity and performance of
control algorithms should be tested in very detailed realistic simulation environments [97].
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[cONTINUOUS MODEL PIContr E := IF Mode < 0.5 THEN

(SetPoint - conv_unit*Measure)
ABSTRACT "PI-controller. ELSE
(conv_unit*Measure - SetPoint)
END_IF ;

EFilt := TimeConstBDF1 (tau, E, EA S):
CutSignalTemp := k * (EFilt + Imntegqg) !
Integ' = EFilt/ti + (OmtSignal - CutSignalTemp)/tt ;
CutSignal = IF OutSignalTemp > hilimit THEN
hilimit
ELSE IF QutSignalTemp < lolimit THEN
lolimit
ELSE
OutSignalTemp
END_IF ;
Figure 6. Pl controller implementation in IDA ICE software. The parameter tt is the tracking time
and has a value of 30s by default. The conv_unit variable is for unit conversion if needed, and
TimeConstBDF1 is for filtering. For the default tau = O, there is no filtering, and Efilt = E.

Many simplified methods have been developed for tuning Pl parameters. Approaches
often rely on the first order model with time delay, where the temperature response of
an input step change is given as follows:

t-L

T(t) = K, (1 - e_%) +TO)e T 2)

where T(t) is room air temperature in °C at time t seconds after the step, T(0) is the initial
temperature before the step, K, is the process gain (dimensionless), T is the time
constant in seconds, and L is the time delay, also in seconds. Though the underlying
assumption of Pl control is that the system performs linearly, it is also often applied in
the case of non-linear systems. For systems performing differently at various boundary
conditions (such as heating systems in different seasons), it means that the same control
parameters should not be used year-round [93].

The auto-tuning of PID controllers for heating, cooling, and ventilation plants was first
described several decades ago [98]-[100] and has become a current topic of interest
[101]. If there is enough computational power, artificial neural network models should
be capable of tuning Pl parameters [102]. Self-learning Pl controllers are already
commonly available for radiators in new buildings. As radiators are also installed in public
and commercial buildings, there is a lot of interest in and financial incentive for the
development of better-performing solutions for these environments.

For hydronic UFH, only simple thermostats with a deadband of at least +/- 0.5 K are
typically used even in modern buildings. When UFH is used with a thermostat, the air
temperature can, however, fluctuate significantly, and occupants will raise the setpoint
to avoid lower levels and meet their comfort limits. This leads to higher energy
consumption. Control of UFH as a slow system with a high thermal mass is an issue of
debate, and good solutions have not yet been found. Some manufacturers offer
sophisticated self-learning controls, while on/off control is likely the most common
implementation in practice. In some studies, self-regulating properties (no-control)
have shown a level of performance similar to that of more sophisticated control
solutions [103]. The high time constant for UFH is even increased by the low supply
temperature from heat pumps made possible by small losses in well-insulated nZEBs with
heat recovery ventilation. The high time constant means that setting Pl parameters
manually by trial and error, common practice for Pl tuning, will take a significant amount

25



of time. For self-tuning controllers, simple tests are needed, but these can also prove
time-consuming.

For grid-driven dynamic heating applications in low-energy buildings, a small range of
temperatures can be utilized. Random fluctuations must be avoided to enable
meaningful shifts. A constant (e.g., minimum) temperature level must, therefore, be held
as precisely as possible. When parameters are optimized, Pl control for UFH control
provides a greater energy savings than standard on/off control [36], [104]. Optimal
parameter values are, however, not usually revealed in the scientific literature. There is
a lack of published data on Pl parameter values for UFH, with some exceptions [36],
[105], and the effect of different parameters values for UFH has not yet been analyzed.
In the case of radiators, however, the effect of Pl parameters has been studied, as there
is a lot of potential for energy savings due to often untuned heating circuits [106]. Tuning
radiator Pl parameters using machine learning has shown a 32% reduction in heating
energy consumption compared with Ziegler-Nichols tuning [107]. The current situation
shows that while PID and on/off control waste energy, more advanced solutions on the
market often do not ensure comfort [108]. With quality tuning, Pl could both reduce
energy waste and ensure comfort. Parameter optimization for UFH has been carried out
extensively in simulations [36], but it is not yet known whether it is possible to obtain
optimal parameters with shorter tests.

1.6.2 Wax actuator and its modelling

When dynamic heating control driven by power-grid incentives is applied, the timescale
needed for UFH control decreases significantly. The start-up time for a heat pump system
can generate a bottleneck that can critically impact the local system response to the grid.
Even if the heat pump can be activated as quickly as required for mFRR, a heat sink is
needed to keep the small amount of water in the heat pump’s closed circuit from
overheating. This would lead to a halt in electricity consumption and a failure to fulfill the
promised bid to mFRR. In the case of inverter-based heat pump systems, large storage
tanks are not typically installed, and the building structures must be used as a heat sink.
This requires opened valves in the hydronic heating system, e.g., a UFH manifold.

The UFH system and its control includes several components, some of which have
already been shown in Figure 1. The manifold system is shown in Figure 7 and includes
valves on both the supply and the return side. Supply side valves are for initial manual
balancing (e.g., with rotameters), while return side valves are often continuously
electrically controlled on the basis of data received from room thermostats. In simulations,
these components are often simplified as a linearly controlled volume flow with the input
being calculated using the room temperature and setpoint conditions via the chosen
controller (e.g., Pl or on/off). In an actual system, however, the controller output would be
modified in several ways before the volume flow is determined. First, there would be at
least a minute delay before a change in room temperature affected the control signal.
Second, volume flow does not change linearly with valve piston movement or control
signal. Finally, before the heating signal is converted to water flow, an additional delay
might be induced by return-side actuators. This process is shown later in Table 10.

The actuators in UFH manifolds are thermoelectric actuators that work with wax,
which reacts relatively slowly. Signal delay and unsuitable control parameters can
prolong the opening time even further.
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Figure 7. Components of a UFH manifold (adapted from [109], [110]).

In the closed valve position, the system’s water volume is very small and temperature
limits in the heat pump circuit may be reached too quickly when the heat pump is started
at full power. The slow movement of the actuator’s piston with a slow opening of the
valves would then hinder the aggregator’s delivery of the load expected by the grid.

Thermoelectric wax actuators are electrically controlled and use paraffin wax as phase
change material (PCM) for volume change [111], [112]. These actuators are known by
other names as well, such as wax motors (used in this work, abbreviated as WM), wax
pellet actuators, thermo-electric actuators, and thermal actuators [113]-[116].
Cross-sections of wax actuators on manifold valves in the open and closed positions are
shown in Figure 8. The wax is solid at room temperature and liquid at higher
temperatures. It is heated by a positive temperature coefficient (PTC) heater. In the
absence of an electric heating signal, the actuator-valve system is normally closed. When
voltage is applied, the wax starts melting and expanding, setting the valve’s piston in
motion. This process is shown in Figure 9. With the assistance of a spring, piston
movement (displacement) reduces the actuator’s inner height, thus opening the valve.
The hysteresis of up and down movements is generated by the temperature difference
between stop and start positions, due to the thermal inertia of the wax and friction of
internal parts, which include a spring [117]. Such a method of valve control has been
used in UFH for quite some time, as the actuators are silent and durable [118]. Slower
reactions also preclude the water hammer that is associated with motorized valves. Wax
actuators are also used in fan coil units in cooling systems and in pressure-independent
control valves in heating systems. Radiator thermostats include similar motors, but these
are often based on the expansion of a liquid or gas instead of the phase change of wax.

Some wax actuators use continuous control with voltage between 0 and 10 V. Others
use discrete control with a binary heating input, i.e., no voltage for no heating and 230V
or 24 V for heating. Continuous 0-10 V wax actuators still use 24 V to power the PTC
heater. Thus, if a controller with continuous output, such as a Pl controller, is used to
control a UFH wax actuator, the continuous signal must be modulated into a binary signal
for the PTC heater. 0-10 V actuators can, theoretically, stay partially open. Partial opening
control is, however, simpler for valves that have a logarithmic valve characteristic curve,
i.e., a logarithmic volume flow dependency on the valve opening. In UFH manifolds,
quick-opening valves are employed instead. These exhibit most of the change in volume
flow when the valve is only slightly open. A partial flow would only be realized within a
very small range of the extent to which the valve is open. These valves thus perform close
to on/off with either actuator type, whether using continuous or discrete control.
As a consequence, simpler 24-V on/off-motors are often used, as is the case in this work
[117].

27



CLOSED OPEN

WAX

MOTOR \
PTC Ve
— Down mation start l
WAX — =1
. I
SPRING = ‘
w Up motion stop
PISTON =
w
Q
VALVE <
a
1]
a
<
MANIFOLD / <
RETURNFlOW oo
FROM UFH CIRCUIT WAX TEMPERATURE

Figure 8. Valve opening with wax actuator Figure 9. Theoretical piston movement
warming visualized as part of a manifold (displacement) according to wax temperature
(adapted from [119]). (adapted from [117]).

The only available wax actuator model (described in section 2.3.2.2.4) is based on
physical principles modelling the piston displacement according to ideal phase change
process as shown in Figure 10. The upper graph displays the ideal wax temperature
changing process presented on a time scale that is dependent on the binary heating
signal. This omits the hysteresis in temperature shown in Figure 9. The lower graph in
Figure 10 shows the resulting piston displacement. The linearized simplification is designed
according to the ideal wax temperatures but if omitting the step of modelling the
temperature, it can also include the hysteresis. In the context of this thesis, this simple
linearized model is referred to as the characteristic model [92] and the different time
periods shown in Figure 10 are referred to as characteristic times and defined as follows:

. Dead time (tdeqd): solid wax heating up to the melting temperature with no
volume change

. Rise time (trise): phase change of the wax from solid to liquid with expansion

o Hold time (tnow): liquid wax cooling down to the melting temperature with no
volume change

. Fall time (tran): phase change of the wax from liquid to solid and compression

Based on these, additional times for analysis could be calculated as well:

. Full activation time (FAT): tear = tdead + trise

. Deactivation time (DAT): tpar = thoid + tfan

. Overheating time (ton): the time when the valve is fully open, but the motor is
still heated and liquid wax is still heating up

. Undercooling time (tu): the time when the motor is not heated, the valve is fully

closed, and solid wax is cooling down

The characteristic times can be empirically estimated, and modelling of the wax
actuator does not require physical modelling of the wax temperature and phase change
process. This makes the method more tenable, since all physical parameters such as
material properties, mass, volume, conductivities, spring properties, etc. do not have to
be estimated. Wax motor models for HVAC together with their effect in BPSs have not
up to now been analyzed in the scientific literature. This is a major contribution of the
present study, since an implementation that allows investigation of grid-driven control
with sufficient accuracy is still lacking.
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Figure 10. Definition of characteristic times for normalized linear displacement of the piston of a
wax actuator or valve dependent on the heating signal; wax temperature changes during this
process shown in the upper graph.
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2 Methods

This work is divided into two main parts: a general evaluation of heating with dynamic
setpoints in nZEBs and a detailed analysis of UFH control. This chapter is structured as
follows:

e The present section provides a general overview of methods used.

e Section 2.1 describes the rooms used in the analysis.

e Section 2.2 explains the methods used in the first part of the analysis, the primary

and final energy reduction algorithms, and their sensitivity analysis.

e Section 2.3 describes the methods in the second part of the work, the detailed

modelling of the UFH control process, and an evaluation of its effect on BPS results.
The first task was to quantify the potential to reduce primary energy demand (PED)
through the optimization of the control of low temperature radiators in buildings with
different building standards (I). The combination of RES in the power grid, an increase in
the energy efficiency of buildings, and the use of heat pumps suggests that there is
potential for reducing carbon emissions from heating through the activation of STM.
Dynamic primary energy factor (PEF) was used as the grid signal instead of spot price to
make it possible to directly quantify emissions and accommodate tariff-based prices.
To ensure thermal comfort, PED optimization was carried out using a control algorithm
that includes MPC but is simple and can be implemented using a very small number of
measurements (sections 2.2.1 and 3.1.1).

In systems with constant or only slightly varying PEF, such as fully renewable or fully
non-renewable sources, final energy demand (FED) reduction is necessary for cutting PED
or costs. In this case, intermittent heating control can be employed. To see its potential in
modern very low energy buildings, an office room with very small losses was defined (V).
Offices have a regular usage profile and long vacant periods compared to rooms in
residential buildings, making it possible to quantify its full potential. Different thermal
masses and both UFH and radiators were also tested to see the variance range. In addition,
a well-insulated office was also compared with a less insulated one. To quantify the
potential without reducing thermal comfort during occupancy, an even simpler predictive
control than MPC was implemented: a pre-heating time calculation based on time constant
estimation (sections 2.2.2 and 3.1.2). Theoretically, this can be realized with a prediction
model like the one applied in MPC for PED reduction. Even slight complexity can, however,
be a barrier to implementation and is probably not needed here.

From the results in section 3.1.2, we can see that UFH may cause overheating during
day, and the potential for FED reductions with dynamic heating is, therefore, lower than
that for radiators. The fact that UFH cannot maintain a defined temperature level may
also reduce the potential for implementing different FED and PED reduction solutions.
For a meaningful comparison and to be able to use simpler control algorithms, it is,
therefore, essential to improve UFH control.

In simulations of these high-level control algorithms, Pl control for UFH is usually
implemented. In practice, however, thermostat (on/off) control is often installed. With
on/off control, clearly, only a very small deadband would allow precise control, but due
to measurement imprecision, it cannot be infinitely small. PI, therefore, has greater
potential to improve control. In simulations, the BPS software’s default Pl parameters
are often used, though it is not clear how suitable these are in practice and in the case of
the simulated building. In practical applications, new parameters must be found for the
specific case and given boundary conditions. In section 2.3.1, a search for optimal PI
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parameters for UFH is described, and the potential influence of changed parameters on
FED is analyzed (ll). Section 2.3.2 investigates low-level control of UFH further, describing
methods for developing a wax motor model (lll and IV), as there is little to be found in
the literature on wax motors in UFH applications. Two different models, a characteristic
model and a physical model, were tested in one simple test scenario (IV). As the
characteristic model fit the measurements slightly better and was much easier to
parameterize, it was discussed and developed further in greater detail for more general
use on the basis of an extensive set of experiments (ll1).

The effect of the resulting empirical model on FED was also discussed (lll) and tested
with both Pl and on/off control. Beyond the wax motor itself, several accompanying
effects were also considered. For Pl control, both default and optimized parameters from
earlier work were used. Since most wax motors only accept a binary heating signal, the
Pl output had to be modulated. As the valve curve is not in practice linear, a non-linear
curve was used in the simulations. In all, a flow control process with gradually increasing
level of detail was defined, and its effect on both temperature fluctuations and FED was
estimated at each step.

The whole room temperature control process together with the regulation of the
volume flow and supply water temperature of the heat emitter is shown in Figure 11.
On the left, room air temperature setpoint options for different approaches are shown,
including the PED and FED savings algorithms (publications | and V). The control process
for volume flow based on set and measured air temperatures is shown in the middle part
(publication Il1). Publications Il and IV discussed Pl control and wax motor specifics in this
process. All the publications included the room and heat emitter modelling, except 1V,
where the room was included only in the measurement of volume flows in the UFH circuit
for calibration purposes.

Power grid or user Control process defining the volume flow (PUBLICATION 1l
information
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user impact
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‘ Controller device —|calculat|on of control signal ‘ ‘ Manifold — physical control ‘ Room —
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[ comsan ||| winoptmaea | ¥oion| [ Creseonvs
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' heat-up prediction . (PUBLICATION II) 1 i
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based, e.g. MPC On/Off :
(PUBLICATION 1) r i
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Figure 11. Overview of room heating control and which topics this thesis focuses on.

2.1 Overview of the room and building models

To evaluate the thermal conditions and energy requirements that arise when using
different control strategies, comprehensive physical models of the buildings were
created. In each simulation, heating operations were controlled in one room using the
algorithms developed. Three different test rooms were modelled. We called these the
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“German home”, “Estonian home”, and “Estonian office”, according to their locations
and usage profiles. An overview of the three rooms is shown in Table 2. In the first row,
room plans are shown with windows, modelled doors, and geographical orientation with
dashed lines indicating the external walls of neighboring rooms.

The rest of the table shows physical parameters for the rooms. For the sensitivity
analysis, the room parameters which varied (window direction, window parameters, wall
construction, etc.) are shown with slashes. The building envelope was characterized
using thermal transmittance (U-value in W/m?K), and window glazing parameters
included the full transmittance of solar radiation (g-value). Infiltration was characterized
using the air leakage of the external envelope at a pressure difference of 50 Pascals (qgso).

The two homes were rooms in buildings that had been used earlier to calibrate or test
the simulation models [43], [104], [120]-[123]. The “German home” test room was on the
first floor of the initial building model, a typical two-story single-family detached home with
a heated floor area of 150 m2. The building was constructed of aerated concrete and
insulated with mineral wool. The thickness of the insulation and airtightness were varied
to estimate the sensitivity of the MPC algorithm developed. The “Estonian home” was a
room at the TalTech nZEB test facility, a 100-m? house featuring balanced heat recovery
ventilation, a ground source, and an air-to-water heat pump system with radiators and
UFH, among other technologies. The “Estonian home” room was called Room6/R6 in
different articles. Room 5 in the same building is very similar, in fact just a mirrored version
of R6. The “Estonian home” room is the subject of the detailed UFH control analysis in the
second part of this work. The “Estonian office”, a model modern office room, was the
subject of the analysis of FED reduction with setback heating.

The office room was modelled as a single zone with adiabatic internal structures, while
the adjacent zones to the other rooms were modelled to maintain a constant
temperature of 21/22 °C. This approach partially ensured that the performance of the
control algorithm would not be overly influenced by the selected building geometry.
External boundary conditions were set using weather data from the test reference years
(TRY). For the German home, the German Lower Rhine region (western Germany — TRY
region number five) was used [124], and for the other two, the Estonian TRY [125].

The rooms were heated using either radiators or UFH. The table shows their power
and the share of heat demand under design conditions it was defined for. Ventilation
with heat recovery (HR) was included in all well-insulated cases. Average internal gains
from people, lights, and equipment are also included in the table.

The IDA ICE simulation software was used in almost all cases. For the MPC analysis,
a co-simulation framework was compiled using Dymola/Modelica software [94], [126],
[127]. The German home was thus modelled in Modelica. Both IDA ICE and Modelica
software model rooms as one ideally mixed air volume, its space enclosed by structural
components. The heating system was mostly based on components available in this
software. In the case of Modelica, the AixLib library was used [128], [129]. In this thesis,
it was not critical to construct a detailed model of the heat generation system. Heat was
produced by an ideal heat source, which was linked to the hydraulic radiator or UFH system
in the test room under observation. In the context of this thesis, the room, heat emitter,
and mass flows in the circuit were modelled, but the interaction between different circuits
and the heat pump were excluded (see also Figure 1).
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Table 2. Overview of the modelled rooms and their parameters

Visualization \—i i
p— 1
1
1
 NJ. N
Name German home Estonian home Estonian office
Location NRW, Germany Tallinn, Estonia Tallinn, Estonia
Area 16 m?2 10.4 m? 13.3 m?
Function Residential Residential Office
House area 150 m? 100 m? -
Adjacent rooms At temperature 22 °C | At temperature 21 °C Adiabatic int. walls
Envelope
External env. Area 37.6 m? 30.1 m?2 10.3/23.6 m?
External wall Aerated concrete, Timber frame; Timber frame /
construction; mineral wool; masonry;
U-value (W/mZ2K) 0.54/0.28/0.14 0.12 0.8/0.14

Floor
construction;

concrete floor with
insulation, on ground

concrete floor
(with crawlspace);

Concrete floors,
adiabatic or above air

loss W/K/floor m?

without air exchange

without air exchange

U-value (W/mZ2K) 0.52/0.33/0.26 0.08 Adiabatic /0.11
Ceiling / roof; timber frame ceiling; timber frame roof; Concrete ceiling;
U-value (W/mZK) 0.21 0.08 adiabatic
Specific heat 19/1.1/0.6 1.5 1.4/0.7/0.5

without air exchange

0.07 I/s/m2airflow)

Windows

Directions N&W S&W/N&W (R5) N /S (modern)
Area(s) 1.8m2x2 3m2x2 3m2x1
Frame fraction 20% 24% 25%
U-value (W/mZ2K) 2.5/1.3/0.8 0.75 1.4/0.75
g-value 0.8/0.6/0.5 0.3 0.54/0.46

Air exchange

Infiltration 12/6/1.2 0.6 3

(gso in m3/h/m2) For old: in vent. Incl.
Ventilation 0.36 1.08/0.5 Avg. 0.58 (2 during
(I/s/m?2) working day)
Heat input

Vent. Supply Tout (HR ca 80% Tsup 18°C (80% HR) Tsup 18°C (80% HR)
temperature reflected in smaller old: no HR & Tout

Heat emitter,
nominal power
(W/m?)

Radiator
67 /53 /26 (dim.
131% /143% /260%)

UFH
68
(dim. 90% / 140%)

Radiator / UFH
125/33 /21 (dim.
360% /180% /115%)

Supply/return 55/45 by design 34/29 by design ideal

temperatures

Internal gains 18.1 during On average 4 (during On average 3.8

(W/m?2) occupancy occ. 10.4 + people) (during occ. 8.3)

Modelling

Software Dymola/Modelica IDAICE 4.8 IDAICE 4.7.1

Utilized for: PED reduction with Pl precision, control FED reduction with
MPC of volume flows, WM setbacks and pre-

heating
In publications | 10, 1, Iv \Y;
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2.2 Effect of dynamic setpoints on energy savings

In this first part of the work, two control algorithms were developed to estimate the
energy saving potential using dynamic setpoints. The following cases were analyzed:
- Primary energy saving potential in a residential building when optimizing PED
using MPC (section 2.2.1)
- Final energy saving potential in an office when using a nighttime temperature
setback and pre-heating time estimation based on a time constant calculation
(section 2.2.2).

2.2.1 PE saving potential
2.2.1.1 Concept
An algorithm for PED minimization was developed for the “German home” room. Three
building standards were compared for the sensitivity analysis. The control algorithm
would dynamically identify optimal operating temperatures to guarantee thermal
comfort for occupants while reducing PE demand for heating in response to a dynamic
PEF [130]. Optimization would be achieved through the application of dynamic thermal
comfort limits dependent on room occupancy and activity levels of the occupants [1].
Ensuring thermal comfort and PED reduction simultaneously through STM activation
would require predictive capabilities, prompting the development of an MPC algorithm.
The control algorithm, which includes both rule-based and model predictive parts,
was designed to operate without any prior system data and collect data required at
runtime. Once enough data was gathered from the physical simulation (a white-box
model), a simple black-box model was built and updated daily. This model was then used
to predict thermal conditions in order to optimize heating operations.

2.2.1.1.1  Dynamic primary energy factor

The objective function of the MPC optimization algorithm was based on a dynamic PEF,
making it possible to minimize PE demand for heating. The fluctuating PEF was adapted
from the study by Stinner et al. [130], where it was calculated on the basis of time series
data for Germany’s electricity demand and renewable power generation from wind and
PV in 2015. Their profiles can be scaled to reflect any given share of RES on the grid.
In the present work, the PEF was scaled to reflect 80% RES, the German government’s
target for the year 2050 [131]. This approach ensures sufficient fluctuation to allow
dynamic operation of the heating system, as required for LS and STM activation. Figure
12 illustrates the resulting dynamic PEF signal for the observed two-month period.

3.0
2.5 (I

0 N I " k .1
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Dynamic
primary energy factor

Figure 12. Dynamic PEF profile used as penalty function for optimization in MPC.
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2.2.1.2 Building simulation

The “German home” was modelled using Modelica (as a white-box model) and for the
reference case, and its construction was defined according to German energy
conservation ordinance EnEV 2009 (referenced as EnEV 2009 or 09) [132]. This standard
describes an average modern German building built or retrofitted after 2009 [132], [133].
Energy efficiency was then reduced to comply with the 1984 German thermal insulation
ordinance (TIO 1984 or TIO) [134] and subsequently improved to comply with the passive
house (PH) standard [135].

The room was equipped with a radiator that would provide a nominal heating load
of 26 W/m? (PH), 52 W/m? (09), and 67 W/m? (TIO), as calculated for the observed
room [32], [136]. Power included a heat-up factor of 16 W/m?, as recommended for
buildings with moderate nighttime temperature reduction. So the radiators followed
the assigned air temperature setpoints, they were controlled using a conventional PI
controller (K= 0.1, ti = 1000).

Room operative temperature predictions in MPC relied on a simple black-box model.
An auto-regressive model with exogenous inputs (ARX) was used since ARX is often
integrated with MPC to optimize energy consumption [69]. The model consists of two
parts, an auto-regression calculation including the weighted sum of the variable’s own
previous values and the weighted sum of exogenous variables, which include the effects
of other factors influencing the operative temperature from the previous and current
time steps. A third order ARX model was selected based on a literature review [137].
The three previous values of the operative temperature were thus used to predict the
next value. Three timesteps of the exogenous variables were also taken as inputs, with
the assumption that the first predicted time step [t+1] values were already available.
Time was quantized into 15-min steps.

The structure of this ARX model is shown in equations (3) and (4). The four exogenous
variables (defined by vector )?) correspond to the temperature setpoint (Tset), solar
irradiation (/), ambient temperature (Tout), and room occupancy (occ). Tset was the control
variable adapted according to the optimization (see next section). In Eq. (3), To is the
operative temperature and c;y, are the ARX fitting parameters estimated using the
identification function ‘arx’ in MATLAB [138]. All ¢;, parameters were initialized to zero.

T,[t+1] = G,z - X[t + 11+ &, 3 X[t] + &, 5 Tslet
) )_()[t - 1] + ClvTo : TO [t] + CZ,TO (3) X = T (4)
out

'To[t_l] +C3vT0 'To[t—Z] occ

While a perfect prediction of /, Tour, and occ was assumed to be available to the MPC,
the same data was used in both the white-box and black-box models. German TRY data
was applied for I, Tour. Occupancy was generated using Richardson’s approach [139].
This method produces a statistically based irregular occupancy time-series that differs
each day and distinguishes between weekdays and weekends. A two-week section of the
generated profile is shown in Figure 13. According to the profile, the room was used for
34.5% of the observed time: 21.5% representing periods when the occupants were
active, 11.8%, inactive periods, and 1.2%, nighttime periods.
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Figure 13. Sample two-week section of the occupancy profile.
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Figure 14. Flow chart for the heating control algorithm developed.

2.2.1.3 Self-learning model predictive algorithm

The control algorithm was written in the Python programming language, while MATLAB
was used to fit the black-box model, Gurobi [140] to do the optimization, and
Dymola/Modelica, to do the ‘reality’ simulations. Though it was implemented on a
high-performance system, the algorithm was design to be simple enough to run on even
a Rasberry Pi [141] in a typical home. The corresponding performance calculation is
included in publication I.

The flow chart in Figure 14 provides an overview of the control algorithm designed.
The initial part of the algorithm is rule-based, making it easier to adapt the control system
to new environments. If the room is occupied, the temperature setpoint is defined as the
optimal operative temperature. If not, pseudo random binary signals (PRBS) [137] are
selected as temperature setpoints so that a wide range of measurement data can be
gathered for model fitting. This identification mode is not permitted if the ambient
temperature is higher than the minimal acceptable building temperature (19 °C) and the
current PEF is higher than its yearly average value of 1. If not permitted, the energy saving
mode is selected, and the temperature setpoint is defined as the minimum temperature
under unoccupied conditions (19 °C). Operation modes are separately selected for all
15-minute time steps, and a temperature setpoint profile for the upcoming hour is then
compiled. The control algorithm is executed once per hour.

The ARX model, based on collected measurements, is fitted when measurements for
at least one week are available. New model parameters are fitted every 24 h. The model’s
root mean square error (RMSE) between temperature measurements and average
predictions for the previous three days is evaluated. If RMSE < 1 K, the model can be
implemented. If the RMSE is larger, the last suitable model is used if not older than 3 days.
Otherwise, the ARX model is not used for the MPC until the next successful model fit.
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If a sufficiently accurate ARX model is available, the dynamic heating mode is activated
and the MPC seeks a suitable heating operation to minimize PE demand for heating
according to the objective functionin Eq. (5). The cost function minimizes the PEF-weighted
difference between the temperature setpoint and minimum acceptable operative
temperature using a time step of 15 min with a 24 h horizon. This requires the dynamic
PEF from the coming 24 hr.

24-4
min (Z PEF(t) - (Ter () — Tmm(t))> (5)
t=1

A linear optimization, employing a deterministic concurrent method [140] is performed
in Gurobi (version 6.5.0) using the gurobipy Python package. If an optimal heating
operation is found, the first hour of the optimized temperature setpoint schedule is set
as the temperature setpoint profile for the heating, and the cycle is repeated hourly.
If the optimization fails at first, the algorithm reduces the optimization horizon by 2 h
until it reaches 12 h. If no solution is found for the observed optimization problem, and
the optimization fails, then the algorithm is downgraded to rule-based control.

Finally, the compiled temperature setpoint profile for one hour is simulated in the
white-box model, and the resulting operative temperatures are returned to the control
algorithm as ‘measurement’ values for its next iteration.

2.2.1.4 Evaluation of concept and scenarios

The performance of the control algorithm was evaluated from 1 February to 31 March.
This period was selected for the cold ambient temperatures, which would ensure a
continuous heating demand, while the prominent role of PV generation would ensure
regular fluctuations in the PEF. The simulations were performed for the three building
standards described above.

To assess the potential of the algorithm developed, an MPC optimization scenario
(O2b) was created. Two reference scenarios (R1 and R3) were also defined and simulated
to help assess the MPC algorithm’s performance. For the reference scenarios, a rule-based
control was used to generate time-dependent temperature setpoint profiles. R1 would
keep temperatures at a constant 22 °C for a comparison with conventional building
operations. The temperature setpoints for R3 were the optimal temperatures in the
dynamic comfort profile and would therefore serve as the main benchmark for the MPC
algorithm. O2b implemented dynamic comfort constraints and dynamic maximum rates
of temperature change that were adapted from Wolisz [1]. These vary according to
occupancy and occupant activity. The rate of limiting temperature change varied from
1 to 3 K (specified in publication 1), depending on tenant activity and whether the
temperature was increasing or decreasing towards or away from the optimal operative
temperature (R3). Specific comfort constraints for all scenarios are given in Table 3.

Table 3. Boundary conditions in the scenarios analyzed

Operative temperatures when occupants are ... Rate of change
Time range Not present Active Inactive Sleeping At any time
(atany time) | 7a.m.-6 p.m. | 6-11p.m. | 12 p.m.-7 a.m.
Scenario (/) 11-12 p.m.
R1 22°C <4K/h
R3 19°C 21°C 23°C 20 °C <4K/h
02b 19-24 °C 20-23°C 22-25°C 19-22 °C Dynamic
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Agreement with the comfort constraints defined was evaluated by quantifying the
violations of these constraints using equations (6) and (7). For each time step (t) when
the operative temperature was not in the comfort range, the violation time (tout sim in
0.25 h) was multiplied by the violation’s extent (ATout_iim in K). The summation over the
timesteps resulted in a temperature violation index (TV/) that represents the total
constraint transgression in Kh (degree-hours). Similarly, the temperature change
violation index (TCVI) was calculated from the extent of the violation (ATCexceed in K) by
full hour (hexceea in h). The violation indices for scenario O2b were compared with those
of reference scenario R3 (which had optimal temperature setpoints).

TVl = Z ATout?lim " Lout_tim (6) TCVI = Z AT Cexceea * hexceea 7
t h

2.2.2 FE saving potential

2.2.2.1 Concept

Results from the minimizing of PED using MPC control show that building energy
efficiency has a significant impact on load shifting capability (see results section 3.1.1.2).
It was made possible, however, by a significant increase in FED. The following analysis
assesses how much it is possible to reduce FED during setback control and how much the
insulation level and thermal mass of building constructions affect it in very low energy
buildings. As shown previously [43], profile shape significantly influences energy
consumption, as the duration of temperature setback varies. The “Estonian office” room
was thus modelled to use long and regular vacancy periods to show the full savings
potential.

2.2.2.2 Building simulation and scenarios
The “Estonian office” room model used for the simulations had three different energy
efficiency level variants, the old, the standard, and the modern. In all cases, concrete
(heavy) and wooden frame (light) constructions were used to represent different thermal
masses. The old and standard rooms had one external wall with a window facing north
and an external floor over outdoor air. The modern configuration had the same
constructions as the standard case, but its floor was adiabatic, and it mirrored the
standard case with the window facing south so the room received more solar heat gains.
We defined the internal loads and ventilation control according to Estonian norms for
office simulations [142], meaning that the building would be occupied from 7 a.m. to
6 p.m. on workdays. During night, on the weekends, and on holidays, the building would
be unoccupied. Ventilation airflow was 2 I/s/m? during periods of occupancy and for
1 hour preceding and following each of these periods. The usage profile is shown in
Figure 15. This usage rate was multiplied by 5.8 W/m? to yield the occupant heat gain,
and by 9.5 W/m?, to yield the heat gain from lighting and electrical appliances.
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Figure 15. Usage rate (according to [142], a weighting factor for all internal gains.
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Two types of limited-power heating systems were simulated: ideal air heaters and
simplified floor heaters. Ideal air heaters represented the radiators (Rad) supplied by a
district heating system, while floor heaters represented the underfloor heating (UFH)
supplied by a heat pump. Simplified/ideal systems were used in place of the function for
raising the heating curve to achieve maximum output power of the systems during
heat-up; the designed power was always available if needed. The modern systems had a
nominal power of 21 W/m?, the standard systems, 33 W/m?, and the old systems,
125 W/m?. In the standard case, the room was also modelled with over-dimensioned
radiators (according to [32]) to provide the extra power needed for weekend setbacks.
It can be compared with a gas boiler supplied radiator-based heating system, which can
be easily over dimensioned without a significant increase in cost. The ideal heaters in
standard light offices with 51 W/m? and in standard heavy offices with 103 W/m? were
simulated and defined as ‘over-dim-Rad’.

10 different scenarios were created based on different combinations of the 3
insulation levels, heavy and light construction cases, 2 heat emitter systems, and the
over-dimensioned radiator cases, as shown in Table 4. These were simulated over a fixed
heating period (1 October to 30 April) using two control algorithms. First, a reference
case with a constant setpoint of 21 °C tracked by Pl control was simulated, and then,
a setback algorithm with pre-heating was applied. The pre-heating algorithm together
with the numeric parameters in the table are described in the next section.

Table 4. Scenarios and calculated input parameters used for the control algorithm

Energy-efficiency | Str. Heat Abbrev. Tn | Twna | @ H Cromm
level mass emitter (h) | (h) (W) | (W/K) | (k]J/K)
Standard Heavy | UFH S_H_UFH 50 225 (437 |9 1677
Standard Heavy |Rad S_H_Rad 50 225 (437 |9 1677
Standard Light | UFH S_L_UFH 50 [150 (437 |9 1561
Standard Light |[Rad S_L_Rad 50 [150 (437 |9 1561
Old Heavy |Rad O_H_Rad 25 [ 125 1656 |18 1677
Old Light |Rad O_L_Rad 25 |75 1656 |18 1561
Modern Heavy | UFH M_H_UFH |50 |300 273 |7 1677
Modern Heavy |[Rad M_H_Rad 50 (300 (273 |7 1677
Standard Heavy |Over-dim |S_H_O_Rad |50 [225 1367 |9 1677
Rad
Standard Light |Over-dim |S_L_O_Rad |50 | 150 |684 |9 1561
Rad

2.2.2.3 Pre-heating control algorithm
The aim of the setback control was to keep the air temperature at 21 °C during periods
of occupancy using Pl control and allow it to drop to 18 °C when the room was vacant.
Pre-heating, however, also needed to be applied to ensure comfort conditions when
occupancy began. A widely used heat-up time calculation was adapted for this dynamic
use case.

The pre-heating or heat-up time was defined as the time the system would need to
heat the room back up to 21 °C from setback. Instead of choosing a constant value for
each building, a variable pre-heating time dependent on boundary conditions could be
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estimated using previously calculated parameter values. From the heat balance equation

for indoor temperature Tin:
dT;,

CW =H (Tout‘ - Tm) + o (8)
the heat-up time t up to the setpoint was calculated as the time from the current time
(t=0) to the time targeted higher temperature Tse: would be reached assuming current
indoor air temperature to be Tin:

(D/H - Tset + Tout)

t=—‘r-ln(
(D/H_ Tin + Tout

)
where @ is the constant nominal heating power in watts, H is the heat loss coefficient
(W/K), and Tou is the external air temperature. T is the time constant in seconds
calculated as t=C/H. Parameter C represents the heat capacity of the air and structures
(J/K). This rough simplification does not take into account internal gains, heat-up process
dynamics, etc.

For the calculation of the time constant for the night setback, surface layers with a
depth of up to 20 mm were included in the heat capacity calculation. An active layer with
a depth of 100 mm was used for the weekend setback [143]. The time constants were
quantized by rounding them to the closest 25 hours. This made it possible to use
approximate values, as exact values are usually not known for real cases. The heat capacity
values for the 100 mm layers were approximately four times higher than those for the
20 mm layers, as shown in Table 4 (7449 kJ/K for heavy and 5002 kJ/K for light).

The control algorithm developed calculated the heat-up time every 5 minutes.
If the time exceeded the actual time left until the start of the period of occupancy,
the temperature setpoint was changed to 21 °C, overriding the initial Pl control. If the
calculation resulted in a heat-up time less than the time left until the start of occupancy,
the temperature setpoint was turned back to 18 °C again. The implementation of the
pre-heating algorithm in the IDA ICE simulation software is shown in Figure 16.
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Figure 16. Implementation of the pre-heating algorithm in IDA ICE software.
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2.3 Control process modelling effects on energy performance

In this second part of the work, variant models of the UFH control process were created
to determine how BPS results would be affected by optimized Pl parameters (section
2.3.1) and a detailed modelling of wax actuators (section 2.3.2). The modelling of wax
motors also implies the modelling of the effects in detail: Pl control, signal delay, valve
curve, signal modulation. The analysis focused primarily on Pl parameters and wax
actuators, as the effect of optimal Pl parameters for UFH and a parametrized wax
actuator model had not been found in the previous literature. In this part, the modelled
room was the “Estonian home” at the TalTech nZEB test facility.

2.3.1 Pl parameter estimation for UFH

2.3.1.1 Concept

The previous analysis showed that for UFH, the use of default parameters for Pl would
not make it possible to maintain a constant temperature for UFH even in the simulation.
The goal here was not only to optimize Pl parameters for UFH but also to find simple
tests that would simplify doing this in practice.

Pl parameters were estimated for two test rooms in several ways according to the
following process. First, input data was generated with measurements or simulations.
This data was then fitted to simplified models, which were used to further estimate PI
parameters with methods from the literature. Finally, the resulting parameter
combinations were tested in the heating period simulation.

In another approach, Pl parameters were generated by optimization in the simulations.
Input data was thus generated simultaneously with the optimal parameter combination
and its evaluation.

2.3.1.2 Input Data

The “Estonian home” room model used in this analysis was referred to as Room6 (R6) in
preceding studies. The windows of the initial room faced south and west. In this analysis,
the north-and-west facing room (Room5 / R5), essentially a mirrored version of the
initial room, was also included. To generate the data used for the Pl parameter
estimations, six different datasets were generated. These are characterized in Table 5,
according to outdoor climate, heating setpoint, room geometry, and gathering method
(simulation/measurements). In all cases, the output was the room temperature that
could be used in simplified models (the first four rows), or the same simulations were
iterated to optimize Pl parameters (last two rows).

The only measured dataset (described in [122]) consisted of measurements we
carried out at the same TalTech nZEB test facility in room R5, where we performed 2-day
and 3-day long temperature setbacks. The air temperature was measured while the
temperature setpoint was kept at 21 °C and during the setbacks, when it was lowered to
18 °C. These temperatures are shown in Figure 17 with estimated average temperatures
at the high and low levels. A commercial self-learning Pl was used to control UFH, which
had temperature variations below 1 K during constant operation in this room with low
solar gains, while outdoor temperatures ranged between -5 and +5 °C. Heat-up times
were up to a day.
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Table 5. Overview of the input data for the model calculation and optimization

Dataset Climate Setpoint Rooms Generation method
A Actual 2- and 3-day setbacks R5 Measured
B Constant Shorter setbacks R5/R6 (equal) Simulated
C Constant Infinite step-up R5/R6 (equal) Simulated
D Estonian TRY PRBS RS and R6 Simulated
E Estonian TRY Constant R5 and R6 Simulated
F Estonian TRY Variable (price-based) R5 and R6 Simulated
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Figure 17. Measured temperatures during two setbacks at the TalTech nZEB test facility [122]

The rest of the input datasets were simulated in the previously calibrated IDA ICE model
of the same building. Shorter setbacks of 1, 3, 6, 12, and 24 hours were simulated using a
constant outdoor temperature of 0 °C with no solar or internal gains. Between the setbacks,
the initial temperature of 21 °C was stabilized. Without solar gains, the two test rooms were
equivalent, and so the estimation of Pl parameters was based on only one of them.
Constant outdoor conditions made it possible to get cleaner data for simplified model
estimation and make it easier to tune the parameters in Matlab (see the next section).

An ideal-like step test, the only open-loop case, was also simulated using the same
constant outdoor conditions. A step from no heating to full power heating was performed.
The simulation period was lengthy, so that indoor air temperature stability would be
achieved both before and after the step. This meant two months in simulation to stabilize
it at the balance temperature, and one month after the step to reach a steady state.
Simulations with outdoor conditions set using Estonian TRY and setpoints determined
using pseudo-random binary signal (PRBS) were also run. For the PRBS temperature
setpoint, the zero level was set at 18 °C, the maximum level at 24 °C. The simulations
were carried out over two separate weeks, one week in March and one week in February:
the first, a sunny week with moderate temperature (19-25 March), the second, cold
week with almost no sun (29 January — 4 February). The model was fitted using both data
for the entire weeks and data only for the weekends of these weeks (12 p.m. Friday to
12 p.m. Sunday).

The last two rows of Table 5 characterize the inputs for optimization of the PI
parameters. The same two weeks in March and February stated above and the
entire heating period from 1 October to 30 April were used as optimization times.
The optimization was carried out for both a constant temperature setpoint of 21 °C and
a variable setpoint temperature profile.
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The variable setpoint was calculated using price data 2017-2018 [144] and a simple
algorithm (from [79] that is not the best suited for therein intended purpose of load
shifting but is good for producing an hourly changing profile. For the price-based control,
the air temperature setpoint was changed hourly to 20, 21, or 24 °C. The lower two
temperatures were comfort levels and had to be maintained, while the highest level was
reserved for load shifting and did not need to be tracked, though the heating would have
to have been activated at full power until the temperature was reached.

2.3.1.3 Estimating Pl Parameters
For each input data combination in Table 5, the Pl parameters K and ti were estimated
using one or more of the following methods:

1. Calculating using a simple method (datasets A-D),

2. Tuning in Matlab/Simulink, (datasets A-C),

3. Optimizing with GenOpt [145] (datasets E,F).

In the first two cases, a simplified process model of the system was needed. Using the
generated input data (see section 2.3.1.2), a first order process model with a time delay
was fitted (see section 1.6.1), and parameters Kj, L, and T were estimated. The model
fitting was performed in Matlab, using System Identification Toolbox [146].

In the first method, the fitted model parameters were used to calculate Pl parameters
according to three widely known methods — Cohen-Coon, Skogestad IMC (SIMC), and
AMIGO [147]. The formulas used by these methods to calculate the two Pl parameter are
shown in Table 6, where the parameter b is a dimensionless value calculated using model
parameters:

b=1L/L+71) (10)
Table 6. Formulas for calculating Pl parameters in the three chosen methods.
Method K i
Cohen-Coon b 33— 3p
.7 B f— 11 12
() 0.9 (1+0092 1_b) (11) L (12)
Skogestad T o
IMC (SIMC) 2K, L (13) min(z; 8L) (14)
AMIGO 015, (o 35 1T ) T 1) 13Lr? (16}
K T\ WD Kyl 035 T v i

In the second method, Pl parameters were tuned in Matlab®/Simulink for the
previously fitted simplified models, which were converted into transfer functions.
The tuning was performed in a closed-loop process, where the input was daily periodic
6-hour setback profile. The tuning aimed for short rise time (speed) and an overshoot of
no more than 5% of the desired temperature increase.

