
System-Level Design of
Timing-Sensitive Network-on-Chip

Based Dependable Systems

MIHKEL TAGEL

P R E S SP R E S S

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C72

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Engineering

Dissertation was accepted for the defence of the degree of Doctor of

Philosophy in Computer and System Engineering on March 28, 2012.

Supervisor: Dr. Gert Jervan

Department of Computer Engineering

Tallinn University of Technology, Estonia

Opponents: Prof. Zebo Peng

Department of Computer and Information Science

Linköping University, Sweden

Dr. Leandro Soares Indrusiak

Department of Computer Science

University of York, United Kingdom

Defence of the thesis: May 14, 2012

Declaration:

Hereby I declare that this doctoral thesis, my original investigation and

achievement, submitted for the doctoral degree at Tallinn University of

Technology has not been submitted for any academic degree.

/Mihkel Tagel/

Copyright: Mihkel Tagel, 2012

ISSN 1406-4731

ISBN 978-9949-23-263-5 (publication)

ISBN 978-9949-23-264-2 (PDF)

INFORMAATIKA JA SÜSTEEMITEHNIKA C72

Kiipvõrkudel põhinevate
ajakriitiliste ja töökindlate

süsteemide kõrgtaseme disain

MIHKEL TAGEL

To my family

7

Abstract

Technology scaling into sub-nanometer range will have an impact on system-on-

chip (SoC) manufacturing yield and quality. Smaller feature sizes allow more

and more functionality to be packed to the same chip area – thus, the systems are

getting increasingly complex. An example of a modern system-on-chip is a

mobile phone that has to support different basebands, network protocols and

multimedia formats. At the same time not only is increasing the computation

requirements but also the amount of communication. Limited throughput and

bus lengths have impact to the system design and to the number of modules. As

technologies advance, the high degree of sensitivity to defects makes a SoC

designer goal to design a fault-free system a very difficult task. A SoC designer

has to assume that the manufactured devices might contain faults and an

application, running on the system, must be aware that the underlying hardware

is not perfect. Networks-on-chip (NoC) have been proposed as one of the

alternatives to solve the on-chip communication scalability problems and to

address dependability at various levels of abstraction. In a traditional SoC the

components are interconnected via a central bus having essentially point-to-point

connections (circuit switching). In networks-on-chip packet switching is being

utilized. A data to be transmitted is divided into smaller blocks called packets.

Depending on the NoC topology, routing algorithm and location of the

components in the network, a packet could be delivered to the receiver via

multiple network nodes. Therefore, communication modelling and synthesis

plays an important role in the design of complex NoC-based timing-sensitive

systems-on-chip. Trying to guarantee the observance of timing constraints

without detailed know-how of communication transactions might lead to

unexpected results.

This thesis concentrates on system-level design issues of NoC-based real-

time systems. We present a method for communication synthesis and scheduling

to take into account possible network resource conflicts and to calculate

communication delays. Two global optimization techniques to improve the

initial schedule and/or task mapping are described. Two extensions of the

proposed communication model to synthesize communication at different

granularity levels and to introduce communication interleaving modelling

support are presented. Finally, we extend our work to handle a given number of

transient and intermittent faults during task execution or data transmission on

communication links. It is done by allocating slack time and scheduling the

application with modified shifting-based scheduling algorithm.

8

9

Kokkuvõte

Pooljuhtide tootmistehnoloogiate arengul on otsene mõju kiipsüsteemide

projekteerimisele. Transistoride mõõtmete vähenemine võimaldab mahutada

sama suurele kiibipinnale üha rohkem funktsionaalsust. Kiipsüsteemide

keerukust ilmestab näide, kus kaasaegne mobiiltelefon ei ole ainult

helistamiseks, vaid peab toetama erinevaid võrgusagedusi, võrguprotokolle,

multimeediaformaate jne. Seejuures ei ole kasvanud mitte ainult

töötlemisressursi vajadus, vaid ka komponentide vahelise andmevahetuse hulk.

Limiteeritud läbilaskevõime ja siinipikkused seavad piiri süsteemide kasvule ja

täiendavate komponentide lisamisele. Teisalt võivad nanostruktuuridel

põhinevaid kiipsüsteeme hakata häirima uut tüüpi vead ja rikked.

Kiipsüsteemide projekteerija ei saa eeldada, et riistvara töötab veatult. Üheks

võimalikuks suurte kiipsüsteemide tootmise, (taas)kasutatavuse ning

arhitektuursete probleemide lahenduseks on kiipvõrkude ideoloogia.

Traditsioonilises kiipsüsteemis on komponendid ühendatud keskse siini külge

ning andmevahetuseks luuakse kahe komponendi vahel n-ö fikseeritud kanal

(kanalkommutatsioon). Teised komponendid samal ajal andmeid vahetada ei

saa. Kiipvõrkudes on aga kasutusel arvutivõrkudest tuntud

pakettkommutatsioon. Sõnum jagatakse kindla suurusega pakettideks. Sõltuvalt

kiipvõrgu topoloogiast, marsruutimisalgoritmist ning komponentide

paiknemisest kiipvõrgus võib paketi saatmine toimuda läbi mitme erineva

võrgusõlme (marsruuteri). Kommunikatsiooni modelleerimisel ja sünteesil on

oluline roll kiipvõrkudel põhinevate kiipsüsteemide disainis. Ilma detailse

arusaamata kiipidevahelisest kommunikatsioonist on raske hinnata süsteemide

ajalist käitumist ning garanteerida nende vastavust nõuetele.

Käesolev doktoritöö keskendub süsteemitaseme disaini probleemidele

kiipvõrkudel põhinevates ajakriitilistes kiipsüsteemides. Oleme välja pakkunud

kommunikatsiooni modelleerimise ja sünteesi meetodi, mis võimaldab leida

andmeülekandeks kuluva aja, võttes seejuures arvesse võimalikke

võrgukonflikte. Kirjeldame pakutud kommunikatsiooni modelleerimise meetodi

kombineerimist erinevate globaalsete optimeerimisalgoritmidega, eesmärgiga

leida efektiivsem ülesannete planeering ja/või jaotus kiipsüsteemi protsessoritel.

Pakume välja kaks kommunikatsioonimudeli täiendust, mis võimaldavad

efektiivsemalt kasutada kiipvõrgu ressursse ja analüüsime mudeli keerukuse

kasvu. Doktoritöö viimases osas kirjeldame meetodit, mis võimaldab rakendusel

tolereerida etteantud arvu vigasid. Keskendume lühiajalistele vigadele, mis ei ole

tootmisvead ning mis võivad esineda nii ülesannete täitmisel kui ka

kommunikatsioonis komponentide vahel.

10

11

Acknowledgements

I would like to express my gratitude to my supervisor Dr. Gert Jervan for

guiding me through the Master’s course to the end of the PhD. During this time I

have gained a lot of invaluable experience. I would like to thank also Prof.

Peeter Ellervee for helping us to set up the base framework for my PhD studies

and being the co-supervisor. Special thanks go to Prof. Thomas Hollstein for

giving valuable feedback for my PhD work, pointing out the areas that could be

improved. Gert, Peeter and Thomas – thank you for proof reading this PhD

thesis!

Moreover, I would like to acknowledge the organizations that have supported

my PhD studies: Tallinn University of Technology (Department of Computer

Engineering), National Graduate School in Information and Communication

Technologies (IKTDK), Centre of Research Excellence in Dependable

Embedded Systems (CREDES), European Regional Development Fund through

the Centre for Integrated Electronic Systems and Biomedical Engineering

(CEBE) and Estonian IT Foundation (EITSA).

Finally, I would like to thank my family for the patience and support –

especially my wife Liis.

Mihkel Tagel

Tallinn, April 2012

12

13

List of Publications

Journals

Tagel, M., Ellervee, P., Hollstein, T., & Jervan, G. (2012). Contention-aware

scheduling for NoC based systems. Microprocessors and Microsystems:

Embedded Hardware Design (MICPRO) [submitted for review].

Tagel, M., Ellervee, P., Hollstein, T., & Jervan, G. (2011). System-level

optimization of NoC-based timing sensitive systems. Estonian Journal of

Engineering, 17(2), 158 - 168.

Tagel, M., Ellervee, P., & Jervan, G. (2010). System-Level Communication

Synthesis and Dependability Improvements for Network-on-Chip Based

Systems. Estonian Journal of Engineering, 16(1), 23 - 38.

Conferences

Tagel, M., Ellervee, P., Hollstein, T., & Jervan, G. (2011). Contention-aware

scheduling for NoC based systems. Proceedings of the 29th Norchip conference,

(pp. 1-4). Lund, Sweden.

Tagel, M., Ellervee, P., Hollstein, T., & Jervan, G. (2011). Communication

modelling and synthesis for NoC-based systems with real-time constraints.

Proceedings of the 14th IEEE Symposium on Design and Diagnostics of

Electronic Circuits and Systems (pp. 237 - 242). Cottbus, Germany.

Tagel, M., Ellervee, P., & Jervan, G. (2010). Design Space Exploration and

Optimisation for NoC-based Timing Sensitive Systems. Proceedings of the 12th

Biennial Baltic Electronic Conference (pp. 177 - 180). Tallinn, Estonia.

Tagel, M., Ellervee, P., & Jervan, G. (2009). Scheduling Framework for Real-

time Dependable NoC-Based Systems. Proceedings of the International

Symposium on System-on-Chip (pp. 95 - 99). Tampere, Finland.

Book chapter

Tagel, M., Ellervee, P., & Jervan, G. (2011). System-Level Design of NoC-

Based Dependable Embedded Systems. Ubar, R.; Raik, J.; Vierhaus, H. T.

(Eds.). In Fault-Tolerance and Applications in System-on-Chip Design:

Advancements and Techniques (pp. 1 - 36). Hershey, Pennsylvania, USA: IGI

Global.

14

15

List of Abbreviations

API Application Programming Interface

ATE Automated Test Equipment

B&B Branch-and-Bound

BSC Boundary Shift Code

CMOS Complementary Metal-Oxide Semiconductor

CRC Cyclic Redundancy Check

DAG Directed Acyclic Graph

DAP Duplicate Add Parity

DLS Dynamic Level Scheduling

DSP Digital Signal Processor

ECI Error Capturing Instruction

EDA Electronic Design Automation

ETF Earliest Time First

ETG Extended Task Graph

FDAR Fault Diagnosis-And-Repair

FIFO First-In First-Out

FT-CPG Fault-Tolerant Conditional Process Graph

GA Genetic Algorithm

GALS Globally Asynchronous Locally Synchronous

GM Group Migration

HM Hamming Distance

HTML HyperText Markup Language

IC Integrated Circuit

IDMA Locally organized packet identity (ID) division Multiple Access

IP Intellectual Property

LS List Schedule

16

MDR Modified Dual Rail

MPSoC Multiprocessor System-on-Chip

MTBF Mean Time Between Failures

MTTF Mean Time to Failure

MTTR Mean Time to Repair

NI Network Interface

NMR N-Modular Redundancy

NOC Network-on-Chip

OCP-IP Open Core Protocol International Partnership

OSM Optimal Subset Mapping

QAP Quadratic Assignment Problem

QOS Quality of Service

RAM Random Access Memory

RMU Recovery Management Unit

RNI Resource Network Interface

SA Simulated Annealing

SBS Shifting-based Scheduling

SER Soft Error Rate

SOC System-on-Chip

SPIN Scalable, Programmable, Integrated Network

TDMA Time Division Multiple Access

TDN Temporally Disjoint Networks

TMR Triple Modular Redundancy

VLSI Very Large Scale Integration

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

WCET Worst Case Execution Time

XGFT Fault Tolerant Extended Generalized Fat Tree

XHiNoC Extendable Hierarchical Network-on-Chip

XML Extensible Markup Language

17

List of Figures

Figure 2.1. An example of a typical bus-based system-on-chip 27

Figure 2.2. An example of a NoC-based system-on-chip................................... 31

Figure 2.3. Regular topologies. Examples are (a) 4-ary 2-cube mesh, (b) 4-ary 2-

cube torus, (c) 3D-mesh ... 35

Figure 2.4. Tree-based topologies. Examples are a) binary tree b) fat-tree........ 36

Figure 2.5. Other topologies. Examples are a) hierarchical butterfly fat-tree b)

irregular network .. 37

Figure 2.6. A comparison of different switching techniques: a) circuit switching

b) store-and-forward c) wormhole (Ni & McKinley, 1993) 38

Figure 2.7. Conceptual view of the IDMA approach (Samman, Hollstein, &

Glesner, 2008) .. 40

Figure 2.8. Pseudocode of XY routing ... 42

Figure 2.9. Turn models that can avoid deadlock configuration (Samman F. A.,

2010)... 43

Figure 2.10. Generic router model ... 46

Figure 2.11. Classical system-level design flow .. 49

Figure 2.12. Flit formats of different NoC simulators .. 64

Figure 3.1. System-level design flow ... 70

Figure 3.2. Task graph of a robot control application .. 71

Figure 3.3. A 3x3 2D-mesh network-on-chip graph representation 72

Figure 3.4. An example task graph and its mapping to a 2x3 2D-mesh NoC 73

Figure 3.5. Extended task graph ... 74

Figure 3.6. Local processing core .. 74

Figure 3.7. Edge scheduling on a route with contention. 76

Figure 3.8. Two example steps of communication synthesis 78

Figure 3.9. Fully synthesized task graph and its mapping 79

Figure 3.10. Pseudocode of contention-aware scheduling 80

Figure 3.11. An example of contention-aware communication scheduling 81

Figure 3.12. Pseudocode of communication scheduling 83

Figure 3.13. Resulting schedule ... 84

Figure 3.14. Pseudocode of ASAP scheduling with communication 85

Figure 3.15. Pseudocode of ALAP scheduling with communication................. 85

Figure 3.16. Schedule length comparison of original and extended ASAP and

ALAP algorithm with communication ... 86

Figure 3.17. An example of a schedule hole .. 87

Figure 3.18. Comparison of communication scheduling schemes 88

18

Figure 3.19. Data model of event based simulation ... 89

Figure 3.20. An example of original and relative transaction IDs 90

Figure 3.21. High-level view of our system-level toolchain 91

Figure 3.22. NoC and application size impact on modelling speed and

complexity .. 93

Figure 3.23. Modelling speedup compared to simulation 95

Figure 3.24. Schedule table memory overhead for different NoC sizes 95

Figure 4.1. Message- and packet-based communication synthesis 98

Figure 4.2. Comparison of message- and packet-based schedules 100

Figure 4.3. Pseudocode of packet-based contention-aware scheduling 101

Figure 4.4. Pseudocode of packet-based communication scheduling 101

Figure 4.5. Message-based versus packet-based schedule for different packet

sizes (benchmark application a1) ... 103

Figure 4.6. Packet-based schedule improvement in relation to CCR 103

Figure 4.7. Comparison of message- and packet-based communication

modelling complexity (benchmark application a1) .. 104

Figure 4.8.Three schemes of flit queues in network interface and XHiNoC router

 .. 105

Figure 4.9. Pseudocode of communication scheduling with interleaving 107

Figure 4.10. Schedule length versus number of IDs (benchmark application a1)

 .. 109

Figure 4.11. Results of different application execution scenarios (benchmark

application a1) .. 110

Figure 5.1. Taxonomy of optimization algorithms (Talbi & Muntean, 1993) . 114

Figure 5.2. Branch-and-bound example ... 116

Figure 5.3. Pseudocode of branch-and-bound .. 117

Figure 5.4. An example of branch-and-bound result conversion 117

Figure 5.5. Pseudocode of simulated annealing ... 119

Figure 5.6. Two types of neighbourhood moves in simulated annealing 121

Figure 5.7. Simulated annealing schedule optimization 122

Figure 5.8. Simulated annealing mapping optimization 123

Figure 6.1. An example of re-execution and re-submission 130

Figure 6.2. Extended shifting-based scheduling algorithm 132

Figure 6.3. An example of SBS application schedule 133

Figure 6.4. Different communication scenarios ... 135

Figure 6.5. SBS schedule length depending on packet size (r = 1) 137

Figure 6.6. SBS schedule length for different NoC and packet sizes (r=1) 137

Figure 6.7. SBS schedule length for different dependability parameters 139

Figure 6.8. Mapping optimization for different dependability parameters 140

19

Table of Contents

Chapter 1. Introduction .. 23

Chapter 2. Background and Related Work .. 27

2.1. System-on-chip design challenges ... 28

2.2. Network-on-chip as a new design paradigm 31

2.3. Principles of Networks-on-Chip ... 33

2.3.1 Topology .. 34

2.3.2 Switching method ... 37

2.3.3 Routing ... 41

2.3.4 Flow control ... 44

2.3.5 Quality of service ... 44

2.3.6 Generic on-chip router architecture .. 45

2.3.7 Further reading ... 47

2.4. System-level design .. 47

2.4.1 Traditional system-level design flow ... 47

2.4.2 Task mapping and scheduling .. 50

2.5. Design issues of NoC-based systems ... 52

2.6. Dependable systems-on-chip .. 56

2.6.1 Classification of faults .. 57

2.6.2 Fault tolerance .. 57

2.6.3 Fault tolerance techniques .. 59

2.7. Network-on-chip simulators ... 62

2.7.1 Noxim ... 62

2.7.2 NIRGAM .. 63

2.7.3 XHiNoC.. 63

2.7.4 ATLAS ... 64

2.8. Summary .. 65

Chapter 3. System-Level Design for NoC-Based Real-Time Systems 67

3.1. Motivation .. 67

3.2. System-level design flow and definitions ... 69

3.3. Sources of network contention ... 75

3.4. Communication synthesis ... 77

3.5. Contention-aware scheduling ... 79

3.6. Simulation environment ... 88

3.7. Experimental results ... 91

3.7.1 Complexity of the model .. 92

20

3.7.2 Simulation results ... 94

3.8. Conclusions .. 96

Chapter 4. Extensions of the Communication Model 97

4.1. Packet-based schedules .. 97

4.1.1 Motivation .. 97

4.1.2 Packet-based schedules .. 98

4.1.3 Experimental results ... 102

4.2. Support for communication interleaving .. 104

4.2.1 Motivation .. 106

4.2.2 Multiple flit-queues .. 106

4.2.3 Experimental results ... 109

4.3. Conclusions .. 111

Chapter 5. Design Optimization Techniques .. 113

5.1. Motivation .. 113

5.2. Schedule optimization with branch-and-bound 115

5.3. Design optimization with simulated annealing 118

5.3.1 Simulated annealing basics... 118

5.3.2 Schedule optimization with simulated annealing 120

5.3.3 Task mapping optimization with simulated annealing 121

5.4. Experimental results ... 123

5.5. Conclusions .. 124

Chapter 6. System-Level Fault Tolerance Improvements 127

6.1. Motivation .. 127

6.2. System model with dependability requirements 129

6.3. Fault-tolerant application schedules ... 130

6.4. Experimental results ... 136

6.5. Conclusions .. 141

Summary ... 143

References ... 145

21

22

23

Chapter 1. Introduction

As technologies advance and semiconductor process dimensions shrink into the

nanometer and sub-nanometer range, the high degree of sensitivity to defects

begins to impact the overall yield and quality. The International Technology

Roadmap for Semiconductors (2009) states that relaxing the requirement of

100% correctness for devices and interconnects may dramatically reduce costs

of manufacturing, verification, and test. Such a paradigm shift is likely forced by

technology scaling that leads to more transient and permanent failures of signals,

logic values, devices, and interconnects. In consumer electronics, where the

reliability has not been a major concern so far, the design process has to be

changed. Otherwise, there is a high loss in terms of faulty devices due to

problems stemming from the nanometer and sub-nanometer manufacturing

process. There has been a lot of research made on system reliability in different

computing domains by employing data encoding, duplicating system

components or software-based fault tolerance techniques. This research has

mostly had either focus on low level hardware reliability or covered the

distributed systems. Due to future design complexities and technology scaling, it

is infeasible to concentrate only onto low level reliability analysis and

improvement. We should fill the gap by looking at the application level. We

have to assume that the manufactured devices might contain faults and an

application, running on the system, must be aware that the underlying hardware

is not perfect.

The advances in design methods and tools have enabled integration of

increasing number of components on a chip. Design space exploration of such

many-core systems-on-chip (SoC) has been extensively studied, whereas the

main focus has been so far on the computational aspect. With the increasing

number of on-chip components and further advances in semiconductor

technologies, the communication complexity increases and there is a need for

alternatives to the traditional bus-based or point-to-point communication

architectures. Network-on-chip (NoC) is one of the possibilities to overcome

some of the on-chip communication problems. In such NoC-based systems, the

communication is achieved by routing packets through the network

infrastructure rather than routing global wires. However, communication

parameters (inter-task communication volume, link latency and bandwidth,

buffer size) might have major impact to the performance of applications

implemented on NoCs. Therefore, in order to guarantee predictable behaviour

and to satisfy performance constraints, a careful selection of application

partitioning, mapping and synthesis algorithms is required. NoC platform

provides also additional flexibility to tolerate faults and to guarantee system

24

reliability. Many authors have addressed these problems but most of the

emphasis has been on the systems based on bus-based or point-to-point

communication (Marculescu, Ogras, Li-Shiuan Peh Jerger, & Hoskote, 2009).

However, a complete system-level design flow, taking into account the NoC

network modelling and dependability issues, is still missing.

Contributions of the thesis

This thesis concentrates on system-level design issues of network-on-chip based

systems. It describes various methods for NoC architecture analysis and

optimization, and gives an overview of different fault-tolerance methods. The

main emphasis of the thesis is on the communication modelling and accurate

communication scheduling taking into account possible network contentions.

The main contributions of this thesis are:

 Contention-aware scheduling method that takes into account network

induced latencies and handles network resource conflicts (Tagel,

Ellervee, Hollstein, & Jervan, 2011a; Tagel, Ellervee, Hollstein, &

Jervan, 2011b). Communication modelling, synthesis and scheduling are

all part of our system-level design flow. The produced schedules can be

verified by executing the applications on a cycle-accurate NoC

simulator.

 Two extensions of the proposed communication model to synthesize

communication at different granularity levels (Tagel, Ellervee,

Hollstein, & Jervan, 2012) and introduce communication interleaving

modelling support. Both methods have focus on more effective

scheduling of communication to increase the network utilization and to

reduce the schedule length.

 Design optimization by branch-and-bound and simulated annealing

techniques to improve the initial schedule and/or task mapping (Tagel,

Ellervee, & Jervan, 2010).

 A system-level technique to tolerate transient and intermittent faults in

tasks and communications. The fault-tolerance requirements are taken

into account during the task and communication scheduling to allocate

appropriate slack time to execute recovery actions (Tagel, Ellervee, &

Jervan, 2011).

Organization of the thesis

This thesis is organized into six chapters. After the introductory chapter, the

Chapter 2 analyses the problems related to the development of dependable

systems-on-chip. It outlines challenges, specifies problems and examines the

25

work that has been done in different NoC research areas relevant to this thesis. It

gives an overview of the state-of-the-art in system-level design of traditional and

NoC-based systems and describes briefly various methods proposed for system-

level architecture analysis and optimization, such as application mapping,

scheduling, communication analysis and synthesis. The chapter gives also an

overview of different fault-tolerance techniques that have been successfully

applied to bus-based systems. It analyses their shortcomings and applicability to

the NoC-based systems.

The Chapter 3 describes our system-level design framework. The basic

definitions and problem formulation are given in this chapter. The system and

network-on-chip architecture assumptions we have made in this thesis are

described. We propose contention-aware scheduling algorithm for NoC-based

systems with real-time constraints. The proposed approach captures both the

end-point and the network contentions. It can be used for different topologies

and different switching methods together with deterministic routing algorithms.

The produced schedules are verified by executing the applications on cycle

accurate XHiNoC simulator.

The Chapter 4 presents two extensions of our communication model

described in Chapter 3. In the first part we explore the improvements in schedule

length versus modelling complexity achieved by using packet-based

communication synthesis and scheduling. In the second part of the chapter an

extension to our communication model to support communication interleaving is

described. We have a configurable number of separate flit queues that share

equally the available bandwidth. During the scheduling we are trying to load-

balance the queues and to mimic the operation of the XHiNoC routers. The goal

is to utilize more effectively the available network resources and to reduce the

schedule length.

The Chapter 5 presents branch-and-bound and simulated annealing

optimization techniques in order to improve the initial schedule length or task

mapping. It explores the trade-off between the amount of improvement gained

versus time spent for calculation.

In the last chapter we describe a system-level technique to tolerate transient

and intermittent faults in tasks and communication. The work is based on the

shifting-based scheduling that we have extended to contain on top of the task

dependability requirements also communication fault-tolerance requirements

and integrated it with our contention-aware scheduling.

26

27

Chapter 2. Background and Related Work

Innovations in the chip design and in related domains have been motivated by

technology scaling. One of the well-known formulations of the rapid technology

scaling is Moore’s law that states that the number of transistors on an integrated

circuit (IC) will double approximately in every two years (Moore, 1975). The

increase in number of logic gates that can be implemented on a single chip

allows designing of circuits with broad functionality. Previously, a system that

was implemented out of many discrete components on a board can now be

integrated on a single chip. Such increased system complexity has motivated the

shift from custom chip design to higher integration levels, standardized

interfaces, intellectual property (IP) re-use, hardware/software co-design and fast

prototyping. An IC that integrates all components of an electronic system on a

single chip is called a system-on-chip (SoC). Figure 2.1 depicts an example of a

typical bus-based SoC. It consists of one or more programmable cores, on-chip

memory, signal processor and peripherals, all interconnected by an on-chip bus.

Consumer electronics is one of the driving forces of the system-on-chip

design. While the time-to-market window is continuously getting shorter

consumers have higher expectations on the functionality of devices. The devices

have to support a wide range of multimedia codecs and connectivity standards.

This has been made possible thanks to the re-configurability of system

components. An example is software-defined radio (SDR). SDR is a

CPU

CPU

DSP

RAM

I/O

I/O

I/O

ICache DCache

ICache DCache

Memory

controller

PLL

Flash

Figure 2.1. An example of a typical bus-based system-on-chip

28

communication system where typical fixed hardware components are

implemented in software or re-configurable hardware. Such system can

adaptively accommodate to certain operating situations. Another example of

diverse requirements that a modern system-on-chip has to handle is high

definition multimedia. Besides different encoding and decoding schemes,

requiring more and more processing power, the on-chip interconnect has to

handle increased bandwidth requirements with manageable communication

latency.

In this chapter we first describe the design challenges that have emerged

together with technology scaling and due to the increase of the design

complexity. We give an overview of the key concepts and terminology of NoC-

based systems-on-chip. The second part of this chapter is devoted to system-

level design and dependability issues.

2.1. System-on-chip design challenges

The advances in design methods and tools have enabled integration of ever

increasing number of components on the chip. Design space exploration of such

many-core SoCs has been extensively studied, whereas the main focus has been

so far on the computational aspects. With the increasing number of on-chip

components and further advances in semiconductor technologies, the

communication complexity increases and there is a need for alternatives to the

traditional bus-based or point-to-point communication architectures. The main

challenges that motivate the paradigm shift in the current SoC design

methodologies are described below.

Power and thermal management

The power dissipation is one of the key issues in present day VLSI CMOS

technology that limit the circuit performance (Sahoo, Datta, & Kar, 2011). In the

previous decade the dynamic power dissipation minimization has mainly

targeted the logic gates. However, technology scaling over the years has changed

the situation – wires do not scale as rapidly as transistors. Interconnect wires

account for a significant fraction (up to 50%) of the energy consumed in an

integrated circuit and is expected to grow in the future (Raghunathan, Srivastava,

& Gupta, 2003; Sahoo, Datta, & Kar, 2011). Feature size scaling increases

power density on the chip die that in turn can produce an increase in the chip

temperature. The rapidly increasing proportion of the consumer electronics

market, represented by handheld and battery-powered equipment, also means

that low power consumption has become a critical design requirement that must

be addressed (Claasen, 2006).

29

Memory bandwidth and latency

Computational speeds will increase at a higher rate compared to the time to

access off-chip memory. According to Chen & Kung (2008) this increasing gap

between processor and memory speeds is a well-known problem, named the

memory wall. In order to feed the computational engine, SoC designers have to

take action, such as, integrating embedded memory into the same chip, or

exploiting data access localities at the algorithm or software level.

Deep submicron effects and variability

Scaling of feature sizes in semiconductor industry has given the ability to

increase performance while lowering the power consumption. However, with

feature sizes below 40 nm it is getting hard to achieve a favourable trade-off

between cost and performance (power consumption) of the designed devices

(International Technology Roadmap for Semiconductors, 2009; Konstadinidis,

2009). The emergence of deep submicron noise in the form of cross-talk,

leakage, supply noise, as well as process variations is making it increasingly

hard to achieve the desired level of reliability while maintaining the constant

improvement in performance and energy-efficiency (Shanbhag, Soumyanath, &

Martin, 2000; Kahng, 2007). Interconnects also add a new dimension to the

design complexity. As interconnects shrink and come closer together, previously

negligible physical effects like crosstalk become significant (Hamilton, 1999;

Ho, Mai, & Horowitz, 2001). To produce reliable products in the presence of

high variability, reliability should be looked from the perspective of multiple

disciplines, e.g. fabrication, circuit design, logic design and software (Chen &

Kung, 2008).

Global synchrony

SoCs are traditionally based on a bus architecture where system modules

exchange data via a synchronous central bus. An example is Advanced

Microcontroller Bus Architecture (AMBA) bus. The AMBA bus was introduced

by ARM in 1996 and is widely used as the on-chip bus in SoC designs

(Shrivastav, Tomar, & Singh, 2011). When the number of components increases

rapidly, we have a situation where the clock signal cannot be distributed over the

entire SoC during one clock cycle. Ho et al. (2001) describe that while local

wires scale in performance, global and fixed-length wires do not. Moreover,

relative wire lengths are increasing compared to the chip area and the size of

transistors. Optimization techniques, such as optimal wire sizing, buffer

insertion, and simultaneous device and buffer sizing are solving only some of the

problems. On-chip interconnect is becoming a complex circuitry in its own

(Hamilton, 1999). Consequently, there is a need for an alternative way for

providing scalable and efficient interconnects. Globally asynchronous locally

synchronous (GALS) design approach has been proposed as a feasible solution

for communication intensive complex SoCs. In 2000, Agarwal, Hrishikesh,

Keckler, & Burger have examined the effects of technology scaling on wire

30

delays and clock speeds, and measured the expected performance of a modern

microprocessor core in CMOS technologies down to 35 nm. Their estimation

showed that even under the best conditions the latency across the chip in a top-

level metal wire will be 12-32 cycles (depending on the clock rate). Jason

Cong’s simulations at the 70 nm level suggest that delays on local interconnect

will decrease by more than 50 percent, whereas delays on non-optimized global

interconnect will increase by 150 percent (from 2 ns to 3.5 ns) (Hamilton, 1999).

A GALS system contains several independent synchronous blocks that operate

using their own local clocks and communicate asynchronously with each other.

