I TALLINNA TEHNIKAULIKOOL
| TALLINN UNIVERSITY OF TECHNOLOGY

Department of Electrical Power Engineering and

Mechatronics

IMITATIONS OF PERCEPTIONS PROCESSES FOR AN
ARTIFICIAL LIFEFORM

TAJUPROTSESS! IMITEERIMINE KUNSTLIKU ELUVORMI POOLT

MASTER THESIS

Student: Vladislav Babuskin
Student code 163216MAHM

Supervisor: Mart Tamre, Professor

Tallinn, 2018

AUTHOR'’S DECLARATION

Hereby | declare, that | have written this thesis independently.
No academic degree has been applied for based on this material. All works, major viewpoints and

data of the other authors used in this thesis have been referenced.

AUthOr: ..o,

/signature /

Thesis is in accordance with terms and requirements

SUPEIVISOr: cuvvvveeeeeieeriiiiennne

/signature/

Accepted for defence

Chairman of theses defenCe COMMISSION:civiiiiiiiiiiiieieiiieree e e eeeeeeeeeeeeeeeeeseeeeeeeeeens

/name and signature/

TTU

School of Engineering

MSc THESIS TASK
Student: Vladislav Babuskin 163216MAHM
Study programme, main specialty: MAHMO02/13 - Mechatronics
Supervisor(s): Professor Mart Tamre
Thesis topic:
(In English) Imitation of perceptions processes for an artificial life form.

(in Estonian) Tajuprotsessi imiteerimine kunstliku eluvormi poolt.

Thesis main objectives:
1. Create an artificial life form as an object of concept confirmation.
2. Design internal world space for the object.
3. Provide a feedback loop, in order to connect the external and internal worlds

Thesis tasks and time schedule:

No Task description Deadline
1. Analysis of artificial replacement of the Sense organs. 20.09.2018
2. Artificial life form mechanical design. 04.10.2018
3. Artificial life form hardware design. 25.10.2018
4, Artificial life form software design. 08.11.2018
5. Environment simulation software design. 22.11.2018
6. Communication establishment. 06.12.2018
7. Proof of the concept. 20.12.2018
8. Finalizing Master thesis. 03.01.2019

Language: Deadline for submission of thesis: “....... e 201....a

StUdent: ...t e Yo SRR 201...a

/signature/
SUPEIVISON: ...coocviviiciiciis e eetee e e e ecre e e e eeraeae e e e 201....a

/signature/

CONTENTS

PREFACE ...ttt sttt ettt sttt et e s e e benbe e e bente e enennas 7
List of abbreviations and SYMDOIS..........c.ooieiiiiii e 8
INTRODUCGTION ...ttt et et e e et e e e s e e asbe e e e taaeeneeeannes 9
1. THE GENERAL CONTROL OBJECT DESIGN ANALYSIS.....cccooocvnvinineriannn,s 11
IO T 1Y/ o1 SRS 11

1.2 ODJECTE SNAPE ...t 11

1.3 Perception CRANNEIScooiiiiiiiiee e 12

1.4 Biological sense organs replaCement...........coooeviierineeieiene e 12
1.4.1 ViSION SEOMENT ...c.viiieiie ittt ettt e e e e te et esae e esneesreennennes 12

1.4.2 TACHIe SEPMENT......eiii it 14

1.4.3 Self-balanCing SEgMENTcc.oiiiiiieeee s 14

2. MECHANICAL DESIGN......oiiii ettt e e 15
2.1 Decision to make OWN AeSIGNccveiiiieiiee e 15

2.2 COMMON GROIMELIY ..vvvieiiiiieiiee ettt ettt bb e br e e b e e e anbe e e e 16
2.2.1 ChassSiS lIMD DOFooeiiieece e 17

2.2.2 LMD WOIK @IrBa.......eiveiiieiiieie e sttt sttt nre e e 18

2 T L0101 €SP SRRPR 19
2.3. L ROOT JOIN...ctiiiieiieiece sttt sttt 19

2.3.2 PIIMANY JOINT ...ttt 20

2.3.3 SECONAAIY JOINT ...ttt 20

2.3.4 JOINE DESION ...ttt et e e e sae e e re e e e 21

p 1 AV T U 1| SO PSSR 22

3. HARDWARE DESIGN. ...ccoiii ettt e e e e e e e 23
3.1 The OmICroN NAIAWAIEccoieieceee e ne e 23

3.2 C0rE HAIOWAIE. ..ottt ettt reenne e 24

3.3 LIMD NAIAWAE ... e 24
TR 0 1V (o] (0 gl = OSSR 25

332 LMD SPU .o 25

3.4 SENSOIS NATTUWANE ...ttt ettt reene e 26
AL RPLIDAR ..ottt ettt ne e 26
KRS0 - | PRSPPI 27

344 PIESSUIE SENSOK ...eeeuiiiiueieitiesiteesteessteesteessteesbesssaeesbesssbeesbessnteesbeesnbeesseessseennessnnes 27

3.4.5 Inertial Measurement UNit.........ooooeeooeoeoe e 28

3.4.6 POENTIOMEBLEISvevie ittt ste e sre e e e 28
3.5 ComMMUNICALION NAIAWAIE..........oiviiiiriiiiieieieie e 29
B0 BaEIY ...t 29
CONTROL UNIT PROGRADMcooiii ettt 30
4.1 Development ENVIFONMENT.......c.ooiiiiiiieieieee e 30
i I [0] o3 o] (0o - 1 [OSSPSR 30
R BTl g {0 g o] (0o -1 o PP UPRTPPR 31

4.2.1 SONAE PrOGIAIM ...ttt ettt r e sb e nn e sb e ne e 31

4.2.2 RPLIDAR PIrOQIaMcoiviiieiiiieiiieieseesie et 32

4.2.3 Inertial Measurement UNit Programcccoceevveieereeieeseesesse s e e sree e 33
4.4 COTE SOTIWAIE ...ttt bbbt 33

O 0 R O | [=Tod o L OSSR 33

O S 1= o I - - PSSP 34

4.3.3 RECEIVE TALA......eiveeeieieie ettt bbbt 35

4.3.4 DISHIDULE UALA ..cveevverieieciesies e e 35
PERCEPTION SIMULATION SOFTWARE ..ot 36
TR O] 410 W g o U1 o] OSSPSR 36

5.1.1 ComMMUNICALION SEL UP. ..vvevveivieiiecie st ite ettt sre e 36

N I D £ B (0] =T [T PSPPSR 37

5.1.3 Data TranSMITEINGccooeiiiiiieieiere e 37

5.1.4 RECEIVE DALA.......cciieiieiieiiieieeie e e et se e sree e see e st te e sreeneeeneesreeneeans 38
5.2 ANIMALION ..vteiiiecie ettt ettt sttt ne et e nes 40

5.2.1 SKEIBTON ...t 40

5.2.2 Omicron simplified MESh.ccooiiiiii e 40

5.2.3 Inverse Kinematics HandIErS.cccoeveiieieiieiie e 41

5.2.4 ANIMALIONS ...evvieiieiieiieee e e et se e e e e e e steeteaseessaesaesseesseenseaneenrens 42

5.2.5 Animation BIend SPace.........cooveiiiiiiiiic e 43

5.2.6 Animation State Machineccooeiiii i 45

5.2.7 Sockets — data to send Dack ..o, 47

5.2.8 Inverse Kinematics for Limbs in animations...........ccccoevvveviieriesiieneenesieneenn 48
5.3 The effect of the feedback to the State Machine/Simulation.................ccccceeeenee. 49

5.3.1 Pressure sensors role in Inverse KineMatiC.........oocuevueiieneeienin e 49

5.3.2 Inertial Measurement UNIt rOIEccooveiieeieiie e 50

ORIV 0] g T- 1 gl (0] [T 51

5.4 Virtual environment map building ProCess...........ccooverinieienene i 51

6. CONCEPT OUTCOME AND RESULTS ANALYSIScocooiiiiiieiseneesesie e 52
6.1 MEChANICAl ISSUBSc.eiiiiiieie e 52
6.1.1 MAChINE GEOMELIYeiveiiieieeie ettt 52

6.1.2 The Plastic gears in primary gearbOX.ccccurviirieiiiienienene e 52

6.2 HAIOWAIE ISSUE.....c.eiitiiiieiieiie ettt sttt bbbt 53

6.3 OMICION Program ISSUEcouveieiieeiesiesieesieseesteesteseestaeaessaesseessesseesseensessessseens 54
6.3.1 Place of the PRLIDAR segment in the program of the Omicron core............. 54

6.4 Virtual ENVIFONMENT ISSUESoovveiiieieiieiieeie e ie et nne e 55
6.4.1 Inverse KinematiCs SOIULION.........cooiiiiiiiiiiiiiieee e 55

6.4.2 Character Pawn and MOVEMENT..........cccoviiiiiiinininieiee e 55

6.5 FULUIE WOTK . .eeieiceie ittt nte et esneenteeneenneenneens 55
SUMMARY ettt e e e e r e e a e e e na e e e e e aa e e araeeanren 56
LIST OF REFERENCEScoooiiiiieeieieese ettt an s 58
APPENDICES ...ttt bttt ne e ne e 59

PREFACE

The topic for the master thesis is proposed by the author. The main aim of the project is to research
a solution for perception simulation. The solution can based on the concept of a digital twin. |
consider it as research about the possibilities in the robotics field. Digital twin is a dynamic virtual
representation of a physical object or system across its lifecycle, using real-time data to enable
understanding, learning, and reasoning. The problem of the digital twin concept is that the
information goes only in one direction. However, received information from the real world should
create or change the virtual environment and then send back new action plan according to the
updated environment. For another hand, the technique of hardware-in-loop can be applied. HIL is
a technique where real signals from a controller are connected to a test system that simulates
reality, tricking the controller into thinking it is in the assembled product. Problems of usage the
Hardware in loop technique in the frame of the current project that simulated reality is that these
techniques do not exist, it needs to be built. In this way, two methods were combined in order to
achieve the aim of the project. Shortly speaking, the system simulates in virtual reality not only the
unit but also the environment. Then HIL applied and at the same time, the real unit duplicates
everything that is happening in the virtual environment. The roots of the topic come from earlier
author’s [1] bachelor paper, which one was dedicated to the concept of robust autonomous
exploration mobile unit. However, besides that the current project presents another autonomous
exploration unit, the master thesis topic has no more common features with earlier paper. In
Bachelor paper there was covered the idea how to make exploration unit robust and to be able to
restore basic functions by redirecting the remaining resource and disabling additional functionality,
and the current topic cover option to extend interaction with the external environment and to
improve perception for the unit about the current position and surrounding condition for himself.
Also, the complexity of the unit was leveled up in order to match master degree level. The process
of developing this type of units is covering multiple fields of engineering, including mechanical,
electrical and software branches, in additional it is challenging to reach set goals. Because of the
above-mentioned reasons, | found this topic challenging. | am thankful to Programme Director of
Mechatronics - Mart Tamre for supervising me during the current project. Advice at the beginning

of the project was helpful to me.

List of abbreviations and symbols

VR
AG
DoF
IMU
MPU
DMA
ADC
PWM
IDK
12C
SDA
SCL
MSB
LSB
ASCII
PCB
SLAM
Al
CPU

DC

PCB
CPU
SPU
IDE

LDB
SCS
RPS
UE4
HIL

Virtual Reality

Augmented reality

Degree of Freedom

Inertial Measurement Unit

Motion Processing Unit

Direct memory access

Analog to Digital Converter
Pulse-Width modulation

Integrated Development Environments
Inter-Integrated Circuit

Serial Data Line

Serial Clock Line

Most Significant Bit

Least Significant Bit

American Standard Code for Information Interchange
Printed Circuit Board

Simultaneous localization and mapping
Artificial intelligence

Central Processing unit

Inverse Kinematics

Direct Current

Printed Circuit Board

Central Processing Unit
Sub-Processing Unit

Integrated Development Environment
Local Data Base

Single-Chain Solver

Rotate-Plane Solver

Unreal Engine 4

Hardware-in-loop

INTRODUCTION

The name of the current paper formulated as, the Imitation of perceptions processes for an artificial
life form. The combination of such words together sounds complicated and not self-explanatory
enough for the wide public as it does; for instance, the combination of words as a self-driving car.
Meanwhile, it also does not clarify what it is all about specifically enough to fit in in one paper and
give the main idea of the current paper. Thereby, as a first step, it is necessary to implement more
detail clarification about the concept, which stays behind this world combination and then explains
why the certain way of realization for the current topic was done in a presented way, for what

purpose and generally — “why”.

The first point of interest is the word — perception. The internet research of the definition for this
word will provide few most common definitions as the ability to see, hear, or become aware of
something through the senses and the way in which something is regarded, understood or

interpreted. Does something like this suit for a typical machine of the device?

For a moment, the concentration will be on the first definition of it: the ability to see, to hear or
become aware of something through the senses. What exactly of the concept need to be aware
of? In the frame of this paper the current definition covers the simulation, localization, and
mapping (SLAM) of the environment where the control object currently located. In the presented
paper the SLAM feature will be not considered as the main point, only the ability to draw the map
of surrounding objects. Mainly the accent will be set on sense organs, simply speaking — the set of

sensors to collect data input for SLAM feature.

The second definition stated as: the way in which something is regarded, understood, or
interpreted. The “something”, what needs to be understood or interpreted is own position in space

or different uncertainties in the environment.

Why does the object need to percept? In known environments, for instance, production area, it is
not necessary. Every movement can be hardly preprogramed and performed thousands of times
with acceptable error. However, in the case of the unknown environment, every move will be done
the first time and the case structure should be flexible enough to provide locomotion of the object

on rough-terrain.

Above mentioned features can be applied for the exploration of autonomous units. Simply
speaking, before the moment when the decision of the movement direction and the patch purpose
can be made, firstly it is important to understand where we are, and from where we came from. In
this way, the evolution process makes sense and makes it logical enough to consider this features
in the frame of the presented paper. However, the direction of the movement more is the next
step of the research and more related to artificial intelligence _algorithms (Al) and not will be

covered in the frame of the current concept. Step by step.

The perception is peculiar to advance life forms like animals, humans. Peculiar to something, that
has brains or developed neuron network. In any case, it is not related to the testing subject which
is considered in the frame of the project. Only the attempt was made to simulate those complex

processes, and this defines another word choice for a thesis topic.

The remaining part to define is - artificial life form. During the concept of shaping the author of this
paper was inspired by the output of the Nature evolution process. The shape of the control object
was borrowed from already existing live creatures, and because the project is dedicated to the
recitation of something that already exists, the topic additionally defined with pre-fix of «artificial».
It was possible to use the alternative name as autonomous exploration unit, but it would force
additional accent on the purpose of the test object, but the main idea is about the perception of

environment for single unit, and the purpose of this test object is a different topic.