In the optimization method, Pl parameters were optimized in GenOpt using a hybrid
GPS algorithm [148]. The optimization was carried out for the three different time
periods (the entire heating period, a cold cloudy week, and a moderate sunny week) and
for both the constant and variable setpoint profiles (see section 2.3.1.2). The objective
of the optimization was to minimize the mean absolute error between the setpoint
temperature and the simulated temperature. The initial search was conducted with
parameter values that varied by factors of 10, from 10 in power of —10 to +10.
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Optimization limits were then set around the K and ti values that yielded the lowest error
and the parameters were optimized more precisely.

For visualization of the results, estimated Pl parameters were classified into four
groups, according to the simplified models: setbacks, longer step, PRBS sL, and PRBS IL.
Models generated from measured data and the ideal step were classified as “longer
step”, shorter setbacks, as “setbacks”. Models acquired using PRBS were classified
according to the resulting magnitude of the L parameter (< 1000 sec was short (sL), and
> 1000 sec was long (IL)).

2.3.1.4 Evaluation tests

All the estimated Pl parameter combinations were tested in simulations to evaluate
heating energy consumption per square meter of floor area after thermal comfort had
been ensured. Evaluations were carried out for the entire heating period (01 October —
30 April), for all combinations of Pl parameters, for both rooms, and for both setpoint
profiles (constant and variable). The setpoints used for the evaluation of the Pl parameters
were the same used in the optimization cases (see section 2.3.1.2).

It was critical that no parameter combination would result in temperatures below the
given comfort setpoints. In most cases, however, this had not been achieved, and the
setpoints thus had to be shifted before evaluation. The goal was to achieve temperatures
equal to or above the setpoint for at least 97% of the time, as recommended by the
thermal comfort standard EN 16798-2 [35].

Cumulative temperature graphs were generated on the basis of the initial simulations.
In the constant setpoint case, the setpoint was shifted 3% of the time exactly as many
degrees as the cumulative graph was below the setpoint (see section 1.3). In the variable
setpoint case, shifts for both the 20 °C and 21 °C setpoints were calculated. For the 20 °C
setpoint, the shift was 3% for 1.3% of the total time, and for the 21 °C setpoint, 45.2% of
the total heating period. The maximum of the shifts calculated for these two points was
applied to the entire profile.

The IDA ICE software’s default values for the Pl parameters, K=0.3 and ti=300s, were
used for the benchmark simulations. On/off controls with four different deadband
widths were also evaluated for comparison: a modern controller with a deadband of
0.5 K (+/- 0.25 K), close-to-ideal versions with deadbands of 0.16 K and 0.05 K, and
a conservative one with a 1 K deadband.

2.3.2 Physical control process components

2.3.2.1 Concept

In practice, in addition to Pl control parameters, UFH control is also influenced by several
physical components. In this part of the work, some of these effects have been evaluated.
A wax actuator model, however, must be found or parametrized first, as discussed in
section 1.6.2.

Initially, we tested both a characteristic and a physical model. Though results did not
differ significantly, the characteristic model was much easier and more practical to
estimate, and so it was chosen for further study. Dependence on previous heating actions
was built into the characteristics to calibrate variability. The resulting variable empirical
model was further analyzed to estimate the effect it would have on simulation results.
This analysis also included other control process effects, such as delay, valve curve, and
signal modulation (see Table 10 in section 2.3.2.4 for all components).

The general workflow of this part of the study is shown in Figure 18. The piston
displacement, which was dependent on the electrical heating signal, was measured when
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the valve was not connected to the UFH system. The displacement measurements were
used to define the wax actuator model. The wax motor was then connected to a valve in
the UFH manifold, and the volume flow was measured when the electric signal was
known. The wax motor model from the previous step was then used to calculate the
piston’s linear displacement in flow measurements. The valve opening to volume flow
characteristic curve (the valve curve) was then calibrated using these measurements and
calculations. Finally, the wax motor model and valve curve determined from
measurements were used to assess their effect in simulations.
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Figure 18. General overview of the research process. Room calibration was included in the previous
research.

2.3.2.2 Development of the wax actuator model

2.3.2.2.1 Measured actuators

The wax actuators measured in this work were commercial products that are commonly
installed in UFH manifolds in Estonian buildings. Two actuators from different producers,
products A and B, were tested. In the case of product B, four different exemplars were
tested to see if there were any significant differences. Assessment of potential variance
was outside the scope of this work, so no more products or exemplars were considered.
The datasheet for product A claimed a positioning time trar of 3 min, a full movement
range (also called ‘nominal stroke’) of 2.5 mm, and a positioning force of 105 N.
The datasheet for product B did not include this information.

For some measurements, a quick-opening valve was screwed to the actuator (outside
the manifold). In such cases, the initial position of the spring in the motor was slightly
more compressed, potentially reducing the full movement range. The movement time,
however, would be similar, since it depended on the wax phase change time at constant
power, and it was this effect that was being analyzed. The final combinations were
named A, Av, B1, Blv, B2, B2v, B3v and B4v, where the first letter indicated the product,
the number, the exemplar, and ‘v’, the presence of the quick-opening valve. All
combinations are described in Table 7. The last column is explained in the next section
(2.3.2.2.2). The initial test measurements are in blue font.

45



Table 7. Measured wax actuator and valve combinations for clarification of combination names;
the last column shows the measured heating profiles

Combination | Product Exemplar | Valve included Heating profiles measured (signal on - off)
Al A 1 no 15min-15min; 15min-45min; 5min-5min
Alv A 1 yes 15min-15min
Bl B 1 no 15min-15min; 15min-45min; etc.
Blv B 1 yes 15min-15min
B2 B 2 no 15min-15min
B2v B 2 yes 15min-15min; 15min-45min
B3v B 3 yes 15min-15min
B4v B 4 yes 15min-15min; 15min-45min; etc.

2.3.2.2.2  Displacement measurements

Displacement of the last element of the wax actuator and valve combination, either the
motor’s lowest surface or the valve’s piston, were measured. Initial tests on B1 were
measured using a digital caliper. Later, to make this measurement easier to replicate in
this case and all others, a vertically fixed displacement transducer with a 10 mm measuring
range was used [149]. The actuator’s surface temperature, the room temperature, and
the actuator’s supply voltage were also measured. The measurement step was 1 second
and the data was logged using an HBM CX22BW data recorder [150] and an MX840A
measuring bridge [151].

In all tests, the actuators were powered and controlled using a Siemens LOGO! 24CE
controller (with 24-V transistor outputs) [152], which generated the heating profiles
shown in the last column of Table 7. The first value (before the dash) is the time during
which the wax actuator is being heated (a 24 V signal is produced as input). The second
number (after the dash) is the cool-down time between heating cycles (the signal is off).
A “15min-45min” profile thus means that the voltage was 24 V for 15 minutes and was
then off for 45 minutes. This was repeated periodically. The test duration for each profile
is given in Appendix A of (llI).

The heating profiles were chosen to ensure the complete opening and closing of the
valve during each heating cycle. If this failed to happen, the tested heating profile was
excluded from the study, since cycles in which the valve is not fully opened or closed are
not typically used for wax actuators. Based on the literature and initial tests, at least
3-5 minutes of heating and cooling time would be needed. In this study, the cut-off limit
for this exclusion remained close to 3 minutes for both heat-up and cool-down. Longer
gaps between heating periods to allow the wax to cool down between cycles were tested
and their effect on valve opening time was analyzed. A 15min-15min heating profile was
measured for all combinations for comparison, and most heating profiles were tested on
motor B1.

2.3.2.2.3  Post-processing displacement

The measured displacement was normalized for each experiment. The maximum
displacement was measured at the closed cold position, when the piston was at its lowest
position. When the valve opened, the piston head moved higher, and the measured
values were lower. The difference between the fully open and fully closed positions,
the stroke, was identified in each experiment to normalize the displacement as follows:
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|displacement — stroke|

normDisplacement = (17)

stroke

where displacement [mm] is the measured time series during one experiment. The 0-V
or 24-V input voltage was also normalized to a time series with values between 0 and 1,
the heating signal. While the normalized displacement could be used directly for the
physical model fitting, characteristic times had to be estimated before the characteristic
or empirical model could be fitted. That process is described in section 2.3.2.2.5.

2.3.2.2.4  Physical model

The physical model used is based on first principles and was developed by Lars Eriksson
at EQUA AB in 2017 for a private company. It was publicly released together with IDA ICE
software [94]. The original parameter values were, however, considered proprietary not
included. The model implementation is shown in Appendix .

The model uses enthalpy levels to keep track of the wax state in the motor. The heat
exchange with the ambient environment is modelled using one resistance and no
capacitance. Delays due to the capacity of the plastic cover cannot, therefore, be
characterized. The model does not include the springs in the system, increasing the same
effect. The ambient temperature is only an input, precluding the generation of a heat
balance. Heat transfer to ambient is, therefore, only dependent on the input
temperature from ambient and the resistance. To be able to use the air temperature in
the room where the manifold is located, the resistance would have to be large.

To improve the model, the surface temperature was used as input instead of the air
temperature. As the temperature of the motor’s surface is usually not measured in
typical applications and to make it possible to run the simulation with different heating
signals, a model-based approach was developed for the surface temperature. It was
calculated using the measured room air temperature plus a second-order transfer
function y using the heating signal u:

_ K (18)
y= (s/w)2 + 2D(s/w) + v

with parameters K, the gain, D, damping, and w, the angular frequency. Value ranges
were estimated from time constants, as we expected the first time constant z: to be close
to an hour and the second time constant zz to be close to a minute. As the transfer
function’s denominator with two poles can be expressed as (7,5 + 1)(7,5 + 1), we can

derive the following:
w=1/,/117, (19)
D =w(ty +13)/2 (20)

For both the surface temperature model and physical model, the parameters, their
default values, assumed ranges, and optimized values are shown in Table 8. The values
were optimized to fit the experimental data measured during the initial 15min-15min
and 15min-45min tests of the B1 actuator. The values for all parameters were found
using GenOpt with a connection to IDA ICE parametric runs [145] minimizing the MAE
(mean absolute error) between the measured and simulated values, linear piston
movement in the physical wax motor model and surface temperature for the second
order transfer function.
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Table 8. Parameters for both the physical wax motor model and surface temperature model, their
tested value ranges with reasoning, default values, initial values, and their final optimized values

Name Description Initial value / Reasoning Final Unit
Default (limits) value
N Number of za.\mblent 1/1 Simplest model 1 items
connections
0.0008 /0.0005 | Ca 1 cm? of wax, density 0.8
M Mass of the wax (0.0005 to 0.002) g/cm? [153] 0.001 kg
P SOL Specific heat capacity in 2100/ 1200 e.g. 2384 or 2604 J/(kg K) 2930 )/
- solid state (2100 to 3000) | [153], or 2100 J/(kg K) [154] (kg K)
P FLU Specific heat capacity in 2100/ 1200 2981 J/(kg K) [153], or 2100 2910 )/
- liquid state (2100 to 3000) J/(kg K) [154] (kg K)
. 210000 / 200000
L_SOLID Melting heat (200000-220000) From 200 to 220 J/g [153] 203000 | J/kg
Initial value of wax As the initial value of H was
T_HO 20/20 not changed, default value 20 °C
temperature
was used.
. Working env. temperatures
T meLr | Melting temperature of 75175 up to 60 degrees [91], [155]; | 72 °C
wax (60 to 80) .
has to be higher
U Input voltage at signal 1 24 /230 Defined by the. wax motor 24 Vv
product in use
MAXDISP | Maximum displacement 3.25/1.5 Used the same as valve 3.25 mm
VLV of the valve
MAXDISP | Maximum displacement Determined from the
ACT of the actuator 3.25/35 measurement 3.25 mm
PTC heater temperature Ranging from 60 to 140 °C;
T_CURIE where resistance 90/90 for thermal actuators is 90 °C
becomes infinitely large typically at 90 °C [156]
PTC heater resistance at 50/ 290
R 25 25°C (5 to 300) 50 K/W [157] 97 K/W
Thermal resistance
13/13 Only insulation 100 K/W,
R between waxand cover | 41 ;100 only plastic 0.3 K/W. 52 K/
surface
Surface temperature 10 Temperature change
K ) P ) between the room and wax 18.5 -
model’s gain (1to 30)
temperature
w Su::]zz)c‘jeefirr;sezz?;t:re 0.002 Time constants’ initial guess 0.0011 )
& (0.0001 t0 0.1) t1=1h and t2=1h :
frequency
D Surface temperature 4 Time constants’ initial guess 056 )
model’s damping (0.1to 10) t1=1h and t2=1h ’
2.3.2.2.5  Empirical model

The entire process from the measurement of displacements to the creation of the
characteristic/empirical model is shown in Figure 19. In each test
estimated the characteristic times described in section 1.6.2. The four characteristic
times, dead time, rise time, hold time, and fall time, were identified for each heating

cycle.

in Table 7, we

In the initial test, the empirical model with constant characteristic times was
estimated. The cut-off between time periods was defined when the minimal or maximal
displacement was reached, as determined by visual inspection. Since the model would
not be used later in a dynamic simulation, its response to the heating signal was set
according to these identified values.
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With a continuous smooth response and more data, however, the cut-off between
these periods was not very clear. In the case of the dynamic empirical model, the rise
and fall times were, therefore, separated by defining a minimum ramping slope. It was
assumed that the linear change from 0 to 1 would take no longer than 10 min in total.
For a normalized displacement, this is 10% per minute, so a slope steeper than 0.83%
over 5 seconds was classified as part of the rise time. To smooth out measurement errors,
the average slope was determined over a measurement of 5 seconds instead of 1 second
steps. For fall classification, the slope was steeper, and therefore, a limit twice as large,
-1.67% over 5 seconds, was used. These limits were chosen after qualitatively assessing
whether the classified periods had discontinuities. When the displacement should have
been 0, a margin of 5% was added to exclude small shift offsets. The timesteps that were
not included in rise or fall times were classified as dead time, hold time, overheating
time, or undercooling time according to heating signal and normalized displacement
values, following the logic described in section 1.6.2. The input heating signal was
recorded as 1 when greater than 0.5 and 0 when less than or equal to 0.5.

i
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Figure 19. The process of estimating the characteristic or empirical wax motor model from
displacement measurements.

It was clear from using different profiles and more data that characteristic times would
vary depending on the wax temperature. For further analysis, dependence on preceding
actions was then built into the parameters. Based on estimated values for one
characteristic time across all tests, a regression model for calculating each characteristic
time was defined by fitting the experimental data. According to wax temperature and
phase change theory, the following assumptions could be made:

= dead time should be dependent on how low the temperature of the solid wax
has fallen, represented by undercooling time:

_tuen—a

tageaan =kq e ¢ +cq (21)

where tgoqqn [s] is the dead time at cycle n, and this depends on the
undercooling (uc) time of the previous cycle t,.,_; [s] and on the parameters
kg [s], T4 [s], and ¢4 [s], where the index d denotes “dead” in dead time.

=  hold time should be dependent on how high the temperature of liquid wax has
risen, represented by overheating (oh) time (with similar definitions):

_Lonn
thotan = kn (1 —e ™ ) +cp (22)
= rise and fall times should be constant for a given wax motor product at constant

ambient temperature, as they represent the melting or solidification processes
of the wax.
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To find the parameters and test these assumptions, t (1« and t» respectively) was first
estimated. The correlation between the (one minus) exponent and the output time (tdead
or thoia respectively) was calculated for different t values, and the t value with the best
resulting correlation was chosen. The models based on Equations (21) and (22) were then
tested using linear models (Im), and the parameter significance of k and c was tested by
calculating p-values in R [158]. If the p-value for a parameter was larger than 0.001,
no significance was found, and the model was not used. Otherwise, the parameters k and
c were fitted.

The parameters in characteristic time models can change for each product, due to
differences in wax mass and build of the motor. If no common model was significant, we
used R to estimate multi-level models (Ime), which varied the parameter b for the
product models. Common models are, however, clearly to be preferred. Although the
rise time was assumed to be constant, it can be seen by the results (section 3.2.2.2) that
it was not. A model similar to Eq. (21) was, therefore, applied. The resulting models are
shown in Table 9. These models were combined into a single empirical linear segments
model. The implementation of this combination in IDA ICE necessitated including the
detection of heating signal changes, keeping track of the duration of the last heating and
cool-down periods, knowing the current status classification, calculation of the normalized
displacement from the rise and fall time linear ramps. The implementation is described
in detail in publication Ill.

The models obtained were then tested on the measured data. For each test, both the
mean absolute error (MAE) and root mean square error (RMSE) were calculated, and
these were used to compare motors and profiles. The linear segments model for one of
the products was implemented and tested in IDA ICE. Product B was selected, as it had
been installed by design at the TalTech nZEB test facility.

Table 9. Characteristic time models resulting from the analysis

Symbol Unit Description Formula
taead,i ] Dead time —192 (3) -+ exp (—tyc;-1/780) +219 (13) £13
Crise,i s Rise time —30(3) - exp (—tyi-1/1140) +142(22) £21

t .
195 (6) - (1 —exp (— 2":6)) + 30 (5), for product A

thota,i S Hold time £
82 (3)- (1 —exp (— 60(;1(;)) + 58 (2), for product B
. 180, for product A
traii s Fall time {123, for product B

2.3.2.3 Calibrating the valve model

To simulate the effect of modelling the control details in a BPS, a model was needed that
would map volume flow to any valve displacement. Instead of using a theoretical valve
curve, an actual curve was estimated from measurements.

For measurements inside the UFH system, the wax actuator B2 was installed in the
UFH manifold on the return side valve of the “Estonian home” room circuit at the TalTech
nZEB test facility. While the aim was to calculate the given valve’s characteristic curve for
further modelling as a proof of concept, only one motor was measured. On the supply
side, the circuits were set to constant position. While advanced systems can use many
different methods to control pressure in the system, for this study, a constant pressure
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region of the pump was used. As in previous experiments, the LOGO controller generated
15min-15min heating profiles (15-minute long heating signals with a 15-minute gap
between heating cycles). The volume flow, generated from significant changes in room
air temperature setpoints, was measured using the Sensus Pollustat E heat meter [159].
All other circuits were closed given the much lower setpoints. The measurements are
fully described in publication IV.

The measured volume flows and the heating signal were used to estimate the valve
curve. First, the empirical wax motor model developed (see section 2.3.2.2.5) was
applied to estimate the valve piston’s linear displacement due to the electrical heating
signal from the controller. The characteristic valve curve is the relationship between this
displacement and the measured volume flow. The valve curve modelling was then
carried out in two steps: first, the theoretical quick opening valve curve typical of UFH
valves was defined, then the valve authority effect was applied.

The theoretical normalized valve curve, the relation of the displacement d to volume
flow V, was here defined in a simplified way using three points [160], the minimum
efficient displacement (dmin), the maximum efficient displacement (dmax), and the
mid-point or breaking point (dbp, Vl',p). All the parameters were chosen to minimize the
MAE between the measured and calculated final volume flow using the Evolutionary
Microsoft Excel Solver. The limits were set to 0.1-0.3 for dmin, 0.1-1 for dsp, and 0-1 for
Vl',p. The dmin was forced to be lower than dsp. The parameter dmax was set to 1, and
to model the ramp more precisely, the part where the valve opening was above 0.95 or
below 0.05 was omitted from the error calculation, since the flow variation was very
small. The authority effect to obtain authority-corrected volume flow V,,,, was added
according to literature sources [161], [162]. In these calculations a pressure difference
across the pump of 30 kPa was assumed, and across the system without a control valve,
a difference of 27.1 kPa. The pressure difference across the control valve thus resulted
in 2.9 kPa. The whole process was described in detail in publication III.

2.3.2.4 Estimating the effect in simulations

To quantify the influence of the wax actuator and other control modelling details on
energy performance and temperature control accuracy, several control scenarios were
defined for the “Estonian home” simulation model. With UFH supply temperature and
volume flow of the liquid given as inputs, the pressure and return temperature were
modelled. The heating temperature curve is included in Appendix B of publication IIl.

The installed power was dimensioned to 140%, and the flow rate of the balanced
heat recovery ventilation was set to 0.5 |/s/m2. The first week of January and second
week of February were the periods selected for the simulations, as heating consumption
is similar while solar heat gains are different during these weeks. Heating consumption
was 2.4 kWh/m?/week using IDA ICE default Pl control. Solar heat gains were
0.15 kWh/m?/week and 0.82 kWh/m?/week during the first week of January and first
week of February, respectively. The average dry bulb outdoor temperature was —1.9 °C
in January and —6.8 °C in February. A longer period was not simulated, as the empirical
wax motor model currently requires timesteps of 5 seconds, dramatically increasing both
simulation time and output file size.

The on/off thermostat (O) and PI controller (P) cases were simulated for comparison,
and both included a progressing level of detail. First, the business-as-usual simulations
were defined (IDs O_0 and P_0), with IDA ICE default parameters, which are typical for
BPS simulations. Then, adapted control parameters, signal delay, an adapted valve curve,
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signal modulation, and the wax motor model were added step-by-step. The steps
corresponding to the simulated scenarios are shown in Table 10. On top of the
business-as-usual cases, first, in the CP step, default control parameters (CP) were added:
the deadband (Db) for the on/off controller and proportional gain K, integration time ti,
and tracking time tt for the Pl controller. A 2-min input signal delay (D) from the room
temperature sensor to the controller would not usually be considered [163] but was
added starting with step D for both O_D and P_D [164]. The calibrated authority-corrected
quick-opening valve curve (VC) was included next. It was estimated as described in
section 3.2.2 and implemented in IDA ICE with small linear segments replacing the IDA
ICE default linear control. Modulation control (MC) was then applied in step MC only to
the continuous PI control, as the on/off output was already binary. Since the given 24V
wax actuators could only be controlled using a binary signal, the continuous output of
the Pl controller was converted with an hourly modulation, where at the beginning of
each hour the algorithm decided whether to heat and for how long. This is a variation of
pulse width modulation (PWM). The applied modulation control principle is shown in
Figure 20. Finally, the developed empirical wax actuator model for product B was
included in steps O_WM and P_WM (again, the “WM” standing for “wax motor”).

The most detailed steps, O_WM and P_WM, were used as the benchmark for all
scenarios using the same controller. The comparison of energy consumption in the
different cases is sensible only when the comfort levels are similar, since lower
temperatures would clearly result in lower energy consumption for heating. All
simulations were thus initially carried out with a constant air temperature setpoint,
which was then shifted iteratively until the operative temperature at 0.6 m from the floor
in the middle of the room was below 21 °C for up to approximately 33 hours per week.
This matches the 20% limit for weekly deviation from indoor climate class boundaries
(EN 16798-2:2019 standard [35]). Finally, temperature fluctuations and heating energy
consumption in the different scenarios were compared.

- Multiply th |
Calculate sliding average of .u up vt. gva ue by 60 Output 1 for calculated
minutes, limit lower than

Pl outin 1-hour window, || {— number of minutes,0 for

value is in range [0, 1] 3 r:nhr';\;:a;ge;‘ic: foafzgirrger the rest of the hour
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—

Figure 20. Implementation of the modulation of Pl output into wax motor input (the heating signal s).
The calculation was performed once per hour.
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Table 10. Implementation of all control scenarios for both on/off (thermostat) and Pl control

Step Parameters Modelled PI (P_) or on/off (O_) control process
PO K=0.3 Troom 7
i - — auth
(business t=300s T Pl
as-usual) t:=30s —
CP:
Pl
P_CP K=18 Troom V
(adapted auth
arameters) (=2300s Teet S
P t:=30s
P_D T Pl )
(added fic;er:i:day Troom Vautn
delay) o= set DM P j——
P_VC Sections Tooom Pl .
(calibrated |[2.3.2.3 and T Vauth
valve curve) |[3.2.2.2 set D | €P | V€
P_MC ol
; T, .
(control Figure 20 and room Vit
signal Figure 38 Teet D M| CP |4 MC > VC [——>
modulation)
P_WM Troom Pl f,
(added wax | Table 9 Vautn
motor) Teet D || CP | MC [ WM o VC
o—o Troom V
(business- | Top=2K T on/ fauth
as-usual) _set | off
o_cp T onfoff |
(adapted Tob =0.5K foom Vauth
parameters) Toet cp
o_D T On/Off .
(added ?d_c;er:ic:]elay Tmom Vauth
delay) o7 set D m cp
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Figure 20 and

Modulation control not a

pplicable/needed for on/off, as the

o_mc Figure 38 output signal is already binary
O_WM T On/Off )
(added wax |Table 9 room Vautn
Teet D (| CP |[fWM VC [——
motor) R
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3 Results

3.1 Energy performance of dynamic heating

In this section, primary and final energy savings are assessed. PED was minimized using
dynamic PEF in a residential room, the “German home”, with MPC and dynamic
temperature constraints. FED reduction was estimated in the “Estonian office” with
pre-heating estimation in setback control.

3.1.1 PED-optimized control

The MPC algorithm’s performance was tested for three different building standards,
EnEV 2009, TIO 1984, and the Passive House standard (PH). Results from the reference
scenario R3 and MPC case O2b described in section 2.2.1.4 were compared. Scenario R1
had not achieved the same thermal comfort level (I) and is, therefore, only further
considered in the discussion.

An example of the MPC algorithm’s control behavior (scenario O2b and building
standard EnEV 2009) is presented in Figure 21. The ‘measured’ and predicted temperatures
differed only slightly during unoccupied phases (Tmax = 24 °C) and at night. Larger deviations
occurred during phases with significant internal or solar heat gains. The ‘measured’
temperature was close to the lower comfort boundary at times with high PEF and often
clearly increased when PEF was low (PEF is shown in the lower part of the graph). Periods
when the temperature setpoint exceeded the optimal comfort temperature were marked
as STM activation periods. These phases were limited or frequently interrupted, even when
the ‘measured’ temperature was below the upper comfort limit and PEF was low. This
occurred either when the predicted temperature reached the upper boundary or when
fluctuations of the predicted temperature prevented successful optimization and MPC was
deactivated. Such conservative operation resulted in only a few minor comfort violations
despite clear STM activation activities. Occasionally, when the identification mode was
triggered, the temperature started to fluctuate significantly during unoccupied phases with
a below-average PEF.
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Figure 21. Example five-day sequence in the operation of the MPC algorithm.
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3.1.1.1 Thermal comfort with MPC

The simulated thermal conditions for reference scenario R3 and optimized scenario O2b
are shown in Figure 22. The chart shows the average operative temperatures during each
occupancy phase over the entire observed period.

The average temperatures for the reference scenario differed by less than 0.5 K from
the defined temperature setpoints (overlapping with optimal temperatures, indicated
with red lines). For PH only, during the seldom and short periods of nighttime occupancy,
and when the setpoint was low during unoccupied times, temperatures did not drop
enough to achieve the targeted reduction. This shows that Pl control for rule-based
temperature setpoints was working properly.

The average temperatures for 02b were above the optimal and R3 temperatures for
active, sleeping and unoccupied phases, showing that STM was being activated. For the
inactive phase only, O2b temperatures were closer to the lower comfort boundary than
R3 temperatures. O2b temperatures differed by up to 1 K from optimal temperatures for
most phases, by less than 1.3 K only for the unoccupied phase (PH). Generally, average
temperatures in the TIO 1984 case were lower than in the EnEV 2009 case, and average
temperatures in the PH case were higher than in the EnEV 2009 case. High heat losses in
the TIO 1984 case made possible stronger reactions in temperature and therefore better
compliance with the dynamic temperature setpoints.
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Figure 22. Sensitivity analysis across building standards of average operative temperatures for
different occupancy phases.

Figure 23 shows TVI and the TCVI scores (temperature and temperature change
violations) for all scenarios. For reference, a daily violation of 1 K for 1 h would result in
a TVIor TCVIscore of 59 Kh as the evaluated period was 59 days (1 February to 31 March).
Scenario R3 was designed to keep to optimal temperatures, thus violating the comfort
limits only during the transition phases between different constraints. TVI and TCVI
scores for scenario R3 were, therefore, used as a benchmark, being the lowest scores
that could be attained using the given PI control under the given conditions.

The violation indexes for scenario R3 increased towards that of less insulated
cases due to the larger temperature fluctuations induced by the heat loss. In the
MPC-controlled O2b scenario (84), these violations could be effectively mitigated,
allowing a 11% reduction in TVI and TCVI, even lower than that for the EnEV or PH cases.
This was primarily due to STM activations, which reduced the time for the minimum
temperature setpoint in the MPC case. Temperature fluctuations decreased in the EnEV
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and PH cases due to the higher insulation level and lower solar energy transmittance,
leading to lower TVI and TCVI scores in reference scenario R3. In the PH case, the low TV/
was even further reduced by using MPC, while in the EnEV 2009 case, the O2b and R3
scenarios had very similar scores. Limited improvement in TV/ could be attributed to two
possible factors: either the model’s predictions were sufficiently accurate to ensure
compliance with temperature constraints, or the predictions were completely unsuitable
for MPC. TCVI scores for both the EnEV and PH cases were low and remained almost
unchanged due to moderate slopes for temperature fluctuations.
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Figure 23. Sensitivity analysis of dynamic temperature/temperature change violations.

3.1.1.2 PED reduction and STM activation efficiency with MPC

After the overall ability of the MPC algorithm to maintain the desired comfort conditions
was demonstrated, a comparison was made of PE and FE consumption and average PEF
in the observed scenarios (see Figure 24).

The O2b cases required higher temperatures for STM activation, leading to a final
energy consumption higher than that in reference scenario R3. 02b, however, exhibited
a significantly lower average PEF, in the EnEV 2009 case, 8%, and in the PH case, 33%
below the overall average PEF of 1.12 observed during the entire testing period. As a
result, the O2b scenario was able to compensate for higher FE consumption caused by
STM activation and achieve a PE consumption level below that of the R3 scenario.
According to the LS efficiency calculation in publication Ill, more than half of the
additional energy consumption associated with STM activation was wasted, mainly due
to the energy used to maintain temperatures above the optimal level.

In the TIO 1984 cases, heating demand was consistent and high, leading to a PEF closer
to the overall average for the reference case than in the other building standard cases.
Significant heat losses limited the potential for STM activation and consequently resulted
in a smaller decrease in the average PEF. Also due to the high heat losses, the energy
charged into the STM could only be stored for short periods. As a result, STM activations
were infrequent, and final energy consumption increased by only 16%. The slightly reduced
average PEF just about compensated for the increased energy consumption from STM
activation. Actual PE consumption was only 2% lower than that in the R3 scenario.

In the PH cases, low temperature fluctuations made it possible to apply MPC 61% of
the observed time. Only a limited range of the available temperatures could, however,
be used. The slow cool-down of the building enabled even moderate STM activations to
shift heating demand over extended periods, with most of the required heating activities
concentrated in phases with lower PEF. As a result, the average PEF for the PH O2b
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scenario was 47% lower than that for R3. Despite the very low average PEF, PE
consumption for the PH case with MPC was 15% lower than that for the R3 case, as STM
activations in the low heat loss setting resulted in an increase in FE demand by 58%.
Results for the EnEV 2009 case fell somewhere between the results for the two other
building standards.
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Figure 24. Sensitivity analysis of average PEF values and resulting FE and PE consumption.

3.1.2 FED-reduction with control

3.1.2.1 Temperature performance with setbacks

Simulated temperatures for the FED reducing algorithm with time-constant based
pre-heating after night and weekend temperature setbacks are shown in Figure 25.
Air temperature fluctuations over a two-week period in winter for all simulated cases are
shown together with the occupancy-induced setpoint. Figure 25 (a) shows that for the
modern well-insulated room, air temperatures did not drop below 19 °C, even with the
weekend setback. With the south-side window, Pl control failed to keep the temperature
constant during the day after the night setback, and the room overheated, especially in
the UFH case.

The same can be seen in Figure 25 (b): even with the light structure and north facing
window, temperatures slightly overshot the setpoint on all days. Figure 25 (b) also
illustrates the well-known fact that a room with higher heat capacity cools down more
slowly. In the case of the light building structure, the temperature dropped to as low as
18 °C, even in the standard floor heating case. This never happened in the massive
construction cases.

Figure 25 (c) shows that not all the time constants were accurate. Temperatures
fluctuated in the standard heavy radiator case on Mondays, revealing that the algorithm
had assumed heating would take longer, but the temperature rose quickly, and the
temperature setpoint was lowered to its setback level. The temperature, however,
also dropped quickly, need for heat-up was again calculated, and the temperature
setpoint was increased again. This behavior caused a fluctuation in several other cases
as well. The pre-heat algorithm, nevertheless, helped to achieve the temperature
setpoint without overheating, and PI control with the radiators effectively maintained
the temperature during the constant setpoint.
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Figure 25. Air temperature fluctuations over a two week period in winter for all simulated cases.
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In Figure 25 (d), we can see that in the heavy construction case with over-dimensioned
heating, the temperature not only rose more quickly but also fell lower than when lower
powered radiators were used instead (Figure 25 (c)). This could be attributed to less heat
being stored in the construction due to a shorter reaction time. Figure 25 (e) shows that
in old buildings the temperature dropped to 18 °C almost immediately and due to high
available heating power, also rose quickly to 21 °C. In the old building case, therefore,
the setback potential had been fully exploited.

In Figure 26, we can see that the fluctuation after the weekend setback (on Monday)
was more significant than after the night setback (on Friday), strongly suggesting an
over-estimated time constant. In addition to the inaccurate estimation of the heat-up
time, the switching on of the ventilation at 6 a.m. also contributed to a reduction in room
temperature just before occupancy started. The setpoint (21 °C) was, therefore, not
attained by the start of occupancy in most of the offices on Mondays, though the
temperatures were all still above 20 °C.

On Fridays, in the radiator cases (lighter grey on the graphs), the setpoint was attained
by the given time. In the UFH cases (darker grey), the heat-up time was significantly
under-estimated. The given algorithm resulted, nevertheless, in an overshooting of the
setpoint temperature during the day and setpoint tracking with much larger fluctuations
than in the radiator cases. The UFH algorithm, therefore, did not successfully carry out
the setbacks, as comfort had not been ensured.
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Figure 26. Temperature performance during heat-up times over the first 12 hours on Monday,
4 January (left), and Friday, 8 January (right). Darker grey: UFH, lighter grey: Rad, black:
temperature setpoint.

3.1.2.2 FED reduction with temperature setbacks
Total energy consumption results are shown Table 11 (for the meaning of the scenario
abbreviations, see Table 4). We can see that energy consumption for heating the supply
air was almost the same for all the modern and standard cases. The slight differences
were due to differences in return air temperature and thus recovered heat. In the
setback cases, the consumption for air heating was 1 kWh/m?2/y higher than in the
constant setpoint case. Consumption was zero for old buildings, as the supply air was not
being heated. For space heating, there were three clear levels according to the
energy-efficiency of the scenario, as expected. Radiator cases consumed slightly less
energy than UFH cases, and the lighter cases slightly less than the corresponding massive
ones. Higher consumption resulted from higher average temperatures due to
imprecisions in temperature control.

The reduction in total energy consumption resulting from constant control of
intermittent heating is shown in Figure 27. All the observed cases resulted in an

59



approximately 4%—7% reduction in heating consumption. The differences in absolute
reduction, however, were significant, as the net heating demand in each of the cases
ranged from 29 to 207 kWh/(m?y). For the old buildings, the reduction was, therefore,
about 12 kWh/(m?y), while in the south-oriented low energy cases, the reduction was
only 1 kWh/(m?y).

In all the heavy construction cases, setback efficiency was marginally less than that in
the corresponding light construction cases. In these latter cases, there was, in fact,
less consumption to begin with and larger reductions as well. In the floor-heating
cases, consumption had been reduced more than in the comparable radiator cases.
In the over-dimensioned radiator cases, consumption was the same or less than that in
the standard sized radiator cases, but the reduction was larger.

Table 11. Energy consumption results in the constant and setback control cases

Space heating Air handling unit Total [kWh/(m? a)]

[kWh/(m?* a)] [kWh/(m? )]

21 °C Setback 21 °C Setback 21 °C Setback
S_H_UFH 52 47 15 17 68 64
S_H_Rad 48 44 16 17 65 62
S_L_UFH 53 47 15 17 68 64
S_L_Rad 48 43 16 17 64 60
O_H_Rad 207 195 0 0 207 195
O_L_Rad 206 194 0 0 206 194
M_H_UFH 17 15 14 15 31 30
M_H_Rad 15 13 15 16 30 29
S_H_O_Rad 49 44 16 17 65 61
S_L_O_Rad 48 42 16 17 64 60

S H _UFH S H UFH
S H Rad S H Rad

S L UFH S L UFH 6%

S L Rad S L Rad 6%
O H Rad 11.8 O H Rad

O L Rad 12.4 O L Rad 6%
M_H UFH M _H_UFH
M H Rad M H Rad

S H O Rad 3.9 S H O Rad 6%

S L_O Rad 4.3 S L_O Rad 7%

Setback efficiency (kWh/mZ2a) Setback efficiency (%)

Figure 27. Energy performance of intermittent heating; absolute difference between given case and
corresponding reference case on the left and relative efficiency on the right.
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3.2 Simplification effects in modelling UFH control

In this chapter, UFH control is analyzed in more detail. In the first part, optimized PI
parameters for UFH are compared with default Pl parameters used in BPSs. The second
part includes an estimation of the effect of modelling UFH control with different levels
of detail related to energy and thermal performance as well as mass flows in short time
scales. This section also describes the development and testing of wax motor models.

3.2.1 Effect of optimal Pl parameters

In total, 68 Pl parameter value pairs were obtained. Each of these combinations is
represented in Figure 28 as a point plotted on a log10-log10 plot according to method,
model, and dataset. In Figure 28 (a), the parameter estimation method is represented by
the marker shape, and the model group, by the marker color. Logarithmic scaling reveals
aroughly linear tendency in parameter estimation results: the lower the integration time
the higher the proportional gain.

For a very small proportional gain, the integration time deviates significantly from the
linear behavior shown when using the log10-log10 scale. The reason for this is partly
revealed by Figure 28 (b), where we can see that these four cases had been calculated or
optimized for March, in fact for the south-oriented Room 6, meaning that solar peaks
were severe, and almost no heating was needed. This is why parameter values for these
cases were so exceptional.

In Figure 28 (b), we see a clear separation between parameter values according to
outdoor conditions. The first group (in grey) were calculated assuming constant outdoor
temperatures and no solar radiation, the second group, using dynamic outdoor
temperatures and realistic solar irradiation. As can be seen, there is a clear separation
between the March and Jan/Feb periods, and it can be concluded that more solar gains
caused the value of the K parameter to decrease and ti to be longer, while dynamic
outdoor weather with normal solar gains generally increased the values of both
parameters. In the optimal cases, combinations closer to the dynamic climate values
were optimized for the variable setpoint, the lower values for the constant setpoint.
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3.2.1.1 Temperature performance

Each parameter combination resulted in different air temperature profiles and Pl output
signal profiles. Four examples of both the temperature and Pl output profiles for constant
setpoint cases are shown in Figure 29 and four examples for variable setpoint cases for
the Estonian home (Room 6), in Figure 30. In both figures, the Jan/Feb week is shown on
the left and the March week, on the right. The selected parameter value combinations
are ordered according to their log10 ratio. The first is the value combination that had the
lowest log10 ratio, then comes the IDA ICE default combination (0.3/300), then the one
that resulted in optimal energy consumption (18/2300, see section 3.2.1.2), and finally,
the combination with the highest log10 ratio.

In Figure 29, the graphs on the left (Jan/Feb) suggest that it was relatively easy to
maintain a constant setpoint when there were no solar gains. The small fluctuations were
largest when a very small proportional gain (K = 0.012) with a large integration time was
applied. The PI output signal readings (in black) show that the controller changed the
signal too slowly. As a result, the signal remained almost constant throughout the day
and even throughout the week. For the same reason, temperatures dropped below the
constant setpoint in March, as shown in the graphs on the right in Figure 29, and setpoint
tracking was poor in the variable cases.

Figure 29 also shows that in the constant setpoint cases, the 2400/42 combination
most effectively maintained the constant setpoint. The Pl output signal for this
combination, however, changed the most rapidly, due to a large proportional gain and
relatively short integration time. This kind of switching reduces the life span of most
devices and would not be acceptable in practice. It may also be impossible to implement
given the delays described in section 2.3.2. The use of optimal parameters (18/2300) led
to a very similar temperature performance. In this case, the proportional gain was still
large, but the integration time was longer, and as a result, the signal was a bit smoother.
When the integration time was long, as in the 18/2300 case, heating started earlier and
stopped sooner than in the shorter integration time default case (0.3/300), as clearly
shown in the graphs for the week in March. The signal also changed more rapidly in this
case due to a larger gain.

The variable setpoint cases in February (on the left in Figure 30) show that in cold
weather with low solar gains, the 24 °C setpoint peaks had not been reached due to the
short duration of the setpoint increase. The Pl signal was 1, however, during these times,
indicating that the heater was fully on, as intended for load shifting. The same graphs
also show that controllers with the 18/2300 and 2400/42 combinations both effectively
maintained a lower setpoint. In the latter case, however, it frequently switched on and
off and had almost no other state. In March, solar peaks governed the temperatures.
The March graphs (on the right in Figure 30) also show, however, that the heating had
been turned on, intensifying the overheating.

All the cumulative temperature and control profiles over the heating period are shown
in Figure 31. For the Pl signal, only R6 is shown, as the profiles for the two rooms are very
similar. The switching behavior noted before showed a clear dependency on the logl10
ratio of the Pl parameters. The higher the ratio, the more abrupt the changes, reflected
in behavior on the cumulative graph close to on/off signals. The higher temperatures at
the high-temperature end were dependent on the ti value, while the low-temperature
end seemed to be more dependent on the K value. Energy consumption for a parameter
combination was, therefore, mostly dependent on the K value, and whether there was
over-heating due to disturbances was more dependent on the ti value.
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Figure 29. Air temperatures and Pl output signals for the constant setpoint case over one week in
January/February (left) and one week in March (right) for four pairs of parameter values.
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January/February (left) and one week in March (right) for four pairs of parameter values.
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Figure 31. Duration curves for the heating period before temperature shifting. Curves for temperatures
on the left and for Pl output signals on the right. The purple area indicates the zone below the setpoint,
and the black dashed lines show the results obtained using IDA ICE default parameters.

Some of the parameter combinations did not achieve the required temperature
setpoint, and some resulted in temperatures above the setpoint. At the high temperature
end, in particular, there was a clear difference in results for rooms R5 and R6, as can be
seen in Figure 31. This was due to the room orientations, as south-west facing R6
experienced more solar gains than the north-west facing R5. As stated in section 2.3.1.4,
setpoints were shifted in all cases so that temperatures would reach the required
setpoint most of the time. The shift values were below 1 K, and they differed for R5 and
R6 as well as for the constant and variable setpoint cases. After the shifting, all
temperatures reached the defined setpoints over about 95%—97% of the heating period.
The shifts are shown together with the energy consumption evaluations in Figure 32.

3.2.1.2 Energy consumption

Energy consumption results after setpoint shifting are shown in Figure 32. In most of the
variable setpoint cases, less energy was consumed than in the constant setpoint cases,
as average room temperatures were lower. The setpoints were also higher than those in
the constant setpoint cases for some periods, but coincidentally, the higher setpoint
temperatures often occurred during the day, when there were also solar gains, and thus
influenced heating energy usage less than expected. In the constant temperature cases,
a clear optimal value emerged between -3 and -1 of the log10 ratio of K/ti. In other
words, in optimal cases, the K value was 10 to 1000 times smaller than ti.

