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Abstract 

Corpus phonetics has become increasingly popular in the linguistic research 

community. Phonetics is a branch of linguistics that studies the properties of human 

speech and corpus phonetics is the study of language as expressed in samples of the 

real-world speech, i.e. the corpus.  

For the purpose of corpus phonetics, it is vital to have an accurately phonetically 

segmented speech corpus, but creating one is time-consuming as it requires a lot of 

manual labour. It is estimated that to annotate 1 second of speech data it requires 100 to 

1000 seconds of manual work [1]. The prospect of reducing the need for such manual 

labour would be of significant benefit to the scientific community and would enable 

researchers to spend their time doing more worthwhile tasks.  

This thesis proposes a novel end-to-end deep learning architecture for phoneme 

segmentation based on Soft Pointer Networks, which when given an audio segment and 

an unaligned phoneme label transcription, produces a well-formed phoneme boundary 

timestamp. The main feature of this model is that it can learn differentiable positions or 

indices for queries using a position gradient without losing temporal information. The 

model was trained and evaluated on the sizable and widely cited manually segmented 

TIMIT speech corpus. The source code is available at Github [2]. 

The results on the TIMIT Acoustic-Phonetic Continuous Speech Corpus showed that it 

outperforms previous baseline models on almost all agreement boundaries. Most 

notably 57.28% on the 5ms agreement boundary, which is a 9% improvement, and 

94.61% on the 20ms agreement boundary, which is a 0.69% improvement.  

This thesis is written in English and is 76 pages long, including 12 chapters, 34 figures 

and 16 tables. 
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Annotatsioon 

Täielikult närvivõrkudel põhinev häälikupiiride leidmine 

Korpus-põhise foneetika tähtsus on lingvistilises töös aina kasvanud. Foneetika ehk 

häälikuõpetus on keeleteaduse haru, mis uurib kõneldava inimkeele omadusi ja korpus-

põhine foneetika uurib seda lähtuvalt pärismaailma näidete kogumist ehk korpusest. 

Korpus-põhise foneetika põhiliseks uurimisobjektiks on suured hääliku tasemel 

segmenteeritud kõnekorpused, mille loomine aga nõuab palju aeganõudvat manuaalset 

tööd. Märgendite kiireks genereerimiseks kasutatakse tihti küll automaatseid tööriistu, 

kuid nende vähese täpsuse tõttu vajavad need käsitsi parandamist, mille tõttu kulub 

hinnanguliselt 1 sekundi kõne segmenteerimiseks 100 kuni 1000 sekundit [1]. Seetõttu 

on oluline, et automaatse segmenteerija leitud piirid oleks võimalikult täpsed, kuna see 

aitab kokku hoida sadu tunde manuaalset tööd. 

Selle probleemi lahendamiseks loodi käesolevas töös häälikupiiride leidmiseks uudne, 

täielikult närvivõrkudel põhinev Soft Pointer Network arhitektuur, mille sisendiks on 

kõnelausung ja sellele vastav joondamata ortograafiline foneemide jada, ja väljundiks 

kõnes olnud täpsed foneemipiirid. Selle mudeli märkimisväärseks omaduseks on võime 

vastata päringutele diferentseeritavaid positsioone ja indekseid kasutades positsiooni 

gradienti ja ajalisi seoseid sisendis. Mudeli treenimine ja hindamine tehti laialt 

teadustöös kasutatava ja mahuka manuaalselt segmenteeritud TIMIT kõnekorpusega. 

Lähtekood on kättesaadav Github-is [2]. 

Töö tulemusel loodud mudel saavutas TIMIT Acoustic-Phonetic Continuous Speech 

Corpus kõnekorpuses varasemate lähtetaseme lahenduste võrdluses paremaid või 

võrdseid tulemusi kõigis tolerantsi piirides. Kõige olulisemalt 57.28%, mis on 9% 

rohkem 5ms tolerantsi piirides, ja 94.61%, mis on 0.69%  rohkem 20ms tolerantsi 

piirides.  

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 76 leheküljel, 12 peatükki, 34 

joonist, 16 tabelit. 
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List of abbreviations and terms 

ANN Artificial neural network 

API Application programming interface 

ASR End-to-end automatic speech recognition  

BRNN Bidirectional recurrent neural networks 

CNN Convolutional neural network 

DTW Dynamic time warping 

GRU Gated recurrent unit 

HMM Hidden Markov Model 

IDE Integrated development environment 

L1 Manhattan Distance 

L2 Euclidean distance 

LSTM Long short-term memory 

MSE Mean squared error 

ReLU Rectified linear unit 

ResNet Residual neural network 

RNN Recurrent neural network 

Tanh Hyperbolic tangent function 

TTS Text-to-speech 

Seq-2-Seq Sequence to sequence translation RNN 

WAV Waveform Audio File Format 

Artificial neural network A computational model inspired by biological neural networks 

Attention mechanism An alternative method to enable RNN to access information 

over arbitrary time intervals 

Decoder A recurrent neural network to decode the encoded input 

sequence into the target sequence. 

Convolutional neural 

network 

A variation of ANNs where the computations on a tensor are 

performed by the means of a shifting filter 

Dynamic time warping Similarity measurement and alignment method between two 

temporally warped sequences 

Encoder A recurrent neural network to encode the input sequence to a 
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intermediate state. 

End-to-end automatic 

speech recognition 

A model which jointly learns the pronunciation, acoustic and 

language model components of a traditional speech recognition 

system 

Logit A function that maps probabilities [0, 1] to (-inf, inf) with a 

probability of 0.5 corresponds to a logit of 0 

Long short-term memory A specific architecture of an RNN designed to remember values 

over arbitrary time intervals 

Mel-frequency cepstrum A representation of a sound spectrogram using the nonlinear 

Mel scale 

Phoneme A distinct unit of sound specific to language to describe speech 

Recurrent neural network A variation of ANNs where the computations are performed 

along a directed graph 

SmoothL1Loss A loss function that uses a squared term if the absolute element-

wise error falls below 1 and an L1 term otherwise. 

Softmax A normalized exponential function that produces probabilities 

proportional to the exponentials of the input numbers 

Spectrogram A visual representation of sound frequencies of a signal 

Speech corpus A database of audio and transcriptions for speech 

Tensor A generalization of an algebraic matrix used to describe 

relationships between data 

Time-series segmentation A process to sequence a time-series into discrete segments in 

order to describe temporal features of the source 

Transcription A systematic representation of language 
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1 Introduction 

Corpus phonetics has become an increasingly popular method of linguistic research in 

the Estonian language research community. Phonetics is a language research area, 

which studies the acoustic bits that make up our language. As the focus in corpus 

phonetics for studying the properties of human speech, it is vital to have an accurate 

phonetically segmented speech corpus. 

Phonetically segmented speech corpora have a wide area of applications. For example, 

they are used to train automatic speech recognition and Text-To-Speech synthesis 

models. Moreover, in the context of linguistic research, they provide a data-driven 

approach to derive the abstract rules and relations of languages based on real-world 

samples [3] [4].  

Changes in someone’s temporal processing of speech can be a sign of age-related 

changes which is why investigating these patterns is so vital health-related research. 

With an accurate determination of phoneme boundaries, it may be even possible to 

modify speech stimuli in the correct regions and improve dysarthric speech [5].  

Phonetically segmented speech corpora are also widely used in Estonian phonetic 

research. For example, the recent study [6] used manually segmented recordings of the 

Estonian Foreign Accent Corpus [7] [8] to examine the differences of the pronunciation 

of Estonian between native Estonian and native Finnish speakers. Another recent study 

[9] explored the acoustic correlates of secondary stress in Estonian. The research was 

conducted on recordings of six informants and the segmental boundaries for stressed 

syllables were manually annotated by two experienced phoneticians [9]. Both works 

were possible because of the use of a manually segmented speech corpus.  

Speech segmentation is carried out by a linguistics expert who marks the phonetic 

boundaries in the speech utterance. For this, the speech spectrograms, energy, duration 

of various speech sound events and pitch are considered. It has been observed that no 

two human annotators are likely to produce the same phonetic boundary for a given 
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speech utterance [10]. Moreover, creating such a corpus is time-consuming as it requires 

a lot of manual labour. It is estimated that to annotate 1 second of speech data it requires 

100 to 1000 seconds of work [1]. The prospect of reducing the need for such manual 

labour would be of significant benefit to the scientific community and enable 

researchers to spend their time doing more worthwhile tasks.  

There is active research being done to solve this issue for the Estonian language 

research community. For this reason, the TalTech and WebMAUS systems have been 

evaluated for phoneme segmentation against a manual generated expert Estonian speech 

corpus, where they have been shown to be reliable enough for some language research 

[1]. One recent research thesis was exploring the topic of deep learning end-to-end 

speech recognition, but it was reported to underperform when compared to the more 

traditional HMM-based solutions [11]. Furthermore, as seen in Table 1 in paragraph 3, 

there has been interest internationally. It stands that there is significant interest in these 

kinds of solutions. 

It can be demonstrated that existing ASR systems, such as the TalTech system and 

WebMAUS, could annotate a whole audio segment in seconds. Those systems are 

currently used to generate a quick baseline which requires manual corrections, albeit 

consuming less time than without using it as a starting point. To reduce human 

involvement in this process would require a more accurate system. 

The key reason why those systems might not perform as well as necessary is that they 

are not designed for this kind of use-case. Currently, what those models are trained for 

is not to segment individual phonemes but to do general speech recognition. It stands to 

reason that an application-specific model would perform significantly better. 

There are already plenty phonetically segmented speech corpora with hours of hand-

aligned transcriptions available that could be used to train this new system. The key 

problem to solve is to phonetically segment the already gathered research datasets of 

audio recording with the known unaligned source text.  

The goal of this thesis is to research and propose a better end-to-end deep learning 

segmentation system, which when given an audio segment and an unaligned phoneme 

transcription would outperform the current phoneme alignment solutions. For 
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benchmarking and reproducibility, the system is evaluated on the English TIMIT 

Acoustic-Phonetic Continuous Speech Corpus. 

The first part of this thesis explains the background of sound, speech, and language and 

gives an overview of the current research and technical solutions. The third chapter 

gives an overview of the previous research done on this topic and the presented findings 

are used to create the baseline for this thesis. The fourth chapter defines and explores 

the dataset used in this thesis. It also provides possible training target encodings that 

arise from the nature of the data and research problem. The next chapter explains the 

methodology of model design and validation. The next four chapters propose three 

distinct modes of solving the problem and present the results for the most promising 

solution. The final proposed Soft Pointer Network architecture with the best results is 

then compared to the precursor Pointer Network while explaining the distinct 

improvements over it. Finally, the thesis brings out possible future research for the 

proposed end-to-end phoneme segmentation system and summarizes the final findings.  

 

 



16 

2 Background 

The main object of this research is speech recordings with phoneme transcriptions. 

Phonemes are fundamental units of human speech that represent sounds. Phonemes are 

what let us distinguish different words. Each language has its phoneme system. [12] 

In speech recognition, the input speech is produced by the continuous motion of the 

vocal tract while the words are constrained by syntax and grammar. In many cases, the 

alignment between inputs and labels is unknown because of this complex relationship. 

To produce a phonetically segmented speech corpus from the recited source text and 

audio recordings, it is vital to be able to produce alignment between the labels and the 

speech. This requires the use of algorithms able to determine the location of the output 

labels [13].  

2.1 Sound Data  

The first part of speech recognition is sound. Sound data must be extracted from 

physical sound by the means of signal capture devices such as a microphone. The 

electrical analog signal that a microphone produces must be converted to a digital signal 

to be used in a computer. This is done with an analog-to-digital converter. The result is 

a waveform consisting of signal intensity over time. 

Figure 1 offers an example of audio waveforms representation of an utterance, where 

the sound amplitude is plotted for each distinct moment in time. In plot 1 the whole 

utterance is shown where distinct parts of a sentence can be observed. Whereas in plot 2 

the chaotic change of amplitude in a short timeframe shows the complexity of sound. 
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While using raw audio has become more common, the research is still largely focused 

on transformations such as the Mel-scale power spectrum for extracting frequency band 

features [14] [15]. These raw audio waveforms contain tens of thousands of values per 

each second of audio. Dealing with this raw audio signal is possible but requires a lot of 

training. Transformed audio has been used in various fields such as sound and music 

modelling and speech recognition [16]. 

The main motivation for using transformations methods such as Mel-scale power 

spectrum is that audio can be approximated by a stationary process in short timeframes 

to extract relevant features and reduce bloat. The general idea is to sample the 

intensities of frequency bands of sound for each 10ms window of the audio recording. 

This is inspired by the human perception of such signals to approximate the frequency 

response of a human ear which is not as granular as a recording but has been formed by 

evolution to focus on the parts that are most important to speech, filtering out all the 

unheard noise.  

The following formulas (1) and (2) shows how to convert between hertz 𝑓 and Mel 𝑚. 