10

1.THE GENERAL CONTROL OBJECT DESIGN ANALYSIS

1.1 Unit type

The shape of the control object dictated by one of the main purposes of the unit. At the endpoint,
the machine should explore unknown environments and cover as much as a possible variation of
obstacles. The most sufficient way to perform exploration would be from the air — the flying unit,
it can cover big distances in a shorter period of time. However, it goes along with big energy
consumption and eventually cannot stay in the air forever and requires landing and take-off spots.
Also, it brings additional requirements to air density. Meanwhile, the ground vehicle would be more
stable, robust, can carry the bigger amount of additional weight and also can be bigger by itself. In
any case, each unit type has own advantages and disadvantages. The decision was made towards
the ground type of the unit. In some meaning, it is easier to build a wheeled autonomous unit than

stable and effective air apparatus.

1.2 Object shape

The control unit defined as a ground type. The evolution present many variation of the limb shape,
which one capable to provide the object relocation by limb operation. However, all of option,
presented by Nature, can be combined towhead and named as a leg (multiply hard long shape
pieces connected by flexible joints in serial). In this way the artificial life form, presented in frame

of current paper, should also have a leg shape limb.

Next question is the number of the limbs. Most common number can be named as a four.
Potentially it is a good choice for the unit also. But this number is peculiar to well-developed
systems with complete stag of different features as balance, coordination and control. By other
words, the human has only two legs and is able to move, run and jump. However, the machines
with same configurations require powerful CPU, agile drivers and short response time. Machine
with four leg are more stable, but question of stability is still valid. In case of limb movement in
groups by 2, the requirements for balancing is still strong. The requirement can be lowered in case
of one by one limb locomotion. In this way the machine will be slow. Decision was made to create
object with six legs. In this way the unit can perform movement by operating of two groups of limbs
by three legs in each group and at the same time keep stable positioning by creating three point
connection with the surface. Second positive advantage that the unit will able to grab some type

of surfaces and it should increase possibility to overcome obstacles.

11

1.3 Perception channels

Normally, the live being have a six sensing systems. Every of which provide necessary data to
operate in certain environment or survive in different situations. The most data stream is provided
by the vision system (Visual data). Eyes allow to estimate distance to surrounding objects, live being
position in environment. Next are sense of smell, hearing and taste. This three systems are not
consider to be interesting in the frame of current project and will not be simulated by the test
object. Except ears. This organ is interesting because of additional sense provided by inner ears —
biological gyroscope, which one play assisting role in the process of perception of own positioning
in the space. This feature is considered crucial for the test object and need to be simulated. By
type define that it is ground walking unit. Last, but not least is tactile system. The tactile system
also provided various data as temperature or pressure applied to surface. In case of contact with
something, what potentially can harm the object, it will send signal in the shape in order to call fast

reaction and avoid damage to the system.

1.4 Biological sense organs replacement

In this way would like to outline the three most important feedback systems for the test
object in a frame of current research. The list contains the vision, tactile and balance

segments. Those three systems need to be simulated in order to fulfill paper goals.

1.4.1 Vision segment

Human vision is a complicated feature. To design the artificial system, that can replace it, is a
challenge by itself. Human vision contains the pair of two-dimensional images shifted in space
between each other. Taking into account the distance between images and direction, with each
eye is pointing, the final output can be upgraded with the depth of the image. Thereby, the initial
design for the artificial system can repeat the same method and process data, which one is
necessary to build geometry in a virtual environment. However, the end result will not be satisfying.
Relying on an output of the data calculation based on two images will lead to unnecessary

complicated additional algorithms and processes.

12

The reason is that human vision is a lie. If an average person, with two normal eyes, will close one
eye, does he will continue to observe the same image with the correct depth? Yes. And the trick is
that the human brain is able to complete missing data because of the trained brain. Generally, the
advanced algorithms can handle this current process and fulfil the missing data, if they will assume

that the lines are straight.

Even with two eyes, human vision can be a victim of visual illusion, which may lead to the wrong
perception of the environment. It is happening because the amount of data, which the brain is
constantly guessing is much more than just the calculation of the depth based on the difference

between a pair of two-dimensional images.

So far the ideal replacement would be the system that combines visual stream from three different
points in space and process along with a cloud of points, received through 3D laser scanning. For
the current concept is enough to create a cloud of points around the test object, what can be

considered as a base for the project evolution.
Thereby the initial set of sensors, that would be able to simulate machine vision is set as a 360-

degree laser scanner and one ultrasonic sensor to define height between the center point of the

test unit and top of the walking surface.

13

1.4.2 Tactile segment

The skin is the biggest organ of an average live creature. It is able to detect applied pressure to the
specific point, temperature and a row of other specific parameters like potential difference or
toxicity. On the first stage of evolution, the main parameter of interest is a pressure, and only in
specific places, which supposed to be in contact with work surface according to design — The end
point of every limb. Hereby, the machine is equipped with six pressure sensors and received data
from the sensors can be used as an input for the point cloud. The location is calculated trough

current body geometry and positioning in world coordinate system.

1.4.3 Self-balancing segment

Similar to the case with the vision, the brain use data stream from the inner ear and guessing
missing data. Meanwhile, it also uses the data from the biological gyroscope to compensate for
missing part of data from the other segments of fells. The artificial replacement for this organ
already exists in the shape of plug and play. The data from the gyroscope is usable in case of static
measurements. In the case of dynamic situations, the data stream can be adjusted with the data
from the accelerometer, magnetometer, and different data filters. Shortly speaking, this segment
is straight and does not require reinventing of the wheel. More details can be found in chapters,

related to this sensor.

14

2. MECHANICAL DESIGN

2.1 Decision to make own design

Nowadays the market provides a wide variation of the chassis, which are possible to use in the
frame of the current project. In order to prove the concept in a complete way, the chassis should
satisfy a self-made list of requirements. However, every specific model did not meet to one or few

requirements, highlighted by the author. Below are listed important requirements:

e The limbs should be flexible enough in order to operate on top of the not fully horizontal
surfaces or grab the protrusions on the surface.

e The platform should be capable with different body modification in order to easily install
different types of sensors.

e The chassis should be able to carry own weight, taking in to account the weight of the battery.

e Design should include an option to provide necessary feedback from the different elements.

The last point in the list is more about feedback from the actuators as the servo-motors. Normally
the servo-motors have a closed loop control system. Models with the feedback to the
microcontrollers also exist on the market. However, the necessity to find the chassis, which one
will meet all the requirements and line up a specific model of the servo-motor will be expensive or
the number of the modifications to the chassis will be big enough to lose the point of use out of

the shelf solution.

The decision was made to design and build chassis for the project on my own. It will allow to create
the frame, which will satisfy to all requirements. In addition, it is and challenging. The outcome is

presented in Fig. 2.

Figure 2. Omicron chassis

15

2.2 Common Geometry

Omicron chassis contain six limbs with four joints in each leg. In a star position, the outer diameter
of the machine is two meters, main body length is 70 centimeters and height is 15 centimeters. The
design is symmetrical along two perpendicular in two axes X and Y. The root point of middle limb
origins (shoulders) is shifted to side in order to provide additional width to the step length. For

future development iteration, it is desirable to increase shift in the middle section.

The end segment of the limb can be seen in Fig. 2.1, and it has a broken profile in order to optimize
the locomotion processes and improve grabbing possibilities of the test object. Moreover, the end
of the limb with an angled profile eliminates the necessity of additional joint, and also simplifies

animations for the movement and complexity of the hardware.

[P = — e

! i;‘f_""n:;::.

'*I\\.\‘ ———
e ¥ W

Figure 2.2 Omicron chassis geometry

16

2.2.1 Chassis limb DoF

Figure 2.2.1 Object limb revolute geometry

The Omicron limb can move in various ways. The object leg use mode of the movement known as
arevolute geometry. The Fig. 2.2.1 shows a mechanical arm capable of moving in three dimensions
using revolute geometry. The entire assembly can rotate almost full circle (270 degrees) at the root
joint (JO). The primary joint (J1) by itself is able to provide a turn for 270 degrees, same as a root
joint. However, the physical rotation is limited by the machine body and lower the number down
to 180 degrees. The first of the secondary joints (J2), taking into account limitations as, a maximum
possible feedback element rotation and physical arm geometry of the prototype, the available
rotation is 190 degree. Until this, the listed above joints can provide equal positive and negative
rotation. Starting from zero position, as shown in Fig. 2.1.2, and then half of the mentioned
numbers goes in one (+) and half in another (-) way. This rule is not applied to the last part of the
limb, because of special profile shape. The last joint (J3) can provide 120-degree rotation in the
negative direction (adduction or flexion) and 90 degrees in the positive direction (abduction or
extension). Total rotation resolution for the last joint is 210 degree. Listed data of every joint limit

is used later in order to create a set of animation for the test unit.

17

2.2.2 Limb work area

D 1300 mm

Figure 2.2.2 Limb work area

In Fig 2.2.2 the Omicron limb set in zero position. By blue area outlined the arm workspace. The
top view (a) represents a horizontal cut of the work area and the front view (a) vertical cut of the
work area. Both views, (a) and (b), are drawn without taking into account that the root joint (JO)
can provide rotation with 270 degrees. With the rotation of the root joint the work area three
dimensional shape converts into an almost spherical shaped space. Design of every limb is fully
identical, what means that the work area shape is also similar, and because of the origins of the
root joints the work areas are interfering between each other. Due to this fact, the general design
forms areas with possible collisions. In order to avoid limb collisions, the operation of every arm is

coordinated and synchronized.

18

2.3 Joints

The unit limb contains four joints, which are custom made servo-motors integrated in to machine
frame. The custom solution is able to provide necessary features for this project. First of them is
open-loop feedback, connected not only to the internal driver, but also to main machine CPU and
eventually the data from position sensors going through the machine CPU, communication
segment and goes to the virtual environment space to use for Inverse Kinematics (IK).The main

characteristics of every joint is identical in meaning of torque, gear ratio and driver unit (DC motor).

Figure 2.3 Machine Limb

2.3.1 Root Joint

The root joint (JO) is built into the main. The housing of JO is serving multiple purposes. At the first
place, it rearranges all the gears inside and forms of the secondary gearbox, but it also serves as a

body structural element and provides chassis with additional reinforcement.

Figure 2.3.1 Root Joint (JO)

19

2.3.2 Primary Joint

The primary joint, unlike the root joint, have more specific shape. That not only sustain the
positioning of all internal components, but it also serve as a shaft for the next segment in machine

limb.

Figure 2.3.2 Primary joint (J1)
2.3.3 Secondary Joint

For the third and fourth joints in the arm (J2 and J3) are based on identical custom servo-motors.
Meanwhile, this joint (device/segment) is the most light weight and complicated design. The servo-
motor housing is not only built in to it, but also appears to be part of it. Additional restriction to the
shape of these segments applied because of external elements of the limb, which are moving

around it.

Figure 2.3.3 Secondary joint (J2 and J3)

20

2.3.4 Joint Design

The internal common design for all of the joints is more or less same. The difference is in the
housing shape, in order to provide mounting option inside of leg frame and duplication of the

secondary gearbox line. To provide an equal load for both sides, the secondary line of gears is

symmetrically duplicated on both sides. Exploded view of the joint design shown at Fig. 2.3.4.

wic-280-pc ‘ .

los4

o102 foro

o051 [052 00e3| —oio |06_1 | 0113 |

Figure 2.3.4 Internal joint design (J3 and J4)

The core of custom servo-motors is the primary gearbox (001-2), DC motor (wfc-280-pc) and the
potentiometer (008), which one serves as a feedback element. Those three components are fixed
together inside of the first layer of housing (051 and 052). On top of the housing are mounted lines
of gears from both sides (009-3,010 and 010-2). Then goes frame part of previous leg segment (070)
and on top of them is mounted stabilizations for last gear (043) with the external shaft fixator (064).
All the remaining parts belong to the next segment of the limb (in particular case — end segment of
the arm). The last gear (011-3) is mounted to the frame of the next segment (073) and a fixed
trough along with the brackets (076). The bracket also fixing together two parts of the end leg
segment. On top of the last segment (do not show on the image) is plugged the coordinator (084)

and it rotates the potentiometer (008) according to the angle shift between two leg segments.

21

2.4 Driver unit

For the object was chosen out of the shelf module, which contains built-in gearbox and installed
DC motor model 130 [5]. According to datasheet, current model have rated load 0,09 [N*m] torque
and 9000 [rpm]. On a preparation phase was made a prototype of the machine limb, which had the
original built-in DC motor in primary gearbox and gear ration in joint 760 to 1. As an outcome, the
joint should have the angular speed to be somewhere around 71 degrees per second without load
and torque equal to 0,74 [N*m]. Named number does not take into account load condition, power
loss because of the friction between the components and efficiency of the gearbox transmission.
The aim is to have around 40 [N*m]. Anyway, the output is not strong enough to provide movement
capability for the test unit. For the first prototype, the gear ratio was changed to 2180 to 1 and DC
motor was replaced by 280 [6] models. The specification of the 280 models has rated load as 1,47
[N*m] and 7500 [rpm] with the 6[V] voltage rate. The latest join design has a gear ratio 2280 to 1
from the DC motor to arm segment. Thereby, the torque output equals 33,5 [N*m], and angular
speed to 19 degrees per second. However, the motor drivers are supplied with the 12 volts and the
final values are bigger, that should compensate power loss in gear transmission because of friction,

non-ideal manufacturing processes, and other reasons.

22

3.HARDWARE DESIGN.

3.1 The Omicron hardware

So far the Omicron has 12 dual H-bridge DC motor controllers, 24 potentiometers, inertial
measurements unit, sonar, laser scanner, and a communication module. All together those
components require a decent amount of calculation power. Few of them, like IMU, Sonar and laser
sensor, are highly relying on the timing between calculation steps. This issue may be solved by a
powerful on-board computer, which one can handle not only all the basic calculation but also
different graphical tasks. In order to avoid decent investment for internal hardware, the biggest
part of the processing was transferred to a desktop computer and the basic processes remain in
the test unit. Current decision allow proving the concept with the smallest financial investments.
However, in order to optimize calculation processes, even more, is necessary to make them parallel
(multicore processor). Solution to the above-mentioned question is to separate handling of the end
components of the Omicron between multiple controllers. The general hardware schematic is

presented in Fig. 3.1.