The horizontal lines in Figure 32 indicate the energy performance of the benchmark
on/off cases with different deadbands after setpoint shifting. From top to bottom (yellow
to blue) the corresponding deadbands are 1 K, 0.5 K, 0.16 K, and 0.05 K. The color
indicates the temperature shift correlating with the deadband. Optimal Pl parameter
value combinations resulted in energy consumption even lower than the lowest of the
on/off cases with an unrealistically small dead band. In the case of the commonly used
0.5 K deadband, 2-3 kWh/m?/year more energy was consumed than in the Pl cases with
the variable setpoint. In the case of the constant setpoint, the lowest Pl results were as
high as 7 kWh/m?/year or 9% lower than results in the on/off case with the 0.5 K deadband.
Excluding the cases with extremely poorly performance, total variation in energy
consumption was more than 10 kWh/m?/year or 12% of consumption in the 0.5 K on/off
case with a constant setpoint.
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The parameter value combinations having a log10 ratio in the optimal range of -3 to
-1 are shown in detail in Table 12. According to this data and data for the rest of the
parameter value combinations in the Appendix of publication Il, the GenOpt method
produced suitable parameter value combinations in almost all tested cases. On shorter
timescales, the Cohen-Coon method produced parameter values in or close to the
optimal region in cases with lower solar gains (R5 and the Jan/Feb week). 6-h setpoint
setbacks and PRBS also produced good results. Pl parameter values obtained for the
March period using the PRBS IL model and in one case using the Optimal method resulted
in extremely high energy consumption. Most methods resulted in parameters that
reacted more slowly than optimal over the March weekend, as almost no heating had
been applied due to high solar gains. In this case, only the use of the PRBS method
resulted in good parameters, while it induced additional heating.
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Figure 32. Influence of the Pl parameter log10-ratio on energy consumption; colors indicate the
setpoint shift, grey signifying that the temperature setpoints decreased (shift below 0). Horizontal
lines indicate the on/off cases with different deadbands. The IDA ICE result using the default
parameter ratio 0.3/300 is indicated with a black “+” on the constant setpoint markers.
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Table 12. Optimal parameter combinations as log10 ratios ranging from -3 (excluded) to —1.
Ordered according to increasing energy consumption values for the R6 constant setpoint

K Ti Model Method Climate Setpoint  Room LT°m
ength
18 2300 - GenOpt TRY, Jan/Feb week variable R6 Inf
13 1500 - GenOpt TRY, March week constant R5 Inf
28 2800 - GenOpt TRY, March week variable R5 Inf
21 6200 11 Cohen-Coon TRY, March weekend PRBS R5 2 days
20 6700 12 Cohen-Coon TRY, March week PRBS R5 7 days
27 1500 - GenOpt TRY, Jan/Feb week constant R5 Inf
16 820 - GenOpt TRY, Jan/Feb week constant R6 Inf
32 1700 - GenOpt TRY, Jan/Feb week variable R5 Inf
5.2 510 4 Cohen-Coon Const 6-hsetback  equal 1.5days
3.7 460 2 Cohen-Coon Const 24h equal 6 days
setback /
42 2700 9 AMIGO TRY, Jan/Feb weekend PRBS equal 2 days
27 650 - GenOpt TRY, March week constant Ré Inf
54 1900 - GenOpt TRY, heating period variable R5 Inf
2.8 1300 4 SIMC Const 6-hsetback  equal 1.5days
59 3600 10 AMIGO TRY, Jan/Feb week PRBS R5 7 days
61 1800 9 SIMC TRY, Jan/Feb weekend PRBS R5 2 days
41 930 - GenOpt TRY, heating period constant R6 Inf
24 1500 1 Cohen-Coon Const Ideal step equal 60 days
2.0 1100 2 SIMC Const 24_11_ equal 6 days
setback 7
85 2300 10 SIMC TRY, Jan/Feb week PRBS R5 7 days
55 800 - GenOpt TRY, heating period constant R5 Inf
98 3200 - GenOpt TRY, heating period variable R6 Inf
1.6 1300 3 Cohen-Coon Const 1271{ equal 3 days
setback /
Measured Physical model
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Figure 33. Piston displacement for the constant characteristic and physical models when the wax
was under expansion (left) and contraction (right).

3.2.2 Effect of detailed control modelling

3.2.2.1 Initial test results

Both the physical and constant characteristic models of the wax motor were first
calibrated and tested using data with constant period length. The underlying surface
temperature modelling resulted in an MAE of 0.67 K. A sample of the piston movement
results obtained during heat-up and cool-down processes is shown in Figure 33. The MAE
for the characteristic model was 0.05 and for the physical model, 0.07 mm. This was less
than 5% of the absolute maximum value but 10% and 8%, respectively, of the average
displacement during the test. In the physical model, however, the actuator piston started
moving more than 1 minute earlier than measurements showed when the valve was
opening or closing. The characteristic curve showed good performance, as it had been fit
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to the same data. It showed that the actuator was fully open 5.6 minutes after the heating
started and fully closed 4.4 minutes after the heating had stopped. The characteristic times
determined were as follows: tdead = 144 s, trise = 192 s, thoid = 102's, tran = 162 s.

3.2.2.2 Models based on extended tests

While the dead time was almost a constant 2.4 min (144 s) during the initial test, it varied
over a range of more than 3 minutes during the extended test (see Figure 34). Though
initial test results lie in the same range as results in the second test, the constant
characteristic curve cannot be universally applied due to a large variance in the dead and
hold times. As the optimization of parameters for the physical model was a computationally
expensive process, variability was included in the characteristic model by making the
parameters time-dependent (see section 2.3.2.2.5). As a result, the empirical model
obtained showed an MAE below 10% and an RMSE below 15% for each of the profiles,
while the average MAE was 0.041 or about 4%.

Examples of the typical, best, and worst model fits for one hour are shown in Figure
35. The Al graph shows that shape choice for the empirical model has been suitable.
For motor B, the heat-up process differed, but the effective volume flow corrected the
slight deviation. In the worst case, the maximum delay between the measured and
simulated start of the signal ranged from 1 to 1.5 min. Because this is a close match with
the results obtained with the physical model in the simple test, in future the physical
model should also be considered.

The volume flow measurements and empirical model were combined to obtain the
volume flow model (i.e., the valve curve). A graph showing the relation between both
the measured and modelled volume flow and displacement is shown in Figure 36, with
the theoretical valve curve indicated with a dashed line and the authority-corrected
valve curve with a solid line. The authority-corrected valve curve best matched the
measurements when the three-point quick opening characteristics had the following
values: dbp = 0.41, Vi = 0.5, dmin = 0.17. For the region in question, the MAE was 1.02%.

Wax PCM effects do not explain the zero region of the valve curve in Figure 36, while
linear displacement was greater than zero, indicating that the wax had already started to
expand. It must have been due to some other unmodelled effect(s), such as the spring,
different travel length for actuator and valve, or pressure effect. The resulting
three-point characteristics also does not look very typical for a quick-opening valve.
The estimated authority was, therefore, probably not precise or the different
discrepancies between physics and the model behavior cancelled each other out,
resulting in a good fit for the final volume flow model.
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Figure 34. Characteristic times identified in all tests (motors with a valve and without grouped
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Figure 36. Valve curve modelling process and results; measured versus modelled volume flows.

3.2.2.3 Performance overview

In section 2.3.2.4, several control scenarios were defined in IDA ICE to quantify the
impact of the wax actuator and other elements of the control process on energy
performance and temperature control accuracy. In this section, we compare the results
of the energy performance simulations. As should be recalled, the “0” case was the
business-as-usual case, i.e., a simulation model with close-to-ideal control of the UFH
system. This ignores the modelling of both wax motors (WM) and exact valve curves (VC),
while Pl control and on/off thermostats were represented using the default parameter
values commonly used in BPSs. The other scenarios used adapted control parameters
(CP) and then, one at a time, added a time delay (D) to the input signal, a VC, modulation
control (MC), and finally, a WM. The level of modelling detail was thus gradually built up
from the ideal to the WM.

To be able to compare energy consumption, air temperature setpoints were shifted
so that 20% of the operative temperature remained below 21 °C (see section 2.3.2.4).
The applied setpoint shifts for all cases and the resulting energy consumption are shown
in Table 13. Temperature fluctuations are characterized by the air temperature shift from
21°C(dT) and the MAE of the air temperature MAE(T). Qx represents floor heating energy
consumption per square meter of floor area per observed week, and its relative
difference was calculated as AQn=(Qn-Qn,w)/Qnw [%] for the given week. This difference
represents the under- or overestimation of consumption in the given case, relative to the
most detailed case, O_WM or P_WM.
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Table 13. Temperature fluctuation and energy consumption results for all cases; air temperature
setpoint deviations dT are from 21 °C, and energy consumption results Q, are expressed in
kWh/m?2/week.

Temperature fluctuations Energy consumption
January week February week January week February week
1D dTr MAE(T) d7 MAE(T) Qn AQhw% Qn AQnw%
[oJ1] 0.49 0.597 0.33 1.092 2.55 5.71% 2.42 4.84%
O_CP 0.05 0.195 -0.03 0.682 2.42 0.36% 2.32 0.41%
oD 0.05 0.2 -0.03 0.691 241 -0.12% 2.32 0.25%
o VC 0.05 0.2 -0.03 0.69 241 -0.12% 2.32 0.21%
0_WM 0.06 0.215 0 0.628 2.41 0.00% 2.31 0.00%
P_0O -0.03 0.128 -0.08 0.637 2.41 0.08% 2.28 0.68%
P_CP -0.09 0.033 -0.13 0.447 2.37 -1.63% 2.20 -2.75%
P D -0.09 0.038 -0.13 0.453 2.37 -1.67% 2.20 -2.71%
pvc [0 | o044 |04 | 0.462 2.37 -1.67% 2.21 -2.54%
P_MC -0.07 0.149 -0.11 0.589 2.40 -0.48% 2.24 -0.80%
P WM -0.05 0.150 -0.08 0.676 2.41 0.00% 2.26 0.00%

The table shows that the addition of the wax motor alone to the preceding level of
model detail did not appreciably change energy consumption. There were larger
changes, for example, when correcting parameter values or adding modulation.
The whole process of adding modelling detail, nevertheless, led to striking changes in
both temperature fluctuation and energy consumption results. The changes are discussed
in detail in the following sections.

3.2.2.4 Thermal performance

The setpoint changes were negative for PI, but close to zero or even positive for on/off
(Table 13). This means that the operative temperature stayed above the desired 21 °C
most of the time, even after the air temperature setpoint was lowered below 21 °C for
PI. In both cases, the operative temperature and air temperature had similar fluctuations,
though with an offset. In the on/off case, fluctuations were much larger, and the setpoint
had to be shifted higher. An example of this behavior is shown in Figure 37 (dotted lines
indicate air temperature setpoint, solid lines, air temperature, and dashed lines,
operative temperature).

In the on/off case, the source of temperature fluctuations was the deadband (7ob) (see
Table 13). The setpoint change and MAE for the O_0 case (To» = 2 K) were much higher
than those for the other cases (To» = 0.5 K). While the MAE for on/off in January was
generally around 0.2 K, it was around 0.6 K for the O_0 case. Due to symmetric
fluctuations around the air temperature setpoint, the MAE was close to 60% of the
deadband in all on/off cases. Fluctuations in the Pl cases were induced by non-optimal
parameters as well as modulation. While non-optimal parameters altered the continuous
signal, modulation translated it to an on/off-like signal. The theoretical development of
a control signal for P_WM was described in Figure 20. In Figure 38, a sample of the
simulation outputs helps to visualize this translation of the Pl output signal to a valve
curve output.

Due to this translation from a continuous signal to a binary one, the PI cases with
modulation, P_MC and P_WM, had MAEs close to those of the on/off cases from O_CP
to O_WM. In Figure 39, the temperature fluctuations for the P_WM and O_WM cases
are shown together with those for the benchmark cases P_0 and O_0 and the improved
parameter cases P_CP and O_CP. Significantly higher fluctuations occurred with a greater
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deadband in the O_0 case, and a smaller deadband in the O_CP case and onwards
improved on/off control remarkably. Improved Pl parameters resulted in almost ideal
control, while a modulation and WM delay reintroduced the temperature fluctuations.
Overall, temperature performance in cases P_0, O_CP, O_WM, and P_WM was similar,
and the WM cases could be substituted by using simpler control in the simulations.
The similarity between on/off and Pl was due to the fact that the Pl cases did not perform
optimally, while the on/off cases improved significantly beyond the O_0 case. In this
work, the adapted deadband for on/off was set at 0.5 K. For this to be possible, the room
air temperature sensor must be precise, calibrated, and optimally positioned. The room
air also must be ideally mixed. Though the vertical gradient for UFH is small [36], [104],

[121], the achievement of one single uniform temperature per zone were clearly still an
idealization.
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Figure 37. Air and operative temperature comparison for one January day for Pl (P_CP) and on/off
(O_CP) cases. The grey line shows a 21 °C reference.
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3.2.2.5 Energy consumption

Energy performance in the given scenarios varied significantly depending on the level of
detail. The use of a simple wax motor model instead of continuous control (VC to WM
case) resulted in an energy consumption difference of up to 2.5% over the course of the
observed weeks (see Table 13). This was consistent with the literature (e.g., see [165]
and its references). Over the course of a year, this would have a sizeable impact on
energy efficiency.

Though the short delays and modelling of the valve curve had less of an impact on
total energy performance, these resulted in different load profiles (see the next section).
We found that both the choice of parameters for on/off and Pl and the modulation
modelling in the Pl case had a significant impact. All on/off cases, except the most
detailed case (O_WM), overestimated energy consumption, while all the Pl cases, except
the P_WM case, underestimated energy consumption.

In most cases, lower energy consumption was achieved due to smaller temperature
fluctuations, which made a lower temperature setpoint possible. The step from “0” to
“CP” saw a reduction in energy consumption of over 3.4% over the week in February due
to the use of improved Pl parameters. The reduction in temperature fluctuation due to
the use of optimal Pl parameters was offset by an increase in fluctuations due to the
conversion of the continuous Pl output to binary values, so in the step from P_VC to
P_MC and with the wax motor delay, in the step from P_MC to P_WM. The step from “0”
to “CP” resulted in a 2.5% higher increase over the week in February than the step from
“VC” to “WM”, with the addition of modulation and WM. This highlights the importance
of optimal PI parameters. The parameters optimized for business-as-usual conditions,
however, did not perform optimally when used with a modulation approach. The
optimized parameters for continuous Pl control (without modulation) could thus
potentially be used for 0—10 V actuators, while the coupling of modulation with the
optimization of parameters requires further research. The Pl parameters specifically
adapted to the applied modulation could potentially improve performance (see
Appendix D of Ill).

In any case, for the most part, Pl scenarios consumed less heating energy than the
corresponding on/off cases. When on/off and PI business-as-usual cases are compared,
it can be seen that Pl was almost 6% more efficient for both weeks (2.41 vs. 2.55 and
2.31vs 2.42), though there was practically no difference in the WM cases. The difference
between O_WM and P_WM was generally smaller than that between the other
corresponding cases, holding at 0.2% in January and 2.1% in February. For the ,CP”
through ,VC” cases, it approached 2% in January and 5% in February. Substituting Pl with
WM modelling with on/off, as suggested for temperature fluctuations in section 3.2.2.4,
would, therefore, not provide the same energy performance. The smallest difference was
that between O_VCand P_0.

3.2.2.6 Load dynamics
In all the business-as-usual cases, energy consumption had been overestimated, keeping
results on the safe side regarding system design. It was clear, however, that there were
different volume flows in the circuit in the business-as-usual and the WM cases. Both
overestimation of energy consumption and inaccurate mass flows may be considered
non-conservative for other applications, such as grid balancing, structural thermal
storage, etc.

For a better understanding of the progression of energy consumption, cumulative
mass flows for the January week are shown in Figure 40. On the on/off graph, O_0 stands
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out from the other on/off cases. On the PI graph, the distribution of mass flows vary
for all cases, in particular, “CP”, “D”, and “VC”. These cases otherwise performed
similarly, differing by no more than 0.01 K in setpoint, 0.015 K in MAE(T), and 0.5%
(0.01 kWh/m?/week) in energy consumption over the given week. This means that
adding a 2-minute delay to the input signal and correcting the valve curve did not have a
significant impact on air temperature and energy performance. It did, however, change
mass flow dynamics. Using the same control parameters with a different mass flow
profile affected temperature performance and energy consumption. P_MC and P_WM
had mass flows similar to those of the binary on/off cases, while the “CP” and “D” cases
had mass flows mostly at about the 25% level. P_0 and P_VC cases were between the
two extremes, with close to linear flow.

(1) On/Off (2) PI
0.041
0
0.03 cP o
=
=t ]
0.02 =
' — VC g
g
001{ — MC &
. | __—f
0.00 1 d
0 50 100 150 0 50 100 150

Cumulative time (h)

Figure 40. Cumulative mass flow performance over the week in January.
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4 Discussion

4.1 Summary of influence on FED

Dynamic control of low temperature heating applications can significantly affect both
thermal comfort and energy consumption in buildings. The potential effects of different
control algorithms and control modelling were analyzed. In Table 14, FED and PED
deviations from the corresponding benchmark are shown for all cases analyzed in
previous sections. The optimization of FED for heating involves intermittent heating and
the maintaining of low temperatures for as long as possible. We have shown that the
temperature reduction time and energy savings for a given room are closely related [43].
For comparability, the benchmark had to be at the same comfort level as the observed
scenario. In case of discrepancies in temperature setpoints, the share of time at the same
comfort setpoint was given. If the difference had not been quantified, “comfort can
differ” was added at the end.

PED and FED reductions are intrinsically similar in the case of constant or low
variability PEF, but in the case of dynamic PEF, these could differ significantly. When PEF
was variable, the potential to minimize the PED of radiator heating was demonstrated in
this work. For different building standards, PED could be reduced by 2% to 15%, though
FED increased by 16 to 58% in the same cases. The benchmark for PED reduction relied
on a dynamic optimal temperature with a maximum of 22 °C that had to be reached 12%
of the time (zone occupied but occupants inactive). The analysis in [1] shows that when
applying the EnEV 2009 building standard, FED reductions achieved when moving from
a constant 22 °C level (see R1 in section 2.2.1.4) to the MPC-controlled O2b and R3
scenario were 46% and 59%, respectively. While control optimization based on market
price is the conventional approach, optimization based on PEF presents a solution that
also accommodates tariff-based prices. Dynamic PEF has previously been taken account
of in PED reduction with heat pumps [81], [130] but has been rarely used in the
optimization of heating control.

In the setback analysis with pre-heating control, FED could be lowered by 4%—7%,
depending on the energy efficiency level and thermal mass of the construction. The are
many reasons for the reductions being lower than those seen in most of the literature.
The main departure from the literature is the energy-efficiency level, as with lower level,
temperatures could drop to as low as 7 degrees on the weekends [27]. Earlier sources
use airflows similar to those in this study, but use outdoor air temperature for ventilation
supply instead of the constant supply temperature [26]. Indoor temperatures were
different due to different climates and customs, and thermal comfort was not ensured
during occupancy times in all cases [25], [70]. The low reduction results, however, do not
agree with some of the literature. The reduction should, for example, be larger in the
Estonian climate than in the German climate [28]. A higher FED reduction should also
have resulted from the selection of an office profile representing a maximum reduction
scenario given the occupancy profile [29], [43]. Relative to the R1 and R3 comparison in
the PED reduction analysis, the occupancy time during pre-heating control was 33%
longer due to a less precise pre-heating calculation procedure. Better estimation of time
constants could theoretically improve the savings potential. In the pre-heating case, low
heating power and lower infiltration and ventilation rates were other factors that may
contribute to lower reductions.
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Findings on sensitivity across building standards agree with the previous literature
[27], [59], [62], which showed that setback heating yields less FED savings in well-insulated
buildings, while a long time constant poses a challenge to this approach. This contrasts
with the impact of PED optimization, where load shifting would be effective, especially
in the PH case. The load shifting potential of massive construction makes it possible to
stabilize the comfort level. When intermittent heating is applied, however, the heat-up
times are much longer, and the extra losses incurred during unoccupied hours thus
reduce the potential energy savings.

Table 14 also shows the influence optimized Pl parameters had on the energy
consumption in comparison with IDA ICE default parameters (marked with “+” in Figure
32). The variation was —5% to +7% in the constant temperature setpoint case. Very poorly
performing parameter value combinations were omitted here; otherwise the consumption
increase would have been as high as 19%. In the variable setpoint case, the effect was
smaller (-3% to +4%), while during activation times, Pl activated full power heating,
as commonly happens at significant setpoint changes.

The given range of influence of Pl parameters is applicable only when UFH has continuous
volume flow control. The need for modulation may alter the result. Increasing the level of
detail in the control modelling (after changing the Pl parameters and on/off deadband)
resulted in a change of —0.4% to +2.6% in FED. 1.2% of this change can be attributed to the
modulation and —0.4% to 0.9%, to the wax motor modelling. The modulation algorithm was
fixed; changing it could potentially have significant effect on the energy consumption.

Table 14. Summary of the analysis of the influence of different algorithms and modelling methods
on FED (and PED if marked).

(11, 1)

Control description Influence on FED Benchmark
(and PED)
PED optimization with MPC (O2b) FED +16% ... +58% | R3 (variable)
and dynamic PEF (l) PED -15% ... -2% comfort was similar
Temperature setbacks (33% at -7% ... -4% Const 21°C,
21°C) with pre-heating control (V) comfort can differ
Pl parameters, variable setpoint (I1) -3% ... +4% Default PI, variable (20% of time
higher level, but not reached)
Pl parameters, constant setpoint -5% ... +7% Default PI,

const. 21°C +shifted

On/Off with 2K / 0.5K deadband (I,
1)

+0.4% ... +6%

Default PI,
const. 21°C +shifted

Control process components, incl.

-0.4% ... +2.6%

Default Pl or on/off,

wax actuator (excluding CP) (l11) const. 21°C +shifted

4.2 Summary and suggestions for UFH control modelling

UFH is a common solution in new buildings but is a system that is also difficult to control.
The variety of available advanced control algorithms and scarcity of information on
low-level control in the literature raised the question about how low-level control might
influence high-level control methods.

Detailed modelling of UFH control has not been common, as the thermal time
constant of the system is tens of hours long, whereas differences in control are mostly in
minutes. Most control details would, therefore, not significantly affect the results of
annual BPSs. In the results presented above, it can, however, be seen that changing PI
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parameters can increase energy consumption by up to 7%, and if extremely unsuitable
parameters are chosen, the increase can reach as high as 19%. In the variable setpoint
case, the increase in energy consumption was smaller, reaching 4%. In low power heating
cases, therefore, the MPC approach applied in section 3.1.1 would only be slightly
affected by a varying of Pl parameters. The effect could potentially be much greater
when using the setback approach, as constant temperatures would be maintained for a
longer period.

Suitable Pl parameters could be found by applying simple tests, such as 6-h setbacks
applied during the night or PRBS heating activation over the weekend. For a constant
setpoint, parameter values resulting in nearly ideal control were found, something that
has not been reported before. The optimal ratio of gain to integration time in seconds
was found to be between 1le-3 and le-1. Default PI parameters for temperature
controllers, such as 0.3/300 and 1/540, that have ratios from around 0.001 to 0.002 are
the lower end of this range [166]. Parameters obtained at different outdoor conditions
clearly diverged, suggesting in accordance with literature that Pl parameters should be
adapted accordingly [93]. Optimized Pl parameters were able to reduce energy
consumption; however, if optimization was not done, default parameters for annual
simulations would be able to perform well enough in practice. For dynamic operation,
the available power in nZEBs is often insufficient for the parameters to be able to make
a significant difference, since after each temperature setpoint change, Pl controllers
generally function in on or off mode.

In practice, there are other factors that can affect the performance of control
algorithms, such as actuators, valves, and control signal alterations. While the effect of
control parameters such as Pl parameters and the on/off deadband proved to be quite
significant, the effect of short signal delays turned out to be very small. While valve
curves also had a low impact on energy performance, they had a significant impact on
the dynamics of volume flows. The variations in volume flow could also potentially affect
heat pump efficiency. It was observed that also wax motors can influence volume flows
in the system as many UFH and radiator motors on the market are modulating.
Continuous motors exist but are less common and more expensive.

We tested three different wax actuator models: a physical model, a characteristic
model, and an empirical model. The last is essentially a characteristic model with
time-dependent parameters. The first two, both previously known models, were tested
using a simple periodic test. While both models performed well with MAEs below 10%,
the physical model was difficult to parametrize. After a broader set of tests, it became
clear that a constant characteristic model could not be universally applied, as
characteristic times vary significantly. A new empirical model was, therefore, proposed,
one which would make similar performance possible without known physical
parameters. The new empirical model also resulted in a fit with an MAE of 10% using
various heating profiles.

The effect of modelling a wax actuator in BPSs of energy consumption and temperature
fluctuations had not been analyzed before. Though the effect of the wax motor alone on
energy performance was found to be very small, there was a significant modulation
effect. The wax motor also induced a time delay of up to 7 minutes on the opening of the
valve. Manufacturer data sheets typically report 3—5 min positioning times [91], [92],
[167], [168]. The longer times occurred after the wax had cooled down to room
temperature and probably completely solidified. This can usually be avoided by
occasionally heating the wax for a short time and thus making a warm start possible.
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Modelling the wax motor delay and modulation may be important for algorithms
making power-grid-driven decisions or when volume flow in time steps shorter than the
hourly average is of interest, e.g., when making calibrations with measurements taken in
intervals of less than 10 minutes. Modelling of the wax motor is often not necessary,
as modelling a longer time delay and adding modulation with on/off control could make
similar performance possible if a suitable deadband is chosen and the temperature
setpoint is shifted. Non-ideal Pl parameters and all further control signal alterations,
including the wax motor, could then be lumped together.

4.3 Future work

The PED and FED reduction algorithms in this work illustrate some of the potential that
advanced control can offer. There have been significant advancements in this area
reported in the literature, and this work does not serve as an overview of it. The developed
algorithms, however, have the advantage of being simple enough to be easy to apply in
any building, requiring very little data and expert knowledge. While the detection of
occupancy can be challenging, methods for this have been advancing rapidly. The dynamic
PEF applied has also not been widely used, and the application of different dynamic PEF
profiles with varied control algorithms could lead to interesting results. Here, the PEF
applied was a German electricity market target of 80% for RES. Fluctuations in PEF were
rapid and had a large amplitude (up to 2.5). At both a lower RE share and 100% renewable
power, there would be less variability and a smaller reduction in PED. Large fluctuations
are, however, characteristic of a larger RE share when the power grid is not fully renewable.
In addition to the RES in the power grid, the dynamic PEF could also characterize district
heating systems with mixed resources or other energy production systems with variable
RE share. The dynamic control of heating in combination with dynamic PEF can have a
significant impact on primary energy demand in future. The algorithms applied and their
precision, therefore, deserve further analysis.

The main novelty of this work lies in the level of detail of the control modelling.
A physical wax motor model was parametrized, and an empirical model was developed,
and tested for UFH. The proposed empirical model performed well over heating cycles
of 10-15 minutes. If the heating period was, however, shorter, so that the valve did not
fully open, the model was not applicable. The physical model was needed if the PWM
was shorter than the FAT of the motor. The physical model would make it possible to
model not only 24 and 230 V wax motors but also 0-10 V wax actuators, which use fast
modulation of the PTC heating signal (24V/230V) to achieve the required control load.
Though the necessity of using 0-10 V motors in UFH manifolds should first be assessed,
since with the quick-opening valves currently in use, the valve curve converts any control
signal to a control close to on/off. Application of the physical model requires additional
information about the materials used and the dimensions of the wax actuator. This
would entail material testing or obtaining detailed manufacturer datasheets. Numerical
optimization can also be carried out (see section 2.3.2.2.4). Running the optimization
with different sets of variables and fixed parameters as well as different ranges, orders,
and initial values, may, however, lead to different results. Further analysis involving a
much larger dataset would, therefore, be required. In addition to UFH, wax motors are
also used in other applications, such as on fan coil valves and on pressure-independent
control valves. The developed wax motor model could be applied in analyzing the
detailed control process of these systems as well.
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In this thesis, Pl parameters were optimized without taking the influence of wax
motors into account. When optimizing Pl parameters for the constant setpoint case,
inclusion of the modulation algorithm and wax motor might alter the optimal result.
The definition of the signal modulation should be also included before the Pl parameter
optimization. In this thesis, a PWM signal was determined hourly to ensure full opening
and closing of the valve even at a low percentage of the signal. In the future, this time
could be shortened for precision if the physical model is being used. In addition to the
single UFH circuit, the interaction of several circuits with modulation control could be
analyzed, as PWM [169] can be applied to distribute volume flows across circuits to
ensure continuous flow in the manifold, and this may result in performance similar to
that with partial flow in each circuit. The potential effect of different control algorithms
on heat pump efficiency due to varying volume flows should be also investigated in the
future.

As the Pl parameters had only a small impact on the dynamic setpoint case,
inclusion of the wax motor should not be essential in such a case. It should, however,
be determined whether, when a significantly over-dimensioned UFH is being used to
accommodate dynamic operation, Pl parameters might have a larger effect and thus
make precise control possible for constant operation as well.

77



5 Conclusions

In recent years, control of heating systems has seen significant developments, with
advanced control methods such as model predictive control emerging for hydronic
underfloor heating and radiators. These developments have, however, often overlooked
the low-level details of how heating systems are controlled. This thesis addresses this
gap by exploring control dynamics and parameters for low energy heating applications.
This work had two main goals:

1) to analyze the energy saving potential when applying simple predictive
algorithms for dynamic heating in low energy applications and

2) to analyze the effect of detailed control modelling on building performance
simulation results in underfloor heating applications.

The following conclusions can be drawn regarding the former goal:

The model predictive control algorithm developed can significantly reduce the average
primary energy factor for energy consumed. Relative to rule-based control, primary
energy demand can be reduced by up to 15% in the case of Passive House buildings.
In modern buildings with slow-reacting heating systems, the relocation of final
energy consumption was only possible in small absolute amounts. The use of setback
control to reduce final energy demand led to a maximum savings of only 4%.

For buildings complying with a low insulation standard, only very small improvements
in primary energy efficiency could be achieved using the predictive control model.
The absolute amount of relocated final energy consumption, however, was high.
Nevertheless, the highest relative final energy demand reduction (7%) was achieved
for a standard room with light constructions and over-dimensioned radiators.

Conclusions regarding the latter goal are as follows:

For the first time in the scientific literature, it was shown that underfloor heating can
operate similar to ideal control when using Pl parameters;

Well-performing Pl (proportional-integral) parameters can be estimated using a
simple automatic test over a single weekend if the test period includes significant
heating actions. The test could, for example, be 6-h setbacks applied during the night
or weekend-long pseudo-random changes in the setpoint signal. The mean absolute
error for the air temperatures relative to the setpoint was well below 0.5 K.

The best Pl parameter combination found for the system analyzed had a
proportional gain of 18 and an integration time of 2300 s, which could reduce energy
consumption for heating by 9%, when compared with an on/off thermostat
controller with a 0.5 K deadband, and by 5%, when compared with the default Pl
parameters used in IDA ICE simulation software.

Heating energy consumption when using different estimated (not random)
parameters was more than 15 kWh/m?/year when the setpoint was constant,
highlighting the importance of using suitable Pl parameters;

An empirical model of thermo-electric actuators (wax motors) used in HVAC control
was developed on the basis of experiments. The model consists of four sub-models
for linear segments estimating the length of characteristic times: dead time, rise
time, hold time, and fall time. The final model resulted in an MAE for normalized
linear displacement below 10% for all tested heating profiles.
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e Business-as-usual building performance simulations over-estimated energy
consumption by ca 5% for on/off and less than 1% for Pl control, relative to the
simulations with the most detailed level modelling of the control process. While in
the on/off case, temperature fluctuations decreased when a smaller deadband was
used, in the PI case, they increased due to modulation. Temperature variations thus
critically affected the energy balance.

e Business-as-usual Pl control did not reflect actual mass flows in the system.
The detailed behavior was similar to on/off behavior, and the PI simulations could
thus be substituted with on/off simulations with a small deadband and without the
wax motor. The temperature setpoint in these simulations would, however, have to
be more than 0.1 K higher than that in the PI simulations to ensure the same
performance.

In conclusion, this thesis contributes to an understanding of control dynamics and
parameters used in low energy heating applications by focusing on low-level control
aspects. Our findings can inform the design and implementation of more efficient and
environmentally friendly control algorithms for heating systems, as well as guide future
research in this field.
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Abstract
Control Dynamics and Parameters for Low Energy Heating
Applications

The increase in variable renewable electricity generation and number of low-energy
buildings due to energy and climate targets has been driving the electrification of thermal
demand using heat pumps. To address imbalances in electricity production and
consumption, the inherent thermal storage capacity of buildings has emerged as a
valuable resource for load shifting. This storage potential can be tapped using heat
pumps and variable room temperature setpoints.

This thesis developed and tested algorithms applying dynamic room temperature
control while maintaining thermal comfort. Firstly, an easy to adapt Model Predictive
Control (MPC) approach was developed based on the dynamic primary energy factor and
comfort limits for radiator heating systems, making a primary energy reduction of up to
15% possible using thermal mass activation. In addition, a simple predictive pre-heating
algorithm was developed for schedule-based intermittent occupancy, where a heating
energy reduction of up to 7% was observed. These algorithms were tested on low-energy
buildings, and results were compared with the performance of less insulated buildings.
Findings agreed with the previous literature, showing that setback heating has less of an
impact on energy savings in well-insulated buildings. Such buildings can, however, shift
heating times over an extended period, resulting in a significant reduction in primary
energy. The control of underfloor heating (UFH) systems using intermittent heating
proved to be challenging with delayed heat-up and overheating.

While high-level control methods like MPC for UFH and radiators have advanced in
recent years, this thesis explored the often-overlooked low-level control dynamics and
parameters for low-energy heating applications. The detailed modelling of the control
process in short time scales would be needed to ensure building’s ability to quickly react
to abrupt changes on production side. This thesis identified optimal Pl (Proportional-
Integral) parameters for low-energy UFH systems improving the UFH control significantly
and suggested simple methods for finding them in practice. Different parameter sets
were evaluated, and heating energy differences up to ca 10% were observed. Detailed
control effects, such as signal delay, valve curve, and the use of wax actuators for UFH,
in particular, were analyzed. Experimental work was undertaken to model the wax motor
and understand its impact on simulation results. The modulation of the PI signal in
UFH motors was also examined, revealing its influence on short-term performance.
The modelling influence on heating energy was below 3%, but remarkably affected the
flow rate.

The work in this thesis would be applicable to buildings using any limited capacity heat
source with variable renewable energy share in production, such as district heat or heat
pumps that are here used as an example. This thesis contributes to an understanding of
control dynamics and parameters for low energy heating applications, highlighting the
importance of low-level control aspects in short timescales. Results can be utilized in the
design of efficient and environmentally friendly heating systems and control algorithms.
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Liihikokkuvote
Juhtimise diinaamika ja parameetrid madalenergia
kittesilisteemides

Hoonete soojusvarustust on hakatud osaliselt Gle viima elektripdhistele siisteemidele,
soojuspumpadele. Selleks on andnud tGuke nii energia- ja kliimaeesmarkide t&ttu
suurenev elektri tootmine varieeruva tootlusega taastuvatest allikatest kui ka madalama
energiatarbega hoonete kasvav arv. Elektri muutliku tootmise ja tarbimise
tasakaalustamiseks on hoonete tarindite soojusmahtuvuse aktiveerimine osutunud
energiatarbimise juhtimise vaartuslikuks ressursiks. Seda salvestusmahtu saab
kasutusele votta nditeks soojuspumpade ja ruumitemperatuuride muutuvate
seadevadrtuste abil.

Kéesolevas doktoritods arendati valja ruumitemperatuuri diinaamilise juhtimise
algoritmid, mis samaaegselt tagavad ka soojusliku mugavuse, ja testiti neid. Esiteks
tootati radiaatorkitteslisteemide jaoks vilja lihtsalt kohandatav mudelipShine ennetava
juhtimise (MPC) algoritm, mis pdhines diinaamilisel primaarenergia kaalumisteguril ja
diinaamilistel mugavuspiiridel. See ldhenemine vdimaldas konstruktsiooni soojusliku
aktiveerimise abil vdhendada primaarenergia vajadust kuni 15%. Lisaks tootati valja
lihtne prognoosiv eelkiitte algoritm perioodilise kasutusega ruumidele, kus taheldati kuni
7%-list kiitteenergia vdhenemist. Algoritme testiti madala energiatarbega hoonetes ja
tulemusi vorreldi nende toimivusega vdahem soojustatud hoonetes. Jareldused olid
kooskdlas varasemate uuringutega, osutades sellele, et perioodiline kiite ei véimalda
hasti soojustatud hoonetes kuigi olulist kiitteenergia sddstu saavutada. Nendes hoonetes
on aga vdimalik kiitmise aegu pikema perioodi jooksul nihutada, mille tulemuseks on
primaarenergia oluline vahenemine. Pérandkiitteslisteemide vahelduv juhtimine osutus
nii ilessoojenemisega seotud hilistuste kui ka tlekitmise tottu keerukaks valjakutseks.

Doktoritd0s uuriti ka seni teaduskirjanduses vahe tdhelepanu palvinud detailsemaid
komponente ja nende parameetreid madala energiatarbega kitteslisteemide
juhtimisprotsessis. Juhtimise detailne modelleerimine vdib vajalikuks osutuda lihikeses
ajavahemikus, et tagada vajalik reageerimiskiirus hoones juhul, kui tootmise poolel
toimuvad ootamatud muutused. Toos leiti optimaalsed Pl (Proportsionaal-Integraal)
regulaatori parameetrid pérandkiittesiisteemide jaoks ja pakuti valja lihtsaid meetodeid
nende tuvastamiseks praktikas. Erinevate parameetrikomplektide kasutamisel kdikus
energiatarve kuni umbes 10% ulatuses. Léahemalt uuriti doktorit6ds juhtimisprotsessi
komponentide detailse modelleerimise mdju, anallilisides naiteks ajalist hilistuse, ventiili
karakteristiku ja porandkittesiisteemidele iseloomulike aeglaste vaha-ajamite moju
simulatsioonitulemustele. Selleks koostati katsetulemuste alusel vaha-ajami empiiriline
mudel. Lisaks analtusiti ka Pl valjundsignaali moduleerimist, mis oluliselt mdjutas
lGhiajalist toimivust. Detailse modelleerimise md&ju kiitteenergiale jai alla 3%, kuid
vooluhulgad varieerusid oluliselt.

Kdesoleva doktorit6é raames tehtud uuringuid saab rakendada hoonetes, mis
kasutavad mis tahes varieeruval taastuvenergial pOhinevat ja piiratud vdimsusega
kitteallikat, naiteks kaugkite voi siin nditena toodud soojuspumbad. Siinne vaitekiri
aitab paremini moista juhtimisdiinaamika ja parameetrite mdju madala energiatarbega
kiittestisteemides ning toob rdhutatult esile detailse modelleerimise olulisuse lihikestes
ajaskaalades. Kaesolev doktorité6 aitab planeerida tohusaid ja keskkonnasdbralikke
kitteslisteeme ning nende juhtimise algoritme.
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Changes in the electricity supply system induce the challenge of matching the highly fluctuating and
unpredictable renewable energy generation with the yet inflexible electricity demand. This leads to an
increasing demand for energy storage and demand-flexibility. Electrification of residential heating sys-
tems in combination with advanced controls utilizing dynamically the structural thermal mass (STM) of
buildings as thermal storage could provide some of the required demand flexibility.

In this work, a model predictive control (MPC) algorithm is developed and applied within a sim-
ulation framework to control dynamic heating operation as a measure of STM based residential load
shifting (LS). The self-learning algorithm is functional without extensive measurement data or expert
knowledge for parametrization. It optimizes heating operations required for LS according to a dynamic
primary energy factor signal, while observing transient thermal comfort constraints. The implemented
auto-regressive black-box model with explanatory variables predicts thermal conditions within the ob-
served thermal zone with sufficient quality to support MPC. Based on that model, the control algorithm
successfully activates STM as a measure of LS according to the given primary energy (PE) oriented utility
function. For the observed system, the PE demand can be reduced by 3-7% while maintaining or even

improving the thermal comfort.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction
1.1. Motivation

The vastly growing renewable energy sector induces the chal-
lenge of highly fluctuating and unpredictable renewable energy
generation from photovoltaic (PV) and wind power. Due to the cur-
rent inflexibility of electricity demand, Germany has increasing dif-
ficulties to match the renewable energy generation with the elec-
tricity demand. The rising share of wind and PV in the total en-
ergy portfolio will further aggravate that challenge in the upcom-
ing years [2]. Therefore, there will be an increasing demand for en-
ergy storage and demand-flexibility in the imminent future. Space
heating of residential buildings is accountable for 18% of Germany’s
final energy demand (FED) [3,4] and a similar share is reported for
the European Union [5]. Thus, dynamic control of residential heat-

* This paper is based on the PhD thesis “Transient thermal comfort constraints
for model predictive heating control” [1], authored by Henryk Wolisz.
* Corresponding author.
E-mail address: henryk.wolisz@rwth-aachen.de (H. Wolisz).

https://doi.org/10.1016/j.enbuild.2019.109542
0378-7788/© 2019 Elsevier B.V. All rights reserved.

ing systems could provide flexibility to counter the imbalances be-
tween supply and demand in the electrical grid. Since the heat-
ing demand of buildings is inherently not very flexible, thermal
storages are required to actually exploit the flexibility potential of
residential buildings. For this purpose, either technical storage sys-
tems such as hot water tanks can be used [6,7], or the intrinsic
structural thermal mass (STM) of buildings could be actively used
as a storage [8-10]. This work focuses on the latter approach since
no dedicated technical storage must be purchased and accommo-
dated within the building when using STM. However, there are
several technical, social and energy policy based boundary condi-
tions, which strongly impact the viability and the potential of em-
ploying STM as a storage in residential buildings.

Technical challenges mainly arise from the required transition
from fossil fuel powered heating systems to electricity driven sys-
tems as heat pumps (HP) or direct electric heating [11,12]. Addi-
tionally, a communication infrastructure between the power grid
and the potentially flexible consumers has to be established. More-
over, the energy only market (EOM) currently established in Ger-
many and in other European countries does not provide any mo-
tivation for flexible, grid supportive electricity consumption, since
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Nomenclature

Symbols and units

A

c
Ciy
clo
AT

g3>——3sanao

et

occ

MIS T RS

Surface area (m?)

Specific heat capacity (J/(kg-K))

ARX fitting parameter (-)

Clothing insulation (-)

Temperature difference (K)
Shielding coefficient (infiltration) (-)
Emissivity (=)

Height correction factor (infiltration) (-)
Efficiency (%)

Irradiance (W/m?)

Length (m or cm)

Thermal conductivity (W/(m-K))
Mass/weight (kg)

Metabolic equivalent of task (-)

Air tightness (1/h)

Occupancy (0/1)

Density (kg/m?3)

Temperature (K or °C)

Operative temperature (°C)
Temperature change rate (K/h)
Time/time step (s, min or h)
Volume (m3)

Power (W)

Vector of exogenous ARX variables (-)

Symbols description

ARX
abs
DSM
EnEV

PMV

PRBS
PV

RMSE
RP3

Auto regressive model with exogenous inputs
Absolute

Demand side management

German energy saving ordinance
Energy only market

Electrical

Exceedance of the rate of temperature change
Final energy

Final energy demand

10° floating point operations per second
Heating ventilation and air conditioning
Heat pump

Heating

Load shifting

Load shifting induced temperature drift
Model predictive control

Maximum

Minimal

Night storage heater

Normalized value

Not applicable

Operative (temperature)

Outside

Optimal/optimization

Primary energy

Primary energy factor

Passive house

Proportional integral (controller)
Predicted mean vote

Predicted percentage of dissatisfied
Pseudo random binary signals
Photovoltaic

Processor

Root mean square error

Raspberry Pi 3

RTP Real time pricing (electricity)

STM Structural thermal mass

set Set temperature

shortwave Shortwave radiation

TABS Thermally activated building systems
TCVI Temperature change violation index
TIO Thermal insulation ordinance

TOU Time of use (electricity pricing)
TRY Test reference year

TVI Temperature violation index

WS Workstation

customers pay for the consumed energy regardless of the con-
sumption pattern. Market models have to change in order to pro-
vide incentives for customers to adapt their consumption behavior.
Energy policy has to motivate a change towards innovative electric-
ity tariffs comprising dynamic pricing, dependent on the currently
available electricity generation [12,13]. Finally, appropriate control
algorithms have to be developed to demonstrate the viability of
thermal mass activation in the residential building sector. These
algorithms have to perform STM activations based on a given eco-
nomic or ecological control signal, while ensuring constantly the
thermal comfort for residents.