𝑚 = 2595 log10 (1 +
𝑓

700
)                                                    (1) 

𝑓 = 700(10𝑚 2595⁄ − 1)                                                         (2) 

In Figure 2, the Mel-scale power spectrum transformation has been applied to the 

previous utterance sample. The total length of the audio segment has been reduced to 

around 130 feature-rich samples. The change of volume and pitch become more 

apparent even when viewing the whole audio sample. When tracing the change of sound 

 

Figure 1 Audio waveform. 
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frequencies, represented in the transformed audio feature dimension, over the discrete 

audio sample steps, the unique signature of human speech can be observed. 

 

2.2 Measuring Phoneme Alignment 

The transcriptions are used to mark meaning to each audio segment. The dataset 

transcriptions contain the start and end of individual phonemes, as well as pauses and 

silence tokens. The main objective is to predict these boundary timestamps of the 

phonemes in the speech recording while knowing only the unaligned phoneme label 

sequence. This can be solved by a phoneme segmentation model. 

For speech recognition and many other real-world sequence labelling tasks, the 

transcription alignment might be unknown. For example, in the case of collecting 

speech samples for a corpus, the source text for the speaker is supplied, yet the exact 

timestamps for the recorded phonetic events are unknown. While in most cases, speech 

recognition requires the use of algorithms able to determine the location as well as the 

identity of the output labels, in the segmentation task the main concern is the accurate 

alignment between inputs and labels [13]. Finding a solution to phoneme segmentation 

is the main problem in this thesis. 

The following Figure 3 shows a real-world case where for an audio segment with 

known source text “Musta kassi nähes”, two phoneme segmentation tools are compared 

to a manually annotated phoneme boundaries. The audio has been plotted as a 

waveform and as a feature-rich spectrogram. As the first step, the phoneme sequence is 

extracted from the source text. Then the phoneme label sequence is temporally aligned 

 

Figure 2 Transformed audio representation 
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with the audio segment. Note that the produced alignment must be logically sound even 

with slight errors in the source text. There are multiple ways of achieving this which are 

explored in this thesis. The predicted results show a lack of agreement for phoneme and 

word boundaries between the TTÜ and WebMAUS system [1]. 

 

The segmentation results are generally reported as the percentage of predicted 

boundaries positions 𝐶 = {𝐶1, . . . , 𝐶𝑛}  that reside within a given millisecond threshold 

𝐵 from the manually aligned boundaries 𝑌 = {𝑌1, . . . , 𝑌𝑛} as seen from the formula (3). 

The most common boundary agreement region reported in studies is 20ms but other 

boundary regions may also be reported. Studies also estimate that segmentation of 

human experts when compared has an agreement of around 95% within the tolerance 

threshold of 20ms [4]. 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝐴𝑔𝑟𝑒𝑒𝑒𝑚𝑒𝑛𝑡(𝐵, 𝐶, 𝑌) =
∑ (1 𝑖𝑓 |𝑐𝑖 − 𝑦𝑖|

𝑛
𝑖=1 < 𝐵 𝑒𝑙𝑠𝑒 0)

𝑛
× 100%      (3) 

One of the issues of this method is that it does not account for the magnitude of the 

errors.  Boundary agreement results only considers how many of the errors were below 

some millisecond threshold while not providing information whether the rest were off 

by 10ms or 100ms. Furthermore, this measurement has no constraints for the predicted 

boundaries. The boundaries can be out of order, not in a one-to-one relation with the 

input phonemes and reside out of bounds of the original audio sequence. This creates an 

 

Figure 3 An example of the segmentation problem. The phrase “Musta kassi nähes” has been aligned with 

the audio with two automatic tools, TTÜ system and WebMAUS, and a human transcriber [1]. 
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ambiguous measurement which may not translate well between all published studies. 

For this reason, this thesis proposes 3 requirements for the segmentation model in 

paragraph 5.3 and chooses baseline studies with diligence. 

2.3 End-to-end speech recognition 

Speech recognition is a field of research that develops technologies that enable 

computers to recognize and translate the spoken language. It is also known as automatic 

speech recognition (ASR). As a critical part of the research of language itself, it can be 

used for example in studying the spoken language itself. It can be used to process 

human speech into queries and commands that personal assistants such as Siri or 

Cortana can then execute [17]. The field has not only a history of waves of major 

innovations and academic papers but has also seen an industry-wide backing and 

adoption. 

When viewed in short enough timeframes speech can be approximated by a stationary 

process. Therefore, most systems, including the ones discussed in this paper, use the 

speech signal sampled over 10ms as the main input. For this audio sequence, there can 

be multiple time slices that correspond to a single phoneme creating a unique problem 

for boundary detection. 

A novel emerging field of neural-network-based speech recognition is end-to-end 

speech recognition. While traditional systems such as Hidden Markov models have been 

the mainstream speech recognition framework for a long time, they might require the 

training of an acoustic model, language model, and pronunciation model separately, 

adding further complexity to the overall architecture [18]. Furthermore, the 

disadvantage of HMM-based forced alignment systems is that the model does not 

optimize for phoneme boundaries directly nor are the boundaries explicitly represented 

in the model [19]. In contrast, the end-to-end systems are much more straightforward to 

train and provide direct output but require significantly more training data to reach 

similar or better results. Nevertheless, the advantages encourage further research [20].  

One of the first attempts at end-to-end speech recognition was a system based on a 

combination of the deep bidirectional LSTM recurrent neural network architecture, 

introduced by Alex Graves of Google DeepMind and Navdeep Jaitly of the University 
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of Toronto in 2014. The proposed system directly transcribed audio data with text, 

without requiring an intermediate phonetic representation [21]. A more recent end-to-

end system was a large-scale architecture which was presented in 2018 by Google 

DeepMind achieving 6 times better performance than human experts [22]. 

2.4 Neural networks 

As discussed previously, automatic end-to-end speech recognition uses architectures 

based on neural networks. Neural networks make few assumptions about the properties 

of the input data while still being able to predict probabilities for an audio segment. 

While in the early days of ASR neural networks were rarely successful for continuous 

recognition tasks as of their limited ability to model temporal dependencies, newer ASR 

models make use of more advanced architectures to solve this issue. 

2.4.1 Deep Neural Network (DNN) 

One of the improvements was brought using deep feedforward neural networks. This 

network combines multiple layers of neurons to model complex relationships. While not 

effective at sequential tasks, this method allows the network to use raw features to form 

more descriptive features when compared to hand-crafted methods. For this reason, 

DNN based networks such as autoencoders have become the go-to models to encode 

data. Autoencoders are efficient and work in an unsupervised manner. They are great at 

dimensionality reduction and extracting signals from noise [23] [24] [25].   

In the work of Yoshua Bengio, the required qualities for any learning algorithm were 

described as [24]: 

1. The ability to generalize a small training sample dataset of a much larger 

intricate system. 

2. To be able to learn multiple levels of abstraction to model the complex highly 

varying function. 

3. Ability to scale with the increasing amount of data. 

4. Ability to work within the constraints of a semi-supervised setting, where not all 

samples are completely and correctly labelled. 

5. Ability to transfer representations across related tasks in multi-task learning. 

6. Ability to capture underlying structure in data for unsupervised learning tasks. 
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In the work [24] mentioned before, these requirements were explored for the topic of 

deep learning architectures in detail. DNNs were found to be able to learn multiple 

levels of distributed representations, allowing a rich from of generalization for AI tasks. 

As deep learning architectures were found to be suitable for such learning tasks, it 

follows that these qualities also hold for more complex end-to-end neural network 

models proposed in this thesis. 

2.4.2 Recurrent Neural Network (RNN) 

In order to work with sequential speech data, a sequential model is required. Recurrent 

neural networks are designed to take a series of inputs with no predetermined length. It 

works by applying a DNN on each input element of a sequence, producing a sequence 

of outputs. RNNs are used by sequence to sequence (Seq2Seq) models to offer the 

ability to predict label probabilities for each time step. 

One of the main improvements for RNNs has been introducing memory mechanisms. 

They are especially effective in avoiding the problem of vanishing gradients. Vanishing 

gradient is a problem where a neural network has difficulty backpropagating the error as 

it becomes vanishingly small. The main reason for this happening in the case of RNNs 

is the count of created layers that the network must backpropagate caused by the 

sequential nature of the network. These numerous layers cause repeated partial 

derivatives with respect to the error function become minuscule enough to be unable to 

effect a change in the weights of the model. Networks such as the long short-term 

memory network (LSTM) and the more recent gated recurrent units network (GRU) 

have proven to be effective in retaining data over long sequences and avoiding this 

problem. 

The long short-term memory network is an RNN that manages long-term dependencies 

by implementing gates and a memory cell. The memory cell’s purpose is to provide a 

fast lane for information to flow throughout the sequence. Gates are called as such 

because of their output a weight which when applied to a vector decides how much of 

its data is passed on. It uses three different gates: input, output and forget. The gates 

have the same dimension as the hidden state.  

The following Figure 4 and formula (4) explain the internal mechanism of an LSTM. 

The gates are activated by the sigmoid function 𝜎. There are multiple fully connected 
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layers with weight matrices 𝑊 and bias 𝑏. The first step of a LSTM is for the forget 

gate 𝑓𝑡 to decide what information is worth remembering from the memory cell 𝐶𝑡−1 

and what is forgotten based on the last hidden state ℎ𝑡−1 and input 𝑥𝑡. In the next step 

the input 𝑥𝑡 is passed through a 𝑡𝑎𝑛ℎ activated layer and the new cell value �̃�𝑡 is then 

combined with the previous cell state 𝐶𝑡−1 with respect to the input gate value 𝑖𝑡 to 

produce the final cell state 𝐶𝑡. The new cell state is based on the importance of the old 

and new cell. Finally, the output ℎ𝑡 is formed by squeezing the final cell 𝐶𝑡 vector 

values with the 𝑡𝑎𝑛ℎ function and weighing them with the output gate 𝑜𝑡 value [26]. 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)

                                                     (4) 

 

A new variation on the LSTM is the Gated Recurrent Unit (GRU). When compared to 

LSTMs, GRU has two as opposed to three gates and does not use a memory cell. Their 

reduced complexity has made them a popular alternative for LSTMs.  

In Figure 5 and formula (5) the internal mechanism of a GRU is shown. GRUs have two 

gates, an update gate 𝑧𝑡 and a reset gate 𝑟𝑡. The reset gate determines the amount of old 

state ℎ𝑡−1 that is used along with the new input 𝑥𝑡 to generate the intermediate state ℎ̃𝑡. 

 

Figure 4 The internal mechanism of an LSTM [26]. 
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The update gate 𝑧𝑡 produces the final state ℎ𝑡 by using its weight to interpolate the old 

and intermediate state [26]. 

𝑧𝑡 = 𝜎(𝑊𝑧 ∙ [ℎ𝑡−1, 𝑥𝑡])

𝑟𝑡 = 𝜎(𝑊𝑟 ∙ [ℎ𝑡−1, 𝑥𝑡])

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ ∙ [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡])

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡

                                                (5)    

 

For the purpose of ASR, the model should make use of the previous and future inputs 

when dealing with language data to understand the whole context. One such method is 

to use a bi-directional recurrent neural network (BRNN). As seen in the next Figure 6, it 

is an abstraction on top of RNNs. The input sequence is processed into two hidden 

layers, in the forward direction of the input for the first ℎ⃗  and in the backward direction 

of the input for the other ℎ⃗⃖, and then fed to the common output layer 𝑦. By essentially 

combining two RNNs working in opposite temporal directions, the model provides 

context information from both directions at every input point [27]. 

 

Figure 5 The internal mechanism of a GRU [26]. 
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Recurrent neural networks can incorporate a variety of different types of networks. This 

allows the network also to use methods normally found in image-processing. For 

example, the Seq2Seq model could be augmented with residual blocks (ResNet) to deal 

with the vanishing gradient problem and with convolutional neural networks (CNN) to 

allow the model to peek at multiple time steps [29], [30]. Notably, Facebook used the 

CNN Seq2Seq model for their machine translation model [31]. 

2.4.3 Sequence tagging 

The first attempt at end-to-end automatic speech recognition was using RNNs. The key 

difference between previous approaches is that this type of neural network uses timing 

as a variable and is characterized by the problem of there being more observations than 

there are labels. This creates a unique problem for segmentation tasks as there can be 

multiple time slices corresponding to a single label.  

Sequence tagging is a model that uses a sequence of observations to output a sequence 

of label probabilities. The problem can be expressed as a mapping task, where the input 

sequence 𝑋 = {𝑥1, … , 𝑥𝑛} of temporal audio samples needs to be mapped to the output 

label transcription sequence 𝑌 = {𝑦1, … , 𝑦𝑚}. As mentioned before, the sequence 

lengths 𝑛 and 𝑚 are not necessarily equal or with constant ratio with respect to each 

other. The output is a likelihood distribution for all possible 𝑌 elements for a given 

element from 𝑋. Consequently, training the model is to maximize the conditional 

probability 𝑝(𝑌 | 𝑋) for the correct answer [32].  

 

Figure 6 Example of a bi-directional RNN. Image is from Figure 2 in Graves et al., 2013 [28]. 
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For the purposes of audio sequence tagging in this paper, it can be assumed that input 

and output sequence are of equal length as the training dataset has temporally aligned 

phoneme transcriptions for training targets. This simplifies the optimization problem for 

training the sequence tagging model. 