3,3(V)
R=)
GHE E m
xS
i aD GND
GHD RPLIDAR | |22 _ .
Limb 12(v) 3 iy L|rndbI
Module . o =] 508 Module
SDA EEEREE
Ox01 sCL | k| % [e ﬁ é 5CL 0x10
Core 3 FI5[F& 12(V) i
chp —Lue . rl;‘llgndbulE
i 121V) GNL SDA SDA
" Lc'|m|b L v ATmega2560 s | 0x20
oﬁx%% SDA I SC e
SCL
n:ld n:ld
GND ik ik GND
Limb 12(v) [=1T o= 120v} Limb
Module " i'z'-“-' i =3 " Module
0x03 = = g3 & LA 0x30
SCL 1 = SCL
o [= oy
G Gl

Figure 3.1 Omicron general hardware schematic

In total, the design contains seven 8-bit AVR microcontrollers ATmega328, for each the limb (SPU)
and one for sonar segment. Another 8-bit AVR microcontroller as ATmega2560 is acting as a core
(CPU) of the Omicron. The last two modules, the communication, and laser scanning segment, also

are connected directly to the Core. By current solution the wire-loom is simplified (less wires).

23

3.2 Core Hardware

The Core is connected with the limb and sonar controller through the 12C bus. The communication
and laser scanner is connected through the serial bus with the RS-232 protocol. Beside one of the
PWM pin of the ATmega2560 (used to control the rotation speed of the PRLidar), not a single digital
or analog port (GPI0O) is used. The core is supplied with 12 volts and with internal step-down voltage
regulator of the Core is supplying connected to its elements with five and three volts. The limb

controllers are not supplied from the core.

3.3 Limb hardware

The limb hardware part represent independent segment and connected to the system only with
voltage supply and communication bus. Similar, as the plug-in for desktop computers as, for
instance, mouse or keyboard. Originally it was done in order to simplify maintenance and make the
limbs to be easily detachable. It also would make the unit transportation simpler than the
transportation of the assembled machine. However, detachment of the limb require complete
disassembly of main body (gears of the root joint are locking linear movement). The complete
schematic of the Limb presented in Fig. 3.2. It contains four DC motors, one in every joint, two dual

H-bridge motor drivers, four potentiometers as a feedback and one pressure sensor.

Maotor Driver

Maotor Driver

B— - |,
FM;‘

¥
AN
E
Gy
|
—f{ 12V @ =

o H G ——

H A B G N
e Al -
5 :
soA (D L spal,, ATmega328 aZrEl
scL - [s ApkER

A3

A

Figure 3.2 Omicron limb hardware schematic

24

3.3.1 Motor Driver

The requirements to the drive, inside of the joint, are that it should rotate in a different direction
with controllable rotation speed. The most common solution that meets to above-mentioned
requirements is the H-Bridge [1]. For current project is chosen the H-Bridge driver based on L298.
The model of the motor driver is L298N 25W Dual Channel H Bridge DC Stepper Motor L298N Drive
Controller Board Module 5 V 2 A. This model can handle load up to two amperes. According to DC
motor datasheet, the maximum load is 3.2 Amperes. The actual maximum registered load, per one
motor, in the current design, was registered as a 1,7 A during the unit walking process. The control
element based on MC33886 driver can handle up to 5 Amperes. However, the decision was made
in favor of the first option because of additional list of features, which PCB assembly has. The
additional features are the built-in diode protection segment, massive heat conductor and step-

down voltage regulator. Besides that, the PCB assemblies with MC33886 cost two times more.

3.3.2 Limb Support Processing Unit

As the Sub-Processing Unit was chosen PCB assembly based on ATmega328 microcontroller. The
name of the assembly with ATmega328 is Arduino Pro Mini. The main reason for the choice is the
general dimension of the development board. The idea was to fit all the necessary hardware for the
limb inside of one of the arm segment. Besides the size, the amount of pins is enough to provide
management of all end components of the limb without additional elements as, shift registers,
multiple channels analog or PWM drivers. The assembly requires 8 digital, 4 PWM outputs and 5
analog inputs. The Pro Mini has 7 analog inputs (two of them are used for 12C interface, 5 of them
in use by Omicron) and 14 digital GPIO ports (first two of them meant for serial communication),
12 of which are in use by limb hardware. In this way, can say that the Arduino Pro Mini suits well

into the frame of the current project.

25

3.4 Sensors hardware

The machine has a row of different sensors. By the type of feedback, all those sensors can be
separated into two groups. The data from both groups are used in order to build cloud points and
coordinate locomotion. The first group contains the laser scanner, sonar and pressure sensors. The
main aim of this group is to provide data of angle and distance to every detected point. The second
group contains the IMU and potentiometers. Data from the last group mainly are angles in the joints
and main body tilting. This data is used to transfer data from the first group from the local

coordinate system to the world coordinate system.

3.4.1 RPLIDAR

Figure 3.4.1 The RPLIDAR Working Schematic [7]

As the laser scanner was chosen RPLIDAR A2M8 [7]. It is a low cost and low power 360 degrees 2D
laser scanner solution developed by SLAMTEC. It can take up to 8000 samples of laser ranging per
second with high rotation speed. The data from scanner provide information as angle and distance
from the sensor center point. The initial data allows creating two-dimensional map of the
surrounding. The third dimension is created artificially by moving it in space. The sensor is mounted
on the main body and moves along with it. Taking into account that the machine is a mobile
exploration platform, all the necessary requirements are meet to build a three-dimensional cloud

of points.

26

3.4.2 Sonar

As the sonar is used ultrasonic sensor HC-SR04. Low-cost solution to provide information related
to the distance between the central point of the device and surface under it. The Omicron van
move whit tilted main body is. Because of the tilt, the data from the sonar is not valid. However,
the distance can be adjusted by the data from the IMU. There are two cases when the data need
to be adjusted. The case scenario and decision-related to the adjusting and calculation is delegated

to the virtual environment. The schematics of the sonar segment presented in Fig. 3.4.2.

HC-SR04

WMCC
Trig
Echo

—

5(V) O—— o
=
GND(ED . Lo o
GHD
sDbAa (5 08 |54 ATmega32B
scL (- 2LL s

Figure 3.4.2 Omicron sonar segment schematic

The sonar is not connected directly to the Core because of the readings taking method. The sonar
first sends the signal, then waits until the echo will return. The delay between those two steps can
badly effect on the calculation processes of the Core. In order to make this sensor independent, all

the calculations and reading taking processes transferred to separate SPU.

3.4.4 Pressure sensor

Every limb end segment equipped with a dynamic pressure sensor in order to detect contact
pressure created between the leg and the work surface. The value received from the pressure
sensor is used only to detect contact by the threshold and define an additional point in the point
cloud. Potentially the same data can use to determine stress created in the limb and stop the
motion in order to secure mechanical parts from the overload and hardware to avoid high current
in driver units. It would be good to implement because the ampere rating of motors is higher than
the ampere rating of the control unit. This feature will be set into the backlog and implemented by

chance.

27

3.4.5 Inertial Measurement Unit

The purpose of the inertial measurement unit, in the frame of the current project, is to track the
tilting of the unit chassis. Because of the relatively slow and smooth motion, the digital gyroscope
will be enough to meet the set requirements. However, as the MPU was made a decision to use
not only gyroscope but also accelerometer. It will provide an option to apply different types of data
filtering as, for instance, the Magwick filter or others, and improve the quality of readings. The
specific model of IMU is MPU-9150 [8]. This chip communicates through 12C bus and has built-in
accelerometer and gyroscope. Moreover, it also has a built-in magnetometer (compass), but for
some reason the magnetometer located under different 12C address. Theoretically, by using a
combination of data from those three sensors, is possible to track shift in space taking in to account
the position (accelerometer), change of the direction (gyroscope), and the travelled distance can

be calculated through the acceleration and velocity.

3.4.6 Potentiometers

The feedback in every joint is the 10 000 [Ohm] potentiometer with the 270-degree rotation.
Disadvantages of this solution are the accuracy of the readings. During the time the resistive
contact surface inside of potentiometers is losing own characteristics and provide with invalid data.
The second disadvantage is the rotation possibility. The root joints do not have physical limitations
and can rotate 360 degrees. Hard to say how many of potentiometers was destroyed during the
prototyping and how many of them are damaged in the current machine. The advantages are that
the potentiometers are absolute sensors, they are giving direct absolute value related to actual
position without necessarily to search zero position and calculate angle according to the number
of pulses, as in the case of encoders. It requires fewer calculations, simplifies the general design

and decreases the cost of the single joint.

28

3.5 Communication hardware

In an ideal condition, all of the processes should run on an internal hard drive of the unit. However,
on the current moment, the heavy lifting transferred to the desktop computer (Host) and all the
necessary data is transferred through the serial port. In order to make device wireless, the physical
connection is interrupted by the additional element in the chain, which allows sending and receiving
data without the hard connection. Among the many options was the chosen method of radio
communication as an XBee S1 module [9]. According to the datasheet, the module can transfer up

to 250 kbps of data. The more detail overview of the data traffic is presented in Chapter 4.2.

The desired level of communication is to send 8 000 points from the laser sensor and exchange with
matrices 20 times per second. With rough calculation, it equals 110 000 bytes of data or 884736

bits. By one XBee package can be transmitted 2 bytes or 16 bites, but the package size is 21 byte.

Along with the 16 bytes will be also sent 152 bits of package information. It will take 55297 packages
to transfer all messages meant for one second or 9289728 bits. By other words, the transfer rate of
9,3 Mbps of data. For the next test iteration, the communication needs to be replaced by the G4

module.

3.6 Battery

While waking the one Omicron Limb consume 2,7 A without load. In total, the Omicron has six limbs
and consumption goes up to 16,2 A per hour. The Omicron battery assembled with A 3,6V Lithium
lon battery cells. In order to reach the necessary level one element should contain four cells
connected in serial. In this way, the voltage rate is 14,4 V. All of the components are capable of

current voltage level because of the built-in voltage step down in the Core and motor drivers.
One row of Lithium-lon battery has 3000 mAh capacity. One hour of work will drain a bit less than
6 rows of batterers (18 Ah). In total, the number of cells reached 18. One cell weight IS 48 g.

Thereby, one hour of working process for the device will require an additional 864 g.

By other words, in case if the aim for the Omicron is to walk 10 hours straight, it should be equipped

with 8,6 kg battery assembly.

29

4. CONTROL UNIT PROGRAM

4.1 Development Environment

All the programs for the Control Unit are written on C++ language with Arduino IDE. The reason for

this development environment selection is due to the following advantages:

¢ Well-developed software environment. Stable, robust, intuitive and easy to use.

e Open source with a large community. Has a wide selection of libraries that covers almost every
commonly uses devices in robotic hobby segment.

e Wide variation out of the shelf solutions of different hardware segments.

e Capable with most of the operating systems.

Shortly speaking, in case if | have a simple idea or the concept, usage of the well-developed base
will save the time, resources and nerves. Instead of fighting with complicated IDE and Software
Development Environments, if it is not the point of the interest (sometimes it is), more preferably
to concentrate more on the concept by itself. When the concept is proven, then it is a good moment
to evaluate the weak point of the concept/project and switch to more advanced development

environments.

4.2 Limb Program

The Limb SPU provides control over four custom made servo-motors and provides open loop
feedback. The program presented in Fig 4.2 and Appendix 1. The control of the servo-motors

realized with the PID approach [2].

. Set Direction of DC
-) - Set Setpoints ’ "
ake Readings ake Readings . Convert PID Output motor rotation
(setup } for PID > for LDB 7| accorang o values 17> PIDComeute M T o pwm [?] Accordingto PID

output

A

‘Write PWM to Driver

Update LDB

Send Values from
Limb LDB to Omicron LDB,

requestEvent
A
recievetEvent

Figure 4.2 Limb programm block scheme

30

4.3 Sensor program

Machine equipped with three sensors. The ultrasonic sonar, laser scanner RPLIDAR M2A8 [22] and
IMU-9150 [23]. The sonar deals with one part of the artificial perception concept, related to the
understanding of distance between the surface, on top of which the unit is located, and the main
body. This information allows adjusting walking animation. The RPLIDAR acts like eyes but does not
receive information about the object, only the distance between the object and the unit. The last,
but not least, is IMU sensor. IMU allows being aware of the main body tilting relative to a work
surface, or the rotator in word coordinate system. The common between those sensors is that the
initially the machine is not aware of the location of the sensors on the main body and data is
transferred to the virtual environment without origin information. The location is hardly fixed and

set in VR.

4.2.1 Sonar program

The main feature of the sonar is to measure distance. The code segment of the program, which one
is taking readings, was taken from the library made by Martin Sosic [10]. The complete program for

the sonar is presented in Appendix 2. The Sonar Program Flowchart is presented at Chart 4.2.1.

Take Sonar
Readings

Request From
I2C bus

Storage Average
In Local Data Base

-~

hJ

Calculate average of

Take Data From Process Sonar Data values in the array

Local Data Basze

-~

¥

Storage in Data Shift Storage
Array Cell Cell In Array

¥

Send Data to
Waster

Chart 4.2.1 Sonar Program

31

Every new loop the program is taking one reading and placed it in one of 20 cells of the array. At
the end of the loop, the algorithm calculates the average of all the values in array and storage it as
a separate integer in LDB. In this way, the average contains data about the 20 last readings, not the
20 new separate readings for every loop. In this way, the value changes slowly up to latest reading
and provide smooth value change, which can be applied in animation and not cause instant position

change.

4.2.2 RPLIDAR program

The RPLIDAR is stand-alone sensor with own SPU with a serial communication. The communication

is handled by library and example program [4] provided by RoboPeak.

Mo

Quality is
gqood?

Read Angle and

Send Data Distance

WaitPoint?

Yes

Chart 4.2.2 RPLidar Segment

The example program for Arduino IDE provided by RoboPeak was modified and adjusted in order
to fit in a frame of Omicron core program. In the case of sensor malfunction, the original control
program stops the rotation of the sensor vision part and then tries to restore the connection with
it. In case of success, the control program restores rotation. A current feature was disabled due to
the timing of the process. The Core hardware is not able to provide a stable operating process and
smooth data flow. This can call connection to restore procedure few time per minute. In order to
improve performance, in the frame of current hardware, the motor of the sensor never stops and
at the moment when the program will restore communication the sensor is already ready to use.
The Control Unit restore data stream without time delay until the sensor will reach the necessary
rotation speed. The second modification is related to the data format. The distance is measured in
millimeters. To transfer fewer bytes at the time the value is transferred as a centimeter in integer
format. The VR representation of the word will be less accurate, but accurate enough for the first
stages of the experiments. The third modification is data filtering. Some of the readings come
empty. The angle is specified but the distance equals to zero. Because of the chassis geometry and
sensor location, the zero distance measurements are not valid. To avoid spamming in
communication channel all values, which are filtered out, does not participate in the data

transmission process.