The focus of this work is developing and evaluating the perfor-
mance of such a control algorithm for STM activation. To enable
adaptability of the algorithm in diverse residential buildings, the
control should be functional without sophisticated measurement
equipment or detailed knowledge of building specific physical pa-
rameters. Despite such simplicity, the control has to beneficially
utilize the available STM, while avoiding violations of the thermal
comfort boundaries.

1.2. Structure of this work

The basic foundations and literature for STM activation and
residential load shifting are presented in Section 2. Furthermore,
the corresponding state of research is elaborated and the field of
required research is presented. The objectives and the approach
for the development of the control algorithm are described in
Section 3, along with the introduction of utilized tools, methods
and boundary conditions employed for the performed simulation,
optimization and evaluation in this work. The simulation results of
the algorithm’s operation are presented in Section 4, focusing on
the resulting thermal comfort, the load shifting efficiency and the
sensitivity to different building standards. The computational ef-
fort and energy demand of the algorithm’s operation are calculated
as well. In Section 5, these results are discussed and evaluated
with an additional focus on the limitations of the current work
and suggestions for future work. Finally, conclusions are drawn in
Section 6.

2. Foundations and literature
2.1. Activation of structural thermal mass

Generally, the structural thermal mass (STM) of a building is the
cumulated heat capacity of the construction materials utilized to
build it. Practically, it makes also sense to consider the furnishing
in a building as STM, since it contributes significantly to the ther-
mal behavior of the total building, as discussed in [14]. However,
the thermal storage capacity of the STM becomes only evident and
usable when variations of the temperatures within a building en-
able the activation, thus the charging and discharging of some frac-
tion of that mass. The acceptability of such required temperature
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variations by the building’s residents was evaluated in an exten-
sive preceding experimental study [1]. The acceptable temperature
range as well as the maximum rate of temperature change derived
in that study will be applied as boundary condition for STM ac-
tivations in this work. In the context of this work, the activation
of STM is utilized and evaluated as an alternative thermal energy
storage approach and a measure of gaining thermal flexibility in
the context of load shifting (LS) and demand side management
(DSM).

2.2. Load shifting in residential buildings

In the context of power supply, demand side management is
the general concept of influencing the consumers’ energy demand
with respect to the consumed amount of energy in general and
the specific time dependent consumption behavior [15]. The main
purpose is to actively change the consumers’ load-shape accord-
ing to the current availability of electricity in the power supply
system [16]. This includes consumption modifications of both, the
time pattern and magnitude of the required load. The concept of
DSM itself is generally not new, and many applications can be
traced back to times when the constant operation of inflexible nu-
clear or lignite base load power plants was more important than
energy efficiency. Today, many viable DSM activities are summa-
rized with the term load shifting, since it combines several typi-
cal DSM activities as peak clipping or valley filling. Motivated by
the increasingly fluctuating and partially even negative electricity
prices on the European electricity markets (e.g. the European En-
ergy Exchange), DSM potentials of large industrial customers have
been widely investigated [17,18].

There are only few DSM activities for the residential sector,
mostly being based on static, daily repeating time of use (TOU)
pricing schemes, motivating the consumers to shift consumption
towards the nighttime [19]. Today, the main application in Ger-
many are night storage heaters. [19-22]. However, it was shown
that with the dissemination of suitable heating systems, thermal
demand side management in residential buildings has great poten-
tial for stabilizing the future power grid [7,20,23,24]. Exemplary,
HPs are operated according to an external signal indicating shut-
off periods during peak consumption times, and first solutions for
coupling the heat pump operation to the local PV generation are
also available [25].

The thermal demand of residential buildings is usually not very
flexible itself, since it is strongly correlated with the interior tem-
peratures and thus with the residents’ comfort. Since there are cur-
rently only few incentives to invest into technical thermal storage
in Germany, the active utilization of the STM in buildings could be
a viable alternative enable flexible operation of heating systems.
The STM is already available within the buildings and it neither
induces acquisition costs nor requires additional floor space for its
deployment [26]. Further costs for required control equipment and
electronic thermostats are far below the investment into hot water
storage tanks or any other thermal storage system [20,26].

2.3. Current state of research

Generally, thermal mass activation in the past was driven by
the intermittent operation of heating, ventilation and air condition-
ing (HVAC) systems or thermally activated building systems (TABS).
The focus was on commercial cooling demands, since they required
large amounts of electricity during the peak load times of the con-
ventional power generation system [27-30]. Seldom, STM activa-
tion was also applied to heating in commercial buildings. [31] Res-
idential utilization of STM was rarely investigated since there was
no motivation to shift the heating operation of the mostly fossil fu-
eled, thus not time dependent, residential heat generation. There-

fore, the only common manifestation of residential STM utilization
is the consideration of buildings’ thermal inertia when scheduling
room temperature reductions at night or in unoccupied periods
[32]. However, recently a transition from fossil fuels towards re-
newable energy sources and electrified heating systems is observed
in the residential sector, resulting in an upcoming interest in res-
idential LS and the identification of the STM as a potential source
of flexibility.

Mostly, selected archetype buildings or individual thermal
zones are simulated using detailed building models, which are
parametrized with prescribed set temperature patterns, to eval-
uate the thermal behavior when STM activations are performed
[8,10,33,34]. Usually, idealized simulation boundary conditions (e.g.
no internal/external loads) were used in such studies. Observed
temperature ranges are either limited by standardized comfort
conditions or extended above these limits to evaluate the gen-
eral thermal behavior of the observed buildings. Findings indicate
that poorly insulated buildings can shift a larger amount of en-
ergy for a short time, while well insulated buildings can shift a
smaller amount of energy over longer periods [8,10,34,35]. Further-
more, it is observed that poorly insulated buildings have signifi-
cantly higher heat losses induced by STM activation, while very
well insulated buildings have a strong risk of violating comfort
constraints if STM activations are not well scheduled or internal
and solar loads are not predicted precisely enough [8,10,33]. Still,
these studies neither suggest viable control strategies for STM acti-
vation nor allow to draw conclusions upon a realistic LS potential,
since the simulated idealized conditions and the evaluated thermal
patterns were usually not representative for regular building oper-
ation.

Only very few studies [9,36,37] combine residential building
simulations with model predictive control (MPC) and optimization
approaches controlling STM activations attempting to maximize
comfort and LS potential. While the general conclusions regard-
ing the impact of building standard could be confirmed in these
studies, the resulting LS potential of STM is found to be lower for
model based control when compared to rule based control [36,37].
On one hand, it is driven by the MPC operation, which minimizes
comfort violations at the cost of a slightly lower LS potential [37].
On the other hand, the utility functions required to optimize the
operation of a given system typically indicate profitability of STM
activations only for limited periods, thus also limiting LS activities.

2.4. Field of required research

The field of STM activation in the residential sector was just
recently identified and only few studies focused on the real applied
potential of STM activation for residential LS. For large commercial
buildings, the development of tailored control solutions for every
large project can be applicable. However, for residential application
the cost of designing and parameterizing an individual MPC for any
given case would likely exceed potential savings by far. Still, even
for the commercial sector it was found that the control concepts
should become simpler, reduce the required amount of inputs and
self-learning control solutions were recommended [28].

This study contributes to the field of required research by fur-
ther evaluating STM activation potential in the residential sector,
focusing on real life applicability and going beyond the identifi-
cation of the pure physical potential to store energy in STM. A
simple and easily implementable MPC approach is developed and
the resulting potential of STM activation for a residential, radia-
tor based application is evaluated. The designed approach is eas-
ily adaptable to diverse residential buildings, operational without
any prior knowledge of the local building physics and capable of
stand alone MPC calculations without extensive computational ex-
penses. For testing purposes, the MPC is embedded into a detailed
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physical building model representing the ‘reality’ feedback for the
controller and allowing evaluation of the control performance with
respect to energy use, storage performance and comfort compli-
ance. The STM activation is controlled by a dynamic primary en-
ergy factor (PEF) signal, representing the expected future share of
renewable energy in the German power system [38]. The underly-
ing comfort restrictions are based on an extensive preceding exper-
imental study, giving detailed insight into the actual acceptability
of the thermal conditions resulting from residential STM activation
[1]. In particular comfort criteria are taking into account the cur-
rent activity of the people and incorporate the temperature change
direction as an additional factor to the sole room temperature. The
observed comfort restrictions are further specified in Section 3.3.2.

3. Approach
3.1. Concept and objectives

To enable the assessment of thermal conditions and energy de-
mands resulting from different control approaches, a detailed phys-
ical building model (further explained in Section 3.2.1) is utilized
to represent a real building, which would be actually controlled
in reality. For a declared ‘test room’ within the modeled build-
ing, heating operations are controlled either by the developed MPC
algorithm or, for reference purposes, by a rule-based control. The
MPC algorithm generates a simple black-box model based on the
thermal behavior ‘measured’ from the physical simulation and uses
that model to estimate future thermal conditions, as required for
an optimized operation of the heating system. The algorithm con-
stantly aims to find optimal operative temperatures, which ensure
thermal comfort for the residents while minimizing the PE demand
of heating operations, based on a dynamic PEF [38]. The perfor-
mance of that control algorithm is evaluated for an observed pe-
riod of two months in late winter/early spring (February 1st till
March 31st). This period is selected, since the yet cold ambient
temperatures induce a continuous heating demand, while the PV
generation of this period is already prominent enough to ensure
regular fluctuations of the PEF. The chosen period is likely to con-
stitute favorable boundary conditions for STM activations and is
therefore suitable to assess the general viability of this approach.

The control algorithm developed in this work includes a rule-
based and a model predictive part. The control is designed to start
functioning with no system information and collect required data
during its operation. The algorithm requires the current local am-
bient temperature and global solar irradiation, both available with
high granularity from online weather services. Further, the occu-
pancy of the building, the heating system’s set temperature and
the current operative temperature is required. Solely the measure-
ment of operative temperature is actually challenging, however,
it can be approximated with sufficient precision through the in-
door air temperature and inner surface temperatures, which is ei-
ther measured or estimated from the indoor/ambient temperature
difference [39]. Alternatively, operative temperature can be mea-
sured with a ordinary temperature sensor placed in a small matte
black sphere with the size of an ping pong ball [40]. In this work,
a perfect occupancy profile for the observed room is assumed to
be known. In reality, such occupancy profiles can be locally gen-
erated based on collected statistical occupancy data and modeled
with at least reasonable precision, as long as no person specific
high level positioning is required [41,42]. For example, the required
occupancy signals can be collected from simple motion detectors.

At the beginning of the algorithm’s operation, the control sys-
tem functions rule-based. It controls the set temperature to ensure

1 As depicted in Fig. 1 in Section 3.2.1.

the comfort operative temperatures while the observed room is oc-
cupied. When the room is not occupied, pudoseudo random binary
signals (PRBS) [43] are selected as set temperature for the heat-
ing system, to gather more diverse measurement data for model
fitting. Based on these excitations and all other available mea-
surements, an auto-regressive black-box model with exogenous in-
puts (ARX) is fitted and the resulting model is updated daily. The
model’s accuracy is evaluated via root mean square error (RMSE)
calculation, considering the model applicable if an error of less
than 1 K is identified between temperature measurements and av-
erage predictions for the last three days. This model is then used
for the optimization of the heating operation and if an optimal
heating schedule is found, the MPC is applied. The optimization
uses dynamic constraints for comfortable temperatures and rates
of temperature change [1], as well as the objective of minimal
PEFE. If no optimal solution can be found, the basic rule-based con-
trol is applied again. The control algorithm is written in the pro-
gramming language Python, which executes MATLAB for ARX model
fitting, Gurobi for the optimization of heating operations and Dy-
mola/ Modelica for the ‘reality’ simulation.

3.2. Building simulation

3.2.1. White box model representing the controlled building

The physical white box model used in this work to represent
the controlled building and generate ‘measurement’ feedback for
the control system was built upon the HouseModels Library, which
is part of the AixLib Library made publicly available by the Insti-
tute for Energy Efficient Buildings and Indoor Climate at the RWTH
Aachen University [44,45]. The thermal building models are devel-
oped in the modeling language Modelica and used in the simula-
tion environment Dymola. These dynamic models include detailed
representations of all structural components and physical proper-
ties of the utilized materials and account for the interaction with
the surrounding environment. The HouseModels Library has been
previously validated with several test cases, for example with the
ASHARE Standard 140 [46].

Simulations in this work utilize a model of a generic residen-
tial two-story detached one family house with 150 m? heated
floor area built out of aerated concrete and insulated with min-
eral wool according to the German energy conservation ordinance
EnEV 2009 [47]. This standard is chosen, since it represents an
average modern German building constructed or retrofitted ever
since 2009 [47,48]. Still, as a measure of sensitivity analysis, the
performance of the developed algorithm was also observed when
changing the building’s insulation thickness and air-tightness, as
indicated by the German thermal insulation ordinance (TIO) 1984
[49] and passive house (PH) standard [50]. The detailed description
of all construction materials and their thermal properties is given
in Table A.2 through Table A.8 in the appendix, while an overview
of the main U-values is given in Table 1. The layout of the first
floor of the modeled building is depicted in Fig. 1. On this floor,
a room with the label ‘test room’ can be found. This room is con-
sidered for further evaluations in this work, while the surrounding
rooms are providing the thermal boundary conditions. The room is
2.6m high and has two windows of 1.8 m? area each. The room is
modeled with one air volume, its space-enclosing structural com-

Table 1
U-values in W/(m?2.K) representing TIO 1984, EnEV 2009 and Passive house
standard.

Standard Window  Outer wall  Floor slab  Ceiling to attic
TIO 1984 25 0.54 0.52 0.21
EnEV 2009 13 0.28 0.33 0.21
Passive house 0.8 0.14 0.26 0.21
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Fig. 1. Layout of the first floor of the modeled building.
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ponents and a radiator based heating system based on compo-
nents of the AixLib [44,45]. The space-enclosing structural compo-
nents can be distinguished in heat storing components (e.g. walls,
ceilings and floor-slabs) and non-storing components such as win-
dows and doors. The heat storing structural components are fur-
ther composed of multiple material layers like plaster, flooring, aer-
ated concrete or screed. These main materials were further sub-
divided into very thin layers of maximum 20 kJ/(m2.K) or 2 cm
thickness for insulating materials, to ensure a very detailed repre-
sentation of the thermal building behavior. All structural compo-
nents and layers were connected to adjoining components, layers,
the indoor air or the outer environment by the applicable means
of conduction, convection, radiation or mass flows depending on
the individual thermal properties of the given component.

Infiltration and ventilation air exchange represent the physical
interaction of the air volume within any room with the ambient
air. The resulting heat flow was calculated from the volumetric
flow rate of ambient air into a room and its temperature. The flow
rate of infiltration was calculated according to [51], whereas the
ventilation air exchange was selected as 0.5 1/h according to the
minimal air exchange rate as defined in [51]. Further parameters
specifying the applicable air exchange are given in Table A.9 in the
appendix. A preceding study indicated that especially under tran-
sient conditions, as induced by LS activities, the impact of furniture
upon the simulated room temperature is significant [14]. There-
fore, another adaption of the AixLib models was the integration of
thermal structures representing the furniture within a room. The
rooms furnishing was described in a simplified way by thermal ca-
pacities with properties of wood and metal, accounting for the as-
sumed thermal mass and surface area of these materials in a given
room [14]. Accordingly a correction was introduced, to account for
the wall surface area covered by furnishing and therefore not in-
cluded in the convective and radiative heat exchange within the
room. The properties of the modeled materials, which represent
the furnishing for each room of the simulated building, are given
in Table A.1 in the Appendix.

For the purpose of this analysis, it is not substantial to model
the heat generation system in detail. Heat is generated by an ideal
heat source, which is connected to the hydraulic, radiator based
heating system in the observed ‘test room’. A nominal heating load
of 829 W was calculated for the observed ‘test room’ according to
[51], including a heat-up factor of 16 W/m?, as suggested for build-
ings with a moderate nighttime temperature reduction. Therefore,
the modeled ‘test room’ is equipped with a type 22 steel panel
radiator? with a nominal power of 854 W. In the sensitivity anal-
ysis, the observed room'’s radiator is adapted to a 1065 W model
for the TIO 1984 case, and a 411 W radiator for the PH according
to [51] and [52]. Heat emission of the radiators is controlled by a

2 adapted from: Kermi therm-x2 Profil-V, [52].

conventional proportional integral (PI) controller, thus assuming a
high quality level of thermostatic control. The flow and return tem-
peratures for the heating system are 55 and 45 °C respectively, as
designed for a low temperature heating system according to [53]. A
share of 70% convective and 30% radiative heat flow was assumed
[52,54]. All other rooms in the simulated building are not equipped
with radiators, but controlled by ideal heat flows to maintain con-
stantly a temperature of 22 °C. This is crucial to enable ideally
constant boundary conditions for the observed room, despite the
dynamically changing weather conditions impacting also the other
rooms of the building. This allows at least partially to decouple the
performance of the algorithm from impacts of the chosen building
geometry.

3.2.2. Black-box model for predictive control

The MPC relies on a simple ARX? black-box model to forecast
the operative temperature within a controlled thermal zone. ARX
models have been widely integrated in MPC and were successfully
used to optimize energy consumption in the commercial building
context [31]. However, non-linear models with higher complexity
have been found to perform better [55]. Several methodologies for
appropriate model choice exist [56,57], and have been consulted
during the selection and development of a suitable model for the
given control challenge. As a trade of between precision and sim-
plicity an ARX model was selected in this work. The finally selected
modeling approach and the structure of the ARX model are pre-
sented in the following section.

The model is designed to predict the operative temperature,
as it better characterizes the comfort of the occupants. The pre-
diction of the operative temperature required for MPC algorithm
consists of two parts. First, the auto-regression calculation, which
is a weighted sum of the variable’s own previous values. Second,
the exogenous variables, which include the impacts of other fac-
tors influencing the operative temperature, adding their weighted
values from the previous and current time step. Underlying ex-
ogenous variables are the solar irradiation (Isportwave), the set tem-
perature (Ts), the ambient temperature (Toy), and the thermal
zone’s occupancy (occ). Thus, in this model, the uncontrolled heat
gains within the heat balance are represented by solar irradiation
and occupancy, the controlled heating power is represented by the
operative temperature and the set temperature, whereas the heat
losses are represented by the ambient temperature and the opera-
tive temperature. Such simple model structure was purposely cho-
sen, to prove the model’s applicability in real-life implementations
with poor availability of measurements and very limited computa-
tional capacities. The choice of input variables is further supported
by common gray-box and state space models, which typically uti-
lize similar inputs for the temperature prediction in buildings [58].

The presented input variables were chosen based on the follow-
ing considerations:

e Required variables are available from online sources (e.g.
weather data from online services) or can be measured/
estimated without complex and expensive equipment.

o Selected variables contain the minimal, though sufficient, infor-
mation to formulate the total heat balance of a given thermal
zone.

e The model is simple enough to be computed and optimized
without the requirement of high performance computing.

A third order ARX model with 15-minute time steps is used.
This means that three previous values of the operative tempera-
ture are used as the auto-regressive input for the prediction of the
upcoming value. The respective time steps are referenced in square

3 auto-regressive model with exogenous inputs.
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Table 2

Implemented dynamic thermal boundary conditions for operative tempearture.
Occupants Not present  Active Inactive Sleeping
Time range nfa 7 am.-6 p.m. 6-11 p.m. 12 pm.-7 am.

11-12 p.m.
Dynamic temperatures in °C
Minimal temperature 19 20 22 19
Optimal temperature 19 21 23 20
Maximal temperature 24 23 25 22
Dynamic gradients in K/h
Increase towards To opt no limit 3 3 1
Increase away from To,opt no limit 1 2 1
Decrease towards To,opt no limit 2 1 1
Decrease away from To,opt no limit 1 1 1
brackets in the following, where [t] is the current time step, [t+1] Table 3

the predicted time step (t+15 min), [t-1] the previous time step (t-
15 min), etc. Similarly, three time steps of the exogenous variables
are taken as inputs, however, here the parameters of the actual
predicted time step [t+1] are assumed to be available. The model
order was selected based on a literature review by [43], which in-
dicates good performance for third order model structures. The re-
sulting structure of the ARX model is presented in Eqgs. (1) and (2).
In Eq. (1), To is the operative temperature, c;, are the ARX fitting
parameters, and X is the vector of exogenous variables (specified in
Eq. (2)). The parameters are computed using the ARX model iden-
tification function ‘arx’ in MATLAB [59].

Tt + 1] = Gy - X[t + 1]+ ¢ - X[t] + G ¢ X[t — 1]

+ery, - Tolt] +ca, - Tolt — 1] +c37, - Tolt — 2] (1)
Toet
7 !
X = shortwave 2
out 2)
occ

3.3. Boundary conditions and parametrization

3.3.1. Weather data

To ensure that simulations are performed based on represen-
tative environmental boundary conditions, weather data from the
test reference year (TRY) [60] for the German Lower Rhine region
(western Germany - TRY region number five) was applied. This
data was used for both simulations, the white box ‘reality’ repre-
sentation and the ARX model utilized in the optimization process
of the MPC. Thus, a perfect weather prediction was assumed to be
available for the MPC. Taking into account that the optimization
is performed for a horizon of 24 h and repeated hourly, it is likely
that weather predictions with high quality would be actually avail-
able for the observed period.

3.3.2. Comfort boundaries

Comfort boundaries for the MPC were taken from a preceding
experimental study focused on the perception of transient ther-
mal conditions induced by residential load shifting activities [1].
The major findings of the named study are the impact of the peo-
ples activity level and the relevance of the temperature change
direction. Thus, whether there is a change towards a more or a
less preferred temperature, has a crucial impact upon the accept-
able extent and change rate of temperature deviations. This stands
in great contrast to conventional comfort criteria focusing solely
on the absolute temperature and treating all types of temperature
changes equally. The dynamic comfort constraints adapted from
[1] and used in this analysis are presented in Table 2, whereas
the actual dynamic temperature profiles resulting from assumed

Internal gains and the division into convective and radiative heat
flow according to [64].

Gain Power (W) Convective (%) Radiative (%)
People 125 50 50
Lights 65 50 50
Appliences 100 60 40

activity patterns are visualized in Fig. 2. Exemplary activity pat-
terns are used to implement different comfort constraints for ac-
tive, inactive and sleeping occupants. It is assumed that occupants
present throughout daytime are rather active (cooking, cleaning,
etc.), whereas they will have a lower activity level in the evening
(watching television, reading a book, etc.). Further, it is assumed
that activity increases again in the last hour before nighttime.
Since the impact of LSiTD upon the thermal perception of sleep-
ing occupant was not evaluated in the underlying study, nighttime
comfort temperatures were selected according to the PMV/PPD*
approach [61].

Conventional comfort boundaries derived from current interna-
tional standards [61-63] were used for comparison in two refer-
ence and one of the observed optimization scenarios. Based on
these standards, an operative temperature of 22 °C is assumed to
be the optimal comfort temperature for the observed residential
conditions, when generalizing across all activity conditions. Fur-
thermore, temperature fluctuations of up to+2 K with rates of
temperature change below 2 K/h are expected to be widely accept-
able, with on average less than 10% of the people being dissatisfied
with the resulting thermal environment.

3.3.3. Occupancy and internal loads

Internal loads representing the heat emission of occupants, ap-
pliances and lights were determined according to [64] for the
white-box ‘reality’ model. In this simulation, it is defined that the
‘test room’ is occupied by one person performing sedentary activi-
ties. All internal heat gains are described in Table 3.

The occupancy of the observed room was predefined by a
generic occupancy profile, generated based on the approach of
Richardson [65]. This method generates statistically based occu-
pancy time-series with daily changing profiles and general differ-
entiation between weekdays and weekends. Therein, occupancy is
defined as the actual presence of an active person within a given
zone at a given time, thus resulting profiles are suitable for most
residential zones except for the bedroom. Therefore, in this work,
for the case of room occupancy, all internal loads are assumed to
be active, whereas no internal loads are considered when the room
is unoccupied. Thus, as a simplification, potentially existing minor

4 PMV: predicted mean vote, PPD: predicted percentage dissatisfied.
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Fig. 4. Dynamic primary energy factor profile utilized for the optimization of MPC operation.

heat gains from the standby of appliances are neglected, whereas
moderate lighting is assumed to be always used in the occupied
room. The estimated total thermal load from appliances and light-
ing of 165 W is assumed to be a good approximation of aver-
age heat emissions in an occupied residential room based on [64].
Fig. 3 exemplary presents the occupancy profile for two weeks in
the middle of the observed two month period. It can be seen that
the profile is irregular, comprising both long periods of presence
and absence as well as quick changes between these two condi-
tions. Based on this profile, the ‘test room’ is on average occupied
for 34.5% of the observed period, therein 21.5% in phases when oc-
cupants are considered active, 11.8% in inactive phases and since
the defined zone is not a bedroom, it is only occupied 1.2% of the
nighttime.

3.3.4. Dynamic primary energy factor

The utility function for the MPC algorithm is based upon a dy-
namic primary energy factor, enabling the minimization of the PE
demand for heating purposes. This factor is adapted from the work
of [38], where a fluctuating PEF is calculated based on actual time
series of the German electricity demand and renewable genera-

tion from wind power and PV in 2015. The underlying time se-
ries are taken from publicly available measurement data of the four
German transmission system operators [66-69], whereas the gen-
eral PEF values are based on the definitions in German legislation
and standardization [70]. The resulting profiles can be additionally
scaled to represent any given share of renewable electricity gen-
eration in the power system. In this work the PEF is scaled for a
renewable generation share of 80% as targeted by the German gov-
ernment for the year 2050 [11]. In this way, the utilized profile
ensures enough fluctuation to actually enable a dynamic operation
of the heating system, as required for LS and STM activation. The
resulting dynamic PEF signal for the two-month period observed
in this analysis is presented in Fig. 4, whereas average PEF values
for different phases of the observed period are given in Table 4.

3.4. Model predictive control

3.4.1. Self-learning model predictive algorithm

An overview of the designed control algorithm is given as a
flow chart in Fig. 5 and its functionality is described in the fol-
lowing. The control algorithm is executed once per hour. For every
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Table 4

Average PEF for different occupancy phases of the observed period.
Occupants Not present  Generally present  Active  Inactive  Sleeping  All phases
Average PEF  1.18 1.00 0.77 1.40 1.39 1.12

iteration, it is first evaluated whether an adequately accurate ARX
model is available. If this is the case, the dynamic heating mode
is activated and the MPC attempts to optimize the heating opera-
tions for a time horizon of 24 h. If an optimal heating operation is
found, the first hour of the optimized set temperature schedule is
used as actual set temperature profile for the heating system. It is
also possible that the optimization fails, meaning that there is no
solution found for the observed optimization problem. This can oc-
cur, for example, when the violation of comfort constraints within
the optimization horizon cannot be successfully prevented by any
possible heating control measures. One reason for that could be
high uncontrollable internal or solar heat gains, making it impos-
sible to stay within comfort constraints.

When no adequate ARX model is available or the optimization
fails, one of the alternative rule-based control modes is selected.
While the building is occupied, the comfort mode is activated, thus
setting optimal comfort temperatures according to the current ac-
tivity level of the residents. However, if the building is not occu-
pied, the algorithm checks whether system identifications can be
performed. If ambient temperature is lower than the minimal ac-
ceptable building temperature (19 °C) and the current PEF is not
higher than its yearly average value of 1, the identification mode is
activated. The heating system then receives pseudo random signals
[43] as set temperature. Thus, the diversity of heating operations
and measured temperature patterns increases, allowing generation
of better fitted ARX models. When the building is unoccupied but
the requirements for system identification are violated, the energy
saving mode is selected and the minimal temperature for unoccu-
pied conditions (19 °C) is defined as set temperature. The set tem-
perature profile for the upcoming hour is then compiled from the
operation modes individually selected for any 15 min time step.

Finally, the complied set temperature profile for one hour is
simulated within the physical model and resulting operative tem-
peratures are returned to the control algorithm as measurement
values for its next iteration. Furthermore, once a day all gathered
measurements are used for fitting of new ARX models.

Daily model fitting

4 MATLAB

‘Adequate

model Mo

The ARX model is fitted for the first time when measurement
data of at least one week is available, utilizing the arx function
[59] in MATLAB. The first four days of that week are used for fitting
and subsequent three days to asses the model’s accuracy. If more
data is available, fitting horizons of 1 to 12 weeks are used to fit
several models and the most accurate model of these is selected
for the MPC operation. The maximum fitting horizon of 12 weeks
is selected since the thermal behavior of a building is distinctly
varying from season to season, thus the quality of a data-driven
model fitted across many seasons is likely to decrease. Since the
evaluated period in this analysis comprises only 59 days, the algo-
rithm is provided additionally with simulated measurement data
for one month before the observed period, to allow better obser-
vation of utilized fitting horizons. New model parameters are fit-
ted every 24 h. After every fit, the model’s accuracy is assessed
through the calculation of the RMSE between operative tempera-
ture ‘measurements’ from the ‘reality’ simulations and estimations
calculated based on the fitted model. Independently of the actu-
ally utilized fitting horizon, the data of the last three days is ex-
cluded from fitting and used for the accuracy assessment, calculat-
ing an average RMSE value for these days according to Eq. (3). If
the found average RMSE is below 1 K, the model’s accuracy is as-
sumed adequate and the model will be used for MPC. This thresh-
old is selected, since it represents already a decent estimation for
such a simplified model, and since temperature deviations of +1 K
from optimal comfort temperatures are still in the comfort range
according to both the conventional and the dynamic comfort con-
straints. When the calculated RMSE is larger, the control will use
the last model that was found accurate enough. If the currently fit-
ted model is found inadequate and the last model fulfilling quality
criteria is older than 3 days, the ARX model is not used for MPC
until the next successful model fit.

13 1 24.4.d 5
RMSE = § Z m Zt:(d—l)-24+1 (Tpredicted (t) - Tactual(t))
d=1
(3)
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Fig. 5. Flow chart of the implemented heating control algorithm.
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Fig. 6. Flow chart of the implemented optimization procedure.

3.4.2. Optimization

When an applicable ARX model is available, the dynamic heat-
ing mode is activated, thus the control algorithm attempts to per-
form heating operations based on the MPC, minimizing the PE de-
mand for heating. An overview of the optimization procedure is
given as a flow chart in Fig. 6, while the individual steps of the
approach are explained in the following.

Generally, the optimization minimizes the PE required for the
heating operation by minimizing the PEF weighted difference be-
tween the set temperature and the actually minimal acceptable
operative temperature at all times. The utilized hourly changing
PEF based on the findings of [38] allows correlating the chosen set
temperature and the actual PE demand in the cost function given
in Eq. (4). The dynamic PEF for the upcoming 24 h is expected to
be known and available for the optimization. The cost function is
minimized over a horizon of 24 h with a time step of 15 min. How-
ever, only the outcomes of the first optimized hour are returned as
set temperatures for the MPC, while the optimization is repeated
once every hour.

24.4
mi[n D" PEF(t) - (Tset(t) — Trin(£)) (4)
* t=1

Four different optimization scenarios are implemented to test
the potential of the developed algorithm, each with different
static or flexible thermal comfort constraints. In scenario O1, fixed
conventional comfort constraints are applied at all times, being
2242 °C, with maximal temperature changes of 2 K/h. The dy-
namic comfort constraints (as presented in Fig. 2), which change
according to occupancy and occupant activity, are utilized in sce-
nario O2a together with the conventional temperature change re-
striction of 2 K/h and in scenario O2b with the dynamic rates of
temperature change. Finally, in scenario O2c, the calculated RMSE
is utilized to improve the model's compliance with the comfort
limits. Thus, the applicable dynamic constraints are narrowed by
subtracting half of the currently calculated RMSE from the higher
and adding RMSE/2 to the lower limit. Since the maximal al-

lowed RMSE is 1 K and the range of acceptable temperatures in
occupied times is 3 K, a reduction of this range by more than
2-RMSE/2 would strongly reduce the potential for STM activation.
Thus, half of the currently calculated RMSE is chosen as a trade-
off between comfort improvement and optimization potential. The
specific comfort constraints for all optimization scenarios are given
in Table 5.

For all scenarios, a linear optimization is performed in Gurobi
(version 6.5.0) utilizing the Python gurobipy package, both devel-
oped by Gurobi Optimization Incorporation. Thereby, a determinis-
tic concurrent method [71] is employed for this optimization. This
approach starts different solvers on different threads simultane-
ously and chooses the results of the method that finishes first. The
deterministic version of the optimization method is utilized, thus
under equal boundary conditions always the same optimal solu-
tion is found. If the optimization should fail, the algorithm reduces
the optimization horizon in 2 h steps down to a minimal scope of
12 h. Only if these scope reductions still do not render the prob-
lem solvable, the total optimization actually fails. It was also evalu-
ated, whether the introduction of a slack variable making the com-
fort constraints slightly flexible would increase the chance of find-
ing optimal solutions. In case that no solution for the optimization
was found, the slack variable increased the comfort constraints by
as much as the current RMSE, thus up to 1 K. However, this re-
laxation of the permissible temperature range did not noticeably
increase the chance of finding an optimal solution and was there-
fore rejected.

3.4.3. Evaluation concept

To enable a precise evaluation of the control algorithm’s perfor-
mance, three reference scenarios were defined and simulated. For
all reference scenarios, a rule-based control is used to implement
time-dependent temperature profiles. References 1 and 2 allow the
comparison of the developed algorithm with conventional building
operations, keeping temperatures either constant at 22 °C (scenario
R1) or reducing them in phases without occupancy and at night to
20 °C (scenario R2). In turn, reference scenario R3 is constantly
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Table 5
Boundary conditions of the analyzed scenarios.

Boundary conditions

Operative temperatures when occupants are:

Rate of change

Not present Active Inactive Sleeping

Time range n/a 7 am.-6 p.m. 6-11 p.m. 12 p.m.-7 am. at all times
11-12 p.m.

Reference scenarios in °C in K/h
R1: Constant temperature 22 <4
R2: Setback temperatures 20 22 22 20 <4
R3: Optimal temperatures 19 21 23 20 <4
MPC optimized scenarios in°C in K/h
01: Fixed constraints 22+2 K <2
02a: Dynamic temperatures 19-24 20-23 22-25 19-22 <2
02b: Dynamic constraints dynamic, as in O2a dynamic
02c: Reduced constraints dynamic as in O2a, but constraints reduced by RMSE/2 dynamic

following the optimal temperatures of the dynamic comfort pro-
file and serves therefore as the main benchmark for the MPC algo-
rithm. Table 5 presents all thermal constraints for these reference
cases as well as for the optimization scenarios described in the op-
timization Section 3.4.2.

The compliance with the defined dynamic comfort constraints
was evaluated by quantifying the violations of these constraints for
each scenario and comparing them against the optimal tempera-
ture oriented reference scenario R3. For each time step (t) when
the operative temperature was outside of the comfort range, this
violation time (toy: in 0.25 h) was multiplied with the extent of
the violation (AToy: in K), thus resulting in the temperature vio-
lation index (TVI), giving the total constraint transgression in Kh.
Similarly, the violations of the dynamic rate of temperature change
are observed, however now on a hourly base. Thus, for all full
hours (h) when the rate of temperature change is exceeded (heyceed
in h), the extent of the violation (ATCeyceeq in K) was cumulated,
resulting in the temperature change violation index (TCVI) likewise
in Kh.

VI = Z ATout - Lout (5)
t

TVl = Z ATCexceed * Nexceed (6)
h

To quantify the load shifting potential resulting from STM acti-
vations in an observed thermal zone, absolute amounts of stored
or shifted energy are frequently stated [10]. However, such a mea-
sure is sensitive to the actually prevailing ambient conditions and
the extent of the STM activation achievable for any individual oc-
casion. In particular, the storage potential is impacted by the ac-
tivation times and the temperature profiles throughout the activa-
tion phases, which are different on any single occasion when oper-
ated by an optimized MPC. Finally, with such control it is seldom
possible to identify individual STM activation phases, which could
be considered independent from the preceding utilization of the
STM. It is therefore not viable to define an actual LS potential for
individual activation phases. Thus, the potential of MPC operated
LS should be quantified for a representative longer period of time,
comprising a wide range of diverse STM activation, as applied by
[8,9]. Also, it can be questioned if the frequently used normaliza-
tion of the LS potential per m? of considered floor space is mean-
ingful. Especially, when dynamic occupancy and activity oriented
temperature profiles are utilized for MPC of STM activation, it is
likely that different utilization patterns of a thermal zone will have
different resulting LS potentials per m2. As a result, relative mea-

sures describing the overall performance of the observed thermal
zone throughout the whole observation period are chosen to quan-
tify the LS potential in this work. Nevertheless, some absolute and
m? normalized values of the LS extent will also be presented to
enable comparability with existing studies.

It depends on the motivation of LS activities, whether the
impact upon final energy or primary energy’ is of larger inter-
est. Grid-services, for example, require large FE shifting potentials,
while the focus of environmentally motivated LS is on PE. There-
fore, the LS performance of the MPC is evaluated based on three
efficiency measures, which observe separately the absolute LS ef-
ficiency as well as the LS performance with respect to FE and
PE. The absolute load shifting efficiency is defined according to
Egs. (7)-(9). This value (n.s) indicates which share of additional
heating energy utilized for STM activation in the MPC scenarios is
actually utilized to reduce the heating demand of the room at later
times, taking the heating operations in scenario R3 as a reference.
Thereby, all time steps (t) when scenario R3 requires less FE than
an MPC case are defined as charging phases, whereas when R3 re-
quires more FE than the MPC case, this is observed as a discharging
phase.

_ FEMPC discharged

= 7)
1his FEMPC charged (
FEMPC discharged
|2 (FEgs(t) — FEwpc(t)) Yt € FEgs(t) > FEnpe(t) ®)
a 0 ¥t e FEgs(t) < FEnpc(t)

FEMI’C charged
| %+ (FEmpce(t) — FEgs(t)) Yt & FEypc(t) > FEps(t) )

0 Vt € FEnpc(t) < FEgs(t)

Further, the final energy demand change, which compares the
total FE demands in the MPC scenarios against the FE demand in
scenario R3 is defined according to Eq. (10). And finally, the pri-
mary energy demand change, a similar comparison of the PE de-
mands of the MPC scenarios against R3, is presented in Eq. (11).

2 (FEmpc(t) — FERs (1))
FEdemand change = L Z[ FER3 (t) (10)

>t (PEmpc (t) — PEgs3(t))
> PEgs(t)

(11)

PEdemand change =

5 FE: final energy, PE: primary energy.
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3.5. Computational performance evaluation

One of the main objectives for the development of the MPC
algorithm is such simplicity that would allow implementing the
suggested concept of MPC for STM activation in regular residen-
tial buildings without complex measurements, expert knowledge
and expensive computations. Therefore, the actual computational
effort of the performed model fittings and optimizations is esti-
mated, being related to the expected calculation effort of a simple
residential energy management system. The developed algorithm
was operated on a workstation (WS) with a 64-bit Intel Xeon E5-
2667 6-core CPU clocked at 2.9 Ghz, 32 GB RAM running a 64 bit
version of Windows 7 Enterprise. The processor utilized in the WS
has a computational capacity of 139 GFLOP® [72] per core. It was
estimated which calculation effort would result if the developed
algorithm would be operated on a Raspberry Pi 3 B (RP3) single-
board computer. The system is chosen for comparison, since it is
widely available at a low price,” has high connectivity® [73] and its
Linux based operation system allows the usage of diverse program-
ming and optimization codes [74]. The system selected for compar-
ison is equipped with a 64-bit ARM Cortex-A53 4-core CPU clocked
at 1.2 GHz, 1 GB RAM, running a 64-bit version of Raspbian and re-
quiring 1.8 W in idle and 4.4 W at full load [74]. The processor of
the RP3 has a computational capacity of 6.4 GFLOP, when equipped
with an additional passive heat sink [74].

For this evaluation, the WS computation times for the Matlab
based model fitting and the optimizations performed with Gurobi
were calculated using a single core and assuming the worst case
computation effort feasible in the developed algorithm. Thus, for
the fitting problem, a maximal availability of fitting data was as-
sumed, resulting in 12 ARX models that need to be calculated. For
the optimization, the worst case was defined by an optimization
failure, since the 7 possible optimization horizons between 12 and
24 h are calculated in this case. The actually measured computa-
tion times of the WS were converted to estimated computation
times of the RP3 according to three factors, one for the utilized
processor and two for the utilized software. The actually observed
additional RAM requirement of approx. 400 MB when running fit-
ting or optimization routines was not expected to be a limiting
factor.

The processor oriented factor f, is calculated based on the com-
putational capacity of the observed platforms as a ratio of their
GFLOP scores. The software oriented factors are necessary, since
the utilized software Matlab and Gurobi require expensive licenses
and are not operational on a RP3. Therefore, alternative software
which is freely available and functioning on the Linux based RP3
is selected for this computation time estimation. Is is assumed
that model fitting would be performed on the RP3 with GNUOc-
tave [75], a free scientific programming language, which is widely
compatible with Matlab syntax and scripts. According to a compar-
ison based on 50 benchmarks [76] Matlab is 2.5 times faster than
the GNUOctave software, resulting in a fg, factor of 2.5. Similarly, it
is assumed that the linear optimization would be performed with
Cbc [77], which is an open-source linear programming solver. Ac-
cording to a comparison based on 87 optimization problems [78],
Gurobi is up to 32 times faster than Cbc, resulting in a fop factor
of 32. Calculation times for RP3 were estimated by multiplying the
calculation times measured on WS by the presented factors.

The required FE and PE demand for the operation of the RP3
were estimated as well to compare these to the energy savings. It
was assumed that the RP3 is operating in full load throughout the

6 10° floating point operations per second.
7 Currently a Raspberry Pi 3 can be purchased for less than 35 Euro.
8 USB 2.0, 100 Mbit/s Ethernet, 802.11n wireless, Bluetooth 4.1, GPIO and HDMI.

optimization and fitting routines and stays idle all the remaining
time. Finally, it is stressed that the described performance estima-
tion is expected to be suitable as a rough estimation for the calcu-
lation effort the developed algorithm would require, when recoded
to be operated with freely available software on a distinctly sim-
pler hardware. The actually implemented code is not operational
on the soft- and hardware described in this evaluation.

4. Results
4.1. General performance of the ARX model and MPC algorithm

All implemented scenarios are viable and the underlying control
mechanisms are able to control the operative temperature within
the ‘test room’ in a meaningful way over the total observed period.
For the MPC algorithm controlled scenarios, an adequately precise
ARX model was available at all times. The worst observed RMSE
in accuracy estimation is 0.56 K and still well below the thresh-
old of 1 K. A total of 1680 individual ARX models were fitted by
the algorithm across all MPC based scenarios, whereof 236 were
actually selected for MPC operation. Fig. 7 presents a histogram of
the RMSE values achieved by all actually selected models in the
accuracy estimation process. Most models selected for MPC had
a RMSE in the range of 0.2-0.3 K, and 90% of the chosen models
had a RMSE below 0.35 K. The average fitting data horizon utilized
for the ARX models is 2.3 weeks, with a slight tendency towards
longer horizons as more fitting data is available. Fig. 8 depicts the
average fitting horizon of the selected ARX models in dependence
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Fig. 7. RMSE of utilized ARX models.

]

Average values — / - —

Average ARX fitting horizon in weeks

0
4 6 8 10 12
Weeks available for ARX fitting

Fig. 8. Average ARX fitting horizons.
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of the actually available fitting data. It can be seen that even in
the last weeks of the observed period, when more than 10 weeks
of fitting data are available, the average selected fitting horizon
is 2.8 weeks. A histogram of the fitting horizons of selected ARX
models is given in Fig. 9, depicting that 57% of the utilized models
are fitted only with the data of the past week and 74% with two
previous weeks, even though data of at least 4 weeks is available
for all fitting iterations. Probably, the temperature fluctuations re-
sulting from both STM activations and building identification yield
well excited measurement data for model fitting, being the reason
for the observed short fitting horizons [79]. Nevertheless, 7% of se-
lected models have fitting horizons of even more than 6 weeks.
In total, 43% of the selected models were based on fitting hori-
zons longer than one week. Thus, the approach of creating models
with different fitting horizons and selecting individually the best
performing model proves to be viable and superior to a fixed defi-
nition of the fitting horizon.