To produce a valid label sequence from a sequence of phoneme likelihood distributions, 

it requires post-processing by an alignment algorithm. Because of this multiple valid 

label sequences of different alignment can exist. For the purposes of this thesis, the 

valid order of the label sequence is known, but not aligned with the input audio. This is 

also the motivation to use dynamic time warping (DTW) instead of beam search. While 

beam search is commonly used to produce a likely output sequence, DTW is used to 

find the optimal mapping between two given sequences which enables the system to use 

the provided label sequence directly. DTW has also been found to be a competitive 

distance measure for time-series data [33]. 

The formal definition of DTW shown on the next formula (6). Given the sequences 𝑋 =

{𝑥0, … , 𝑥𝑛−1} and  𝑌 = {𝑦0, … , 𝑦𝑚−1} of length 𝑛 and 𝑚 respectively where 𝑑(𝑥𝑖,𝑦𝑗) 

represents the distance between 𝑥𝑖 and  𝑦𝑗 then the definition shows how one or both of 

the input sequences are recursive incremented by one step to produce the final 

alignment distance. The process can also be used to produce an alignment matrix and 

best alignment path [34]. 

𝐷𝑇𝑊({ }, { }) = 0

𝐷𝑇𝑊(𝑋, { }) = 𝐷𝑇𝑊({ }, 𝑌) = ∞

𝐷𝑇𝑊(𝑋, 𝑌) = 𝑑(𝑥0, 𝑦0) +  𝑚𝑖𝑛 {

𝐷𝑇𝑊(𝑋, 𝑌[1 ∶ −])             

𝐷𝑇𝑊(𝑋[1 ∶ −], 𝑌)             

𝐷𝑇𝑊(𝑋[1 ∶ −], 𝑌[1 ∶ −])

                      (6) 

 

2.4.4 Attention 

One of the shortcomings of sequence tagging is that to infer information over longer 

sequences they rely on memory mechanisms of the underlying RNN. Memory cannot 

use future inputs and must remember all previous features. Because of this limitation, it 

is difficult to make predictions in a Seq-2-Seq model. This constraint can be avoided by 

using a better mechanism to process information over the whole input sequence, 
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namely, the attention mechanism. The proposed solution allows the use of the whole 

input sequence for each output prediction.  

While there are multiple attention variants, in this thesis the focus is on Scaled Dot-

Product Attention as presented in [35]. The following formula (7) explains the 

computation of the attention score. The attention score matrix 𝑎 is calculated using 

queries (the encoded search terms) and keys (the encoded input features) of dimension 

𝑑𝑘 . In its simplest form, the score is calculated by taking the dot product between all 

key vectors in respect to a query, scaling it with the input dimensions √𝑑𝑘  and then 

applying the softmax function. In practice, the attention score is calculated on a set of 

queries simultaneously, packed together into a matrix Q. The keys and values are also 

packed together into matrices K and V [35]. 

𝐴𝑡𝑡𝑒𝑚𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒(𝑄,𝐾) = 𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

)                            (7) 

While this also enables this particular attention model to process each output in parallel 

as the outputs do not depend on the previous queries, this benefit concerns only the 

attention score calculations. Within an actual machine learning model, the feature 

encoding might be done using an RNN such as an LSTM and may not enable the whole 

final model to perform on the inputs in parallel. Moreover, this lack of interdependence 

might not be exactly desired as presented in this thesis in paragraph 8.4.2. 

As a positive side-effect, this process produces attention scores that are very human 

interpretable.  In the following Figure 7, the attention scores are visualized between the 

source sentence (English) and the generated translation (French) found by the neural 

machine translation model RNNsearch-50 [36]. The importance of each English word in 

the whole sentence for each generated French word is expressed as the attention 

intensity on the horizontal row. It can be seen that the neural machine translation model 

had to learn that the word order changes when translating "European Economic Area" 

into "européenne économique zone".  
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2.4.5 Positional encoding 

Positional encoding is a synthetically generated gradient which is used to add positional 

relations to encoded sequences. An example positional encoding is shown in Figure 8. 

The positional encoding, as seen on the plot, exhibits binary encoding like features in 

the vertical axis, is a helping mechanism to estimate the distance between the encoding 

vectors. The high and low-frequency features help the model to estimate the long- and 

short-term relations.  

Figure 7 Example of English to French translation, where the computed attention scores exemplify the 

word order difference between the two languages [36]. 

 

 

Figure 8 The positional encoding gradient. 
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Positional encoding 𝑝 𝑡 can also be expressed as pairs of sines and cosines with 

decreasing frequency 𝜔𝑡 as seen on the next formula (8).  

 𝑝 𝑡 =

[
 
 
 
 
 
 
 

sin(𝜔1 ∙ 𝑡)

cos(𝜔1 ∙ 𝑡)

sin(𝜔2 ∙ 𝑡)

cos(𝜔2 ∙ 𝑡)
⋮

sin(𝜔𝑑 2⁄ ∙ 𝑡)

cos(𝜔𝑑 2⁄ ∙ 𝑡)]
 
 
 
 
 
 
 

𝑑×1

                                                        (8) 

One of the key features of positional encoding, as seen on Figure 9, is that the individual 

positional vector on plot 2, which was extracted from the positional encoding gradient 

on plot 1 at index 57, exhibits the highest dot product with the position vectors close to 

its index. On plot 3, the further the vectors are to the extracted vector, the lower the dot 

product activation becomes. Similarly, the scores amplitude is also influenced by the 

random noise added to the same extracted vector in the same scenario. 

 

The dot product is also how the attention model calculates scores, which is why it 

 

Figure 9 Position encoding activation of a single extracted vector. 
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benefits from adding it to the input encoding. The use of positional encoding aids the 

model to find the best encoding for the queries that would match the phoneme borders 

on the audio encodings in the same way. 

2.4.6 Pointer networks (Ptr-Net) 

One of the more recent developments in Seq-2-Seq models were Pointer networks 

introduced in 2015 [37]. The proposed Ptr-Net is an attention mechanism based neural 

network architecture that learns to point to positions in an input sequence. It uses 

attention weights directly to in effect probabilistically output a permutation of the 

original inputs instead of using the weights to blend the sequence encodings to a context 

vector at each decoder step. 

The main benefit is that it solves a set of combinatorial optimization problems, such as 

sorting and the travelling salesman problem, which previously could not have been 

trivially addressed by existing neural network based approaches and that the trained 

models generalize beyond the maximum lengths that they were trained on. The 

architecture is meant to handle input sequences of arbitrary order.  

For Pointer Networks the most vital part is the attention mechanism from which it is 

originally derived from. In sequential tasks, the attention mechanism generates a context 

vector by taking the weighted aggregate of the encoded input tokens. The Pointer 

network is a natural extension of this method. By substituting the aggregation step with 

a maximum activation lookup, such as the argmax function, the model produces the 

identity of the best matching input token for each query.  

The following Figure 10 shows an example of the retrieval of original inputs in a new 

order. The source coordinates 𝑃(𝑥𝑖, 𝑦𝑖) encoded into an intermediate representation 

vector along with a starting vector labelled ⟸. These form the key database. The 

generator network is initialized with a start token ⟹. The generator takes the first 

token, encodes it into a query vector and finds the key with the highest activation. For 

the first token the coordinate 𝑃(𝑥1, 𝑦1) is chosen as it has the highest activation as seen 

from arrow row. For the fourth token, the network chooses to repeat the input 

coordinate 𝑃(𝑥1, 𝑦1). 
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This can be expressed in the formula (9) below. Given the sequence of n input vectors 

𝑃 = {𝑃0, . . . , 𝑃𝑛} and the sequence of output positions 𝐶 = {𝐶0, . . . , 𝐶𝑚} corresponding to 

an element in input vectors, but in any arbitrary order, then the probability of 

𝐶𝑖  pointing to 𝑃𝑗 is equal to its attention score at 𝑎𝑗
𝑖. A simple strategy to extract the 

position of 𝐶𝑖 is taking argmax of the i-th attention vector 𝑎𝑖 = {𝑎0
𝑖 , . . . , 𝑎𝑛

𝑖 } as seen on 

formula (10) [37].  

𝑝(𝐶𝑖, 𝑃𝑗) = 𝑎𝑗
𝑖                                                                (9) 

𝐶𝑖 = 𝑃𝑗  𝑤ℎ𝑒𝑟𝑒  𝑗 = argmax
𝑗

(𝑎𝑗
𝑖)                                             (10) 

2.4.7 Loss functions 

Training a model requires the definition of a loss function which provides a metric to 

quantify the cost of an event. The purpose of training is to minimize the cost by solving 

an optimization problem. 

Regression models often use mean squared error loss (MSE loss) as seen on formula 

(11). While it uses L2 regularization, some models also use L1 or a combination of 

both. One such function is SmoothL1Loss as seen on formula (12). It switches from L1 

to L2 regularization when the absolute element-wise error falls below 1. The main 

benefit is that it is less sensitive to outliers than MSE loss. 

 

Figure 10 Example of Pointer Network input token reordering [37]. 
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MSELoss(𝑥, 𝑦) =
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

                                                (11) 

SmoothL1Loss (𝑥, 𝑦) =
1

𝑛
∑𝑧𝑖

𝑛

𝑖=1

  𝑤ℎ𝑒𝑟𝑒  𝑧𝑖 = {
0.5(𝑥𝑖 − 𝑦𝑖)

2,   𝑖𝑓 |𝑥𝑖 − 𝑦𝑖| < 1
|𝑥𝑖 − 𝑦𝑖|,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 (12) 

For classification models cross entropy loss (CrossEntropyLoss) is commonly used as 

seen on formula (13). Cross entropy loss builds upon the idea of entropy from 

information theory and uses it to measure the performance of models which output 

probability values for output labels. 

CrossEntropyLoss(𝑥, 𝑦) = −∑ 𝑥𝑖 log𝑦𝑖

𝑛

𝑖=1

                                   (13) 

In some cases where the model is used to produce an embedding such as positional 

encodings, cosine loss (CosineLoss) is used to measuring whether two vectors are 

dissimilar. As seen on formula (14) it is implemented using the cosine distance. 

CosineLoss(𝑥, 𝑦) = 1 −
𝑥 ∙ 𝑦

‖𝑥‖‖𝑦‖
                                             (14) 

2.5 Frameworks and tools 

Grand ideas mean nothing if there is no means to build them. The author must 

acknowledge the great tools which enable the research of speech recognition. For this 

thesis, 4 core tools are key factors for success: Python, PyTorch, Colab, and GPU 

acceleration.  

Python is currently the go-to programming language for machine learning. Its main role 

in this thesis is to be a streamlined scripting API for existing machine learning tools. It’s 

effortless to use syntax and wide library support has led to its for industry-wide 

adoption in many fields. Most importantly it is free to use. 

PyTorch is an open source end-to-end machine learning library that is designed to allow 

easy model building. What distinguishes PyTorch from many of the other neural 

network libraries is the ability to create a dynamic computation graph while keeping a 

clean and streamlined API. It is also consistent with the well-established computation 
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library NumPy. These benefits are arguably a key reason for its increasing popularity in 

the deep learning community.  

One of the great breakthroughs, that has enabled more ambitious machine learning 

models, has been the use of graphical processing units for accelerating the training of 

models. A Graphics Processing Unit (GPU) is a microprocessing chip designed to 

handle Graphics in computing environments. The benefit comes from their highly 

parallelized architecture which was initially meant for 3d rendering but could also be 

applied for other computation tasks. Using GPU acceleration significantly reduced the 

training time during the development of this thesis. 

While an IDE might not create an impression of critical importance, Google’s 

Collaboratory was of key importance to the present work. It is much more than a text 

editor as it combines documentation, version control, and cloud computing. This is one 

of the best examples of the democratization of technology in recent times. Colab gives 

the tools and hardware for free to use and is meant for sharing reproducible solutions. 
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3 Related work 

Determining phoneme borders is very important for language research which is why it 

also is a recurring topic in the research community. There have been multiple papers on 

the topic of phoneme segmentation on the TIMIT corpus. Their results and 

methodology are a great resource for the research needed to develop an end-to-end 

phoneme segmentation model. 

When searching for related papers, the main criteria was to find baseline results and 

methodology, which would be suitable end-to-end model building. The processing of 

the source recordings and transcriptions should have been documented to be 

reproducible. If possible, the TIMIT corpus is preferred as the source corpus. The 

results should be verifiably compliant with the requirements discussed in detail in the 

following paragraph 5.3 and have been reported for wide range boundaries to ensure the 

stability of the system in all regions as the evaluation method does not account well for 

the magnitude of segmentation errors as explained in paragraph 2.2. 

The following Table 1 shows some of the works on the topic of phoneme boundary 

detection. The table lists the corpus and the results of each reference. 
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Table 1 A selection of related works on the topic of automatic phoneme segmentation. 