The main feature of these systems is the absence of a global timing reference

and the use of several distinct local clocks (or clock domains), possibly running

at different frequencies (Iyer & Marculescu, 2002).

Productivity gap

Chip design has become so complex that designers need more education, and

experience in a broad range of fields (device physics, wafer processing, analogue

effects, digital systems) to understand how all these aspects come together. For

the same reasons, designers need smarter tools that comprehend distributed

effects like crosstalk (Hamilton, 1999). The complexity and cost of design and

verification of multi-core products has rapidly increased to the point where

developers devote thousands of engineer-years to a single design and still the

products reach the market with hundreds of bugs (Allan, Edenfeld, Joyner,

Kahng, Rodgers, & Zorian, 2002). If we look to consumer-electronics then the

primary focus in CMOS process development has been on integration density.

By having a greater functionality in a smaller area of silicon, the higher

integration density and lower costs can be achieved. According to Claasen

(2006) for consumer applications Moore’s law may continue for as long as the

cost per function decreases from node to node. To bridge the technology and

productivity gap, the computation needs to be decoupled from the

communication. The communication platform should be scalable and predictable

in terms of performance and electrical properties. It should enable high

intellectual property core reuse by using standard interfaces to connect IP-s to

on-chip interconnect.

Verification and design for test

The increasing complexity of SoCs and the different set of tests required by deep

submicron process technologies have increased test data volume and test time to

the extent that many SoCs no longer fit comfortably within the capabilities of

automated test equipment (ATE) (Claasen, 2006). As a result, the cost of test has

been rapidly increasing. Due to process variability, the reliability of devices is

not anymore only a concern of safety-critical applications but also a concern in

consumer electronics. The products need to be designed to tolerate certain

number of manufacturing (permanent) and transient faults.

31

2.2. Network-on-chip as a new design paradigm

To overcome some of the system-on-chip design challenges described

previously the network-on-chip paradigm has been proposed. While computer

networking techniques are well known already for many decades, the paradigm

shift reached to the on-chips in the beginning of this millennium. The

interconnection network is a shared resource that a designer can utilize. To

design an on-chip communication infrastructure and to meet the performance

requirements of an application, a designer has certain design alternatives that are

governed by topology, switching, routing and flow control of the network. NoC

provides communication infrastructure for resources. Resources can be

heterogeneous. As depicted in Figure 2.2 a resource can be memory, processor

core, DSP, re-configurable block or any IP block that conforms to the network

interface (NI). Every resource is connected to a switch via resource network

interface (RNI). Instead of dedicated point-to-point channels between two IP

cores, the interconnection network is implemented as a set of shared routers and

communication links between the routers. The way the routers are connected

with each other defines the network topology. Data to be transferred between

communicating nodes is called a message. As messages can have varying sizes it

is infeasible to design routers to handle unbounded amounts of data. Instead,

messages are divided into smaller bounded flow control units (packets, flits).

The way a message is split and transferred through the routers is called

switching. Usually there are alternative paths to deliver a message from source

to destination. An algorithm to choose between such paths is called routing. A

good routing algorithm finds usually minimal paths while avoiding deadlocks.

Another alternative would be to balance the network load. Flow control handles

network resource accesses. If a network is not able to handle the current

DSP

RNI

R

RAM

RNI

R

FPGA

RNI

R

RAM

RNI

R

I/O

RNI

R

I/O

RNI

R

FPGA

RNI

R

CPU

RNI

R

I/O

RNI

R

Figure 2.2. An example of a NoC-based system-on-chip

32

communication load the flow control might forward more critical messages

while dropping or re-routing the non-critical ones. An effective network design

maximises the throughput and decreases network latency and communication

conflicts (Dally & Towles, 2004).

There have been several independent research groups introducing the

computer networking ideas to systems-on-chip. In 2000, Guerrier and Greiner

proposed a scalable, programmable, integrated network (SPIN) for packet-

switched system-on-chip interconnections. They have been using fat-tree

topology and wormhole switching with two one-way 32-bit data paths having

credit-based flow control. They proposed a router design with dedicated input

buffers and shared output buffers, estimated the router cost and network

performance. The term “network-on-chip” was first used by Hemani et al. in

2000. The authors introduced the concept of re-configurable network of

resources and its associated methodology as solution to the design productivity

problem. In 2001, Dally and Towles proposed NoC as a general-purpose on-chip

interconnection network to connect IP cores, replacing design-specific global

on-chip wires. It was demonstrated that using a network to replace global wires

has advantages in structure, performance and modularity. In the paper of Sgroi et

al. in 2001 the authors state that the GigaScale Research Center (GSRC)

suggests a layered approach similar to that defined for communication networks

to address the problem of connecting a large number of IP cores. Additionally

the authors described the need for a set of new generation methodologies and

tools. In 2001, researchers from Philips Research presented quality of service

(QoS) router architecture supporting both best-effort and guaranteed-throughput

(Rijpkema, Goossens, & Wielage, 2001). In 2002, Benini and De Micheli

formulated NoC as a new SoC design paradigm.

The NoC design paradigm has two good properties to handle the SoC design

complexity when compared to bus-based systems – predictability and

reusability. The communication throughput, design and verification time are

easier to predict due to the regular structure of the NoC. One could connect to

the network any IP component that has the appropriate network interface. The

NoC paradigm does not set any limits to the number of components. The

components and also the communication platform are reusable – the designer

needs to design, optimise and verify them once. The layered network

architecture provides the needed communication and network services enabling

the functionality reuse (Jantsch & Tenhunen, 2003). During the years many NoC

research platforms have been developed such as SPIN (Guerrier & Greiner,

2000), Nostrum (Kumar, et al., 2002), Proteo (Sigüenza-Tortosa & Nurmi,

2002), CHAIN (Felicijan, Bainbridge, & Furber, 2003), HERMES (Moraes,

Calazans, Mello, Möller, & Ost, 2004), Xpipes (Bertozzi & Benini, 2004),

Aethereal (Goossens, Dielissen, & Radulescu, 2005), MANGO (Bjerregaard &

Sparso, 2005) and XHiNoC (Samman, Hollstein, & Glesner, 2008). Commercial

NoC platforms include Arteris (Arteris, 2009), STNoC (STMicroelectronics,

2009), Silistix (Silistix, 2009) and Sonics (Sonics, 2009).

33

Current and future directions of on-chip networks include 3D NoCs

(Banerjee, Souri, Kapur, & Saraswat, 2001; Feero & Pande, 2007; Pavlidis &

Friedman, 2007; Murali, Seiculescu, Benini, & De Micheli, 2009) and optical

interconnects (Haurylau et al., 2006). Both emerged in the end of 90’s in various

forms.

Comparison with bus-based systems and macro networks

Point-to-point connections (circuit switching), common to SoCs, are replaced in

NoCs by dividing messages into packets (packet switching). Each component

stores its state and exchanges data autonomously with others. Such systems are

by their nature GALS systems, containing several independent synchronous

blocks that operate with their own local clocks and communicate

asynchronously with each other (Iyer & Marculescu, 2002). Having multiple

different network routes available for the data transmission makes NoCs to be

adaptive – to balance the network load, for instance. The communication

platform limitations, data throughput, reliability and QoS are more difficult to

address in NoC architectures than in computer networks. The NoC components

(memory, resources) are relatively more expensive, whereas the number of

point-to-point links is larger on-chip than off-chip. Typically, most of the macro-

networks are designed to achieve the highest performance possible while the

NoC designs have usually strict power budget constraints. On-chip wires are

also relatively shorter than the off-chip ones, thus allowing a much tighter

synchronization than off-chip. Additionally, while the macro-networks can

handle broad number of applications the NoC-based system is typically designed

for a specific domain. A NoC designer has usually more information about the

system behaviour and the traffic patterns than a network engineer. On the one

hand, only a minimum design overhead is allowed that is needed to guarantee

the reliable data transfer. On the other hand, the on-chip network must handle

the data ordering and flow control issues (Radulescu & Goossens, 2002). The

packets might appear at the destination resource out of order – they need to be

buffered and put into the correct order.

While the NoC design has several similarities with macro-networks, due to

the aforementioned differences the methods cannot be directly applied to the

NoC context.

2.3. Principles of Networks-on-Chip

To design an on-chip communication infrastructure and to meet the performance

requirements of an application designer has certain design alternatives that are

governed by topology, switching, routing and flow control of the network. In

this section we provide an overview of the key concepts and terminology of

NoCs.

34

2.3.1 Topology

Topology refers to the physical structure of the network (how resources and

switches are connected to each other). It defines connectivity and routing

possibilities between the nodes affecting therefore performance of the network

and the design of the routers. Topologies can be classified into groups based on

different criteria. One classification that can be found in the literature is direct

and indirect topologies. In the direct network topology each processing core can

exchange messages with any other processing core via the routers. Examples of

direct topologies are meshes and tori. In the indirect network topology packets

are switched indirectly via a series of intermediate switch stages until they reach

the destination. Examples of indirect topologies are butterflies and fat trees.

Another classification of topologies is by their regularity – regular,

application specific and hybrid (hierarchical). A regular topology is not the most

efficient in terms of silicon area but allows easier routing algorithms and has

better predictability. However, if some of the processing cores are not

homogeneous the regular topology might be transformed into the application

specific topology. The regularity aims for design reuse and scalability while

application specific topologies target performance and power consumption.

Hierarchical networks can be used to improve some of the NoC characteristics

such as increase bandwidth, reduce average distance (hop count) and network

latency. However, this comes at the increased cost and complexity of the

network. To compare the various topologies different metrics have been

proposed in the literature:

 Degree – number of communication links at each router node.

 Hop count – the number of hops or traversed links a message takes

from source to destination. The maximum hop count represents the

diameter of the network. The average minimum hop count represents

the average hop count over all possible source-destination pairs in the

network.

 Maximum channel load – represents the maximum number of bits

per second that can be injected into the network before it saturates

(maximum bandwidth the network can support).

 Path diversity – is described by the number of possible shortest

paths from source to destination. A topology that provides multiple

shortest paths between a source-destination pair has greater path

diversity than a topology where there is only a single path available

between source-destination. Path diversity relates to the terms of

fault tolerance and load balancing.

 Cost – total number of physical links and routers in the network.

In this thesis we are using 2D-mesh topology due to its regularity, scalability

and popularity in NoC research field: although, our approach is not limited to the

35

2D-mesh topology. Therefore in the next pages we will provide in addition to

mesh-based topologies also an overview of alternative topologies.

Mesh-based topologies

According to survey of Salminen, Kulmala, & Hämäläinen (2008) 59% of NoCs

implement mesh and torus topologies. Mesh and torus networks can be

described as k-ary n-cubes, where k is the number of nodes in each dimension

and n is the number of dimensions. They span from a range of networks from

rings (n = 1) to binary n-cubes (k = 2), also known as hypercubes (Dally &

Towles, 2001). Figure 2.3 depicts three examples of different mesh topologies.

A router in 2-cube (2D) mesh contains five ports – east, north, west, south and

local port. The local port is connected to the processing core. The other ports are

connected with adjacent routers. For a 2D-mesh with k number of nodes in each

dimension n, the total amount of nodes is Tnodes = k
n
. In mesh topology the

routers along the edge of the network have the network degree 2 while the rest of

the routers have 4 as the network degree. It means that there is an imbalance of

the bandwidth across network channels. The maximum hop count (diameter of

the network) to the longest neighbour in 2-cube mesh is Hmax
mesh

 = 2(k – 1). An

example on-chip multiprocessor system that uses mesh topology is Intel-

Teraflops system (Vangal, et al., 2008). The 80 homogeneous computing

elements are interconnected through NoC routers in the 8 × 10 2D-mesh network

topology. The main differences between the mesh and torus topologies are the

additional communication links connecting a node at the edge of the network

with another node at the opposite edge in the same vertical or horizontal paths as

depicted in the Figure 2.3b. The network degree of torus is 4 having 2n links in

each dimension. The maximum hop count of 2-cube torus Hmax
torus

 = (k-1) is two

times smaller compared to 2-cube mesh.

Recent research in this area is devoted to 3-dimensional NoCs. Each router in

2D NoC is connected to a neighbouring router in one of four directions.

Consequently, each router has five ports. Alternatively, in 3D-mesh NoC, the

router typically connects to two additional neighbouring routers located on the

adjacent physical planes (Pavlidis & Friedman, 2007).

a) b) c)

Figure 2.3. Regular topologies. Examples are (a) 4-ary 2-cube mesh, (b) 4-ary 2-cube

torus, (c) 3D-mesh

36

Tree-based topologies

The k-ary tree and k-ary n-dimensional fat tree proposed by Adriahantenaina,

Charlery, Greiner, Mortiez, and Zeferino (2003) are two alternative regular NoC

topologies. In the 2-ary (binary) tree network, depicted in Figure 2.4a, every

router is connected to one up-level router and two down-level routers. At the end

of the binary-tree network, two computing elements can be connected to each

router. Packet routing in a binary tree network is very simple. A direct routing

method, reading the binary address from the packet header, can be used to route

packets from the source to the destination node. Trees can be laid out in 2D with

no wire crossing. One problem with trees is that links closer to the root carry

more traffic than those at the lower levels. Solution to this problem is the fat-tree

topology. Fat-tree, depicted in Figure 2.4b, is a topology based on a complete

binary tree. A set of processing cores is located at the leaves of the fat-tree. The

internal nodes of the tree contain routers. The capacity of channels increases as

we go up the tree (Leiserson, 1985).

Hybrid hierarchical topologies

A hybrid hierarchical network combines two or more sub-network topologies

into one global interconnect architecture. Hierarchical networks are used to

improve some of the NoC characteristics such as to increase bandwidth, reduce

average distance and network latency. However, this increases complexity of the

network – hierarchical topologies may require more complex routing algorithms

and have increased wiring requirements. An example of a hierarchical topology

is the fat-tree topology explained previously under tree-based topologies.

Another example is the butterfly fat-tree where the number of switches

converges to a constant depending on the number of levels (Pande, Grecu,

Ivanov, & Saleh, 2003). An example of the butterfly fat-tree is depicted in

Figure 2.5a. The Proteo NoC (Sigüenza-Tortosa & Nurmi, 2002) uses a

hierarchical network topology that has a global bi-directional ring to connect

several subnets together. The topology of each subnet is chosen to suit local

traffic requirements.

a) b)

Figure 2.4. Tree-based topologies. Examples are a) binary tree b) fat-tree

37

Irregular and custom topologies

Irregular or custom network topologies are used to design network architectures

in order to optimize the use of communication resources and to save power

consumption. By using an irregular custom network topology (Figure 2.5b) the

number of switches, used to design the network architecture, can be optimized.

Accordingly, power dissipation and communication energy in the optimal

number of switches can be reduced. The irregular customized networks are also

suitable for embedded MPSoC (Multiprocessor System-on-Chip) applications, in

which the IP components have different sizes (Samman F. A., 2010). The main

drawback of the irregular/custom network topology is the complexity of the

routing algorithm. Each routing algorithm of the irregular topology must be

customized to avoid possible cyclic dependencies.

2.3.2 Switching method

Switching method determines how a message traverses its route. There are two

main switching methods – circuit switching and packet switching. Circuit

switching is a flow control that operates by first allocating channels to form a

circuit from source to destination and then sending messages along this circuit

(Figure 2.6a). After data transmission, the circuit can be de-allocated and

released for other communications. Circuit switching is connection-oriented,

meaning that there is an explicit connection establishment (Lu, 2007). In packet

switching the messages are split into packets. Depending on a switching method,

a packet can be further divided into smaller flow control units (flits). A packet

consists usually of a header, a payload and a tail. The packet header contains

routing information, while the payload carries the actual data. The tail indicates

the end of a packet and can contain also error-checking code. Packet switching

can be either connection-oriented or connection-less. In contrast to the

connection-oriented switching, in the connection-less the packets are routed in a

non-guaranteed manner. There is no dedicated circuit built between the source

b)a)

Figure 2.5. Other topologies. Examples are a) hierarchical butterfly fat-tree

b) irregular network

38

and the destination nodes. Most common packet switching techniques include

store-and-forward, virtual cut-through and wormhole switching. Below we

describe the aforementioned techniques together with virtual channels and

wormhole flit-level cut-through switching methods.

Store-and-forward

Store-and-forward switching method is a well-known technique from the

computer networking domain. In this approach when a packet reaches an

intermediate node, the entire packet is stored in a packet buffer. The packet is

forwarded to the next selected neighbour router after that router has an available

buffer (Figure 2.6b). Store-and-forward is simple to implement but it has major

drawbacks. First, it has to buffer the entire packet before forwarding it to the

downstream router. This has a negative effect on router area overhead. Second,

the network latency is proportional to the distance between the source and the

destination nodes. The network latency of store-and-forward can be calculated

according to Ni and McKinley (1993) as follows:

 Latencystore-and-forward = (L/B)D (1)

where L is message size, B is channel bandwidth and D is distance in hops. The

smallest flow control unit in store-and-forward switching method is a packet.

Virtual cut-through

To decrease the amount of time spent transmitting data Kermani and Kleinrock

(1979) introduced the virtual cut-through switching method. In virtual cut-

through a packet is stored at an intermediate node only if the next required

channel is busy. The network latency of the virtual cut-through can be calculated

as follows:

 Latencyvirtual cut-through = (Lh /B)D + L/B (2)

where Lh is size of the packet header. Usually the message size is times bigger

than the packet header and therefore the distance D will produce a negligible

effect on the network latency. The smallest flow control unit is a packet.

link1

link2

link3

PU

time

dataheader

a)

link1

link2

link3

PU

time

b)

link1

link2

link3

PU

time

c)

...
...

Figure 2.6. A comparison of different switching techniques: a) circuit switching

b) store-and-forward c) wormhole (Ni & McKinley, 1993)

39

Wormhole switching

Wormhole switching operates like virtual cut-through but with channels and

buffers allocated to flits rather than packets (Dally & Towles, 2004). A packet is

divided into smaller flow control units called flits. There are three types of flits –

body, header, and tail. The header flit governs the route. As the header advances

along its specified route, the rest of the flits follow in a pipeline fashion. If a

channel is busy, the header flit gets blocked and waits the channel to become

available. Rather than collecting and buffering the remaining flits in the current

blocked router, the flits stay in flit buffers along the established route. Body flits

carry the data. The tail flit is handled like a body flit but its main purpose is to

release the acquired flit buffers and channels. The network latency of wormhole

switching can be calculated according to Ni and McKinley (1993) as follows:

 Latencywormhole = (Lf /B)D + L/B (3)

where Lf is size of the flit. In similar way to virtual cut-through distance D has

not significant effect on the network latency unless it is very large. Wormhole

switching is more efficient than virtual cut-through in terms of buffer space.

However, this comes at the expense of some throughput since wormhole

switching may block a channel mid-packet (Dally & Towles, 2004).

Virtual channel flow control

Virtual channel (VC) flow control associates several virtual channels (channel

state and flit buffers) with a single physical channel. Virtual channels overcome

the blocking problem of the wormhole switching by allowing other packets to

use the channel bandwidth that would otherwise be left idle when a packet

blocks (Dally & Towles, 2004). It requires an effective method to allocate an

optimal number of VCs. According to Bjerregaard & Mahadevan (2006) VCs

between 2 and 16 per physical channel have been typically proposed for NoCs.

Allocating the virtual channels uniformly results in a waste of area and

significant leakage power, especially at nanoscale (Bjerregaard & Mahadevan,

2006; Huang, Ogras, & Marculescu, 2007). Virtual channels increase total buffer

counts and might result in power consumption that would exceed the target

constraint for an embedded application. Moreover, VCs can increase delay in

router’s critical path due to extra arbitrations, thus it potentially affects the cycle

time or pipeline depth of the router (Samman, Hollstein, & Glesner, 2011).

Therefore, much more hardware-efficient router architectures are required in

order to come up with cost-efficient solutions.

Wormhole flit-level cut-through switching method

Wormhole flit-level cut-through switching method is designed to overcome the

head-of-line blocking problem, which commonly occurs when using traditional

wormhole switching method. The problem is solved by allowing the flits of the

competing wormhole messages to be interleaved at flit level in the same

communication link without using virtual channels. In order to provide such

40

flexible communication media sharing, a concept of locally organized packet

identity (ID) division multiple access (IDMA) method suitable for NoCs is being

used. Local ID slots are distributed over every communication link, which can

be attached to every flit of a packet or data stream as its local ID-tag (Samman,

Hollstein, & Glesner, 2008).

Figure 2.7 depicts the conceptual view of the communication media sharing

with local ID-tag management. The ID-manager (IDM) provides ID-slots for

packets and will guarantee that different packets will have a different ID-tag. In

the example depicted in Figure 2.7 the IDM provides 8 ID-tags (8 virtual space

slots) for each communication link. It is important to note that the ID table size

is configurable. The size depends on the required number of interleaved traffic

flows. The IDM will manage the ID allocation before a new different packet

enters the next FIFO buffer. Figure 2.7a illustrates the functionality of an IDM in

accordance with packet flows in Figure 2.7b. The packets are classified based on

their ID and from which in-port they have come from. For a new packet header

East IDM node (1,0)

ID Dir. from New
ID

3 WEST

NORTH

SOUTH

WEST

4

4

5

-

-

-

-

5

6

7

0

-

-

-

- -

-

-

-

old ID new ID

ID ID state

0 used

free

free

free

free

used

used

used

1

2

3

4

5

6

7

a) ID manager

IDM

IDM

FIFO

LOCAL

EAST
S

O
U

T
H

IDM

NODE
(1,0)

WEST

IDM

NORTH

FIFO

FIFO

4
4
4
4

4
4

35353

b) ID-based flit flow

Packet A Packet B Packet C Packet D

IDM

IDM

FIFO

LOCAL

EAST

S
O

U
T

H

IDM

NODE
(2,0)

WEST

IDM

NORTH

FIFO

0
0
0

56705

F
IF

O

Packet E

F
IF

O

6

F
IF

O

FIFO

F
IF

O

Figure 2.7. Conceptual view of the IDMA approach

(Samman, Hollstein, & Glesner, 2008)

41

(Packet C from west in-port with ID 3), the IDM will search for a free ID. If the

free ID has been found (i.e. ID 5), then old ID of the packet header (ID 3) is

replaced by the new ID (ID 5), and the state of the ID is set to “used”.

There is also a possibility that packets coming from different input ports have

the same ID-tag, i.e. packet A from south and B from north with ID 4 (Figure

2.7b). The IDM will solve the situation in such way that the packets will have

different IDs in the next FIFO (e.g. new ID 6 for Packet B and new ID 7 for

Packet A). For payload flits following the header flit of the packets, their IDs

will be replaced automatically by using lookup-table mechanism. If there are no

more available IDs in the IDM, new packets cannot be forwarded into the output

port. After the last (tail) flit of the packet flows through the router, all

information related to its ID-tag will be deleted from the tables.

The IDMA approach is being used in Extendable Hierarchical Network-on-

Chip (XHiNoC) simulator that is the main NoC simulator used in this PhD

thesis. Our system-level design tool has been interfaced with XHiNoC being

able to verify the produced schedules by executing the applications on the

XHiNoC simulator. This method is explained in more detail in Chapter 3.

2.3.3 Routing

Routing algorithm determines the routing paths the packets may follow through

the network. A good routing algorithm can be characterized by low

communication latency, high network throughput, and low implementation cost

in hardware. Features contributing to hardware cost are number of channels,

buffers, and control logic. Features contributing to low latency and high

throughput are freedom from deadlocks, freedom from livelocks, routing packets

via shortest paths, load balancing the traffic and routing packets adaptively.

Deadlocks occur in an interconnection network when a group of packets is

unable to progress because they are waiting on one another to release the

resources, usually buffers or channels (Dally & Towles, 2004). Deadlocks have

fatal effects on a network. Therefore deadlock avoidance or deadlock recovery

should be considered for routing algorithms that tend to deadlock. Livelocks

cause packets to move through the network, but they do not make progress

toward their destinations (Dally & Towles, 2004). It can happen for example

when packets are not allowed to take the shortest routes. Usually livelocks are

being handled by allowing a certain number of misroutes after which the packet

is discarded and need to be re-sent.

Routing algorithms can be divided into unicast routing and multicast routing

based on the number of destinations. The unicast routing sends packets from a

single source to a single destination node. In the multicast routing a single

source packet is sent to multiple destination nodes. In computer networking

these terms are referred to also as traffic or message types where the third type is

broadcast traffic. In broadcast traffic a message is transferred to all receivers.

42

Another classification of routing algorithms is based on path diversity and

adaptivity having deterministic, oblivious and adaptive routing.

Deterministic routing

Deterministic routing chooses always the same path given the same source and

destination node. An example of a deterministic routing algorithm is dimension-

order XY routing. In XY routing the processing cores are numbered by their

geographical coordinates. Packets are routed first via X- and then via Y-axis by

comparing the source and destination coordinate. The pseudocode of XY routing

is depicted in Figure 2.8. Deterministic routing has a small implementation

overhead but it can cause load imbalance on network links. Deterministic

routing cannot also tolerate permanent faults in a NoC and re-route the packets.

Oblivious routing

Oblivious routing considers all possible multiple paths from the source node to

the destination but does not take the network state into account. Oblivious non-

deterministic routing algorithms can distribute uniformly the communication

load in situations where adaptive solutions are too expensive or slow. One of the

first and well-known oblivious routing algorithms is Valiant’s randomized

routing algorithm (Valiant & Brebner, 1981). It has two phases. In the first phase

a packet is sent from a source to a randomly chosen intermediate router. In the

second phase the packet is delivered from the intermediate router to the

destination. In the two phases an arbitrary routing algorithm can be used – for

example for mesh or torus dimension-order routing algorithm could be used.

Valiant’s algorithm provides good worst-case performance at the expense of

locality and low average-case throughput. Successive work in that area has

focused in improving the locality and the average delays (Cho, Lis, Shim, Kinsy,

& Devadas, 2009; Harsha, Hayes, Narayanan, Räcke, & Radhakrishnan, 2008).

XY_Routing (Xcurrent, Ycurrent, Xdestination, Ydestination)

1 Xoffset = Xdestination - Xcurrent

2 Yoffset = Ydestination - Ycurrent

3 if Xoffset > 0 then direction = EAST

4 else if Xoffset < 0 then direction = WEST

5 else if Xoffset = 0 and Yoffset > 0 then direction = NORTH

6 else if Xoffset = 0 and Yoffset < 0 then direction = SOUTH

7 else direction = LOCAL

8 end if

end XY_Routing

Figure 2.8. Pseudocode of XY routing

43

Adaptive routing

Adaptive routing distributes the traffic dynamically in response to the network

load. For example, it re-routes packets in order to avoid congested areas or failed

links. Adaptive routing has been favourable providing high fault tolerance.

According to Dally and Towles (2004) in contrast to fully adaptive routing there

can be algorithms that target some specific network metrics such as minimal

adaptive and load-balanced adaptive routing. A shortest route in a minimum

adaptive routing algorithm is chosen from all possible candidates based on

information about the network state in each hop. Load-balanced adaptive

algorithm uses local network utilization information to make the routing

decision trying to balance the traffic among the network links. The drawbacks of

adaptive routing include higher modelling and implementation complexity.

Turn model

In order to avoid cyclic dependencies leading to a deadlock configuration and to

increase adaptivity the turn model was proposed by Glass and Ni (1992). The

model is based on analysing the directions in which packets can turn in a

network and the cycles that the turns can form. The idea is prohibiting just

enough turns to break all the cycles produced by routing algorithms. The work

has presented examples of turn models for adaptive routing algorithms in 2D

mesh-based interconnection networks. In a mesh-like network, there are four

available turns at each clockwise and counter clockwise turns. Figure 2.9

presents four selected turn models that can be used to avoid a deadlock

configuration (Samman F. A., 2010). The solid lines in the figure represent the

allowed turns, and the dashed lines represent the prohibited turns. One of the

well-known static routing algorithms that can be described by the turn model is

the dimension-order routing algorithm. The turn model of the XY routing

algorithm is presented in Figure 2.9a. As shown in the Figure 2.9a, four turns are

prohibited to avoid a deadlock configuration, i.e. north-east, south-east, north-

west and south-west turns. Because of the applied prohibited turns, routing

algorithm is static whereby packets are always routed first to X-axis, then to Y-

axis.

a) X-First (XY) b) West-First (WF) c) Neg-First (NegF) d) North-Last (NL)

W

S

E

N

W

S

E

N

W

S

E

N

W

S

E

N

W

S

E

N

W

S

E

N

W

S

E

N

W

S

E

N

W

S

E

N

W

S

E

N

W

S

E

N

W

S

E

N

Figure 2.9. Turn models that can avoid deadlock configuration (Samman F. A., 2010)

44

2.3.4 Flow control

Flow control deals with network load monitoring and congestion resolution. Due

to the limited buffers and throughput the packets may be blocked and flow

control decides how to resolve this situation. The flow control techniques can be

divided into two – bufferless and buffered flow control. The bufferless flow

control is the simplest in its implementation. In bufferless flow control there are

no extra buffers in the switches. The link bandwidth is the resource to be

acquired and allocated. There is need for an arbitration to choose between the

competing communications. Unavailable bandwidth means that a message needs

to be misrouted or dropped. Dropped message has to be resent by the source.

Misrouting and message dropping both increase latency and decrease efficiency

(throughput) of the network. Deflection routing is an example of the bufferless

flow control. In deflection routing, an arbitrary routing algorithm chooses a

routing path, while deflection policy is handling the resource contentions. In the

case of network contention, the deflection policy grants link bandwidth to the

higher priority messages and misroutes the lower priority messages. Deflection

routing allows low overhead switch design while at the same time provides

adaptivity for network load and resilience for permanent link faults.

In the buffered flow control, a switch has buffers to store the flow control

unit(s) until bandwidth can be allocated to the communication on outgoing link.

The granularity of the flow control unit can be different. In store-and-forward

and virtual cut-through both the link bandwidth and buffers are allocated in

terms of packets but in wormhole switching in flits. In buffered flow control, it

is crucial to distribute the buffer availability information between the

neighbouring routers. If buffers of the upstream routers are full, the downstream

routers must stop transmitting any further flow control units. The flow control

accounting is done at link level. The most common flow control accounting

techniques are credit-based, on/off and ack/nack (Dally & Towles, 2004).

2.3.5 Quality of service

Quality of service (QoS) gives guarantees on packet delivery. The guarantees

include correctness of the result, completion of the transmission, and bounds on

the performance (Lu, 2007). The network traffic is divided usually into two

service classes – best-effort and guaranteed. A best-effort service is

connectionless. Packets are delivered when possible depending on the current

network condition. A guaranteed service is typically connection-oriented. The

guaranteed service class packets are prioritized over the best-effort traffic. In

addition, guaranteed service avoids network congestions by establishing a virtual

circuit and reserving the resources. It can be implemented for example by using

multiple timeslots (Time Division Multiple Access, TDMA), IDMA or virtual

channels.

45

2.3.6 Generic on-chip router architecture

The architecture of an on-chip router depends on various aspects –

switching/routing method, flow control, quality of services requirements etc.