The dynamic heating mode is active for more than 40% of the
evaluation period in all optimized scenarios, reaching a share of
64% for the O1 scenario. System identification is performed for ap-
prox. 6% of the time across all scenarios. When neither MPC oper-
ation nor identification were possible, heating is operated in com-
fort or energy saving mode according to the occupancy status. A
full overview of the employed individual control modes is given in
Fig. 10 for all optimized scenarios. When further specifying the op-
eration times of different control modes, it can be calculated that
scenario O1 operated 69% of the occupied times in MPC mode,
whereas 02 scenarios were just able to find optimal control paths
for 27-38% of occupied phases. Thus it can be derived that the op-
timization problem is distinctly easier to solve for static comfort
constraints.

H. Wolisz, TM. Kull and D. Miiller et al./Energy & Buildings 207 (2020) 109542

An exemplary sequence of the algorithm’s control behavior is
presented in Fig. 11 for the O2b scenario. The ‘measured’ and pre-
dicted temperatures are well aligned in unoccupied phases (when
Tmax is set to 24 °C) and at nighttime, with increasing deviations
in phases with uncontrollable internal or solar heat gains. Still
it can be recognized that the ‘measured’ temperature is close to
the lower boundary in phases with high PEF and increases clearly
when PEF is low. Periods when the set temperature is above the
optimal comfort temperature are marked as STM activation phases
in the lower part of the graph. These STM activations are fre-
quently interrupted or limited, even when the ‘measured’ temper-
ature is still well in the comfort range and the PEF is low. This
happens either when the predicted temperature reaches the upper
boundary, or when strong fluctuations of the predicted tempera-
ture prevent successful optimization and MPC is deactivated. How-
ever, due to such conservative operation, only few minor comfort
violations are visible despite the distinct STM activation activities.
On few occasions, the identification mode is activated, inducing
significant temperature fluctuations at unoccupied phases with a
PEF below average.

4.2. Resulting thermal comfort

The thermal comfort is a crucial focus point in the evaluation
of dynamic STM activation, since the compliance with comfort
constraints is a vital condition for the general acceptance of
such LS operations. Therefore, the simulated thermal conditions
of all observed scenarios are presented and evaluated in the
following, with a major focus on the impact of the suggested
dynamic comfort constraints upon thermal comfort. Fig. 12 depicts
the resulting average operative temperatures for the individual
occupancy phases over the total observed period for all evaluated
scenarios. The average values for the reference scenarios are well
aligned with their defined temperature profiles, not diverging
more than 0.5 K from set temperatures of the active, inactive and
unoccupied phases. Solely throughout the seldom and short peri-
ods of occupancy during the nighttime, scenario R2 does not reach
the targeted temperature reduction. It can be concluded that the
rule-based control utilized for the reference scenarios is working
properly. As expected, thermal conditions in scenario R3 are well
aligned with the optimal temperatures throughout all occupancy
phases. Therefore, scenario R3 is meaningful as the main bench-
mark for the further evaluation of the observed MPC scenarios. To
improve clarity, the results of reference scenarios R1 and R2 will
not be further presented in the following, however they can be
found in [1]. All optimized cases keep the average temperatures
above the optimal temperature for active, sleeping and unoccupied
phases, indicating that STM activations are actually performed.
Only throughout the inactive phase, the optimized temperatures
are close to the lower comfort boundary. Scenario O1, which is
actually not limited by the dynamic comfort constraints, violates
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Fig. 10. Distribution of heating operations across the different control modes.
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on average the minimal temperature for inactive occupants. All
other MPC scenarios are on average not more than 0.7 K away
from optimal temperatures for the occupied phases.

Fig. 13 depicts the TVI and the TCVI scores for all scenarios. As a
benchmark, a daily temperature or temperature change violation of
1 K for 1 h would result in a TVI/TCVI score of 59 Kh for the eval-
uated 59-day period. Scenario R3 follows optimal temperatures at
all times, thus violating given temperature limits only in the tran-
sition phases between different dynamic constraints. Thus, the TVI
and TCVI values of scenario R3 can be seen as a benchmark for
the lowest values, which can be reached when a rule-based con-
trol follows the dynamic temperature constraints.

MPC scenario 01, which is controlled according to conventional
comfort constraints, has the highest TVI score of all scenarios and
the highest TCVI rating among the MPC scenarios. It is actually not
unexpected that scenario O1 performs poorly on criteria not im-
plemented into its control. Still, the results are emphasized to in-
dicate that a conventional STM activation approach would result in
far-reaching comfort violations according to the dynamic comfort
constraints applied in this work. Scenario O2a exceeds the comfort
violations of scenario R3 by approx. 25% for both TVI and TCVI,
whereas scenario 02b has very similar scores than R3. Finally, in
scenario O2c, the adaptive limitation of the comfort range by the
value of the current RMSE reduces TVI by 7% and TCVI even by
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42%. TVI improvement is limited probably because model predic-
tions were either good enough to ensure the adherence of temper-
ature constraints anyway, or the predictions were not suitable for
MPC at all. However, the adaption of comfort constraints resulted
in an overall reduction of the applicable temperature range, thus
limiting temperature fluctuations and clearly improving the TCVI.

4.3. Energy consumption and load shifting efficiency

Having shown that the MPC algorithm is generally capable of
ensuring required comfort conditions, now the energy consump-
tion of the individual scenarios is compared and impacts upon
the final energy consumption, the average PEF and the resulting
primary energy consumption are observed. Fig. 14 depicts these
values for all scenarios. The MPC with conventional comfort con-
straints (scenario O1) has final and primary energy consumption
well above these of scenarios with dynamic comfort constraints.
However, the exemplary defined occupancy and activity periods in
this analysis have a strong impact upon the resulting heating re-
quirements and the choice of different periods could potentially
change the results. Therefore, no general conclusion upon the en-
ergy consumption impact of conventional or dynamic temperature
constraints can be made. Nevertheless, the assumption of higher
occupancy and lower occupant activity in the evenings seems gen-
erally reasonable. This indicates the general challenge of increased
heating demand in the evening, thus at times with hardly any PV
generation and therefore higher average PEF values in the utilized
profile, as presented in Table 4.

Due to the increased temperatures required for STM activation,
the FE consumption of all MPC scenarios are clearly higher than in
the reference scenario R3. In turn, they have significantly reduced
average PEF factors, being even 6-10% below the average value of
the total observed period. As a result, all 02 scenarios are able to
compensate the higher FE consumption induced by the STM ac-
tivation and reach PE consumption below the level of scenario R3.
Solely, potentially limited through the overall smaller range of tem-
perature fluctuations, scenario O1 can not compensate the high FE
consumption with its reduced PEF. Scenarios with a PE consump-
tion reduction (02a-c) reached absolute FE LS volumes of 137-
156 kWh for the observed 59-day period. When normalized to the
size of the modeled ‘test room’ of 16 m?, the LS potential is 8.6-
9.8 kWh/m? or on average daily 146-166 Wh/m2. Fig. 15 presents
the associated LS performance of STM activation for all scenarios
controlled by the MPC algorithm, always in relation to the opti-
mal temperature scenario R3 (as defined in Section 3.4.3). The ac-
tual absolute LS efficiency is below 50% for all MPC scenarios, thus
more than half of the additional FE consumption for STM activa-
tion is lost. Most of the energy is spent for maintaining tempera-
tures above the optimal level, as indicated by the average temper-

atures presented in Fig. 12. Consequently, also the FE consumption
increases with FE consumption changes in the range of 30-58%.
However, driven by the reduced average PEF values, the PE con-
sumption is reduced for all MPC scenarios controlled according to
dynamic comfort constraints, reaching up to 7% lower PE consump-
tion than scenario R3.

Fig. 16 exemplifies one of the most prominent STM activation
phases within the evaluated period. The operative temperatures of
scenarios O2b and R3 are compared in the upper part of the dia-
gram, whereas the respective heating power and the current PEF
are depicted in the lower part, being normalized between 0 and
1. The MPC increases the temperature substantially for a period of
12 h while the PEF is 0. As a result, the heating consumption is sig-
nificantly reduced throughout the subsequent occupancy phases,
which occur at times with an increased PEF. The FE consumption
for the 31 h period presented in Fig. 16 is 21.7 kWh in the R3
scenario and 42.5 kWh for the O2b case. The PE consumption is
15.0 kWh for R3 and 12.1 kWh for O2b. This results in an FE con-
sumption increase of 96% and an PE consumption reduction of 19%
for the observed period. Due to the STM activation in the first 12
h of the depicted period, the FE consumption of the subsequent
19 h is reduced by 4.3 kWh, yielding an 75 of 21%. If the result-
ing storage capacity is reported in Wh/m? as suggested by [8], the
resulting capacity would be 269 Wh/m? of the final energy and
176 Wh/m? of the primary energy.

4.4. Sensitivity to building standard

The sensitivity of the MPC algorithm’s performance with re-
spect to the building standard is evaluated based on a comparison
of EnEV 2009, TIO 1984 and the Passive House standard® for the
reference scenario R3 and the MPC case O2b. Generally, average
temperatures for the different occupancy phases are lower as in
EnEV 2009 for the case of TIO 1984 and higher for PH as depicted
in Fig. 17. The high heat losses in TIO 1984 enable stronger tem-
perature fluctuations and thus better adherence to the dynamic set
temperatures. However, for the reference case R3 (84), these fluc-
tuations also induce more temperature and temperature change vi-
olations, as depicted in Fig. 18. These violations can be well miti-
gated in the MPC controlled O2b (84) scenario, reaching even dis-
tinctly lower temperature change violations than in the EnEV case,
mainly because the MPC induced STM activations reduce the fre-
quency of maximal permissible temperature reductions. The higher
insulation level of the building envelope and the lower solar en-
ergy transmittance of the windows in the PH reduce the extent of
temperature fluctuations. This also reduces temperature and tem-
perature change violations in the reference case R3 (PH) (Fig. 18).
The low temperature violation level can be even further reduced
by the MPC, while temperature change violations are low in any
PH scenario due to the moderate slopes of temperature fluctua-
tions.

For the TIO 1984 standard, the heating demand is generally
larger and rather continuous, resulting in a lower PEF for the refer-
ence case, since the heat up phase in the evening is not that pre-
dominant anymore. In turn, the high heat losses are minimizing
the potential for STM activation and therefore also the average PEF
decreases just slightly. Due to the high heat losses, the MPC has
generally difficulties to predict and control the rapid temperature
fluctuations, as indicated by an MPC share of just 40%, as compared
to 48% in the EnEV 2009 case. Additionally, the energy charged
into the STM can be just stored for short periods due to the high
heat losses. Therefore, STM activations are seldom performed and

9 ‘EnEV 2009’ or ‘09’ refers to the energy conservation ordinance 2009, ‘TIO 1984’
or ‘84’ refers to the thermal insulation ordinance 1984, ‘PH’ refers to the Passive
House standard.
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FE consumption just increases by 16%, as depicted in Fig. 19. As a
result, the reduced average PEF just compensates the increased en-
ergy consumption for STM activation. The actual PE consumption is
solely 2% lower than the reference scenario (Fig. 19).

In the case of the PH, the reduced temperature fluctuations en-
able MPC operation at 61% of the observed time, however only
a limited part of the available temperature range can be actually
used. Since the building cools down very slowly, even the mod-
erate STM activation can shift heating demand across substantial
periods, thus being able to concentrate most of the required heat-
ing activities in phases with lower PEF. The resulting average PEF
is 47% lower than in the PH reference and even 33% lower than
the average of the observed period. Still, due to the low general
heating demand, the performed STM activations increase the FE
demand by 58%. However, that increase is overcompensated by the
very low average PEF, resulting in a 15% lower PE consumption for
the PH with MPC (Fig. 19).

Despite of these differences, the absolute LS efficiency (,s) cal-
culated from Eq. (7) is constantly in the range of 41-46% for all
MPC scenarios, indicating that not the building standard dependent
heat losses to the ambient, but the increase of operative temper-
atures above the optimal level are the main driver for the poor
absolute LS efficiency.

4.5. Computational effort required for the MPC based STM activation

The ratio between the GFLOP scores of the WS and RP3 is cal-
culated as shown in Eq. (12). Thus, it is estimated that the RP3 is
22 times slower than the actually utilized hardware.

139 GFLOP _
~ 6.4 GFLOP

Table 6 presents the actually measured calculation times of the
WS and the estimated calculation times for the RP3, based on the
software factors presented in Section 3.5. It can be seen that even
for the worst case of the hourly optimization a calculation time
of approx. 0.3 h could be expected, being well below the available
time-frame of one hour. The estimated time for the worst case of
daily ARX model fitting is 0.5 h, thus enabling that even both rou-
tines, the optimization and model fitting could be performed in

b 22 (12)

Table 6

just one hour. This leaves enough calculation capacity to either op-
timize further thermal zones, increase optimization frequency, in-
crease the number of fitted black-box models or provide entirely
different smart home services.

The required energy demand for the operation of the RP3 is es-
timated in Eq. (13), assuming that the RP3 is operating in full load
throughout the optimization and fitting routines and stays idle all
the remaining time. The resulting energy demand of 3.7 kWh,, is
adjusted with the average PEF of the observed period (1.12) to cal-
culate an estimated PE demand of 4.1 kWhpg for the operation of
the RP3. This PE demand accounts for 7-16% of primary energy
savings observed in the MPC controlled scenarios with dynamic
comfort constraints, thus even in that worst case estimation of the
computation effort, the MPC operation would be still beneficial.

_ opt hload fit h]oad Wel
W, = (1416—59d -0.3 opt +59 294 -0.5 Fit )-4.4 Frosa
higre Wei o5 kWhy
+962 =od -1.8 e ~ 3.7 =9d (13)

5. Discussion
5.1. Viability of residential STM activation for LS activities

STM activations have regularly absolute LS efficiencies well
below 50%, being lower than values of 50-90% observed by
[8,10,79] for individual STM activation phases of more than 12 h.
Still, the clearly higher FE demand resulting from long phases with
increased temperatures is overcompensated by the reduction of the
average PEF. The scenario with the best balance between com-
fort and LS performance (02b) in the regular building standard
reaches a PE demand reduction of 7%, while maintaining the com-
fort level of the optimal comfort reference (R3). The application of
MPC driven STM activations can be therefore recommended based
on the defined boundary conditions.

For the building with lower thermal standard (TIO 1984) the LS
potential is very limited since the PE demand reduction is just 2%.
Such a minor improvement might not outweigh the effort required
to implement MPC based STM activation. Nevertheless, since the
observed PE demand reduction come along with a minimization

Measured and estimated worst case computation times of the MPC algorithm.

Computation time

Hourly optimization routine

Daily model fitting routine

Workstation (measured) 15s

Raspberry Pi 3 (estimated)

1.5fop f, = 1056 s~ 0.3 h

35s
35 sfpfy =1925s~ 05 h
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of comfort violations for that building standard, the application of
MPC might still be considerable. Furthermore, the absolute amount
of shifted FE equals 71% of the total FE demand of the PH refer-
ence scenario R3 (PH). Especially if LS activities are considered as
potential grid services, such a large absolute energy shifting po-
tential might be valuable. For the future oriented PH standard, a
PE demand reduction of 15% is reached, while even limiting com-
fort violations. Thus, even though the absolute amount of shifted
FE is rather low, it is clearly advisable to perform MPC based STM
activations in such buildings.

Although, this study proofs the proposed LS concept, consid-
ering that the results have been obtained for just two month of
LS activities in a single room, the found percentages can only be
seen as an indication of the potential performance. In addition
to the impact of thermal standards evaluated in this work, other
parameters can affect the LS potential of STM activation. Among
others, the type of heating system, building materials, the occu-
pancy schedule and the selected utility function (here PEF) will
have strong impact upon the algorithms performance and result-
ing LS potential. Thus, before the results can be generalized to all
residential buildings, several follow-up studies, favorably including
field-tests, should be done.

5.2. MPC based on a simple ARX model

Both the implemented simple black box model and the devel-
oped self-learning MPC algorithm proved to be functioning and to-
gether capable of controlling STM activations in a residential build-
ing zone without any prior model parametrization. Due to temper-
ature fluctuations, self-induced by the algorithm’s operation, the
measurement data covers a wide range of possible thermal con-
ditions and allows computing accurate ARX models based on very
short fitting horizons. These short horizons are likely a reason for
the good accuracy of the models, because the weather conditions
of the fitting data are close to these in the predicted phase. The re-
sulting models perform well when neither internal nor solar heat
loads are present, while the prediction quality deteriorates when
these impacts increase. It can be concluded that these models are
best suitable for thermal zones with intermittent occupancy and
particularly throughout seasons with limited solar irradiance. Both
criteria can be assumed to be fulfilled for the observed case of res-
idential LS in winter. However, it can be expected that the utilized
black-box models would not perform similarly well if adapted for
air conditioning based LS in summer or incorporated in zones with
strong and hardly predictable internal loads. Generally, the perfor-
mance of the model improves when the overall amount of uncon-
trollable temperature fluctuations decreases. This becomes evident
in the sensitivity analysis, by the increasing share of MPC oper-
ation for the building with higher insulation standard and lower
solar energy transmittance through the windows.

If required for other cases of applications, the quality of the
model could be significantly improved as suggested in several
identification approaches by other authors [56,57]. However, in this
work identifying a high-quality model was not required and not
in focus. The less accurate model is compensated by a prediction
quality estimation and a small (one-hour) step in recalculating the
optimal heating schedule. Generally, the required frequency of re-
optimization depends on the quality of the available predictions
and is limited by the models complexity and resulting calculation
times. In this study we show that even a very simple model with
robust predictions can be beneficially used for STM activation. Due
to that model simplicity the execution of the algorithm requires
minimal calculation effort, whilst it is required to re-optimize more
frequently. Taking a more sophisticated model would reduce the
amount of required re-optimizations. It could be evaluated and dis-

cussed in future work, whether an optimum between model com-
plexity and optimization frequency can be found.

5.3. Trade-off between comfort and LS

Operation of the heating system according to dynamic temper-
ature constraints generally increases the risk of temperature and
temperature change violations. Nevertheless, the temperature pro-
file of the dynamically controlled reference scenario R3 is on av-
erage closer to the defined optimal temperatures than the static
scenario R1 or the set-back scenario R2. It can therefore be as-
sumed that despite a slightly increased number of comfort viola-
tions, the overall thermal conditions are not worsened by the im-
plementation of dynamic temperature profiles. The developed al-
gorithm is generally capable of operating according to dynamic or
conventional temperature constraints. Assuming the validity of the
dynamic comfort constraints applied in this work [1], STM activa-
tions according to conventional comfort constraints are clearly not
recommended, since the amount of comfort violations increased
strongly in comparison with any other scenario. When STM activa-
tions are performed within dynamic comfort limits, the MPC can
ensure or even improve the adherence to defined dynamic com-
fort constraints. This indicates that despite the increased control
complexity resulting from a variety of dynamically changing tem-
peratures and temperature change constraints, the simple MPC al-
gorithm can manage both STM activations and comfort conditions.
This corresponds with the expectations formulated for model pre-
dictive STM activation by [8,9]. However, it was found than an in-
creasing comfort performance always reduces the viable LS poten-
tial, thus indicating a trade-off between strict comfort observance
and the extent of feasible STM activations.

The utilized dynamic PEF profile indicates the challenge of in-
creasing PEF values in the evenings, when PV generation is discon-
tinued, while the heating demand increases at the same time. Es-
pecially the higher dynamic comfort temperatures in the evening,
driven by the assumed inactivity of the residents, can aggravate
that imbalance. However, the developed MPC algorithm is capable
to counterbalance that effect by shifting the heating demand to pe-
riods with lower PEF, typically earlier in the day.

6. Conclusion and future work

In this work, an MPC algorithm was developed and used to con-
trol dynamic heating operation in one room of a simulated resi-
dential building. The algorithm aimed to optimize required heat-
ing operations according to a dynamic primary energy factor sig-
nal, while observing dynamic comfort constraints defined in a pre-
ceding experimental study [1]. One of the main objectives for the
development of the MPC algorithm was such level of simplicity
that implementing the suggested concept of MPC for STM acti-
vation in regular residential buildings would be possible without
complex measurements, expert knowledge and expensive compu-
tations. Therefore, the developed algorithm utilizes a simple ARX
black-box model, which is fitted and assessed based on few simple
input signals. Several rule based reference scenarios and MPC oper-
ated optimized scenarios were compared, leading to the following
key findings.

« The observed absolute load shifting efficiency of the MPC algo-
rithm was below 50% for all optimized scenarios, thus clearly
increasing the required final energy demand. However, the al-
gorithm can distinctly reduce the average PEF of the consumed
energy, reaching up to 7% lower primary energy demands than
the rule-based reference, for scenarios controlled according to
dynamic comfort constraints. A trade-off between thermal com-
fort and the load shifting potential of STM activations was
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observed, which leaves potential for individual user specific cal-
ibration of the STM activation extent.
In comparison with conventional heating operation, any heat-
ing control according to the suggested dynamic comfort con-
straints increased the extent of comfort violations, due to the
existence of the transition phases between the applicable con-
straints. However, on average the resulting temperatures of dy-
namically controlled heating operations were closer to the sug-
gested optimal comfort temperatures. STM activations accord-
ing to dynamic comfort constraints result in a similar or even
lower extent of comfort violations than the optimal tempera-
ture oriented rule-based control according to these constraints.
However, STM activations according to conventional standard-
ized comfort constraints increase the extent of comfort viola-
tions distinctly.
o The utilized simple black-box model could successfully predict
thermal conditions within the observed room with sufficient
quality to support MPC. The control algorithm based on that
model was capable to activate STM as a measure of LS accord-
ing to the given utility function. However, the model’s predic-
tion quality was found to be sensitive to dynamic internal and
solar loads, therefore the suitability beyond the winterly resi-
dential scope is likely limited.
For buildings with lower insulation standard, only very small
improvements of the primary energy efficiency can be reached,
however the absolute amount of relocated final energy con-
sumption is high. Buildings comparable to the Passive House
standard have a clearly higher increases of primary energy effi-
ciency, while only small absolute amounts of final energy con-
sumption can be relocated.

o The low computational effort of the developed MPC enables
an implementation on simple and affordable hardware, as the
Raspberry Pi 3. The primary energy demand resulting from the
computations was estimated to be distinctly lower than the po-
tential savings due to the utilization of the MPC.

In summary, the general concept to perform STM activations in
residential buildings is viable. However, to ensure thermal comfort
of residents while maximizing the extent of STM activation poten-
tial, at least a simple MPC is required. The performance of such
control depends on the knowledge about few resident-specific fac-
tors as the expected presence in the controlled zone or the current
and expected activity level. Assumptions of these factors can be ei-
ther static, or defined according to time-based schedules, ensuring
at least an approximation of their impact. Just few rough assump-
tions indicating a repeatable daily occupancy and activity pattern,
can enable meaningful load shifting activities and even improve
comfort conditions. Furthermore, future smart building, commu-
nicating with the residents’ smart appliances, could actually gain
precise knowledge of these factors. Thus, it is likely that the po-
tential for residential STM activations will increase in the future.
Control algorithms for STM activation have to be further developed
by improving the MPC models, adapting them for other heat de-
livery methods than hydraulic radiators, and evaluating different
utility function types. Finally, since it was shown that the required
control can be easily implemented utilizing simple hardware, field
tests should be targeted.
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Appendix

Table A1

Material properties of modeled furniture.
Parameter Density Heat Conductivity Emissivity Surface/ Volume

capacity volume
P c € AlV Vv

Unit kg/m®  J/(kgK)  W/(mK) - m?/m?>  m?
Wood 650 1900 0.14 0.85 105 0.8
Metal 5300 670 160 0.5 200 0.02
Table A.2

Properties of windows representing TIO 1984, EnEV 2009 & Passive house
standard.

Window type U-value G-value  Emissivity ~ Frame fraction
Unit in W/(m?.K) in% in% in%
TIO 1984 2.5 80 90 20
EnEV 2009 1.3 60 90 20
Passive house 0.8 50 90 20
Table A.3

Properties of outer walls representing TIO 1984, EnEV 2009 & Passive house stan-
dard.

Construction Total Sub-  Heat capacity Conductivity Density
material from thickness layers

outside to inside

Unit inm n in J/(kg-K) in W/(m-K) in kg/m?
Lime cement 0.050 5 1000 1.000 1800
Mineral wool (TIO 0.000 0 1030 0.035 120
1984)

Mineral wool 0.060 3 1030 0.035 120
(EnEV 2009)

Mineral wool (PH) 0.180 9 1030 0.035 120
Aerated concrete  0.175 14 1000 0.110 350
Gypsum plaster 0.015 1000 0.510 1200

Resulting U-values: TIO 1984: 0. 54 EnEV 2009: 0.28 and Passive house:
0.14W/(m?-K)

Table A.4
Properties of load bearing inner walls.

Construction

material from Total Sub-

outside to inside thickness layers Heat capacity Conductivity Density
Unit inm n in J/(kg-K) in W/(m:K) in kg/m?
Gypsum plaster  0.015 1 1000 0.510 1200
Aerated concrete  0.175 10 1000 0.315 1000
Gypsum plaster  0.015 1 1000 0.510 1200
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Table A.5

Properties of simple inner walls.
Construction material from outside to inside  Total thickness ~ Sub- layers ~ Heat capacity = Conductivity = Density
Unit in m n in J/(kg-K) in W/(m-K) in kg/m?
Gypsum plaster 0.015 1 1000 0.510 1200
Aerated concrete 0.115 8 1000 0315 1000
Gypsum plaster 0.015 1 1000 0.510 1200

Table A.6

Properties of floor slabs representing TIO 1984, EnEV 2009 & Passive house standard.
Construction material from outside to inside  Total thickness ~ Sub- layers ~ Heat capacity =~ Conductivity ~ Density
Unit inm n in J/(kg-K) in W/(m-K) in kg/m?
Foam glass 0.060 3 1000 0.040 140
Reinforced concrete 0.250 32 1000 2.300 2300
Mineral wool (TIO 1984) 0.000 0 1030 0.035 120
Mineral wool (EnEV 2009) 0.040 2 1030 0.035 120
Mineral wool (PH) 0.160 8 1030 0.035 120
Screed 0.060 6 1000 1.400 2000
Flooring 0.006 1 1500 0.070 500
Resulting U-values: TIO 1984: 0.52, EnEV 2009: 0.33 and Passive house: 0.26 W/(m?-K)

Table A.7

Properties of the ceiling between floors.
Construction material from outside to inside  Total thickness ~ Sub- layers  Heat capacity =~ Conductivity — Density
Unit in m n in J/(kg-K) in W/(m-K) in kg/m?
Gypsum plaster 0.015 1 1000 0.510 1200
Reinforced concrete 0.160 20 1000 2.300 2300
Mineral wool 0.040 2 1030 0.035 120
Screed 0.060 6 1000 1.400 2000

Table A.8

Properties of the ceiling towards unheated attic.
Construction material from outside to inside  Total thickness ~ Sub- layers ~ Heat capacity =~ Conductivity =~ Density
Unit inm n in J/(kg-K) in W/(m-K) in kg/m?
Gypsum plaster 0.0150 1 1000 0.510 1200
Drywall 0.0125 1 1000 0.250 800
Mineral wool between wooden panels 0.2000 10 1300 0.045 194
Particle board 0.0200 1 1700 0.100 300

Table A.9

Infiltration parameters and air exchange rates employed in simulations.

Building standard  nsg <] € resulting infiltration  ventilation air exchange
Unit in1l/h - - in 1/h in1/h%

TIO 1984 6 0.03 1 0.36 0.5

EnEV 2009 3 0.03 1 0.18 0.5

Passive house 0.6 0.03 1 0.04 0.1°

2 0.1/h with ambient air representing 0.5/h provided by a ventilation system with heat recovery.
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Abstract: In rooms with underfloor heating (UFH), local on-off controllers most often regulate the air
temperature with poor accuracy and energy penalties. It is known that proportional-integral (PI)
controllers can regulate most processes more precisely. However, hydronic UFH systems have long
time constants, especially in low-energy buildings, and PI parameters are not easy to set manually.
In this work, several potential PI parameter estimation methods were applied, including optimizing
the parameters in GenOpt, calculating the parameters based on simplified models, and tuning the
parameters automatically in Matlab. For all found parameter combinations, the energy consumption
and control precision were evaluated. Simpler methods were compared to the optimal solutions to
find similar parameters. Compared with an on—off controller with a 0.5 K dead-band, the best PI
parameter combination found was with a proportional gain of 18 and an integration time of 2300 s,
which could decrease the energy consumption for heating by 9% and by 5% compared with default
PI parameters. Moreover, while GenOpt was the best method to find the optimal parameters, it
was also possible with a simple automatic test and calculation within a weekend. The test can be,
for example, 6-h setbacks applied during the nights or weekend-long pseudo-random changes in the
setpoint signal. The parameters can be calculated based on the simplified model from these tests
using any well-known simple method. Results revealed that the UFH PI controller with the correct
parameters started to work in a predictive fashion and the resulting room temperature curves were
practically ideal.

Keywords: IDA ICE; building simulation; intermittent heating; model predictive control (MPC); heat
pumps; proportional-integral-derivative (PID) control; thermostats

1. Introduction

The change towards nearly zero-energy buildings (nZEBs) and renewable energy sources influences
the technologies used for heating and its control [1,2]. The intermittent production of renewable
electricity calls for flexibility in all consumers, including buildings [3]. Space heating is responsible for
up to 70% of the final energy demand in residential buildings [4]. Therefore, it has a high potential
for flexibility. In modern buildings, the use of heat pumps has intensified [5]. Only electricity-based
heating is relevant to the power grid, therefore, heat pumps are a clear target.

To be exploited when the grid needs it, heat pumps should use an electricity price or other signal
for optimizing their performance. Some of the heat pumps already optimize their behaviour according
to the price. As one solution to improve the flexibility, model predictive control (MPC) can be used [6,7].
It enables the use of historic and forecasted data to predict the most optimal course of action. At the
occurrence of renewed data, the optimization can be corrected. For an MPC for a single-family house,
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the input signal is, for example, the electricity price or other signal from the grid and the output of the
optimization are the air temperature setpoints of the rooms [3].

The setpoints in rooms have to be tracked by room-based controllers, such as thermostats or
proportional-integral-derivative (PID) controllers, as the supervisory control can deal with optimization
but not with the local fast changes [8]. PID is commonly known to be one of the best and easiest
feedback controllers for any process. For buildings, as a relatively slow system, the derivative part
is usually dropped and PI controllers are used instead. However, choosing improper PID gains
(parameters) could result in making the whole system unstable. Therefore, designers and researchers
often turn to optimal or predictive solutions [9].

However, advanced solutions are not easy to implement and the need for robust and reliable
solutions with minimal human interaction is evident. [10,11]. To simplify or avoid technicians’ inputs
to the systems, the control algorithms can be tested in realistic environments [12]. Also, building
blocks have been developed to be compatible with detailed modelling so that engineers can do the
tuning. However, the process is still not fully automated [13]. Auto-tuning of PID controllers for
heating, cooling, and ventilation plants have been described both several decades ago [14-16] and
more recently [17]. If there is enough computational power, artificial neural network models could
theoretically tune their PID parameters [18].

Self-learning PI controllers are already commonly available for radiators in new buildings.
As radiators are also installed in public and commercial buildings, there is a lot of interest and
financial capability to develop better-performing solutions for these environments. In homes, hydronic
underfloor heating (UFH) has become more popular, being a low-temperature solution that matches
with heat pumps in nZEBs. For hydronic underfloor heating, even in modern buildings, only simple
thermostats with a dead-band of at least 0.5 K are often used. However, using UFH with a thermostat,
the air temperatures fluctuates significantly and, therefore, the users can easily raise the setpoints to
avoid lower levels and to meet their comfort limits. This ends up in a higher energy consumption.

Control of underfloor heating as a slow system with a high thermal mass is a debated question,
where good solutions have not been found yet. Some manufactures offer sophisticated self-learning
controls, while on—off is likely the most common implementation in practice, and in some studies,
self-regulating properties (no-control) have shown similar performance with more sophisticated control
solutions [19]. The long time constant of UFH is even increased by a low supply temperature from
heat pumps and this is due to the small losses in well-insulated nZEBs with heat recovery ventilation.
This means that setting PI parameters manually by trial and error, which is the common practice for PI
tuning, would take a lot of time. For self-tuning controllers, simple tests would be needed but also
these can be too time-consuming.

When the gains are optimized, PID control can save energy in UFH control compared with the
standard on-off control [20]. However, the optimal parameter values are usually not revealed. There
is almost no previous published data on PI parameter values for UFH, with rare exceptions [21].
Furthermore, the effect of different parameters has not been analyzed for UFHs. However, the effects
of PI parameters have been analyzed for radiators, as the heating circuits are, in reality, often not tuned
and there is a lot of potential for energy saving [22]. Tuning radiator PID parameters with machine
learning has shown a 32% reduction in heating energy consumption compared with Ziegler-Nichols
tuning [23]. The current situation shows that while PID and on-off control waste energy, more
advanced solutions on the market do not ensure comfort [24]. With quality tuning, PID could both
reduce wasting energy and ensure comfort. The parameter optimization for UFH has been performed
in extensive simulations [20], but it remains unknown whether it is possible to obtain the optimal
parameters with shorter tests.

Therefore, the aim of this work is two-fold. Firstly, to determine how UFH control can be improved
by the application of PI parameters specifically derived for underfloor heating in nZEB with various
tests and methods. Secondly, to find whether it is possible to determine the PI parameters which
perform close to optimal, when using short tests and simple methods. This work estimates the PI
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parameters for UFH in nZEB and analyzes their effect on the energy performance and indoor air
temperature of the building. PI performance is compared with a traditional thermostat’s performance
in the same situation. Both an accurate temperature tracking performance and a considerable energy
saving compared with conventional control are expected. The results may be utilized in the design
of UFH systems with accurate temperature control and energy savings compared with conventional
UFH systems.

2. Materials and Methods

2.1. The Building

The work is based on a test building at TalTech University campus, which is described in detail in
several previous publications [25-27]. Two almost identical rooms with a floor area of 10.4 m? were
analyzed, except that one of them (Room 6 or R6) has two 4 m? windows facing south and west, while
the windows of the other (Room 5 or R5) face north and west. The floor plan of the building is shown
in Figure 1 with the two test rooms highlighted with red rectangles. Previously, the test house model in
IDA ICE 4.8 software [28] was calibrated against measured air temperatures in the test room R5 during
temperature setback cycles with varying durations [27]. As a result, the heat losses and thermal mass
of the room structures are adequately defined in the model. This model was used for the simulations in
the current work. In the simulations, all of the other rooms were heated constantly with ideal heaters
to the setpoint of 21 °C.

1

FQ
. A3 W/m T
f L
T 1 0 1 ¥y == | —— L1

Figure 1. Layout of the test building; the two test rooms are shown in red rectangles.

The building has wooden-frame walls, a wooden-frame roof, and concrete floors with a crawl
space below. The total heat-up time constant for the rooms is around 85 h and the effective time
constant for temporary setbacks is around 12 h [27]. The absolute cool-down time constant of one test
room is around 24 h when the other rooms are heated constantly. The time constant for the whole
building cool-down is ca. 100 h. The time constants are long mainly due to the concrete floor and
highly insulated building envelope. The values were confirmed by the experimental data presented
in [27].

2.2. Outline of the Work

The PI parameters were estimated for the two test rooms in several different ways. Firstly, they
were optimized in GenOpt with the aim of minimal setpoint tracking errors both for the constant
and variable setpoints (Section 2.5). Secondly, they were calculated and estimated using simplified
models. The data used for the model fitting are described in Section 2.3 and the model fitting process
is described in Section 2.4. The models were used to either autotune the parameters in Matlab or to
calculate the parameters using well-known methods such as AMIGO, SIMC, and Cohen—-Coon. Both
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of these approaches are also clarified in Section 2.5. The performance of all the gained parameters
was cross-checked in both rooms over the whole heating period. The analysis is described in detail in
Section 2.6.

2.3. Input Data

All the data used for the PI parameter calculations are summarized in Table 1. In this section, only
the grey area is described, the rest is tackled in the following sections. Here, the data from [27] were
used, where the authors performed temperature setbacks with different lengths in the test building.
The air temperature during setbacks with durations of 2 days and 3 days was measured in room 5,
where the temperature setpoint was normally kept at 21 °C and during the setbacks was lowered
to 18 °C. In the calibrated IDA ICE model, shorter setbacks of 1, 3, 6, 12, and 24 h were simulated
using a constant outdoor temperature of 0 °C, with no solar and internal gains. Between the setbacks,
the initial temperature of 21 °C was stabilized. Without solar gains, the two test rooms are equivalent
and therefore, the PI parameters estimation is based on only one of them.

Table 1. Overview of the input data for the model calculation (grey area) and optimization as well as
the methods for getting the proportional-integral (PI) parameters.

Estimation

Climate Setpoint Room Source Basis Method
2-3-day (long) Simplified Calculation methods +
Actual setbacks &5 Measured model tuning in Matlab
Shorter . Simplified Calculation methods +
Constant sotbacks R5/R6 (equal) Simulated model tuning in Matlab
Infinite/ideal . Simplified Calculation methods +
Constant s R5/R6 (equal) Simulated model tuning in Matlab
Estonian TRY PRBS R5 and R6 Simulated Slﬁigfelle d Calculation methods
Estonian TRY Constant R5 and R6 Simulated Optimization GenOpt
Estonian TRY Yarlable R5 and R6 Simulated Optimization GenOpt
(price-based)

In addition, an ideal-like step test was simulated with the same constant outdoor conditions. A
step from no heating to full power heating was performed. The simulation period was prolonged for
so long that the stability of the indoor air temperature was achieved both before and after the step.
This meant two months in simulation to stabilize at the balance temperature, and one month after the
step for reaching a steady state.

Additionally, simulations with Estonian test reference year (TRY) [29] and pseudo-random binary
signal (PRBS) as setpoints were used. For the PRBS temperature setpoint, the zero level was set on
18 °C and the maximum level on 24 °C. The simulations were done for two separate weeks, one in
March and one in February:

e A sunny week with moderate temperature (19-25.03);
e A cold week with almost no sun (29.01-04.02).

The model fitting was done both on the entire weeks and only on the weekends of these weeks
(12 p.m. Friday to 12 p.m. Sunday).

For the optimization (the last two rows in Table 1), the same two weeks of Estonian TRY were
used as well as the whole heating period from 1 October to 30 April. The setpoints for the optimization
cases are the same as used for the evaluation and are described in Section 2.6.
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2.4. Model Fitting

A simplified process model of the system is needed to use most of the PI parameter calculation
methods. Based on the generated input data, a first order process model with a time delay was fitted.
Therefore, the temperature response of an input step change is

ot) = Kp(1 —e—%)+ 0(0)e' T )

where 0(t) is room air temperature in °C at time f seconds after the step, 0(0) is the initial temperature
before the step, Ky, is the process gain (unitless), T is the time constant, and L is the time delay, both in
seconds. The model fitting was performed in Matlab using System Identification Toolbox [30].

2.5. Estimating PI Parameters

The PI parameters K and T; were estimated, where K is the proportional factor and T; is the
integration time of the integral part of the PI in its ideal form:

u(t) = K(E + % f Edt) )

where u is the control signal (unitless) and E is the difference between the setpoint and measured air
temperature in °C that is feedback to the control. For all the cases in Table 1, the PI parameters were
estimated by one or more of the following methods:

Optimized using GenOpt;
Tuned in Matlab/Simulink;
3.  Calculated from an applicable simple method.

In the optimization method, the PI parameters were optimized in GenOpt using a hybrid GPS
algorithm [31]. The optimization was carried out for the three different periods described previously
and two different setpoint profiles, which are also used for the evaluation and are described below in
Section 2.6. The objective of the optimization was to minimize the average absolute difference between
the setpoint temperature and the simulated temperature.

In the second method, the PI parameters were auto-tuned in Matlab®/Simulink for the previously
fitted simplified models (described in Section 2.4). The tuning was performed aiming for a short rise
time (speed) and overshoot of no more than 5% of the desired temperature increase.

In the third method, all the models that had been fitted based on the different input data were
used to calculate the PI parameters. Three widely known methods—Cohen-Coon, Skogestad IMC
(SIMC), and AMIGO—were used for that. The PI parameters K and Ti are calculated according to these
methods as follows [32]:

Cohen—Coon (CO): K= 09(1+0.092:-1% )/ ®) Ti= 23511 ()
Skogestad IMC (SIMC):  K=T/ (ZKPL) (5) Ti = min(T;8L) (6)
Ti = 0.35L
AMIGO: k=054 (0.35 — LT 2) & @ Pt ®)
’ G T2 12T+ 71

where Kp, L and T are the parameters from the fitted models with the general representation in
Equation (1). The parameters a and 7 are unitless parameters:

a=(KL)/T O

T=L/(L+T) (10)
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2.6. The Evaluation Tests

All the estimated PI parameter combinations were tested in simulations in both test rooms.
The accuracy of the setpoint tracking was assessed on both the constant and variable setpoints.
The constant setpoint was chosen to be 21 °C and the variable setpoint was calculated from price
data 2017-2018 [33], based on the simple algorithm given in [34] that does not perform the best for
their purpose of load shifting but gives us an hourly changing setpoint profile. In the price-based
control, the air temperature setpoint is changed hourly between 20, 21, and 24 °C. The lower two
levels are meant for comfort and have to be met at all times, the highest level is implemented for load
shifting and does not need to be tracked. All evaluations were done for the whole heating period (01
October-30 April). All combinations of PI parameters, both rooms, and both setpoint profiles were
evaluated based on:

e The average absolute error (AAE) of the air temperature from the setpoint;
e  The heating energy consumption per square meter of the floor area.

For the energy consumption comparison, it is important that no parameter combinations would
result in temperatures lower than the given comfort setpoints. In most cases, this was not achieved
and, therefore, the setpoints had to be shifted. The goal was to achieve temperatures equal or above
the setpoint for at least 97% of the time, as suggested in the thermal comfort standard EN 16798-2 [35].
Based on the initial simulations, cumulative temperature graphs were generated. In the constant
setpoint case, the setpoint was shifted exactly as much as the cumulative graph was, below the setpoint
at 3% of the time. For the variable setpoints, shifts for both the two 20 °C and 21 °C setpoints were
calculated. The 3% of the 20 °C was at 1.3% of the total time and for the 21 °C setpoint at 45.2% of the
total heating period length. The maximum of the shifts calculated for these two points was applied to
the whole profile.

2.7. Benchmarks

The simulation software IDA ICE’s default PI parameter values K = 0.3 and T; = 300 s were used
for the benchmark simulations. Furthermore, on—off controls with four different dead-band widths
were evaluated for the comparison. A modern one with a dead-band of 0.5 °C was used, but also
close to ideal versions, with dead-bands of 0.16 °C and 0.05 °C and a conservative one with a 1 °C
dead-band, were used as well.

2.8. PI Implementation in IDA ICE and PI Mechanics

As the PI controller can be implemented in various formats, the implementation in IDA ICE is
shown in Figure 2. The example code in Figure 2A is modified for the case where error filtering is
turned off, the mode is heating, and the conversion unit equals 1. The parameter f, the tracking time,
is set to 30 s.

The hilimit and lolimit are the limits for the PI output signal. In this work, the PI output signal is
the fraction of the nominal mass flow to the UFH and is, therefore, limited from 0 to 1. In Figure 2B,
an increase in the sample air temperature over the setpoint, i.e., due to solar gains, can be observed.
In Figure 2C,D, the calculation of the script can be followed. The lines are colored according to the
variable text colors in the script.