32

4.2.3 Inertial Measurement Unit program

The program was written by using basic example code by Kris Winer [11]. The common problem

for the digital accelerometer is noise and the drifting effect for the gyroscope. In order to filter and

smooth the raw IMU readings was applied the Madgwick filtering and data fusion of gyroscope and

accelerometer. Also, final values are adjusted according to magnetometer readings. The program

output is the quaternion. Calculation Pitch Yaw and Roll made base on quaternion. There is a trade-

off in the beta parameter between accuracy and response speed. The code presented in Appendix

3, line 365 — 465. The segment of the code, related to Madgwick quaternion update, is located

between 600 — 720 lines. There is the row of reasons why the Omicron IMU program uses the

qguaternions. The first one is that they are much more space efficient to store than rotation matrices

it is four floats rather than sixteen. In addition, they are much easier to interpolate than Euler angle

rotations, the spherical interpolation or normalized linear interpolation. Also, quaternions avoid

gimbal lock.

4.4 Core software

The Core program mainly designs to collect perform data management between. The core connects

one by one to each limb and collecting data from LDB at the limb SPU. When all data is collected

the Core sends it to the Host along with sonar and IMU readings and laser scanner readings. At the

host data goes to the simulation of the environment. The code flow presented at the Chart 4.3.

-

RecieveData

>

Sent Data To Limbs

>

Transmit data from
RPLidar To Host

Read IMU

|

Get Data From Limbs

>

Sent Data To Host

Chart 4.4 The Core Program

t

4.3.1 Collect data

The device has several sources of necessary data. The values of the Limb potentiometers and sonar

distance is collected through 12C by getl2CData() function. The Core sending request to the limb

SPU to transfer 5 specific bytes by the command Wire.requestFrom(01, 5), where 01 is the address

and 5 is the number of requested bytes. After request the Core reads incoming bytes and store

them at the Core LBD - for(int i=0;i<5;i++) { int ¢ = Wire.read(); FromLimb01[i]= c;}. The same

process repeats for every Limb and sonar. Request format is identical for every arm and sonar. The

difference is only in the number of requested bytes and, the address and the storage cell at LDB.

33

The core communicates with the IMU in a similar way with the limb. However, the Limb values
were lowered from 1024 to 255 in order to transfer them as one byte. The IMU values are 16 — bit
values. In this way the core first request array of six bytes by command
readBytes(MPU9150_ ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]), and then assembling three 16-
bit values - destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; . When the data is collected
the Coro perform row of basic calculation, Madgwick and quaternion calculation. When the
secondary calculation is done, the data storage in the LDB cell until another of data exchange

session.

4.3.2 Send data

Machine needs to transfer row of numbers. Meanwhile, the Host needs to understand where those
numbers belongs to. This question was solved by creating packages. Each data array, for instance,
from the limb or the set of IMU and sonar data, is send out with letters at the beginning of the
array and one common letter for all of them to mart the end of Array. The segment of the code is

shown below:

Serial3.print{"LF"); Serial3.print(™ "):
for{int i=0;i<5Spi++) [Seriali.print{FromLimblO0[i]}: Serial3.print{™ "):
}Serial3.println{™ X"):

Code Segment 4.3.2. Data package

Every limb has characters combination as LF. The first Letter stands for side. “L” for left and “R”-
for right. The second letter marks the order of the arm. “F” means front, “M” for middle and “B”
for the back. When all the data is send, the core is transmitting letter “X”. It serve for additional
checking at the host side. More about the checking can be found in Chapter 5.2.1. The full code
can be found in Appendix 3, 530-560 lines.

34

4.3.3 Receive data

Received data also structured in a packages. In order to simplify program at the Omicron side,
instead of two letters the every array marked only by one letter at the start and at the end. In this
way the program do not need to collect string out of characters and compare in a frame of the case

structure. Less calculation required in a sacrifice of data transferring safety.

if(Serial3.available (}){

char check = 0;
AdHatlbh = Serials.

L
H
]
i
=R
-

switch{AdHstlb) {

case "4A':
for{int i=0;i<d:i++) [LimbBuff[i]=Seriali.read():r}
check = Serial3.read({):
if {check=="G")|
for{int i=0;i<4;i++) [Tolimk01[i] = LimbBuff[i]:}
check =0;
} slae |
cleanBuff():
check = 0;
}
bkreakr

Code Segment 4.3.3 detect and read package.

4.3.4 Distribute data

The only data from the Host, which goes to The Omicron, is array of set points to every limb. As
soon as the Unit receives data from the host, it stores data on the Core LDB and later distribute to

The Limb. The Data distribution occurs trough the 12C protocol, the segment of the program, which

one is responsible for distribution, is shown at Code Segment 4.3.4.

i_‘l.

re.beginTransmission{0l): // transmit to device #01
ire.write (ToLimb0l, 4); // sends Setpoint data
ire.endTransmizsion(); // stop transmitting

Code Segment 4.3.4 Send data from the Core to the Limb

35

5.PERCEPTION SIMULATION SOFTWARE

5.1 Communication

In order to bind the body and mind between each other, or the imaginary world (simulation), and
the real world, it is necessary to provide an option for the data exchange. Inside of living beings,
this feature provided by Nervous System. In the case of Omicron, the communication between
segments implemented with 12C protocol, something as a Peripheral Nervous System. However, all
collected data need to reach the simulation on the host (Brain). The communication between
chassis and the host occurs wirelessly, based on the RS232 protocol, it can be considered as a
Central Nervous System. In Chapter 4 were considered data transmitting and receiving algorithms

on the Omicron side, and the communication on the Host side implemented in a similar way.

5.1.1 Communication set up

With additional UE4Duine plugin, created by Rodrigo Villani [12], for Unreal Engine 4, the serial
ports can be reached inside of development environment as an object. The only parameters, which
need to be set is the com port name and baud rate. The communication set up flow presented in

Fig 5.1.1

' Event BeginPlay "~ f Open Serial Port C Branch
4 | 2 » P True [N

Com Port @

p——El B Baud Rate Return Value @
Baur Rate @~ _/./

R e —————————
: | Delay °

N J Completed
K i

@ Port Opened Condition False)

O» Duration [0.05 |
Serial XBEE e —
ks f Flush Port -

Target is Seria SendDataloop

\» > v sed Grz
\é ® False >

Target

Figure 5.1.1 Communication set up.

When serial communication is established the program goes into data transferring loop. Similar to
the algorithm on the Omicron side, the data is sent with custom packages. The data storage in LDB

and data transferring processes occurs independently from each other.

36

5.1.2 Data storage

During the Simulation process all the necessary data are storage in LDB. The algorithm presented
shown in Chart 5.1.2. The simulation environment does not have virtual servo-motors and not able
to present specific data for servo-motor control. In order to get necessary control input for Omicron

the additional data converting is needed. The algorithm presented shown in Fig 5.1.2.

| f Get Socket Rotation

f Delta (Rotator) ~* Break Rotator
Target Return Value @

~ @A Return Value @ -— @ Rotation X (Roll) O
T ——— @B Y (Pitch) O»
J Get Socket Rotation
Target is Scene Comy t g Z(Yaw) @ >
Target Return Value @ \

e

i @ In Socket Name

FIJT Socket @-—~<— @ In Socket Name » D

//57-//.- f DegtoADC i Target Array

e\ | — : : ==
‘@ P | fTruncate @ New Param 1 New Param @ ~, Index 0 |

o [[0)4q pin 4 @ A Retun Value @ N @ item
Size to Fit (0}

Figure 5.1.2 Data Storage in LDB.

Every joint of the skeleton is equipped with the socket. The program reads rotation difference
between the previous and current socket in skeleton hierarchy and recalculating angle to PWM
value. Then the PWM value is going to LDB. The data for the servo-motors are updating every

calculation cycle. More details about sockets can be found in Chapter 5.2.7.

5.1.3 Data transmitting

The Data Transferring segment of the program is located outside of the main program loop and.
The main reason is the frequency of the main program calculation cycle. The cycle is one time per
simulation frame. By other words, in case if data transferring segment will be located in the main
loop, the program will send angle matrix for the Omicron 60 - 120 times per second, what is too

much for the Unit hardware. The data transmitting algorithm presented shown in Fig 5.1.3.

37

» =SS S
h J Write Bytes

Target Return Value

[é\ ET | String \E] 'S >

Target Return Value =
Serial XBEE
\ - L Buffer
o @ o " Serial XBEE :

e
To Omi Limb 01 &5

># Make Array

[0] Array _,/ ’

(1 Add pin +
(2]

[3]

B
Target Return Value

String j?|

Figure 5.1.3 Data Transferring

The package from to Host has only one letter at the beginning and the end. In addition, the integer
array is sent as a byte. In order to avoid value corruption while converting the integer to byte, the
angle value is remapped between 0 and 255 by custom Deg_to_ADC function. It was done in order
to simplify program on the Unit side and decrease the time for one calculation loop. Current
solution badly effects on the limp angle positioning and angle reading resolution. However, the

reading resolution is enough for primary concept testing.

5.1.4 Receive data

The Host is receiving three different packages from the Omicron. Each of the packages has a unique
marking and package size. The size is only important in the meaning of reading logic, to avoid the
situation when the algorithm is trying to read an empty cell from the buffer array. The first step is
to define the length of the incoming package, the logic is shown in Fig 5.1.4.1. Taking into account
the package length and marking of the package, the program defines a case of data storing, the
logic is shown in Fig 5.1.4.2. The last step of the data receiving process is the data storage in LDB,
the logic is shown in Fig 5.1.4.3. The first case has six additional subcases, each for every limb. In
this way, the incoming data is separated into three groups. The first one is for the Limb matrix, the
second group is dedicated to IMU and sonar readings. The third group is mentioned for the onboard
laser scanner. At the end of the third case the program is calling event to build point in virtual space

according to incoming data.

38

T Branch

True P
~

False >

Target

Condition

Serial XBEE

f is Port Open

Target Return Value

\ [Branch
» True B

Condition False b —

e
[Branch
» True

Condition

False (P ———
alse N [Branch
»

/ Condit
A ondition

_Branch

<»
Condition

Pr—
7§f Branch

Condit
Atk pin ondition

J Read Line

T Branch

| Truep ——P
False

Condition

Return Value

7 Parse Into Array

Return Value

Cull Empty Strings [

' SET
»
Act Case [

True —_ 7 SET
I
False B -

XLoc p~|

True B

False [«,\\
= : SET
»

> XLoc 5]

True B \

False >

Figure 5.1.4.1 Check package marking

SET

Buffer

SET

Add pin +

Act Case il
N

Add pin +

Figure 5.1.4.2 Storage data from buffer into LDB

39

5.2 Animation

In frame of current project the VR animations act as a reference. By other words, every life form
was trained how to walk at the beginning. Later, during performance of walking process the
movements are adopted to work surface. Hereby the simulation uses the set of animations for
every locomotion type as walking forward, backward and turning and then the animations are

adopting to environment.

5.2.1 Skeleton

The animation rig, or the Unit skeleton was created by using Maya, the computer animation and

modeling software. The Unit skeleton shown in Figure 5.2.1.

¥ Limit Information
¥ Translate
Trans Limit X
Trans Limit ¥
Trans Limit Z

¥ Rofate

Rot Limit X
Ri imit ¥

Rot Limit Z

|

Figure 5.2.1 Unit Virtual Skeleton

In terms of size and flexibility, the skeleton replicates the real unit. Every joint has same one DoF
and rotation limitations. The distance between joints also identical to the real Unit. The translation
and rotation limitation will take part in the process of the animations creation as input for IK

solutions.

5.2.2 Omicron simplified mesh.

On top of the skeleton was applied skin or the mesh. The mesh is shown in Fig 5.2.2. In the frame
of this paper, the mesh caring only representative sense. Namely, it will act only as a visualization
of internal processes in the simulation. However, after exporting files from Maya to Unreal Engine
4, this mesh will acquire collision volume and physics assets. It will help to develop the simulation

environment and improve Al control algorithm testing in the future.

40

Figure 5.2.2 Simplified Omicron Mesh

5.2.3 Inverse Kinematics Handlers.

Every Omicron Limb equipped with IK Handlers. The handlers are shown in Fig 5.2.3.

¥ IK Handle Settings

Rotate-Plane Salver o

Single-Chain Solver

o | FLvertlk
o .| FLHortK
o .| FLRotIK

Figure 5.2.3 IK Handlers

Limb include three IK handlers. Two of them are single-chain solvers and one is rotate-plane solver.
The difference single-chain solvers use the single chain solver to calculate the rotations of all the
joints in the IK chain and rotate plane IK handle uses the rotate plane solver. The “VertIK” is an RPS
between J2 and limb and provide vertical limb motion. The “HorlK” is an SCP between J1 and limb

end and deals with horizontal movement. The “RotlK” dedicated to limb rotation at JO.

41

5.2.4 Animations

IK handlers are parented to the curve. When location of the curve is changing in space, all of IK
Handlers are following to the curve in space. In this way, the effect of all three IK solutions are
summarized and allows to match the Limb end with new position of the curve in space, taking in to

account limitations of the joints. The IK Handlers is sown in Fig 5.2.4.

Select Tangents List Show Panels

¥ IT1 [0 R e

o
=
=
-
-
-
-
-
-
-

Figure 5.2.4. IK Handlers.

To create animation, every locomotion was separated into four points in time. The first and the last
point are identical in order to create a smooth loop of the same animation in case of continuous
action. In others two points, the legs are shifted in space according to the plot of motion. Then
Maya creates s-shape curvature of motion to fulfill missing frames. In this way was created 122
base animations, which should cover different cases as walking straight, recede and turning left and

right with chassis tilt into a different direction and chassis offset.