These implementation choices may affect the processing delay of a router. As

the router processing delay is part of our communication model it is important to

have an overview of the generic on-chip router architecture. According to

(Goossens, Dielissen, & Radulescu, 2005; Kumar et al., 2002; Guerrier &

Greiner, 2000; Bertozzi & Benini, 2004; Bjerregaard & Mahadevan, 2006;

Samman, 2010) a generic on-chip router contains the following components:

first-in first-out (FIFO) buffer, arbiter, crossbar switch, routing engine and link

controller.

First-in first-out buffer

First-in first-out buffer is used to buffer incoming and/or outgoing data in the

switch. Some NoC architectures implement FIFO buffers either in input ports or

in output ports to cut the buffering costs. When virtual channels are being used,

each virtual channel implements a separate flit buffer. A virtual channel

controller arbitrates among requesting packets and multiplexes virtual channels

over the corresponding link on a flit-by-flit basis. However, allocating the virtual

channels uniformly results in a waste of area and significant leakage power,

especially at nanoscale (Huang, Ogras, & Marculescu, 2007).

Arbiter

Arbiter controls access and avoids conflicts in outgoing port that can happen

when several packets/flits from incoming port request the same outgoing port. In

literature several arbitration schemes have been proposed such as first-come first

served, rate controlled, round-robin, priority-based, deadline-based, contention-

aware and flit-by-flit rotating arbitration (Samman F. A., 2010).

Crossbar switch

Crossbar switches are the key building blocks of the NoCs. They form

interconnects between input and output ports of the router. The individual

switches connecting multiple inputs to multiple outputs are arranged in a matrix.

Typically, all the input ports and the output ports have the same bit-width and

operating frequency. If a crossbar has m inputs and n outputs then such crossbar

has a matrix with m x n cross-points.

Routing engine

Routing engine is used to determine the routing path for incoming packets. The

routing can be implemented as static table-based routing, routing algorithm

described by a state machine or combination of both.

46

Link controller

The task of a link controller is to control data flow between output and input

ports of adjacent routers. The most common flow control accounting techniques

are credit-based, on/off and ack/nack (Dally & Towles, 2004). Data

synchronization interfaces are also implemented in this unit to synchronize the

data transmission from one switch to another one. Some data synchronization

methods that can be implemented in the NoCs are source-synchronous,

mesochronous, asynchronous queue-based, pipelined repeater-based or the

handshake mechanism (Samman F. A., 2010).

Example generic router model

An example generic router model is depicted in Figure 2.10. The router has

communication channels to four neighbouring routers and to local processing

core. Each input port has its own separate FIFO buffer in which the incoming

flit/packet is buffered. A 5x5 crossbar switch is used as the switching fabric in

the router. There is a routing engine processing the packet at the head of the

input FIFO to determine which output direction (i.e. north, east, west, south,

local) the incoming packet/flit should be routed. Once the routing decision has

been made the arbiter is requested to set up a path to the corresponding output

channel. The crossbar arbiter maintains the status of current crossbar connection

and determines whether or not to grant connection permission to the link

controller. If there are multiple requests at the same time then the arbiter uses a

policy to decide which input channel gets the access. Such simple and generic

router model without virtual channels is being assumed also in our system-level

design framework that is described in Chapter 3.

Routing

engine
Arbiter

FIFO buffer

Input

ports
Output

ports
Crossbar switch

Link controller

Link controller

Link controller

Link controller

Link controller

Link controller

Link controller

Link controller

Link controller

Link controller

FIFO buffer

Figure 2.10. Generic router model

47

2.3.7 Further reading

There is a comprehensive survey of research and practices of networks-on-chip

by Bjerregaard and Mahadevan (2006), survey of different NoC

implementations by Salminen, Kulmala, and Hämäläinen (2008) and overview

of outstanding research problems in NoC design by Marculescu et al. (2009).

2.4. System-level design

The technology scaling has enabled designers to pack more and more

functionality onto a single chip. However, increasing complexity of systems,

stringent time to market requirements and advances in the electronic design

automation (EDA) tools have motivated the shift from lower levels of

abstraction to the system level. The system-level design methodologies try to

take into account important implementation issues already at higher abstraction

levels. In this section we describe the key steps of a traditional system-level

design flow and give an overview of the classical scheduling and mapping

problem.

2.4.1 Traditional system-level design flow

Having its roots in the end of the 80’s, system-level design is a hierarchical

process that begins with a high-level description of the complete system and

works down to fine grained descriptions of individual system modules

(Stressing, 1989). Initially, the description of a system is independent from the

implementation technology. There are even no details whether some component

of the system should be implemented in hardware or in software. Therefore,

early system description is more behavioural than structural, focusing on system

functionality and performance specification rather than interconnects and

modules. In addition to the system specification, it is important to have a

possibility to verify the performance and functional specification. A

specification at the system-level should be created in such a way that its

correctness can be validated by simulation. Such a model is often referred to as

simulatable specification. In addition, a model at the system-level should be

expressed in a form that enables verification that further refinements correctly

implement the model (Ashenden & Wilsey, 1998). Possible approaches include

behavioural synthesis (correct by construction), and formal verification using

model checking and equivalence checking (Ashenden & Wilsey, 1998). A third

essential element of system-level design is the exploration of various design

alternatives. For example, a system designer has choices whether to implement a

function in hardware or in software, whether to solve it with sequential or

parallel algorithm. The analysis of trade-offs between design alternatives is a

key element of system-level design and shows the quality of the particular

system-level design flow. It is important that a system-level design flow is

48

supported by system-level tools – simulators/verifiers, estimators and

partitioners. The first system-level design tools were introduced in 1980 by

Endot, a company formed out of the staff at the Case Western Reserve

University (Stressing, 1989). The need for system-level design tools was

motivated by the complexity of the aerospace and defence systems but it soon

became apparent that these tools were applicable to design of complex digital

hardware/software systems of any type (Stressing, 1989).

At the system-level, a system can be modelled as a collection of active

objects that react to events, including communication of data between objects

and stimuli from the surrounding environment. Abstractions are needed in a

number of areas to make the system-level behavioural modelling tractable in the

following views:

 abstraction of data,

 abstraction of concurrency, and

 abstraction of communication and timing (Ashenden & Wilsey, 1998).

Of course, the views of abstractions can be different, e.g., concurrency is

replaced by calculation, and communication and timing are looked at separately

(Jantsch, 2003).

The classical system-level design flow, depicted in Figure 2.11, consists of

several consecutive design tasks with loopbacks to previous steps (Lagnese &

Thomas, 1989). An input to the system-level design flow is a system

specification that is represented in a formal way, e.g., dataflow or task graph. In

the dataflow graph, the nodes represent operators and the arcs between them

represent data and control dependencies like in task graphs. The operators are

scheduled into time slots called control steps. Scheduling determines the

execution order of the operators. The scheduling can be either static or dynamic.

In the dynamic scheduling, the start times are obtained during execution (online)

based on priorities assigned to processes. In the static scheduling, the start times

of the processes are determined at the design time (off-line) and stored in the

form of schedule tables. Scheduling sets lower limits on the hardware because

operators scheduled into the same control step cannot share the hardware. Thus,

scheduling has a great impact on the allocation of the hardware. After the

scheduling the data-flow operators are mapped to the allocated hardware. If the

hardware platform is given with the system specification then designer can also

start first with the mapping and then perform the scheduling. Since both,

mapping and scheduling, are computationally intensive tasks, the parallel

execution of those design phases is extremely difficult. When the results of the

system-level design flow do not satisfy the initial requirements, either the

mapping or the scheduling of application’s components should be changed. If no

feasible solution is found, changes are needed in the system specification or in

the architecture. After an acceptable schedule is found, lower abstraction-levels

of hardware/software co-design will follow.

49

Refinement to a software implementation is facilitated by a system-level

modelling language that is closely related to programming languages. In

principle, both the hardware and software implementations could be expressed in

the same language as the system-level model, thus avoiding semantic

mismatches between different languages in the design flow (Ashenden &

Wilsey, 1998). Some of the most common system-level design languages are

StateCharts (Harel, 1987), Estelle (Budkowski & Dembinski, 1987), SDL

(Færgemand & Olsen, 1994), CSP (Hoare, 1978) and SystemC (SystemC,

2009). Most recent and prominent of those is SystemC. SystemC is a C++ class

library that can be used to create cycle-accurate models for software algorithms,

hardware architectures and interfaces, related to system-level design (SystemC,

2009). C++ is a general-purpose programming language used in wide areas, such

as application software, device drivers, embedded software or high-level

synthesis (ISO/IEC 14882:2003 standard on the C++, 2003).

Most of modern embedded systems have both the hardware and software

components. When designing such a system, it is important that both sides are

developed not in an isolated but in an integrated manner. The generic

hardware/software co-design methodology, as a part of the overall system design

flow, supports concurrent development of software and hardware. Important

tasks in such a development are co-simulation and co-verification. It should be

noted that in many cases, systems have also analogue parts that should be

designed concurrently with rest of the system (Gerstlauer, Haubelt, Pimentel,

Stefanov, Gajski, & Teich, 2009).

System

specification and

modelling Partitioning

Mapping
Scheduling

Estimation

Analysis

Software

development

Hardware

synthesis

System integration,

verification, testing

HW platform

selection

System-level

design

System

representation

Figure 2.11. Classical system-level design flow

50

2.4.2 Task mapping and scheduling

The term scheduling refers to a very generic problem that exists in different

areas and domains. Jobs need to be processed in manufacturing, aircrafts are

waiting for landing in a clearance list or customers are waiting in a restaurant to

be served by tellers. In computer engineering tasks, that are part of an

application (program), are waiting to be executed on a parallel computer.

Whenever there is a choice of determining the order of execution of tasks and

assigning them to processing entities we can call it the scheduling problem. In

general, the scheduling problem assumes a set of resources and a set of

consumers serviced by those resources according to a certain policy (El-Rewini,

Ali, & Lewis, 1995). Typically the scheduling and the assignment (mapping) of

tasks to processors is done in the same process. Although in some cases the

static mapping can be also given. Then the problem is reduced to determining

the execution order of the tasks on a processor. In the NoC domain we can talk

about scheduling in terms of application scheduling, packet scheduling in real-

time traffic, scheduling policy for routing control unit or scheduling in virtual

channels. There is a wide range of scheduling problems and in the same way a

considerable amount of scheduling methods to solve them.

Before looking for a suitable scheduling technique it is worth to classify the

systems based on their predictability and timing requirements into real-time and

non-real-time systems. Real-time systems can be further divided into three

classes:

 Hard real-time – a violation in real-time constraints can lead to

disastrous consequences such as loss of life or property. Hard real-

time systems are time-constrained, cost-constrained and fault-

tolerant.

 Firm real-time – infrequent constraint violations are tolerable but

might degrade the system quality of service. The tasks that have

missed their deadline are usually dropped because late results have

little or no value.

 Soft real-time – constraints are less critical and can be violated.

However, the violations are not desirable as they might lead to

degraded quality of service. Multimedia systems have been

historically considered as soft real-time systems. Although, with

increased bandwidth and stringent timing requirements multimedia

applications are considered nowadays rather part of firm real-time

system class.

In this work we are interested in the class of hard and firm real-time systems

implemented on network-on-chip based system-on-chip.

In the pre-emptive scheduling the execution of a running task can be

interrupted at any time and resumed later. In non-pre-emptive scheduling a task

may not be interrupted once it starts its execution. Scheduling can be performed

51

dynamically (online scheduling) or calculated offline (static scheduling). In

static scheduling the scheduling process has complete knowledge of the task set

and its constraints. It produces a single schedule that is fixed during the

execution. Static scheduling has been preferable for scheduling applications on

hard and firm real-time systems. Dynamic scheduling works with the active set

of tasks. When new ready tasks arrive the schedule might change. According to

Stankovic, Spuri, Di Natale, and Buttazzo (1995) offline scheduling is often

equated to static scheduling that is wrong. In building a real-time system, offline

scheduling analysis should be always done, regardless of whether the final

runtime algorithm is static or dynamic.

Application consists of tasks and their precedence constraints. A classical

way to represent such a model is using directed acyclic graph (DAG) called task

graph (Marculescu, Ogras, Li-Shiuan Peh Jerger, & Hoskote, 2009). In a task

graph each vertex represents a task and a directed edge a dependency between

two tasks. A task represents a part of an application. The task granularity can

vary – from a single operation to a function call. Weights can be associated with

vertexes and edges that are representing either computation or communication

costs. In classical scheduling inter-processor communication (IPC) cost has been

typically considered as a constant and not included in the scheduling. In NoC-

based system the communication delay does not depend only on the message

size but also on the resource mapping and needs to be taken into account. The

scheduling problem and related definitions are given and explained in more

detail in Section 3.2.

According to El-Rewini, Ali, and Lewis (1995) the task scheduling problem

is in many cases computationally intractable and belongs to the class of NP-hard

or NP-complete problems. There are only three cases for which polynomial-time

algorithms can be obtained: tree-structured task graphs on an arbitrary number of

processors, interval orders on an arbitrary number of processors, and arbitrary

task graphs on two processors. Since, these restrictions serve no practical use for

our research we will review some heuristics and optimization techniques that can

be applied in a general case.

Heuristics and optimization techniques

To find solutions for real-time scheduling problems heuristics can be used. A

heuristic provides a schedule in less than exponential time but does not

guarantee an optimal solution. A heuristic that can optimally schedule a

particular application on a certain target machine may not produce optimal

schedules for other task graphs on other machines (El-Rewini, Ali, & Lewis,

1995). One of the most popular general-purpose scheduling heuristic is list

scheduling. In list scheduling each task is assigned a priority. Tasks that are

ready to execute are sorted based on the priority in decreasing order and

scheduled on “best” available processor. Various methods exist to calculate and

assign priorities to tasks. Priority assignment results in different schedules as

tasks are selected in a different order.

52

Two examples of dynamic list scheduling algorithms are earliest time first

(ETF) by Hwang, Chow, Anger, and Le (1989) and dynamic level scheduling

(DLS) by Sih and Lee (1993). In these algorithms the priorities of ready tasks

are computed dynamically by evaluating the start time of every ready task on

every processor. The ready task together with a processor that achieves the

earliest start time is selected.

Another possibility to solve the scheduling or mapping problem in feasible

time is to use optimization techniques. Some examples are branch-and-bound,

simulated annealing and genetic algorithms. Branch-and-bound (B&B) is a

general algorithm for finding optimal solutions for various computationally

intensive optimization problems. Branch-and-bound consists of three main

functions – branching, bounding and pruning. Branching describes the problem

as a search tree whose nodes are subsets of given problem. Bounding calculates

the upper and lower bounds that are used to evaluate a set of candidates and

prune the ones that do not lead to an optimum. The main issues in branch-and-

bound are to find the appropriate lower bound function and effective branching

strategy. Simulated annealing (SA) is a probabilistic metaheuristic for the global

optimization problem, locating a near-optimal solution in feasible time

(Kirkpatrick, Gelatt, & Vecchi, 1983). Simulated annealing belongs to the class

of non-optimal algorithms. It has been applied to several combinatorial

optimization problems from various fields of science and engineering. Genetic

algorithms (GA) are search algorithms that are based on the principles of

evolution and natural genetics. A set of solutions to the problem is called a

population. New solutions are generated by breeding and mutation. The idea

comes from the theory of evolution where the most suited elements of the

population are likely to survive and generating offspring, transmitting their

biological inheritance to the next generation. Genetic algorithms operate through

a straightforward cycle: creation of a population, evaluation of the elements,

selection of the best elements and reproduction to create a new population

(Kwok & Ahmad, 1999).

In this work we use some of the classical scheduling and optimization

algorithms such as list scheduling, branch-and-bound and simulated annealing.

For additional information, there is a comprehensive survey of static scheduling

algorithms for allocating directed task graphs to multiprocessor systems by

Kwok and Ahmad (1999).

2.5. Design issues of NoC-based systems

To overcome some of the system-on-chip design challenges, described in the

first part of this chapter, the network-on-chip paradigm has been proposed.

Networks-on-chip have brought new research topics that need to be explored to

reach their full potential. In this section we give an overview of the key research

challenges of NoC-based systems.

53

Communication modelling

NoC communication latency depends on various parameters such as topology,

routing algorithm, switching method, etc., and need to be calculated after task

mapping and before the task graph scheduling (Marculescu, Ogras, Li-Shiuan

Peh Jerger, & Hoskote, 2009). In several research papers, the average or the

worst case communication delay has been considered (Lei & Kumar, 2003;

Marcon, Kreutz, Susin, & Calazans, 2005; Hu & Marculescu, 2005; Shin &

Kim, 2004; Stuijk, Basten, Geilen, & Ghamarian, 2006; Shim & Burns, 2008;

Shin & Kim, 2008). In many cases, it is an approximation that can be either too

pessimistic (giving the upper bound) or too optimistic (by not scheduling

explicitly the communication or not considering the communication conflicts).

Therefore, an efficient system-level NoC design framework requires an

approach for the communication modelling and synthesis to calculate the

communication deadlines by taking into account also possible network conflicts.

The Chapter 3 discusses the problem in more detail and proposes a system level

model together with the contention-aware scheduling algorithm to tackle the

problem.

Programmability

To write effective parallel embedded system software a programmer needs fast

and reliable on-chip communication infrastructure with easy-to-use application

programming interface (API) and predictable communication delays. The

underlying architecture should provide the necessary services in a flexible way –

have best-effort and guaranteed services, have possibility to measure the

performance and debug the application.

Reliability and variability

With shrinking transistors and wire dimensions, reliability and variability have

become significant challenges for IC designers (Owens, Dally, Ho, Jayasimha,

Keckler, & Peh, 2007). Variability might stem from different sources –

fabrication, environment and system load. There has been a lot of research made

on system reliability in different computing domains by employing data

encoding, duplicating system components or software-based fault tolerance

techniques. This research have mostly had either focus on low level hardware

reliability or covered the macro distributed systems. Due to future design

complexities and technology scaling it is infeasible to concentrate only to low

level reliability analysis and improvement in SoC design. We should fill the gap

by looking at the application level reliability analysis and improvement. NoC

platform provides flexibility to tolerate faults and guarantee system reliability.

However, to meet the required level of dependability the designed system must

be also predictable. Chapter 2.6 gives an overview of the issues related with

dependable system-on-chip design in more detail. In Chapter 6 we describe an

algorithm to synthesize dependable application schedules that are able to tolerate

a given number of transient or intermittent faults.

54

System-level design

The system-level design flow for NoC-based systems follow the same principles

as described previously. That is, the initial specification is modelled to estimate

performance and resource requirements when using different architectural

solutions. This includes platform selection, task mapping and task scheduling.

The difference is that because of the rather complex communication behaviour

between processing cores, communication mapping and scheduling between

tasks should be addressed with care. The reason for that is rather simple –

communication latencies may be unpredictable, especially when trying to apply

dynamic task organisation. Therefore, the traditional scheduling techniques that

are applicable to the hard real-time and distributed systems are not suitable as

they address only the bus-based or point-to-point communication. A

communication schedule could be extracted by simulating an application on a

NoC simulator, but the simulation speed will be the limiting factor. Moreover,

according to Henkel, Wolf, and Chakradhar (2004) simulating NoCs will

become quite a challenge since NoCs will comprise many processing units

connected through a complex communication infrastructure. New simulation

strategies are needed such as „cycle-approximate“ that simulate the systems

„sufficiently“ accurately with much higher simulation speeds than ordinary

cycle-accurate simulators. System-level design for NoCs has one major

difference when compared to the traditional system-level design – hardware

platform is either fixed or has limited modification possibilities (Keutzer,

Newton, Rabaey, & Sangiovanni-Vincentelli, 2000). Therefore the main focus is

on the application design and task distribution between the processing cores.

Evaluation and benchmarking

Network-on-chip performance depends on the traffic workloads it needs to

process. Since, implementing a real life application on a NoC is time consuming

and complex, analytical or trace based model can be used instead to evaluate the

network performance in early design phases. Traffic model refers to a

mathematical characterization of a workload generated by an application. In the

field of interconnection networks some common traffic patterns exists, which are

employed also in the NoC domain. These traffic models cover the spatial

distribution of messages.

 Uniform random traffic – each node sends messages to every other node

with equal probability. It makes traffic uniformly distributed, balancing

load even for topologies and routing algorithms that have normally poor

load balancing characteristics.

 Permutation traffic – all the traffic from each source is directed to one

destination. It can be represented by a permutation function d = f(s) that

maps a source to a destination. Examples of permutation traffic include

bit permutations such as shuffle, transpose, bit reverse and digit

permutations such as tornado and neighbour.

55

To evaluate the temporal characteristics of an interconnection network the

injection rate can be adjusted to generate bursty traffic. One of the key

parameters to adjust during benchmarking is the message size. Message size can

be fixed, varied between different runs or computed based on some distribution

function. For example, injecting packets into the network from a long message

could affect the latency of some competing short messages, increasing the

average latency. Therefore it is important to capture in a traffic model all

aforementioned aspects of an application or to use application traces.

When we are looking at benchmark applications then usually existing

benchmark suites for multiprocessor computing have been adjusted for NoC

domain. Examples are SPLASH-2 (Woo, Ohara, Torrie, Singh, & Gupta, 1995)

and PARSEC (Bienia, Kumar, Singh, & Li, 2008) that are referenced in many

NoC-related research papers. Gratz and Keckler (2010) use SPLASH-2 and

PARSEC as sources of realistic traffic based on which they propose a set of new

workload characteristics. They show that these characteristics correlate more

accurately with network congestions in realistic workloads than traditional

metrics. However, according to (Marculescu, Ogras, Li-Shiuan Peh Jerger, &

Hoskote, 2009; Grecu, et al., 2007; Owens, Dally, Ho, Jayasimha, Keckler, &

Peh, 2007) there is still a lack of driving applications for network-on-chip

evaluation and benchmarking. Classic benchmarks for multiprocessor systems

are application-oriented, and cannot be used directly for communication-

intensive architectures such as NoCs. Moreover, the nature of the applications

running on NoC-based systems is expected to be more varied and heterogeneous

compared to typical applications for multiprocessor computers (Grecu, et al.,

2007). The diversity of network-on-chip platforms makes the situation even

worse. It is hard to compare the results if underlying architecture is different.

Fortunately, Open Core Protocol International Partnership (OCP-IP) has

launched a network-on-chip benchmarking initiative. The first deliverable of the

initiative is a white paper that outlines the essential features of a NoC

benchmarking environment (Grecu, et al., 2007).

One recent research paper by Liu, et al. (2011) tries also to bridge the

benchmarking gap. The authors present a realistic traffic benchmark suite, called

MCSL, and describe the methodology used to generate it. The MCSL

benchmark suite includes a set of realistic traffic patterns for 8 typical MPSoC

applications and covers popular NoC architectures in various scales. MCSL

captures not only the communication behaviours in NoCs but also the temporal

dependencies among them. Each traffic pattern in MCSL has two versions, a

recorded traffic pattern and a statistical traffic pattern. The former provides

detailed communication traces for comprehensive NoC studies, while the latter

helps to accelerate NoC explorations at the cost of accuracy (Liu, et al., 2011).

Due to the lack of established benchmark applications in NoC domain we

have used in this thesis synthetic task graphs to evaluate different aspects of our

approach. Using synthetic task graphs is a common way to demonstrate scaling

and feasibility of the proposed approaches and effectively used by many authors

56

(Sinnen & Sousa, 2005; Hu & Marculescu, 2005; Manolache, Eles, & Peng,

2007).

2.6. Dependable systems-on-chip

In 1997, Kiang has depicted dependability requirements over the past several

decades showing shift in the dependability demands from the product reliability

into customer demands for more and more functionality. The percentage of

hardware failures noted in the field is claimed to be minimal. However,

technology scaling brings process variations and increases the number of

transient faults, motivating the fault-tolerance design of systems

(Constantinescu, 2003). A system-on-chip designer has to assume that the

manufactured devices might contain faults and an application, running on the

system, must be aware that the underlying hardware is not perfect. According to

Wattanapongsakorn and Levitan (2000) a design framework that integrates

dependability analysis into the system design process must be implemented. To

date, there are very few such system design frameworks, and none of them

provide support at all design abstraction levels in the system design process,

including evaluations of system dependability.

System dependability can be described as quality-of-service having attributes

reliability, availability, maintainability, testability, integrity and safety

(Wattanapongsakorn & Levitan, 2000). Achieving a dependable system requires

combination of a set of methods that can be classified into:

 fault-avoidance – how to prevent (by construction) fault occurrence;

 fault-tolerance – how to provide (by redundancy) service in spite of

faults occurred or occurring;

 error-removal – how to minimize (by verification) the presence of latent

errors;

 error-forecasting – how to estimate (by evaluation) the presence, the

creation and the consequences of errors (Laprie, 1985).

In the next sections we will give an overview of classification of faults,

describe the fault tolerance and some of its techniques to increase the system

reliability.

57

2.6.1 Classification of faults

Different sources classify the terms fault, error, failure differently. However, in

everyday life we tend to use them interchangeably. According to IEEE (2009)

standard 1044-2009 of software anomalies, an error is an action which produces

an incorrect result. A fault is a manifestation of the error in software. A failure is

a termination of the ability of a component to perform a required action. A

failure may be produced when a fault is encountered. In Koren and Krishna

(2007) view a fault (or a failure) can be either a hardware defect or a software

mistake. An error is a manifestation of the fault or the failure.

Software faults are in general all programming mistakes (bugs). Hardware

faults can be divided into three groups: permanent, intermittent and transient

faults according to their duration and occurrence.

 Permanent faults – are irreversible physical defects in hardware caused

by manufacturing process variations or wearout mechanism. Once a

permanent fault occurs it does not disappear. Manufacturing tests are

used to detect permanent faults caused by the manufacturing process.

Fault tolerance techniques can be used to achieve higher yield by

accepting chips with some permanent faults that are then masked by the

fault tolerance methods.

 Intermittent faults – occur because of unstable or marginal hardware.

They can be activated by environmental changes, like higher

temperature or voltage. Usually intermittent faults precede the

occurrence of permanent faults (Constantinescu, 2003).

 Transient faults – cause a component to malfunction for some time.

Transient faults are malfunctions caused by some temporary

environmental conditions such as neutrons and alpha particles, power

supply and interconnect noise, electromagnetic interference and

electrostatic discharge (Constantinescu, 2003). Transient faults cause no

permanent damage and therefore they are called soft errors. The soft

errors are measured by soft error rate (SER) that is a probability of error

occurrence.

2.6.2 Fault tolerance

Fault tolerance is an exercise to exploit and manage redundancy. Redundancy is

the property of having more of a resource than is minimally necessary to provide

the service. As failures happen, redundancy is exploited to mask or work around

these failures, thus maintaining the desired level of functionality (Koren &

Krishna, 2007).

58

Usually we speak of four forms of redundancy:

 Hardware – provided by incorporating extra hardware into the design

to either detect or override the effects of a failed component. We can

have

o static hardware redundancy – objective to immediately mask a

failure;

o dynamic hardware redundancy – spare components are

activated upon a failure of a currently active component;

o hybrid hardware redundancy – combination of the two above.

 Software – protects against software faults. Two or more versions of the

software can be run in the hope that that the different versions will not

fail on the same input.

 Information – extra bits are added to the original data bits so that an

error in the bits can be detected and/or corrected. The best-known forms

of information redundancy are error detection and correction coding.

Error codes require extra hardware to process the redundant data (the

check bits).

 Time – deals with hardware redundancy, re-transmissions, re-execution

of the same program on the same hardware. Time redundancy is

effective mainly against transient faults (Koren & Krishna, 2007).

Metrics are used to measure the quality and reliability of devices. There are

two general classes of metrics that can be computed with reliability models:

 the expected time to some event, and

 the probability that a system is operating in a given mode at time t.

The expected time to some event is characterized by mean time to failure

(MTTF) – the expected time that a system will operate before a failure occurs.

Mean time to repair (MTTR) is an expected time to repair the system. Mean time

between failures (MTBF) combines the two latter measures and is the expected

time that a system will operate between two failures:

 MTBF = MTTF + MTTR (4)

The second class is represented by the reliability measure. Reliability,

denoted by R(t), is the probability (function of time t) that the system has been

up continuously in the time interval [t0, t], given that the system was performing

correctly at time t0 (Smith, DeLong, Johnson, & Giras, 2000).

While general system measures are useful at system-level, these metrics may

overlook important properties of fault-tolerant NoCs (Grecu, Anghel, Pande,

Ivanov, & Saleh, 2007). For example, even when the failure rate is high (causing

undesirable MTBF) recovery can be performed quickly on packet or even on flit

level. Another drawback is related to the fact that generic metrics represent

59

average values. In a system with hard real-time requirements the NoC

interconnect must provide QoS and meet the performance constraints (latency,

throughput). Therefore specialized measures focusing on network interconnects

should be considered when designing fault-tolerant NoC-based systems-on-chip.

For example, one has to consider node connectivity that is defined as the

minimum number of nodes and links that have to fail before the network

becomes disconnected or average node-pair distance and the network diameter

(the maximum node-pair distance), both calculated given the probability of node

and/or link failure (Koren & Krishna, 2007). In 2007 Ejlali, Al-Hashimi,

Rosinger, and Miremadi proposed performability metric to measure the

performance and reliability of communication in joint view. Performability

P(L, T) of an on-chip interconnect is defined as the probability to transmit L

useful bits during the time T in the presence of noise. In presence of erroneous

communication re-transmission of messages is needed which reduces probability

to finish the transmission in a given time period. Lowering the bit-rate increases

the time to transmit the messages but also increases probability to finish the

transmission during the time interval. According to authors the performability of

an interconnect that is used for a safety-critical application must be greater than

1-10
-1

.

2.6.3 Fault tolerance techniques

Fault tolerance has been extensively studied in the field of distributed systems

and bus-based SoCs. In the paper of Miremadi and Torin (1995) the impact of

transient faults in a microprocessor system is described. They use three different

error detection mechanisms – signature, watchdog timer, and error capturing

instruction (ECI) mechanism. Signature is a technique where each operation or a

set of operations are assigned with a pre-computed checksum that indicates

whether a fault has occurred during those operations. Watchdog Timer is a

technique where the program flow is periodically checked for presence of faults.

Watchdog Timer can monitor, for example, execution time of the processes or to

calculate periodically checksums (signatures). In the case of ECI mechanism,

redundant machine-instructions are inserted into the main memory to detect

control flow errors.

Once a fault is detected with one of the techniques above, it can be handled

by a system-level fault tolerance mechanism. In 2006, Izosimov described the

following software based fault tolerance mechanisms: re-execution, rollback

recovery with checkpointing and active/passive replication. Re-execution

restores the initial inputs of the task and executes it again. Time penalty depends

on the task length. Rollback recovery with checkpointing mechanism reduces the

time overhead – the last non-faulty state (so called checkpoint) of a task has to

be saved in advance and will be restored if the task fails. It requires checkpoints

to be designed into the application that is not a deterministic task. Active and

passive replication utilizes the spare capacity of other computational nodes. In

60

2007, Koren and Krishna described fault tolerant routing schemes in macro-

distributed networks.