Year  Title Results 

2019 Phoneme boundary detection 

from speech: A rule based 

approach [38] 

TIMIT Corpus, IIIT Hyderabad Marathi database and 

IIIT Hyderabad Hindi database with 

10ms boundaries of 95.40%, 96.87% and 96.12% 

2018 Automatic Phonetic 

Segmentation and 

Pronunciation Detection with 

Various Approaches of 

Acoustic Modeling [39] 

TIMIT Corpus with 20ms boundary 83.84% and 30 

ms 93.12% 

2017 Automatic Phonetic 

Segmentation Using the Kaldi 

Toolkit [40] 

Czech language corpus with 69.4% at 10ms, 89.8% at 

20ms and 96.5% at 30ms 

2016 Phoneme Boundary Detection 

using Deep Bidirectional 

LSTMs [41] 

TIMIT with 96.3% and 97.5%, and BUCKEYE 96.5% 

and 97.5% for boundaries 10ms and 20ms. 

2014 Highly Accurate Phonetic 

Segmentation Using Boundary 

Correction Models and System 

Fusion [19] 

TIMIT Corpus with 96.8% agreement on 20ms 

boundary  

2014 Phonetic segmentation of 

speech signal using local 

singularity analysis [42] 

TIMIT with 53.16% agreement on 10 ms. 

2012 Towards automatic phonetic 

segmentation for TTS [43] 

TIMIT with 85.2%, 94.9%, 97.8%, 98.9% and 

proprietary male US English TTS corpus  

84.6%, 95.4%, 98.5%, 99.4%, 

for boundaries of 10ms, 20ms, 30ms, 40ms 

2010 Automatic Speech 

Segmentation Based on 

Acoustical Clustering [4] 

TIMIT with 46.1%, 71.2%, 81.7%, 86.8%, 92.6% and 

Albayzin 50.2%, 74.8%, 85.6%, 90.7%, 95.5% 

for boundaries of 5ms, 10ms, 15ms, 20ms, 30 ms 

 

While these works have provided great results, their methodology and availability of 

different boundary regions limit their usability for this thesis. The most outstanding 

result is from the recent work of Franke et al. (2016), with 96.5% and 97.6% for the 

tolerance range of 10ms and 20ms respectively [41], and Ramteke et al. (2019), with 

95.40% for the tolerance range of 10ms [38]. For both works, the methodology for data 

preparation and score calculation was found to be too ambiguous for the purposes and 

requirements of this thesis. Both works reported accuracy, precision, recall and F1-score 

for quality measures as both works cause insertions and deletions of borders. It is 
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evident that these works do not satisfy the segmentation requirements proposed in this 

thesis in paragraph 5.3 and the correct detection rate is lower. Another concern for the 

results shown is that the results exceed 95% within 10ms, which is considerably higher 

than the reported agreement limit between human experts within 20ms [4], and might 

hint at very dataset-specific adjustments which might not transfer well to a more generic 

approach.  

The following paragraphs introduce two papers on the topic of phoneme segmentation 

which satisfy the requirements. Both research papers were done using the TIMIT 

Acoustic-Phonetic Continuous Speech Corpus and were HMM based. The findings of 

these works build upon each other and they use a common data preparation 

methodology. Even though the results are not the best-known results among the related 

work in this area of research, the provided wide range of boundary agreement values 

and thorough documentation of the data preparation made them good a baseline for this 

thesis. 

3.1 Speaker-independent phoneme alignment using transition-

dependent states 

The research done by John-Paul Hosom in Oregon Health & Science University 

proposes a baseline HMM-based forced-alignment system for phoneme segmentation 

and explores several modifications to improve the results.  

The proposed modifications compared to a baseline HMM-based system are: 

• The feature set includes four additional energy-based features 

• The system uses probabilities of a state transition given that observation 

• The system computes the probabilities of distinctive phonetic features and 

combines them with context-dependent phoneme probabilities 

The final agreement results for the proposed model were presented as phoneme 

boundary agreement percentages within thresholds from 5 to 100 milliseconds as 

presented in Table 2. The performance of the baseline system on the test partition of the 

TIMIT corpus is 91.48% within 20ms, and the performance of the proposed system on 

this corpus is 93.36% within 20ms [5]. 
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Table 2 Reported agreement percentages of baseline 1. 

Milliseconds <5 <10 <15 <20 <25 <30 <35 <40 <45 <50 

Agreement (%) 48.28 79.3 89.49 93.36 95.38 96.74 97.61 98.22 98.62 98.92 

Milliseconds <55 <60 <65 <70 <75 <80 <85 <90 <95 <100 

Agreement (%) 99.13 99.32 99.45 99.57 99.64 99.7 99.75 99.78 99.81 99.83 

3.2 Automatic Phonetic Segmentation using Boundary Models 

The joint effort of the University of Pennsylvania, Microsoft Research, and SRI 

International investigated the possibility to improve automatic phoneme segmentation 

using the existing HMM framework. The paper explores the benefits of using phone 

boundary models, precise phonetic segmentation for training HMMs, and the difference 

between context-dependent and context-independent phone models in terms of forced 

alignment performance. 

The main findings of the paper are: 

• A combination of special one-state phone boundary models and monophone 

HMMs can significantly improve forced alignment accuracy.  

• HMM-based forced alignment systems benefit from using precise phonetic 

segmentation.  

• Context-dependent phone models are not better than context-independent 

models when combined with phone boundary models. 

The final agreement results for the final model were presented within thresholds from 

10 to 50 milliseconds as seen in Table 3. While the results improve the results over the 

previous work in almost all boundaries, the 10ms agreement is significantly lower and 

there is no information on over 50ms boundary agreements. The proposed final system 

achieves a 93.92% agreement within 20ms compared to manual segmentation on the 

TIMIT corpus [44]. 

Table 3 Reported agreement percentages of baseline 2. 

Milliseconds <10 <20 <30 <40 <50 

Word boundaries differentiated 77.44 93.92 97.43 98.78 99.35 

Word boundaries not differentiated 77.53 93.84 97.39 98.75 99.35 
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4 Research dataset 

The dataset used for evaluating and comparing the results to related work is the 

American English TIMIT Acoustic-Phonetic Continuous Speech Corpus. The TIMIT 

corpus transcriptions have been hand-verified. It has been compiled specifically for 

doing acoustic-phonetic studies and the development of speech recognition systems. It 

has a pre-specified balanced test and training subsets [45].  

The TIMIT corpus includes time-aligned orthographic, phonetic, and word 

transcriptions as well as a 16-bit, 16kHz speech waveform file for each utterance [45]. 

The phonemic transcription boundaries are marked by the waveform file sample index. 

The defining aspect of this dataset is its temporally long audio segment combined with 

non-trivially numerous output labels.  

The phonetic dataset, which is the focus of this thesis, consists of 61 phonemes. The 

original phoneme counts are displayed in Table 4 below. There is high variation in the 

phoneme representation in the dataset. This is especially prevalent for the silence token 

“/h#/”. 
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Table 4 Listing of all phonemes and their occurrence counts in the original dataset. 

h# 12600 ix 11587 s 10114 

iy 9663 n 9569 r 9064 

tcl 8978 l 8157 kcl 7823 

ih 6760 dcl 6585 k 6488 

t 5899 m 5429 ae 5404 

eh 5293 z 5046 ax 4956 

q 4834 d 4793 axr 4790 

w 4379 aa 4197 ao 4096 

dh 3879 dx 3649 pcl 3609 

p 3545 ay 3242 ah 3185 

f 3128 ey 3088 b 3067 

sh 3034 gcl 3031 ow 2913 

er 2846 g 2772 v 2704 

bcl 2685 el 1294 ch 1081 

th 1018 ux 2488 y 2349 

epi 2000 ng 1744 jh 1581 

hv 1523 pau 1343 nx 1331 

hh 1313 en 974 oy 947 

aw 945 uh 756 uw 725 

ax-h 493 zh 225 em 171 

eng 43     

 

4.1 Input preparation 

The dataset was first filtered to remove any dialect calibration sentences to match the 

work in paragraph 3.1 and 3.2. The resulting dataset consisted of 3,696 utterances for 

training and 1,344 utterances for testing. The boundaries between two pauses, including 

stop closures, were excluded from evaluation. As detailed in [5], the syllabic phonemes 

“/em/”, “/en/”, “/eng/”, and “/el/” were mapped to their non-syllabic counterparts 

“/m/”,” /n/”, “/ng/”, and “/l/”. The glottal closure symbol “/q/” was merged with the 

neighbouring voiced phonemes. Pauses less than 20ms with duration were merged into 

previous phonemes. The resulting dataset had 54 phonemes, matching the previous 

work. The result of these changes is shown in the following Table 5. 
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Table 5 Listing of all 54 phonemes and their occurrence counts in the modified dataset. 

pau 11991 ix 9871 n 9251 

s 8348 tcl 7703 l 7577 

r 6529 iy 6436 ih 5686 

kcl 5492 t 5312 dcl 5286 

k 4997 m 4972 z 4918 

ax 4856 eh 4524 pcl 3609 

p 3541 axr 3483 dh 3272 

d 3254 f 3126 ah 3126 

w 3119 aa 3102 ey 3073 

ae 3064 b 3039 v 2704 

bcl 2665 ao 2626 ay 2620 

dx 2498 er 2347 ow 2253 

ux 1838 gcl 1782 sh 1777 

g 1640 ng 1598 y 1371 

jh 1308 hh 1281 ch 1079 

th 1004 aw 944 hv 940 

nx 925 uh 715 uw 686 

ax-h 471 oy 431 zh 222 

 

The source transcription is split into a phoneme label sequence, which is used as the 

input, and the matching boundary values, which is used as the evaluation target. There 

were 139703 boundaries in the training set and 50,579 boundaries in the test set for 

evaluation. Additionally, a development evaluation set was split out of the remaining 

training dataset, that was used for stopping the training to avoid overfitting the data. 

The raw waveform audio input is impractical for training RNN models. Therefore, the 

audio from the TIMIT dataset is converted into Mel-spectrogram representation. This 

allows the model to have a more compact yet human-like audio representation as 

explained in 2.1. The audio conversion was augmented using varying steps size and 

window size configurations to either enhance training speed or model accuracy.  This is 

done because some speech recognition methods, such as sequence tagging models, may 

significantly benefit from decreasing the step size as they tie their output resolution 

directly to the time resolution of the audio input. This will be illustrated in the following 

chapter 6.3 “Window step length manipulation” in depth. Furthermore, changing the 
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sampling logic is also compatible with transfer learning as a pre-trained model adjusts 

within only 2 to 5 epochs to its original accuracy according to the author’s empirical 

observations during the model training for this thesis. Changing the output dimension 

size was tested, but it was not similarly beneficial as it required significantly more re-

training to reach the initial accuracy of the previously trained weights. 

4.2 Dataset overview 

Firstly, the main input is audio data. As seen in plot 1 in Figure 11, half of the audio 

segments are longer than 2284ms and then on plot 2, the average duration is very close 

to 3000 milliseconds. The minimum duration was 910ms and a maximum of 7780ms. 

There is a high variation in lengths of the audio segments which will have to be 

considered when batch processing the data. 

Secondly, the accompanying phoneme transcription dataset follows with similar high 

variation. Plot 1 of Figure 12 shows that half of the utterance samples contain more than 

25 phonemes and plot 2 that they contain at minimum 9, at most 73, and on average 

36.75 phonemes.  

 

Figure 11 Audio duration distribution. 

 

Figure 12 Phonemes per audio segment. 
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Furthermore, there is almost a ten times difference in the average length of the longest 

and shortest phoneme. This can be seen in Table 6 where the per phoneme average 

duration is shown. The longest phoneme in the dataset is silence.  

Table 6 Listing of all phonemes and their average duration. 

b 18ms d 25ms g 27ms 

dx 29ms nx 29ms ax-h 34ms 

dh 36ms p 44ms t 49ms 

ax 50ms k 52ms ix 53ms 

gcl 55ms y 56ms dcl 57ms 

r 58ms n 58ms tcl 59ms 

v 61ms kcl 61ms jh 62ms 

w 63ms ng 64ms bcl 65ms 

hh 65ms m 66ms l 68ms 

hv 71ms pcl 72ms uh 77ms 

axr 79ms ih 80ms zh 83ms 

z 86ms ch 87ms th 91ms 

ah 92ms eh 95ms iy 97ms 

ux 99ms f 103ms uw 109ms 

s 114ms sh 119ms er 123ms 

ao 127ms aa 127ms ey 131ms 

ow 132ms ae 139ms ay 159ms 

aw 169ms oy 175ms pau 178ms 

4.3 Model inputs and training targets 

The goal of this thesis is to predict the timestamps of the phoneme borders. The model 

has two inputs, the speech audio and the phonemes sequence of the source utterance. 

From these, the model must learn a representation that allows us to extract the phoneme 

boundaries of each phoneme on the audio segment. 

The first input is audio. The audio segments have been pre-processed beforehand into a 

more feature dense representation from the raw audio format by using the Mel-scale 

power spectrum transformation as discussed in paragraph 2.1. 