42

5.2.5 Animation Blend Space

Blend Spaces are special assets that allow for blending of animations based on the values of two
inputs. Blend Spaces provide a means of doing more complex blending between multiple
animations based on multiple values. The goal of Blend Spaces is to reduce the need for creating
individual, hard-coded nodes to perform blending based on specific properties or conditions. The

Blend Space shown in Fig 5.2.5.1.

m ((character] (LoD Auto | (__x1.0]

ghG2'Wallc

i maxTiltFront_Anim_G2Rize
} maxTiltFront_Anim_G2TurlRight
§ maxTiltFront_Anim_G2TurnLeft
§ maxTiltFront_Anim_G2Walk

} maxTiltFront_Anim_ldle

} maxTiltRight_Anim_G1Rize
| maxTiltRight_Anim_G1TurnLeft
§ maxTiltRight_Anim_G1TurnRight
§ maxTiltRight_Anim_G1Walk
} maxTiltRight_Anim_G2Rize
§ maxTiltRight_Anim_G2TurlRight
§ maxTiltRight_Anim_G2TurnLeft
§ maxTiltRight_Anim_G2Walk
] maxTiltRight_Anim_idle
ghG1ready
ghG1TurnLeft
highGzwalk ghG1TurnRight
G1Walk
150 @ highTiltFront_Anim_G2Walk (2) ghG2ready
ghG2TurnLeft
ghG2TurnRight

ghidle
highRizeG1
highRizeG2
B maxGlidle
axG2ldle
axHighG1Rize

FrontBackTilt @ highTiltLeft_Anim_G2Walk (3) @ high_Anim_G2Walk (4)

@ highTiltBack_Anim_G2Walk (0)

Figure 5.2.5.1 Blend Space

In this way, for every blend space were used 5 animations. The middle point of Blend Space is taking
one of the 15 basic animations and two extreme values of the vertical line meant for identical base
animation, but with main body front or back tilt of the main body. In this way, by changing vertical
input value the end pose can be displayed with any main body tilt starting from 15 to -15 degree by
using only three animations. The same principle applies to a horizontal line with two additional
animations with left and right main body tilt. However, the animation blending occurs based on
two values. Third value added trough end pose blending between different blend spaces based on

animation weight value.

43

Speaking of adding third dimensions in blend spaces. The Unreal Engine development environment
allows getting the similar final result in multiple ways. For Instance, the high. Before was described
method of blending separate blend spaces based on their weight values. The blend weight method

presented in Fig 5.2.5.2.

f MovingOnTerrain

f Layered blend per bone f Layered blend per bone @

! Base Pose

Blend P
//-“"_'_._ * "

; e ;
_— @ Blend Weights 0 / _— @ Blend Weights 0

= Add pin == Add pin

Banking Left -
MovingBankRight

Figure 5.2.5.2 Layered Blend per bone.

By using Layering Blend Method, can be achieved the adaptation of chassis in the meaning of
distance between the main body and work surface. Meanwhile, the same result can be achieved
through offset of the root bone for all of the basic and blended animations. The root bone offset

method presented in Fig 5.2.5.3.

Transform (Modify) Bone @

Bone: Roo

4 O— Translation
Chassis Target Offset @——— ®

_ Rotation

© X o0)["00) [09]

o Spale
Locomotion {JI _ﬂl |Jl
te Machin Local To Component

Component Pose
»w
* . * ’ O Alpha [1.0]

Figure 5.2.5.3 Bone transformation.

So far were chosen the second method due to the simplicity of applying. However, the first method
has a more accurate outcome and more preferably to use. So far, this feature is in backlog for this

project.

44

5.2.6 Animation State Machine

The Simulation count 15 blended animations for different cases as, walking, turning and idling.
Somehow all of those animations need to be connected between each other. This task done by
using Animation State Machine. State Machines provide a graphical way to break the animation of
a Skeletal Mesh into a series of States, for instance, walk forward or turn left. These states are then
governed by Transition Rules that control how to blend from one state to another. State machine

presented in Fig 5.2.6.1

WalkG2 WalkG1

G2TurnLeft e_...r—-""f
e ‘

e\\:‘." = 2 eHe %&e

G1TurnRight

G2ldle G2TurnRight G1TurnLeft Glldle

O/Z = = %Hi\,\e

G2Recede RiseG2 RiseG1
O G1Recede

S+ +IT
DownG2 —3 e

Entry [e

Figure 5.2.6.1 Omicron Animation State Machine.

State machine allows to change action according to incoming control command and provide a
smooth transaction between states in order to avoid shard movement. Every state has rules for
entering and leaving the state. The examples of entering and leaving rules presented in Fig 5.2.6.2.

and 5.2.6.3 respectively.

e,

Action
" Walk Forward Result
Can Enter Transition
Turn Left I Add pin

B —————————

Turn Right

Recede

Figure 5.2.6.2 Entering Rule

45

In Fig 5.2.6.2 describer transaction rule between idle and turning state. In order to enter the state,
it requires only an incoming action command, but only one specific. Others need to be disabled.
The idle state animation has matching pose with the beginning of the walking animation, and

because of this, the transaction rule does not check the actual pose.

" Walk Forward

Result

Can Enter Transition
MNLs
Add pin ==

—_— / .
J Time Remaining (ratio) (highG2Walk) Y - _| |

Return Value @ < AND
Add pin =+

Figure 5.2.6.3 Living Rule

In Fig 5.2.6.3 describer transaction rule between walking and idle state. The walking state has two
exits. First exit is entering to idle state while first group of legs are in air, and the second exit is to
idle state with second group of legs in air. It was done in order to decrease reaction time for

incoming command.

Generally, there is a space for the evolution of the Animation State Machine. For instance, the
current state machine does not include walking by diagonal, sidewalk or the combination of the
walking and turning. The advantage of the current project is that the segments of the concept are
scalable and the effect will not require a redesign of the other segments. For instance, in the
meaning of animations, the actual unit acts as a digital twin, so it does not matter what will happens

inside of virtual environment, the Omicron will repeat it.

46

5.2.7 Sockets — data to send back

In order to track location and orientation of joints of mesh skeleton, every joint equipped with
socket. Socket shown in Fig 5.2.7.1

i) Details
Front_Shaft &
FL_Root_RotVert 3 Search
4 Socket Parameters

L_Mid_Bend1 B A e FL_J2_Socket

_Mid_Bend2

L_End_Socket P Sy © e Name FL_Mid_Bend1 X
$-FL_MissYou = > Re Sl x 00 [voo o
»! FL_end 3 A » > Relative Rotation m Y 0.0 K]

= 2)

®! FL_J3_Socket

vays Animate

4-y FR_Root_RotVert
$- FR_Start_RotHor
FR_Mid_Bend1
FR_Mid_Bend2
¥~ FR_End_Socket
4 FR_MissYou
ol FR_End_Socket

»! FR_JO_Socket

Figure 5.2.7.1 Sockets in joints of the skeleton

Every Socket is parented to the joint in the skeleton. It moves and rotates along with the joint. In
the main program the Sockets are called as an object in virtual space with the option to read
multiple parameters in real time. The received data from sockets can be processed and used for
different purpose. For instance, to read the state of the socket. Is it in space or experience collision
with some object? To evaluate control signal for servo-motors the main program reads delta
rotations between sockets. Because of skeleton architecture and animations, the delta in rotations

occurs only in one plane and can be used for servo-motors managing.
The socket, attached to the end of the limb, does not have an actual driver behind it. Instead of the

driver, it processed along with the pressure sensor at the end of the leg. The sonar and RPLIDAR

also have own socket to indicate the origin of tracers in the virtual environment.

47

5.2.8 Inverse Kinematics for Limbs in animations

Similar to Maya, the Unreal Engine has own tools for solutions. The IK system in Simulations made

out of two parts. First part is to determine the shift in space for the Limb in order to reach the work

surface. It is done by line tracker, fired from the end limb socket in the world Z direction. The

algorithm presented in Figure 5.2.8.1.

= |K Foot Trace
»

Socket Name @

\ “J Get Socket Location ("7 Break Vector

J GetActorLocation
sell]

— -
Target Capsule Hall Height @

R —\
(" capsule Component @

Figure 5.2.8.1 Line Tracer for IK

o | LineTraceByChannel

Tes! Visible
—p

@ Start

- Make Vector / [
h X urn Vale @
v

In case if tracer will hit surface the information of the distance between socket and work surface

will go to animation blueprint and serve as an input for IK solution. UE4 tool provides two bones IK

solver. The algorithm presented in Chart 5.2.8.2.

Two Bone IK

FL_end_

e — @ Effector Location

D - @ Joint Target Location
/
FC'I93 Loc @

RS * Component Pose

IK'Alfa6 @ ———— @ Alpha 3
o0 Bone IK

Boir

FR Effector @——__ @ Effector Location

—————————— - @ Joint Target Location
FRJ3Loc @
’ Component Pose

KAlfal @ ———— @ Alpha

Figure 5.2.8.2 IK on Animation Side

>

>

Hereby, the position of the leg are adjusted in order to reach work surface.

48

5.3 The effect of the feedback to the State Machine/Simulation.

The Omicron locomotion comes from virtual environment to the real world. In case of mismatch
between the simulation and the real world the simulation need to be adjusted or corrected. Thus,
the process flow looks as follows. At first, the unit will assume next own actions and begin to
perform them in accordance with the instructions, received from the host. In the case of
inconsistencies between the instructions and the real world, the Omicron will send the
corresponding data back to the host in order to reverse the simulation. After when the correction
is applied to the simulation in accordance with the received data, the device will receive new
instructions for action. The result of this loop is the interpretation of the surrounding space in a
virtual environment. The feedback is provided by two groups of onboard sensors. First group

contain the pressure sensors, sonar and IMU.

5.3.1 Pressure sensors role in Inverse Kinematic

The role of pressure sensors presented in Chart 5.3.1.

Na

Yes
Caonfirm Point In
Space

Reach Original
Destination

Yes
Create Object In
Virtual Space

Weet Obstacles During
Performance

h

Fire Tracer From -)
—» Socket Perform IK Solution
Fake Instructions No Yes | Sent Instructions For
With max High IK Solver

Chart 5.3.1 IK Solution Flow

The IK solver loop goes continuously during simulation process. During the process the algorithm
constantly checking, does the real limb reached work surface as planned or not. The case “not” can
appears if in the real world the surface does not exist anymore at old locations or the process was
interrupted by hitting the new obstacle. In both cases the virtual environment should be adjusted

respectively.

49

5.3.2 Inertial Measurement Unit role

The part of the adaptation process is the main body tilt. The tilt should provide equal load
distribution to chassis and equalize the amount of motion for every limb. The source of data for

mainframe tilt can various depend on the situation. The case structure presented in Chart 5.3.1.

Tracer Hit Mormal of Tilt
Surface? Hit surface Zhassis
Mormal of
=g Surface
*| ML

Chart 5.3.2 Source of data for chassis tilt values

The main purpose of the device is the exploration of the environment. It means that most of the
time, the tracer will not hit the work surface, because it is not dawn yet, but legs still experience
resistance of the surface on which the objects move. In this way, in most cases, the input source for

mainframe tilt will be onboard IMU.

In addition, this specific system design created additional possibilities for environmental analysis.
For instance, one of the leg groups located on the ground and calculated difference in the local
coordinate system equals to zero. It means that no chassis tilt is required, but meanwhile, IMU
readings show tilt. The logical conclusion can be that the device located at tilted ground and surface

in the virtual environment also can be tilted in order to match with the real world.

50

5.3.2 Sonar role

The real world sonar functionality is similar to tracer functionality in virtual environment. In theory
the data from the sonar should serve as an input for chassis offset. The case structure presented in

Chart 5.3.2.

Set State
Hower Because of
external force

h 4

Set Machine o Prepare For
state - in Air " Landing
Set Offset -

T

Chart 5.3.2 Sonar Case structure to set offset

However, the practical result shows that the readings from sonar and tracer go into conflict. So far,
for troubleshooting, testing and simulation logic adjustment the sonar logic simplified and used

only for detecting of “In Air” state.

5.4 Virtual environment map building process.

The main role in map building has the RPLIDAR. According to the datasheet, it should produce 8000
points per second. In addition, the sonar and limb pressure sensors have secondary features as
producing a point for the point cloud. The location of sensors are hardly attached to the main
chassis and hardcoded in a virtual environment. Hereby, by using distance data from the sonar, it
is possible to define a point in the workspace. The distance from pressure sensors equals zero, but

location defined by recalculation limb angles and lengths.

The Point cloud is an input for surface generation. So far, instead of the advanced algorithm to

generate a surface, the simulation spawn simple shapes at the place of one point.

51

6. CONCEPT OUTCOME AND RESULTS ANALYSIS

6.1 MECHANICAL ISSUES

On the experimental phase of the first prototype outlined a few critical and non-critical
issues in specific segments of the mechanical design of the machine. Moreover, was done
an analysis of the efficiency of the hardware elements selection and general structure. The
efficiency of used communication methods and protocols, in the frame of the current
paper, was evaluated along with the program architecture and software realization both
side of the project, the Host and The Omicron side. The current chapter is dedicated to

various shortcomings in mechanical design.

6.1.1 Machine Geometry

The origin point of middle group arms slightly shifted outside, in comparing with the front and back
groups. While the unit is walking the limb creates the specific volume in the work area. This area
can be named as the most visited area, the normal mode walking work area or high-density volume.
However, each limb has this specific volume. The purpose of the shift is to move high-density
volume and decrease the interference zone in order to increase step length. The practical result
shows that the shift is not big enough. This issue is bypassed by the software solution. The walking

animation was made with taking in to account this specific parameter of the chassis.

6.1.2 The Plastic gears in primary gearbox.

The pre-prototype of the limb was built around hobby gearbox with integrated low voltage DC
motor. The defects of the design were taken into account and according to experience was build
the second version of the limb, with which the Omicron is equipped. The more powerful engine
and bigger gear ratio in the secondary gearbox should increase load on the gears in primary
gearbox. The new values were close to limits of the hobby product. The alternatives, which were
made out of the metals, cost multiple times more. However, the actual unit is not the main point
of the paper and serves only as an object to prove concept. The safety feature inside of primary

gearbox should prevent damage in case of overload.

52

Unfortunately, the new batch of the primary gearboxes with the same product name and were
bought at the same shop, as at the first place. Did not have safety feature. It was detected when
the prototype was almost finished. The metal gearbox can fix the situation, but on this stage, it
requires enormous investment to change primary gearbox and adapt the general design to new
gearboxes. A cheaper and faster solution is to find and change all the plastic gears to metal gears
inside of the primary gearbox. Anyway, this will be outside of the thesis because of timing. New

gears will arrive at summer 2019.

6.2 Hardware issue

The hardware design of the Omicron can be considered more or less successful, expect
performance in several segments. The first segment can be outlined as the operation
frequency of the Omicron core is 16 MHz. It is not enough to provide maximum data output
and update rate for the proper operation. Second issue is the data transmitting capacity,
the calculation, related to data transmitting, was made in Chapter 3.4 and current set up
for wireless data communication is not able to transmit data on the desired frequency. The
hardware selection is a poor choice and should be replaced with a better communication
solution as a Wi-Fi module. The last one is the IMU. Because of the noise level in raw

readings of the IMU, the sensor is not able to track slow motion.

53

6.3 Omicron Program issue

The question of low-frequency operation brings a question of current algorithm

optimization.