Similarly to distributed systems, NoC is based on a layered approach. The

fault tolerance techniques can be classified by the layer onto which they are

placed in the communication stack. We are, however, dividing the fault

tolerance techniques into two bigger classes – system-level and network-level

techniques. At the network level, the fault tolerance techniques are based, for

example, on hardware redundancy, error detection/correction and fault tolerant

routing. By system-level fault tolerance we mean techniques that take into

account application specifics and can tolerate even unreliable hardware.

One of the most popular generic fault tolerance techniques is n-modular

redundancy (NMR) that consists of n identical components and a voter to detect

and mask failures. This structure is capable of masking (n - 1)/2 errors having n

identical components. The most common values for n are three (triple modular

redundancy, TMR), five and seven capable of masking one, two and three errors,

respectively. Because a system with an even number of components may

produce an inconclusive result, the number of components used must be odd

(Pan & Cheng, 2007). NMR can be used to increase both hardware and system-

level reliability by either duplicating routers, physical links or running multiple

copies of software components on different NoC processing cores.

Pande, Ganguly, Feero, Belzer, and Grecu (2006) propose a joint crosstalk

avoidance and error correction code to minimize power consumption and

increase reliability of communication in NoCs. The proposed schemes,

Duplicate Add Parity (DAP) and Modified Dual Rail (MDR), use duplication to

reduce crosstalk. Boundary Shift Code (BSC) coding scheme attempts to reduce

crosstalk-induced delay by avoiding shared boundary between successive

codewords. BSC scheme is different from DAP scheme, such that at each clock

cycle, the parity bit is placed on the opposite side of the encoded flow control

unit. Data coding techniques can be used in both inter-router and end-to-end

communication. Dumitras and Marculescu (2003) propose a fast and

computationally lightweight fault tolerant scheme for the on-chip

communication, based on an error-detection and multiple-transmissions scheme.

The key observation behind the strategy is that, at the chip level, the bandwidth

is less expensive than in traditional networks because of the existing high-speed

buses and interconnection fabrics that can be used for the implementation of a

NoC. Therefore we can afford to have more packet transmissions in order to

simplify the communication scheme and to guarantee low latencies. Dumitras

and Marculescu call this strategy where IP’s communicate using probabilistic

broadcast scheme – on-chip stochastic communication. Data is forwarded from a

source to destination cores via multiple paths selected by probability. Similar

approach is proposed by Pirretti, Link, Brooks, Vijaykrishnan, Kandemir, and

Irwin (2004) and by Murali, Atienza, Benini, and De Micheli (2006). Lehtonen,

Liljeberg and Plosila (2009) describe turn models for routing to avoid deadlocks

and increase network resilience for permanent faults. Kariniemi and Nurmi

61

(2005) present a fault tolerant Extended Generalized Fat Tree (XGFT) NoC that

comes with a fault-diagnosis-and-repair (FDAR) system. The FDAR system is

able to locate faults and re-configure routing nodes in such a way that the

network can route packets correctly despite the faults. The fault diagnosis and

repair is very important as there is only one routing path available in the XGFTs

for routing the packets downwards from nearest common ancestor to its

destination. Frazzetta, Dimartino, Palesi, Kumar and Catania (2008) describe an

interesting approach where partially faulty links are also used for

communication. For example, data can be transmitted via “healthy wires” on a

24-bit wide channel although the channel is before degrading 32-bit wide.

Special method is used to split and resemble the flow control units. Zhang, Han,

Xu, Li and Li (2009) introduce virtual topology that allows using spare NoC

cores to replace faulty ones and re-configure the NoC to maintain the logical

topology. A virtual topology is isomorphic with the topology of the target design

but is a degraded version. From the viewpoint of programmers and application,

they always see a unified virtual topology regardless of the various underlying

physical topologies. Another approach is to have a fixed topology but remap the

tasks on a failed core. Ababei and Katti (2009) propose a dynamic remapping

algorithm to address single and multiple processing core failures. Remapping is

done by a general manager, located on a selected tile of the network.

In Valtonen, Nurmi, Isoaho and Tenhunen (2001) view, reliability problems

can be avoided with physical autonomy, i.e., by constructing the system from

simple physically autonomous cells. The electrical properties and logical

correctness of each cell should be subject to verification by other autonomous

cells that could isolate the cell if deemed erroneous (self-diagnosis is

insufficient, because the entire cell, including the diagnostic unit, may be

defect). In 2007, Rantala, Isoaho and Tenhunen motivated the shift from low

level testing and testability design into system-level fault tolerance design. They

propose an agent-based design methodology that helps bridging the gap between

applications and re-configurable architectures in order to address the fault

tolerance issues. They add a new functional agent/control layer to the traditional

NoC architecture. The control flow of the agent-based architecture is divided

hierarchically to different levels. The granularity of functional units on the

lowest level is small and grows gradually when raised on the levels of

abstraction. For example the platform agent at the highest level controls the

whole NoC platform while a cell agent monitors and reports status of a

processing unit to higher level agents. Rusu, Grecu and Anghel (2008) propose a

coordinated checkpointing and rollback protocol that is aimed towards fast

recovery from system or application level failures. The fault tolerance protocol

uses a global synchronization coordinator recovery management unit (RMU)

which is a dedicated task. Any task can initiate a checkpoint or a rollback but the

coordination is done each time by the RMU. The advantages of such an

approach are simpler protocol (no synchronization is needed between multiple

RMUs), less hardware overhead and smaller power consumption. The drawback

is the single point of failure – the dedicated RMU itself.

62

As a conclusion, there are various techniques to increase NoC fault tolerance

but most of the research has been so far dedicated to NoC interconnects or fault

tolerant routing. With technology scaling transient faults play an important role.

An application running on a NoC must be aware of transient faults and be able to

detect and recover efficiently from them. In Chapter 6 we propose a system-level

technique to tolerate a given number of transient and intermittent faults. We

have extended the shifting-based scheduling approach proposed by Izosimov

(2006). We have extended it with communication fault tolerance requirements

and integrated it with our contention-aware scheduling.

2.7. Network-on-chip simulators

System simulation is an important part of the system-level design flow. It allows

performing design space exploration and evaluation of performance and other

system metrics. There are two classes of simulators used in NoC research –

established tools that have been used in computer networking research and

simulators that have been developed specifically for the NoC domain. Some

examples of general-purpose network simulators are OPNET, OMNeT++ and

NS-2. OPNET accelerates the research and development process for analysing

and designing communication networks, devices, protocols, and applications

(OPNET, 2011). OMNeT++ is a discrete event simulation environment. Its

primary application area is the simulation of communication networks, but

because of its generic and flexible architecture, it is successfully being used in

other areas like the simulation of complex IT systems, queuing networks or

hardware architectures (OMNeT++, 2011). NS-2 is a discrete event simulator

targeted at networking research, providing support for simulation of TCP,

routing, and multicast protocols over wired and wireless networks (Nework

simulator NS-2, 2011). All those simulators have found their usage also in NoC

domain.

In the next pages we will give an overview of a selection of network-on-chip

simulators that we have used in our research. Although, these simulators target

the same NoC domain we can see the diversity in their functionality and

implementation details. There is always a careful analysis needed before using a

new NoC simulator. This includes for example NoC architecture parameters

such as topology, routing algorithm, switching method and delay model of

routers. All the NoC simulators below have been interfaced with our system-

level design framework. The interfacing implementation details are given in

Chapter 3.

2.7.1 Noxim

Noxim is a network-on-chip simulator developed in SystemC at the University

of Catania (Italy). Noxim has a command line interface for defining several NoC

architecture parameters. User can customize several parameters such as network

63

size, buffer size, packet size distribution, routing algorithm, path selection

strategy, packet injection rate and different traffic distributions. The simulator

allows NoC evaluation in terms of throughput, delay and power consumption.

This information is delivered to the user both in terms of average and per-

communication results. In detail, the user is presented with different evaluation

metrics including the total number of received packets/flits, global average

throughput, max/min global delay, total energy consumption and per-

communications delay/throughput/energy (Palesi, Patti, & Fazzino, 2011).

Noxim packet format is defined by two C++ structures NoximPacket and

NoximFlit. Noxim packet consists of a specified number of flits. This determines

the packet size. The abstract view of the Noxim flit format is depicted in Figure

2.12a. The payload size is 32 bits. Noxim provides a separate SystemC

processing module where custom application simulation kernel logic can be

implemented. Having a modular design where input configuration can be given

via command line without re-compilation makes Noxim easy to use also for

design space exploration (batch simulation).

2.7.2 NIRGAM

NIRGAM is a SystemC-based discrete event, cycle accurate simulator for

research in network-on-chip. NIRGAM has been collaboratively developed

between University of Southampton (UK) and Malaviya National Institute of

Technology Jaipur (India). NIRGAM provides functionality for experimenting

with different NoC topologies in terms of routing algorithms and applications

(NIRGAM, 2011). It supports mesh and torus topologies. Routing algorithms

include deterministic XY, adaptive odd-even and source routing. Constant bit-

rate, bursty and trace-based traffic generators are included. User can configure

additionally the clock frequency, buffer depths, flit size and number of virtual

channels. The main configuration file captures the NoC architecture and

simulation specific parameters, while the second configuration file describes the

application mapping (tile ID and corresponding C++ shared library file). The

simulator can output different performance metrics (latency and throughput) for

a given set of choices. The abstract view of the NIRGAM flit formats are

depicted in Figure 2.12b. The flit and payload sizes are configurable parameters.

In similar way to Noxim the NIRGAM simulator is modular and does not

require re-compilation of software when changing architecture parameters.

2.7.3 XHiNoC

XHiNoC that stands for Extendable Hierarchical NoC is a re-configurable NoC

with synchronous parallel pipeline router architecture. The XHiNoC is

developed based on synthesizable modular VHDL objects at Darmstadt

University of Technology (Germany). VHDL is a hardware description language

for use in electronic systems design and verification (IEEE Standard 1076-2008

on VHDL language, 2008). XHiNoC provides a flexible shared communication

64

media by utilizing a unique concept of locally organized packet identity (ID)

division multiple access (IDMA). Local ID slots are distributed over every

communication link, which can be attached to every flit of a packet or data

stream as its local ID-tag (Figure 2.12c). This switching technique has been

described in more detail in Section 2.3.2. The core of the simulator is written in

VHDL, while there is a SystemC wrapper on top of the XHiNoC that

implements the core network interface functions such as send and receive. The

router implementation in VHDL can be synthesized down to hardware to

measure the area and power consumption. Different from Noxim and NIRGAM

the XHiNoC co-simulation parameters cannot be specified via command line or

configuration file. Each change in NoC architecture parameters requires changes

in VHDL and SystemC interface files that connect together the routers/tiles. It is

a tedious manual work. Fortunately, XHiNoC has been interfaced with ATLAS

front-end that is able to generate the required VHDL/SystemC co-simulation

files for selected NoC architecture parameters. The differences in technical

parameters between the three described simulators are summarized in Table 2.1.

2.7.4 ATLAS

The ATLAS environment automates the various processes related to the design

flow for some of NoCs that are part of the framework. Currently the ATLAS

framework supports Hermes, Mercury and XHiNoC NoC implementations. The

ATLAS design flow is composed by the following stages: NoC generation,

traffic generation, simulation, performance and power evaluation. In the NoC

Type -

Header
ID X source Y source Z source X target Y target Z target Extension

Type -

Body
ID Payload

Type -

Tail
ID Payload

Source tile

ID

Destination

tile ID
Timestamp Payload

Virtual

channel ID

Source tile

ID

Flit

type

Packet

ID
Flit ID

Routing

algorithm

Routing

header
Header payload

Virtual

channel ID

Source tile

ID

Flit

type

Packet

ID
Flit ID Payload

a) Noxim flit format

b) NIRGAM flit formats

c) XHiNoC flit formats

Flit

type
Flit ID

Hop

number

0

0

0

31

31

3132353639

32353639

32353639

7811121516192023242728

Figure 2.12. Flit formats of different NoC simulators

65

generation, the NoC parameters such as channel bandwidth, buffer depth,

number of virtual channels, flow control strategies are configured. In the traffic

generation, the traffic scenarios are generated to characterize the applications

which execute on the NoC. In the simulation data is injected to the network

according to generated traffic scenarios. In the performance evaluation, ATLAS

can generate graphics, tables, maps and reports to help in the analysis of

obtained results. The power evaluation gives estimates on NoC power usage

(ATLAS, 2011).

2.8. Summary

In this chapter we have addressed several system-on-chip design challenges that

have emerged together with technology scaling and due to increase of the design

complexity. The main challenges are design productivity, system

synchronization and global wiring. Wires do not scale as rapidly as transistors.

Interconnect wires account for a significant fraction (up to 50%) of the energy

consumed in an integrated circuit and is expected to grow in the future.

Interconnects also add a new dimension to the design complexity. As

interconnects shrink and come closer together, previously negligible physical

effects like crosstalk become significant. Local wires scale in performance while

global and fixed-length wires do not. When the number of components increases

rapidly, we have a situation where the clock signal cannot be distributed over the

entire SoC during one clock cycle. Network-on-chip is one of the possibilities to

overcome some of the on-chip communication scalability problems. In NoC-

based systems the communication is achieved by routing packets through the

network infrastructure rather than routing global wires. To design an on-chip

communication infrastructure and to meet the performance requirements of an

application, a designer has certain design alternatives that are governed by

topology, switching, routing and flow control of the network. In this chapter we

have given an overview of the key concepts and terminology of NoCs. We have

presented the classical system-level design flow and have described some of the

well-known scheduling and mapping techniques. Communication parameters

(inter-task communication volume, link latency and bandwidth, buffer size)

might have major impact to the performance of applications implemented on

NoCs. We have given an overview of the key research challenges of NoC-based

systems. We have described the issues related to dependability of SoCs and gave

a survey of different methods to increase fault tolerance of these systems. The

last part of this chapter has been devoted to NoC simulators.

6
6

Table 2.1. Comparison of different NoC simulators

 Noxim NIRGAM XHiNoC (+ ATLAS frontend)

Topology mesh mesh, torus mesh

Routing XY, west-first, north-last, negative-

first, odd-even, dyad, fully-adaptive,

source routing

XY, odd-even, source routing XY

Switching wormhole wormhole IDMA

Traffic types random, transpose1, transpose2, bit-

reversal, butterfly, shuffle

constant bit rate, bursty, trace-based random, hot-spot, custom traffic rules

Configurable

options

buffer depth, packet injection rate,

warmup period

clock frequency, buffer depth, flit

size, number of virtual channels

Flit-width, buffer-depth

Performance

analysis

total number of received packets/flits,

global average throughput, max/min

global delay, total energy consumption,

per-communication statistics

average latency per packet, average

latency per flit, average throughput (in

Gbps) – all reported separately for

each channel

throughput, latency distribution graphs,

link analysis, latency analysis

67

Chapter 3. System-Level Design for NoC-

Based Real-Time Systems

In the previous chapter an introduction to the classical system-level design

methodology together with an overview of the design and dependability issues

of NoC-based systems-on-chip has been given. The purpose of this chapter is to

address in more detail the communication modelling problem of NoC-based

real-time systems. First, we give a motivation why the inter-processor

communication (IPC) needs to be modelled in NoCs. Second, we introduce our

system-level design flow. We provide a description and definition of the system

model and formulate the design problem. Next, we describe the communication

synthesis method and demonstrate how it is being used during application

scheduling. The last part of the chapter explains how our system-level design

framework is interfaced with the XHiNoC simulator, followed by the

experimental results.

The main results of this chapter have been published in the following papers:

Tagel, M., Ellervee, P., Hollstein, T., & Jervan, G. (2011). Contention-aware

scheduling for NoC based systems. Proceedings of the 29th Norchip conference,

(pp. 1-4). Lund, Sweden.

Tagel, M., Ellervee, P., Hollstein, T., & Jervan, G. (2011). Communication

modelling and synthesis for NoC-based systems with real-time constraints.

Proceedings of the 14th IEEE Symposium on Design and Diagnostics of

Electronic Circuits and Systems (pp. 237 - 242). Cottbus, Germany.

3.1. Motivation

If inter-processor communication would take zero cycles we could exploit all

available parallelism at minimum cost. In reality, the performance of

applications implemented on NoCs is influenced heavily by different NoC

communication parameters, such as inter-processor communication volume, link

latency, bandwidth and buffer size. There is a trade-off between the amount of

parallelism utilized and overhead of the network communication. Keeping tasks

mapped on a few processing cores reduces the amount of inter-processor

communication but increases the schedule length. On conversely, mapping tasks

on distant processing cores only to utilize the parallelism may not be the

optimum solution. On top of the communication delay a message transfer in the

network could experience unexpected network contentions. Therefore, in order

to guarantee predictable behaviour and to satisfy performance constraints of

68

real-time systems, a careful selection of application partitioning, mapping and

synthesis algorithms is required.

Several authors have investigated communication behaviour in NoC-based

systems and considered average or worst case communication delay. Papers by

Lei and Kumar (2003) and Marcon, Kreutz, Susin, and Calazans (2005)

approximate the communication delay without considering the congestions. In

the paper by Shin and Kim (2004) the worst case communication delay gets

estimated by assuming that the worst case communication delay at each link is

the time required to transfer all communication loads assigned to the link. As

authors state, it is a pessimistic communication delay model. There are also

papers that use architectural or network level means to hide the communication

modelling complexities. In 2006, Stuijk, Basten, Geilen, and Ghamarian

described a scheduling problem of time-constrained communication of a

streaming application on a NoC. The approach uses time division multiple

access (TDMA) channel access method with wormhole switching and tries to

minimize resource (TDMA slot table) usage while guaranteeing communication

latency. Complexity of maintaining TDMA slot table for each link and for any

time interval is not addressed. Such an approach requires having more complex

routers with TDMA support. In 2008, Shim and Burns proposed a priority-based

pre-emptive arbitration with virtual channels and wormhole switching. This

scheme allows authors to calculate upper bounds of network delay by

considering direct interference from higher priority traffic-flows and indirect

interference where two traffic-flows do not share any physical link but there is

(are) intervening traffic flow(s) between the given two traffic-flows. This

analysis gives pessimistic estimates that are used to guarantee delays of hard

real-time traffic. The work of Lu (2007) similarly considers direct and indirect

interference by building a congestion tree. An algorithm was developed by the

author to estimate worst-case performance of real-time messages and to conduct

the feasibility analysis. The analysis returns the pass ratio, i.e., the percentage of

feasible messages, and network utilization of the feasible messages. Wormhole

switching with virtual channels is a requirement. The author assumes that there

is sufficient number of virtual channels available to service high-priority

communication. Additionally, the pipeline latency is simplified on links so that

the flits of a message will reserve all the link bandwidth along the message path

simultaneously for the whole duration of its communication time. It can produce

more pessimistic schedule as link bandwidth is reserved even when the virtual

channel setup/tear-down is done gradually link-by-link. The work of Millberg,

Nilsson, Thid, and Jantsch (2004) describes virtual channels implemented using

a combination of looped containers and temporally disjoint networks (TDN).

TDNs are results of the topology of the network and the number of buffer stages

in the switches. Packets residing in the neighbouring time/space slots could be

seen as being in different networks and therefore disjoint. Instead of scheduling

the communication it is disjoint spatially. As the communication might not

temporally conflict with each other this approach can possibly have waste of

resources such as link bandwidth and switch buffers.

69

Our proposed method is an extension of the edge scheduling approach

described for distributed systems by Sinnen and Sousa (2005). A similar

approach, where communication edges of a task graph are mapped to the

physical network topology can be found also in the NoC domain (Hu &

Marculescu, 2005; Manolache, Eles, & Peng, 2007). In 2005, Hu & Marculescu

have described in their scheduling heuristic a sub-procedure that calculates the

data ready time of the tasks. According to presented pseudocode, a

communication transaction is always scheduled to the earliest possible start time

while reserving the whole path. In real network-on-chip implementations, link

reservation and tear down is an incremental process. Moreover, on a routing path

a message can experience network contentions delaying delivery of the data. It

will lead to the communication schedule described by Sinnen & Sousa in 2005

as a nonaligned approach. The downside of the nonaligned approach is that it

requires routers to have schedule tables so that they could reserve the needed

bandwidth in advance for upcoming traffic. Otherwise, another communication,

starting earlier and sharing the same communication link, could take the full

bandwidth and invalidate possibly the rest of the schedule. In our approach both

of the problems are considered.

Manolache, Eles, & Peng have proposed in 2007 a task graph extension with

detailed communication dependencies employing virtual cut-through switching

with deterministic dimension-order XY routing. We have generalized the

proposed approach and made it compatible with different switching methods

such as store-and-forward and wormhole switching. In contrast to many

published work on NoC communication scheduling, our approach is

minimalistic in a sense, that it will operate on a resource minimized NoC

without virtual channels. Since virtual channels have been turned out to be

extremely area consuming, for many applications using them is no option and

much more hardware-efficient router architectures are required in order to come

up with cost-efficient solutions (Samman, Hollstein, & Glesner, 2008).

3.2. System-level design flow and definitions

We are using a classical system-level design flow that we have extended to

include the aspects of NoC communication modelling (Figure 3.1). Input to the

system-level design flow is an application A, a NoC architecture N and an

application mapping M. Important parts of the design flow are the

communication synthesis and scheduling, that are performed together with task

scheduling. The resulting schedule is verified by executing the application on the

XHiNoC simulator. If simulation results do not correspond to scheduling results

refinement of the NoC delay model may be needed. Optionally, we can perform

a design optimization loop trying to improve the schedule and/or the task

mapping.

70

Definition 3.1 (Task Graph). An application A is specified as a directed acyclic

graph A = (T, C, wcet, comm), where T = {ti | i = 1,…,T} is set of vertices

representing non-preemptive tasks and C = {ci,j | (i,j) {1,…,V} x {1,…,V}} is a

set of edges representing precedence constraints between tasks. Each task ti is

characterized by the Worst Case Execution Time (WCET) wceti, while each edge

carries the communication cost commi,j between the tasks ti and tj.

Task WCET can be extracted from application execution trace or obtained

via static analysis. The paper by Wilhelm, et al. (2008) describes various

methods in detail. In this thesis we assume that the task graphs together with the

computation and communication volumes are given. The set {tpV : cp,i  C} of

all direct predecessors of ti is denoted by pred(ti) and the set {tsV : ci,s  C} of

all direct successors of ti is denoted by succ(ti). A vertex without predecessors

(pred(t)= ) is named source node and vertex without successors (succ(t)=) is

named sink node. We assume that the application has dummy source and sink

vertices. Both vertices have wcet = 0. An edge ci,j that connects two tasks ti and

tj represents either control flow dependency when the communication cost

(message size) commi,j = 0 or communication when the commi,j > 0. However, if

two tasks having control flow dependency are mapped to different computing

resources, a message is sent from ti to tj to trigger its execution. Figure 3.2

depicts task graph representation of a robot control application extracted and

visualized from MCSL benchmark suite (Liu, et al., 2011). The application

consists of 88 tasks and has 131 edges.

Application

 (task graph)
NoC architecture Task mapping

Partitioning &

Mapping

Communication

synthesis and

scheduling

Schedule tasks

co
n
st

ra
in

ts
 n

o
t

sa
ti

sf
ie

d

u
p
d
at

e
th

e
N

o
C

 d
el

ay
 m

o
d
el

Lower levels of HW/SW Co-design

Schedule verification on

XHiNoC (VHDL & SystemC

co-simulation)

Design

optimisation

Figure 3.1. System-level design flow

71

t87

t86

e130

t85

e129

t84

e126

t83

e125

t82

e123

t81

e122

t80

e131

t79

e124 e117 t78

e120

t77

e119

t76

e112

t75

e111

t74

e108

t73

e107

t72

e115 e113

t71

e103 e102

t70

e106

t69

e105

t68

e98

t67

e100t66

e96

t65

e95

t64

e91

t63

e90

t62

e88

t61

e89

t60

e87

t59

e82t58

e86

t57

e84

t56

e81

t55

e93e92

t54

e80t53

e85

t52

e83

t51

e94

t50

e79e78e77

t49

e76 e75 t48

e99

e97

t47

e74

t46

e69

t45

e73t44

e72e71e70

t43

e68

t42

e67

t41

e104

t40

e66 e62e61

t39

e65

t38

e109

e101

t37

e110

t36

e64

t35

e56

t34

e60

e59

e58e57

t33

e54

t32

e55 t31

e63

t30

e52 e51

t29

e40

t28

e118

e114

t27

e121

t26

e39

t25

e38 t24

e50

t23

e49

t22

e48

t21

e47

t20

e46e45 e44 e43

t19

e53e42 e41

t18

e37e36

t17

e24

t16

e22

t15

e127

e116

t14

e21 t13

e35

t12

e33

t11

e20t10

e34

t9

e32

t8

e31 e30 e29 e28e27e26e25

e23

e19

t7

e17

t6

e16

t5

e14 e13 e12

e8

t4

e11e10 e9

e7

t3

e4 t2

e128

t1

e18 e15

t0

e6 e5

e3e2

e1 e0

S

e132

e131

Figure 3.2. Task graph of a robot control application

72

Definition 3.2 (Network model). The NoC architecture is modelled as a

directed graph N = (R, L) where R = {rk | k = 1,…,R} is a set of vertices

(resources) and L = {lk,l | (k,l) {1,…,R} x {1,…,R}} is a set of directed edges

(communication links) connecting a pair of resources (k,l).

An example of a 3x3 2D-mesh NoC architecture graph is depicted in Figure

3.3. As such network model captures the connectivity and routing possibilities

between the nodes it is also referred to as topology graph in the literature

(Sinnen & Sousa, 2005). Resources in the network model are routers, network

interfaces and homogenous computational cores. In the NoC topology graph we

do not distinguish separately between a network interface and a computational

core – they are represented as one vertex. Communication links are all bi-

directional, each direction having a separate edge in the network graph. The

architecture is characterized by topology, routing algorithm, switching method

and the delay model of the network components. The network delay model

described in this work comprises of the router processing delay Drouter, the

channel transmission delay Dchannel and the path setup delay Dsetup. The routing

path from rk to rl is denoted by rk,l and 𝐿(rk,l) is set of links that make up the path

rk,l.

Router_8

Core_8

NI8_1

Router_7

Channel_8_7

Router_5

Channel_8_5

NI8_0 Channel_7_8

Core_7

NI7_1

Router_6

Channel_7_6

Router_4

Channel_7_4

Channel_5_8

Channel_5_4

Core_5

NI5_1

Router_2

Channel_5_2

NI7_0

Channel_6_7

Core_6

NI6_1

Router_3

Channel_6_3

Channel_4_7

Channel_4_5Channel_4_3

Core_4

NI4_1

Router_1

Channel_4_1

NI6_0

Channel_3_6

Channel_3_4

Core_3

NI3_1

Router_0

Channel_3_0

NI5_0

Channel_2_5

Channel_2_1

Core_2

NI2_1

NI4_0Channel_1_4

Channel_1_2Channel_1_0

Core_1

NI1_1

NI3_0

Channel_0_3

Channel_0_1

Core_0

NI0_1 NI2_0

NI1_0

NI0_0

Figure 3.3. A 3x3 2D-mesh network-on-chip graph representation

73

Definition 3.3 (Mapping). Function M(TR) associates each task ti from the

set T = {ti | i = 1,…,T} with a NoC computing resource rk that is selected from

the set R = {rk | k = 1,…,R}.

An example task graph consisting of 5 tasks and its mapping to a 2x3 mesh

NoC is depicted in Figure 3.4. Task mapping can be given as input to the

system-level design flow or we can perform design space exploration trying to

find a mapping that satisfies the design constraints. Applying design

optimization techniques to our system model are described in more detail in

Chapter 5.

Definition 3.4 (Extended Task Graph). Given an application A, a network

model N and a mapping function M the result of the communication synthesis is

an extended task graph (ETG) where the communication edges between the tasks

are transformed into a sequence of nodes (communication sub-graph)

representing the flow control units.

For each communication link the message is passing a new vertex is added

into the extended task graph. There is an example ETG depicted in Figure 3.5.

The communication synthesis process is explained in more detail in Chapter 3.4.

Assumptions on architecture

Our work focuses on the system-level design of network-on-chip based real-time

systems-on-chip. The results produced by the system-level methods must be

predictable and meet the design requirements. To guarantee the predictability

and to handle system-level modelling complexity, we assume throughout this

a)

PU3

RNI

R

PU4

RNI

R

PU1

RNI

R

PU2

RNI

R

t0

t3

t1

link2

link1

PU5

RNI

R

PU6

RNI

R

t2 t4

link3

t0

t2

t3

t4

t1

Begin

End

3c
1c 2c

b)

Figure 3.4. An example task graph and its mapping to a 2x3 2D-mesh NoC

74

t0

t2

t3

t4

t1

Begin

End

3c
link3

1c

link2

link3

link1 2c

link3

link2

Figure 3.5. Extended task graph

Network Interface

Task and

communication

scheduler

CPU

Local

memory

Router

Buf

Buf

Buf

Figure 3.6. Local processing core

75

thesis the following NoC architecture. In our system model we assume that each

processing core is controlled by a scheduler that takes care of the task execution

on the core and schedules the message transfers between the tasks. Otherwise a

task that completes earlier than its WCET and starts a message transfer could

lead to an unexpected network congestion and have a fatal effect on the global

execution schedule.

We are employing static scheduling to obtain performance characteristics of

an application and resulting schedule. It is important to note that in this work our

main focus is not on the schedulability analysis but on a method for fast and

efficient system analysis. The full application schedule is calculated offline. A

partial schedule that consists of events related only to a specific processing core

is stored in each local scheduler memory. Figure 3.6 depicts an extract of a NoC

router and its connected core.

We assume that the size of an input buffer is one flow control unit

(packet/flit). No output buffering is used. The input buffer of one flow control

unit together with its incoming communication link can be considered as one

shared resource during communication synthesis. Head-of-line blocking and

deadlocks are avoided by construction – communication messages are scheduled

to avoid resource conflicts and messages are injected into the network

deterministically, only at respective scheduled time moments. As mentioned in

Chapter 2.3.3, adaptive routing provides features such as load-balancing and

increased failover. However, it is more hard to guarantee deadlock freedom and

performance constraints. To have a predictable communication model we

assume the use of deterministic routing algorithms. In our experiments we are

using dimension-order XY routing.

3.3. Sources of network contention

The NoC platform introduces communication latency that depends not only on

the message size but also on the resource mapping and needs to be taken into

account. It means that communication modelling must take into account both

spatial and temporal information. Otherwise one will not be able to analyse the

impact of network conflicts on application temporal behaviour. Since virtual

channels have been turned out to be extremely area consuming, for many

applications using them is no option and much more hardware-efficient router

architectures are required in order to come up with cost-efficient solutions

(Samman, Hollstein, & Glesner, 2011). Furthermore, we assume to have a NoC

architecture with best-effort services without packet interleaving. As such

communication infrastructure is hardware efficient but does not guarantee

communication delays it is important for a predictable design flow to explicitly

synthesize and schedule the communication. A communication schedule could

be extracted by simulating the application on a NoC simulator, but the

simulation speed will be the limiting factor.