The second input for the model is the transcription label sequence. The phonemes labels 

provide context information, about which and in what order the phonemes occur in the 
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utterance without any timestamps. While in the TIMIT dataset the ground truth 

transcriptions also include the start and end times for each phoneme, those are used for 

evaluating the result and not the model input. 

Depending on the chosen model type and training method there are multiple possible 

training targets. One option would be to train the sequence tagging model to predict 

phoneme occurrence probabilities for each audio time step and use a one-hot encoded 

ground truth phoneme sequence. For the second alternative, the model could also be 

trained to predict the duration for each phoneme in the input label sequence. For this, it 

would be necessary to form an array of durations in matching order to the label 

sequence. Lastly, if viable, the model could predict the actual millisecond timestamps of 

the border. The position could be expressed as a simple scalar or multi-dimensional 

position vector. 

The example audio segment in the first plot of Figure 13 has 130 encoded frames and 

each frame represents a period of 10ms. The transcription for this audio segment lists 24 

phonemes. For each audio segment frame, there is a one-hot encoded phoneme target in 

the second plot denoting its occurrence. In the third included plot, each phoneme from 

the transcription is matched with the end position of its occurrence and in the final plot 

with the duration of the phoneme. 
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Figure 13 Comparing different possible output targets for the audio segment. 
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5 Methodology Specification 

The goal of this paper is to propose an end-to-end automatic speech recognition model 

that would improve the accuracy of phoneme segmentation. For this purpose, there are 

three distinct prediction modes considered:  

• Phoneme detection 

• Phoneme duration 

• Phoneme position 

The first solution is audio-focused and will try to predict phoneme occurrence for each 

temporal audio frame and use the provided phoneme label transcription to extract the 

most likely phoneme occurrence sequence. The second model is phoneme focused and 

will try to predict each phoneme's duration based on the sequence of the phoneme labels 

while using the audio as extra context. The final solution creates a mapping between the 

two input sources to identify the position of each phoneme label in the audio segment. 

The different approaches will be evaluated and compared to the previously set 

milestones in baselines Table 2 and Table 3. The final findings will conclude whether 

an end-to-end ASR solution can effectively replace the current HMM-based solutions. 

The evaluation measurements are done on the TIMIT dataset using the phoneme border 

timestamps in milliseconds. The conclusion will be presented as a phoneme boundary 

agreement percentage within 5 to 100ms. 

5.1 Generic model components 

Some parameters and processing units were in all the following models without much if 

any modification. The hidden size for the RNN encoders and decoders was 256 in all 

models. Each RNN was using a dropout of 0.3. For activation, ReLU and tanh were 

used and to convert logits into final probability results a softmax activation layer was 

used. The general notation is that the intermediate tensor sizes are shown in grey boxes 

with B being the batch size, Ta being the audio length, Lp the phoneme label sequence 

length. The following 2 figures show the feature generic structure of the encoder and the 

decoder used in the following experiments. 
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The first example in Figure 14 is the generic encoder used in the experiments. All the 

inputs were first passed through a layer of batch normalization before passing them to a 

bi-directional RNN. Then resulting hidden state was resized to the desired output 

dimension with a fully connected layer and positional encoding was added when 

configured. 

 

The next example in Figure 15 shows the Seqn-2-Seq decoder used in the following 

experiments. Chaining multiple of these components together allows the combination of 

multiple different length sequence into one output sequence. The decoder accepts an 

input sequence of length 𝑁𝑥 and a context sequence of length 𝑁𝑦 to produce an output 

sequence of length 𝑁𝑥 by using the attention scores produced between them. The 

motivation for this architecture and working principle is further explained in paragraph 

5.1. 

 

Figure 14 Generic encoder model architecture graph. 
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5.2 Training 

As mentioned previously, the American English TIMIT Acoustic-Phonetic Continuous 

Speech Corpus has a pre-specified balanced test and training subsets. This ensured that 

 

Figure 15 Generic Seqn-2-Seq decoder model architecture graph. 
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the training and testing dataset could be imported independently for training or 

evaluation purposes without the possibility of cross-contamination. The training data 

was split into training and evaluation sets for early stopping.  

To avoid overfitting, the models were trained on the training data until training loss 

stopped decreasing or until the evaluation loss started to regress. While some of the 

early model evaluations were without early stopping, the presented final results for all 

models were using early stopping and were retrained from a clean state without the use 

of previously trained weights to exclude the possibility of cross-contamination and 

ensure the reproducibility of results. 

As the model training was done using Colab’s cloud environment over extended 

periods, the trained weights of the model were exported to Google Drive cloud storage 

to be evaluated at a later time or inside another instance of the cloud computing 

environment. 

5.3 Requirements 

There will be multiple model training architectures evaluated and compared. Each 

model must meet certain requirements: 

1. Predicted border count must equal to the transcription border count. 

• It is impossible to evaluate the results without this. 

2. Predicted border timestamps must be bounded in the audio time frame. 

• No border should exceed the audio length or preceded the start. 

3. Predicted border timestamps must be monotonically growing. 

• No border can precede the previous border. 

The requirements create a constraint for the model to give sensible output even when 

the source text for the phoneme input might be suboptimal. Furthermore, these restraints 

allow for less ambiguous comparison between previous and future works.  
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5.4 Milestones 

The proposed model’s significance can be quantified by comparing it to the established 

solutions shown in the previous related work section. While there is a special emphasis 

on the 20ms agreement percentage, the improvements will also be quantified over the 

other tolerance regions. 

The main milestones to improve over would be: 

• Simple HMM 89% agreement within 20ms [46] 

o The baseline model should be reasonably close to this result.  

• Human 93% agreement within 20ms 

o Human labellers have an average agreement of 93% within 20ms on 

various corpora and an agreement of 93.49% within 20ms on TIMIT 

[44]. 

o The proposed model should reach or exceed this milestone to be a viable 

alternative for manual labour.  

• Baseline 1 as boundaries from 5 to 100ms as presented in Speaker-independent 

phoneme alignment using transition-dependent states  [5] 

o The results should be compared to the multiple boundary intervals 

proposed in the paper. The regions where the model exceeds and 

underperforms should be inspected. 

o Special notice should be on the 93.36% agreement within 20ms as well 

as the 79.30% within 10ms 

o It is also the only source to present an agreement (48.28%) within 5ms 

• Baseline 2 as boundaries from 10 to 50ms as presented in Automatic Phonetic 

Segmentation using Boundary Models [44] 

o The proposed system achieves a 93.92% agreement within 20ms and 

77.53% agreement within 10ms. 
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6 Experiments with audio sequence tagging 

The first way to solve the phoneme segmentation problem is to train a model to produce 

phoneme probabilities for each audio observation. The most straightforward method to 

produce a valid label sequence is then to pick the phoneme with the highest probability 

for each observation. Then the borders can be inferred from the transition of the 

predicted phoneme in the sequence.  

Simple model architecture for this is shown in Figure 16. The audio input is passed 

through an RNN encoder, which is further expanded in paragraph 5.1, and the result 

used to produce a softmax phoneme probability vector for each timestep Ta. The was 

trained with cross entropy loss. 

 

The baseline results in Figure 17 were produced by a simple LSTM sequence tagging 

model. The first plot is the audio input, the second plot the predicted phoneme 

occurrence probabilities and the third plot the most likely phoneme. The final plot is the 

ground truth. The average phoneme classification error for this model was 30.06% 

which is abysmally bad this model does not satisfy requirement 1 for border count 

equality. 

 

Figure 16 Simple LSTM sequence tagging model architecture graph. 
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6.1 Alignment with the label transcription 

While this would be fine for a perfectly trained model it does not necessarily satisfy the 

first requirement to generate the exact number of borders. In order to fix this the final 

step is to produce a valid occurrence sequence by post-processing the probability output 

with the input phoneme label sequence by an alignment algorithm, such as the dynamic 

time warping algorithm. The input label sequence does not have any information about 

the duration or position of the phonemes, but it still helps to enforce the correct 

occurrence order and count.  

When using an alignment algorithm there are multiple possible label sequences, 

differing in durations or order, that could be produced from the probabilities. Wrong 

sequences can be eliminated by choosing the one with the best alignment with the label 

input sequence. This ensures that the requirements 1, 2 and 3 are met. If the produced 

 

Figure 17 Baseline simple LSTM sequence tagging model output. 
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probabilities were sensible then also the duration accuracy follows. The improvements 

can be seen in the following Figure 18 below. The predicted probabilities on plot 1 are 

the same as in Figure 17, but in comparison, the post-processed occurrence sequence 

shows a higher resemblance with the ground truth occurrence map. 

 

As the requirements 1 to 3 are met the phoneme border agreements can be calculated on 

the alignment. The results are presented in Table 7. The 20ms agreement for this model 

is 82.6%. None of the boundary agreement percentages exceeded the set milestones. 

Table 7 Initial phoneme boundary agreement percentages for sequence tagging. 

Milliseconds <5 <10 <15 <20 <25 <30 <35 <40 <45 <50 

Agreement (%) 36.2 62.0 75.2 82.4 86.6 89.3 91.2 92.5 93.6 94.4 

Milliseconds <55 <60 <65 <70 <75 <80 <85 <90 <95 <100 

Agreement (%) 95.0 95.5 95.9 96.3 96.6 96.9 97.1 97.3 97.5 97.7 

 

Figure 18 The improvements from post-processing the result probabilities with the transcription phoneme 

sequence making sequence tagging output compliant with requirements 1, 2 and 3. 
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6.2 Adding label transcription context with attention 

One of the shortcomings of the proposed sequence tagging model is that it fails to 

incorporate the phoneme label transcription into the prediction. Previously, the label 

transcriptions are only considered at the post-processing step and not training. It stands 

to reason that the model could make more informed predictions if it could peek at the 

label transcription. Whether it is to get an idea about the correct order of phonemes or 

know what phonemes even expect in the audio input. 

The method for combining the two variable-length input sequences, the audio and label 

transcription encodings, is to use the attention mechanism. It works by calculating the 

attention scores for the audio on the label transcription and then effectively taking the 

weighted average of the phoneme label encodings each audio frame. This produces a 

sequence of the same length and dimensionality as the audio input. The example of 

producing an audio enriched label transcription encoding is seen in Figure 19. Instead of 

calling this network a Seq-2-Seq network, it would be more appropriate to call it Seqn-

2-Seq or n-Seq-2-Seq. 

In Figure 19, the attention scores in plot 3 were calculated for each one-hot encoded 

phoneme labels on plot 2 over the audio on plot 1. Note that the visualization of features 

shown on plots 1 and 2 are illustrative and do not reflect the actual intermediate 

encoding used by the attention mechanism. The third phoneme’s attention scores over 

the audio frames are highlighted in plot 4. The multiplication between attention weights 

and audio encoder features can be seen on plot 5 and the final audio enriched phoneme 

vector on plot 6. 
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The proposed model architecture, as shown in Figure 20, produces the combination of 

the input sequences in two stages. Once for enriching audio with the phoneme sequence 

context. Then once more for combining a phoneme enriched audio encoding with an 

alternative audio encoding. This allowed the model to have multiple sequence 

combination possibilities, some of which were tested and made available as a 

configuration option on the model. The model could be trained in stages for each output 

configuration with cross entropy loss. The first stage allowed the first audio encoder to 

be trained and evaluated. The second stage made use of the previously trained 

encodings of the first encoder and combined them with phoneme sequence context. The 

last decoder combined the phoneme enriched audio encodings with pristine audio 

encodings to increase the adaptability of the model even more. The encoder and decoder 

blocks are further expanded in paragraph 5.1. 

 

Figure 19 The process to gather the audio context for the third phoneme. 
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With these architecture changes, the final border agreement evaluation results in Table 8 

show that the model has exceeded the requirement for the first milestone. There are 

significant improvements when compared to the previous results in Table 7. The mean 

border error was 8.57ms with a maximum difference of 851.44ms.  

Table 8 Context improved sequence tagging phoneme boundary agreement percentages. 

Milliseconds <5 <10 <15 <20 <25 <30 <35 <40 <45 <50 

Agreement (%) 47.4 76.7 88.1 93.0 95.6 97.1 98.0 98.6 99.0 99.2 

Milliseconds <55 <60 <65 <70 <75 <80 <85 <90 <95 <100 

Agreement (%) 99.4 99.5 99.6 99.7 99.8 99.8 99.8 99.8 99.8 99.8 

 

 

Figure 20 Enhanced sequence tagging model architecture which combines information from audio and 

phoneme context and allows multiple sections to output and be trained individually. 
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6.3 Window step length manipulation 

The impact of the chosen audio transformation window step size for pre-processing will 

impact the accuracy of the model significantly. This is partly because the border itself is 

reported in the resolution of WAV file sampling, but the transformed audio input is 

significantly shortened by producing a vector only for every 15ms segments. As a 

result, the sequence tagging model limited by the transformation window step size, as it 

must output the labels with the same discrete intervals.  

By reducing the step size, also the discrete intervals become shorter. With the tighter 

coverage, the shorter segments have a higher chance to be closer to the actual border. 

Alternatively, by increasing the step size, the model can benefit from faster training 

with less granular audio. Fewer frames also allow the use of bigger batch sizes as of the 

lower memory footprint. The trained model progress can easily be transferred between 

datasets with different step sizes as input features are produced the same way, 

nevertheless. 