In Figure 2C, it can be observed that, even though the temperature is over the setpoint between
3 a.m. and 5 a.m. (Figure 2B), the PI signal is not zero. It only gets to zero when the integral part also
decreases so much so that the sum of the integral and error parts is less or equal to zero. Although the
OutSignal is limited, the negative values of OutSignalTemp are still used for the calculation. This enables
the effect, which looks like prediction in some cases. This effect is further discussed in Section 3.3.
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A. E = SetPoint - Measure; (Figure B)
OutSignalTemp = K* E + K * Integ ; (Figure C)
Integ’ = E /Ti + (OutSignal - OutSignalTemp)/tt; (Figure D)
OutSignal = IF OutSignalTemp > hilimit THEN (Figure C)
hilimit
ELSE_IF OutSignalTemp < lolimit THEN
lolimit
ELSE
OutSignalTemp
END IF:
B. 25 — SetPoint — Measure
£
5 23
£ »
% 21
= 20
C 12 K*Integ K*E OutSignal -~ OutSignalTemp
D. Z —ETi e Integ’ — (OutSignal - OutSignal Temp)/tt
3
0 »O& =
3
-6
9
21/03 00:00 21/03 12:00 22/03 00:00 22/03 12:00

Figure 2. Pl implementation in IDA ICE and example signals. In (A), variables in the script are colored
after each line it is referred where the example signals are visualized. Lines in (B-D) graphs use the
same color-coding.

3. Results

3.1. Found Simplified Models

The simplified model of the system that is needed for the parameter calculation was estimated for
16 different cases. All three parameters of the gained models varied between all cases. The used cases
and exact parameter values are included in Table 2 with parameter values also visualized in Figure 3.
The process gain (K}) has two clearly different orders and altogether three different levels. The values
were around 1 for all cases where the PRBS signal was used as the setpoint and were much larger for
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other cases. For the ideal step and measured setbacks, the K}, value was around 20, for all other setback
cases, around 40.

Table 2. List of all used models and their parameters.

Based on Model Model Model Source K, L (Seconds) T (Seconds)
Room Number Group
R5 & R6 1 Longer step Ideal step 21.842 476 27,892
2 Setbacks 24-h setback at 0 °C 41.063 141.12 23,652
3 Setbacks 12-h setback at 0 °C 42.649 410.58 30,141
4 Setbacks 6-h setback at 0 °C 44.717 156.96 38,648
5 Setbacks 3-h setback at 0 °C 42.664 9.66 35,191
6 Setbacks 1-h setback at 0 °C 41.446 3.9 42,130
2-day measured
R5 7 Longer step setback 24.256 720 33,720
3-day measured
8 Longer step setback 21.472 780 41,820
9 PRBS sL 2-day PRBS in 1.0123 218.4 27,152
February
10 PRBS sL L-week PRBS in 103 286.8 50,122
February
11 PRBS 1L 2-day PRBS in March 1.0555 2034 48,950
12 PRBS IL I-week PRBS in 1.0599 2226.6 51,845
March
R6 13 PRBS sL 2-day PRBS in 1.03 258 17,237
February
14 PRBS sL I-week PRBS in 1.042 12,6 34,930
February
15 PRBS IL 2-day PRBS in March 1.0973 3996 41,990
16 PRBSIL L-week PRBS in 11035 50,084 4737
March
eoKp oL eT e RS » RG
- 10,000
3 e ©
s @ ©
E 1 000 o o0
w . .
E ) o O
e 100
o
o e o ® 0o
= Q @ O @]
= 10 . @
1 T T T T T T T ._._._._ "._._'_.
1 2 3 5 6 7 8 9 10 11 12|13 14 15 16

Model number

Figure 3. Log-value of all model parameters shown in Table 2.

The time delay (L) values for the PRBS cases had around a 100 times difference between the
March week and February week values in R5, and the same difference was larger than 1000 times in
R6, the southern room with more solar gains. L was smaller than 10 s for the two shortest setbacks,
between 10 and 30 s for the February PRBS tests in R6, and larger than 100 in all other cases. There was
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ranging from 140 to 4000 (around 2 m to 1 h) and in one case (1-week PRBS in March for R6, model 16)
it was over 50,000 s (around 14 h).

The T values varied least of the parameters, i.e., between 10,000 and 100,000 s (between around 4
and 15 h). Only in the same model 16 case, where an extra-large L value occurred, the T value was a lot
lower at a bit less than 5000. So exceptionally, for this model, L is larger than T.

Based on mostly the K, and L values, the models are divided into four groups, shown in Table 2.
The setbacks and longer step groups are self-evident from above. The PRBS models are divided
into models with a short L (PRBS sL) and a long L (PRBS IL). These groups will be used below
for visualization.

3.2. Identified PI Parameters

In total, 68 PI parameter value pairs were obtained. All the parameter values are included in
Appendix A, Table A1. However, all the parameter combinations are also visualized in Figure 4a, where
each point on the graph is a parameter combination. The scales are the logarithms of the parameter
values with base 10. The graphs in Figures 4b and 5 follow the same logic. In Figure 4a, the parameter
estimation method is shown by the marker shape and the model group is shown by the marker color.
In the logarithmic scales, the tendency in the parameter estimation results seems to be roughly linear,
so the lower the integration time the higher the proportional gain.
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Figure 4. All PI parameter value pairs (K, Ti) on log-valued axes colored based on the method, in (a)
the default black circle with cross is the PI parameters pair used in IDA ICE by default, in (b) the black
points are the ones that would not result in acceptable temperatures for R6 without setpoint shifting.
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Figure 5. Graph (a) shows the underlying climate data and graph (b) shows the log-ratio values of all

the PI parameter pairs. In (a), the constant climate is at 0 °C with no solar radiation, HP stands for
heating period and all the dates are covered in Section 2.
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For the very small proportional gain, the integration time varies significantly from this otherwise
linear behavior in the log10-log10 scale. The reason for this is depicted partly in Figure 5a. As can be
seen, this covers the four cases calculated or optimized for March. Actually, these were all achieved
for Room 6. This means that the solar peaks have been severe and almost no heating was needed.
Therefore, these cases resulted in obscure parameters.

The clear separation between parameters is evident. The two sets of parameters with both
blue and red (optimal) results made up one group and both green ones the other. This is also the
difference in outdoor conditions, as can be seen in Figure 5a. The first group was generated at dynamic
outdoor temperatures and realistic solar irradiation, while the second group bordered constant outdoor
temperatures and no solar radiation. Here, also the separation between the March and Jan/Feb periods
is clear, so it can be assumed that more solar gains causes the K parameter to be smaller and T; to be
longer. For the optimal cases, the combinations closer to the blue ones are optimized for the variable
setpoint, the lower values for the constant setpoint.

In Figure 4b, the parameter combinations, which do not achieve the needed setpoints in Room 6
for at least 97% of the time (with a slack of 0.05 °C), are colored black. Both the one constant and two
variable setpoint levels are checked and the coloring shows if any of the three are violated. If the graph
would be for R5, all of the points, except the one with a dashed circle around it, would be black. This
means that only one parameter combination would achieve the required temperatures in R5, if the
setpoints were not shifted, as it was described in Section 2.6.

In Figure 5b, all the K-T; pairs are colored by the log10 (K/T;) value. This logarithm is further used
for describing the pairs, as this is a clear indicator whether the pair is in the lower right or upper left
corner of the log10-log10 graph.

3.3. Setpoint Temperature Tracking and PI Output Signal Behaviour

Each parameter combination results in different air temperature profiles and PI output signal
profiles. There are four examples of the temperature and PI output profile combinations shown in
Figure 6 for the constant setpoint cases and in Figure 7 for the variable setpoint cases in Room 6. In both
figures, the Jan/Feb week is depicted on the left and the March week on the right. The parameter
combinations are chosen as the ones with minimum and maximum log10 ratios of the parameters,
the IDA ICE default combination, and the one which resulted in optimal energy consumption (see
Section 3.5). The combinations are ordered by the log10 ratio of the parameters with the minimum
ratio at the top and the maximum ratio at the bottom. The IDA ICE default combination is the second
(0.3/300) and the optimal is the third from the top (18/2300). Here, the parameter values were rounded
to two significant numbers.

In the first column of Figure 6, most of the controllers show results that suggest maintaining
a constant setpoint in the situation with no solar gains is an easy task. The small fluctuations are
largest when a very small proportional gain (K = 0.012 in Figure 6a) with a large integration time is
applied. This controller changes the signal too slowly, as its PI output signal in black shows. The signal
stays almost constant throughout the day and even throughout the week. Due to the same effect,
temperatures drop below the constant setpoint in March in Figure 6b and the setpoint tracking is poor
in the variable cases. The level at which the signal is constant depends on the season, as there is a clear
difference between February and March.
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Figure 6. Air temperatures and PI output signals for the constant setpoint case during one week in
January/February (left), and in a week in March (right) for the chosen four pairs of parameters.
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Figure 7. Air temperatures and PI output signals for the variable setpoint case during one week in
January/February (left), and in a week in March (right) for the chosen four pairs of parameters.
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The constant setpoint cases in Figure 6 show that 2400/42 manages to maintain the constant
setpoint the best. However, there is no significant difference for the variable setpoint cases. However,
the PI output signal in the same case changes most rapidly. Both a large proportional gain and relatively
small integration time contribute to this. Such switching reduces the life span of most of the devices,
so this would not be acceptable in practice. For the case with also a large proportional gain but with a
large integration time as well (18/2300), the signal is a bit smoother. In the long integration time cases,
the heating starts earlier and stops sooner than for the shorter integration time. It can be observed that
the PI signal turns on before the temperature lowers below the setpoint generating a prediction effect.
This is especially clear for 18/2300 during the March week.

The variable setpoint cases in February in Figure 7’s first column show that in cold weather with
no solar peaks, the 24 °C setpoint peaks were not reached due to the short duration of the setpoint
increase. Therefore, setpoint tracking during high setpoints is clearly not good but is also not required.
However, the PI signal is 1 during these times, which means the heater is fully on as is the aim for load
shifting. In this figure, again controllers 18/2300 and 2400/42 both maintain the lower setpoint well.
However, the latter is switching on and off often and has almost no other state. In March, the solar
peaks govern the temperatures. However, the second column of Figure 7 shows that the heating is
turned on as well.

All the cumulative profiles over the heating period are shown in Figure 8. For the PI signal, only
R6 is shown as the profiles look very similar for the two rooms. The switching behavior indicated
before is clearly dependent on the log10 ratio of the PI parameters. The higher the ratio, the more
abrupt the changes, as the cumulative graph indicates behaviors close to on-off signals. As shown in
Figure 9, a zoom-in on R6’s constant setpoint graph, the higher temperatures at the high-temperature
end are clearly dependent on the Ti value. The low-temperature end seems to be more dependent on
the K value. Therefore, the energy consumption of the parameter combination is mostly dependent
on the K value and avoiding over-heating at the disturbances is more dependent on the Ti value.
This effect was also observed in the analysis.
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Figure 8. Duration curves over the heating period for temperatures on the left and PI output signals on
the right. The purple indicates the temperatures below the setpoint and the black dashed line shows
the results of the IDA ICE default parameters.
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Figure 9. (Left): Zoom-in on Figure 8’s lower temperature end of the constant temperature graph of
R6; (right): Zoom-in on the temperature end of the same graph.

3.4. Setpoint Shifting

Tt is clear, that some of the parameter combinations did not achieve the required temperature setpoint
and some resulted in higher temperatures above the setpoint. Especially at the high temperature end, there
was also a clear difference between rooms R5 and R6, as can be seen from Figure 8. This was caused by
the room orientations as the R6 faces south-west and gets more solar gains than the north-west orientated
R5. As declared in Section 2.6, the setpoints were shifted for all cases in the way that temperatures would
reach the required setpoint for at least 97% of the time. The shift values were different for R5 and R6
as well as for the constant and variable setpoint cases. As a result, all temperatures reached the given
setpoints at around 95-97% of the heating period. This accuracy was considered satisfactory. The shifts
are shown together with the energy consumption evaluation in Figure 10.

Shifting of temperature setpoint (°C) - _
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Figure 10. Influence of the logl0 of the PI parameters ratio K/Ti on energy consumption in the
10.4 m? rooms; color-scale shows the setpoint shift; the grey values are below 0 which means that the
temperature setpoints have been decreased. The horizontal lines depict the setpoint shifts and energy
consumption of the on—off cases with different dead-bands.
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3.5. Energy Performance and Total Setpoint Tracking Accuracy

The energy consumption results after setpoint shifting are shown in Figures 10 and 11. It is clear
that the variable setpoint cases consumed less energy. This is because the average room temperatures
were lower. The setpoints were also higher than the constant cases in some periods but coincidentally
the higher setpoint temperatures often occurred during the day and the lower setpoints occurred
during the night, so this does not influence heating energy use much. Also, the high setpoints were not
actually reached. In the constant temperature cases, a clear optimum emerged between the log10 ratio
of =3 and —1. This means that in optimal cases, the K value was 10 to 1000 times smaller than Ti.
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Figure 11. Influence of the log10 of the PI parameters ratio K/Ti on energy consumption; colors visualize
the underlying model group.

The horizontal lines in Figure 10 represent the shifted energy performance at the benchmark for
the on-off cases with different dead-bands. From top to bottom (yellow to blue) the corresponding
dead-bands are 1 K, 0.5 K, 0.16 K, and 0.05 K. The optimal PI parameter combinations result in a
lower energy consumption than even the lowest of the lines with an unrealistically small dead-band.
The commonly used dead-band of 0.5 K consumes 2-3 kWh/m?/year more energy than the PI cases
for the variable setpoint. For the constant setpoint, the lowest PI results are up to 7 kWh/m?/year or
9% lower than for the on-off with a 0.5 K dead-band, which, for example, in R6 is at 81 kWh/mz/year.
Omitting the extreme poorly performing cases, the total variation in energy consumption is more than
10 kWh/mz/year or 12% in the constant setpoint case.

Figure 11 shows the same data colored by the model group. The IDA ICE default parameter is at
one edge of the optimum range with exactly 1000 times difference. The energy consumption is already
around 5 kWh/m?/year or 5% higher on that edge compared with the optimal case. The parameters
optimized for setpoint tracking are also close to an optimal energy consumption. The PRBS sL group
performs well almost in all cases but not optimally, while in all other groups some combinations
perform poorly. The optimal range of parameters is shown in detail in Table 3. Most of the optimal
values were calculated using TRY climate data but the methods varied.
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Table 3. Optimal parameter combinations from log10 ratio from -3 (excluded) to —1. Ordered in
increasing energy consumption values for the R6 constant setpoint.

K Ti Model Method Climate Setpoint Room LTotal
ength
18 2300 - GenOpt TRY, Jan/Feb week variable R6 Inf
13 1500 - GenOpt TRY, March week constant R5 Inf
28 2800 - GenOpt TRY, March week variable R5 Inf
21 6200 11 Cohen-Coon TRY, March weekend PRBS R5 2 days
20 6700 12 Cohen-Coon TRY, March week PRBS R5 7 days
27 1500 - GenOpt TRY, Jan/Feb week constant R5 Inf
16 820 - GenOpt TRY, Jan/Feb week constant R6 Inf
32 1700 - GenOpt TRY, Jan/Feb week variable R5 Inf
52 510 4 Cohen-Coon Const 6-hsetback  equal 1.5 days
3.7 460 2 Cohen-Coon Const seztéa}lk equal 6 days
42 2700 9 AMIGO TRY, Jan/Feb weekend PRBS equal 2 days
27 650 - GenOpt TRY, March week constant R6 Inf
54 1900 - GenOpt TRY, heating period variable R5 Inf
2.8 1300 4 SIMC Const 6-hsetback  equal 1.5 days
59 3600 10 AMIGO TRY, Jan/Feb week PRBS R5 7 days
61 1800 9 SIMC TRY, Jan/Feb weekend PRBS R5 2 days
41 930 - GenOpt TRY, heating period constant R6 Inf
24 1500 1 Cohen-Coon Const Ideal step equal 60 days
2.0 1100 2 SIMC Const sezt;.l):ik equal 6 days
85 2300 10 SIMC TRY, Jan/Feb week PRBS R5 7 days
55 800 - GenOpt TRY, heating period constant R5 Inf
98 3200 - GenOpt TRY, heating period variable R6 Inf
1.6 1300 3 Cohen-Coon Const seltzba}lk equal 3 days

The AAE of the temperatures for rooms R5 and R6 are shown in Figure 12. The AAE is clearly
dependent on the room and setpoint but not on the parameter combination. The AAE is constantly at
0.5 K for R5 and around 0.7 for R6 in the variable setpoint cases. The accuracy here depends mostly on
the solar gains. For the constant setpoint case, the optimal region is everything, with a Ti lower than
10* and a K higher than 1095, The error is around 0.2 K for all the simulations in R5, for R6 the error
ranges from 0.25 to 0.6 K, and in extreme cases to 1 K.
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Figure 12. Absolute average error (AAE) of the air temperature compared to the setpoint.
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4. Discussion

Different PI parameter estimation methods were applied on various periods and control profiles.
An optimal region of the parameter ratio was determined where the energy consumption was the
lowest. Half of the parameter combinations in the optimal region for energy consumption were
found via GenOpt, although they were optimized for the minimal temperature setpoint tracking error.
Although most reliably well-performing, this approach is not always suitable in practice as it requires
an advanced model of the building. Therefore, it is practical that the other half of the parameter
combinations in the optimal region were found using only short tests and simple calculations.

For all these other methods, simplified models were identified. In the optimal region, all the tested
simplified methods were represented: Cohen—Coon, AMIGO, and SIMC. The results tuned in Matlab
were not represented, probably due to the chosen goal being speed for that methodology. The models
underlying these calculations were obtained from the week or weekend pseudo-random temperature
setpoint (PRBS) data or setbacks of 6, 12, or 24 h. It is clear that the longer the setback, the easier it
is to identify a simple model on it. This is probably the reason why the 1- and 3-h setbacks resulted
in less desirable parameters. Still, conducting 24-h setbacks would probably not be comfortable for
the occupants. Therefore, it is beneficial that 6-h setbacks could suffice. For example, these could
be conducted during the night when the outdoor conditions are less variable with no solar gains.
The suitable PRBS cases included both the January and March data, indicating that it is possible to get
quality parameters in various weather conditions.

The optimal parameter combinations resulted in an annual heating energy reduction of up to 9%
or7 kWh/mz/year. The comparison of heat emitters and controllers in the European standard room
shows similar results with 5% to 10% savings for the PI controlled UFH compared with the on—off
control [20]. This does not compare to the 32% achieved for radiators in [23], however, the actual
difference is difficult to compare as the baselines are different. The reduction of 7 kWh/m?/year here
can be seen as highly significant as this can be achieved with only parameter correction, which does not
require intensive computation when the simple tests are applied. Accounting for the more expensive
thermostat head with variable parameters option, the payback time of this change is around 5 years.
This saving can be achieved without setpoint reductions, which means no penalty on comfort. On the
contrary, due to less fluctuation, comfort could even improve.

The methodology used here could be applied in any UFH system. In public and office buildings, a
detailed model often exists and optimization of the parameters could be possible. Due to the large floor
areas in these buildings, the absolute savings could be significant compared with the on—off control.
Even more evident would be the saving in outdoor UFH systems installed under garage runways or
stadiums to keep them clear from ice and snow.

Evidently, the parameter value results apply to the studied building, and future research can
determine possible variation of the parameters in buildings with a smaller or higher thermal mass,
insulation level, and maximum heating power. However, the wide range of well-performing parameter
combinations and the fact that the suitable region is the same for both the north and south facing rooms
provides an indication that the parameters from this region could be suited to different buildings as
well. This should be confirmed by future studies on the subject.
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5. Conclusions

Several combinations of the input data and PI parameter estimation methods were applied with
the aim to improve UHF temperature control, resulting in 68 different PI parameter combinations.
Based on the results and discussion above, most importantly concluded is that:

e For the first time in the scientific literature, it is shown that UFH can operate with determined PI
parameters similar to ideal control;

e A performance close to optimal could also be achieved by parameters achieved from shorter tests,
e.g., weekend pseudo-random setpoints, and 6- to 24-h setbacks which were shown to be suitable;

e  The optimal PI parameters improved the room temperature control accuracy considerably, and
that the results show that the UFH PI control with the correct parameters started to work in a
predictive fashion and the resulting room temperature curves were practically ideal;

e The optimal PI parameters reduced the energy consumption for heating by up to 9%
(7 kWh/m?/year) in comparison with the on—off control (at around 80 kWh/m?/year) and by
5% in comparison with the default PI parameters;

e The variation amplitude of the heating energy needed using different estimated (not random)
parameters was more than 15 kWh/m?/year for the constant setpoint, which stresses the importance
of having the correct PI parameters;

e The optimal PI parameters included combinations with log10 (K/Ti) between -3 and —1, in these
combinations, the proportional gain K ranged from 2 to 100 and the integration time Ti from 500
to 6700 s, and thus higher gain and longer integration time values than are conventionally used
are recommended;

e  For the variable setpoint, using the PI control had a similar effect to decreasing the dead-band
and the variation in the PI parameters did not have a significant further effect on the energy
consumption, except for when they were extremely poorly tuned;

e  The average absolute error for the air temperatures from the setpoint was well below 0.5 K for the
constant setpoints, but above for the variable setpoints.
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Table Al. All obtained parameter values, which were not already shown in Table 3, sorted by log10

ratio from largest to smallest.

Total Length

K Ti (s) Model Method Climate Setpoint Room
(Days)
2400 42 14 Cohen-Coon TRY, Jan/Feb week PRBS R6 7
235 13 6 Cohen-Coon Const 1-hsetback  equal 0.25
1300 100 14 SIMC TRY, Jan/Feb week PRBS R6 7
580 85 13 Cohen-Coon TRY, Jan/Feb weekend PRBS R6 2
930 170 14 AMIGO TRY, Jan/Feb week PRBS R6 7
130 31 6 SIMC Const 1-hsetback  equal 0.25
77 32 5 Cohen-Coon Const 3-hsetback  equal 0.75
91 52 6 AMIGO Const 1-hsetback  equal 0.25
320 210 13 SIMC TRY, Jan/Feb weekend PRBS R6 2
230 340 13 AMIGO TRY, Jan/Feb weekend PRBS R6 2
43 77 5 SIMC Const 3-hsetback  equal 0.75
30 130 5 AMIGO Const 3-hsetback  equal 0.75
150 940 10 Cohen-Coon TRY, Jan/Feb week PRBS R5 7
110 710 9 Cohen-Coon TRY, Jan/Feb weekend PRBS R5 2
19 2000 4 AMIGO Const 6-hsetback  equal 15
2.3 2500 8 Cohen-Coon Actual S-day R5 3
measured
2 2300 7 Cohen-Coon Actual 2-day R5 2
measured
24-h
14 1800 2 AMIGO Const setback equal 6
8.7 11,000 15 Cohen-Coon TRY, March weekend PRBS R6 2
11 16,000 11 SIMC TRY, March weekend PRBS R5 2
11 18,000 12 SIMC TRY, March week PRBS R5 7
72 18,000 11 AMIGO TRY, March weekend PRBS R5 2
7 20,000 12 AMIGO TRY, March week PRBS R5 7
1.3 3800 1 SIMC Const Ideal step equal 60
12-h
0.9 3300 3 SIMC Const setback equal 3
11 6200 8 SIMC Actual S-day R5 3
measured
1 5800 7 SIMC Actual 2-day R5 2
measured
09 5300 1 AMIGO Const Ideal step equal 60
48 32,000 15 SIMC TRY, March weekend PRBS R6 2
12-h
0.6 4700 3 AMIGO Const setback equal 3
27 25000 15 AMIGO TRY, March weekend PRBS R6 2
0.7 8500 8 AMIGO Actual S-day R5 3
measured
06 7700 7 AMIGO Actual 2-day R5 2
measured
0.81 16,000 1 tuned in Matlab Const Ideal step equal 60
0.83 20,000 7 tuned in Matlab Actual 2-day R5 2
measured
082 24,000 8 tuned i 3-day
. | ned in Matlab Actual R5 3
measured
0.82 24,000 2 tuned in Matlab Const 24h equal 6
setback
0.41 32,000 3 tuned in Matlab Const 12-h equal 3
setback
0.41 34,000 5 tuned in Matlab Const 3-h setback equal 0.75
0.15 13,000 16 Cohen-Coon TRY, March week PRBS R6 7
0.43 40,000 6 tuned in Matlab Const 1-h setback equal 0.25
0.41 39,000 4 tuned in Matlab Const 6-h setback  equal 15
0.043 4700 16 SIMC TRY, March week PRBS R6 7
0.16 18,000 16 AMIGO TRY, March week PRBS R6 7
0.012 15,000 - genopt TRY, March week variable R6 Inf
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ABSTRACT

This paper investigates how a simulated room’s energy and temperature performance are affected
if its underfloor heating control is modelled with increasing detail. Experiments were performed to
develop and calibrate an empirical model of wax motor and to calibrate the valve curve. These mod-
els were used to implement and test the On/Off and proportional-integral (Pl) control processes
at various levels of modelling detail. Controllers were implemented by gradually adding optimized
control parameters, signal delay, calibrated valve curve, signal modulation, and actuator modelling.
The On/Off control dead band and PI parameters exhibited the largest impact, reducing energy use
(1%-5%) and temperature fluctuations (ca 1 K). Modulating the Pl output signal increased temper-
ature fluctuations to the same amplitude as On/Off with 0.5 K dead band, increasing space heating
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demand by 1.3%. The wax actuator counted for less than 1%; however, it increased time delays to

maximally 7 min and remarkably changed the mass flows.

1. Introduction

Buildings are responsible for 36% of greenhouse gas
emissions and for about 40% of the total energy con-
sumption, of which 1/3 goes into heating (Bienvenido-
Huertas et al. 2021). Extensive involvement of renewables
in the energy production isimportant for reducing carbon
emissions (Rogelj 2018), but it poses serious problems to
the electricity grid, due to the highly fluctuating nature
of photovoltaic and wind generated energy. To guaran-
tee stability and efficiency of the distribution network in
the imminent future, matching electricity demand and
renewable energy generation needs to be realized rather
swiftly (BoBmann and Staffell 2015).

Electricity-based heating systems, such as heat pumps
together with hydronic underfloor heating (UFH), are
increasingly used in residential buildings to reduce heat-
ing demand. These provide both electrification of the
heating demand as well as structural thermal storage. Bal-
ancing the power grid of high shares of renewable energy
is thus possible, to some extent, through demand-side
management (Wolisz et al. 2020; Zhang, Good, and Man-
carella 2019). Dynamic control of these systems exploits
indeed the buildings’ intrinsic structural thermal mass to
shift both heating and cooling timing, without reducing

the indoor climate quality (Wolisz et al. 2020; Le Dréau
and Heiselberg 2016; Pedersen, Hedegaard, and Petersen
2017; Reynders, Diriken, and Saelens 2017). Importantly
though, the thermal fluctuations in the enclosure criti-
cally affect the charging and discharging of some fraction
of this thermal mass. An accurate balance of the power
grid via structural thermal storage should thus be accom-
plished through several control methods (Zhang, Good,
and Mancarella 2019; Wolisz et al. 2016, 2020).

One way to participate in the balancing of the power
grid is bidding on the so-called manual Frequency
Restoration Reserve, which helps stabilizing the electricity
grid by restoring the required frequency of the grid. Open
for public participation is in most countries the manual
Frequency Restoration Reserve, which is provided by the
Transmission System Operator. This is a tertiary control
reserve, which steps in to correct longer lasting devia-
tions that cannot be fixed by the other upstream balanc-
ing services alone (Okur, Heijnen, and Lukszo 2021). At
least 1 MW is often required for bidding (Okur, Heijnen,
and Lukszo 2021), but intermediators aggregating sev-
eral heat pumps could provide enough power (Zhang,
Good, and Mancarella 2019). In such Frequency Restora-
tion Reserve market, the providers must be able to switch
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their loads within 5 to 15 min (Artelys 2017; Fingrid Oyj
2022). To this aim, heat pumps require manual interven-
tion and overwritten control (Lindahl 2020); the start-up
time of the heat pump system could also generate a
bottleneck that is critical to the local system response
to the grid. Even if the heat pump can be activated as
fast as within 5min, a heat sink is needed for its energy
to avoid overheating the small amount of water in the
heat pump’s closed circuit. This would lead to stopping
the electricity consumption and not fulfilling the bid. In
case of inverter-based heat pump systems, large storage
tanks are typically not installed, and the building struc-
tures should be used as a heat sink. This requires opened
valves in the hydronic heating system, e.g. UFH manifold.
However, valves in UFH systems are controlled by ther-
moelectric actuators with solid wax, which react relatively
slowly. In closed valve positions, the system volume is
very small and temperature limits in the heat pump cir-
cuit may be reached too quickly when the heat pump is
started at full power. A slow movement of the actuator’s
piston with slow opening of the valves would then hin-
der the aggregator from delivering the bidden load for
the grid.

To ensure energy flexibility and thermal comfort simul-
taneously in real applications, the control algorithms
need to be carefully designed, tested, and validated. For
initial development and testing, building performance
simulations (BPS) are a suitable tool for speeding up the
testing for different heating systems, building types, cli-
mates, usage profiles. Simulations are also needed to
compare different algorithms at exact same boundary
conditions. However, BPS are well known to simplify the
control process to close-to-ideal, ignoring control param-
eter tuning, signal time delays, actual valve characteristic,
and actuators. Usually, modelling of these is omitted as
the control time constant is several orders of magnitude
smaller than that of the whole system. The room tem-
perature measurement time delay could be as large as
2min (Burt and de Podesta 2020). Additionally, a delay
of 2—3 min for the actuator-valve mechanism is normally
assumed (Danfoss A/S 2017; Ventilation Control Products
Sweden AB 2022). Even together, these timescales are
too small to significantly alter the annual energy con-
sumption of the building, especially if the users adapt the
setpointin response to temperature fluctuations induced
by the delay. This timescale could still be importantin sim-
ulations aimed at testing control algorithms that include
logic for bidding or experimental situations for analysing
the valve effects on volume flows.

Modelling the control in a detailed manner requires,
among other details, a wax motor model. This is a major
contribution of the present study, since an implementa-
tion that allows investigating the above systems’ control

with sufficient accuracy is still missing. Additional appli-
cations of PCMs into the buildings’ design are currently
implemented into BPS with a broad scope, from, e.g. ther-
mally activated wall panels (Klimes, Charvat, and Ostry
2019) to PCM tanks (Li et al. 2020). These have often
been modelled as thermal hysteresis (Goia, Chaudhary,
and Fantucci 2018). Sometimes, the actuators are sim-
ply modelled as a delay in BPS (Wetter 2009), or more
commonly also as hysteresis, modelling their movement
(Rizzello, Naso, and Seelecke 2019). To our knowledge,
there can be found only one detailed wax actuator model
for HVAC applications, namely a physical enthalpy-based
model in IDA ICE (EQUA AB 2020), which was tested in
Kull, Thalfeldt, and Kurnitski (2021). The study calibrated
the physical wax motor model by numerically optimiz-
ing the parameters and compared the calibrated model
error to a simple characteristic model. The calibration and
comparison were performed only on a short and periodic
signal. It was concluded that the parameters of the simple
model should be variable, to perform well also in other
situations. In this constant case the characteristic model
induces slightly smaller errors than the physical model.
The main limitation of the physical model lies however
in the extensive amount of material testing or optimiza-
tion required to determine all the properties of each wax
motor product in practice.

Overall, scientific publications on the experimental as
well as the modelling aspect of wax actuators are indeed
very scarce. The effect of wax motors on BPSs has not
been shown in the literature. In this study, we attempt
at filling this compelling research gap that is entailed
from the above discussion by developing a characteris-
tic model with variable parameters and testing its effect
on simulation results in a realistic control process. Motiva-
tion is given by both formal advancements and possible
effects of the modelling on energy performance predic-
tions, control algorithm testing and power grid balancing.

More into detail, several research questions emerge:

1. How can we characterize HVAC wax actuators with
limited material testing? This study proposes a new
empirical wax actuator model (with discrete hystere-
sis) for simulations in IDA ICE.

2. How much time does the valve opening with wax
motors take? Can it be managed within 5 min, so that
it would match the limit imposed by the frequency
market for energy grids?

3. Inthe modelling of UFH for testing temperature con-
trol algorithms, the control is often assumed to be
continuous (e.g. Pl). However, the actual control is
often On/Off (modulated) and exhibits a wax motor
delay. How much are temperature control accuracy
and energy performance then affected?



4. How do wax motor and modulation effects compare
to performance differences from other modelling
simplifications such as non-optimal control parame-
ters, no delays in signals and linear valve characteris-
tic?

To address these problematics, in this study we first
performed experiments on wax motors to develop and
calibrate an empirical model of wax actuator. Then, mea-
surements were performed to estimate the valve perfor-
mance in one UFH circuit and calibrate the valve curve.
The wax actuator and the valve curve models were then
used in BPS to implement and test the various levels of
detail in modelling the control algorithms.

The paper is organized as follows. In Section 2, we
provide a short overview of wax actuators and their mod-
elling. Section 3 explains our methodology, featuring wax
motor model development, valve curve estimation, and
setup of room simulations. Section 4 fully reports exper-
imental and simulation results, including a discussion at
each stage. Finally, we draw our conclusions in Section 5,
and include some additional experimental inputs and
results in the Appendix.

2. Wax actuators

Thermoelectric wax actuators are electrically controlled
and use paraffin wax as phase change material (PCM)
for volume change (Burt and de Podesta 2020; Danfoss
A/S 2017). The wax is solid at room temperature and
liquid at higher temperatures. It is heated by a positive
temperature coefficient (PTC) heater. These actuators are
known by other names as well, such as wax motors (used
in this work, abbreviated as WM), wax pellet actuators,
thermo-electric actuators, or thermal actuators (Ventila-
tion Control Products Sweden AB 2022; Klimes, Charvat,
and Ostry 2019; Li et al. 2020; Goia, Chaudhary, and Fan-
tucci 2018). In the absence of an electric heating sig-
nal, the system actuator-valve is normally closed. When
voltage is applied, the wax starts melting and expand-
ing, thus moving the valve's piston. By the action of
a system of springs, the piston movement reduces the
actuator’s inner height, thus opening the valve. Such
method of valve control has been used in UFH for a
long time, as the actuators are silent and durable (Wet-
ter 2009). Slower reactions also avoid the water ham-
mer that is associated with motorized valves. Addition-
ally, wax actuators are used before fan coils in cooling
systems, and for pressure-independent control valves in
heating systems. Radiator thermostats also include simi-
lar motors; however, these are often based on the expan-
sion of liquid or gas instead of the phase change of
the wax.
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Some wax actuators use a continuous control with
voltage between 0 and 10V. Others use discrete control
with a binary heating input, namely no voltage for no
heating and 230V or 24V for heating. Continuous 0-10V
wax actuators still use 24V to power the PTC heater.
Therefore, if a controller with continuous output such as a
Pl controller is used to control the UFH wax actuators, the
continuous signal must be modulated into a binary signal
for the PTC heater.

The 0-10V actuators can theoretically stay partially
open. However, the partial opening control is easier for
valves that have a logarithmic valve characteristic curve,
i.e. a logarithmic volume flow dependency on the valve
opening. In UFH manifolds, quick-opening valves are
instead applied. These exhibit most of the change in vol-
ume flow when the valve is only slightly open. The partial
flow would be realized only in a very small range of valve
opening; therefore, these valves perform close to On/Off
with either actuator, by using continuous or discrete con-
trol. Simpler 24-V On/Off-motors are often applied, which
is the case of this work.

The actuator’s cross section, valve, and part of the
manifold are shown in Figure 1. The piston movement
in function of the wax temperature change is shown in
Figure 2. The hysteresis of up and down movements is
generated by the temperature difference at the move-
ment start and stop on both ends, caused by thermal iner-
tia of the wax and friction of the internal parts that include
a spring (Vernatherm 2023). The hysteresis in tempera-
ture can be linearized for simplification and presented
on a time scale that is dependent on the binary heat-
ing signal, as shown in Figure 3. This linearized simple
model was called ‘characteristic model’ in Kull, Thalfeldt,
and Kurnitski (2021). Of course, the opening and clos-
ing process can be non-linear according to Figure 2. In
the context of this paper, the different time periods in
Figure 3 are called ‘characteristic times’ and defined as
follows:

e Dead time (tgeaq): solid wax heating up to the melting
temperature, no volume change.

e Rise time (tise): phase change of the wax from solid to
liquid and expansion.

e Hold time (thoiq): liquid wax cooling down to the melt-
ing temperature, no volume change.

e Fall time (t,))): phase change of the wax from liquid to
solid and compression.

Based on these, additional times for analysis could be
calculated as well:

e Full activation time (FAT): tpar = tdead + trise
e Deactivation time (DAT): tpaT = thold + tfall
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Figure 1. Valve opening with wax actuator warming visualized
with part of manifold, figure parts adapted from (Beijing MUYY
Technologies Co., Ltd 2023) and (The Underfloor Heating Site
2023).
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Figure 2. Theoretical piston movement (displacement) accord-
ing to wax temperature, adapted from (Vernatherm 2023).

e Overheating time (top): the time when the valve is fully
open, but the motor is still heated, liquid wax is heated
up

e Undercooling time (tyc): the time when the motor is
not heated, and the valve is fully closed, solid wax is
cooling down

The characteristic times could be empirically esti-
mated and do not need physical modelling of the wax
temperature and phase change process to make the
wax actuator model. This would make the method more
approachable than estimating all physical parameters
such as material properties, mass, volume, conductivi-
ties, spring properties, etc. In Kull, Thalfeldt, and Kurnit-
ski (2021), the characteristic times were constant. In this
work, the models are fitted for each characteristic time
depending on previous actions. The following assump-
tions can be drawn:

e The dead time should be dependent on how low the
temperature of solid wax has fallen, represented by the
undercooling time:

lugi—1

tdead,i = Odead * € Tdead + bgead

m

where tgeaq, [s] is the dead time at cycle i, which
depends on the undercooling time of the previous
cycle tyci—1 [s] and on the empirically fitted parame-
ters ddead [S], Tdead [S], and bgeaq [s], where T represents
the time constant, a and b are the linear regression
parameters.

e The hold time should be dependent on how high the
temperature of liquid wax has risen, represented by
the overheating time (with similar definitions):

roh,i

thold, = Ghold - (1 - €7W> + bhold )

one heating cycle (ith)

tfa//, i-1 tuc,i—l dead, trise,i toh,i thald,i tfa/l,i tuc i
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Figure 3. Definition of characteristic times for the normalized linear displacement of the piston of wax actuator or valve.



e The rise and fall times should be constant for a given
wax motor product and at constant ambient temper-
ature, as the wax amount is constant and therefore so
is the amount of energy given with the heating signal
through PTC during melting, or the heat loss during
solidification.

3. Methods

A visualization of the general workflow of the study is
depicted in Figure 4. The model of wax motor and the
valve curve achieved from measurements were used to
estimate their effect in simulations. The displacement, the
linear movement or position of the piston dependent
on the given electric signal, was measured without the
valve being connected to the UFH system, see Figure 5.
The displacement measurements were used to define the
empirical model of the wax actuator. Then, we installed
the wax motor on a valve in the UFH manifold and mea-
sured the volume flow while knowing the electric signal,
see Figure 1. The wax motor model from previous step
was then used to calculate the piston’s linear displace-
ment in flow measurements. The valve opening to vol-
ume flow characteristic curve - the valve curve - could
be calibrated from these measurements and calculations.
The resulting models were used to assess the effect of the
wax actuator in BPS.

We have divided the experiments into (i) displacement
measurements of the actuator but not in the UFH system,
and (ii) flow measurements within the system, for two
main reasons. First, a separate wax motor model would
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<>

| WAXACTUATOR | VALVE | TRANSDUCER |

Figure 5. Visualization of a wax actuator functioning and mea-
surements when not installed in the manifold (HBM Finland
2022), in measurement the system was vertical (90 degrees
turned).

enable applying any valve model on top of the wax motor
model. As valve characteristics are quite well known and
modelled, this would result in a broader field of applica-
tion, possibly with no further measurements. Secondly, it
was not possible to directly measure the wax motor posi-
tion in the same experiment as flow measurements, since
measuring the piston displacement inside the manifold'’s
pipes or through transparent piping during execution is
not commonly available.

The main physical difference between the two exper-
iments was the existence of water flow. In the flow mea-
surement case, there was water flow against the piston,
driven by circulation pump. In the displacement mea-
surement case, there was none. Still, we assumed that
this water flow had insignificant influence on the move-
ment of the piston, thus we used the wax motor model
generated from the displacement measurement case on
the flow measurement case without modifications. This

Wax motor Valve curve BPS
© i
= Displacement
o| = Flow measurements : ;
= e<= » measurements ) Room calibration
sl = Method Sec.3.1.1-3.1.2; Msthod Ser S50 (Kull et al. 2019a)
|| @ & e =Sl Result Sec. 4.2 '
= Result Sec. 4.1.1
- I
20
é s moto_r model Valve curve calibration Room simulations
o b creation ) > Method Sec.3.2.2; MEthod S 353
o Method Sec. 3.1.3-3.1.5; Result Sec. 4.2 . 3.
= Result Sec. 4.1.2; Appx. C
=
.% Modelerror Calibration error Influence on z
= Method Sec. 3.1.5; Method Sec. 3.2.2; performance =
[ Result Sec. 4.1.3 Result Sec. 4.2 Result Sec. 4.3 =
w

Figure 4. General overview of the research process.
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assumption was supported by a comparison of pres-
sures. The pump in the small measured system generated
maximally a 30 kPa pressure head in the example volu-
metric flow measurements. The wax motor, on the other
hand, generates 1000 kPa while expanding. If we assume
a 1cm? valve head cross section, the force is ca 100 N.
This was confirmed by some data sheets where the force
was claimed to be, i.e. 100 N &= 5% (Lindab 2021). There-
fore, the force that is generated on the valve by the pump
(3 N) was over 30 times lower than the force applied by
the wax motor (100 N). The piston movement would not
be affected significantly by the pressure difference that is
generated by the circulation pump.

3.1. Wax motor model development

3.1.1. Measured actuators

The wax actuators that were measured in this work were
commercial products that are commonly installed in the
UFH manifolds in Estonian buildings. Products A and B,
originating from separate producers, were tested. For
product B, four different exemplars were tested just to see
whether products and exemplars were different. Describ-
ing the whole potential range of variance was out of the
scope of this work, so no more products nor exemplars
were included. In the data sheet of product A, the posi-
tioning time tpa7 is claimed to be 3 min, the full move-
ment range (also called ‘nominal stroke’) is 2.5 mm, and
the positioning force is 105 N. The data sheet of product
B does not include these details.

In some measurements, a quick-opening valve was
screwed to the actuator as shown in Figure 5. In such case,
the initial position of the spring in the motor is slightly
more compressed, therefore the full movement range
could be smaller. However, the movement time should be
similar as it depends on the time of wax phase change at
constant power. This is the effect that was analysed. As a
result, the combinations are named A, Av, B1,B1v, B2, B2v,
B3v and B4v, where numbers label the exemplars, and ‘v’
stands for the quick-opening valve if attached. The expla-
nation of all measured combinations is shown in the first
four columns of Table 1. The last column is explained in
the next section (3.1.2.).

3.1.2. Displacement measurements

We measured the displacement of the wax actuator and
valve combination’s last element as shown in Figure 5.
The sensor was a vertically fixed displacement transducer
with 10-mm measuring range. Additionally, the actuator’s
surface temperature, the room temperature and the actu-
ator’s supply voltage were measured. The measurement
step was 1 s and the data was logged by an HBM CX22BW

Table 1. Measured wax actuator and valve combinations for clar-
ification of combination names; in the last column are the mea-
sured heating profiles.

Heating profiles
Valve measured (signal
Combination ~ Product  Exemplar No. included on-off)
Al A 1 no 15 min-15min
15 min-45 min
5 min=5 min
Alv A 1 yes 15 min-15min
B1 B 1 no 15 min-15min
15 min-45 min;
30 min-30 min
10 min-10 min
18 min-6 min
3 min-3 min
Blv B 1 yes 15 min-15min
B2 B 2 no 15 min-15min
B2v B 2 yes 15 min-15min
15 min-45 min
B3v B 3 yes 15 min-15min
B4v B 4 yes 15min-15min

15 min-45 min
random 5 to 15 min

data recorder (HBK 2022) through a MX840A measuring
bridge (HBK 2021).