76

A message transfer between two communicating tasks goes through a set of

stages at which network resources must be acquired. Lack of available resources

at any point of time causes network contentions. We can distinguish two types of

contentions (Sinnen & Sousa, 2005):

 end-point contention – refers to the contentions in network

interfaces. Only a limited number of communications can pass from

the processing core into the network and vice versa;

 network contention – is caused by the limited number of resources

within the network. To successfully handle this kind of contention in

scheduling, an accurate model of the NoC is required.

All limited network resources (network interface, routers) are part of our

system model, therefore we are able to capture both the end-point and the

network contentions.

The proposed communication scheduling method is similar to the edge

scheduling approach described for distributed systems by Sinnen and Sousa

(2005). In edge scheduling, communication resources are treated like processors

in the sense that only one communication can be active on each resource at a

time. Thus, edges are scheduled onto the communication links for the time they

occupy them. Sinnen and Sousa (2005) also describe two possible alternatives

for determining scheduling times on a route with contentions:

 nonaligned approach – on link link2, cy is delayed until the link is

available (Figure 3.7a);

 aligned approach – alternatively, cy can be scheduled later on all

links (Figure 3.7b). For example it starts on all links after

communication cx finishes on link2.

According to Sinnen and Sousa the nonaligned approach allows

determination of the start and finish time successively for each link on the route.

The downside of the nonaligned approach is that it requires routers to have

schedule tables so that they could reserve the needed bandwidth in advance for

upcoming traffic. Otherwise, another communication, starting earlier and sharing

the same communication link, could take the full bandwidth and invalidate

possibly the rest of the schedule.

link1

link2

link3

time

cy

cy

cy

cx

link1

link2

link3

time

cy

cy

cy

cx

a) nonaligned view b) aligned view

Figure 3.7. Edge scheduling on a route with contention.

77

In our proposed approach communication is modelled as part of the extended

task graph. It has several advantages – there is no need for a separate

communication model and communication is embedded in a natural way into the

task graph. Communication synthesis and scheduling can be applied directly on

the extended task graph model. Moreover the ETG carries scheduling data that is

needed in later phases to output the schedule for simulation.

3.4. Communication synthesis

As already mentioned in the introduction of this chapter, communication

synthesis plays an important role in our system-level design flow. In short, it

transforms a regular task graph edge into a communication sub-graph based on

the communication links a message traverses. We get an extended task graph

containing information about both tasks and communications, enabling uniform

treatment of computation and communication. In this section we describe the

communication synthesis in detail.

In Figure 3.8, an example task graph (Figure 3.8a) and its mapping onto five

processing units (Figure 3.8b) has been presented. Task t0 is mapped onto PU1, t1

onto PU2 etc. It can be seen in Figure 3.8b that communication c1 (from t0 to t2)

takes three links (link1, link2, link3) while c2 (from t1 to t2) takes two links (link2,

link3). For the sake of simplicity the communication link between the network

interface and the router is omitted in this example but always included in the real

model. The physical links, which the communication traverses, are shared

resources. It means that in addition to calculating the communication latencies

we need to have a method to take into account the network conflicts as well. To

determine the schedule length for a given mapping the communication needs to

be synthesized and scheduled together with the tasks.

For each communication link the message is passing a new vertex is added

into the extended task graph (Definition 3.4 in Section 3.2). Figure 3.8 depicts

the synthesis process for the communication c1 (between tasks t0 to t2). The

communication passes three links (link1, link2, link3). In Figure 3.8c the

communication c1 is on link1 and this is represented in the extended task graph

by adding a corresponding vertex. In the next step, depicted in Figure 3.8d, the

communication c1 has advanced to link2. A corresponding vertex is added into

the extended task graph that captures also the precedence constraint of the

messages on the communication links. We cannot schedule the message on link2

before it has been scheduled on link1. The process is repeated until the whole

routing path of the message has been traversed and complete communication

sub-graph built.

7
8

c) Communication c1

on link1

d) Communication c1

on link1 and link2

t0

t2

t3

t4

t1

Begin

End

3c
1c

2c

PU3

RNI

R

PU4

RNI

R

PU1

RNI

R

PU2

RNI

R

t0

t3

t1

link2

link1

PU5

RNI

R

PU6

RNI

R

t2 t4

link3

t0

t2

t3

t4

t1

Begin

End

3c

1c
2c

link1

t0

t2

t3

t4

t1

Begin

End

3c

1c
2c

link1

link2

b) task mapping on NoC

a) task graph

Figure 3.8. Two example steps of communication synthesis

79

Figure 3.9a depicts the result of the communication synthesis process for

communications c1, c2 and c3. Those communication vertexes are scheduled

together with the tasks. The communication can be represented in the extended

task graph on various granularity levels. In the previous example a vertex in the

ETG represented a whole message. In this case the graph complexity depends on

the number of tasks, routing algorithm Ralgo, NoC size and mapping. This is

represented by the function Gcomplexity = (A, N, M, Ralgo). An analysis is given in

the experimental results (Chapter 3.7.1) on the scaling of the approach for

different application and NoC sizes. A vertex that is being added into the task

graph during communication synthesis could represent in a similar way also a

packet or a flit. It gives more flexibility during scheduling at the cost of

increased task graph size. Chapter 4.1 analyses such trade-off in more detail.

3.5. Contention-aware scheduling

Scheduling determines the order of execution of tasks on processing cores.

While a mapping captures a task spatial assignment, the scheduling captures the

temporal behaviour of an application by assigning each task a start time (tstart).

The result of the process is a schedule S that is characterized by the schedule

length Slength (also referred to as makespan). Schedule length is the maximum

time from all processing cores required to finish the task execution. In our work

a schedule is called feasible if it satisfies all precedence and task WCET

constraints.

t0

t2

t3

t4

t1

Begin

End

3c
link3

a)

1c

link2

link3

link1 2c

link3

link2

PU3

RNI

R

PU4

RNI

R

PU1

RNI

R

PU2

RNI

R

t0

t3

t1

link2

link1

PU5

RNI

R

PU6

RNI

R

t2 t4

link3

b)

Figure 3.9. Fully synthesized task graph and its mapping

80

Definition 3.5 (Contention-aware scheduling problem). Given an application

A = (T, C, wcet, comm), a network model N = (R, L) and a mapping function

M(TR) our goal is to take into account network resource conflicts and

schedule both – communication messages and tasks. The resulting schedule S

must be feasible and cycle-accurate to be executed on a NoC simulator.

Our proposed approach can be used with an arbitrary scheduling algorithm,

although in this work we have chosen list scheduling that has been enhanced to

support the communication model. List scheduling is a greedy heuristic using a

priority list and precedence constraints to schedule the tasks and minimise the

schedule length. List scheduling is simple to implement and it has relatively

short schedule calculation time.

The pseudocode of contention-aware scheduling algorithm is depicted in

Figure 3.10. We start by calculating task priorities (line 1) and add the source

task into the ready task list. As a priority function for the list scheduling we are

calculating the task mobility Mobi that is difference between task ASAP (As-

Soon-As-Possible) and ALAP (As-Late-As-Possible) schedule. We sort the

ready task list by mobility (line 5) and schedule a ready task (line 6). We capture

the messages (line 7) that need to be transferred. We insert eligible successor

tasks into ready-to-schedule task list (line 8) and remove the scheduled task from

the list (line 9). After all ready tasks have been scheduled and outgoing

communication captured, we will sort the messages by their ASAP schedule

(line 11) and start the communication synthesis and scheduling for the messages

in the list. The process is repeated until all tasks and communication messages

Contention-aware scheduling

1 calculate task priorities

2 add task with pred(t) =  into ready task list

3 while tasks not scheduled ≠ 

4 for each task in ready task list do

5 sort ready task list based on mobility

6 schedule ready task

7 add first vertex of outgoing communication(s) into comm. list

8 add eligible successor tasks to ready task list

9 remove scheduled task from ready list

10 end for

11 sort communication list based on ASAP schedule

12 for each communication message in comm. list do

13 schedule communication message on the whole route

14 add eligible successor tasks to ready task list

15 remove scheduled message from comm. list

16 end for

17 end while

End Contention-aware scheduling

Figure 3.10. Pseudocode of contention-aware scheduling

8
1

PU3

RNI

R

PU4

RNI

R

PU1

RNI

R

PU2

RNI

R

t0

t3

t1

link2

link1

PU5

RNI

R

PU6

RNI

R

t2 t4

link3

b) task mapping on NoC

t0

t2

t3

t4

t1

Begin

End

3c
1c 2c

a) task graph

t0

t3

PU1

PU4

link1

link2

link3

t1PU2

time

c) tasks t0, t3 and communications c1, c3 have been scheduled

communication

conflict on link3

c1

c1

c1

c3

c2

c2

path setup

delay

channel and switching delay

communication conflict

on link2 and link3

t0

t3

PU1

PU4

link1

link2

link3

time

d) start time of communication c2 has to be delayed two times because of network contentions

c1

c1

c1

c3

final placement of

communication c2

Figure 3.11. An example of contention-aware communication scheduling

82

have been scheduled. In the next sections we will explain in more detail how the

communication is scheduled and how the network contentions are handled.

Additionally, we will describe two modelling aspects that affect the schedule

length.

Communication scheduling with network resource handling

One of our goals is to take into account the network conflicts that occur due to

limited resources in the network. The next example illustrates the contention-

aware scheduling process, having focus on communication scheduling and

describes how the resource conflicts are handled.

Figure 3.11a depicts a task graph with respective mapping in Figure 3.11b. In

Figure 3.11c tasks t0, t3 and communications c1 and c3 have been scheduled. In

Figure 3.11d we have scheduled the task t1 and we start to schedule the

communication c2. Usually we would schedule the communication right after the

task has finished its execution. We can see in Figure 3.11d that for c2 there is a

communication conflict in link2 and link3. We would have to delay start of the

communication. Even if we delay the start time of c2 in link2 there will be

another conflict between c2 and c3 on link3. Therefore, we need to delay the c2 on

link3 to wait for available channel bandwidth. This is done by finding the

maximum schedule time on link3 and scheduling the communication c2
link3

 =

max(link3
time

). After the communication c2 has been scheduled on link3 the

schedule start time of the same message on link2 need to be updated respectively.

It is needed to avoid the problem of nonaligned approach described in the

beginning of this chapter. The communication delay (ci
CD

) of a message is

calculated based on the following formula:

 ci
CD

 = (Drouter + Dchannel) x number_of_flits (5)

where Drouter is the router switching delay and Dchannel the channel delay. The

communication start time on the next link is represented by the formula:

 ci next
start time

 = ci
end time

 + Dsetup (6)

where Dsetup is the path setup delay. After the communication has been scheduled

on the links the formula (ci
endtime

 – ci
starttime

) gives us the total communication

delay of ci.

The pseudocode of the communication scheduling process is summarized in

Figure 3.12. It is a detailed description of the line 13 in the main contention-

aware scheduling algorithm, depicted in Figure 3.10. Input to the procedure is a

task graph edge between two vertices. The edge is synthesized into

communication sub-graph (line 1) according to the communication links the

message traverses. Once the input edge is replaced by a number of

communication vertexes (that are mapped to the communication links) the

communication scheduling starts. First, we get the schedule time of the

communication link where the ready-to-schedule communication vertex is

mapped. Second, we find the maximum schedule time from predecessor vertexes

83

(lines 5-13). If the predecessor vertex is a task then we schedule the

communication at the end of the task execution. If the predecessor vertex

represents communication we will take into account the path setup delay and

shift the start of the communication accordingly. We will determine the final

communication start time by comparing the schedule time from communication

link and predecessor vertexes and choose the maximum (lines 15-21). If we

faced a network contention on the current communication link and delayed the

start time of the vertex then we need to update the communication start time of

all related predecessor communication vertexes (line 22). It is needed to avoid

the problem of non-aligned approach described in the beginning of this chapter.

Figure 3.13 depicts the resulting schedule of the example application (Figure

3.11a). We can see that if we would not have taken into account the network

conflicts we would have got a shorter schedule length that could have led to

unexpected results during the application execution.

ScheduleCommunication(e)

1 first vertex of sub-graph = transform communication edge e

 into sub-graph

2 add into readyToSchedule list the first vertex of communication sub-graph

3 while readyToSchedule ≠ , i = 0 do

4 linkSchedTime = get max schedule time from comm. link the vertex ci is mapped

5 for each incoming edge ij of vertex ci do

6 predecessor vertex cj
pred

 = get source vertex of edge ij

7 if (cj
pred

 is a regular task) then

8 maxTimeFromPredecessor = schedule end time of cj
pred

9 else

10 maxTimeFromPredecessor = get comm. start time on previous link + routing

11 delay

12 end if

13 end for

14

15 if linkSchedTime < maxTimeFromPredecessor then

16 commStartTime = maxTimeFromPredecessor

17 else

18 commStartTime = linkSchedTime

19 end if

20

21 commEndTime = commStartTime + communication delay of ci

22 back annotate schedule end time for predecessor comm. vertexes if needed

23 add successor vertexes and remove scheduled message ci from readyToSchedule

24 end while

end ScheduleCommunication

Figure 3.12. Pseudocode of communication scheduling

84

Priority function

The quality of schedules produced by list scheduling depends on the priority

function. To calculate the ASAP and ALAP schedule we perform unconstrained

scheduling that is known term in high-level synthesis. In general, we allocate

starting time of tasks under the assumption that unlimited amount of resources

are available. It will help us to compute the earliest time (lower bound) and the

latest time (upper bound) a task can start its execution. While in classical ASAP

and ALAP algorithms communication cost is omitted we have tried to include it

in our modified algorithm. We assume that network resources are unconstrained.

It means that the network has enough bandwidth to process the messages

without contentions. Depending on application mapping, routing algorithm and

switching method we can count the number of hops and calculate the

communication latency without contentions.

The pseudocode of ASAP algorithm with communication is given in Figure

3.14. We start from the source node and move towards the sink node. The

algorithm starts with finding the source node that has no predecessors. The

source node is assigned the starting time 0 and added into the ASAP schedule.

Then we perform a set of operations (lines 4-15) in a loop until all tasks have

been scheduled. We find a task whose predecessors are all scheduled. We loop

through all the predecessor tasks to find the earliest time we could schedule the

current task. During that process we calculate the communication delay (lines 7-

9) between the task and its predecessor if they are mapped on different

processors. We store the earliest start time (lines 10-13) that we have found

taking into account predecessor task end time and communication delays.

The pseudocode of ALAP algorithm with communication is given in Figure

3.15. In contrast to ASAP algorithm we start from the sink node and move

towards the source node. The algorithm starts with finding the sink node that has

Schedule length without

taking into account

network conflicts

c2

c2c3

t1PU2

t0

t3

PU1

PU4

link1

link2

link3

time

t4 t2PU6

c1

c2

c3

c1

c1

c1

Figure 3.13. Resulting schedule

85

ASAP with communication (task graph A)
1 task t = get source task without predecessors (pred(t) = )

2 scheduleASAP(t) = 0; A = A - t

4 while A ≠ 

4 get task ti whose predecessors are all scheduled

5 WCETmax = 0

6 for each predecessor task tj of task ti described by edge ej do

7 if (ej
communication size

 > 0 and tj
task mapping

 != ti
task mapping

)

8 communication delay CDj = calculate communication delay(ej)

9 end if

10 if (tj
start time

 + tj
WCET

+ CDj) > WCETmax)

11 WCETmax = tj
start time

 + tj
WCET

+ CDj

12 end if

13 end for

14 scheduleASAP(ti) = WCETmax

15 A = A - ti

14 end while

End ASAP with communication

Figure 3.14. Pseudocode of ASAP scheduling with communication

ALAP with communication (task graph A)
1 task t = get sink task without successors (pred(t) = )

2 scheduleALAP(t) = scheduleASAP(t) + t
WCET

 ; A = A - t

3 while A ≠ 

4 get task ti whose successors are all scheduled

5 WCETmax = ∞

6 for each successor task tj of task ti described by edge ej do

7 timemax = scheduleALAP(tj)

8 if (ej
communication size

 > 0 and tj
task mapping

 != ti
task mapping

)

9 communication delay CDj = calculate communication delay(ej)

10 end if

11 timemax = timemax - CDj

12 if (timemax < WCETmax)

13 WCETmax = timemax

14 end if

15 end for

16 scheduleALAP(ti) = WCETmax - ti
WCET

17 A = A - ti

18 end while

End ALAP with communication

Figure 3.15. Pseudocode of ALAP scheduling with communication

86

no successors. The sink node is assigned the maximum starting time, which is

sum of its minimum starting time (ASAP schedule) and its WCET (line 2). Then

we perform a set of operations (lines 4-17) in a loop until all tasks have been

scheduled. We find a task whose successors are all scheduled. We loop through

of its successor tasks to find the latest time we could schedule the chosen task.

During that process we take into account the communication delay (lines 8-10)

between the chosen task and its successor if they are mapped on different

processors.

Finally we calculate the mobility Mobi for each task ti that is Mobi = ALAP(ti)

– ASAP(ti).

To see how much influence our modified ASAP and ALAP algorithm has on

application schedule length we have performed experiments with ten synthetic

task graphs having varying average vertex degree and computation-to-

communication ratio (CCR) mapped on a 6x6 2D-mesh NoC. Figure 3.16

depicts the difference in list schedule length for two experiment sets where task

priorities are calculated using the classical ASAP and ALAP and our modified

algorithm. Even our modified ASAP and ALAP algorithm modifies the task

mobility values (priorities) causing possibly different order of tasks in the

schedule it does not have as much effect as we have expected. However, it can

have more influence when the application is communication dominated.

Figure 3.16. Schedule length comparison of original and extended ASAP and ALAP

algorithm with communication

0

0.5

1

1.5

2

2.5

3

3.5

2.0E+05

2.5E+05

3.0E+05

3.5E+05

4.0E+05

4.5E+05

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

A
v
er

ag
e

C
C

R

S
ch

ed
u

le
 l

en
g
th

 (
cy

cl
es

)

Benchmark applications

ASAP and ALAP with communication

Original ASAP and ALAP

Computation-to-communication ratio (CCR)

87

Schedule holes

During scheduling, tasks that have higher priority are scheduled first. However,

tasks take typically different amount of time to execute. As scheduling is

performed incrementally we have multiple options when to schedule the

outgoing messages of tasks. If we would schedule a task and then all the related

messages then we could have a situation where the network is idle because of

another task that has a higher priority and a longer execution time. In this section

we will describe the problem of schedule holes and propose a solution.

There is an example of such situation depicted in Figure 3.17a. The task t2

has a higher priority than task t1. The communication c2 has been scheduled to

the end of the task t2 execution (Figure 3.17a). In the next step the task t1 is

scheduled and while the communication c2 is already in the schedule then the

communication c1 is scheduled at the end of the current schedule (Figure 3.17a).

In Figure 3.17b the problem is solved by first scheduling the tasks, secondly

sorting the messages by the ASAP schedule and then scheduling the messages.

The messages are sorted to increase the network utilization and to avoid

schedule holes (idle timeslots) that are caused by incremental scheduling.

To show the possible improvement we have made similar experiments as

described previously in Figure 3.16 with ten synthetic task graphs having

varying average vertex degree and computation-to-communication ratio, mapped

on a 6x6 2D-mesh NoC. The results are depicted in Figure 3.18. It can be seen

that we are able to get shorter schedules for all the ten task graphs by scheduling

first the ready tasks and then the communication messages sorted by the ASAP

schedule.

t2PU2

t1PU1

link1

link2

link3

time

c1

c1

c2

c2

c2

t2PU2

t1PU1

link1

link2

link3

time

c1

c1

c2

c2

c2

schedule hole

a)

b)

communication c1 is scheduled before c2

Figure 3.17. An example of a schedule hole

88

3.6. Simulation environment

One of the goals of our approach is to produce schedules that are predictable and

repeatable during the execution of the application on the NoC (e.g. no flits are

lost, schedule length is met). We have interfaced our system-level design tool

and written a SystemC event-driven application simulation kernel for Noxim,

NIRGAM and XHiNoC network-on-chip simulators. An overview of these

simulators has been given in Chapter 2.7. In this section we describe the

SystemC application simulation kernel for the cycle-accurate XHiNoC

simulator. The simulation kernel is similar for all the three NoC simulators. The

main purpose of the XHiNoC is to provide a flexible shared communication

media by utilizing a concept of locally organized packet identity (ID) division

multiple access (IDMA). Local ID slots are distributed over every

communication link, which can be attached to every flit of a packet or data

stream as its local ID-tag (Samman, Hollstein, & Glesner, 2011). The core of the

simulator is written in VHDL, while there is a SystemC wrapper on top of the

XHiNoC that implements the core network interface functions such as send and

receive.

XHiNoC allows a configurable number of ID slots for packet interleaving on

each communication link. As in our system model we assume no flit interleaving

we have configured XHiNoC ID table size to be one bit. It means that one ID-

slot is reserved for flow control/deadlock management, leaving one ID-slot for

data transmission. If the network model is not precise or schedule is not

produced correctly then the simulation will reveal this – if there are no free ID

Figure 3.18. Comparison of communication scheduling schemes

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

2.0E+05

2.5E+05

3.0E+05

3.5E+05

4.0E+05

4.5E+05

5.0E+05

5.5E+05

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

A
v
er

ag
e

C
C

R

S
ch

ed
u

le
 l

en
g
th

 (
cy

cl
es

)

Benchmark applications

List schedule with communication sorted based on ASAP schedule

List schedule with schedule holes

Computation-to-communication ratio (CCR)

89

slots available the XHiNoC will start dropping the flits to avoid deadlocks in the

network.

Application is scheduled with our system-level design tool. The resulting

schedule is written into an intermediate format (Figure 3.19) that is read by the

XHiNoC SystemC application simulation kernel interface. The intermediate

format describes send/receive events, their timing and dependencies. Each

SystemC processing core has a scheduler that maintains the local task queue and

updates it based on received data. A task can be ready only when it has received

all input data. Once activated, a task takes WCET amount of time to execute.

Data is injected to the network only at respective scheduled time periods or as

soon as possible if that time moment is passed.

Format of conditional send transactions:

 processor ID (integer) – source processor/router number;

 communication start cycle (long integer) – global time when the

message needs to be injected into the network if pre-conditions have

been met (number of pre-conditions equals zero);

 delay before sending (long integer) – time the simulation kernel

needs to wait until it can inject the data into the network (if number

of pre-conditions equals zero). It is being used in alternative

experiments where dynamic communication schedule is simulated;

 transaction ID (long integer) – transaction identifier, used in receiver

side to match pre-conditions;

 number of flits (integer) – number of flits to inject into the network;

 target address (integer) – receiver processor/router number;

 number of pre-conditions (integer) – number of pre-conditions that

have to be met before the data can be injected into the network on its

scheduled start cycle.

SEND
processor

ID

comm start

cycle

delay before

sending

transaction

ID
number of flits target address

number of pre-

conditions

RECEIVE processor ID
transaction

ID

pre-condition

transaction ID

SEND
processor

ID

comm start

cycle

delay before

sending

transaction

ID
number of flits target address

number of pre-

conditions

decrease number of

pre-conditions

Figure 3.19. Data model of event based simulation

90

Format of receive transactions:

 processor ID (integer) – receiver processor/router number;

 transaction ID – sender transaction ID;

 pre-condition transaction ID – transaction ID for which the number

of pre-conditions should be decremented.

The key requirement of our application simulation kernel is the ability to

determine at the receiver side the message transaction ID. Based on the received

message ID the related pre-condition transaction ID is looked up from the

receive-transactions-list and number of pre-conditions decremented. Data from a

respective successor communication can be injected into the network on its

scheduled start cycle only when the number of the message pre-conditions

equals zero.

Initially, each XHiNoC 32-bit data-body and tail flit was tagged with a 20-bit

message transaction ID and a 12-bit flit sequence number. Message transaction

ID is needed for local schedulers to identify the received data. The flit sequence

number is required by the ATLAS tool to perform performance and power

analysis based on the simulation results. Such a global transaction ID numbering

scheme wastes useful storage space and is not enough for big applications that

require more than 20-bit transaction ID storage. To compact the data we use

relative transaction IDs. At the sender side we keep a separate transaction

numbering for each destination. The receive transaction format needs to be

extended with the sender info. An example of original and relative transaction

ID numbering scheme is depicted in Figure 3.20. The new numbering scheme

occupies fewer bits in payload, leaving more storage space for application data.

Original – no compaction

Modified – relative transaction IDs

CPU 1 - SEND

Destination

CPU

Transaction

ID

CPU 2 - SEND

Destination

CPU

Transaction

ID

CPU 4 - RECEIVE

Incoming

transaction ID

4 10

3

4 12

11

4 10

5

5

13

14

15

13

CPU 1 - SEND

Destination

CPU

Transaction

ID

CPU 2 - SEND

Destination

CPU

Transaction

ID

CPU 4 - RECEIVE

Incoming

transaction ID

4 1

3

4 2

1

4 1

5

5

1

1

2

1

Sender of

flits

1

2

Figure 3.20. An example of original and relative transaction IDs

91

3.7. Experimental results

In order to evaluate different aspects of our approach, we have run experiments

with a set of synthetic task graphs mapped on different NoC sizes. Using

synthetic task graphs is a common way to demonstrate scaling and feasibility of

the proposed approaches (Sinnen & Sousa, 2005; Hu & Marculescu, 2005;

Manolache, Eles, & Peng, 2007). The Figure 3.21 depicts our system-level

design toolchain. The shapes with solid lines represent our contribution. We

have a synthetic task graph generator where we can specify number of tasks,

maximum number of outgoing edges for any vertex in the task graph, range of

task WCET etc. The generated synthetic task graph is written into XML

(extensible markup language) format that is read as an input by our system-level

design tool. The system-level design tool is a C++ application that has its own

configuration file where we can specify which types of algorithms to execute,

Design tool

configuration in

XML

System-level design tool

(C++ application)

Task graphs of

benchmark

applications in XML

Resulting

schedule in

HTML

Send/receive

events for

simulation

XHiNoC co-simulation

(VHDL, SystemC)

Configuration

script for

simulation

Console output of

simulation results

ATLAS configuration and

evaluation front-end for

XHiNoC

Produce SystemC,

VHDL

configuration files

Simulation results

in ATLAS format
Consolidated

results in Excel

Synthetic task graph

generator (web application)

Figure 3.21. High-level view of our system-level toolchain

92

which benchmark application to model etc. It is the core part of our toolchain

and covers most of the system-level design flow steps depicted in Figure 3.1.

The system-level design tool generates several output files such as resulting

schedule in HTML format, send/receive event files for NoC application

simulation kernel etc. The XHiNoC platform is configured using the ATLAS

configuration front-end. As a result we have proper XHiNoC VHDL and

SystemC files that correspond to given architecture parameters. During the

simulation the XHiNoC SystemC channels log timing information for each flit in

ATLAS compatible format that can be used later for evaluation by the ATLAS

tool. Additionally, we can capture the timing information of send/receive

transactions and compare it to the static schedule produced by our system-level

design tool. This is useful for debugging purposes when the simulation results

do not correspond to the design tool results.

3.7.1 Complexity of the model

In the first set of experiments our goal is to illustrate the complexity of the

communication model in respect to the application and network-on-chip size.

The architecture parameters are varied together with the application size to show

the scaling of our approach. We are using applications consisting of 100, 500,

750, 1000, and 5000 tasks mapped on different NoC sizes. These benchmark

applications have been generated using in-house random task-graph generator

that is part of our toolchain. The edge (communication transaction) count in the

extended task graph is 244, 2488, 7490, 9691 and 25279 respectively. The initial

mapping of the application has been given. The NoC architecture parameters are

chosen as follows: link bit-width and flit size 32 bits, channel delay 1 cycle,

switching delay 4 cycles and path setup delay 8 cycles. The experiments are

performed on a computer with Intel L2400 processor (1.66 GHz) and 1 GB of

available physical RAM (random access memory).

Our first experiment shows the NoC size impact on the schedule length and

the calculation time for different application sizes. The results are depicted in

Figure 3.22. The NoC size represents the total number of processing cores and

the application size the total number of tasks. On the one hand, the more

computational units we have available, the shorter schedule are we able to

produce (Figure 3.22a). On the other hand, it takes more calculation time to

model and synthesize the communication on a bigger NoC (Figure 3.22b). As

communication sub-graph complexity depends on the application mapping and

the number of communication links it traverses, we have measured in Figure

3.22c the NoC size impact on the number of task graph elements (vertexes and

edges). The bigger the NoC and the more communication we have the larger the

modelling overhead. However, the biggest application with 5000 tasks and

25279 communication transactions has a scheduling time 12 seconds, which is

feasible for design space exploration.

93

a) Schedule length

b) Schedule calculation time

c) NoC size impact on extended task graph complexity

Figure 3.22. NoC and application size impact on modelling speed and complexity

0

20000

40000

60000

80000

100000

1000

2000

3000

4000

5000

20
40

60
80

100

S
c
h
e
d
u
le

 l
e
n
g
th

A
p
p
lic

a
tio

n
 s

iz
e

NoC size

0

5

10

15

20

25

1000

2000

3000

4000

5000

20
40

60
80

100

S
c
h

e
d

u
le

 c
a

lc
u

la
ti
o

n
 t

im
e

 (
s
)

A
p
p
lic

a
tio

n
 s

iz
e

NoC size

0

5x106

10x106

15x106

20x106

25x106

30x106

35x106

1000

2000

3000

4000

5000

10
20

30
40

50
60

In
c
re

a
s
e
 o

f
E

T
G

 e
le

m
e
n
ts

A
p
p
lic

a
tio

n
 s

iz
e

NoC size

94

3.7.2 Simulation results

In previous experiments our focus has been on the scaling of the approach for

different application and NoC sizes. In the second set of experiments our goal is

to verify the schedules produced by our system-level design tool by executing

them on the cycle-accurate XHiNoC simulator. We have created another set of

benchmark applications using our in-house random task-graph generator. Each

of the ten applications (a1 - a10) consist of 2500 tasks with varying average

vertex degree (1.5 - 5) and computation-to-communication ratio (CCR) (0.1 -

3.2). The applications are mapped to 2x2, 4x4 and 6x6 2D-mesh NoC. The NoC

architecture parameters are chosen as follows: link bit-width and flit size 36 bits,

channel delay 1 cycle, routing delay 4 cycles and path setup delay 8 cycles. The

parameters used in the design tool are the same used to perform simulations with

the XHiNoC. The experiments are performed on a computer with Intel Core

i5-520M (2.40 GHz) processor and 4 GB of available physical RAM. Modelsim

6.5c has been used for running XHiNoC VHDL and SystemC co-simulation.