6.3.1 Place of the PRLIDAR segment in the program of the Omicron core.

During the analysis of the algorithm architecture of the Omicron, Core program was
evaluated the potential issue. Does not matter how would be realized algorithm sequence
of the Omicron core program, the laser scanning sensor cannot provide the maximum
output without direct connection to the host or until the moment when the test unit can
be equipped with more advanced hardware. The alternative with the frequency level of

GigaHertz or has multiple core processor in order to separate calculation processes.

As an outcome, the amount of the data points goes down to 30 points per second. This
number is too low for the effective map building process. However, the issue was known
from the beginning of the process. And the decision, to continue with the current
configuration, was made because of the higher efficiency and accuracy then other methods
based, for instance, on ultrasonic radar mapping and less investment requirement than in

the case of more advanced machine vision solutions.

6.3.2 Data read process and ASCIl interference

Problem — The characters can be read as an integer. The ASCII letters have decimal value
in the range of 65-90. In case if one segment of the array will be lost and at the moment

when the program will read the check letter, the joint value may be identical. It will cause

the wrong package interpretation. The chance is low, but still possible.

54

6.4 Virtual Environment Issues

In this chapter are outlined problems, related to virtual environment segment of the study.

6.4.1 Inverse Kinematics Solution

The visualization of the Omicron in the virtual environment may seem smooth and correct.
In practice, the IK solver is working in a way, that and it pulls the end of the limb to the
ground. Depends on the situation the IK is activated with 60 or 80 percent and with walking
animation blend the final outcome looks acceptable and the actual unit is also able to walk.
This is the incorrect solution and needs to be redone. The IK Alpha, the coefficient of IK
solver, need to be more dynamic. It can be done by binding the IK Alpha with walking
animation. The closer is the animation to the moment in time when the limb should land
on the work surface, the bigger IK Alpha should be. And vice versus, as soon as the Unit

wand to start the detachment process, the IK Alpha should slowly go to zero.

6.4.2 Character Pawn and Movement

In the simulation, the shift in space, or the result of the locomotion, is hardcoded and bind
to the Character Pawn. Shortly speaking, the pawn moves when it should move, but the
result of the shifting in space should be the result of physics calculation in a known
environment and IMU input in an unknown environment. The UE4 is capable with this task,
but the realization of it is more complicated. It requires more resources and other aspects
of the simulation should be tested outside of this feature. Hereby, the current setup suits

for primary testing, but it should be redone in perspective.

6.5 Future work

For the next iteration of the testing and project development, it is necessary to improve
the IK solution system in UE4. Virtual Environment Map building algorithm needs to be
implemented and replace the current solution. Implement advanced physics for the
simulation and upgrade hardware for the Cote and communication segment. Most of the

issues were outlined in Chapter 6. As future work is planned to solve this list of problems.

55

SUMMARY

Current paper was aimed to research possibilities for the simulation of perception processes for an
artificial life form. In the frame of the project was made a primary analysis of the human concept
of the perception. In order to outline goals clearly the general definition of the perception needed
to be placed at the first step. The definition is stated as a - the ability to see, hear or become aware
of something through the senses. This sentence is the core of the current project. The second step
is to rephrase it into the question. What exactly the test subject need to see, hear or become aware
of something and how. Before even paper writing the answer was formulated as a — ability to see
surrounding, understand the general picture of the landscape and to be aware of own position in
the world, be aware of changes in the environment. The representation of the world should be
dynamic, flexible and the machine should adapt to changes in real time. Be aware of own
locomotion. Not just be hardly programmed to perform a set of movement in case sequence, but
be aware of the position of every limb and able to correct position according to needs. Be also
aware of the own position in the meaning of tilting main body. Does the tilt happen because of the
internal decision or the external effect? This moment is important in order to continue collecting

data with taking in to account town position.

During the project, as a second step, was designed and built the test subject, control unit, machine,
in the paper it was named by differently, but in general, it is a walking robot, which one imitates a
six leg insect. The complicated mechanical design was a good exercise to outline different aspects
of mechanical engineering as a Finite Element Method analysis, driver unit development as the
custom servo-motors with calculated rotation speed and torque, and the segment of knowledge
base related to industrial manipulators. The hardware design was a good option to apply to practice
accrued knowledge in the electrical circuit design. The project covers the use of multiple sensors

with different complexity level.

The internal communication of the Omicron realized based on two different communication
protocols, as RS-232 and I2C, thanks to the Applied Data Communication subject at the second
semester. The external communication was established by RS-232 protocol and radio

communication between Omicron and the Host.

56

The development environment as a game engine Unreal Engine 4 is relatively something new for
the Author. Originally, this environment is designed for the entertainment products as video
games. The idea to use it in the framework of a similar project was in the mind of the Author was
born a long time ago, but only in the frame of this study this idea was realized on was fully
implemented at a certain level. The concept of usage the game engine, as a space for mental
processes of the artificial life form, and connect the real world with the virtual reality truly excite
the Author and he sees significant possibilities in it. Skeptically the host perception simulation
program can be named just as a set of few nonflexible functions. Does the real brain a much
different? It is just more advanced and complicated, but | will be there one day and as a start, it

shows significant results.

In Virtual environment was created the rig of the actor, mesh for the body and then sets of
animation, which covers a few cases, was created. By the state machine, the flexibility of the

locomotion was expanded and adjusted according to data from internal sensors from the test unit.

In every covered segment were design mistakes, but for the first prototype, the general outcome
is satisfying. For future recommendations, it is needed to note that there is a big opportunity for
modifying the prototype. First, upgrade hardware for more advanced in order to improve data
exchange and calculation performance and also transfer the Host segment to the machine. The
host should act as a coordinator between units and use collected data in order to build the bigger
picture. However, this is for far future. For the next iteration is needed to solve the issues

mentioned in Chapter 6.

The few questions still remain outside of the project frame. First one is the algorithm to convert
point cloud in to surface, which one can describe environment. And in addition, the algorithm of
flexible dynamic environment modification also should take a place. The second missing point is
the purpose for the artificial life. Or simply speaking, the artificial Intellect is missing. SO far this
question does not bother since the Author also does not have Purpose in life. The loop goes like:
Set the goal, achieve it, take in to account the acquired experience and then set the new goal. How

the Al can be how the Al can be taught this.

As a conclusion can say that the main point of the paper was to create a system to study the options
of the perception and to introduce perception later into more complex and more effective Al
control algorithms of future machines. The unit is aware of the environment and able to adapt to

the dynamic environment.

57

LIST OF REFERENCES

[1] Vladislav Babuskin, “A Robust Control System For A Mobile Robot” [Online].
https://digi.lib.ttu.ee/i/?7504. [Accessed 03 01 2019].

[2] “H-Bridges — the Basics” [Online]. http://www.modularcircuits.com/blog/articles/h-bridge-
secrets/h-bridges-the-basics/. [Accessed 03 01 2019].

[3] ”Introduction to Servo Control & PID Tuning ” [Online].
http://supportl.motioneng.com/pdf_notes/powerpoint/Introduction%20t0%20PID%20and%20Tu
ning4.pdf. [Accessed 03 01 2019].

[4] “RPLIDAR Application Note Arduino Driver Support & Demo” [Online].
http://www.robopeak.net/data/doc/rplidar/appnote/RPLDAPPNO1-rplidar_appnote_arduinolib-
enUS.pdf [Accessed 03 01 2019].

[5] “DC Toy / Hobby Motor - 130 Size” [Online]. http://www.farnell.com/datasheets/1863913.pdf.
[Accessed 03 01 2019].

[6] “TFK-280SA-22125 MOTOR” [Online].
https://www.arduino.cc/documents/datasheets/DCmotor.PDF. [Accessed 03 01 2019].

[7] “RPLIDAR A2” [Online]. https://www.slamtec.com/en/Lidar/A2. [Accessed 03 01 2019].

[8] “MPU-9150 Product Specification Revision 4.3” [Online]. https://www.invensense.com/wp-
content/uploads/2015/02/MPU-9150-Datasheet.pdf. [Accessed 03 01 2019].

[9] “DIGI XBEE® S1 802.15.4 RF MODULES” [Online].
https://www.digi.com/pdf/ds_xbeemultipointmodules.pdf. [Accessed 03 01 2019].

[10] GitHub Profile Page of Martin Sosi¢ [Online]. https://github.com/Martinsos?tab=repositories.
[Accessed 03 01 2019].

[11] GitHub Profile Page of Kris Winer [Online]. https://github.com/kriswiner. [Accessed 03 01
2019].

[12] GitHub Profile Page of Rodrigo Villani [Online]. https://github.com/RVillani. [Accessed 03 01
2019].

58

https://digi.lib.ttu.ee/i/?7504
http://www.modularcircuits.com/blog/articles/h-bridge-secrets/h-bridges-the-basics/
http://www.modularcircuits.com/blog/articles/h-bridge-secrets/h-bridges-the-basics/
http://support1.motioneng.com/pdf_notes/powerpoint/Introduction%20to%20PID%20and%20Tuning4.pdf
http://support1.motioneng.com/pdf_notes/powerpoint/Introduction%20to%20PID%20and%20Tuning4.pdf
http://www.robopeak.net/data/doc/rplidar/appnote/RPLDAPPN01-rplidar_appnote_arduinolib-enUS.pdf
http://www.robopeak.net/data/doc/rplidar/appnote/RPLDAPPN01-rplidar_appnote_arduinolib-enUS.pdf
http://www.farnell.com/datasheets/1863913.pdf
https://www.arduino.cc/documents/datasheets/DCmotor.PDF
https://www.slamtec.com/en/Lidar/A2
https://www.invensense.com/wp-content/uploads/2015/02/MPU-9150-Datasheet.pdf
https://www.invensense.com/wp-content/uploads/2015/02/MPU-9150-Datasheet.pdf
https://www.digi.com/pdf/ds_xbeemultipointmodules.pdf
https://github.com/Martinsos?tab=repositories
https://github.com/kriswiner
https://github.com/RVillani

APPENDICES

Appendix 1 Omicron Limb program

1
1 h LA s

W o o 0 O o 0 M oo O

[T =TT =]
[WF]]

15
(V)

1 woid loop() |

S ———————— Collect data from joint potentiometers -------—--—-
Inputd = wmap(analogRead(J04) ,0,1023,-255,255);
Inputl = wap(analogRead(Jla) ,0,10283,-255,255);
Inputs = maplanalogRead(J24),0,10283,-255,2585);
Inputd = wmaplanalogRead(J34),0,10283,-255,25858);

OtDhatal[0]= nap(analogRead (JOA) O, 1023,0,25858);
OtDhatall]l= nmap(analogRead (J1A) . 0,1023,0,255);

1 0tData[2]= maplanalogFRead (J24) ,0,1023,0,255) ;

0tDhatal[3]= wap{analogRead(J34) ,0,1023,0,255);
OtDhatal4d]= nap (analogRead (LP3) ,0,10253,0,255);
fif ————————— Collect data from joint potentiometers END-----—-—-

S ————————— Uze incoming data as 3et Point
Setpointl = map(InDatal[0],0,255,-255,255])
SATODO add limits related to each joint
Setpointl = map|(InDatal[l],0,255,-255,255);
Setpoints = map(Inbatal[Z],0,255,-255,255);

1 Setpointd = wap(Inbata[3],0,255,-255,255);

fif ————————— Uze incoming data as Set Point END----——--—————-

S ————————— PID Computing the output [(FUHM)

JOPID. Compute() »

o J1PID. Compute() :

JZPID. Computel) ;
J3PID. Computel] ;

A PID Computing the output (PWH)EWND---------------—-

fi ————————— Conwvert Dutput Value to PUM 3ighal ----————-—--——-
Outputla = constraini(Fain® (abs(0utpucl)ll), 0 . 255)1;
Outputla = constraini(Fain®(abz(0utputl)l)), 0 . 255)1;:
JutputzZa = constraini(Fain® (abs(0utput))), 0 . 2551;
Outputia = constrain((Gain* (abs(0utput3))), 0 . 255);
A ———————— Conwert Output Value to PUM 3ignal END-------———-

59

[o B I O B =

oo

[=3 T 03 B S

[= 4 T3 B S

Lol Pl

L

[=)]

[N I]

[

if (Output0 > 0) { f/ l-=t Joint (Buildin to main Body)

digitalllrite (MOA, HIGH) :
digitalllrite (MOB, LOW):
Voelse if (Outputl < 0)
digitalllrite (MOA, LOW);
digitalWrite (MOE, HIGH) ;
Voelse 1f (OutputO == 0){
digitalllrite (MOA, LOW) :
digitalllrite (MOE, LOW):

if {(Outputl > 0)
digitalWrite (M1A, HIGH) ;
digitalWrite (M1E, LOW);

}oelse 1f (Outputl = 0)
digitalWrite (M14, LOW):
digitalWrite (M1E, HIGH)

Voelze 1if (Outputl == 0){
digitalWrite (M14, LOW):
digitalWrite (M1B, LOW):

dfod
dMOE

dMoL
dIMOE

drfos
dMOE

{47
dM1a
dM1E

drfla
dIM1E

drfla
dM1E

1:
n:

Joint (Buildin to main Body)

if (Outputs > 0) § /¢ 3-rd Joint (Buildin o main Body)

digitalWrite (M24, HIGH)
digitalWrite (M2E, LOW):
Voelze 1if (Outputs < 0) |
digitalWrite (M4, LOW):
digitalWrite (M2B, HIGH) :
L oelse if [(Output? == 0){
digitalWrite (M24, LOW):
digitalllrite (M2E, LOW):

if (Outputd > 0)

digitalWrite (M34, HIGH) :
digitalWrite (M3B, LOW):
L oelse if (Outputd < 0)
digitalWrite (M34, LOW):
digitalWrite (M3E, HIGH) ;
Voelse 1f (Outputs == 0){
digitalWrite (M34, LOW):
digitalWrite (M3E, LOW):

d-th Joint (Buildin to main Body)

dif=a = 1;
dif=E = 0;
di=24 = 0;
dM=E = 1:
dif=a = 0;
dif=F = 0;
LA
dif3a = 1;
dMsE = 0:
difsa = 0;
dIifsB = 1:
dif3a = 0;
dif3E = 0:

60

[43]
-
-

—————————— et Driver speed control (PWH) ----—-—-———-m——ommo
analogiirite (MOS, 0Outputla) ;
atalogirite (M15, 0utputla) ;
analoglirite (M25, 0utputia) ;
analogiirice (M35, 0utputia) ;
ald | ff - et Driver gpeed control (PWM) END---------—————-

[l el o
e -1

L0 T B B B

[
[Tl

165 f/ Punction that executes whenewver data iz redquested by master
1eg woid requestEwent()

168 uintd_t OtBuffer[5]:

169 for{int i=0;i<5;i++)

170 { OtBuffer[i]=0tDhatal[i]:}
171 Wire.write (0tBuffer, 5);

4/} Punction that executes whenewer data is received from master
175 woid receiwveEwent(int howMany) {

176 for (howMaty; howMany > 0; howMany-—-){

177 int ¢ = Wire.read():;

178 InData[d - howMany] = c:2}

61

Appendix 2 Omicron Sonar program

15 woid setup(] {

16 Wire.begin(3onarddress);

1 Wire,onFequest(requestEvent): /7 register event

18 pinMode(trigPin, OUTPUT): /7 3ets the trigPin as an Output
19 pinMode(echoPin, INFUT): /f Sets the echoPin as an Input

21 for (int 3 = 0; 3 <= 19; j++H)§

22 digitallWrite (trigPin, LOW):
delayMicroseconds (2] ;
digitallrite(trigPin, HIGH]:
delayMicroseconds(10) ;
digitallrite(trigPin, LOW);
duration = pulselnfecholfin, HIGH):
getdizt[j]= duration*0.034/2;

a1

I
L

L3 I

[=4]

O L R S S I L]
(] 1

9 '
300}
32 wold loop() {
33 it (1< 0){i = 0;}
R et
35 digitallrite(trigPin, LOW);
36 delayMicrozseconds(2) ;
37 digitallrite(trigPin, HIGH]:
38 delayMicroseconds (10) ;
39 digitallWrite{trigPin, LOW);
40 duration = pulselnfechoPin, HIGH):
41 getdist[i] = duration*0.034/2;
42 e
43 for f(int k = 0; k <= 19; E+H+){
44 avgdist=avgdiztdzetdizstlk]:
45 delaw(l)]}
47 awgdist=awgdist/20;
43 distance = avgdistd
459 awgdist=0;
5l outdata = distance;
52 if [(outdata < 0)J{outdata = 0;}
Mf—_—
55 i++;
56 if (i »= 20011 = 0);
a7 !