In all experiments, the actuators were powered and
controlled by a Siemens LOGO! 24CE controller with 24-
V transistor outputs (Siemens 2021), which generated the
heating profiles as shown in the last column of Table 1.
The first value before the dash is the heating time dur-
ing which the wax actuator is heated, with the 24V sig-
nal given as input. The second number after the dash
is the cool-down time in between two heating cycles.
Therefore, a “15min-45min’ profile means that the volt-
age was 24V for 15 min, then turned off for 45 min. This
was repeated periodically and the test duration for each
profile is given in Appendix A.

The heating profiles were chosen to ensure complete
opening and closing of the valve during each heating
cycle.If this did not happen, the tested heating profile was
excluded from this study, since those cycles where the
valve is not fully opened or closed are typically not used
for 24-V actuators. Based on literature and initial tests, at
least 3-5 min of heating and cooling time was needed.
In this study, the cut-off limit for this exclusion remained
close to 3 min for both heat-up and cool-down. Longer
gaps between heating charges were tested, for allowing
the wax to cool down between cycles and to analyse its
effect on valve opening time. A 15 min-15 min heating
profile was measured for all combinations to enable com-
parison, and most heating profiles were tested on the
motor B1.

3.1.3. Post-processing and cut-off conditions
The measured displacement was normalized for each
experiment. The maximum displacement is the closed



cold position when the head was at the lowest position.
When the valve opened, the head moved higher, and the
measured values were lower. The difference between the
fully open and fully closed positions, the stroke, was iden-
tified in each experiment for normalizing the displace-
ment as follows:

|displacement — stroke|
stroke

normDisplacement =

where displacement [mm] is the measured time series
during one experiment. The 0-V or 24-V input voltage was
also normalized to a time series with values between 0
and 1, the heating signal.

For each heating cycle in each experiment, we esti-
mated the characteristic times described in Section 2. For
an ideal trapezoid displacement as shown in Figure 3,
all these times are clearly defined. However, for contin-
uous smooth response, the cut-off between these peri-
ods is not clear. In this work, the rise and fall times
were separated from the rest by defining a minimum
slope of the ramping. We assumed that the linear change
from 0 to 1 would take no longer than 10 min in total.
For a normalized stroke, this is 10% in a minute, so a
slope steeper than 0.83% in 5s was classified to be part
of the rise time. To smoothen out measurement errors,
an average slope for 5 seconds was used instead of a
1-second measurement step. For fall classification, the
slope was steeper and therefore a twice as large limit of
—1.67% change in 5 s was used. These limits were chosen
by qualitatively assessing that the classified periods did
not have discontinuities (example result in Section 4.1.2,
Figure 10). When the stroke should have been 0, a slack
of 5% was applied to exclude small shift offsets. The
timesteps that were not included into rise or fall times
were separated into dead time, hold time, overheating
time, and undercooling time according to heating sig-
nal and normalized displacement values, according to the
logic described in Section 2. The input heating signal was
accounted to be 1 when larger than 0.5, or 0 when equal
to 0.5 or lower.

3.1.4. Models of characteristic times

The four characteristic times — dead time, rise time, hold
time, and fall time — were identified for each heating cycle,
and a regression model for calculating each characteristic
time could be defined by fitting the experimental data.
The models for all non-constant characteristic times in
Section 2 can be given as

tout = a- f(tin/7) + b (4)

where tj, is t,c in Equation (1) and t,p, in Equation (2), and
tout IS tdead OF tholg correspondingly. The parameters t,
a and b are empirical parameters and need to be fitted.
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To find the parameters and to test these assumptions,
7 was first estimated. The correlation between f(ti, /7)
and the output time ty,t was calculated for different ¢
values, and the 7 value with best correlation was cho-
sen. The assumed models from Equations (1) and (2) were
then tested by using linear models (Im) and the parame-
ter significance was tested according to p-values in R (R
Core Team 2020). If the p-value for any parameter was
larger than .001, no significance was found and the model
was not used. If significant, the parameters a and b were
fitted.

The parameters in characteristic times’ models can
change for each product, due to a different wax mass
and build of the motor. If no common model was signifi-
cant, we applied multi-level models (Ime) in R, which vary
the parameter b for the product models. However, com-
mon models are clearly to be preferred. Although the rise
time was assumed to be constant, it can be seen in the
results (Section 4.1.2) that it was not. A similar model as in
Equation (1) was therefore applied.

The entirefitting process was based on the results from
Sections 4.1.1 and 4.1.2, and is described into detail in
Appendix C. The resulting models are shown in Table 2
with yellow background. These models were compiled
into one as the next section describes.

3.1.5. Empirical model of wax motor

The entire process from displacement measurements to
empirical model is shown in Figure 6. The final empirical
linear-segments model of a wax motor was a combina-
tion of the four characteristic time models - dead time,
rise time, hold time, and fall time - each with product-
specific parameter values. For implementation, the char-
acteristic time lengths need to be calculated into dis-
placement at any given time. This concluding implemen-
tation is shown in Table 2 as a calculation process from
the heating signal to the linear movement of the wax
motor valve. Figure 3 helps with the visualization of the
different time periods and notation. Based on the heat-
ing signal s(t) and the same signal delay - d(t), jumps
in the signal were determined as its slope kq(t). Based
on the heating signal and its slope, the last ‘On’ and
‘Off" times of the heating signal were calculated. The
undercooling time was found in one heating cycle, when
both the normalized displacement and the heating sig-
nal were zero. Then, it was used in the obtained for-
mulas to estimate the dead time and rise time for the
next cycle.

When the normalized displacement rose to 1 or its
gradient slowed down, the overheating time started and
was registered until the heating signal dropped to 0. The
following hold time was calculated according to this over-
heating time. The fall time was a constant for a given
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Table 2. Empirical wax motor model with its calculation process.

Symbol Unit/range | Description Logic expression in IDA ICE
IN s 0/1 Heating signal Input
Delayed heating
s
D 0/1 signal s lagged by 5 sec
ks [-1,1] Signal slope s-sp, hold for 4 sec
tis1 S Last On-time Integrate s, reset when ks> 0.5
tiso s Last Off-time Integrate 1-s, reset when ks <-0.5
- t >t ==
Last undercooling Integrate 1-s when not(tpar > tiso & sp ),
tuci—1 s time reset when ks <-0.5,
tuc,i—1=0 until tpar available
tdead,i s Dead time —192 - exp (—tyei—1/780) + 219 +13
"
Sl trises s Rise time —30(3) - exp (— tye;—1/1140) + 142 +21
(=]
2 t heating ti Integrate s when not(trar > tis1 & d==1),
.g oht s Overheating time reset when ks> 0.5,  ton,=0 until tpar available
(]
=1
= ton,i
g 15 |1—exp| — 240 + 30 (5), for product A
% thotd,i s Hold time toni
= 82 |1 —exp| — 58 , for product B
g (1o (-Gan) P
x
©
3
S . 180, for product A
< Lraui s Fall time 123, for product B
T
)
f trar,i s Full activation time taead; + trise
©
O
% tpar;i s De-activation time thold,i T tralli
uE-l Is this currently
Cdead 0/1 dead time? dead,i > tis1 & sp==1
Is this currently rise
Crise 0/1 . v tFAT,i > tis1 & sp ==1 & not Ciead
time?
Is this currently fall
Cfall 0/1 time? v tpar,i > tiso & sp ==0 & not Chold
Ky ise 1/s Rise ramp Integrate 1/t,ise When Cyise, reset every 3 min, [0, 1]
kfan 1/s Fall ramp Integrate 1/tgan when Cran, reset every 3 min, [0, 1]
Is this currently hold .
| Chold 0/1 time? thotdi > tiso & sp ==
Wax motor (+ valve If Cdeaq: h=0
5 piston’s) normalized Else if Crise: h=Kyise
E h [0,1] linear movement, Else if Cholq: h=1
o limited between 0 Else if crau: h=kfau
and 1 Else: h=sp

dead time and to 1 during the hold time. During rise
time and fall time the value should be ramping up or
down. Therefore, the ramping speed was calculated and

wax motor product. After the normalized displacement
had reached 0, the undercooling time started again. The
final normalized displacement value was set to 0 during
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Figure 6. The process of estimating the empirical wax motor model from the displacement measurements.

integrated from the start of the given period, to get the
output displacement.

The obtained models were then tested on the mea-
sured data. For each experiment, both the mean absolute
error (MAE) and root mean square error (RMSE) were eval-
uated, and these were compared between motors and
profiles. The linear segments model for one of the prod-
ucts was implemented and tested in IDA ICE. Product B
was chosen as it was installed by design in the test facility
discussed in the next section.

3.2. Valve curve estimation

3.2.1. Volume flow measurements

To simulate the effect of modelling the control details
on BPS, the characteristic curve of the valve was needed.
Instead of using a theoretical curve, an actual curve was
estimated from measurements (see Section 3.2.2). For
the measurements inside the UFH system, the wax actu-
ator B2 was installed in the UFH manifold of the TUT
nZEB test facility. This is a 100-m? house that was con-
structed for testing nZEB solutions. It features balanced
heat recovery ventilation, a ground source, and an air-to-
water heat pump system with both radiators and UFH,
among other technologies. The building model has been
previously built and calibrated in the IDA ICE software,
as detailed in Kull, Thalfeldt, and Kurnitski (2019a). The
floor plan of the test facility is shown in Figure 7 and the
key parameters for modelling the building are listed in
Table 3.

P ‘ R3 =
g 0 W/m?2
20 W/m*

R9

55 W/m? 9
R2
25 W/m?
cul
R6 R8
68 W/m* 43 W/m? N
Ty S— s g | IIEE=;:JIii j_i

Figure 7. Floor plan of the test facility, experiment room R6
marked in red.

The aim was to calculate the given valve’s char-
acteristic curve for further modelling as a proof of
concept, so only one motor was measured. In the
experiment, the LOGO controller (see Section 3.1.1) gen-
erated 15min-15min heating profiles - 15 min-long
heating signals, with a 15-min gap between heating
cycles. The volume flow was generated by significant set-
point changes in one UFH circuit that serves a 10-m?
room, marked with a red box in Figure 7, which was con-
trolled as described in Section 3.3. The volume flow was
measured by the heat metre Sensus Pollustat E (Sensus
Inc. 2021). All other circuits were closed due to much
lower setpoints. The measurements are fully described
in Maivel, Ferrantelli, and Kurnitski (2018; Vésa, Ferran-
telli, and Kurnitski 2019; Kull, Thalfeldt, and Kurnitski
2019b).

3.2.2. Valve curve and authority correction

The measured volume flows and the heating signal were
used to estimate the valve characteristic curve for the
given UFH circuit. First, the empirical model developed
according to Sections 3.1.4 and 3.1.1 was applied to esti-
mate the linear valve displacement due to the electrical
heating signal from the controller. The characteristic valve
curve is the relationship between this displacement and
the measured volume flow.

To apply a valve curve for simulations, a model is
needed for mapping volume flow to any valve displace-
ment. The measured valve curve develops in two parts.
First, the linear valve opening creates open area which
in ideal case would be linearly correlated to volume flow.
However, this theoretical valve curve is changed by valve
authority, which describes how well the valve can control
the volume flow.

The valve curve model was estimated in two steps:
first we defined the theoretical quick opening valve curve,
which is typical of UFH valves, then the valve authority
effect. All the parameters were chosen such that the final
volume flow best fits the measurements.

The quick opening valve curve is where most of the
volume flow increase happens at low opening values.
There are no precise values defined, so the theoretical
normalized valve curve, here relation h to V was here
defined in a simplified way with three points (Kumar
2017),
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Table 3. Main building parameters.

Parameter Value and unit Comment
Floor area 100 m?/10.4 m? House/room
Room window area 2x3m? south and west
Windows U-value 0.75 W/m?K total

Glaxing g-value 0.3

External walls U-value 0.12W/m2K timber-frame
Floor U-value 0.08 W/m2K concrete, above

outdoor air

Avg. thermal bridges 0.031 W/K/m? area of external surface

Infiltration at Ap 50 Pa 0.6 m3/h/m? area of external surface
Fixed infiltration flow 0.0048 L/s/m? area of external surface
Internal walls Adiabatic

UFH PEX piping 20 x 2.0 mm 300 mm intervals, wet

install

Floor cover upon 40 mm of screed no cover on top

piping

UFH power 68 W/m? nominal heat output
Design temperatures 34/29°C heating curve in Appx.

B
Over-dimensioning 40%

e The minimum efficient displacement (hg) - the nor-
malized displacement from which the volume flow
starts to increase

e The maximum efficient displacement (hmax) — the nor-
malized displacement starting from which the volume
flow does not increase further

e The mid-point (hp,Vp) - the point from which quick
opening stops and slower opening continues

where h is the normalized shift from 0 to 1, and V is
the normalized volumetric flow. The valve authority can
significantly change the theoretical valve curve. To take
this into account, the theoretical curve V was modified
by the valve authority N into normalized and authority-
corrected volume flows (Vaun) (Johnson Controls LTD
2020) with

where V is the theoretical valve curve and N is the valve
authority. The valve authority can be calculated from the
following formula (Petitjean 1994),

dpy _ dppump - dpsys

N =
dppump dppump

(6)

where dpy, dppump, dpsys are the pressure differences
across the control valve in kPa, the pump, or the rest of
the system with a fully open valve. dpsys can be estimated
by adding up pressure drops across each component in
the system. In our tested configuration, we estimated that
the system consists of both the circuit’s straight com-
ponents (1.1 kPa) and the bends in its pipe (7.1kPa), a
heat metre (4.5 kPa), a balancing valve on the main pipe

(10.8 kPa), and balancing valves on each circuit's sup-
ply side (3.6kPa). Altogether, dpsys results in 27.1 kPa.
The pump works at second speed and generates 30 kPa,
therefore dp, results in 2.9 kPa.

As the theoretical curve consists of linear segments,
the Evolutionary Microsoft Excel Solver was applied to
minimize the MAE between the measured and calculated
Vauth numerically. The parameters ho, h, and V,, were var-
ied to find the optimum. The limits were set as 0.1 to
0.3 for ho, 0.1 to 1 for hp, and 0 to 1 for Vp. The hg was
forced to be lower than hy,. The parameter hyax was set to
1 and the part where the valve opening was above 0.95
or below 0.05 was excluded from the error calculation,
since although carrying many points, the flow variation
was very small.

3.3. Room control simulations

To quantify the influence of the wax actuator and other
control modelling details on energy performance and
temperature control accuracy, several control scenarios
were defined in the IDA ICE building simulation model.
The modelled building and room were described in
Section 3.2.1. The UFH in the room was modelled with
an ‘HCFloor model’, which is basically a floor layer with
different temperature (CEN 2008). The layer temperature
develops with heat transfer from the piping to the layer
material calculated according to logarithmic tempera-
ture differences. The supply temperature and volume
flow of the liquid were given as inputs, the pressure and
return temperature were modelled. The heating curve is
included in Appendix B.

The installed power and schedules of internal gains
defined by the Estonian legislation for energy perfor-
mance calculations (Majandus-ja taristuminister 2015)
were used, with an average internal heat gain of 4 W/m?2,
The flow rate of the balanced heat recovery ventila-
tion was 0.51/s/m?. The supply air temperature was
18°C and the ventilation was constantly working. The
Estonian Test Reference Year climate data for Tallinn
(Kalamees and Kurnitski 2006) were applied. The first
week in January and the second week in February were
chosen to be simulated, as these have similar heating
consumption but different solar heat gains. The heating
consumption was 2.4 kWh/m?/week with IDA ICE default
PI control. The solar heat gains were 0.15 kWh/m?/week
and 0.82kWh/m?/week in the January and February
weeks respectively. The average dry bulb outdoor tem-
peratures were —1.9°Ciin January and —6.8°Cin February.
A longer period was not simulated, as the empirical wax
motor model currently requires timesteps of 5s, which
dramatically increases both simulation time and output
files size.



The On/Off thermostat (O) and PI controller (P) cases
were simulated for enabling comparisons, and both
included a gradual increase in the level of detail. First, the
business-as-usual simulations were defined, with IDA ICE
default parameters that are typical for BPS simulations,
corresponding to IDs O_0 and P_0. Then, step-by-step
adapted control parameters, signal delay, adapted valve
curve, signal modulation, and wax motor model were
added. The process listing the sequential steps that cor-
respond to the simulated scenarios is depicted in Table 4.
On top of business-as-usual cases, first, the default con-
trol parameters (CP) were adapted in step CP. These are
dead band (Db) for the On/Off controller and proportional
gain K, integration time Ti and tracking time Tt for the PI
controller. A 2-min delay (D) of input signal from the room
temperature sensor to the controller, which is usually
not considered (Wen and Smith 2001), was added start-
ing from step D in cases O_D and P_D (Elnaklah, Walker,
and Natarajan 2021). The calibrated authority-corrected
quick-opening valve curve (VC) was then included. It was
estimated as described in Section 3.2.2 and implemented
in IDA ICE with small linear segments replacing the IDA
ICE default linear control. Modulation of the continuous
PI control signal, the modulation control (MC) was then
applied in step MC on Pl only as the On/Off output is
already binary. Since the given 24V wax actuators can
only be controlled by a binary signal, the continuous out-
put of the PI controller was translated with an hourly
modulation, where at the beginning of each hour the
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algorithm decided whether and for how long to heat. The
applied modulation control principle is shown in Figure 8.
Finally, the developed empirical wax actuator model of
product B was finally included in the cases O_WM and
P_WM (where ‘WM’ stands again for ‘wax motor’).

The most detailed cases O_WM and P_WM were used
as the benchmark for all scenarios of the same controller.
The comparison of energy consumption between differ-
ent cases is sensible only at similar comfort levels, since
lower temperatures would clearly result in lower energy
consumption for heating. All simulations were thus ini-
tially carried out with a constant air temperature setpoint,
which was then shifted iteratively until the operative
temperature at 0.6 m from the floor in the middle of
the room was below 21°C for up to approximately 33 h
per week. This corresponds to the 20% limit for weekly
deviation from the indoor climate class boundaries (EN
16798-2:2019 standard (CEN 2019)). Finally, the tempera-
ture fluctuations and heating energy consumption of the
scenarios were compared.

4. Results and discussion
4.1. Wax motor modelling

4.1.1. Displacement measurements

The displacement is the linear movement of the actu-
ator’s piston triggered by electric signal, and its mea-
surements described in Section 3.1 were used to define

Table 4. Implementation of all control scenarios for both On/Off (Thermostat) and PI control.

Step Parameters |PI(P_) On/Off (0_)
Top=2K
0 K=0.3 Troom . Troom v
(business-as- i — Vauth —1 on/ auth
usual) =300s Teet Pl — Teet off
t=30s — e
Tor =0.5K ol §
. On/Off
o |cpian: Troom ; Troom |——1| ¢
(adapted K=18 auth — auth
parameters) |t=2300s Toet cp Tser (S | —
t=30s
Pl On/Off
D Added Troom v Troom n/ ;
(added delay auth auth
delay) tp=2 min Teet cp Toet cp
Pl on/off
,V ¢ Sections 3.2 | Troom v Troom Vv
(calibrated d4.2 auth auth
valve curve) |2 4 Teet cp vc Teet CcP vC
MC T Pl
(control Figure 8 and room v .
signal Figure 19 Tt cp MC Ve auth Not applicable
modulation)
Pl On/off
wm T . T .
(added wax |Table 2 oo Vautn i Vauth
motor) Teet cpP MC WM VC Teet cP WM Ve

An initial controller (On/Off or PI) is always included, the other components/parameters are gradually added or adapted. Tpy, is the dead band, K is
the proportional gain, t; is the integration time, t; is the tracking time, and tp is the time delay. Adapted Pl parameters taken from Kull, Thalfeldt,

and Kurnitski (2020).
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Pl out Calculate sliding average of
— Ploutin 1-hour window, —
value is in range [0, 1]

Multiply the value by 60
minutes, limit lower than
5 min values to 0 and larger
than 55 min to 1 hour

Output 1 for calculated
> number of minutes,0 for —
the rest of the hour

Figure 8. Implementation of the modulation for the Pl output into wax motor’s input, the heating signal s. The calculation is performed

once per hour.

the empirical model of the wax actuator. Some exam-
ples of the displacement during a 15 min-15 min heating
profile for each of the measured actuators are shown in
Figure 9. There was a clear difference between the first
period (left) and the following periods (visualized on top
of each other on the right), as the motors were not con-
ditioned identically before the beginning of each exper-
iment. The figure shows that the wax in motor B1 was
already warmed up before the first cycle. There has been
a slight movement in the measuring device during the
first cycle for B2. However, the first period conditions the
motors and we can see that the following periods per-
formed very similarly within each motor’s measurements.
There was almost no difference for cases with and without
valve for the same motor either. Larger differences were
found between different products, and small differences
existed among instances of the same product. In the
observed cases, the response for motor A1 looked like a
trapezoid, while the product B motors had a slight move-
ment even during the overheating. Quite likely, these
differences could be caused by different general builds,
covers, materials, etc. The product A’s datasheet states
that the cover is made of polycarbonate, this is not known
for product B but the diameter of the motor B cover is
15% smaller. The actuator heights are very similar. The
smooth change in displacement for product B makes it
challenging to separate the rise time and overheating

time, which is why the limits for ramps were defined as
in Section 3.1.3.

4.1.2. Cut-offs for characteristic times

The characteristic times of a wax motor — dead time, rise
time, hold time, and fall time — were defined in Section 2
and summarized in Figure 3. Their estimation relied on
the definition of the cut-off conditions for the periods.
A sample result of the cut-off conditions is shown for a
15 min—-15min period of motor B3v in Figure 10. After
filtering out some cases where the estimation failed as
one or more of the characteristic times were estimated to
be zero, 380 periods remained to be analysed. All result-
ing characteristic times are shown in Figure 11, where
they are coloured according to the motor. The rise and fall
times varied less than the dead and hold times. This was
expected, as these should be constant for one product at
the same room temperature. However, while the fall time
shows to be mostly constant for one motor, the rise time
has a more than 1-min variance for product B.

For heat pump inclusion in grid balancing, it is also
important that the valves would open within 5 min. The
full activation time tgat was calculated by adding up the
dead and rise times. In most cases, the tpat was very close
to 5min, as shown in Figure 12. However, there were
some cycles when tpat exceeded 5 min, yet staying below
7 min. For product B, these were of experiments where

- First period || Later periods = Al
=
1.00 1
[} —— Aty
§
Q 1 — B
E0.75
& — Biv
T 0.50 1
ko] — B2
8
-Téo.zs- = B2v
= _“ — B3v
0 2 46 8101214161820222426 0 2 4 6 8 101214161820222426 —— B4v

Time (min)

—— Heating signal

Figure 9. Different wax motors’ normalized displacement dynamics in the 15min-15min profile as shown by the heating signal

(normalized voltage).
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Figure 11. Characteristic times identified from all experiments, motor with and without valve grouped together.

the cool-down time was 30 min or 45 min, and the wax
could cool down more. The limit was exceeded also for
the first period of 10 min-10 min and first three periods
of 15min-15min profiles, due to the previous longer
cool-down. For product A, even the 15 min-45 min pro-
file's cycles were very close to the limit. However, falling to
either side of the limit depended heavily on the definition
of allowed ramp definitions. These influenced the cut-off

400 1
300 1

200 1

Full activation time (s)

100 1

between rise time and overheating time. For reaching
below 5 min for all profiles, standby heating could be acti-
vated. The control would need to keep the wax at higher
than room temperature with short heating pulses, which
do not open the valve. The suitable pattern for standby
heating should be determined either by experiments or
with a physical model, which can handle profiles with
short heating times.

g

producer
- A

- B

0 500 1000 1500

2000 2500 3000

Preceding undercooling time (s)

Figure 12. FAT dependence on preceding undercooling time and motor’s producer. The points are measured values, the lines show
modelled values, the shaded area the modelling errors; the dashed line indicates the 5-min limit.
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4.1.3. Empirical model performance

The mean absolute errors between measured and mod-
elled displacement for some profile-motor combinations
are shown in Figure 13. On the left, the examples from
motor B1 show that there was a tendency for lower error
in longer profiles, where undercooling and overheating
dominate in the period. At these times the displacement
is the easiest to model, as it is almost constant and close
to 0 or close to 1. Therefore, the error is also the small-
est, reducing the average error. The graph on the right
illustrates the differences between experiments with and
without the valve. No clear conclusion can be drawn from
the slight differences. Results for motor A were more pre-
cise and there were slight differences between different
samples of the same B motor. All the fitting errors are
shown in Appendix A, Table A1. For all the profiles, the
MAE remained below 10% (0.1) and the RMSE below 15%
(0.15); the average MAE is 0.041 or about 4%. Examples
of the typical, the best, and the worst performance for
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one hour are shown in Figure 14. The graph for A1 shows
the suitable shape choice for the empirical model. For
motor B, the heat-up process differed, but the effective
volume flow corrected the slight difference, as shown in
the next section. In the worst case, the maximum delay
between the measured and simulated signal start was
1to 1.5min.

4.2. Volume flow modelling

We recall that the volume flow model, i.e. the characteris-
tic curve of the valve, was needed to estimate the effect of
modelling the volume flow in detail on BPS (Section 3.2).
An example of the measured volume flows during one
heating cycle that was measured in the test facility is
given in Figure 15. Additionally, the input heating signal,
with empirical model calculated valve displacement, and
the modelled volume flow are shown. The modelled vol-
ume flow was obtained by fitting the theoretical model

0.1

WAl % Alv mB1 % Blv mB2 % B2v # B3v # B4v

15min-15min

Figure 13. Error estimations for all measured profiles of one motor (left) and for all combinations of one profile (right).
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Figure 14. Performance of estimated wax motor model on predicting normalized displacement.
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Figure 16. Valve curve modelling process and result on the left; measured versus modelled volume flows on the right.

from Section 3.2.2. The graph of measured and mod-
elled volume flow to displacement is shown in Figure 16,
on the left, with estimated valve curves as follows: the
theoretical valve curve is shown with dashed line, and
the authority-corrected valve curve with solid line. The
authority-corrected valve curve matched the measure-
ments the best when the three-point quick opening char-
acteristics were at h, = 0.41, V, = 0.5, hyin = 0.17. For
the considered region, the MAE was 1.02%. In the graph
on the right, the error between the measured and mod-
elled authority-corrected valve curves is shown.

4.3. Effect on energy performance simulations

In section 3.3, several control scenarios were defined in
IDA ICE to quantify the influence of the wax actuator
and other elements of control process on energy perfor-
mance and temperature control accuracy. In this section,
we compare the results of the energy performance
simulations. We recall that the ‘0’ case was the business-as
usual case, namely a simulation model with close-to-ideal

control of the UFH system. This ignores the modelling of
both wax motors (WM) and exact valve curves VC, while
the PI control or On/Off thermostats were represented
by parameters that are set to default values commonly
used for BPS. The other scenarios use adapted control
parameters CP, then sequentially add time delay D to the
input signal, a VC; modulation control (MC), and finally, a
WM. The level of modelling detail is therefore gradually
increased from ideal to WM.

For comparability of energy consumption, air temper-
ature setpoints were shifted so that 20% of the oper-
ative temperature remained below 21°C (Section 3.3).
The applied setpoint shifts for all the cases, and the
resulting energy consumption is shown in Table 5. In
the columns, the air temperature shift from 21°C dT
and the MAE of the air temperature MAE(T) character-
ize the temperature fluctuations. Qy, is the floor heating
energy consumption per square metre of floor area per
observed week, and its relative difference was calculated
as AQp = (Qnh — Qn,w)/Qpw [%] for the given week. This
quantified the consumption under-/ overestimation in
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Table 5. Temperature fluctuation and energy consumption results for all cases; air temperature setpoint deviations dT are

from 21°C and energy consumption results Qp are in kWh/m?2/week.

Temperature fluctuations Energy consumption

January week February week January week February week

dr MAE(T) dT MAE(T) Qn AQhw% Qx AQyw%
1.092 2.55 5.71% 2.42 4.84%
0.682 2.42 0.36% 2.32 0.41%
0.691 2.41 -0.12% 2.32 0.25%
0.69 241 -0.12% 2.32 0.21%
0.628 2.41 0.00% 2.31 0.00%
0.637 241 0.08% 2.28 0.68%
0.447 2.37 -1.63% 2.20 -2.75%
0.453 2.37 -1.67% 2.20 -2.71%
0.462 237 | -167% | 221
0.589 2.40 -0.48% 2.24 -0.80%
0.676 2.41 0.00% 2.26 0.00%

the observed case, compared to the most detailed case
O_WM or P_WM, respectively.

The table shows that only adding the wax motor onto
the previous level of detail does not change the energy
consumption a lot. There are larger changes in one step,
such as correcting the parameters or adding modula-
tion. However, the whole process of adding modelling
detail, changes the results vividly both in temperature
fluctuations and in energy consumption. The changes are
discussed in detail in the following sections.

4.3.1. Temperature setpoint changes

The setpoint changes were negative for Pl, but close to
zero or even positive for On/Off (Table 5). This means that
the operative temperature stayed most of the time above
the desired 21°C even after lowering the air temperature
setpoint below 21°C for PI. In both cases, the operative
temperature and air temperature fluctuated similarly, yet
with an offset. Regarding the On/Off case, the fluctuations
were much larger, and the setpoint had to be higher. An
example of this behaviour is shown in Figure 17, where
line typology corresponds to air temperature setpoint
(dotted), air temperature (solid) and operative tempera-
ture (dashed).

Figure 18 portrays all the shifted operative temper-
atures by cumulating their occurrence durations. While
temperatures in January stayed close to the original
setpoint for the whole week, except for some hours,
the solar gains in February raised the temperatures.
These rose over 24°C and were more than a degree
over the setpoint for about 20% of the week. The two
extra high temperature cases are the O_0 cases for Jan-
uary and February weeks; the others lie closer together,
although the solid (On/Off) lines are relatively higher.
This agrees with Table 5, where in all cases except

P_WM the temperature fluctuations were clearly smaller
for PI than for the corresponding On/Off cases. WM
cases are shown in darker colour and thicker lines in
Figure 18.

4.3.2. Temperature fluctuations

For On/Off, the source of temperature fluctuations is the
dead band (Tpp). The setpoint change and MAE of O_0
cases (Tpp = 2K) were much higher than for the rest of
the cases (Tpp, = 0.5 K). While MAE for On/Off in January
is mostly around 0.2 K, it was around 0.6 K for the default
(O_0) case. Due to symmetric fluctuations around the air
temperature setpoint, the MAE is close to 60% of the dead
band in all On/Off cases.

The fluctuations for Pl were induced by non-optimal
parameters as well as modulation. While non-optimal
parameters alter the continuous signal, modulation trans-
lates it to On/Off-like signal. The theoretical development
of control signal for P_WM was described in Figure 8.
From simulation outputs, an excerpt was chosen to visual-
ize this development from Pl output signal to valve curve
output, and it is shown in Figure 19.

This translation from continuous to binary signal
resulted in the Pl cases with modulation cases, P_MC and
P_WM, having MAEs close to the On/Off cases from ‘CP’
to ‘WM'. The temperature fluctuations for the P_WM and
O_WM cases are shown in Figure 20, together with the
benchmark cases P_0 and O_0 as well as the improved
parameter cases P_CP and O_CP. Significantly higher fluc-
tuations occurred at a greater dead band for On/Off (O_0
case), and the smaller dead band starting from O_CP
improved the On/Off control remarkably. Improved PI
parameters resulted in an almost ideal control, while
modulation and WM delay reintroduced the temperature
fluctuations. Altogether, the temperature performance of
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Figure 18. Cumulative operative temperature graphs after setpoint correction for all cases.

cases P_0, O_CP, O_WM, and P_WM was similar, and the
WM cases could be substituted by simpler control in sim-
ulations. The similarity between On/Off and Pl occurred as
the Pl cases did not perform optimally, while the On/Off
cases improved significantly from O_0. In this work, the
adapted dead band for On/Off was chosen to be 0.5K.
For this to be realized, the room air temperature sensor
must be precise, calibrated, and positioned optimally. The
room air should also be ideally mixed. Even though the

vertical gradient for UFH should be small (Maivel, Ferran-
telli, and Kurnitski 2018; Vésa, Ferrantelli, and Kurnitski
2019), realizing one single uniform temperature per zone
is clearly still an idealization.

4.3.3. Energy consumption

The energy performance in the given scenarios varied sig-
nificantly across their levels of detail. Simply modelling
the wax motor instead of continuous control (VC to WM
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1
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2 1 3
i I 5 -- MC
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E 1 «3 -+ WM
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Figure 19. Control signal development for P_WM during 4 hours. Outputs from PI (PI), modulation (MC), wax motor (WM), and valve

curve (VC) blocks.
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Figure 20. Air temperature fluctuations for detailed cases (O_WM, P_WM) in January, the default cases (O_0, P_0) are shown in
comparison as well as the cases with improved parameters (O_CP, P_CP), grey helper lines are at 21 £ 0.25°C.

case) showed up to 2.5% energy consumption difference
in the observed weeks, as Table 5 illustrates. This is con-
sistent with the literature, see e.g. ClauB and Georges
(2019) and references quoted therein. Extended to an
annual basis, this can be a sizeable effect for energy
efficiency.

Although the short delays and the modelling of the
valve curve had less influence on the total energy per-
formance, these resulted in different load profiles (see
the next section). We found that the choice of param-
eters for both On/Off and PI, as well as the modelling
of modulation in the Pl case, had a significant effect.
All On/Off cases overestimated the energy consump-
tion compared to the most detailed case (O_WM). For
the business-as-usual approach (O_0) the difference was
5.7% for On/Off in the January week and 4.8% in the
February week. The business-as-usual Pl case P_0 with
default parameters and no modulation differs from the
other simple Pl cases (P_CP, P_D, P_VC - optimal param-
eters, no modulation). Yet, its energy consumption was
like that of the modulation cases P_MC and P_WM with
optimal parameters and modulation. P_0 overestimated
the energy consumption by 0.1% in the January week and
0.7% in February compared to P_WM. However, all the
other Pl cases underestimated the energy consumption
compared to P_WM.

As in most cases, a lower energy consumption was
achieved thanks to smaller temperature fluctuations,
which enabled a lower temperature setpoint. The step
from ‘0’ to ‘CP’, with reduction of energy use by using
improved Pl parameters, was over 3.4 percentage points
in the February week. The reduction in temperature fluc-
tuation from optimal Pl parameters was cancelled out
by an increase in fluctuations, which was caused by
the conversion of the continuous Pl output to binary
values, so from P_VC to P_MC, and by wax motor
delay, from P_MC to P_WM. The step from ‘0’ to ‘CP’

was higher than the 2.5% increase from ‘VC' to ‘'WM’,
adding modulation and WM, in the February week.
This highlights the importance of optimal Pl parame-
ters. However, the parameters that were optimized in
the business-as-usual situation did not perform optimally
together with a modulation approach. The optimized
parameters for continuous Pl control (without modu-
lation) can thus be potentially used for 0-10V actua-
tors, while the coupling of modulation with parame-
ters’ optimization should be further researched. The PI
parameters that were specifically adapted to the applied
modulation could potentially improve the performance
(Appendix D).

In most occurrences anyway, the Pl cases consumed
less heating energy than the corresponding On/Off cases.
While for On/Off and Pl business-as-usual, the Pl was
almost 6% more efficient for both weeks (2.41 vs. 2.55
and 2.31 vs. 2.42), there was practically no difference
in the WM cases. The difference between O_WM and
P_WM is generally smaller than the rest, holding at 0.2%
in January and 2.1% in February. For the ‘CP" through
'VC' cases it approached 2% in January and 5% in
February. Therefore, substituting the Pl with WM mod-
elling with On/Off as suggested for temperature fluc-
tuations in Section 4.3.2 would not provide the same
energy performance. The smallest difference was to O_VC
and to P_0.

4.3.4. Load dynamics

All the business-as-usual cases overestimated the energy
consumption, leaving the results on the safe side regard-
ing system design. However, it was clear that the volume
flows in the circuit are different between the business-as-
usual and the WM cases. Both overestimation of energy
consumption and inaccurate mass flows could be non-
conservative for other applications such as grid balanc-
ing, structural thermal storage, etc.



To better understand the development of energy con-
sumption, Figure 21 displays on separate rows the mass
flows (row a), water return temperatures (row b), and
floor surface heat flux (row c) as cumulative for the Jan-
uary week. The outdoor temperature-dependent supply
temperatures were the same for all scenarios and are
portrayed as dashed lines in charts 1b and 2b.

For the On/Off scenarios, O_0 stands out from the
rest. For PI, the distribution of mass flows, return tem-
peratures as well as heating loads vary between all the
cases, including ‘CP’, ‘D', and ‘VC'. These otherwise per-
formed similarly, differing by no more than 0.01 K in set-
point, 0.015K in MAE(T), and by 0.5 percentage points
(0.01 kWh/m?2/week) in energy consumption during one
given week. This means that adding a 2-min delay to
the input signal and correcting the valve curve did not
have a significant effect on the air temperature and
energy performance. However, it changed the mass flow
dynamics. P_MC and P_WM had mass flows like those
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of the binary On/Off cases, while the ‘CP" and ‘D’ cases
had mass flows mostly at the 25% level. P_0 and P_VC
were between the two extremes, with a close to linear
flow.

Adding a WM had almost no influence in January
compared to the control that was simpler by one step,
either O_VC or P_MC. However, the cumulative graphs
in Figure 21 show that the return temperatures for the
WM scenarios were lower. This would refer to a differ-
ent timing of the heating periods in relation to outdoor
temperatures. Adding the WM in February, the energy
consumption decreased for On/Off and increased for PI.
For On/Off, the additional delay from the WM reduced the
MAE and energy consumption. This could be due to the
combination of delay and solar gains, as the two charts
on the left side of Figure 22 show. The delay enabled
to omit one heating cycle when solar gains emerged,
keeping lower solar peak temperatures. For PI, the addi-
tional delay generated higher temperature fluctuations
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Figure 21. Cumulative performance in the January week.
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Figure 22. Control and temperature during a day in February, hours from midnight, grey line showing the shifted setpoint.

and, due to the higher induced setpoint, this increased
the consumption (see the two charts on the right in
Figure 22).

5. Conclusions

In this paper, we have attempted at shedding light on two
aspects of UFH control modelling by

analysing how a stepwise increase in the modelling
detail can affect its performance, regarding both tem-
perature fluctuations and energy consumption,
proposing an empirical wax motor model, calibrating
it with extensive experimental results, and implement-
ing as well as testing it with simulations.

To such aim, an experimentally based empirical model
of thermo-electric actuators, or wax motors used in HVAC
control was here developed. The experimental aspect was
addressed into detail, first by measuring the linear dis-
placement of the attached valve’s piston without the rest
of the system. Based on these measurements, we defined
an empirical model consisting of four sub-models of lin-
ear segments that estimated the characteristic times. The
final model resulted in an average MAE of normalized
linear displacement that stayed below 10%.

The volume flows were then measured within one cir-
cuit of an UFH system with a predefined control signal
that was applied to the wax motor. Based on the volume
flow measurements, the valve curve was calibrated, and
the models were finally implemented in the IDA ICE sim-
ulation software, for quantifying the effect of the models
on BPS results.

Referring to the research questions that were formu-
lated in the Introduction, they can now be answered as
follows:

i) How can we characterize the wax actuators for HVAC
in an applicable way?

a. The developed empirical wax motor model con-
sists of dead time, rise time, hold time, and fall
time, which depend on undercooling or over-
heating times. The dead time was up to 4 min,
the rise time up to 3 min, the hold time up to

2.5 or 4 min depending on the motor product.

As an exception, the fall time was constant for

one product, either 2 or 3min. Adapting the

developed models to new products does not
need extensive modelling nor expensive mea-
surements.

How much time does the valve opening with wax

motors take? Can it be managed within 5 min, so that

it would match the limit imposed by the frequency
market for energy grids?

a. Afterlonger undercooling times, the wax heated
up slowly, showing that the full activation
time, i.e. the valve opening time, can be larger
than 5min. However, the maximum FAT did
not exceed 7 min. Quick-opening valve curves,
together with a low valve authority, ensured that
nearly maximal flow rates were reached with
50% valve openness. If a shorter FAT is needed,
the wax actuators should be continuously kept
on standby, thus applying short heating cycles.

How are temperature control accuracy and energy

performance affected by the control strategy?

a. Modelling the control with the empirical wax
motor model, including modulation for Pl, valve
curves, signal delays and realistic parameter val-
ues is important for some applications. Com-
pared to including all these options, a business-
as-usual BPS overestimated the energy con-
sumption by 5% for On/Off and less than 1% for
Pl. While for On/Off the temperature fluctuations
were reduced by a smaller dead band, for Pl these
were increased due to modulation. The temper-
ature variations were thus critically affecting the
energy balance.

iii)



iv) How do wax motor and modulation effects compare
to performance differences from other modelling
simplifications?

a. Changing control parameters and adding mod-
ulation resulted in the largest changes regarding
all the steps taken for detailing the control mod-
elling. The control parameters changed energy
consumption by about 2%-5% and adding mod-
ulation by 2%-3%. Adding a wax motor when
the heating signal was already binary changed
the result by less than 1%.

As a practical consideration, it was found that the
business-as-usual Pl control did not reflect the actual
mass flows in the system. The actual behaviour is simi-
lar to that of the On/Off behaviour, so the Pl simulations
could be substituted by On/Off simulations with a small
dead band, and an actual valve curve but without the wax
motor. However, the temperature setpoint in the simula-
tions had to be set higher than for the Pl by at least 0.1 K,
to ensure the same energy performance.

The work has some limitations, which should be fur-
ther analysed in future studies:

e The study can be extended on several aspects,
for instance by implementing a physical model for
0-10V wax actuators, which could also model pro-
files where the motor does not completely open/close
the valve during each period. Experiments to deter-
mine properties of the spring, the wax, and the motor
cover should be carried out accordingly. The piston
movement inside the manifold should be measured
as well.

e Also, the implemented empirical model currently uses
very small timesteps, making it time-and resource-
consuming when used for simulations involving longer
time spans. Speeding up the model with a care-
fully performance-optimized implementation would
enable simulating annual energy consumption differ-
ences.

e Finally, as the parameters that were optimized in the
business-as-usual situation might not work optimally
together with a modulation approach, the coupling of
modulation with the parameters’ optimization should
be further researched.
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A. Measured actuators, heating profiles, and error estimates

Table A1. The error estimations for all profiles.

Motor Valve Heating profiles Duration
Combination Producer specimen included? measured (signal On-Off) (min) MAE RMSE
Al A 1 no 15 min—45 min 515 0.014 0.042
Al A 1 no 15min-15min 362 0.018 0.047
Al A 1 no 5min-5min 454 0.058 0.089
Alv A 1 yes 15 min-15 min 2774 0.011 0.019
B1 B 1 no 15 min—45 min 1241 0.023 0.047
B1 B 1 no 30 min-30 min 720 0.020 0.037
B1 B 1 no 10 min-10 min 646 0.045 0.097
B1 B 1 no 18 min—-6 min 71 0.033 0.050
B1 B 1 no 15min-15min 1049 0.048 0.079
B1 B 1 no 3 min-3 min 141 0.098 0.122
B2 B 2 no 15 min-15 min 1110 0.028 0.048
Blv B 1 yes 15min-15min 118 0.061 0.153
B2v B 2 yes 15 min-15min 1090 0.025 0.042
B2v B 2 yes 15 min-45 min 1486 0.019 0.036
B3v B 3 yes 15 min-15min 144 0.030 0.056
B4v B 4 yes 15min-15min 136 0.058 0.106
Bav B 4 yes random 5 to 15 min 482 0.086 0.148
B4v B 4 yes 15 min-45 min 416 0.043 0.090

B. Heating curve for UFH supply water temperature in simulations
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Figure B1. Heating temperature curve used in simulations.
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C. Model fitting results for the characteristic times

Table C1. The process of fitting the empirical models to the characteristic times estimated from the measurements.