The experimental results show that a static schedule, being executed on the

XHiNoC simulator, has no flit loss and the schedule deviation is at maximum

one clock cycle. If we relax the send time of messages and send data as soon as

possible, then the communication fails as network conflicts appear. When

XHiNoC ID table size is set to one bit then XHiNoC can support only one

communication in any router/network interface at a time.

Figure 3.23 depicts the average speedup compared to the simulation.

Modelling time represents the time needed for synthesizing the communication

and scheduling the application. Simulation time represents the time to simulate

the generated static schedule. The modelling time is in average 28 times faster

than the simulation time having at maximum one clock cycle deviation in

schedule length, as mentioned previously. Therefore, the presented model is

feasible for design space exploration and the results are repeatable during

simulation.

The total amount of additional memory needed for locally storing the partial

schedules is depicted in Figure 3.24. The memory overhead is affected by the

CCR rather than the size of the NoC. It means that the model complexity does

not explode with the size of the NoC. Using a larger NoC gives the possibility to

distribute the load more evenly, reduce network contentions and schedule length.

95

Figure 3.23. Modelling speedup compared to simulation

Figure 3.24. Schedule table memory overhead for different NoC sizes

0.0

0.5

1.0

1.5

2.0

2.5

0

10

20

30

40

50

60

70

80

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

A
v
er

ag
e

C
C

R

T
im

e
(s

)

Average simulation time (s) Average modelling time (s)

Average CCR

0.0

0.5

1.0

1.5

2.0

2.5

0

50

100

150

200

250

300

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

A
v
er

ag
e

C
C

R

M
em

o
ry

 o
v
er

h
ea

d
 (

K
B

)

2x2 4x4 6x6 CCR

96

3.8. Conclusions

In this chapter we have introduced our system-level design flow. We have

provided description and definition of the system model and have formulated the

design problem. We have described our communication synthesis method and

demonstrated how it is being used during application scheduling. An edge in the

task graph, connecting two tasks that have been mapped to different processing

cores, is transformed into a series of vertexes (communication sub-graph)

representing the network resources that need to be acquired during scheduling.

Contention-aware scheduling uses the extended task graph as its input. It

schedules the tasks and communication in a way that precedence constraints are

met and network conflicts are avoided. The last part of the chapter explains how

our system-level design tool is interfaced with the XHiNoC simulator, followed

by the experimental results. The experimental results show that a static schedule,

being executed on the XHiNoC simulator, has no flit loss and the schedule

deviation is at maximum one clock cycle. Moreover, in our experiments the

modelling time has been in average 28 times faster than the simulation time.

Therefore, the presented method is feasible for design space exploration and the

results are repeatable during simulation.

97

Chapter 4. Extensions of the

Communication Model

In the previous chapter detailed description of our communication synthesis and

scheduling approach has been presented. We have identified some areas that

should be explored for possible improvements related to communication

modelling. In this chapter we introduce two extensions of the proposed

communication modelling approach to utilize the network-on-chip more

effectively and to introduce the support for communication interleaving.

4.1. Packet-based schedules

In this section we will explore the trade-off between increased modelling

complexity and the improvements gained from packet-based schedules. First, we

will motivate the work by explaining, what are the possible areas of

improvement when using packet-based communication modelling approach.

Second, we will describe the packet-based communication synthesis and

scheduling in detail, followed by the experimental results. The results of this

section have been published in the following paper:

Tagel, M., Ellervee, P., Hollstein, T., & Jervan, G. (2012). Contention-aware

scheduling for NoC based systems. Microprocessors and Microsystems:

Embedded Hardware Design (MICPRO) [submitted for review].

4.1.1 Motivation

Communication can be represented in the extended task graph on various

granularity levels – at message, packet and flit level. In the previous chapter

communication has been modelled as transmission of messages. For each

message traversing a communication link a new vertex is added into the

extended task graph. It means that each vertex in the communication sub-graph

represents a data transmission on a physical communication link. A message is

sent as a stream of flits. If some NoC implementation does not support sending a

whole message as a series of flits we could let the NoC internally packetize the

message. We would only have to take into account the additional amount of data

to form each packet header. The experimental results in the previous chapter

have shown that the approach is feasible for scheduling of real-time NoC-based

systems. The approach is also feasible for design-space exploration due to its

modelling speed and accuracy. However, due to the fact that in our NoC model

we assume no data interleaving, reserving bandwidth for a long message could

98

affect negatively other traffic flows waiting for available resources. If we would

model data transmission as a series of ordered but disjoint packets, we could

have more flexibility for communication scheduling, possibly increasing

network utilization and decreasing schedule length.

4.1.2 Packet-based schedules

In the previous chapter a communication vertex in the ETG represents a whole

message. The extended task graph complexity depends on the number of tasks A,

routing algorithm Ralgo, NoC size N and the mapping M. This is represented by

the function Gcomplexity = (A, N, M, Ralgo). We have demonstrated that the

approach scales well for larger applications and NoCs (Chapter 3.7.1). However,

in previously presented method there is a lack of possibility to pre-empt a

communication transmission. To increase communication scheduling flexibility

we could split a message into one or several packets and to schedule the packets

independently, preserving their order. The overall concept of communication

synthesis and scheduling remains the same. A new design parameter is packet

size Psize. A message is divided into n packets depending on the Psize. For each

packet traversing a communication link a vertex is added into the extended task

graph. Additionally, separate packets from the same message are connected by

an edge to preserve their order in the communication scheduling.

First, we will have a look how the change in communication modelling

granularity affects the communication synthesis process. The message- and

packet-based communication synthesis is depicted side-by-side in Figure 4.1. In

message-based communication synthesis (Figure 4.1a) a vertex in the

t0

t2

t3

t4

t1

Begin

End

1

3c

link3

1

1c

1

2c

link3

link2

link2

link3

link1

link2

link3

link1

link3

link2

link3

link2

t0

t2

t3

t4

t1

Begin

End

3c

link3

1c

link2

link3

link1

2c
link3

link2

a) message-based communication b) packet-based communication

2

1c

2

2c 3

2c

Figure 4.1. Message- and packet-based communication synthesis

99

communication sub-graph represents a whole message. In packet-based

communication synthesis (Figure 4.1b) the communication c1 is split according

to chosen Psize into two packets (
 ;

), communication c2 into three packets

(
 ;

 ;
) while data for c3 fits into one packet (

). The n-th packet of

communication ci is labelled as
 . For the sake of simplicity this example does

not contain any actual communication amounts and the division into packets is

illustrative. The packets are connected with an edge to preserve their order

during communication scheduling (Figure 4.1b).

Definition 4.1 (Packet-based communication synthesis problem). Given an

application A, a network model N, and a mapping function M the result of

packet-based communication synthesis is an extended task graph where the

communication edges between tasks are transformed into sequences of packets

(communication sub-graph) depending on the packet size Psize.

Before we describe the changes needed in the contention-aware scheduling

algorithm, presented in Chapter 3, we look at the flexibility that is available

when utilizing packet-based communication modelling. We have a task graph

depicted in Figure 4.2a that we are scheduling on a 2x3 2D-mesh NoC (Figure

4.2b). In this example our main goal is to explain the concept and difference

between the two communication modelling granularity levels, not to find the

optimal schedule. The task mapping, based on which the communication

synthesis has been performed, is depicted in Figure 4.2b. In Figure 4.2c we can

see the message-based schedule. The communication has been scheduled in the

following order – c1, c3 and c2. In Figure 4.2d the corresponding packet-based

schedule is depicted. Let us assume that the scheduling process has scheduled

first the packet
 . As scheduling is done packet-by-packet then let us assume

that in the next iteration the scheduler has decided to schedule the packet
 .

Next, the remaining packet of communication c1 (
) has been scheduled. We

can see that by scheduling the communication packet-by-packet and re-ordering

their transmission on communication links we are able to get a shorter schedule

length. However, even for this small example the number of communication

sub-graph elements has increased approximately 2.5 times. This is a trade-off

that we have to take into consideration. The graph complexity of packet-based

communication modelling depends additionally on the packet size Gcomplexity =

(A, N, M, Ralgo, Psize). If the packet size is equal to the maximum size of any

communication transfer – Psize = max(ci
size

) – then the packet-based model

complexity is the same as for message-based.

There are a few changes that are needed to be made to the contention-aware

scheduling (Figure 3.10) and to the communication synthesis and scheduling

(Figure 3.12) algorithms. We will describe only the main differences. The

detailed explanation of the contention-aware scheduling algorithm has been

presented in the previous chapter. The pseudocode of the packet-based

contention-aware scheduling algorithm is depicted in Figure 4.3.

1
0

0

t1PU2

t0

t3

PU1

PU4

link1

link2

link3

t2PU6

c1

c2

c3

c2c3

c1

c2

t4

t1PU2

t0

t3

PU1

PU4

link1

link2

link3

t2PU6

c1

c2

c3
t4

c1

c1

1

1c

1

1c

1

1c
2

1c

2

1c

2

1c

1

2c

1

2c 2

2c
2

2c

3

2c
3

2c

1

3c Shorter

schedule

Communication c3 scheduled in

between two c1 packets

c) message-based schedule

d) packet-based schedule

PU3

RNI

R

PU4

RNI

R

PU1

RNI

R

PU2

RNI

R

t0

t3

t1

link2

link1

PU5

RNI

R

PU6

RNI

R

t2 t4

link3

b) task mapping on NoC

t0

t2

t3

t4

t1

Begin

End

3c
1c 2c

a) task graph
time

time

Figure 4.2. Comparison of message- and packet-based schedules

101

Contention-aware scheduling

1 calculate task priorities

2 add task with pred(t) =  into ready task list

3 while tasks not scheduled ≠ 

4 for each task in ready task list do

5 sort ready task list based on mobility

6 schedule ready task

7 transform outgoing communication of scheduled task into packets

8 add the first vertex (packet) into communication list

9 add eligible successor tasks to ready task list

10 remove scheduled task from ready list

11 end for

12 for each packet in communication list do

13 sort communication list based on ASAP schedule

14 schedule packet on the whole route

15 add eligible successor packet or tasks to ready task or comm. list

16 remove scheduled packet from communication list

17 end for

18 end while

End Contention-aware scheduling

Figure 4.3. Pseudocode of packet-based contention-aware scheduling

SchedulePackets(first vertex)

1 add first vertex (packet) of communication sub-graph into readyToSchedule list

2 while readyToSchedule ≠ , i = 0 do

3 linkSchedTime = get max schedule time from comm. link the vertex ci is mapped

4 for each incoming edge ij of vertex ci do

5 predecessor vertex cj
pred = get source vertex of edge ij

6 if (cj
pred is a regular task) then

7 maxTimeFromPredecessor = schedule end time of cj
pred

8 else

9 if (packet number of first vertex != packet number of cj
pred) then

10 isFirstPacket = TRUE

11 end if

12 maxTimeFromPredecessor = get comm. start time on previous link + routing

13 delay

14 end if

15 end for

16 if (isFirstPacket) then

17 commStartTime = linkSchedTime

18 end if

19 if linkSchedTime < maxTimeFromPredecessor then

20 commStartTime = maxTimeFromPredecessor

21 else

22 commStartTime = linkSchedTime

23 end if

24 commEndTime = commStartTime + communication delay of packet ci

25 back annotate schedule end time for predecessor comm. vertexes if needed

26 add successor vertexes and remove scheduled packet ci from readyToSchedule

27 end while

end SchedulePackets

Figure 4.4. Pseudocode of packet-based communication scheduling

102

In line 7 (Figure 4.3), after a task has been scheduled, we transform a

communication edge into a communication sub-graph that contains a series of

packets. In line 8 we add the first vertex of the communication sub-graph into

the communication list. After the ready tasks have been scheduled, we start

scheduling of the packets in the communication list (lines 12-17). In each

iteration one packet on the whole communication path is scheduled. Therefore,

in the beginning of a new iteration packets are sorted in the communication list

by their ASAP schedule. If we have scheduled the last vertex of current packet

then we check the type of the successor vertex (line 15). If it is a task and if

eligible we add it into the ready task list. If it represents a communication then

the successor packet is added into the communication list.

The Figure 4.4 depicts the pseudocode of packet-based communication

scheduling. The main difference is in line 9 where we check whether the packet

being currently scheduled is the first packet of the message. If it is a next packet

of the same message then we need to make sure that we schedule it right after

the first packet on the communication link even if we have information that the

predecessor vertex has been scheduled to a future date. We want to pipeline the

messages, not to wait until the whole packet has been transferred and then start

the next transmission.

4.1.3 Experimental results

In the experimental results our focus is on the improvement of schedule length

we are able to gain by packet-based schedules in relation with the size of the

packet and increase of the modelling complexity. The NoC architecture

parameters are chosen as follows: link bit-width and flit size 36 bits, packet

header 20 bits, channel delay 1 cycle, switching delay 4 cycles and path setup

delay 8 cycles. The experiments are performed on a computer with Intel Core

i5-520M (2.40 GHz) processor and 4 GB of available physical RAM.

In the first experiment we have used the task graph a1 from the set of

benchmarks described in Chapter 3.7.2. The application has been mapped to a

8x8 2D-mesh NoC. The average computation-to-communication ratio (CCR) is

4.2 for the given application and mapping. Figure 4.5 depicts comparison

between message-based and packet-based schedules for different packet sizes.

We can see that packet-based schedules are in average 10% shorter (from 7% up

to 19%). We have run the same experiments with the rest of the benchmark

applications. In Figure 4.6 we depict the average improvement of packet-based

schedules in relation with computation-to-communication ratio. We can see in

Figure 4.6 that the amount of improvement in schedule length depends on the

computation-to-communication ratio. The higher the CCR the more

improvement we can gain in schedule length by modelling communication in

packets.

103

Figure 4.5. Message-based versus packet-based schedule for different packet sizes

(benchmark application a1)

Figure 4.6. Packet-based schedule improvement in relation to CCR

0

10

20

30

40

50

60

2.00E+05

2.50E+05

3.00E+05

3.50E+05

4.00E+05

4.50E+05

C
al

cu
la

ti
o

n
 t

im
e

(s
ec

o
n

d
s)

S
ch

ed
u

le
 l

en
g
th

 (
cy

cl
es

)

Packet size (bits)

Message-based schedule
Packet-based schedule
Calculation time (message-based)
Calculation time (packet-based)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

A
v
er

ag
e

C
C

R

A
v
er

ag
e

im
p

ro
v
em

en
t

o
f

sc
h

ed
u

le
 l

en
g
th

Benchmark applications

Average improvement of packet-based schedule length

Average computation-to-communication ratio (CCR)

104

In the second set of experiments we are analysing the packed-based

communication model complexity. As we have mentioned previously the

packet-based communication model complexity is affected by the size of the

packet. This has been confirmed by the experimental results. There is a sharp

increase in communication synthesis and schedule calculation time if we go

below the packet size of 512 bits. The results for benchmark application a1 are

depicted in Figure 4.7. The total number of graph elements (vertexes and edges)

goes up sharply below 512 bits while it converges at 1024 bits with the message-

based model. It means that for this benchmark application a good packet-size

trade-off is between 512 and 1024 bits. If the packet size is bigger than 1024 bits

it has no effect as each communication fits into a 1024-bit packet. Similar results

have been retrieved with the rest of the benchmark applications.

4.2. Support for communication interleaving

In this section we will propose an extension to our communication model to

support communication interleaving. The goal is to utilize more effectively the

available network resources and to reduce the schedule length. First, we will

give the motivation of the work. Second, we will explain in detail how multiple

flit queues are being used to schedule the communication, followed by

experimental results.

Figure 4.7. Comparison of message- and packet-based communication modelling

complexity (benchmark application a1)

0.00E+00

2.00E+05

4.00E+05

6.00E+05

8.00E+05

1.00E+06

T
o

ta
l

n
u

m
b

er
 o

f
g
ra

p
h

 e
le

m
en

ts

Packet size (bits)

Message-based Packet-based

1
0

5

Network Interface

Router

-0 0-

Status DataID

-0 -

Status DataID

reser-
ved1 -

Network Interface

Router

-0 0-

Status DataID

-0 -

ID Data

-1 -

Status

...... ...

-15 -

a) b)

Network Interface

Router

-0 -

ID Data

-1 -

Status

...... ...

-15 -

-0 -

ID Data

-1 -

Status

...... ...

-15 -

1-bit

n-bits

1-bit

1-bit

n-bits

n-bits

c)

Figure 4.8. Three schemes of flit queues in network interface and XHiNoC router

106

4.2.1 Motivation

So far we have assumed that we have a network-on-chip with simple and

hardware efficient routers and no communication interleaving. For example, in

the experiments performed in Chapter 3.7.2 we have set the XHiNoC ID table

size to be one bit – one ID-slot is reserved for deadlock management leaving

only one ID-slot for data transmission. Figure 4.8a depicts the schematic view of

such setup. If the schedule is not produced correctly then the XHiNoC will start

dropping the flits. Experimental results in Chapter 3.7.2 showed that our

contention-aware scheduling results are accurate having at maximum one clock

cycle deviation and no lost flits. If the scheduler does not follow the

communication schedule and injects data into the network as soon as possible

then the XHiNoC soon runs out of available ID-s and starts dropping the flits.

We got an interesting result if we increased the number of available ID-s in the

router and run again the same experiment. The schematic view of such setup is

depicted in Figure 4.8b. As XHiNoC routers had now resources (ID-slots) to

interleave the flits we were able to get a shorter application execution time. It is

important to note that the local network interface was trying to inject data to the

network utilizing the full available bandwidth. However, at some point

contentions occurred decreasing the injection rate of the network interface. For

some applications we were able to achieve up to 30-40% shorter execution time

but at the cost of increased average delay. Moreover, the results were

unpredictable. Therefore, we have extended our model to include the

communication interleaving aspect that will be described in the next section.

4.2.2 Multiple flit-queues

We have extended our model, described in Chapter 3, by a configurable number

of flit queues. We assume that the bandwidth is equally shared between n

separate flit queues. It means that the communication delay will be also n times

higher for any message, even when there could be time periods where a router

has temporarily resources available for full bandwidth. It is a trade-off between

modelling complexity and accuracy. During the scheduling we are trying to

load-balance the queues and to mimic the operation of the XHiNoC routers. The

number of flit-queues is the same as the ID table size in the XHiNoC. Figure

4.8c depicts the schematic view of such setup. It is important to note that we are

using the best-effort router implementation and assume no special hardware for

guaranteed services. The design problem we are trying to solve in this section is

formulated as follows.

Definition 4.2 (Contention-aware scheduling with communication

interleaving). Given an application A, a network model N, and a mapping

function M our goal is to load-balance communication between n separate flit

queues so that the schedule length Slength would be minimized in respect to the

schedule without communication interleaving.

107

ScheduleCommunicationWithInterleaving(first vertex, max number of IDs)

1 add first vertex of communication sub-graph into readyToSchedule list

2 while readyToSchedule ≠ , i = 0 do

3 for each incoming edge ij of vertex ci do

4 predecessor vertex cj
pred = get source vertex of edge ij

5 if (cj
pred is a regular task) then

6 maxTimeFromPredecessor = schedule end time of cj
pred

7 else

8 maxTimeFromPredecessor = get comm. start time on previous link + routing

9 delay

10 end if

11 end for

12

13 fq = list of flit queues of output channel where the ci is mapped

14 for each flit queue fqk and foundAvailableIDSlot == FALSE

15 if (fqk time advanced <= maxTimeFromPredecessor) then

16 foundAvailableIDSlot = TRUE

17 idSlotNumber = k

18 linkSchedTime = fqk time advanced

19 else

20 k = k + 1

21 end if

22 end for

23

24 if (foundAvailableIDSlot == FALSE) then

25 if (fq size == 0) then

26 idSlotNumber = 0

27 linkSchedTime = maxTimeFromPredecessor

28 else if (idSlotNumber < max number of IDs) then

29 linkSchedTime = maxTimeFromPredecessor

30 else

31 minAdvancedTime = find the queue from fq with minimum advanced time

32 linkSchedTime = minAdvancedTime

33 idSlotNumber = ID slot number of the queue with minAdvancedTime

34 end if

35 end if

36

37 if linkSchedTime < maxTimeFromPredecessor then

38 commStartTime = maxTimeFromPredecessor

39 else

40 commStartTime = linkSchedTime

41 end if

42 commEndTime = commStartTime + communication delay of message ci

43 fq[idSlotNumber] time advanced = commEndTime

44 back annotate schedule end time for predecessor comm. vertexes if needed

45 add successor vertexes and remove scheduled message ci from readyToSchedule

46 end while

end ScheduleCommunicationWithInterleaving

Figure 4.9. Pseudocode of communication scheduling with interleaving

108

To maintain the complexity of the graph model, a vertex in the extended task

graph represents the whole message transfer on a communication link (like in

Chapter 3). The task scheduling process is the same as shown in Figure 3.10. To

support communication interleaving we need to extend the communication

scheduling and the SystemC application simulation kernel. Figure 4.9 depicts the

modified communication scheduling pseudocode with interleaving support.

Input to the procedure is the first communication vertex of the message to be

scheduled and the maximum number of IDs we have allocated for this

application. We need to check that we are not allocating more ID-slots than we

have configured in the XHiNoC. In the previous and the following text we are

using the terms “number of flit queues” and “number of ID slots”

interchangeably. First, we find the schedule time from predecessor vertexes

(lines 3-11). Second, we go through all the flit queues of the respective router

output channel (lines 14-22). We check whether there is a previously allocated

flit queue that does not overlap with communication start time of the current

message. If we have found such queue then we store its number (line 17) and the

schedule time of that flit queue (line 18). If we have not found a suitable queue

from previously allocated ones then we have several options to consider (lines

24-35). If the list that stores the flit queues is empty then we allocate the first

queue (lines 26-27). If the list of flit queues is not empty and we have not found

a suitable from them, then we will check whether we could allocate a new one

(lines 28-29). This relates to our goal to load-balance the communication

between the number of flit queues that we have specified. If we have allocated

the maximum number of flit queues then we will look for a flit queue that has

the minimum schedule time and choose that one (lines 31-33). We will

determine the final communication start time by comparing the schedule time

from communication link and predecessor vertexes and choose the maximum

(lines 37-41). If we faced a network contention on the current communication

link and delayed the start time of the vertex then we need to update the

communication start time of all related predecessor communication vertexes

(line 44).

The SystemC application simulation kernel described in Chapter 3.6 has been

modified as follows. Each local network interface contains information how

many separate flit queues have been allocated for the application (Figure 4.8c).

When sending flits, the SystemC application simulation kernel will first try to

find either an empty flit queue or find a flit queue that has the fewest flits inside

and insert flits into the respective queue. The network interface send process is

sending flits in round-robin fashion from each queue. If a corresponding queue is

empty then the process will wait for one cycle and proceeds with the next queue

on the next cycle. Such a scheme allows flit interleaving while maintaining

predictability of scheduling results. However, not all available network

bandwidth might be utilized. The IDMA switching scheme is different from

virtual channels with TDMA. There is no fixed time slot allocated for a

communication all over the routing path. By utilizing IDMA switching XHiNoC

router will adjust the bandwidth allocated for a communication dynamically

109

based on the current load. Our extension is more pessimistic and similar to

virtual channels with TDMA.

4.2.3 Experimental results

In the experimental results our first goal is to confirm whether the produced

schedules with interleaving support are repeatable during application execution

on the XHiNoC. Second, we want to find out the difference between our

conservative schedule and the schedule where communication is injected as soon

as possible. The NoC architecture parameters are chosen as follows: link bit-

width and flit size 36 bits, packet size 512 bits, packet header 20 bits, channel

delay 1 cycle, switching delay 4 cycles and path setup delay 8 cycles. The

experiments are performed on a computer with Intel Core i5-520M (2.40 GHz)

processor and 4 GB of available physical RAM. Modelsim 6.5c has been used

for running XHiNoC VHDL and SystemC co-simulation.

In the first set of experiments we have used the task graph a1 from the set of

benchmarks that we have described in Chapter 3.7.2. The application has been

mapped on a 8x8 2D-mesh NoC. The average computation-to-communication

ratio (CCR) is 4.2 for the given application and mapping. Experimental results in

Figure 4.10 show that increasing the number of available ID-slots for given

application decreases the schedule length (up to 20%) to a point after which the

schedule length starts to increase again. It means that even if communication

interleaving increases the average communication delay we are able to more

effectively use the bandwidth and get a shorter schedule. If there are more than 5

flit-queues then we are allocating resources for them but these resources are not

effectively utilized by the application. The schedule length matches the results

Figure 4.10. Schedule length versus number of IDs (benchmark application a1)

2.90E+05

3.10E+05

3.30E+05

3.50E+05

3.70E+05

3.90E+05

4.10E+05

1 2 3 4 5 6 7 8

S
ch

ed
u

le
 l

en
g
th

 (
cy

cl
es

)

Number of flit queues (ID-slots)

Schedule length

110

from application execution on the XHiNoC simulator. Moreover, there are no

lost flits. Similar results are observed with the rest of the benchmark

applications. Optimal number of flit-queues for this set of benchmark

applications is between 2 and 4 giving in average 20% of improvement in

schedule length. Schedule calculation time is not affected by the number of flit-

queues.

In the second set of experiments we have selected the same benchmark

application a1 but made changes to the SystemC application simulation kernel.

Our goal is to find out the difference in schedule length and in average

communication delay between our conservative communication schedule versus

the schedule where data is injected into the network as soon as possible. We

have produced the same static schedule with our system-level design tool as in

previous experiments – that is, the communication is injected into the network

only at respective scheduled time moments. We have made two different types

of modifications. In both cases the communication is injected into the network as

soon as possible. We do not wait for a scheduled start time of a communication.

The difference is how the network interface is sending flits. In the first case,

depicted by a grey dotted line in Figure 4.11, if a flit queue is empty then the

send process waits for one cycle and proceeds with the next queue. In the second

case, depicted by a black dotted line in Figure 4.11, if a flit queue is empty the

process will find another queue that has some flits to send. In the first case we

can see in average 13% improvement in schedule length and in the second case

17% improvement. However, it comes at the cost of increased average delay.

Moreover, with such scheme the results are not predictable and do not

correspond to the modelling results. It is because there is no application level

Figure 4.11. Results of different application execution scenarios

(benchmark application a1)

2.50E+05

2.70E+05

2.90E+05

3.10E+05

3.30E+05

3.50E+05

3.70E+05

3.90E+05

4.10E+05

1 2 3 4 5 6 7 8

S
ch

ed
u

le
 l

en
g
th

 (
cy

cl
es

)

Number of flit queues (ID-slots)

Schedule length (static communication schedule)

Schedule length (communication injected ASAP 1)

Schedule length (communication injected ASAP 2)

111

injection control or communication scheduling. Data is injected into the network

as soon as possible, hoping that the network can cope with the load.

4.3. Conclusions

In this chapter we have presented two extensions of our communication model.

In the first part we explored the improvements in schedule length versus

modelling complexity achieved by using packet-based communication synthesis

and scheduling. To increase communication scheduling flexibility a message is

split into one or several packets and packets are scheduled independently,

preserving their order. For each packet traversing a communication link a new

vertex is added into the extended task graph. Additionally, separate packets from

the same message are connected by an edge to preserve their order in the

communication scheduling. Experimental results show that by synthesizing and

scheduling communication at packet granularity we are able to achieve in

average 10% shorter schedules at the cost of increased modelling complexity

(calculation time and memory requirements).

In the second part of the chapter we have described an extension to our

communication model to support communication interleaving. We have a

configurable number of flit queues. We assume that the bandwidth is equally

shared between the flit queues. During the scheduling we are trying to load-

balance the queues and to mimic the operation of the XHiNoC routers. The

number of flit-queues is the same as the ID table size in the XHiNoC.

Experimental results have shown that increasing the number of available ID-

slots for an application decreases the schedule length to a point after which the

schedule length starts to increase again. We have been able to achieve in average

20% of improvement in schedule length using communication interleaving

compared to the non-interleaving schedules described in Chapter 3.

112

113

Chapter 5. Design Optimization

Techniques

Networks-on-chip are flexible communication platforms where computation is

decoupled from communication. The available flexibility increases the amount

of design options that need to be explored. Depending on the level of freedom

we are interested in two options to optimize the design – to explore different

application mappings or to improve the schedule based on given mapping.

The goal of this chapter can be formulated as follows. Given an application

A, a NoC architecture N and a mapping function M(TR) our goal is to perform

design space exploration and optimization of the initial design with respect to

the schedule length and to produce a set of feasible near-optimum design

options. At the same time, we are also measuring the calculation time that is

used to define a trade-off between the improvement gained during optimization

and the time spent for calculation. Our goal is not to propose any enhancements

to optimization methods but to show that our communication modelling and

synthesis approach can be applied to arbitrary scheduling or optimization

method.

The main results described in this chapter have been published in the

following conference paper:

Tagel, M., Ellervee, P., & Jervan, G. (2010). Design Space Exploration and

Optimisation for NoC-based Timing Sensitive Systems. Proceedings of the 12th

Biennial Baltic Electronic Conference (pp. 177 - 180). Tallinn, Estonia.

5.1. Motivation

According to Marculescu, Ogras, Li-Shiuan Peh Jerger, and Hoskote (2009)

application mapping has a major impact on schedule length, NoC performance

and power consumption. Mapping tasks to processing cores is similar to the

quadratic assignment problem (QAP) that is known to be computationally

intractable (Garey & Johson, 1979). For example, mapping 10 tasks onto 10

NoC cores has in total 3 638 800 combinations (10!). If one evaluation would

take 0.1 milliseconds then we would need approximately one year to accomplish

this task. To run an exhaustive search to find a global optimum is infeasible for

complex problems. Heuristics shall be used to approximate the optimum in

reasonable amount of time. Figure 5.1 depicts one of possible taxonomies of

classical optimization algorithms proposed by Talbi and Muntean in 1993.

Besides list scheduling that is the basis of our contention-aware scheduling, we

114

have chosen two well-known algorithms to show that our communication

modelling approach can be applied to an arbitrary optimization algorithm. We

are exploring the trade-off between time to calculate the schedule versus

improvement gained. Additionally, we are interested to see how much influence

gives the application mapping or the schedule improvement to the resulting

schedule length.

Various optimization techniques have been described by several authors to

solve the mapping or scheduling problem in the NoC domain. Orsila, Salminen,

Hännikäinen, and Hämäläinen (2007) proposed an algorithm called optimal

subset mapping (OSM) that rapidly evaluates the task mapping space. It takes a

random subset of tasks and finds the optimum mapping in that subset by trying

all possible mappings (brute-force search). The experimental results are

compared to simulated annealing (SA) and group migration (GM) algorithms.