9 F/ Function that executeszs whenever data iz recquested by master
gl wold requestEvent()
gl { Wire.write (outdata); }

¥

62

Appendix 3 Omicron Core program

L O I O O o T I T T O O O I I T I L I L I o DO o o I L B B e R 0 R 6 T L N N T I I S

L ol O o O

(=3

L

A =

[=3]

LA I

on

(=T 3 I

wo

{

id setupni)

Wire.begin(): A4 Join iZc bus (address optional for master)
Serial.begin(ll5200]) ;
lidar.begin(Serial?) ;
Seriali.begin(57600) ;

pinMode (intPin, INPUT):
digitallWrite (intPin, LOW)
pinMode (blinkPin, O0UTPUT) :
digitalllrite (blinkPin, HIGH):
pinfode [Laser3peed, OUTPUT) ;

uinté t ¢ = readByte (MPU2150 ADDRESS, WHO AM I MPUG1S0): // Eead WHO A&

if (o == 0Ox68) // WHO_AM T should alwawvs he Ox63

{
MPUE0505elfTest (3elfTest); /7 Start by performing self test and reporti

1f(3elfTest[0] < 1.0f && JelfTest[l] < l.0f && 3elfTest[2] < 1.0f =& 3e
delay (1000) ;
'

calibrateMPU9150 (gyroBias, accelBiaz)} // Calibrate gyro and accelerome
delay(1000]) ;

initMPURLS0(); /F Inititalize and conficqure accelerometer and gyroscope
Af Bead the WHO &M T register of the magmetometer, this is a good test
ninté_t ¢ = readByte (AKS9754 ADDRESS, WHO_AM T AKS9754): /7 Fead WHO &

delav(1000) :

S et magnetometer calibration from AKS2754 ROM
initAK59754 (magCalibration) ;

MagRate = 10; // set maghetometer read rate in Hz: 10 to 100 (max) Hz a
'

else

{

SAowkhile(l) » fF Loop forewer if communication doesn't happen

63

284 S - Collect data ---——-—-—-—-——-

285

286 wold getIZChatal)l 44 collect data from seguents

287 Wire.requescFrom (01, 5): J4 request data from seqment 01
288 forf{int i=0;i<5;i++) § int ¢ = Wire.read(); Fromlimb0l[i]=
289 Tire,requestFrom (02, 5); S4 request data from segment 02
240 for{int i=0;i<5;i++) § int ¢ = Wire.read(); FromLimb02[i]=
291 Tire.requestFrom(03, 5); S/ request data from segment 03
292 for{int i=0;i<5:i++) § int ¢ = Wire.read(); FromLimbh03[i]=
293 Tire.requestFrom(l0, 5): S request data from segment 10
294 forf{int i=0;i<5;i++) § int c = Wire.read(); FromLimhl0O[i]=
2895 Wire.requescFrom (20, 5); J4 request data from seqment 20
298 forf{int i=0;i<5;i++) § int ¢ = Wire.read(); Fromlimbz0[i]=
297 Tire,requestFrom (30, 5); S4 request data from segment 30
298 for{int i=0;i<5;i++) § int ¢ = Wire.read(); FromLimb30[i]=
299 THire,requestFrom (50, 1); S/ request data from segment S0
300 int ¢ = Wire.read()} Jonar = c:}
301 S - Collect data END---—---————-

302

303 f—-——— Distribute data --——-—---—--—-

304 woid setData()l{ /7 deliwer data to the sSeguments

305

306 Wire.beginTranzmizzion(0l); 7/ transwit to dewice #01
307 Wire.write(ToLimb0Ol, 4); // sends Zetpoint data

308 Wire.endTransmizsion()} fF 2top transmitting

309

310 Wire.beginTransmission(02); // transwit to dewice #01
311 Wire.write (ToLimb0Z2, 4); // sends Jetpoint data

312 Wire.,endTransmizsion()l; // stop transmitting

313

314 Wire.beginTranzmizzion(03); /F transwit to dewice #01
315 Wire.write(ToLimb03, 4); // sends Zetpoint data

3le Wire.endTransmizsion()} fF 2top transmitting

318 Wire.beginTransmission(l0); // transwit to dewice #01
319 Wire.write (ToLimbl0, 4); // sends Jetpoint data
320 Wire.,endTransmizsion()l; // stop transmitting

22 Wire.beginTranzsmizzion(20); /f transwit to dewice #01
32 Wire.write(Tolimbz0, 4); // sends Zetpoint data
324 Wire.endTransmizsion()} fF 2top transmitting

26 Wire.beginTransmission(30); // transwit to dewice #01

327 Wire.write (ToLimb30, 4); // sends Jetpoint data
28 Wire.,endTransmizsion()s 7/ stop transmitting!

64

332 woid RPLID(){
33 if (I8 0K{lidar.waitPoint()}) {

float distance = lidar.getCurrentPoint().distance;
Sidistance walue in mm unit

float angle = lidar.getCurrentFPoint().angle;
338 Alanglue walue in degree
338 bool startBit = lidar.getCurrentPoint().startBit:
340 SAwhether thiz point is belong Co a hew scan
341 byte quality = lidar.getCurrentPoint().quality:
342 Fduality of the current measurement

=
ST
&

dizt = [distance / 10):

[

if{dist>10){

Serial3.print("Ls"): Serial3.print{” "):
348 Seriald.print{angle); Seriali.print(™ ");
349 Seriald.printidist); Seriald.print("™ "):
350 Seriali.println(™ X");:
351 }
353)
3 elae [

L

rplidar_response dewice_info_t infor
if (I5_0Kilidar.getDeviceInfo{infa, 100)))
lidar.starticani):

'

Lo L LS L La L

Goemo oo LA R A DR DA R LA CA A R e
Wm o =] oy A s
——

[SE=I
-
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
e
=]
=
=
E
i
m
m
[=}
it
=
=
=5
1
1
1
1
1
1
1
1
1
1

[

65

1]

[¥&]

65 woid IMU{)

366 {

i
i
if

3

If intPin goes high or data ready status is TRUE,
all data registers have new data
|readByte (MPUS150_ADDRESS, INT STATIS) & Ox0Ll)

A4 0n interrupt, check if data ready interrupt

readdccellatalaccelCount); // Read the x/v/z adc walues
getdres();

i
ax
i
a¥
az

calculate the accleration walue into actual g's

= [float)accelCount[0]*aRes:

get actual g value, this depends on scale being set
= [float)accelCount[l]*aRes:

= [float)accelCount[Z]*aRes;

readGyrobata(gyroCount); /7 Read the x/v/z adc walues
getGres():

Iy
R
Iy
oy
o4

Calculate the gyro walue into actual degrees per second
= [float)gyroCount[0]*gRes;

get actual gyro walue, this depends on scale being set
= [float)gyroCount[l]*gRes;

[float)gyroCount[2]*gRes:

moount;

if
Iy

[moount > Z00/MagRate) {
Setting the magnetometer read rate [see bhelow)

readMaghata (magCount) : /7 Bead the x/v/2 adc walues
wRes = 10.%1229, /4006, ;

F# Conwersion from 1229 microTesla full scale [(4096) to 12,29 Fauss full scale
J4 8o far, magnetometer bias is calculated and subtracted here manually
waghias[0] = -5.: A4 Uzer environmental x-axis correction in milliGauss
maghias[l] = -95.; /7 User environmental ¥-axis correction in milliGauss
waghias[2] = -260.; // User environmental z-axis correction in milliGauss

/4 Calculate the magnetomneter wvalues in williGauss

i
mx
wy
ne

Include factory calibration per data sheet and user enwvirormental corrections
[floatimagCount[0] *wRes*nagCalibration[0] - magbias[0]:
[float)magCount[l]*wFes*nagqlCalibration[l] - maghias[1l]:
[floatimagCount[2] *wRes*nagCalibration[2] - magbias[2]:

nocount = 07}

66

409 if('AHRE)

410 tempCount = readTempDatal): // Read the x/v/z adc walues

411 temperature = [(float) tempCount) / 340. 4+ 36.53: // Tewperature in degrees Centigrade
412 1

LA

Now = microsi();

116 deltat = ((Now - lastUpdate)/1000000.0£);

41 /4 set integration time by tine elapsed since last filter update

418 lasztUpdate = Now;

19 MadgqwickOuaternionUpdate (ax,ay,az, gx*FI/180.0E, gy*FPIL/180.0E,gz*FPI/1580.0f, ny, e, n=) ;

1 A4 Berial print andfor display at 0.5 3 rate independent of data rates
2 delt t = millis() - count;

yaw = atanZ (Z.0E% (q[11%g(2]+g[0]*q[3]) ,q(0]*q[0]+q[1] * g1]-gl2]*q[2]-q[3]*q[3]) ¢
pitch = -asin(z.0E% (g[1]%g[3]-g[0]1*gl[2]]);

roll = atamz (2. 0E% (gq[O0]*gq[l]+gl2]"g[3]),q(0]*q[0]-g[1]*g[1l]-gla]*g[a]+a[3]*gl3]) -
pitch *= 180.0f / PI:

vauw *= 180.0f ¢ PI:

vauw += 8.46;

Jf Declination at Tallinmn, Estonia is positive. § degrees 46 minates on 2018-12Z2-05
roll *= 180.0f / PI:

432 count = willis();

437 fif—————————— CLean Incoming serial buffer ------—-----
438 woid cleanBuffi){
439 for(int i=0;i<4:;i++) {LimbBuff[i] = 0;}

67

[O o T O Y TN o T o Y o TR O TR o B £

L

[= L T) B

[T = e T T A ¢]

o

[= LT B

W]

ka =

o

Fifmmmmmmm— Fecieve Data from the HO3T ------------
vold RecieveDatal) !
if(Seriali3.available()){

char check = 0;
AdHstLlbh = Seriali.read();
witch(AdHstlb) {
case '4':
for{int i=0;i<4;i++) {LimbBuff[i]=Seriali.read():}
check = Seriali.read():
if (check=='G"){

for{int i=0zi<d;i++) { Telimb0l[i] = LimbBuff[i];}

check =0;
v oelse !
cleanBuffil;
check = 0;
'
hreak:
case 'B':

forf{int i=0;i<4;i++) {LimbBuff[i]=Seriali.read(]:}
check = Serial3.read():
if (check=="H'){

for{int i=0;i<d4;i++) { Telimb0Z[i] = LimbBuff[i];}

check =0:
} elzse |
cleanBuff():
check = 0
'
break;
case 'C':

for{int i=0;i<4:i++) {LimbBuff[i]=Serial3.readi]:}
check = Seriali.read():
ificheck=="'1"']{

for{int i=0zi<d;i++) { Tolimb03[i] = LimbBuff[i];}

check =0;

v oelse !
cleanBuffil;
check = 0;

'

break:

68

[=3]

case 'Dl:
forjint i=0;i<d;i++) {LimbBuff[i]=Seriald.read(]:!
check = Seriald.readi):

189 if (check=="'J"){

190 for{int i=0;i<4;i++) { TolimblO[i] = LinbBuff[i]:;}
191 check =0:

192 Y oelzse |

193 cleanBuff() :

check = 0:

T =]

o
L
(43 BT =9
—-—

194 break:

493 case 'E':

1945 for{int i=0;i<4;i++) {LimbBuff[i]=Seriali.read():}
5040 check = Seriali.read():

501 if (check=="E'}{

502 for{int i=0;i<4:i++) { Tolimb20[i] = LimbBuff[i]:}
503 check =0:

504 Voelse !

505 cleanBuff() ;

5046 check = 0;

507 }

S08 hreak:

510 case 'F':

511 for{int i=0;i<4:i++) {LimbBuff[i]=Serial3.read(]:}
512 check = Serial3.read():

13 if {check=="'L"'}{
for{int i=0zi<d;i++) { Tolimb30[i] = LimbBuff[i];:}

15 check =0;
16 Y oelzse |

cleanBuffil:
check = 0:

[¥s
—-—

break:

default:
break:

L,

LA I
—-—

[=3]

1
e e
e

LI T o T O o T o Tl N o o Y o o N o T o T Y T o T ol N o TR

ok R OB ORI RYORD ORI RO
[

69

529 4 Fend Data to the HOST ---—-----------—-
230 woid sendDatai){

531

53z Beriali.print("RF"); Seriali.print(™ ™);

533 forf{int i=0;i<5;i++) {Seriald.printc(FromLimb01[i]);
534 Serialj.print(™ "):

535 WSerial3j.println(™ x7'):

536

537 Seriald.princ("BM™): Serial3.print(™ "):

53a for{int i=0;i<br;i++) {Seriald.printc(FromLimb02[1i]):
539 Serial3.print(™ "):

540 1S8erial3.println(™ X');

241

542 Seriald.print("RE"): Serial3.print(™ "):

543 forf{int i=0;i<5;i++) {Seriald.printc(FromLimb03[i]);
544 Serialj.print(™ "):