The following comparison chart in Figure 21 illustrates the benefits. The default step 

size of the audio transformation is 10ms which allowed batch-processing 64 inputs at 

the same time with the current hardware’s memory limits. The following tests were 

done using 5ms, 10ms and 15ms as the step size. The 5ms step size increased the total 

count of discrete temporal audio feature vectors when compared 10ms, which led to the 

reduced batch size of 16 to meet the same memory constraints. The increased step size 

of 15ms over 10ms produced less discrete temporal audio feature vectors and allowed 

the batching 128 inputs within the same memory constraints.   

In the first plot in Figure 21, the measurements were taken after transfer training the 

phoneme segmentation model which was previously trained on the 10ms step size 

transformed audio input. Notably, when training on any of the step sizes the model 

reached peak accuracy within 10 epochs, regardless of which step size the model was 

trained on before. The plot compares the boundary agreement percentages, which are 

the key metrics for model accuracy as explained in paragraph 5.4, between the three 

augmentations. In the second plot in Figure 21, the emphasis was on the total time for 

training over an epoch. The results were produced by taking the average epoch training 

time over 20 epochs. 
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Plot 1 exemplifies the benefit of using smaller audio transformation step size for sub 

20ms agreement boundaries. There was a marginal improvement with 5ms step size but 

a significant decrease of accuracy when increasing the step size to 15ms. That said, the 

results on Plot 2 show a remarkable reduction of training time per epoch using 15ms 

step size when compared to 10ms and 5ms counterparts. It can be concluded that using 

larger audio transformation window step size and in effect, less discrete temporal audio 

feature vectors is a viable strategy for early model testing. 

6.4 Results 

The model has met all requirements and produced 93.06% agreement within 20ms 

which exceeds the simple HMM 89% agreement and human 93% agreement. The 

results are presented in Table 9 in comparison to baseline 1 and 2. The model has 

exceeded the scores of only some baselines. The model has achieved better agreements 

than baseline 1 on almost all 5 to 45ms boundaries. It has not exceeded any of the 

baseline 2 results. The mean difference from the ground truth border is 7.50ms with a 

maximum of 758.12ms. 

  

 

Figure 21 Audio window step size augmentation improvements for accuracy and performance. 
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Table 9 Sequence tagging agreement improvements compared to baseline results. 
 

Baseline 1 Baseline 2 Sequence tagging 

< 5ms 48.28 

 

48.90 

< 10ms 79.30 77.53 77.37 

< 15ms 89.49 

 

88.53 

< 20ms 93.36 93.92 93.06 

< 25ms 95.38 

 

95.42 

< 30ms 96.74 97.43 96.82 

< 35ms 97.61 

 

97.72 

< 40ms 98.22 98.78 98.28 

< 45ms 98.62 

 

98.67 

< 50ms 98.92 99.35 98.89 

< 55ms 99.13 

 

99.07 

< 60ms 99.32 

 

99.20 

< 65ms 99.45 

 

99.31 

< 70ms 99.57 

 

99.39 

< 75ms 99.64 

 

99.44 

< 80ms 99.70 

 

99.48 

< 85ms 99.75 

 

99.53 

< 90ms 99.78 

 

99.58 

< 95ms 99.81 

 

99.62 

< 100ms 99.83 

 

99.65 

 

As shown in Figure 22, the final sequence tagging model has produced a much cleaner 

detection probability sequence than the baseline shown in Figure 18. For the 

comparison, the same audio segment was used for both figures to produce the phoneme 

occurrence probabilities. The improvement can be attributed to improved phoneme 

predictions. Not only are the occurrence streaks similar in duration but the predictions 

also have significantly fewer misclassifications. 
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Figure 22 Improved sequence tagging probabilities for the previous example shown in Figure 18. 
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7 Experiments with duration prediction 

The main goal of this thesis is to predict the boundary timestamps for the input 

phoneme labels. This leads to the wonder, whether it is better to focus more on the label 

transcription and instead use the audio-only as context. The transcription phoneme 

count is directly related to the boundary count when excluding the last end-of-file 

border, which makes the use of it satisfy the first requirement. Instead of using the 

model as a classifier, it is possible to use it for regression, predicting the duration for 

each phoneme. The boundary timestamps follow from this by taking the cumulative 

sum of durations. Furthermore, when only allowing non-negative durations this would 

also satisfy the third requirement. 

The proposed model architecture, as shown in Figure 23, produces the combination of 

the input sequences in two separate stages. Once for enriching phoneme sequence with 

audio context and once more for combining the phoneme sequence with an alternative 

phoneme sequence encoding. This allowed the model to have multiple sequence 

combination possibilities similarly to Figure 20 which were available as a configuration 

option on the model and were used for training. The model could be trained in stages for 

each output configuration with MSE loss. The first stage allowed the firs encoder to be 

trained, the second and third stage allowed the previously learned encoding to be 

combined with context and then trained and the final stage concatenated the combined 

sequences into a single output. The model outputs a single duration value for each of the 

phonemes which are rectified with a ReLU to only allow positive duration values. The 

encoder and decoder blocks are further expanded in paragraph 5.1.  
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The results for duration prediction and border agreement are shown in Table 10. The 

predicted durations are on average off by 19.59ms with a maximum of 1616.81ms. The 

duration model did not yield great results for boundary agreements as the errors for 

border positions are cumulative from the duration mistakes. Each deviation of the 

previously predicted duration would shift the subsequent borders by that amount.  

  

 

Figure 23 Duration prediction model architecture which combines information from audio and phoneme 

context and allows multiple sections to output and be trained individually. 
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Table 10 The errors for the duration and border predictions for the duration model. 

 Duration 

agreement (%) 

Border 

agreement (%) 

< 5ms 20.37 2.68 

< 10ms 39.06 5.23 

< 15ms 54.51 7.58 

< 20ms 66.53 9.69 

< 25ms 75.40 11.78 

< 30ms 81.89 13.65 

< 35ms 86.43 15.46 

< 40ms 89.76 17.16 

< 45ms 92.07 18.74 

< 50ms 93.74 20.29 

< 55ms 95.00 21.74 

< 60ms 96.00 23.13 

< 65ms 96.69 24.50 

< 70ms 97.24 25.82 

< 75ms 97.65 27.18 

< 80ms 97.98 28.41 

< 85ms 98.27 29.58 

< 90ms 98.47 30.80 

< 95ms 98.67 31.88 

< 100ms 98.82 33.02 

7.1 Duration scaled label sequence alignment for sequence tagging 

Given that the duration prediction by itself is not very useful, an alternative way is to 

instead use it to improve the sequence tagging model’s post-processing alignment. This 

is achieved by using the predicted duration to give the input transcription label sequence 

scale before aligning them on the sequence tagging output. The easiest method is to 

iterate the durations and for each 10ms that the duration covers a corresponding one-hot 

encoded phoneme vector is added into the end of the sequence. In other words, if the 

predicted duration for the first phoneme is 90ms then 9 one-hot encoded vectors are 

added to the sequence. The result is a pseudo sequence tagging output mapping with 
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similar sequence length, as seen in plot 3 in Figure 24, provided the durations are 

normalized to add up to the audio segment total duration. Doing this forces the post 

processing alignment to avoid needlessly long or short phoneme sequences as it has 

access to the recommended phoneme duration ratios.  

A visual example of how well the duration scaled labels can match the ground truth is 

shown in Figure 24 below. The chosen audio segment is visualized on plot 1. The 

predicted and actual duration are compared in plot 2. Indeed, the predictions are off by 

about 20ms on average as reported before. The third plot shows each phoneme label 

repeated with respect to the predicted duration which results in a rough estimate of the 

desired ground truth phoneme occurrence sequence as seen on the last plot. 

 

Figure 24 Predicted phoneme durations used to produce a phoneme occurrence graph by scaling the 

transcription phoneme labels with their duration. 
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7.2 Results 

The duration model satisfied all three requirements but did not produce an acceptable 

segmentation result. Nevertheless, the additional knowledge that the duration scaled 

label transcription brought into the sequence tagging model’s post-processing step 

improved the scores significantly. The boundary agreement results are shown in Table 

11. The combined model has achieved better agreements than baseline 1 on all 

boundaries except 10ms and 15ms. It has not exceeded any of the baseline 2 results. The 

mean difference from the ground truth border is 6.98ms with a maximum deviation of 

715ms. 

Table 11 Duration enhanced sequence tagging agreement improvements compared to previous results. 
 

Baseline 1 Baseline 2 
Sequence 

tagging 

Sequence 

tagging + 

durations 

< 5ms 48.28  48.90 49.30 

< 10ms 79.30 77.53 77.37 77.92 

< 15ms 89.49  88.53 89.03 

< 20ms 93.36 93.92 93.06 93.57 

< 25ms 95.38  95.42 95.87 

< 30ms 96.74 97.43 96.82 97.27 

< 35ms 97.61  97.72 98.11 

< 40ms 98.22 98.78 98.28 98.66 

< 45ms 98.62  98.67 99.03 

< 50ms 98.92 99.35 98.89 99.24 

< 55ms 99.13  99.07 99.41 

< 60ms 99.32  99.20 99.53 

< 65ms 99.45  99.31 99.60 

< 70ms 99.57  99.39 99.67 

< 75ms 99.64  99.44 99.71 

< 80ms 99.70  99.48 99.75 

< 85ms 99.75  99.53 99.78 

< 90ms 99.78  99.58 99.81 

< 95ms 99.81  99.62 99.83 

< 100ms 99.83  99.65 99.86 
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8 Experiments with Soft Pointer Networks 

Soft Pointer Networks is a new phoneme segmentation architecture proposed in this 

thesis. It is widely inspired by the attention mechanism and shares similarities to Pointer 

Networks. 

The first requirement posed was that there must be a one-to-one correspondence 

between found borders and transcription borders. It stands to reason that maybe instead 

of finding phoneme probabilities and then using alignment to post-process it into an 

acceptable state it makes more sense to map the phonemes with their position on the 

audio segment directly.  

One such mechanism to transform a phoneme query over an audio target into a 

probability distribution is the attention mechanism. As shown on Figure 25, the main 

idea is to calculate the attention weights (activation scores) shown in the second plot 

between the phoneme label transcription and audio encodings, but skipping the step to 

calculate the weighted context over the audio encodings. Instead, the resulting weights 

are used directly to vote for the border position for the given phoneme. As seen on the 

last plot, the attention score distribution centre of each of the given five phonemes 

resides around the ground truth border. 
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The key-value-query concepts come from retrieval systems, such as search engines. In 

the case of searching for a document in a files system, the text written to the search box 

would be the query which is then compared to the known filenames as the keys in the 

filesystem database and the content returned from those files would be the values. In 

phoneme segmentation, the label transcription would be the query to which it is possible 

to use the audio as the key database and the index gradient as a substitute value 

database. 

8.1 Training targets and model architecture 

The main goal of this model is to express the position of the phoneme border. To do so 

there are 2 options to train against: 

 

Figure 25 Example of attention scores activation distribution mean being around the actual border. 

(illustrated by a vertical line) 
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1. The attention weights 

a. The raw attention activation matrix using one-hot encoded positions as 

the ground truth 

2. The position gradients 

a. The position encoding vector which holds positional information as 

described in the original attention paper 

b. The position indexes as scalar values 

 

The proposed model architecture, as shown in Figure 26, produces results for both 

options. The final output can be index, positional encoding or the attention score matrix. 

Each output mode is matched with a different loss function. The attention weights could 

be trained with MSE loss, the position encodings with Cosine loss and the position 

indexes with MSE loss or SmoothL1Loss. When compared to the previous models in 

Figure 20 and Figure 23 the model has no decoders and is generally very lightweight. 

Furthermore, both audio and phoneme inputs are considered equally important.  
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8.2 First option: the attention weights 

The first option is straightforward given that the model already produces an attention 

score matrix, but it was not as easily pipelined within the existing system that was used 

for the previous models. That is because the two axes of the attention score matrix, 

sequence and feature length, can vary in size as opposed to the previous solutions where 

the output only changed in the temporal axis. The problem is illustrated in Figure 27 

where when comparing the individual attention score matrices from within a single 

batch on the four plots, the masked area, shown in a blue tint, varies significantly. This 

 

Figure 26 Soft Pointer Network model architecture which combines information from audio and phoneme 

context and allows multiple modes of output: index, position vector and attention score matrix. 
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also means that batch processing would require significantly more effort to mask and 

account for this.  

The second problem is that the data preparation step must generate an example ground 

truth distribution as the target to motivate the model to learn also from almost correct 

positions as seen in Figure 28. The attention scores decay as a function of distance from 

each of the actual borders which are depicted as vertical lines on the figure. This shows 

that neighbouring frames are not independent, rather they each transition temporally 

from each other. As there is a clear incentive to have this gradual decay of attention 

around the predicted border, to guide the model smoothly between sequential positions, 

it is evident that the one-hot encoded position without this might be even 

counterproductive. 