Lu, Xia, and Jantsch (2008) present a cluster-based simulated annealing

algorithm that combines clustering technique with simulated annealing to map

processing cores onto 2D-mesh NoCs. Clustering is used to greatly simplify the

mapping problem as mapping is done cluster wise instead of node wise. Hu and

Marculescu (2003) show the impact of different task mappings to the

communication energy consumption and present a branch-and-bound algorithm

to solve the problem under tight performance constraints. What is interesting is

the authors’ conclusion – they are able to generate more efficient designs with

less computation time by their branch-and-bound based approach compared to

simulated annealing. In a follow-up paper Hu and Marculescu in 2005 proposed

an energy-aware scheduling method to statically map and schedule application-

specific communication transactions and computation tasks onto heterogeneous

network-on-chip architectures. The approach is based on the idea of slack-

budgeting, which allocates more slack to those tasks whose mapping onto

processing cores has a larger impact on energy consumption and performance of

the application. The authors use a search and repair method to improve the initial

schedule and to fix the missed deadlines. This overview shows that general

Static allocation

Optimal Not optimal

Mathematical

programming

Queuing

theory
Graph theory

Branch-and-

bound

Dynamic

programming

Main-cut

partitioning

Weak

homomorphism

Heuristics Approximate

Iterative Greedy

General-purpose Specific

Process

clustering

Genetic

algorithms

Hill-

climbing

Simulated

annealing

Routing

limitation

List scheduling

State space

search

Figure 5.1. Taxonomy of optimization algorithms (Talbi & Muntean, 1993)

115

purpose optimization algorithms and custom heuristics have been successfully

applied to the NoC domain to solve the scheduling or mapping problem.

However, different assumptions on underlying NoC architecture and

communication modelling do not allow the algorithms to be used one-to-one in

our system-level design framework. General purpose optimization algorithms

require some additional analysis and tweaking for each concrete problem and

system model.

In Chapter 3.5 contention-aware scheduling (based on list scheduling) is used

to schedule an application with given mapping. List scheduling is a greedy

heuristic using a priority list and precedence constraints to schedule the tasks

and minimise the schedule length. The algorithm is straightforward to implement

and it has a low calculation time. It is a good option for design space

exploration. However, to get an optimum solution, one would need to schedule

all possible task sequences reaching in worst case n! permutations. In this

chapter we are describing the use of branch-and-bound and simulated annealing

optimization techniques in our system-level design framework. We are exploring

the trade-off between improvement in schedule length and time spent for

calculation. Second, we are analysing how much influence gives the application

mapping or the schedule improvement to the resulting schedule length.

5.2. Schedule optimization with branch-and-bound

Branch-and-bound (B&B) is a general algorithm for finding optimal solutions

for various computationally intensive optimization problems. Branch-and-bound

consists of three main functions – branching, bounding and pruning. Branching

describes the problem as a search tree whose nodes are subsets of given

problem. Bounding calculates upper and lower bounds that are used to evaluate a

set of candidates and prune the ones that do not lead to an optimum. Figure 5.2

depicts an illustration of the branch-and-bound process. An example task graph

is transformed into a B&B search-tree where some nodes have been pruned as

they do not lead towards the optimum solution.

The optimization problem we are trying to address in this section with

branch-and-bound can be formulated as follows.

Definition 5.1 (Branch-and-bound schedule optimization problem). Given an

application A = (T, C, wcet, comm), a network model N = (R, L) and a mapping

function M(TR) the branch-and-bound optimization problem is used to

determine an optimum feasible schedule S for application A on network-on-chip

N.

116

The pseudocode of branch-and-bound algorithm is depicted in Figure 5.3.

Each B&B tree node contains a partial schedule (constructed so far) and a list of

ready tasks as depicted in Figure 5.2b. We are choosing a node to branch based

on the best-first strategy. For this we are sorting all the partial schedules by

length and choosing the first (best) one. We have also evaluated a breadth-first

search, but it did not improve the calculation speed. Each ready task of a node

being branched will be added into the B&B search tree and stored also in the

partial schedule list. There is an example in Figure 5.2b. We start with task t1 –

the partial schedule contains only t1 and task t1 activates tasks t2 and t3 (ready

task list). When we are branching from task t1 then we add into B&B search tree

all the task t1 ready task list contents – tasks t2 and t3. The new node t2 in B&B

search tree contains a partial schedule t1, t2 and it activates the tasks t3 and t4.

Such a branching strategy avoids infeasible solutions and reduces the number of

calculations. The partial schedule length is calculated based on the order of tasks

in the partial schedule. The rest of the tasks are scheduled by list scheduling that

gives us a tight upper bound.

The lower bound is calculated by similar approach as in the paper of Rahman

and Chowdhury (2009):

lengthschedulepartial
cores

WCET
LB

t





 (7)

where the total WCET of unscheduled tasks, divided by the number of

processing cores, is added to the partial schedule length. After that, we evaluate

t1

t2 t3

t3 t4 t2 t5 t6

t4 t5 t6t5 t6t4

X X X

t5 t6

t1

t3 t2

t4t5

t6

t7

t8

c1c2

c3c4c5

c6
c7

c8

c9

c10

a) example task graph b) partial branch-and-bound search tree

PS – partial schedule

RT – ready to schedule

t1PS:

RT: t2 t3

t1PS:

RT: t3 t4

t2
t1PS:

t2 t5

t3

RT: t6

t1PS:

t8

t3

RT:

t6t2 t4

Figure 5.2. Branch-and-bound example

117

all candidate solutions. We prune the nodes that have its lower bound higher or

equal to the global best upper bound. The process continues until there are no

more nodes to expand.

An example of the branch-and-bound calculation process is depicted in

Figure 5.4. The application consists of 100 tasks mapped on a 6x6 2D-mesh

NoC. List schedule length is 9226 cycles while branch-and-bound result gives

almost 15% of improvement (7882 cycles). However the calculation time

increases 71 times from 0.12 seconds to 8.53.

Branch-and-Bound(ETG)

1 currentSolution = calculate initial solution with list scheduling

2 globalBest = currentSolution

3 while solutionList ≠  do

4 sort solutions in solutionList by priority function (best-first)

5 take the best from solutionList and branch

6

7 for each branched node in solutionList do

8 calculate upper and lower bounds for branched nodes

9 if(upper bound < globalBest) then

10 globalBest = upper bound

11

12 if(upper bound > globalBest or lower bound > upper bound) then

13 prune the node

14 end for

15

16 end while

end Branch-and-Bound;

Figure 5.3. Pseudocode of branch-and-bound

Figure 5.4. An example of branch-and-bound result conversion

7500

7750

8000

8250

8500

8750

9000

9250

9500

S
ch

ed
u

le
 l

en
g
th

 (
cy

cl
es

)

Calculation time

B&B process Global best List schedule

118

5.3. Design optimization with simulated annealing

Simulated annealing (SA) is a probabilistic metaheuristic for the global

optimization problem, locating a near-optimal solution in feasible time

(Kirkpatrick, Gelatt, & Vecchi, 1983). Simulated annealing belongs to the class

of non-optimal algorithms (Figure 5.1). It has been applied to several

combinatorial optimization problems from various fields of science and

engineering. These problems include for example travelling salesman problem

(TSP), quadratic assignment, graph partitioning or linear arrangement. One of

the main features of simulated annealing is the hill climbing capability – instead

of accepting only improved solutions, bad solutions are accepted also with

certain probability. That probability is gradually lowered, while finally only

improved solutions are accepted. If an analogy is found from a problem at hand

the simulated annealing is quite effective and simple to implement. However, it

might need more time to tweak the initial parameters for a given problem.

5.3.1 Simulated annealing basics

The simulated annealing comprises of creating an initial solution that will be

annealed by generating moves in the neighbourhood. Result (cost) of a move is

calculated based on a target function and compared to the currently known best

value. The cooling schedule controls the decrease of temperature, which has an

effect on the move energy. The process continues until a termination condition

has been met. The pseudocode of simulated annealing is depicted in Figure 5.5.

In the next sections we will describe the main parts of the simulated annealing.

Initial parameters

In simulated annealing it is important to find feasible values for initial

parameters: initial temperature (related with initial acceptance probability) and

cooling schedule. When the initial temperature is too high, many bad uphill

moves might be accepted driving SA far away from reasonable solution space.

When it is too low, SA might not reach solutions which require more energy to

cross higher hills to reach a global optimum. To estimate the initial temperature,

we use a similar approach as proposed by Ledesma, Avina, and Sanchez in

2008. First, we create an initial solution. Next, we generate n number (e.g. 100

times) of random moves and record difference between initial solution and the

random move. We calculate the average difference (diffavg) of all random moves.

The initial temperature can be estimated by the following formula:

 Tinitial = (1/-log(pinitial)) x diffavg
2
 (8)

where pinitial is the initial probability to accept uphill moves. In our experiments

we have used pinitial = 0.9.

119

 Simulated Annealing (alpha, Tinitial, Nallowed_temperatures, Nallowed_peturbations)

 1 Construct initial solution Scurrent;

 2 Current temperature T = Tinitial;

 3 Global best solution Sglobal = ∞; Ntemperatures = 0;

 4

 5 While Ntemperatures < Nallowed_temperatures Do Begin

 6 Number of peturbations Npeturb = 0;

 7 While Npeturb < Nallowed_peturbations Do Begin

 8 Generate randomly a neighbouring solution Sneighbor

 9 Calculate Sneighbor schedule length

 10 ΔE = Sneighbor – Scurrent;

 11

 12 If ΔE<0 Then

 13 Scurrent = Sneighbor; Npeturb = 0;

 14 Else

 15 Generate random value r = uniform_random(0, 1);

 16 If r ≤ e
-ΔE/T

 Then

 17 Scurrent = Sneighbor; Npeturb = Npeturb - 1;

 18 Else

 19 Npeturb = Npeturb + 1;

 20 End If;

 21 End If;

 22 End;

 23

 24 If Scurrent <= Sglobal Then

 25 Sglobal = Scurrent; Ntemperatures = Ntemperatures + 1;

 26 Else

 27 Ntemperatures = 0;

 28 End If;

 29 Set T = alpha x T;

 30 End;

 End Simulated Annealing;

Figure 5.5. Pseudocode of simulated annealing

120

Cooling schedule and acceptance criterion

We have used an exponential cooling schedule described by the following

equation:

 Tnew = alpha x T (9)

where alpha is a constant (in our experiments usually between 0.7 and 0.96) and

T current temperature.

An acceptance criterion is needed to overcome local optimums and accept

uphill moves. One of the most common is the Metropolis acceptance criterion:

 pacceptance = e
-ΔE/kT

 (10)

where ΔE is object function difference between modified solution and current

one, T current temperature and k Boltzman’s constant (Metropolis, Rosenbluth,

& Rosenbluth, 1953). The acceptance probability (pacceptance) is compared to a

random value generated uniformly in the range of [0, 1]. The probability

accepting uphill moves will decrease with the temperature and/or with the

increase of ΔE. Therefore, selection of initial temperature, probability and

cooling schedule is important for the performance of SA.

Neighbourhood search

Depending on the optimization problem there can be different approaches to

create neighbouring solutions. For example for schedule optimization task

priority could be increased changing its position in the schedule. To optimize

task mapping a randomly chosen task could be re-mapped to another processing

core. It is important to keep in mind that a neighbouring solution should not

restrict another move to revert the change in a later phase. Otherwise the process

could be stuck in nearby local optimum and not be able to cross the hill.

Termination condition

In literature various termination conditions can be found. In our approach we

specify the number of temperature levels (Nallowed_temperatures) we are annealing at

minimum, until we stop the process. The counter is incremented when we have

found a better or equal solution compared to previous one. The counter is reset

to zero when a higher result is found as we might have recovered from a local

optimum and it would need further examination. At each temperature we are

creating at minimum Nallowed_peturbations random neighbourhood solutions. The

counter is incremented when an uphill move is rejected and decremented when a

solution is accepted. The idea is essentially to keep the process on the same

energy level until it stabilizes and only then lower the temperature.

5.3.2 Schedule optimization with simulated annealing

The schedule optimization problem we are trying to solve with simulated

annealing can be formulated as follows.

121

Definition 5.2 (Simulated annealing schedule optimization problem). Given

an application A = (T, C, wcet, comm), a network model N = (R, L) and a

mapping function M(TR) the simulated annealing optimization problem is to

minimize the schedule length and to determine a near optimum feasible solution.

When optimising the schedule (having fixed mapping) with simulated

annealing, a neighbouring solution is created by selecting randomly a task and

randomly increasing or decreasing its priority in the ready list. It is illustrated in

Figure 5.6a. For this we are recording during scheduling the tasks that are ready

at the same time. The distance a random task can be shifted in the queue is

controlled by the following formula:

 Distanceallowed = Sizeready_queue x (T / Tinitial) (11)

where Sizeready_queue is the size of ready list, T is current temperature and Tinitial

initial temperature.

Figure 5.7 depicts example results of simulated annealing schedule

optimization having the same application and platform as with branch-and-

bound. The uphill-downhill moves that are distinctive for simulated annealing

are clearly illustrated in the figure. The simulated annealing schedule length is

7988 cycles, which is 13% better than a schedule produced by list scheduling

(9226 cycles) and near to the branch-and-bound result (7882 cycles). The SA

calculation time (96 seconds) is 800 times higher than for list scheduling and 11

times higher compared to B&B.

5.3.3 Task mapping optimization with simulated annealing

When schedule optimization does not give the required amount of improvement

we can go for design space exploration and find an alternative mapping that

might give better results. As the search space would be unreasonable big for

Time

T
em

p
er

at
u

re

t1 t3 t2 t6 t5

t1 t3 t2 t6 t5

t1 t3 t2 t6 t5

Time

T
em

p
er

at
u

re

Queue: tasks ready

a) shift tasks in ready queue b) temperature controlled mapping

Figure 5.6. Two types of neighbourhood moves in simulated annealing

122

branch-and-bound we are using the simulated annealing to solve this

optimization problem.

Definition 5.3 (Simulated annealing mapping optimization problem). Given

an application A = (T, C, wcet, comm), a network model N = (R, L) and an

initial mapping function M(TR) the simulated annealing optimization problem

is to re-map the tasks in order to minimize the schedule length and to determine

a near optimum feasible solution.

Design space exploration is performed by selecting randomly a task and re-

mapping it to another processing core (Figure 5.6b). The distance between

original and re-mapped core (number of hops) is controlled by the cooling:

 Distanceallowed = Number_of_hops x (T / Tinitial) (12)

where Number_of_hops is a random number in a range that depends on the

current task location and the size of the NoC, T is current temperature and Tinitial

initial temperature. In the beginning of the process, the distance can be higher

while eventually reaching one hop (nearby cores). To evaluate cost of the move

we need to perform each time communication synthesis and schedule the tasks

and the communication. It is because our communication synthesis approach

assumes that it is known which network resources a message traverses in its

path. If that information changes re-synthesis of communication is needed.

Figure 5.8 depicts results of the simulated annealing mapping optimization. It

can be seen that the mapping optimization gave the best schedule length 7264

cycles, compared to B&B: 7882 cycles. However, the calculation time was

around 11 times higher (96 seconds) compared to B&B. As simulated annealing

produces near optimum results we have confirmed the quality of the achieved

Figure 5.7. Simulated annealing schedule optimization

7 700

7 950

8 200

8 450

8 700

8 950

9 200

9 450
S

ch
ed

u
le

 l
en

g
th

 (
cy

cl
es

)

Calculation time

SA schedule optimization Global best

List schedule

123

result by performing an experiment were the same application with 100 tasks

and 30 arbitrary mappings were given and mapping optimization was run again

with simulated annealing. An average schedule length of 7324 cycles was

achieved, which is less than 1% difference compared to the previous best result.

It shows that general purpose heuristics can be used effectively to solve specific

design space exploration problems.

5.4. Experimental results

To show scaling of the branch-and-bound and simulated annealing optimization

algorithms we have chosen synthetic task graphs, containing 100, 500, 750 and

1000 tasks. The NoC platform we have used in this set of experiments is a 6x6

2D-mesh, link bit-width of 32 bits, packet-size of 512 bits, and dimension-order

XY routing. The computing resources are homogeneous – the task WCET is the

same on all resources. The tests were performed on a computer with Intel L2400

CPU (1.66 GHz), 1 GB of available physical RAM. As simulated annealing

depends heavily on the quality of random number generator we have run 20 tests

in a batch varying the random number generator seed. We depict the minimum,

maximum and average result. The SA initial parameters were chosen as

described in Section 5.2. The initial task mapping was given.

The results in Table 5.1 show that all of the optimization techniques have

produced a better schedule than the list scheduling (LS). However, this is

achieved at the expense of increased calculation time. For applications with 750

and 1000 tasks, the schedule optimization with SA was not able to produce a

result in feasible time. When we compare different optimization techniques it

Figure 5.8. Simulated annealing mapping optimization

7 100

7 350

7 600

7 850

8 100

8 350

8 600

8 850

9 100

9 350

9 600
S

ch
ed

u
le

 l
en

g
th

 (
cy

cl
es

)

Calculation time

SA mapping optimization Global best

List schedule

124

can be seen, that branch-and-bound has given 10-15% of improvement with

lowest calculation time. As we create only valid solution branches in the B&B

this reduces rapidly the number of iterations reaching the solution faster than

simulated annealing. The simulated annealing performance could be increased

by a more efficient way to generate the neighbourhood where a change of

existing solution is created. Mapping improvement with SA reached a similar

schedule optimization as B&B, but the calculation time explodes with the

increase of application size. It is important to note, that in the mapping

optimization communication must be synthesized for each modified solution. In

the schedule optimization, it is needed only to re-schedule the tasks and

communication that is less time consuming.

5.5. Conclusions

One of the main goals of this chapter is to show that arbitrary scheduling or

optimization technique can be used together with our contention-aware

scheduling method. We have presented branch-and-bound and simulated

annealing optimization techniques in order to improve the initial schedule and/or

task mapping. Branch-and-bound is a general algorithm for finding optimal

solutions for various computationally intensive optimization problems.

Simulated annealing is a probabilistic metaheuristic for the global optimization

problem, locating a near-optimal solution in feasible time. We have used branch-

and-bound to improve the initial schedule. Simulation annealing has been used

to improve the initial schedule and task mapping. The experimental results show,

that our communication modelling technique can be used with both of the

presented optimization methods, gaining improvement in schedule length by re-

ordering or re-mapping the tasks.

1
2

5

Table 5.1. Comparison of optimization techniques

Number

of tasks

Schedule length, cycles Calculation time, minutes

List

schedule

Branch-

and-

bound

SA Mapping with SA LS B&B SA Mapping

SA
Min Avg Max Min Avg Max

100 9 226 7 882 7 988 8 488 8 719 7 264 7 367 7 998 0.003 0.1 1.3 1.8

500 18 496 16 728 18 019 18 112 18 206 16 916 17 522 18 265 0.03 13.7 34.7 18.2

750 32 127 28 932 NA NA NA 28 150 29 217 30 193 0.05 35.5 NA 33.6

1000 36 772 33 103 NA NA NA 33 642 33 733 34 086 0.10 85.9 NA 267.3

126

127

Chapter 6. System-Level Fault Tolerance

Improvements

In the previous chapters we have had focus on predictable and effective system-

level design of real-time NoC-based SoCs. The objective has been to optimize

the designs in terms of schedule length and mapping. The assumption so far has

been that the network-on-chip is able to provide the required communication

services at any given (scheduled) time. According to Murali et al. (2005) and

Constantinescu (2003) shrinking feature sizes towards nanometer scale cause

power supply and threshold voltage to decrease, consequently making wires

unreliable. The wires will be increasingly susceptible to different noise sources

such as crosstalk, coupling noise, soft errors and process variations. To design a

predictable and reliable system one would need to analyse the sources of faults

and the probability of their occurrence. Based on the analysis fault-avoidance or

fault tolerance techniques should be used to increase the reliability of the system.

Part of the results described in this chapter have been published in the

following book chapter:

Tagel, M., Ellervee, P., & Jervan, G. (2011). System-Level Design of NoC-

Based Dependable Embedded Systems. Ubar, R.; Raik J.; Vierhaus, H. T. (Eds.).

In Fault-Tolerance and Applications in System-on-Chip Design: Advancements

and Techniques (pp. 1 - 36). Hershey, Pennsylvania, USA: IGI Global.

6.1. Motivation

Faults in semiconductor devices can be divided based on their occurrence into

three classes – permanent, transient and intermittent. As described in Section

2.6.1 permanent faults cause permanent malfunctioning of system components,

while transient and intermittent faults appear for a short period of time.

According to Sosnowski (1994) and Constantinescu (2003) improvements in

semiconductor design and manufacturing processes have significantly decreased

the occurrence of permanent faults. Conversely, the technology scaling has

increased process variability causing higher number of transient and intermittent

faults – due to which the device performance might vary in space and time.

Sources of variability are transistors, interconnects, and the operating

environment (Nikolic, Park, Kwak, & Giraud, 2011). Therefore, with current

and future technology nodes variability and reliability are important issues to be

addressed together. One way to handle the problem is to keep a relatively high

design margin to guarantee the required yield. Another way is to increase the

system reliability by employing data encoding, duplicating system components

128

or software-based fault-tolerance techniques. There are several techniques that

we discussed in Chapter 2.6.3, which concentrate on low level reliability

analysis and improvement in SoC design. We want to fill the gap between the

application and the underlying network-on-chip and bring the reliability analysis

to the system level together with the communication aspects.

Murali et al. (2005) proposed three error detection and correction schemes,

end-to-end flow control (network level), switch-to-switch flow control (link

level) and combined approach that can be used to protect NoC communication

links from transient faults. In the end-to-end error detection scheme parity or

cyclic redundancy check (CRC) codes are added to packets while in switch-to-

switch scheme the error detection code is added either to flits or packets. In the

end-to-end error detection scheme the receiver network interface sends

acknowledgement to the sender if the received data was correct or requests to re-

send it in case it was not able to correct the faulty data. If a switch detects an

error on a packet’s header flit, it drops the packet. In the switch-to-switch error

detection scheme the faulty flits or packets are re-transmitted between the

switches. In the hybrid single-error-correcting and multiple-error detecting

scheme the receiver corrects any single bit error on a flit. When multiple bit

errors occur there is end-to-end re-transmission of data from the sender network

interface necessary. The authors are interested in power consumption overhead

when implementing such error detection schemes. The work focuses only in

network and link level. As the authors state in the conclusions further work in

NoCs should include investigating the effects of application- and software-level

reliability schemes and developing online adaptation capabilities to increase

fault-tolerance of NoC-based systems. In 2007, Rantala, Isoaho and Tenhunen

motivated the shift from low level testing and testability design into system-level

fault-tolerance design. They propose an agent-based design methodology that

helps bridging the gap between applications and re-configurable architectures in

order to address the fault-tolerance issues. They add a new functional

agent/control layer to the traditional NoC architecture. The control flow of the

agent-based architecture is divided hierarchically to different levels. The

granularity of functional units on the lowest level is small and grows gradually

when raised on the levels of abstraction. For example the platform agent at the

highest level controls the whole NoC platform while a cell agent monitors and

reports status of a processing unit to higher level agents. Rusu, Grecu and

Anghel (2008) propose a coordinated checkpointing and rollback protocol that is

aimed towards fast recovery from system or application level failures. The fault-

tolerance protocol uses a global synchronization coordinator Recovery

Management Unit (RMU) which is a dedicated task. Any task can initiate a

checkpoint or a rollback but the coordination is done each time by the RMU.

The advantages of such an approach are simple protocol, no synchronization is

needed between multiple RMUs, less hardware overhead and power

consumption. The drawback is the single point of failure – the dedicated RMU

itself. Zhang, Han, Xu, Li and Li (2009) introduce virtual topology that allows

using spare NoC cores to replace faulty ones and re-configure the NoC to

129

maintain the logical topology. A virtual topology is isomorphic with the

topology of the target design but is a degraded version. From the viewpoint of

programmers and application, they always see a unified virtual topology

regardless of the various underlying physical topologies. Ababei and Katti

(2009) propose a dynamic remapping algorithm to address single and multiple

processing core failures. Remapping is done by a general manager, located on a

selected tile of the network.

In this chapter we present a system level approach to handle a given number

of transient or intermittent faults. The fault-tolerance requirements are taken into

account during the task and communication scheduling to allocate appropriate

slack time to execute recovery actions. It is an application level software-based

approach to increase the reliability of NoC-based real-time systems taking into

account the communication aspects. In literature different fault models exist for

on-chip interconnect and system components. Therefore, first we describe our

system model with dependability requirements to put the work into a concrete

context. Second, we introduce shifting-based scheduling (SBS) to schedule

applications with dependability requirements, followed by experimental results.

6.2. System model with dependability requirements

As the basis of this work we are using the same system model and NoC

architecture as described in Chapter 3. However, dependability brings new

aspects that we have to take into consideration. We assume that the system is

able to detect transient or intermittent faults and perform a corrective action.

These faults can appear during task execution and data transmission. A transient

fault in a processing node can be detected with special techniques such as

watchdogs or signatures that are easy to implement and have a low overhead.

The time to detect a fault is represented by error-detection overhead tdet. Once a

fault is detected, inputs of the process will be restored and the task can be re-

executed k times. The time to recover the inputs is characterized by the recovery

overhead trec. For the sake of simplicity we assume in the remaining chapter that

the error detection overhead tdet is included in task worst-case execution time.

We are using an end-to-end re-transmission scheme where the sender adds

CRC error detection code to the original packet and the receiver checks the

received data for correctness. If a faulty and unrecoverable packet is received at

the destination the source task is requested to re-send the data. A faulty packet

can be re-sent r times. The error-detection tdet overhead is a constant for data

communication while the recovery overhead trec depends on the task mapping. In

the current approach we do not handle delay faults. We assume that the task is

executed in its WCET timeframe and the communication is transmitted during

the scheduled time period. However, delay faults causing deadline misses can be

caught by the online scheduler that exists in each processing core. Figure 6.1

depicts an example of a task re-execution and a packet re-transmission scenario.

Task t1 experiences a fault that is detected. The initial inputs are restored and

130

task t1 is re-executed. Task t1 will send the result c1 to processing unit PU2. The

processing unit PU2 will detect the fault in one of received packets and will

request to re-send it. Finally, the faulty packet c1 is re-sent. The example

schedule of the application is able to handle one task re-execution and one

packet re-transmission. However, there can be more than one flipped bit in a task

or a packet. Therefore, the error detection technique should be carefully selected

to detect single or multiple faults in the data.

We have used the contention-aware scheduling described in Chapter 3 and

combined it with shifting-based scheduling (SBS) (Izosimov, 2006) to produce

schedules that meet the fault-tolerance requirements set by the designer at the

system level. The scheduling is performed offline. The resulting schedule is

stored in each processing core schedule table. The schedule table contains only

the fault-free execution scenario and additionally information of how many

times a task could be re-executed or a packet re-sent to still keep the deadlines.

There is an online scheduler in each processing core that takes care of

maintaining the current execution scenario. The input problem we are solving

can be summarized as follows.

Definition 6.1 (Task graph with dependability requirements). A task graph

with dependability requirements corresponds to the Definition 3.1 having in

addition information about k number of task re-executions and r number of

packet re-transmissions an application is able to tolerate. The input contains

also the CRC bit-length and polynomial.

6.3. Fault-tolerant application schedules

The work of Izosimov (2006) describes system-level scheduling and

optimizations of fault-tolerant embedded systems in bus-based systems. The

work describes various techniques at the system level such as re-execution,

rollback recovery with checkpointing and active/passive task replication.

However, their work considers faults only in computational tasks. The

PU2

t1PU1

link1

link2

t1
'

c1

c1 c1'
tdet

trec

tdet

trec

packet re-

transmission

task re-

execution

time

c1'
k = 1
r = 1

Figure 6.1. An example of re-execution and re-submission

131

communication fault-tolerance is not a part of their system model. It is assumed

that the faults occurring during data transmission are handled by the

communication subsystem by the use of error correction codes or through

hardware replication of the bus. The hardware overhead of such scheme would

be hard to justify for a NoC-based system. The number of network resources

(communication links, routers) would be much higher than in a bus-based

system. We could apply one of the software fault-tolerance techniques, proposed

by Izosimov (2006) for bus-based systems, to the NoC domain but the

complexity increases when we try to manage slack time across all

communication links and communication flows. Moreover, in a bus-based

system the task mapping does not have such influence on communication delays

as in a NoC-based system. Therefore, we need a method that would take into

account both fault-tolerance and communication aspects of NoCs, trading-off

some system performance for modelling speed.

The basis of our work is shifting-based scheduling approach proposed by

Izosimov (2006). We have extended it to contain on top of the task dependability

requirements also the communication fault-tolerance requirements and

integrated it with our contention-aware scheduling. Shifting-based scheduling is

an extension of the transparent recovery against single faults. A fault occurring

on one computation node is masked to other computation nodes. It has impact

only on the same computation node. According to Izosimov (2006) providing

fault containment, transparency can potentially improve testability, debugability

and increase determinism in fault-tolerant applications. A good property of

shifting-based scheduling is that the start time of communication is fixed

(frozen). It reduces the modelling complexity and fits into our communication

model where communication is scheduled at fixed time periods. Moreover, we

do not need a global real-time scheduler to synchronize a local recovery event

with other cores in the case of fault occurrence. A downside is that SBS cannot

trade-off transparency for performance – in case of fault-free execution scenario

the slack periods are left in the schedule because the communication is

scheduled to start at fixed time periods.

The scheduling problem we are solving with SBS can be formulated as

follows.

Definition 6.2 (Shifting-based scheduling problem). Given an application A =

(T, C, wcet, comm) with dependability requirements k and r, a network model N

= (R, L) and a mapping function M(TR) we are interested to find a schedule S

such that the worst-case end-to-end delay is minimized and the transparency

requirements with frozen communication are satisfied.

In 2006, Izosimov proposed a Fault-Tolerant Conditional Process Graph (FT-

CPG) to represent an application with dependability requirements. FT-CPG

captures alternative schedules in the case of different fault scenarios. Graphically

FT-CPG is a directed acyclic fork-and-join graph where each branch

corresponds to a change of condition. However, for SBS the full FT-CPG graph

is not necessary to generate – instead, all possible execution scenarios are

132

considered during scheduling. Therefore the graph complexity (number of

vertexes and edges) stays the same as for contention-aware scheduling while

there is a slight increase in the number of scheduling steps.

The pseudocode of extended shifting-based scheduling algorithm is depicted

in Figure 6.2. Input for the SBS is an application A, a NoC architecture N with a

mapping function M, a number of transient faults k to be tolerated in any

processing core and a number of faulty packets r to be tolerated during data

transmission. The main part of the pseudocode follows the contention-aware

scheduling algorithm to schedule the tasks and communication. First, priorities

of tasks are calculated based on mobility and the source task (pred(t) = ) is put

into the ready to schedule list (lines 1-2). Scheduling loop (lines 3-24) is

processed until all tasks and communication messages have been scheduled.