545 Serial3.println(™ x7'):

Ldg

247 Serial3.print("LE"™): Serial3.printi(™ "):

S48 forf{int i=0;i<5;i++) {Seriald.printc|(FromLimb30[i]);
549 Seriali.print(™ ");

550 1Serialj.println(™ X'):

551

552 Seriald.print("LM"); Serial3.print{™ "):

553 forf{int i=0;i<b;i++) {Seriald.princ(FromLimb20[i]):
554 Serial3.print(™ "):

555 1Serial3.println(™ X');

556

557 Seriald.print("LF"); Serial3.print{™ "):

558 for{int i=0;i<5;i++) {Seriald.princ(FromLimbl0[i]);
559 Serialj.print(™ "):

Sel Serial3j.println(™ x7'):

S8l

562 Seriald.print("G:3"); Seriald.print(™ "):

563 Seriali.print (yaw) ; Seriali.print(™ "):

Sed Seriali.print{pitch); Seriali.print(™ "i1;

o6 Seriali.printiroll); Seriali.print(™ ");

o6 Seriali.print({3onar):; Seriald.print(™ "1:

567

568 Serial3.println(™ X"):

569 |1

570 S —————————— Send Data to the HOST ———----—meoo——

70

B0 N T o o o Y Y o T O Y o T o I O N Y T o I o O o O Y o O Y Y o O 5]

e S N e T e T W T v O W T T Y O T ¢ B W

L

=1 & A =

[N w]

2

(7 B ¢ R S, S T S QR O

| T e = |

i

b T 3 I

woid loop()
{

REPLID) :
Mo :
getIZChatal) ;
setDhatal):

int dekt_t = milli=s{) - freq:

if{ freq > 50)
freq = milli=

sendbatal)
FEecieweDatal) :

{ sendDatal);
i

'

71

[
L

] L
e

s

99 jff====== [uanterion Filters
600 |/ f==================z==
a02 wiold MadgwickQuaternionUpdate (float ax, £loat ay, float az,
603 float ogx, £loat gy, float gz, float m«, £loat my, float me)
G004 !
605 Af short name local wariable for readability
606 float gl = g[0], g2 = g[1], 93 = g[Z], g4 = q[3]:
607 float norm:
608 float hx, hy, _Zbx, _Zbz;
609 float sl, s2, =33, =4;
G610 float ghotl, qhot2, ghotd, ogbotd;
q12 A daxiliary wariahles to awold repeated arithmetic
613 float _Zqlmx;
614 float _Zgqlmy;
615 float _Zqlmz;
616 float _Zegéme;
617 float _dhx;
618 float _db=:
619 float _2ql = 2.0 * ql;
620 float _2q2 = Z.0f * gZ;
he2l float _2q3 = Z.0f * q3;
float _2qd = Z.0f * qd;
623 float _2qlags = 2.0 F gl + o3;
624 float 2q3gqd = 2.0 * g3 * gd;
625 float gqlgl = gl + gl;
626 float gqlg2 = gl * g2;
627 float qlg3 = gl * og3;
628 float gqlgd = gl * ogd;
& float q2gz = g2 ¥ g2;
630 float g2gd = o2 ¥ og3:
631 float g2gqd = o2 F od;
632 float g3gd = g3 * og3;
633 float gqigqd = g3 ¥ gd;
134 float qdgqd = g4 * gd;

A/ Normalise acceleromnetelr measuremeht

837 Norm = sgrtfax ¥ ax + ay ¥ ay + az ¥ az):;
638 if (norm == 0.0£) return; /f handle Nall
639 norm = 1.0/ /norm;

G40 ax *= norm;

G541 ay *= norm;

od2 Az *= norm;

72

hdd J4 Normalise maqnetometer measurement

645 Norm = Sgrt(ms * mx + ny * oy + nE F mne);
nda if (norm == 0.0£) return; /7 handle Nall
547 notm = l.0f/norm;

n4s I *= NOrm; Ly *= NOrm; LZ %= NOrm;

0 /4 RBeference direction of Earth's magnetic field

1 _EZglmy = Z.0€ F gl Fomx;

652 _2gqlwy = Z.0£ * gl * my:

3 _2glmz = 2.0 ¥ gl * nz;

754 _dgidmy = 2.0f F g2 Fomx;

5 he = me * glgl - _Zglony ¥ gqd + Z2qlmzs * g3 + o ¥ g2g2 +
& _2g2 Fmy f o3 o+ 292 Y mE fogd - ome Fogdigd - me ¢ ogdgds
hy = _Zglmx * g4 + my * glgl - _Z2glms % g2 + _Sgame % g3
Bl - oy FogEadE + my Fog3gd + _Eq3 FmE Y ogqd - my ¥ oogqdad;

o9 _Zbhx = sgqrofhe ¥ he + hy ¥ hy):

h&0 _Zhz = - Zdglmx ¥ o3 + _Zqlwmy F g2 + mE Foglgl + _dogdmx ¥
18 gd - mz *ogadgd + 293 Fomy fogd - mE Y ogig3 + mE Yogdgds
662 _dbx = Z2.0£ ¢ _Zhx:

663 _dhz = Z2.0£ * _ZhE:

h&D A4 Gradient decent algorithm correctiwve step

RE6 gl = - _2q3 * (2.0 * gqi2gqd - _2qlg3 - ax) + _Z2g2 * (Z.0£ ¥
h&7 qlgs2 + _2q3gqd - ay) - _Zbz ¥ g3 * (_Zbx * (0.5 - o3g3 -
h&E qdqd) + _2bz ¥ (gqEgqd - glgd) - mx) + (-_Zbx ¥ gd + _Zbz ¥
h6&9 q2) * (_Ebx * (g2q3 - gqlgd) + _Zbz ¥ (glgd + q3gqd) - ny) +

270 CEbx g3 o (_Zbx F o(glgd + qagd) + _dbe ¥ O(0.5f - gi2gZ2 - o3g3) - mE);
571 g2 = _2g4 * (Z2.0f * gqi2qd - _Zglg3 - ax) + _2gl ¥ (EZ.0£ F

572 qloge + _2g3g4 - ay) - 4.0E * g2 % (1.0 - 2.0 * gagqe -

673 2.0 % q3q3 - az) + _ZbE * g4 ¥ (_Zbx * (0.5 - o393 -

= qdqd] + _ZbE ¥ (gEqd - glgd) - me) + [_Ebx F g3 + _EZbz F gql)

5 Top_Zbx T (gi2q3 - glgd) + _Ebe * (glge + g3gd) - my) +

{ Zhx * g4 - dbz * q2) * [Zhx * (qlgd + qZqd) + zZbz ¥
57T (0,56 - q2qZ - qig3) - mz);
5TE 53 = - 2Zgql * (2.0f * g2gqd - 2glgd - ax) + 2gd ¢ (2.0f F

749 qlgsZ + _Egdgqd - ay) - 4.0 * g3 * (1.0 - Z.0f * qgig2 -

BE0 2.0 % g3g3 - az) + (—_4dbx * g3 - _Zbe * gl ¥ [_Zhx ¥

hE1 (0.5 - g3gd - qdqd) + _Zbe * (g&gqd - glgd) - mx) + (_Zbx

hE2 g2 + _Ebe *ogd) *O(_Zbx F (gEg3 - qlgd) + _dbs *o(glgd + g3gqd)
hE3 -wy) + (_Ebx ¥ gl - _dbz ¥ g3) ¥ (_Zbx * (glgd + gi2gqd) + _Ebe
524 * (0.5 - g2g2 - g3g3d) - n=);

BES g4 = Zgi * (2.0 F giEgqd - _Eglgd - oax) + _Zgq3 ¥

hEB (2.0 * glg2 + _2g3gqd - ay) + (—_dbx * gd + Zhe * gd) ¥

bE [_Zbx * (0.5 - g3g3 - gqdgqd) + _Zbz ¥ (g2gqd - glg3d) - m)

BEE + (—_Zbx ¥ gl + _Zbe * g3) F (_Ebx * (g2g3 - gqlgd) + _Zhz ¥
89 (ol + gq3gqd) - my) + _Zbx * g2 F (_Zbx ¥ (glgd + g2q4) +

690 _Zhz ¥ (0.5f - gi2qe - o3g3) - mE);

73

S/ normalise step magnitude

norm =
norm =
2l *=
32 *=
33 *=
zd *=

S4 Compute rate of change of cquaternion
0.5 % [-qg2 * g - g3 % gy - b
0.5 % [gl ¥ g + g3 & gz - gd
0.5 % [gl * gy - g2 % gz + gd
0.5 % [gl % g2 + g2 % gy - o3

gqhotl
gqhotz
gqhots
qhotd

S Integrate to yield cquaternion
* deltat;
* deltat:
* deltat:
* deltat:
SF normalise quaternion

ql +=
Iz +=
q3 +=
qd +=

norm =
norm =
q[o] =
qfl] =

qLz] =
qL3] =

sgrt(sl ¥ 31 + 32 ¥ 32 + 33 F 33 + 34 ¥ 34):;
1. 0f/norm;

Norm.
Norm.
norm.
Norm.

ghotl
gqhotz
ghot3

gqhotd

gz)

o)
g

heta
heta
heta
heta

sgrtlgl F gl + g2 o2 4+ g3 f g3 4+ oqd Fogd):
l.0f/norm;

gl *
qa #
g3 *
qd *

norm,
norm;
norm;
norm;

74

I

51:
524;
23;
=4:

T25 woid getlkresi) |
26 switch (Gscale)
27 {
28 A4 Posaible gyro scales (and their register bit settings) are:
29 A4 250 DRI (00), 500 DPS (01), 1000 DPS (10}, and 2000 DP3 (11).
30 caze GFA_Z50DPS:
31 gRes = 230.0/327608.0;
32 break:
case GF3_S00DFS:
gRes = S500.0/32768.0;

L
i

A b

3 break:

36 caze GFA_1000DPS:

37 gRes = 1000.0/32765.0;
38 break;

[Vs)

case GF3_Z000DP3:
40 gRes = 2000.0/327658.0;
41 break:

45 wolid getdres() !
ig switch (Ascale)
7 i
4E /4 Possible accelerometer zscales [and their register bit settings) are:
9 A2 Gs (00, 4 G (0l), &8 G3 (10}, and 16 Gs (1ll).
0 case 4F3 ZG:
1 aRez = 2.0/327658.0;
2 break:
caze AFS dk:
aRes = 4.0/327658.0;
break:;
i case A4F3 8G6:
aRes = 8.0/32765.0;
g break:
9 case 4F3 160G
0 aRez = 16.0/327658.0;
61 break:

o

AOCA LA A A A A A A LA i
A

(=4

75

T8 wolid readbicecellataiintle t© ¥ destination)

67 1

its uints_ € rawbatal[&]:; // =/¥/2 accel register data stored here
69 A4 Bead the zix raw data registers into data array

70 readbytes (MPUS150_ADDEESS, ACCEL XOUT _H, 6, srawData[0]):

71 4 Turn the M3E and L3E into a signed le-bit walue
772 destination[0] = (i(intlé_t)rawbata[0] << &) | rawData[l] :

T destination[l] = (i{intlé_t)jrawData[Z] << &) | rawbata[3] :

T4 destination[2] = (i(intle_t)rawbata[4] << §) | rawbhata[5] :

75 1

0 uints € rawbDatal[&]; // =/¥/2 gyro register data stored here

1 S5 Bead the zix raw data registers secquentially into data array
2 readEytes (MPT2150 _ADDEESS, GYRO_xOUT H, &, srawbData[0]):

3 4 Turn the MBE and L3E into a signed lé-bit walue

- destination[0] ((intle_t)rawDatal[0] << &) | rawbhatal[l] :

] destinationf[l] [(intle_t)rawbDatal[Z] << &) | rawbhatal[3] :

& destination[] ((intle_t)rawDatal[4] << &) | rawhata[5] :

2 woid readMagbata(intle t * destination)
790 1
9 uintsi_ t rawbatal[&]:; // =/¥/ 2 gyro register data stored here
S48 toggle enable data read from magnetometer, no contimious read mode!
93 writeByte (AK39754 ADDRE3S, AKS9Y54 CNTL, 0O<01);
4 delay(l0):
95 Sf Only accept a new magnetometer data read if the data ready bit iz zet and
96 f4 1f there are no senzsor overflow or data read errors
97 if (readByte (AKS9754 ADDRESS, AKS9754 2T1) & Ox01)

S4 walt for magnetometer data ready bit to be zet
readBEytes (AKEG9754 ADDEESS, AKS9754 WOUT L, &, srawDatal[0]):
destination[0] = (i{intlé_t)rawbata[l] << &) | rawblata[0] :
destinationf[l] [(intle_t)rawDatal[3] << 8) | rawhatalzZ] :
destination[] [(intle_t)rawDatal[5] << &) | rawbhatal[4] :
!

K&}
[}

¥
¥

[
[
n n

i
. G

[
o
o

76

1102
1103
1104
1145
1104
1147
1108
11045
1110
1111
1112
1113
1114
1115
1114
1117
1118
1115
1120
1121
1122
1123

-

[
[= L T) B

=]

N R
[R Sy -

| % B 5 T S I

[
[
L}]
Y BN]

1131
1132
1133
1134
1135
1134
1137
1138
11345
1140
1141
1142

S4 Wire.h read and write protocals
wold writeByte(uintd_t address, uints_t sublddress, uints_t data)

Mire.beginTransnissionfaddress) ;

f4 Initialize the Tx buffer

Tire.write (saubiddress);

F4 Put slave register address in Tx buffer
Wire.write(data);

A4 Put data in Tx buffer
Wire.endTransmizsion()

A4 Bend the Tx buffer

uintd_t readByte{uintd t address, uinti € subdddress)

uintd_t data; [/ "data’ will store the register data
Wire.beginTransnizzion(address) ;

4 Initialize the Tx buffer

TMire.write (subkddress);

J4 Put slave register address in Tx buffer
Wire,endTranzmizzion(false) ;

F4 GBend the Tx buffer, but send a restart to keep comnection aliwve
WMire.requestFronfaddress, (uintd_t) 1):

S/ Bead one byte from slave register address

data = Wire.read(];

A4 Fill Bx buffer with result

return data:

/4 Beturn data read from slawve register

wold readBytes(uints € address, uintS € subdddress,
uintd_t count, uints © ¥ dest)

Wire.beginTransnission(address) ;
TMire.write (subkddress);
Wire.endTransmission(false);
uintié t© i = 0;
Wire.requestFromfaddress, count);
while (Wire.awailable()] {
dest[i++] = Wire.read(]): }

77