 

Figure 27 Four examples from a single batch of attention scores, where there is a high variation in masked 

areas in two dimensions. 
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At first, each of the high attention areas in the target example above seems to be 

insignificant blips, but they represent activation distributions which have two defining 

parameters, the mean and standard deviation. In order to generate a training target, the 

data preparation step would need to define the mean of the blip’s distribution as the 

desired phoneme border, but to choose the correct standard deviation hyperparameter is 

non-trivial. There is no evident way to choose the hyperparameter σ (standard 

deviation) for the as the resulting blip shape would also change how the model behaves 

around the proximity of the border, making the characteristics of the whole system 

depend on it.  

The final output of this model is produced by applying argmax operation on the 

attention scores to produce the final index. The result of the argmax is the location of 

the highest peak for the attention score which discards the mean location of the 

activation which might be more accurate. This makes the model unable to produce the 

position in terms of index fractions to place the border between two frames. Given these 

constraints, the use of this output target was not further investigated. 

8.3 Second option: the position gradients 

Reasonably, it would make more sense to train the model on the argmax result instead, 

but argmax operation is not differentiable. Nor does it have properties that would make 

use of the scores on neighbouring timesteps. In general, the operation to find the 

position of the maximum value in a sequence is not trivially differentiable. So, in order 

to use the attention scores to calculate a single position a better strategy is needed.  

The goal of the second option is also to improve the situation by reducing the 

complexity of the training process. Instead of having the output be dependent on the 

audio sequence length, as the one-hot encoded position vectors in the first option, it 

 

Figure 28 Attention score blips for an audio segment with different distribution shapes. 
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would make more sense to encode the positions with a constant size vector or scalar. 

That way the output and ground truth sequence tensors would only variate in sequence 

length, not feature dimensions. This compact constant size format has only one 

dimension to mask, which has an immediate benefit to batching when compared to the 

first option.  

8.3.1 Differentiable soft pointers 

Position can be expressed in many ways. It can be a number for one-dimensional data, 

such as sequences, or a vector for multidimensional data. The authors of the attention 

mechanism used in this paper propose the use of a multidimensional position encoding 

for sequences to model explicit temporal relations in sequences. For the purposes of this 

paper, a position gradient is a sequence of which elements are required to identifiably 

mapped to the desired output position. 

The most natural way to output position encoding is to use the produced audio to 

phoneme label attention weights, as shown in Figure 19 in section 6.2, to blend a 

position gradient instead of the audio encoding to a context vector at each decoder step. 

In effect, this would take the weighted average of the most voted positions. This can be 

done using an efficient and simple matrix multiplication between the attention weight 

matrix and the position gradient.  

As an example, the position calculation for the tenth phoneme in Figure 25 and Figure 

28 is shown in Figure 29. The attention score for the tenth phoneme is shown as the 

orange line and the actual border is shown as a vertical green line. The red line is the 

position predicted by the argmax of the attention score and resides on the peak of the 

attention score plot. The weighted mean position is shown as a blue vertical line and 

resides in the centre of the distribution. Even though the actual border is not in the 

midpoint of the attention score distribution, it is more accurately approximated by the 

soft mean position than the hard argmax position.  
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The motivation for this approach comes from the observation, that the attention weights 

scores add up to 1 and their distribution would presumably have its mean around the 

desired border position. The previous example illustrates how the desired index can 

effortlessly be calculated by the weighted average of the position gradient generated 

from the frame indices. It can be seen there that the weighted mean position of the 

attention scores is better at estimating the position than the peak position. The fact that 

the attention scores add up to 1 warrants that the predicted position would always be 

bounded within the audio sequence. This can further be expressed as formula (15) 

where n is the length of the sequence, ai the attention activation and C the final position 

index. 

𝐶𝑖 = ∑ 𝑎𝑖
𝑗(𝑗 − 1)                                                         (15)

𝑛

𝑗=1

 

And the generic case for position vectors as formula (16) where V is the output vector 

and vi is the i-th position encoding vector. 

𝑉𝑖 = ∑𝑎𝑖
j
𝑣𝑗                                                                (16)

𝑛

𝑗=1

 

This is the best-case scenario, as seen from the previous example, which will result in a 

position with higher accuracy than the position gradient which consists of integers. 

From this, it can be concluded that it does not depend on the audio encoding step size. 

The model can express the final answer in terms of index fractions which can place the 

 

Figure 29 Benefits of using the weighted average of index gradient over argmax operation for interpreting 

attention weights. 
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border anywhere between two audio frames. This property of the model overcomes the 

issue of the sequence tagging model’s dependence on the audio encoding granularity 

and circumvents the issues created by the argmax discrete index lookup. 

8.3.2 Results 

The initial model was trained using index gradients. The training of this model was 

done using a modified version of SmoothL1Loss. The final accuracy of this model was 

acquired after training the model without the positional encoding being added to the 

input sequences. The comparison of raw position and ground truth in Figure 30, 

suggests that the model performed exceptionally well. The actual border positions, 

depicted as solid vertical lines, are in proximity of the predicted border positions, 

depicted as dotted lines, and the attention score activations overlap minimally. There is 

also no border out of order in this example. 

The final positions were forced to satisfy requirement 3 by post-processing as described 

in the following section 8.4.1. Therefore, the final scores presented in Table 12 below 

satisfy all the requirements. The model has achieved better agreements than both 

baselines and enhanced sequence tagging model on boundaries less than 30ms. It has 

exceeded the main 20ms boundary agreement of baseline 2 results. The mean difference 

from the ground truth border is 8.30ms with a maximum of 748.36ms. There is clear 

evidence that this model has higher accuracy for sub 30ms boundaries than any other 

previous implementation. 

  

 

Figure 30 Predicted borders (dotted) compared with actual borders (solid). 

 



74 

 

Table 12 Initial Soft Pointer Network agreement improvements compared to previous results. 
 

Baseline 1 Baseline 2 
Sequence 

tagging 

Sequence 

tagging + 

durations 

Soft 

Pointer 

Network 

< 5ms 48.28  48.90 49.30 57.28 

< 10ms 79.30 77.53 77.37 77.92 82.07 

< 15ms 89.49  88.53 89.03 90.56 

< 20ms 93.36 93.92 93.06 93.57 94.00 

< 25ms 95.38  95.42 95.87 95.77 

< 30ms 96.74 97.43 96.82 97.27 96.85 

< 35ms 97.61  97.72 98.11 97.54 

< 40ms 98.22 98.78 98.28 98.66 97.99 

< 45ms 98.62  98.67 99.03 98.29 

< 50ms 98.92 99.35 98.89 99.24 98.50 

< 55ms 99.13  99.07 99.41 98.64 

< 60ms 99.32  99.20 99.53 98.77 

< 65ms 99.45  99.31 99.60 98.85 

< 70ms 99.57  99.39 99.67 98.91 

< 75ms 99.64  99.44 99.71 98.96 

< 80ms 99.70  99.48 99.75 99.01 

< 85ms 99.75  99.53 99.78 99.05 

< 90ms 99.78  99.58 99.81 99.08 

< 95ms 99.81  99.62 99.83 99.12 

< 100ms 99.83  99.65 99.86 99.15 

 

8.3.3 Position encoding 

The main motivation for using the attention position encoding as the position gradient is 

for it to be later used on the second pass through as the replacement positional encoding 

as described in the reference attention implementation [35]. The repeating process of 

applying this method could potentially cause the system to converge faster to a solution. 
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The second benefit to output position encoding vectors is that they also describe the 

accuracy of the prediction. A well-formed position vector has activations only close to 

the intended position, but an ambiguous vector might lack the higher frequency features 

and blend smoothly over a larger neighbourhood of the position. This can be observed 

in Figure 9. 

Training this kind of model requires special attention when choosing the loss function. 

Training the model with mean squared error (MSE loss) gives a mediocre result. A 

much better fit is cosine loss (cosine loss) as it is very similar to the matrix dot product 

step that the attention mechanism uses to produce the scores. Furthermore, observation 

during the testing suggested that using cosine loss also avoided unpredictable behaviour 

during training when compared to MSE loss. 

8.3.4 Results 

To calculate the border agreement percentiles requires the system to output millisecond 

timestamps in order to be scored. The final output used the intermediate attention 

weights and the index gradient instead of the positional encodings to output the final 

positions. The results of this model were trained using the previous index gradient 

models pre-trained weights as the starting point. There was no improvement in using the 

model in a recurrent fashion 

As seen in Figure 31, the model succeeded in predicting position encodings. The actual 

position encoding on the first plot and the predicted position encoding on the second 

plot showed marginal difference as highlighted on the third plot. 

 

Figure 31 Example of a position encoding prediction. 
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The results of the positional encoding experiment are shown in Table 13. The model 

improved sub 15ms scores only marginally and performed slightly worse than the index 

gradient version on the rest of the boundaries. The model achieved the highest boundary 

agreement for 5ms. It can be concluded that the positional encodings as the position 

gradient did not improve the model’s performance significantly.  

 

Soft Pointer 

Network 

Soft Pointer 

Network + 

positional 

encodings 

< 5ms 57.28 57.55 

< 10ms 82.07 82.20 

< 15ms 90.56 90.49 

< 20ms 94.00 93.92 

< 25ms 95.77 95.69 

< 30ms 96.85 96.75 

< 35ms 97.54 97.41 

< 40ms 97.99 97.86 

< 45ms 98.29 98.15 

< 50ms 98.50 98.34 

< 55ms 98.64 98.48 

< 60ms 98.77 98.60 

< 65ms 98.85 98.68 

< 70ms 98.91 98.74 

< 75ms 98.96 98.80 

< 80ms 99.01 98.85 

< 85ms 99.05 98.88 

< 90ms 99.08 98.91 

< 95ms 99.12 98.94 

< 100ms 99.15 98.97 

 

Table 13 Soft Pointer Network trained with positional encodings output mode agreement improvements 

compared to previous index-based approach. 
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Nevertheless, the experiment shows promising future applications. As shown before, the 

output position encoding vectors originate from a blend of discrete position vectors 

which would allow the system to output also positions between two coordinates. While 

the position encoding gradient is meant to represent one-dimensional coordinates with a 

multidimensional vector, the proposed model could very well work also with geometric 

coordinates. This shows that the proposed model could also be used to solve spatial 

problems where the network would have to output a position interpolated between their 

coordinates, for example, protein docking. 

8.4 Monotonically growing 

One of the issues that this method of segmentation creates is that the border indices 

might not be monotonically growing. The attention scores in Figure 32 illustrate how 

the model achieved a semi-good prediction of the phoneme positions given a corrupted 

audio input as seen in plot 1. The incomplete audio data lead the trained model to 

produce a fluctuating attention activation on plot 2 and is most visible on the final plot 

for the 14th phoneme. It becomes apparent that in situations like the presented, the 

choice of midpoint strategy and a more extreme case malformed input might cause 

displacement of the boundaries.  
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Observation during the development suggested that the errors were systematic. The 

mistakes were independent and did not interfere with their neighbouring borders. The 

most prevalent issue was the mistakenly pointing to a previous or following border of 

the same phoneme, most likely mistaking whether it had already been handled. Which is 

why it can be seen that the model does not necessarily satisfy the requirement 3. The out 

of line border ordering could be fixed with: 

• Post-processing 

• Progressive masking 

8.4.1 Post-processing 

The goal of post-processing is to handle cases where the border is preceding the 

previous or following the next border. The resolution method to solve requirement 3 

could be to: 

 

Figure 32 Interference to the data causing the border detection to be out of order. 
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1. Vanilla: Pick the midpoint of the previous and the following border. 

2. Duration: Pick the midpoint of the previous and following border with the 

highest activation. 

3. Activation: Place the new border relative to the previous or subsequent border 

by a predicted duration offset, but not before the previous border. 

4. Combined: Average of the previous options. 

The fallback if this does also not resolve to an in-order border is to use the previous 

border. 

The results in Table 14 show that not fixing the ordering has the best boundary 

agreement, but as mentioned does not satisfy the third requirement. Picking the 

midpoint has the least precision loss when compared to just ignoring the issue. Using 

the highest activation turned out to be counterproductive as it was heavily biased 

towards the closest edge, which caused it to reside on the previous or the following 

border. Using a trained model to predict the duration of the phoneme to offset it relative 

to the previous one performed the worst. The combinations of options gave no 

measurable benefits over the previous options. 
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Table 14 Post-processing boundary agreement results. 
 