2504 The estimated dead times had a clear dependence on the undercooling time of the
previous period, therefore tdead,i = f(tuc,i-1). The negative exponent model
was fitted as given in Equation (1). The time constant value T = 780 s had the

2001 highest correlation, with R-squared between the negative exponent and the
dead time equalling 0.885. However, the linear model resulted in maximum
residuals of over 1.5min. To improve the performance, a linear multi-level model

@ 4504 was tested and chosen for separate products, which constrained the residuals
.g to maximum 10s. In the figure, blue is the model for product A and red for the
ke product B.
d
< 1001

50 1

producer o A e B
041~ r T T T
0.00 0.25 0.50 0.75 1.00
exp(-undercooling time/780)

2504 The rise times varied between 100 s and 180 s and it was therefore not constant
as expected. The null hypothesis of rise time depending on room temperature
was not confirmed as the ambient temperature varied in a very small range

2004 during the measurements. Instead, there was a slight dependence on the
undercooling time’s negative exponent similarly to the dead time. Therefore,

. L] trise,i = f(tuc,i-1) where the most suitable T was 1140 s. The parameter k was
oy @ small but clearly significant (p < .001). The residuals were over two minutes,

1501 e ' . N . S . . .

£ o N so instead, a motor-specific solution was again identified using multi-level
= - ° 0, modelling.
8 ° © L XY °
-= 100 °
L]
501
° producer ¢ A e B
04
0.00 0.25 0.50 075 1.00
exp(-undercooling time/1140)

250 The hold time did depend on the overheating time, as expected in Equation (2).
However, the dependence was not significant. As the hold time could be quite

tau=240 different for the motors, as Figure 11 shows. Thus, a producer-separated model

2004 was generated. As the intercept was insignificant for Ime, separate linear models
were fitted. Moreover, as in this case there is no reason to assume the same time
constants and parameters, we searched for separate 7 values. These resulted to

g 150 4 be T = 2405 for product Aand t = 600 s for product B.
=
o)
2 100+
= . tau=600
50
e producer © A e B
0.
0.00 0.25 050 075

1-exp(-overheating time/tau)
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Table C2. Continued

Overheating(s) * 0 < 500 =« 1000 The fall time was constant for a product, as the standard deviation was around
10s. No room temperature dependence was seen in the data. In the figure, the
order of magnitude of the overheating time is shown in three colours for the

SO ettt two products.
o fee, o8
104 . '! :
2 SR
& 1001 o .
T L
w
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D. Pl parameters optimized for continuous and modulated output
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Figure D1. The cumulative temperature graphs for P_WM case (18/2300) and the same case with Pl parameters adapted for the
modulation (300/3000).






Publication IV

Kull, T. M., Thalfeldt, M., and Kurnitski, J. (2021) Modelling of Wax Actuators in
Underfloor Heating Manifolds, in E3S Web of Conferences, pp. 1-8. doi:
10.1051/e3sconf/202124611009

173






Modelling of Wax Actuators in Underfloor Heating Manifolds

Tuule Mall Kull'", Martin Thalfeldt®!, and Jarek Kurnitski®!'-

'Nearly Zero Energy Buildings Research Group, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
2Smart City Center of Excellence, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia
3Department of Civil Engineering, Rakentajanaukio 4 A, Aalto University, FI-02150 Espoo, Finland

Abstract. Finding sources for power grid balancing has become increasingly important with more

1 Introduction

renewables used for production. In buildings, heat pumps could be utilized among other electrical
appliances. The heat pumps would work at full power to balance the overproduction in the grid. However,
short-term grid flexibility announces the consumption need up to 5 minutes in advance, which can prove a
problem to control. When there is no current energy need in the building, all valves are closed. That means
that when a heat pump with overridden control starts working at the maximum frequency, its full power
heats up the local circuit very fast, especially when there is no storage tank. Whether the heat pump overheats
and cannot be used for balancing the grid or the whole system opens for heating depends on the regulating
valves and their opening speed. For underfloor heating systems, the valve opening speed is slower than for
other systems as wax actuators are used. This paper focuses on how to model these wax actuators and
determine the opening time to provide input for further studies on flexibility. A physical and a linear segment
model are parameterized and the results show that the wax actuator fully opens the valve in six minutes.

happens in the heat pump circuit, the slowest

Power grid that is rich in renewable energy, faces an
increasingly difficult challenge of ensuring the grid
power frequency at the needed 50 Hz level. The
frequency stays constant when production and demand
are in balance. When production changes rapidly, it can
be faster and cost-efficient to change the demand rather
than switch on or off other production sources. In
demand side management, large consumers such as
factory lines are a logical option. However, as the
building sector consumes 30 % of electrical energy
globally [1], buildings cannot be omitted as a possible
flexibility source. It could be possible to switch
household electrical appliances, but the increasing use
of heat pumps allows using thermal energy storage in
buildings to balance the power grid as well [2]. Energy
flexible buildings have been discussed in detail in IEA
EBC Annex 67 project [3]. Several control methods
have been developed to utilize either the storage tank or
structural thermal storage in buildings for flexibility [4].

However, the grid changes are quick and in the
solution where many heat pumps are aggregated to an
overhead system, the individual heat pumps get the
signal to create demand only about 5 min in advance [5].
The control would overrun the default approach and the
frequency would be set manually [6]. While small
inverter based heat pump systems do not need large
storage tanks, the system volume is very small when
valves towards the rooms are closed. This could result
in overheating or -cooling when the heat pump is started
at full power. Therefore, to accurately predict what

* Corresponding author: tuule.kull@taltech.ce

components have to be modelled precisely. Next to the
heat pump itself, the only variable that controls the
circuit are the actuators on the regulating valves. For
underfloor heating, these are wax actuators in the
manifold’s return side.

Wax actuators are electrically controlled PCM
(phase change material) actuators where paraffin wax is
heated by a PTC (positive temperature coefficient)
heater. These actuators are also called wax pellet
actuators [7], thermal actuators, wax motors [8]. The
actuator is screwed to the valve, which is therefore
normally closed. When the voltage is applied, the wax
starts to melt and expands. This expansion moves the
piston, and with a system of springs, the actuator inner
height reduces, which opens the valve. This type of
actuators have been widely used for fan coils and in
manifolds for TABS systems as well as hydronic
underfloor heating for a long time as they are silent and
strong. The core of the wax actuator is shown in Figure
1 (a) and the cross-section of the wax actuator in Figure
1 (b).

Actuators are mostly omitted in building energy
performance simulations as their time constant is in
orders of magnitude smaller than for the whole system.
Sometimes these are modelled in a simplified
mathematical way as a delay [9]. In other fields, wax
actuators have mostly been modelled for microfluid
systems in the scientific literature, however with
nonmoving parts and therefore with an upscaling
challenge [10]. In the actuator industry, it is common to
model the actuator movement as hysteresis [8]. The



PCMs have been modelled in building structures as a
thermal hysteresis as well [11]. The characteristics of
the paraffin wax used in the actuators have been
analysed in several articles [12]-[14]. However, wax
actuator models that are more detailed than delay
models are not discussed in the scientific literature for
buildings and HVAC until now.

For grid flexibility, a timescale of 5 minutes has to
be analysed and wax actuators are in that range.
Therefore, the wax actuators should be modelled more
precisely. In the current paper, we compare the physical
and mathematical models for wax actuator. The main
novelty of this paper is in the detailed modelling of the
wax motor together with the valve and calibrating these
in an actual system. This paper applies the wax motor
model developed by Lars Eriksson in EQUA’s IDA ICE
software library [15] for the first time in the scientific
literature. Moreover, in the HVAC science, possible
parameters for wax motor have not been published
before.
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Figure 1. (a) Wax pellet actuator core [8] and (b) a cross-
section how it is reversely implemented in a wax motor [16].

2 Methods

2.1 Experiment setup

The experiments are carried out in two phases to
determine the effect of actuator only and actuator
together with a valve. Initially, the wax actuator was
unmounted from the valve and the change in its height
with periodic applying of voltage was measured. In the
second phase, the wax actuator was mounted in an
underfloor heating manifold and the height could not be
directly measured but the mass flow through the system
could be.

2.1.1 Phase 1 : Linear movement of the actuator

A commercial 24V wax actuator produced and installed
in 2013 was placed between a digital calliper with data
logging capability. A metal piece was added between
the calliper and the wax motor bottom to enable
measuring the change in height. The calliper was fixed
with a rubber band so that when the actuator’s height
reduces, the calliper would keep contact with the
actuator and measure the change in height. Clearly, the
measuring method and devices could be improved,
especially as the force applied on the actuator by the

calliper was not measured. However, this force is small
and presumably has no major effect. Therefore, this
approach can be used for this preliminary study.

The wax actuator was controlled by a 24 V DC on-
off signal with 15 minutes ON and 15 minutes OFF,
periodically for 10 hours. The voltage control was
implemented and logged in Siemens LOGO! 24CE
controller [17]. The first hour was not used for
parameter fitting.

2.1.2 Phase 2 : Mass flow through the valve

In the second phase, the wax actuator was mounted on a
regulating return valve in an underfloor heating
manifold. It is a typical hydronic underfloor heating
manifold with 8 circuits in a small residential house. Its
water is heated by a heat pump to a storage tank. From
the tank, a pump in the mixing valve circulates the water
through the manifold and circuits. In the mixing station,
the thee-way valve is set to fully open with no
recirculation. Pump speed was set to be constant. The
setup consists of commercial products, so it is not
exactly known what is inside each component. All
parameter estimates depend on the documentation of the
products.

To enable measuring the mass flow through one
valve only, all but one valve in the manifold were closed
by a commercial controller by setting the setpoints for
the corresponding rooms (circuits) very low. The
observed wax actuator on the last valve was again
controlled by the Siemens LOGO controller. As the
linear opening could not be directly measured, the mass
flow through the manifold was measured by a heat
meter. As additional measures, the surface temperature
of the wax actuator was measured as well as the opening
indicator on the cover was filmed for some cycles.

For surface temperature measurement, a PT100
sensor with data logging was glued to the plastic cover
of the actuator on the side with thermal paste improving
the thermal contact. The sensor was not insulated from
the ambient air as otherwise the motor would cool down
and close much slower than without it.

This time the wax actuator was observed for 3.5
days, the first two days the actuator was controlled with
a signal of 15 minutes ON and 45 minutes OFF, and the
last two days the signal was 15 minutes ON and 15
minutes OFF.

2.2 Modelling

The actuator was described by two models:

* Characteristic curve model

« Physical model
Both models calculate the linear position of the piston
based on the voltage applied to the wax actuator. Pure
hysteresis model was not included in this paper but
should be analysed in future works.

The valve model was used to translate the linear
piston movement of the actuator into mass flow through
the valve.



2.2.1 Actuator: characteristic curve

The characteristic curve model is a linear segment
model determined by four parameters: dead time, rise
time, hold time, and fall time. The principle graph is
shown in Figure 2. The model has four parameters. The
dead time occurs when the voltage is turned on and
therefore the PTC heater has started to heat the wax but
the wax has not reached the melting point yet. During
the rise time, the wax melts and expands, which moves
the piston. When all wax has melted, its temperature
increases but it does not expand and move the piston
further. When the voltage turns off, the wax cools down.
Before it reaches the melting point, it does not start to
contract. This time is called hold time. When the
solidification and therefore contraction starts, the hold
time ends and fall time starts. Fall time ends when the
actuator reaches its cold height. All four parameters
were determined for each heating cycle in Phase 1.
Average parameter value over all cycles was used for
comparison simulations.

stroke [mm] A Normally Closed (NC)
max

4 - . .

. E—

1

. /

dead : rise fall time
voltage tme : time ok e time
on ——
off voltage on

make break

Figure 2. Characteristic curve model of linear segments for
the actuator, adapted from [18]

2.2.2 Actuator: physical model overview

The physical model is based on first principles and was
developed by Lars Eriksson at EQUA AB in 2017 for a
private company. It has been published together with
IDA ICE software. However, to keep the company’s
secret, the original parameter values were deleted. The
adjustable parameters, their default and potential value
ranges are discussed in the next section. The model uses
enthalpy levels to keep track of the wax state in the
motor. The model implementation is shown in Figure 3.

The main limitations of the model include the lack
of modelling all springs in the system and that the heat
transfer to the ambient is greatly simplified. The heat
exchange with ambient is modelled with only resistance
without capacitance and the ambient temperature is only
an input not enabling the generation of heat balance.
Therefore, the heat transfer to ambient is just dependent
on the input temperature from the ambient and the
resistance. To use the air temperature in the room where
the manifold is situated, the resistance would have to be
large. Moreover, the delays due to the capacity of the
plastic cover cannot be described. Not modelling springs
increases the same effect. For improvement, the surface
temperature can be used as input. As the surface
temperature is not measured in typical applications, it

was not included in Phase 1. However, it was added in
Phase 2 to enable calibration.

The lack of surface temperature in Phase 1 was
solved with the measured room air temperature plus a
second-order transfer function from the heating signal.
Its parameters gain k, damping D, and angular frequency
w were fit to Phase 2 experimental surface temperature
via IDA ICE parametric runs connection to GenOpt
[19]. The possible value ranges were estimated from
time constants as we expect the first time constant to be
close to an hour and the second time constant to be close
to a minute. As transfer function denominator:

(t15 + D(t5 + 1) = (s/w)? + 2D(s/w) + 1 @))
Then:

w=1/\/17, 2)
D =w(r, +1,)/2 3)

These give the initial estimates of w and D to be around
0.002 and 4. Gain represents the temperature change
between the room and wax temperature.

2.2.3 Actuator: physical model parameter
estimation

The parameters and their possible values for the physical
model are shown in Table 1. N describes how many
different ambient temperatures and resistances are
modelled. This was kept at one. U defines the input
voltage at signal 1, which for the used actuators is 24 V.
Maximum displacements of the valve and actuator were
set to the same values to initially exclude the valve
effect. The displacement of 3.25 mm was determined
from the Phase 1 measurements, although when defined
equal, this effect is eliminated as the output of the model
is the position in decimal percentage. This will be later
multiplied with the known maximum displacement for
error evaluation. The last parameter set to a constant is
Thro. It is described as ,, Temperature at which H = 1ES
J/kg (default initial value of H). If initial value of H isn't
changed, T _HO becomes initial value of T.* [15] As the
initial value of H was not changed and the absolute
values of enthalpy are not of interest only the relative
differences, this can be fixed to some chosen value.
Default value was used.

As wax motors are declared to work in ambient
temperatures up to 60 degrees [18], [20], the melting
temperature T MELT has to be higher than this.
Specific heat capacity in solid state CP_SOL can be
according to different sources, for example, 2384 or
2604 J/(kg K) and for liquid state (CP_FLU) 2981 J/(kg
K) [21], or 2100 J/(kg K) for both [22]. These values
were included in the chosen range for both parameters.
The melting heat should vary from 200 to 220 J/g [21].
Estimating that there should be around 1 ¢cm® of wax
with a density of 0.8 g/cm® [21], the mass range M can
be guessed.

The parameters R 25 and T _CURIE describe the
PTC heater. T CURIE is the temperature where the
resistance becomes infinite large, ranging from 60 to



140 °C, for thermal actuators is typically at 90 °C [23].
R 25 is the resistance at 25°C, a possible value from the
literature is 50 K/W [24]. Between the surface
temperature and the wax, the materials and air result in
a thermal resistance described by R. Assuming only
insulation, this would be 100 K/W and only plastic 0.3
K/W.

Suitable values for all parameters were found with
GenOpt  (through IDA ICE Parametric Runs)
minimizing the MAE (mean absolute error) between the
measured and simulated linear piston movement.

CONTINUOUS MODEL RadWaxh

ABSTRACT "Wax actuator modelled using enthalpy formulation for the
solidification/melting.

Thermal resistances to multiple temperatures and source term describing
the effect dissipated in the FTC resistance. Source term is switched on/off
according to insignal.

Outsignal is normalized lift.

Date: July 5, 2017

By: LE at EQUA

Calls: none

Revision history:
EQUATIONS

< H_sol THEW
(H - H_sol) / cp_sol
< H_flu THEN

(H - H_flu) / cp_flu

END_IF ;

Q :=IF T < T curie THEN

Insignal * U**2 * (1 - (T - 25) / (T_curie - 25)) / R 25
ELSE
0
END_IF ;
M H' =SWMi=1, N (I_in[i] - T) / R[i] END_SUM + Q ;
OutSignal = IF mode_as == O THEN
o
ELSE IF mode_as — 1

THEN
max( 0.0, min( 1.0, (H - H sol) / (L_solid * RatVlvAct)))
ELSE
1

END_IF ;
mode := TF event (G0, H - H sol ) < 0 THEN
4
ELSE_IF event(Gl, H - H_open) < O THEN
1
ELSE_IF event (G2, H - H flu ) < 0 THEN
ELSE
2
END_IF ;

mode_as := mode :
PARAMETER PROCESSTNG
" T_melt > T_HO THEN
H_sol := cp_sol * (T_melt - T_HO) + 1.0ES ;
H flu := H sol + L _solid z
ELSE_IF T melt < T_HO THEN
H_flu := cp_flu * (T_melt - T_HO) + 1.0ES :
H_sol := H flu - L _solid ;
ELSE
CALL NMF_ERROR("T_HO must be different from T_melt"):
END_IF ;
RatVIvAct := MaxDispVlv / MaxDispAct ;
H open := H sol + RatVlvAct * L_solid ;

END MODEL

Figure 3. The implementation of wax actuator in IDA ICE,
the definition of all links, variables, and parameters has been
omitted here for conciseness

2.2.4 Valve model

Modelling the actuator and valve together would need to
transform the linear piston movement from the actuator
model into water flow. This is characterized by a valve
characteristic that maps the piston position to the

percentage of nominal flow. Manifold valves should
mostly be quick opening valves, as indicates the shape
of valve (5) in Figure 4 (a). Quick opening is not very
clearly defined, so the shape of the characteristic curve
has to be determined experimentally.

In addition, valve authority distorts the valve
characteristic in an experimental setting. Both curves are
shown in a hypothetical example in Figure 4 (b). Valve
authority is defined as the ratio of valve pressure drop to
total pressure drop. In the observed system, the circuit
starting from the storage tank can be observed as a
separate system and therefore, the components towards
the heat pump are not taken into account for pressure
drop analysis.

The whole system has been balanced for 800 1/h with
a balancing valve Comap DN 25 1” at 3 kPa the position
28 has been chosen (but zero has shifted, so the actual
position was 27) using the producer’s nomograms [25].
When closing all other circuits, the balancing valve
position was adapted to 9, and the volume flow of a
maximally open valve is at Gpg, =240 1/h. The
component wise pressure drops are estimated via
various sources [26] and shown in Table 2. The
estimation of all components started from the
assumption that the pump pressure head stays constant,
which is approximately valid as the pump curve at
average speed and volume flow below 800 I/s varies less
than 1 kPa [27]. All other components add up to dpsy,s =
27.2 kPa pressure drop. Therefore, the valve pressure
drop is 2.9 kPa and the K, of the regulating valve is
estimated to be:

0.01-V
K, =—=~14 “

vV dpvalve

and valve authority

dpvalue
N=—=01
dpvalve + dpsys (5)

The valve authority is very low, which is a result of
observing only one circuit in a system which is designed
for several circuits.

The actual volume flow is the volume flow from the
valve curve distorted by the authority, which can be
calculated from [28]:

(6)

Gy, =

where G, is the actual flow rate (in decimal percentage),
N is the valve authority calculated for the given linear
valve position, and k is the ratio of nondistorted and
maximal flow rates. As the valve authority changes for
the regulating valve during its opening and closing, the
calculation was reversed. We assumed Gy, from 0 to 1,
and at each step calculated N. As dpyqpe + dpsys =
dPpump> valve authority can be calculated at any valve
openness:

2
N = dppump - dpsys —1— dpsys -1— (G/Kv,sys) (7)
dppump dppump dppump



Where G is the actual volume flow Go,Gpax and Ky oy
is calculated from dpsys, and Gypqx. Now k can be
derived from Eq. (6:

(®)

And therefore, we have derived the nondistorted volume
flow from the distorted as G, = k(Gy) * Gpgy-
Assuming that the quick opening pattern is similar to a
logarithmic curve, usually the volume flow would be
calculated from the stroke percentage hy, as:

In(hsy,)

% = n(100 %) Ginax ©)

Therefore, now we can calculate backwards:
h% — ek-ln(IOO) (10)

When the mapping was once calculated as reversed, it
was numerically saved and could be later used for
calculating the volume flow from the piston linear
position.

Table 1. The parameters and their value ranges of the
physical model, bold values were fixed, based on prior
knowledge

Name Default Initial value Unit
(limits)
N 1 1 items
M 0.0005 0.0008 kg
(0.0005 to 0.002)
CP SOL 1200 2100 I/
(2100 to 3000) (kg K)
CP_FLU 1200 2100 I/
(2100 to 3000) (kg K)
L _SOLID 200000 210000 J/kg
(200000-220000)
T HO 20 20 °C
T MELT 75 75 °C
(60 to 80)

U 230 24 \4
MAXDISPVLV 1.5 3.25 mm
MAXDISPACT 3.5 3.25 mm

T CURIE 90 90 °C
R 25 290 50 K/'W
(5 to 300)
R 13 13 K/'w
(0.1 to 100)

Table 2. Pressure difference across components in the
hydraulic system with data sources, the pump head should be
the sum of all other pressure drops

Component dp, kPa

Pump [27] 30

Circuit balancing valve on supply side 3.6

Circuit [29] 1.1

Regulating valve (calculated) 2.9

Heat meter [26] 4.5

Balancing valve [25] 10.8

10 knees [29] 7.1

Three-way valve in mixing station (Kv=8) 0.1
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Linear opening, %
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Figure 4. (a) Valve cross-section showing the valve shape (5)
to indicate quick-opening valve [30] and (b) the
corresponding (theoretical) valve characteristic curve, also
distorted by valve authority

Table 3. Configuration of initial values and tested value
ranges of input parameters for surface temperature
optimization

Name Value Unit  OK range Distribution Resolution
[ J'Y 10.0 [130] UNIFOREM 101
W 1.0E4 [1.0E4 0.1] UNIFORM 101
mD 1.0 [0.110] UNIFORM 101

<<<<<<<<<<<<< Heating signal
Measured surface temperature
Simulated surface temperature
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Figure 5. Actuator surface temperature fitting results

3 Results

3.1 Surface temperature estimation

The GenOpt optimization parameters for calibrating
wax motor surface temperature were set up as shown in
Table 3. The found optimal values were k=18.5,
D=0.56, and w=0.0011. The MAE (mean absolute error)
for the simulated period was 0.67 K. Comparison of
fitted and measured temperatures is shown in Figure 5.



3.2 Actuator model

3.2.1 Physical model parameters

The temperature model from the previous section was
included for calibrating the physical model to Phase 1
data. The wax motor parameters were defined for the
optimization of linear piston movement as shown in
Table 4. The minimal stroke MAE of 0.14 mm was
reached at melting temperature 72 °C, specific heat for
fluid 2910 and for solid 2930 J/kgK. Melting heat was
achieved at 203 J/g. The thermal resistance to ambient
was set to 52 K/W, PTC resistance at 25°C to 97 K/W.
The wax mass value of 1g was reached. The comparison
with measurements will be shown in Section 3.2.3.
Running the optimization with different sets of variables
and fixed parameters as well as different ranges, orders,
and initial values, different results can be achieved.
Further analysis would be needed in the future to detect
an even better combination of parameters.

Table 4. Optimization parameters for piston movement
calibration

Name Value Unit OK range Distribution Resolution
miT_MELT 75.0 C [60 80] UNIFORM 21
mCPFLU 21000 J(kgK) [2100 3000] UNIFORM 21
mCP SOL 21000 J(kgK) [2100 3000] UNIFORM 21

mL_SOLD 2100000 Jkg  [200000 220000]  UNIFORM 21
= R[] 13.0 KW [0.1100] UNIFORM 21
mR_25 50.0 KW [5300] UNIFORM 21
=M BOE4 kg [5.0E4 0.002] UNIFORM 21

3.2.2 Characteristic curve parameters

The characteristic curve parameters measured for each
period in the 8-hour experiment in Phase 1 are shown in
Figure 6. We can see that in total, the actuator is fully
opened 5.6 minutes after the heating starts and fully
closed 4.4 minutes after the heating has stopped. In this
test, the operation was periodic, but in the future,
different patterns of heating should be applied to
determine the effect of initial temperature on the
characteristic curve parameters.

3.2.3 Comparison

We compare both the characteristic curve and the
physical model in the same period of measurements.
The results are shown in Figure 7. The MAE for the
characteristic curve was 0.05 and for the physical model
0.07 mm. This is less than 5 % of the absolute maximum
value but 10 % and 8 % of the average stroke,
respectively, during the test. However, according to the
physical model, the actuator piston started moving more
than 1 minute earlier both at opening and closing than
seen in measurements. Character curve performed very
well as it had been fit to the same data. Both models
should also be tested on new data.
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Figure 6. Characteristic curve parameters fitted to Phase 1
experimental data
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Figure 7. Stroke according to the two models compared to
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3.3 Volume flow comparison

The resulting valve characteristic and its distortion due
to valve authority were the same that are shown in
Figure 4 (b). Applying these to the stroke calculated
from the two actuator models, we can compare the
resulting volume flow dynamics. These results are
shown in Figure 8. MAE of the physical model is 19 %
of the average volume flow during the period and the
characteristic curve has MAE of 7 %. Characteristic
curve seems to predict the increase of volume flow
precisely, while with the physical model, currently
almost 2 minute shift can be observed. In the cool-down,
both models are a minute late.

4 Discussion and conclusions

The opening of the wax actuator and therefore the
underfloor heating circuit from fully closed to fully open
took 5.6 minutes in this study. The opening started at
around 2.4 minutes (dead time). If the signal to start
heating comes 5 minutes in advance from the power
grid, the valves could be mostly open at the time the
heating actually starts. However, it is not clear whether
the 5-minute warning will be the reality and whether the
opening speed of the valves is enough to ensure the heat
pump would not overheat.

Both the physical and characteristic curve fit the
measured data well, missing opening and closing times
by maximally one minute. The translation to volume
flow has larger error than modelling only the linear
movement of the actuator piston. Although the mistake
is small, this one or two minutes can be crucial for grid
balancing. As the valve characteristic was not exactly
known, the discrepancy in volume flow could be
improved when the exact valve curve of the valve is
known.

The main limitations of the physical model are the
current implementation of heat transfer to ambient,
which does not include capacity. This leads to the need
of measured surface temperature of the motor, which is
usually not available. Another limitation of this model
is that the springs in the motor are not modelled. These
could explain the delay effect as well.

In the current paper, the physical and the
characteristic curve parameter estimation is preliminary.
The physical model parameters were estimated by
GenOpt but there was a large range of many parameters
tested and there could have been many optimums. What
is more, the experiments were short and did not include
a large variety of different situations. In future, the
characteristic curve parameters would need to be
calculated for different situations and if needed, made
dependent on the initial situation. In the future, the pure
hysteresis model used in the actuator industry should be
analysed as well.
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Buildings and Districts, ZEBE (grant 2014-2020.4.01.15-
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Setback Efficiency of Limited-Power )
Heating Systems in Cold Climate ety

Tuule Mall Kull, Raimo Simson and Jarek Kurnitski

Abstract The main aim of this work is to analyse the energy saving potential and
peak power impact resulting from the temperature setback approach. This paper
analyses low energy buildings incorporating high-efficiency heating systems with
limited power, as additional power for district heating and heat pump systems will
need costly investments. The setback efficiency is estimated for different types of
heating systems. Underfloor heating is compared to radiators both for limited and
excess power. Based on estimated time constants, suitable heat-up time is calculated
to minimise the time when temperatures stay below setpoint during occupancy. The
energy saving potential of night-time and weekend setback periods in an office are
analysed. It is found that the energy saving potential of setback is low under given
constraints. Therefore, for modern buildings the cost-optimality has to be assessed
separately for specific cases.

Keywords Temperature setback efficiency - Low-energy buildings
Limited power - Cold climate

1 Introduction

The method of periodically decreasing the set temperature of heating systems in
buildings when the rooms are vacant, often called intermittent heating or the set-
back approach is a widely used method for energy saving. In several studies [1-3]
energy saving potentials of up to 20% were identified. In single cases, the observed
reductions are much higher [4] or much lower [5]. In the mentioned studies, mostly
moderately insulated buildings are considered with simple setback control mech-
anisms based on pre-defined set-temperature schedules. However, such an approach

T. M. Kull () - R. Simson - J. Kumitski
Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
e-mail: tuule.kull@ttu.ee

J. Kurnitski
School of Engineering, Aalto University, Rakentajanaukio 4A, 02150 Espoo, Finland

© Springer Nature Switzerland AG 2019 87
D. Johansson et al. (eds.), Cold Climate HVAC 2018,
Springer Proceedings in Energy, https://doi.org/10.1007/978-3-030-00662-4_8



88 T. M. Kull et al.

generates discomfort during the times when people arrive and the temperature has
not achieved its set value. In recent years, most intermittent heating control systems
for low energy buildings include advanced control methods to solve this problem
[6]. However, these are not simple to apply. Applying setback temperatures requires
over-dimensioned heating systems to enable fast heat up times [7]. However, a
typical advantage of modern low energy buildings is the utilization of low
peak-power heating systems which reduces the building’s investment cost.

Our assumption is that only very low energy savings can be achieved by tem-
perature setback in modern well insulated buildings and therefore the required
investment in over-sized heating systems is not profitable. Therefore, the efficiency
of intermittent heating in modern and old buildings is compared in this work.

2 Approach
2.1 The Building Description

Envelope. The room model used for the simulations is a 13.3 m? office with a 3-m?
window facing north. We have previously described this model with all con-

struction specifications for modern and old buildings as well as heavy and light
construction types in [8]. The room has one external wall and an external floor over
outdoor air, therefore, its heating demand is larger than for an average office
building. This case is defined as ‘standard’ office. For comparison, a similar office
room with less insulation is defined as ‘old’ office. The third configuration is
referred to as ‘modern’ as it has standard constructions but its floor is adiabatic and
the window is south-facing. The total heat loss coefficient (without ventilation
system) is 7, 9 or 18 W/K for modern, standard, and old buildings respectively.

Ventilation and internal gains. We have redefined the internal loads and venti-
lation control according to the Estonian norms for office simulations [9], meaning
that the ventilation airflow is 2 1/s/m? during the occupancy hours (7 a.m. to 6 p.m.
at workdays) and 1 h before and after this timeframe. The usage profile is depicted
in Fig. 1. These usage factors are multiplied with 5.8 W/m? for occupant heat gain,
and 9.5 W/m? for heat gains from lighting and electrical appliances. During the
weekends and holidays the building is not in use. The supply air temperature of the
ventilation is 18 °C. For the modern offices, 80% heat recovery from the exhaust air
is assumed, whereas the old building has no heat recovery at all. The infiltration in
modern buildings is 1.3 1/s; in the old buildings, it is included in the ventilation.

Heating systems. Two types of limited power heating systems are simulated: ideal
heaters and electric floor heaters. Ideal heaters represent radiators (Rad) supplied by
a district heating system, while electric floor heating represents underfloor heating
(UFH) supplied by a heat pump. Using the electric/ideal systems replaces here the
function of raising the heating curve to achieve maximum output power of the
systems during the heat-up. The nominal power of the modern systems is 273 W,
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Fig. 1 The isometric view of the simulated zone (on the left, screenshot from software IDA-ICE)
and the usage factor profile

of standard systems 437 W, and for old systems 1656 W. For the comparison with
a gas boiler supplied radiator-based heating system, which can be easily over
dimensioned without distinct cost increase, ideal heater cases with 684 W in
standard light and 1367 W in heavy offices are simulated and defined as
‘over-dim-Rad’. These are dimensioned according [7] to weekend setbacks.

Simulation. The building is simulated in IDA-ICE 4.7.1 software [10] using
Estonian TRY [11] as climate data. The heating season is assumed to be from 1st of
October to 30th of April.

2.2 The Control Description

Reference case. The performance of the setback control is evaluated by comparing
the required heating energy demand against the demand of a reference case, where a
constant temperature of 21 °C is maintained by a proportional-integral
(PI) controller in the same room. Here, the performance is defined as the heating
demand for both space heating and supply air heating by the air-handling unit.

Control algorithm. The setback control also keeps the air temperature during the
occupancy hours at 21 °C with PI control, only it is reduced to 18 °C during
unoccupied hours. However, to ensure comfort conditions when occupancy starts
the required heat-up time, until comfort temperature is reached, is calculated.

If that calculated heat-up time is longer than the actual time left to the start of
occupancy hours, the set temperature is changed to 21 °C overriding the initial PI
control. If the temperature rises faster than estimated, the set temperature is turned
back to 18 °C again.

Heat-up time calculation. The heat-up time is the time the system needs to heat the
room up to 21 °C again from setback. It is calculated every 5 min. For that, the
one-time-constant model for the building is used. From the heat balance equation of

CG = 0o = 0) +® 1)
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Table 1 Calculated input parameters used for preheat-control in intermittent heating

Energy-efficiency | Str. Heat Abbrev. Tn | Twnd | @ H Co0mm
level mass | emitter ) [ (W) |(W/K) |(KI/K)
Standard Heavy | UFH S_H_UFH 50 (225 437 |9 1677
Standard Heavy |Rad S_H_Rad 50 |225 |437 |9 1677
Standard Light |UFH S_L_UFH 50 |150 ;437 9 1561
Standard Light |Rad S_L_Rad 50 |150 f437 9 1561
Old Heavy |Rad O_H_Rad 25 [125 1656 |18 1677
Old Light |Rad O_L_Rad 25 |75 1656 |18 1561
Modern Heavy | UFH M_H_UFH |50 |300 :273 7 1677
Modern Heavy |Rad M_H_Rad 50 (300 |[273 |7 1677
Standard Heavy | Over-dim |S_H_O_Rad |50 |225 |1367 |9 1677
Rad |
Standard Light |Over-dim |[S_L O Rad |50 |150 |684 |9 1561
Rad

for the indoor temperature 6;,, the solution for the heat-up time is derived:

_ q)/H — 0set+00ut
t——‘c-ln(q)/H _gin"l_gout)' (2)

® is the heating power in watts, H is the heat loss coefficient (W/K), 6,,, is the
exterior air temperature, 6, is 21 °C and 0,, is the current indoor air temperature.
7 is the time constant in seconds, however in this work it is always converted to
hours. It is calculated as © = C/H. C represents the heat capacity of the air and
structures (J/K). For the calculation of time constant for night setback, the surface
layers up to 20 mm depth are included into the heat capacity calculation. The active
layer depth of 100 mm is used for weekend setback [12]. The time constants are
quantized; they are rounded to the closest 25 h. This is done to use approximate
values, as the exact values are not known in real cases. The used values are shown in
Table 1. The 100 mm heat capacity values are approximately four times higher than
the 20 mm values shown in the table (7449 kJ/K for heavy and 5002 kJ/K for light).

3 Results and Discussion

3.1 Energy Performance

The simulated energy demands for all observed cases are shown in Table 2. It can
be seen that the energy consumption in the air-handling unit is almost equal for all
the modern and standard cases; it is zero for old buildings, as the supply air is not
heated. The total reduction of energy demand resulting from the intermittent heating
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Table 2 Energy need results for constant temperature and setback control cases

Space heating Air handling unit Total [kWh/(m? a)]

[kWh/(m” a)] [kWh/(m” a)]

21 °C Setback 21 °C Setback 21 °C Setback
S_H_UFH 52 47 15 17 68 64
S_H_Rad 48 44 16 17 65 62
S_L_UFH 53 47 15 17 68 64
S_L_Rad 48 43 16 17 64 60
O_H_Rad 207 195 0 0 207 195
O_L_Rad 206 194 0 0 206 194
M_H_UFH 17 15 14 15 31 30
M_H_Rad 15 13 15 16 30 29
S_H_O_Rad 49 44 16 17 65 61
S_L_O_Rad 48 42 16 17 64 60

operation is shown in Fig. 2. All observed cases result in heating demands reduced
by approximately 4-7% when setback control is compared against the constant
temperature reference cases. However, the absolute reduction differs significantly
between construction types, as the net heat demand between the evaluated cases
ranges from 29 to 195 kWh/(m? a). While for the old buildings the reduction is
about 12 kWh/(m” a), then for the south-oriented low energy buildings the
reduction is only 1 kWh/(m? a). For heavy construction, setback efficiency is in all
cases marginally less than for the corresponding light construction case.

3.2 Temperature Performance

Weekly fluctuations. The resulting air temperatures in the observed office during a
two-week period in winter are depicted for all simulated cases in Fig. 3. In Fig. 3a, we
can see that for the well-insulated room, air temperatures do not decrease to 18 °C
(lower horizontal interrupted line), staying even for weekend setback above 19 °C.
Moreover, the graph shows that the PI-control cannot hold a constant temperature
during the day (set temperature level of 21 °C shown in upper horizontal dashed line)
and the room overheats for the floor-heating case.

Figure 3b illustrates the known observation that a room with higher heat
capacity cools down slower. In case of a light building structure, the temperature
can decrease to 18 °C even for the floor heating case the Fig. 3b shows. Still, the
temperature change is slow and the set temperatures difficult to maintain.

Compared to these, changes in temperature for radiator cases in Fig. 3¢ are
faster. PI control with the radiators maintains the temperature setpoint well.
However, during the heat-up fluctuations occur.
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Fig. 2 Energy performance of the intermittent heating, absolute difference from the reference
cases on the left and relative on the right. The abbreviations in the labels are explained in Table 1

In Fig. 3d, we can see that the over-dimensioned radiators allow for stronger
room temperature reductions than in the corresponding cases with regular heating
dimensioning in Fig. 3c. However, Table 2 shows that the resulting reduction of
energy demand is not higher than 1 kWh/m? a.

Figure 3e shows that in old buildings the temperature drops to 18 °C almost
immediately and, due to the high available heating power, raises up to 21 °C fast as
well. Therefore, in the old building case, the setback potential is fully exploited.

Heat-up performance. In all the temperature graphs (Fig. 3), we can see that for
the heavy building cases the temperatures fluctuate before reaching the set tem-
perature. This is because the actual temperature increase is significantly faster than
modelled and the system lets the room cool down again until it calculates that
heat-up should be started again. In Fig. 4. we can see that the fluctuation after
weekend setback (on Monday) is more significant than after night-setback (Friday).
While on Friday, the setpoint (21 °C) is reached by the start of occupancy in most
of the evaluated office rooms, it is not the case on Monday. However, the tem-
peratures are above 20 °C when occupancy begins in all observed scenarios. On
Friday, as an exceptional case, S_L_UFH cools down fast but does not manage to
heat up on time.

Heating season. The overall temperature performance during the heating season is
depicted in duration graphs in Fig. 5. Figure 5a illustrates the difference between
the two heat emitters. We can see that the floor heating is not keeping the given set
temperatures, as the graphs are smooth, whereas the plateaus in the radiator graphs
show that to some extent set temperatures are maintained. In Fig. 5b, we can see
that there is a very clear difference between the different insulation levels. While the
plateaus are very clear in the old house case, the modern south-oriented building
has very small energy losses and it has significantly higher temperatures. The
standard cases can be found between these two extremes. Figure 5¢ compares
heavy and light structures in old and modern buildings. The slower cool-down of
the heavy buildings results in higher temperatures in the duration graph.
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Fig. 5 Temperature duration graphs over the heating season

4 Conclusion

This research shows that the absolute setback efficiency in modem office buildings
is significantly lower than in old buildings. This is mainly because the air tem-
perature does not drop as fast and it stays above allowed minimal limit during the
nighttime setbacks. For floor heating cases, this applies even for weekend setbacks.
It has been shown that buildings with lower thermal mass and faster reacting
heating system have higher energy conservation potential when applying inter-
mittent heating operation. The setback control for old office buildings is always
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profitable. However, for modermn and especially modern buildings with slow
reacting heating system, the benefits of setback control are low, especially in
absolute numbers. Before applying, the saving needs to be weighed against
potential discomfort and additional cost for every specific case.
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Appendix 2

Implementation of wax motor in IDA ICE by Lars Eriksson
CONTINUOUS_NDDEL RadWaxa

ABSTRACT "Wax actuator modelled using enthalpy formulation for the
solidification/melting.

Thermal resistances to multiple temperatures and source term describing

the effect dissipated in the PTC resistance. Source term is switched on/off
according to insignal.

Cutsignal is normalized 1lift.

Date: July 5, 2017
By: LE at EQUA
Calls: none

Revision history:

EQUATIONS

T := IF H < H_sol THEN
T melt + (H — H sol) / cp_sol
ELSE_IF H < H_flu THEN

T melt
ELSE
T melt + (H — H flu) / cp_flu
END_IF ;
Q := IF T < T_curie THEN
Insignal * U**2 * (1 - (T - 25) / (T _curie - 253)) / R_25
ELSE
END_IF ;
M* H' =suMi=1, N (T in[i] - T) / R[i] END SUM + Q ;
CutSignal = IF mode_as == 0 THEN
ELSE IF mode_as == 1 THEN
max( 0.0, min{ 1.0, (H - H sol) / (L _solid * RatVlvAct)))
ELSE
1
END_IF ;
mode := IF event (G0, H - H_sol ) < 0 THEN

ELSE IF event (Gl, H - H _open) < 0 THEN

1
ELSE IF svent(G2, H - H_flu ) < 0 THEN
2
ELSE
2
END IF ;
mode as := mode ;
LINKS
/* type name variables *
FOR 1 = 1, N
i Surtemp[i] T In[i];
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GENERIC CutSignallink
GENERIC InSignalLink

VARIABLES

/* type name rol
Temp T LOC
Temp T_in[N] IN
Enthalpy H ouT
HeatFlux o] LoC
Generic OutSignal ouT
Generic InSignal IN
Generic GO a3
Generic Gl a3
Generic G2 A s
Generic mode_as a3
Generic mode LOC

MODEL PARAMETERS

/* type name rol
Int N SMP

PARAMETERS

/* type name rol
Ma=ss=s M 3 F
HeatCapM cp_sol sS_P
HeatCapM cp_flu sS_P
Enthalpy L_solid s P
Temp T HO sS_P
Temp T melt S_P
HeatRes R[N] sS_P
Voltage U S P
Generic MaxDispVlv S _P
Generic MaxDispAict S P
Temp T curie 5 P
HeatRes R 25 sS_P
Factor RatVlvAct cC_ P
Enthalpy H sol cC_ P
Enthalpy H flu B IE
Enthalpy H open cCP

PARAMETER PROCESSING

CutSignal (output);

InSignal (input);

min

max

20 ABS_ZERO BIG
20 ABS_ZERO BIG
1.0E5 —-BIG BIG
3 ] BIG
] ] 1
] ] 1
] —-BIG BIG
] —-BIG BIG
0 —BIG BIG
] ] 1
] ] 1
e def min max
1 1 BIGINT
e def min max
0.5E-3 SMALL BIG
1.2E3 SMALL BIG
1.2E3 SMALL BIG
2.0E5 0 BIG
20 ABS_ZERO BIG
73 ABS_ZERC BIG
13 SMAT.L BIG
230 ] BIG
1.5 SMAT.L BIG
oD SMAT.L BIG
] ABS_ZERO BIG
290 SMAT.L BIG
0.43 SMAT.L BIG
12 —-BIG BIG
12 —-BIG BIG
12 —-BIG BIG

- T HO) + 1.0E5 ;

H
- T HO) + 1.0ES ;

;

"Temperature"

"Temperature at surrounding
"Enthalpy"

"Heatflux"

"Qutsignal, between 0 and 1"
"Insignal, 0 or 1"

nn

"mode of operation, 0 = , 1
"mode of operation, 0 = , 1

"Specific heat of solid phas
"Specific heat of fluid phas
"Melting heat"

"Temperature at which H = 1E
If initial value of H isn't
"Temperature at which meltin
"Thermal resistances to surr
"Tension"

"Max displacement of wvalve (
"Max displacement of actuato
"PTC switch temperature wher
infinite large"

"PTC resistance at 25 C"

"Max displacement ratio valw
"Enthalpy at which melting s
"Enthalpy at which solidific
"Enthalpy at which actuator

CALL NMF ERROR("T_ HO must be different from T melt");

IF T melt > T HO THEN
H sol := cp_sol * (T_melt
H flu := H sol + L solid

ELSE IF T melt < T HO THEN
H flu := cp_flu * (T_melt
H sol := H flu - L solid

ELSE

END_IF ;

RatVlvAct := MaxDispVlw / Ma

H open := H_sol + RatVlvact

END MODEL

xDisplAct ;

* L_solid ;
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