Nothing Vanilla Duration Activation Combined 

< 5ms 56.32 56.31 56.14 56.31 56.31 

< 10ms 82.07 82.06 81.81 82.06 82.06 

< 15ms 90.99 90.98 90.71 90.97 90.98 

< 20ms 94.64 94.62 94.35 94.61 94.62 

< 25ms 96.63 96.60 96.32 96.59 96.60 

< 30ms 97.78 97.75 97.46 97.74 97.75 

< 35ms 98.46 98.43 98.13 98.41 98.43 

< 40ms 98.88 98.85 98.55 98.83 98.85 

< 45ms 99.13 99.11 98.80 99.08 99.11 

< 50ms 99.30 99.28 98.97 99.25 99.28 

< 55ms 99.44 99.42 99.11 99.39 99.42 

< 60ms 99.51 99.49 99.18 99.46 99.49 

< 65ms 99.58 99.57 99.25 99.53 99.57 

< 70ms 99.62 99.61 99.29 99.57 99.61 

< 75ms 99.65 99.64 99.32 99.61 99.64 

< 80ms 99.67 99.66 99.35 99.63 99.66 

< 85ms 99.69 99.68 99.37 99.65 99.68 

 

8.4.2 Progressive masking 

The weakness of the Soft Pointer model is reoccurring phonemes which makes the 

model prone to produce these out of order borders. Typically, these errors are not 

random, but duplications of previous borders. One way would have been to provide the 

previously attended indices as a feature vector in tandem with the raw audio data before 

encoding, but this leads to an untrainable big differentiation graph. Nevertheless, there 

is a clear need for relay previously attended positions during interference that is also 

feasibly trainable. 

One of the key improvements to the model was to introduce a new masking strategy as 

conveniently the attention mechanism already supported masking the temporal 
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dimension. Instead of letting the encoder run out of memory, it was better to just omit 

already attended timesteps. As shown in the first plot in Figure 33, the mask could be 

generated using the previous phoneme’s attention score cumulative sum with a 

threshold as a mask. As an additional tweak half of the features of the audio encodings, 

as shown on the second plot, could be multiplied by the un-thresholded cumulative 

attention scores to reduce the impact of this modification.  

This leads to the model being more relaxed about specializing on finding a border as it 

now does not have to worry as much about re-evaluating the same border twice as 

much. Furthermore, the use of the softmax scores enables the model to express 

confidence in the masks. The results can be found in the next chapter. 

The injected interdependence can be expressed using conditional probability in the 

following formula (17). Given the mask vector 𝑏𝐶𝑖−1
, which depends on the previous 

predicted position 𝐶𝑖−1, the probability of 𝐶𝑖 following the previous positions 𝐶0 to 𝐶𝑖−1 

is equal the masked attention score with regards to the logit vector 𝑢𝑖. 

𝑝(𝐶𝑖|𝐶0, … , 𝐶𝑖−1, 𝑃) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑢𝑖 ∗ 𝑏𝐶𝑖−1
)                                  (17) 

  

 

Figure 33 Example of cumulative attention score masking. 
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9 Final Soft Pointer Network results 

The final model was trained with spectrogram step size modulation, audio 

augmentations, different output target modes with their respective loss functions. The 

position mode training was done using a modified version of SmoothL1Loss. This was 

possible as most of the toolchain was modular and the model was built to be 

configurable on the fly for each output target. This was also motivated by the intention 

to force the model to adapt and generalize to avoid overfitting while the training 

progress being compatible with each model design iteration. The final model could be 

adapted to multiple audio transformation step sizes in about 4 epochs, which further 

exemplifies the superior granularity independence of this model over the sequence 

tagging model. The final output was post-processed with the help of predicted duration 

offsets to explicitly satisfy the third requirement. 

In Table 15 the phoneme average absolute error shows that some phonemes that are less 

represented in the dataset, such as “/jh/” and “/ax-h/”, performed the worst. The errors 

are visualized in-depth in appendix 1. This might be a possible area to investigate for 

future improvements.  

Table 15 Phoneme average absolute error. 

oy 5.28ms ao 6.30ms ux 6.34ms w 6.37ms z 6.41ms 

ng 6.42ms r 6.45ms hh 6.46ms ch 6.48ms sh 6.57ms 

pcl 6.59ms m 6.60ms dcl 6.67ms hv 6.67ms iy 6.69ms 

aa 6.71ms v 6.74ms gcl 6.76ms l 6.77ms ax 6.79ms 

nx 6.79ms th 6.82ms t 6.84ms bcl 6.85ms b 6.86ms 

tcl 6.86ms ae 6.94ms ah 7.01ms ow 7.02ms f 7.02ms 

uw 7.04ms g 7.04ms uh 7.06ms pau 7.09ms s 7.10ms 

k 7.13ms aw 7.14ms ix 7.20ms y 7.21ms p 7.26ms 

n 7.27ms ey 7.30ms kcl 7.32ms d 7.34ms dh 7.37ms 

er 7.38ms eh 7.39ms zh 7.43ms dx 7.43ms ih 7.64ms 

ay 7.82ms axr 7.86ms jh 9.67ms ax-h 11.68ms   
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The final evaluation Table 16 presents that the Soft Pointer Network model has 

achieved better or equal agreements than baselines on all boundaries less than 70ms. 

With these findings, the proposed models have exceeded almost all the baselines with 

the sequence tagging model having higher accuracy above 70ms. The mean difference 

from the ground truth border is 7.01ms with a maximum of 780.91ms. The main 20ms 

boundary agreement percentage has been exceeded by 0.69%. 

Table 16 Final scores for the Soft Pointer Network model compared to previous results. 
 

Baseline 1 Baseline 2 
Sequence 

tagging 

Sequence 

tagging + 

durations 

Soft Pointer 

Network 

Soft Pointer 

Network + 

enhancements 

< 5ms 48.28  48.90 49.30 57.28 55.97 

< 10ms 79.30 77.53 77.37 77.92 82.07 81.93 

< 15ms 89.49  88.53 89.03 90.56 90.88 

< 20ms 93.36 93.92 93.06 93.57 94.00 94.61 

< 25ms 95.38  95.42 95.87 95.77 96.62 

< 30ms 96.74 97.43 96.82 97.27 96.85 97.79 

< 35ms 97.61  97.72 98.11 97.54 98.48 

< 40ms 98.22 98.78 98.28 98.66 97.99 98.87 

< 45ms 98.62  98.67 99.03 98.29 99.15 

< 50ms 98.92 99.35 98.89 99.24 98.50 99.35 

< 55ms 99.13  99.07 99.41 98.64 99.48 

< 60ms 99.32  99.20 99.53 98.77 99.57 

< 65ms 99.45  99.31 99.60 98.85 99.65 

< 70ms 99.57  99.39 99.67 98.91 99.67 

< 75ms 99.64  99.44 99.71 98.96 99.70 

< 80ms 99.70  99.48 99.75 99.01 99.72 

< 85ms 99.75  99.53 99.78 99.05 99.74 

< 90ms 99.78  99.58 99.81 99.08 99.76 

< 95ms 99.81  99.62 99.83 99.12 99.77 

< 100ms 99.83  99.65 99.86 99.15 99.79 
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10 Differences and improvements over Pointer Networks 

The proposed gradient lookup architecture came as a natural result of the earlier models. 

During the development, it was found out that this type of network had already been 

published under the name Pointer Networks [37]. Nevertheless, the model proposed in 

this paper offers significant improvements and adaptations for segmentation problems. 

Pointer Networks are optimized to find and retrieve elements from an unordered 

sequence or more accurately, a set of values. Ptr-Nets do not make use of the fact that 

the audio input database is already ordered to encode positional information in the 

current audio segmentation task in fact, it disregards it entirely by encoding position 

targets as one-hot vectors. It is strictly a value retrieval solution. In a sense, it is more 

like a position classification model rather than a regression model. 

The key difference between Pointer Network and the Soft Pointer Network proposed in 

this paper is: 

• The usage of a second input sequence (the phoneme labels) as the query. 

• The usage of a position gradient as the value database to enforce temporal 

relations and allow blended positions 

The motivation for using the phoneme transcription as a query has been discussed 

already in paragraphs 7 and 8. The key takeaway is that it motivates the model to use all 

the available data for this specific use case in the training process. 

The more distinguishing feature is the use of the position gradient. This method offers a 

far more appropriate approach to segmentation tasks. Encoding the position as a 

gradient transforms this from a classification problem to a regression one. 

The key benefits are: 

• Compact representation 

• Natural representation 

• Differentiable positions 
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By collapsing the attention score vector, it changes from a variable-length vector into a 

constant size one. The compact sequence of fixed size positions is substantially more 

effortless to batch-process as shown in paragraph 8.  

With the output being a scalar, it is possible to output positions that are between the 

inputs of the original sequence as presented in Figure 29. With these enhancements, the 

model can output phoneme boundaries more naturally. 

Ptr-Net defines the target as a one-hot encoded position vector over the whole input 

length. The loss is also calculated as though it would be a classification task and the 

final position index is taken by argmax-ing the scores. This disregards the false 

positives that are off only one to two frames. In the case of an unordered set of inputs, 

this is desirable, but for audio segmentation, the neighbouring frames are temporally 

linked. Yet another possibility that this fails to consider is that the desired position 

might be in between two frames. One option to combat this would be to define the Ptr-

Net one-hot encoded target with a steady decline of activation around the desired 

position instead, softening the position. But that would also introduce an extra 

hyperparameter to tune the falloff distribution shape and in effect affect the model 

behaviour.  

The proposed network overcomes this by not training directly on the one-hot encoded 

softmax positions, but on the weighted average positions which were calculated using 

the attention scores as the weights and the input sequence positions as values. There is 

no need to define a distribution to also reward positions close to the actual target as it is 

taken care of by the methods for regression models. Positions close to the desired target 

would have a smaller loss than positions further away, the same way as it would be with 

any other regression model. Most importantly, the position returned from this model is 

differentiable as opposed to the argmax index produced by Ptr-Net. 

The proposed model can produce a sequence index when required to retrieve an element 

or a fractional index when dealing with temporal data. It is also shown that it is possible 

to use this model to produce an interpolated geometric coordinate, which would be 

beneficial for solving spatial problems, such as protein docking. Overall, this model is 

well adapted to solve a distinctly different set of problems. 
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11 Future work and applications 

The Soft Pointer Network model achieved great results for the phoneme segmentation 

task, but there are possible ways to improve the current model. The most important area 

is the training process. Most of the time in this thesis was spent in model design which 

left less time to explore areas such as loss functions and training methods like teacher 

enforcing. 

The myriad of different training targets and possible loss functions presented in this 

thesis show that there is good reason to explore appropriate loss functions. One of the 

main areas to improve in this regard would have been to use class weight-based 

approaches to combat the unbalanced phoneme representation in the dataset. Another 

possible approach would have been to train a model specifically for each phoneme and 

use the well-performing phonemes to pre-segment the dataset for more focused lookups 

for less common phoneme borders. In general, the results could have been improved by 

the use of more domain-specific knowledge from linguistics. 

While the initial design of the Soft Pointer Network model did not use previous outputs 

in subsequent predictions the proposed progressive masking idea showed the 

importance of it. When introducing such dependence of previous results, it is important 

to train the model in a way that would be resistant to early mistakes in the training 

process for the output to not waste training time. One such method would be to use 

teacher enforcing to enable the model to learn more effectively over the whole training 

sequence.  

The progressive masking process could be improved by being able to define a better 

rolling window for the detection area per phoneme. A better strategy to only focus on a 

relevant timeframe would enable the model to be less prone to re-evaluating the same 

phoneme twice. 

The final improvement would be to use the raw waveform data as the input. While such 

a frame-level model would require more training as there are more frames with less 

high-level data to process there could be possible accuracy improvements as the model 

could define the audio features itself instead of relying on having all the required 

features present in the Mel-spectrogram representation. 
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The future goal is to apply the findings of this thesis on the Estonian speech corpora to 

evaluate its usability and provide it as a fully built out tool for the Estonian language 

research community. There is further work needed to be done to integrate this solution 

with their workflow and dataset. 
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12 Summary 

The goal of this thesis was to research and propose a better end-to-end deep learning 

phoneme segmentation system, which would outperform the baseline solutions, and as a 

result, three possible neural network architectures were presented. All presented models 

satisfied the three requirements and produced well-formed outputs.  

As the best result of this thesis the novel segmentation model architecture, Soft Pointer 

Networks was proposed for phoneme boundary detection. The system used Seq-2-Seq 

models, attention mechanism, and key-value-query retrieval concept. The proposed 

system used audio segments and phoneme label transcriptions to predict the position of 

each phoneme in the audio segment directly.  

The main feature of this model is that it can learn differentiable positions or indices for 

queries using a position gradient without losing temporal information. The model was 

insensitive to the audio transformation step size. It was shown that the model has also a 

possible application in solving spatial problems where the network would have to 

output a position interpolated between the coordinates of the input set. 

Sequence tagging based systems were more fault tolerant as there is a high dependence 

on the surrounding phonemes in the phoneme label alignment step, but the Soft Pointer 

Network achieved better results on sub 70ms boundaries. This difference was caused by 

the model’s reduced constraint on interdependence which allows some predictions to 

reside well outside the expected region. This was mitigated with post-processing steps. 

The proposed Soft Pointer Network system achieved 94.61% boundary agreement 

within 20ms compared to the manual segmentation on the TIMIT corpus which is a 

0.69% improvement over the baseline results. It performed better or equally good in all 

boundaries less and equal to 80ms than when compared to the baseline systems.  

The findings in this thesis show that end-to-end systems are viable options for phoneme 

segmentation tasks and possibly improve future language research for phoneticians. 
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Appendix 1 – Phoneme error plots 

 

 

Figure 34 Phoneme error plots. 
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