Before a task is scheduled we need to calculate the recovery slack (line 5). It is

calculated in three steps as described below:

1. The idle time tidle between the task being scheduled tcurrent and the last

scheduled task tlast on the same processor is calculated as:

 tidle = tcurrent – tlast (13)

Shifting-based-scheduling(A, N, k, r)

1 calculate task priorities

2 add task with pred(t) =  into ready task list

3 while tasks not scheduled ≠ 

4 for each task tcurrent in ready task list do

5 calculate recovery slack slcurrent for task tcurrent based on k

6 schedule tcurrent with recovery slack slcurrent

7 add first vertex of outgoing communication message into comm. list

8 remove scheduled task tcurrent from ready list

9 end for

10 sort communication list based on ASAP schedule

11 for each communication message ccurrent in comm. list do

12 schedule communication message ccurrent on the whole route

13 for r packets to be tolerated do

14 for each traversed comm. link of ccurrent from dest. to source do

15 reserve communication bandwidth for recovery request

16 end for

17 for each traversed comm. link of ccurrent from source to dest. do

18 reserve communication bandwidth for re-submission of a packet

19 end for

20 end for

21 end for

22 add eligible successors of scheduled tasks to ready task list

23 sort ready task list based on mobility

24 end while

end Shifting-based-scheduling

Figure 6.2. Extended shifting-based scheduling algorithm

133

2. Initial recovery slack slinitial of task tcurrent is calculated as:

 slinitial = k x (WCET

currentt + trec) (14)

where k is number of required recovery events, WCET

currentt worst-case

execution time of a task being scheduled and trec time needed to restore

the initial inputs. Recovery overhead trec has a constant value.

3. We calculate the slack difference sldiff

 sldiff = sllast - tidle (15)

where sllast is the slack time of last scheduled task. The recovery slack

slcurrent of task tcurrent is changed if recovery slack of previous task sllast

subtracted with the idle time tidle (Formula 15) is larger than the initial

slack slinitial. Otherwise initial recovery slack is preserved. This is

summarized by the Formula 16.

initialdiff

initialdiff

diff

initial

current slsl

slsl

if

if

sl

sl
sl










,

,
 (16)

SBS is adjusting the recovery slack to accommodate recovery events of tasks

mapped to the same processing core and will schedule communication to the end

of the recovery slack. There is an example of fault-tolerant schedule depicted in

Figure 6.3. Tasks t1 and t2 have a recovery slack that can accommodate one of

the two tasks re-execution (k = 1). The figure also depicts the worst-case

scenario for task t1 in case of k = 1 transient faults.

So far we described how shifting-based scheduling approach can be used to

calculate recovery slack for tasks mapped on the same core. The start time of the

communication messages is frozen (fixed) – they are scheduled at the end of the

task(s) recovery slack. Next, we will look the extension of the SBS algorithm to

handle the communication fault-tolerance.

PU2

t1PU1

link1

link2 c1

c1

re-execution

slack for tasks

t1 and t2

time

t2

k = 1

t1

worst-case scenario

for tasks t1

communication is

scheduled at the end

of recovery slack

t2scenario with

one fault in t1

trec

r = 0

trec

Figure 6.3. An example of SBS application schedule

134

Communication fault-tolerance

In Chapter 3 we have described the contention-aware communication synthesis

and scheduling. In this chapter we will extend it to include the fault-tolerance

aspects. We can model the communication at different levels of granularity –

message or packet level. In message-based communication a stream of flits or

packets that make up a message are scheduled as one piece. In packet-based

communication model packets that make up a message might not be scheduled

all to consecutive time periods. Chapter 4.1 described the trade-off and

advantages of packet-based schedules versus message-based schedules.

However, when we talk about communication fault-tolerance we assume that the

data is sent in a form of packets even when the NoC supports sending the whole

message as a stream of flits. There is an analogy with rollback recovery with

checkpointing. In that technique the time needed for task re-execution can be

reduced by taking checkpoints at specified time and restoring the last non-faulty

state of the failing task. Several approaches exist for distributing the

checkpoints. These can be inserted into places where saving of the process state

is the fastest. This is application-specific and requires knowledge on application

behaviour. Another approach is to insert the checkpoints systematically – for

example at equal intervals. Splitting the message into smaller units (packets) and

checking each received packet can more effectively identify the part of the faulty

data and require less time to re-send it.

One of the main assumptions in our system-level fault-tolerance technique is

the ability to detect faults. We protect packets by adding cyclic redundancy code

proposed by Peterson and Brown in 1961. The basic idea of CRC is to divide a

message by a fixed binary number (CRC polynomial) and to make the remainder

from this division the checksum. Upon receipt of a message, the receiver can

perform the same division and compare the remainder with the checksum. CRC

is characterized mainly by the size of the CRC checksum and the polynomial.

For interconnection networks, the property of interest is also the Hamming

Distance (HD) that is the minimum possible number of bit inversions that must

be injected into a message to create an error that is undetectable by the

checksum. The paper of Koopman and Chakravarty in 2004 analyses this

problem and gives an overview of different CRC sizes/polynomials and their

hamming distances.

In our approach each packet contains CRC error detection code and we can

specify the number of packets (parameter r) we want the application to be able

to re-send. CRC increases slightly amount of transmitted data but it has no major

effect on the schedule length as we see later in the experimental results. Figure

6.4 depicts two communication scenarios. In both examples communication is

modelled at message granularity. It means that a message is scheduled as one

piece to consecutive time periods. Figure 6.4a depicts the communication

schedule without a recovery slack. In Figure 6.4b we have set the requirement to

tolerate transient faults in one packet (r = 1) in each communication message

and reserve the network resources accordingly. From this small example we are

135

able to see the complexity we have to handle and how the communication delays

affect the slack allocation.

Lines 13-21 of shifting-based scheduling pseudocode in Figure 6.2 depict the

slack allocation for communication fault-tolerance. We reserve separately

recovery slack for a 2-flit packet (lines 14-16) that is sent from receiver to the

sender noting the failed packet identifier and requesting it to be re-sent. We are

using another CRC polynomial and CRC size to protect and to correct faults in

relatively short failed packet identifier. It is because there is no additional re-

submission scheme for those flits. The sender must be able to understand which

packet to re-send. Separate slack time in the schedule is reserved for the re-

submitted packet (lines 17-19). This process is iterated r number of times. There

is a trade-off between packet size and amount of CRC data versus schedule

length. Experimental results of this chapter contain a comparison of schedule

length having different fault-tolerance requirements and different packet sizes.

Extraction of runtime schedules

Shifting-based-scheduling provides a trade-off between performance and

complexity of the scheduling (in terms of memory, calculation time). SBS does

not require complete scheduling of all possible execution scenarios. It relies on

an online scheduler to maintain the current execution schedule and to switch to a

contingency schedule. It fits together with our system-level model and

application simulation kernel described in Chapter 3.6. We would need

link1

link2 c1

c1

time

r = 1

link3 c1

c2

c2

link1

link2 c1

c1

time

link3 c1

c2

c2trec
trec

a) communication schedule without recovery slack

b) recovery slack at the end of each message

messages c1 and c2

re-submission

slack for c1

re-submission

slack for c2

one packet

Figure 6.4. Different communication scenarios

136

additionally to store in each local scheduler how many times a task can be re-

executed and a packet to be re-sent.

If a fault is detected at the run-time of an application, local scheduler will

switch to a contingency schedule by re-executing the failed task and delaying the

start time of related successor tasks on the same processing core. The outgoing

messages will be sent at their respective scheduled time moments. At the

receiver side we store for each incoming message a number of packets that the

received message should consist of. Information about faulty received messages

can be sent out by receiver to the sender at the end of each message

transmission. The receiver will send out a special message noting the transaction

identifier of a faulty packet. The sender receives the request and re-sends the

faulty packet. This process can be iterated r times that correspond to the number

of re-submission events our application is expected to handle.

6.4. Experimental results

We have performed the experiments with the same set of synthetic task graphs

as described in Chapter 3. Each of the ten benchmark applications (a1 - a10)

consist of 2500 tasks with varying average vertex degree (1.5 - 5) and

computation-to-communication ratio (0.1 - 3.2). The NoC architecture

parameters are chosen as follows: link bit-width and flit size 36 bits, header size

20 bits, channel delay 1 cycle, switching delay 4 cycles and path setup delay 8

cycles. The experiments are performed on a computer with Intel Core i5-520M

(2.40 GHz) processor and 4 GB of available physical RAM.

Packet size versus SBS schedule length

In the first set of experiments we have chosen the benchmark application a1

consisting of 2500 tasks mapped on a 8x8 2D-mesh NoC. We have set the

dependability parameters k = 0 and r = 1. The CRC size is between 9 to 12 bits

depending on the size of the packet. Moreover, packet re-transmission slack

period depends on the packet size. The hamming distance is 4, which is the

minimum possible number of bit inversions that must be injected into a packet to

create an error that is undetectable by corresponding CRC sequence. The

different CRC sizes and related polynomials are described in the paper by

Koopman and Chakravarty (2004).

Our goal is to explore how the packet size, that includes also error detection

overhead, affects the computation-to-communication ratio and the schedule

length. The results are depicted in Figure 6.5. We can see that the packet size has

a big influence on the schedule length. There is an analogy with rollback

recovery with checkpointing. Splitting a message into smaller units (packets) can

more effectively identify the part of the faulty data and would require less time

to re-send it. However, we can see in the Figure 6.5 that if the

137

Figure 6.5. SBS schedule length depending on packet size (r = 1)

Figure 6.6. SBS schedule length for different NoC and packet sizes (r=1)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

3.50E+06

48 64 96 128 256 384 512 640

C
C

R

S
ch

ed
u
le

 l
en

g
th

 (
cy

cl
es

)

Packet size (bits)

Schedule length Computation-to-communication ratio (CCR)

1.00E+06

1.20E+06

1.40E+06

1.60E+06

1.80E+06

2.00E+06

2.20E+06

2.40E+06

2.60E+06

2.80E+06

3.00E+06

48 64 96 128 256 384 512

S
ch

ed
u
le

 l
en

g
th

 (
cy

cl
es

)

Packet size (bits)

6x6 NoC 4x4 NoC 8x8 NoC

138

packet size goes below 96 bits the CCR jumps up and starts affecting the

schedule length negatively. We have performed similar experiments with

benchmark application a1 for different NoC sizes to see how the NoC size

affects the schedule length. The results are depicted in Figure 6.6. We can see

the similar trend as in our first experiment. To confirm these findings we have

run experiments also with the rest of the 9 benchmark applications (a2-a10) and

the conclusion is that a favourable packet size for SBS is between 96 and 128

bits.

Dependability parameters

In the second set of experiments we are changing the SBS dependability

parameters k (number of task re-executions) and r (number of packet re-

transmissions). Our goal is to find out how the combined fault-tolerance in tasks

and communications affects SBS schedule length and modelling speed. We have

mapped application a1 from our synthetic task graph set to a 8x8 2D-mesh NoC

and varied the parameter k and r values. We have chosen packet size 128 bits

that we have found out to be suitable from previous experiments.

The results are depicted in Figure 6.7. The labels in the graph x-axis show the

respective k and r parameter values. We can see that increasing the k parameter

value by one produces approximately 1.5 times longer schedules. We see a sharp

increase in the schedule length when the number of packet re-transmissions

(parameter r value) is increased. The schedule length increases approximately

3.5 times compared to the initial schedule without recovery slacks. The

communication dependability overhead will start to dominate. The overhead is

affected by the task mapping – the end-to-end re-transmission scheme reserves

slack time for each communication link the packet traverses. As in previously

described model we assume no flit interleaving no other communication is

allowed to be sent on those communication links. The experimental results of

this set of tests are summarized in Table 6.1. The SBS algorithm has virtually no

impact on the schedule calculation speed compared to the case where no

dependability is selected and original contention-aware scheduling has been

used. However, a designer needs to select suitable k and r parameter values to

find a trade-off between schedule length and dependability improvement.

139

Figure 6.7. SBS schedule length for different dependability parameters

 Table 6.1. Shifting-based scheduling – performance/dependability trade-off

Level of

dependability
Schedule

length

(cycles)

Increase of

initial schedule

length

(x times)

Modelling

time

(seconds) r k

* Initial schedule length without dependability and no CRC in communication

0 0 * 419 697 1.0 11.9
1 674 448 1.6 12.0

2 938 482 2.2 11.7

3 1 204 977 2.9 11.7

1 0 1 461 567 3.5 12.5
1 1 543 059 3.7 12.5

2 1 674 128 4.0 12.4

3 1 846 625 4.4 12.5

2 0 2 900 645 6.9 12.9
1 2 938 034 7.0 12.6

2 2 998 153 7.1 12.9

3 2 900 645 6.9 13.0

3 0 4 350 754 10.4 13.6
1 4 379 552 10.4 13.3

2 4 418 198 10.5 13.9

3 4 472 463 10.7 13.4

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

3.50E+06

4.00E+06

4.50E+06

5.00E+06

S
ch

ed
u

le
 l

en
g
th

 (
cy

cl
es

)

Different dependability parameter values

Schedule length

r = 2

r = 1

r = 3

140

SBS mapping optimization by simulated annealing

As we saw previously the SBS schedule length is affected in a large scale by the

number of packet re-transmissions (parameter r). Increasing the parameter k

value by one produced approximately 1.5 times longer schedules. In both cases

the results depend on the task mapping. If we would map the tasks to nearby

cores we might get shorter packet re-submission slacks at the cost of more

network contentions. We have used simulated annealing task mapping

optimization, described in Chapter 5.3, to explore the amount of improvement

we could gain out of task re-mapping. We try to minimize the network traffic by

mapping the tasks only to nearby processing cores finding a trade-off between

parallelism and inter-processor communication. The simulated annealing

algorithm and the selection of initial parameters are described in Chapter 5.3. In

this set of experiments the temperature in simulated annealing algorithm controls

the distance were a task can be re-mapped. The cost of the move (recovery slack

and the schedule length) is calculated by the extended shifting-based scheduling

algorithm. The results are depicted in Figure 6.8. The x-axis describes different

combinations of parameter k and r values. The y-axis depicts the schedule

length. We can see that by optimizing the initial mapping we were able to gain

up to 10% of schedule length improvement at the cost of increased calculation

time (around 100 times higher). It is not as much improvement as we have

expected. By increasing the number of packet re-transmissions (r) the schedule

length is still affected mostly by the communication slack. One of the problems

Figure 6.8. Mapping optimization for different dependability parameters

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

3.50E+06

4.00E+06

4.50E+06

5.00E+06

S
ch

ed
u

le
 l

en
g
th

 (
cy

cl
es

)

Different dependability parameter values

Schedule length Schedule length (SA)

r = 2

r = 1

r = 3

141

is in the deterministic XY routing that does not balance the network load

between the communication links. A future work is to find a better deterministic

routing algorithm that is able to distribute the network load more evenly.

6.5. Conclusions

In this chapter we have described a system-level technique to tolerate transient

and intermittent faults in tasks and communications. We assume that a system is

able to detect transient or intermittent faults and perform a corrective action. We

are using an end-to-end re-transmission scheme where the sender adds CRC

error detection code to the original packet and the receiver checks the received

data for correctness. If a faulty and unrecoverable packet is received at the

destination the source task is requested to re-send the data. The fault-tolerance

requirements are taken into account during the task and communication

scheduling to allocate appropriate slack time to execute recovery actions. For

these purposes we have extended the shifting-based scheduling approach

proposed by Izosimov (2006). We have extended it to contain on top of the task

dependability requirements also communication fault-tolerance requirements

and integrated it with our contention-aware scheduling. If a fault is detected at

run-time of an application, local scheduler will switch to a contingency schedule

by re-executing the failed task and delaying the start time of related successor

tasks on the same processing core. The experimental results show that when

scheduling application with modified shifting-based scheduling the packet size

has a big influence on the schedule length. There is an analogy with rollback

recovery with checkpointing. Splitting the message into smaller packets can

more effectively identify the part of the faulty data and would require less time

to re-send it. The modified SBS algorithm has virtually no impact on the

schedule calculation speed compared to the case where no dependability is

selected and original contention-aware scheduling has been used. However, a

designer needs to select suitable SBS dependability parameter values to find a

trade-off between schedule length and improvement in system fault-tolerance.

142

143

Summary

Conclusions

This thesis concentrates on system-level design issues of real-time NoC-based

systems-on-chip. Networks-on-chip have been proposed as one of the

alternatives to solve the on-chip communication scalability problems and to

address dependability at various levels of abstraction. Communication modelling

and synthesis plays an important role in the design of such complex systems.

Trying to guarantee the observance of timing constraints without detailed know-

how of communication transactions might lead to unexpected results.

We propose our system-level design framework for real-time network-on-

chip based systems-on-chip. In the framework an application is described by a

directed acyclic graph (task graph). Each task has given worst case execution

time. Graph edges carry the amount of data that need to be exchanged between

given pair of tasks. Once the tasks have been mapped to corresponding

processing cores in NoC we perform communication synthesis – for each

communication link the message traverses, a new vertex is added into the task

graph transforming it into an extended task graph. The extended task graph is

scheduled using contention-aware scheduling method. The resulting schedule is

verified by executing the schedule on a NoC simulator. We have presented two

extensions of the proposed communication model to synthesize communication

at different granularity levels and to introduce communication interleaving

support. We have described two optimization techniques to improve the initial

schedule and task mapping. Finally, we have extended our work to handle given

number of transient or intermittent faults during task execution and data

transmission on communication links. It is done by allocating slack time and

scheduling the application with modified shifting-based scheduling algorithm.

To summarize, the main contributions of the thesis are:

 a formal graph-based method for communication modelling at

system-level;

 contention-aware scheduling of real-time NoC-based systems;

 possibility to model communication at different granularity

(message, packet) levels;

 modelling and scheduling communication with interleaving support;

 design optimization by branch-and-bound and simulated annealing

global optimization techniques;

144

 modified shifting-based scheduling technique to increase

dependability of application schedules taking into account also

communication aspects and reliability;

 system-level design tool that is interfaced with several NoC

simulators.

Future work

The future work includes several directions. One of the directions is

dependability of NoC-based SoCs. We could duplicate application tasks and run

them in parallel on multiple nodes to decrease schedule length and to increase

fault-tolerance of the systems. At the same time the communication modelling

plays an important role. Efficient heuristics are needed to duplicate and map

tasks to NoC architecture. More practical work includes implementing and

performing experiments with different topologies and deterministic routing

algorithms. XY deterministic routing algorithm, used in this thesis, is simple to

implement but does not distribute the network load evenly.

145

References

ISO/IEC 14882:2003 standard on the programming language C++. (2003).

IEEE Standard 1076-2008 on VHDL language. (2008).

Arteris. (2009). Retrieved from http://www.arteris.com/

International Technology Roadmap for Semiconductors. (2009). Retrieved from

http://www.itrs.net

Silistix. (2009). Retrieved from http://www.silistix.com/

Sonics. (2009). Retrieved from http://www.sonicsinc.com/

STMicroelectronics. (2009). Retrieved from http://www.st.com

SystemC. (2009). Retrieved from http://www.systemc.org

ATLAS. (2011). Retrieved from https://corfu.pucrs.br/redmine/projects/atlas/wiki

Nework simulator NS-2. (2011). Retrieved from http://isi.edu/nsnam/ns/

NIRGAM. (2011). Retrieved from http://nirgam.ecs.soton.ac.uk/

OMNeT++. (2011). Retrieved from http://www.omnetpp.org/

OPNET. (2011). Retrieved from

http://www.opnet.com/solutions/network_rd/modeler.html

Ababei, C., & Katti, R. (2009). Achieving network on chip fault tolerance by

adaptive remapping. Proceedings of the 23rd IEEE international

symposium on Parallel and Distributed Processing, (pp. 1-4). Rome,

Italy.

Adriahantenaina, A., Charlery, H., Greiner, A., Mortiez, L., & Zeferino, C.

(2003). SPIN: a scalable, packet switched, on-chip micro-network.

Proceedings of the Design, Automation and Test in Europe Conference

and Exhibition, (pp. 70-73). Munich, Germany.

Agarwal, V., Hrishikesh, M., Keckler, S., & Burger, D. (2000). Clock rate

versus IPC: the end of the road for conventional microarchitectures.

Proceedings of the 27th international symposium on Computer

Architecture, (pp. 248-259). Vancouver, BC, Canada.

Allan, A., Edenfeld, D., Joyner, J. W., Kahng, A. B., Rodgers, M., & Zorian, Y.

(2002, January). 2001 technology roadmap for semiconductors. IEEE

Computer, 35(1), 42-53.

Ashenden, P., & Wilsey, P. (1998). Considerations on system-level behavioural

and structural modeling extensions to VHDL. Proceedings of the

International Verilog HDL Conference and VHDL International Users

Forum, (pp. 42-50). Santa Clara, CA, USA.

Banerjee, K., Souri, S., Kapur, P., & Saraswat, K. (2001). 3-D ICs: a novel chip

design for improving deep-submicrometer interconnect performance and

systems-on-chip integration. Proceedings of the IEEE, 89 (5), pp. 602-

633.

Benini, L., & De Micheli, G. (2002, Jan.). Networks on chips: a new SoC

paradigm. IEEE Computer, 35(1), 70-78.

146

Bertozzi, D., & Benini, L. (2004). Xpipes: a network-on-chip architecture for

gigascale systems-on-chip. IEEE Circuits and Systems Magazine, 4(2),

18-31.

Bienia, C., Kumar, S., Singh, J., & Li, K. (2008). The PARSEC benchmark

suite: characterization and architectural implications. Proceedings of the

17th international conference on Parallel Architectures and

Compilation Techniques, (pp. 72-81). Toronto, Ontario, Canada.

Bjerregaard, T., & Mahadevan, S. (2006). A survey of research and practices of

network-on-chip. ACM Computing Surveys, 38(1).

Bjerregaard, T., & Sparso, J. (2005). A router architecture for connection-

oriented service guarantees in the MANGO clockless network-on-chip.

Proceedings of the Design, Automation, and Test in Europe, 2, pp.

1226-1231. Munich, Germany.

Budkowski, S., & Dembinski, P. (1987). An introduction to estelle: a

specification language for distributed systems. Computer Networks and

ISDN Systems, 14(1), 3-23.

Chen, Y.-K., & Kung, S. (2008). Trend and challenge on system-on-a-chip

designs. Journal of Signal Processing Systems, 53(1-2), 217-229.

Cho, M., Lis, M., Shim, K., Kinsy, M., & Devadas, S. (2009). Path-based,

randomized, oblivious, minimal routing. Proceedings of the 2nd

International Workshop on Network on Chip Architectures, (pp. 23-28).

New York, NY, USA.

Claasen, T. (2006). An industry perspective on current and future state of the art

in system-on-chip (SoC) technology. Proceedings of the IEEE, 94 (6),

pp. 1121-1137.

Constantinescu, C. (2003). Trends and challenges in VLSI circuit reliability.

IEEE Micro, 23(4), pp. 14-19.

Dally, W. J., & Towles, B. (2001). Route packets, not wires: on-chip

inteconnection networks. Proceedings of the Design Automation

Conference, (pp. 684-689). Las Vegas, NV, USA.

Dally, W. J., & Towles, B. (2004). Principles and practices of interconnection

networks. Morgan Kaufman Publishers.

Dumitras, T., & Marculescu, R. (2003). On-chip stochastic communication.

Proceedings of the Design, Automation and Test in Europe Conference

and Exhibition, (pp. 790-795). Munich, Germany.

Ejlali, A., Al-Hashimi, B., Rosinger, P., & Miremadi, S. (2007). Joint

consideration of fault-tolerance, energy-efficiency and performance in

on-chip networks. Proceedings of the Design, Automation and Test in

Europe Conference and Exposition, (pp. 1-6). Nice, France.

El-Rewini, H., Ali, H., & Lewis, T. (1995). Task scheduling in multiprocessing

systems. Computer, 28(12), 27-37.

Færgemand, O., & Olsen, A. (1994). Introduction to SDL-92. Computer

Networks and ISDN Systems, 26, 1143-1167.

Feero, B., & Pande, P. (2007). Performance evaluation for three-dimensional

networks-on-chip. Proceedings of the IEEE Computer Society Annual

Symposium on VLSI, (pp. 305-310). Porto Alegre, Brazil.

147

Felicijan, T., Bainbridge, J., & Furber, S. (2003). An asynchronous low latency

arbiter for Quality of Service (QoS) applications. Proceedings of the

15th international conference on Microelectronics, (pp. 123-126).

Frazzetta, D., Dimartino, G., Palesi, M., Kumar, S., & Catania, V. (2008).

Efficient application specific routing algorithms for NoC systems

utilizing partially faulty links. Proceedings of the 11th Euromicro

conference on Digital System Design Architectures, Methods and Tools,

(pp. 18-25). Parma, Italy.

Garey, M., & Johson, D. (1979). Computers and intractability: a guide to the

theory of NP-completeness. New York: W.H.Freeman Publishers.

Gerstlauer, A., Haubelt, C., Pimentel, A., Stefanov, T., Gajski, D., & Teich, J.

(2009). Electronic system-level synthesis methodologies. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 28(10), 1517-1530.

Glass, C., & Ni, L. (1992). The turn model for adaptive routing. Proceedings of

the 19th annual international symposium on Computer Architecture,

(pp. 278-287). Queensland, Australia.

Goossens, K., Dielissen, J., & Radulescu, A. (2005). Æthereal network on chip:

concepts, architectures, and implementations. IEEE Design and Test of

Computers, 22(5), 414-421.

Gratz, P., & Keckler, S. (2010). Realistic workload characterization and analysis

for networks-on-chip design. Proceedings of the 4th workshop on Chip

Multiprocessor Memory Systems and Interconnects.

Grecu, C., Anghel, L., Pande, P., Ivanov, A., & Saleh, R. (2007). Essential fault-

tolerance metrics for NoC infrastructures. Proceedings of the 13th IEEE

international On-Line Testing Symposium, (pp. 37-42). Heraklion,

Crete, Greece.

Grecu, C., Ivanov, A., Pande, R., Jantsch, A., Salminen, E., Ogras, U., et al.

(2007). Towards open network-on-chip benchmarks. Proceedings of the

1st international symposium on Networks-on-Chip, (pp. 205-205).

Princeton, New Jersey, USA.

Guerrier, P., & Greiner, A. (2000). A generic architecture for on-chip packet-

switched interconnections. Proceedings of the Design, Automation, and

Test in Europe, (pp. 250-256). Paris, France.

Hamilton, S. (1999). Taking Moore's law into the next century. IEEE Computer,

32(1), 43-48.

Harel, D. (1987). Statecharts: a visual formalism for computer systems. Science

of Computer, 8(3), 231-274.

Harsha, P., Hayes, T., Narayanan, H., Räcke, H., & Radhakrishnan, J. (2008).

Minimizing average latency in oblivious routing. Proceedings of the

19th annual ACM-SIAM symposium on Discrete Algorithms, (pp. 200-

207). Philadelphia, PA, USA.

Haurylau, M., Chen, G., Chen, H., Zhang, J., Nelson, N., Albonesi, D., et al.

(2006). On-chip optical interconnect roadmap: challenges and critical

directions. IEEE Journal of Selected Topics in Quantum Electronics,

12(6), 1699-1705.

148

Hemani, A., Jantsch, A., Kumar, S., Postula, A., Öberg, J., Millberg, M., et al.

(2000). Network on chip: an architecture for billion transistor era.

Norchip. Turku, Finland.

Henkel, J., Wolf, W., & Chakradhar, S. (2004). On-chip networks: a scalable,

communication-centric embedded system design paradigm. Proceedings

of the 17th international conference on VLSI Design, (pp. 845-851).

Princeton, NJ, USA.

Ho, R., Mai, K., & Horowitz, M. (2001). The future of wires. Proceedings of the

IEEE, 89 (4), pp. 490-504.

Hoare, C. A. (1978). Communicating sequential processes. Communications of

the ACM, 21(11), 934-941.

Hu, J., & Marculescu, R. (2003). Energy-aware mapping for tile-based NoC

architectures under performance constraints. Proceedings of the 2003

Asia and South Pacific Design Automation Conference, (pp. 233-239).

Kitakyushu, Japan.

Hu, J., & Marculescu, R. (2005). Communication and task scheduling of

application-specific networks-on-chip. Computers and Digital

Techniques, 152(5), 643-651.

Huang, T.-C., Ogras, U., & Marculescu, R. (2007). Virtual channels planning for

networks-on-chip. Proceedings of the 8th international symposium on

Quality Electronic Design, (pp. 879-884). San Jose, CA, USA.

Hwang, J., Chow, Y., Anger, F., & Le, C. (1989). Scheduling precedence graphs

in systems with interprocessor communication times. SIAM Journal of

Computing, 18(2), 244-257.

Izosimov, V. (2006). Scheduling and optimization of fault-tolerant distributed

embedded systems. Sweden: Linköping University, Doctoral

dissertation.

Iyer, A., & Marculescu, D. (2002). Power and performance evaluation of

globally asynchronous locally synchronous processors. Proceedings of

the 29th annual international symposium on Computer Architecture,

(pp. 158-168). Anchorage, Alaska, USA.

IEEE standard classification for software anomalies. (Jan. 7 2010). 1-15. IEEE

Std 1044-2009 (Revision of IEEE Std 1044-1993).

Jantsch, A. (2003). Modeling embedded systems and SoCs - concurrency and

time in models of computation. Morgan Kaufmann.

Jantsch, A., & Tenhunen, H. (2003). In Networks on chip (pp. 9-15). Kluwer

Academic Publishers.

Kahng, A. (2007). Key directions and a roadmap for electrical design for

manufacturability. Proceedings of the 37th European Solid State Device

Research Conference, (pp. 83-88). Washington, DC, USA.

Kariniemi, K., & Nurmi, J. (2005). Fault tolerant XGFT network on chip for

multi processor system on chip circuits. Proceedings of the international

conference on Field Programmable Logic and Applications, (pp. 203-

210). Tampere, Finland.

Kermani, P., & Kleinrock, L. (1979). Virtual cut-through: a new computer

communication switching technique. Computer Networks, 3, 267-286.

149

Keutzer, K., Newton, A., Rabaey, J., & Sangiovanni-Vincentelli, A. (2000).

System-level design: orthogonalization of concerns and platform-based

design. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 19(12), pp. 1523-1543.

Kiang, D. (1997). Technology impact on dependability requirements.

Proceedings of the 3rd IEEE international Software Engineering

Standards Symposium and Forum, (pp. 92-98).

Kirkpatrick, S., Gelatt, C., & Vecchi, M. (1983). Optimization by simulated

annealing. Science, 220(4598), 671–680.

Konstadinidis, G. (2009). Challenges in microprocessor physical and power

management design. Proceedings of the international symposium on

VLSI Design, Automation and Test, (pp. 9-12). Hsinchu, Taiwan.

Koopman, P., & Chakravarty, T. (2004). Cyclic redundancy code (CRC)

polynomial selection for embedded networks. Proceedings of the 2004

international conference on Dependable Systems and Networks, (pp.

145-154). Florence, Italy.

Koren, I., & Krishna, C. (2007). Fault-tolerant systems. Morgan Kaufmann.

Kumar, S., Jantsch, A., Millberg, M., Öberg, J., Soininen, J. P., Forsell, M., et al.

(2002). A network on chip architecture and design methodology.

Proceedings of the IEEE Computer Society Annual Symposium on VLSI,

(pp. 105-112). Pittsburgh, PA, USA.

Kwok, Y.-K., & Ahmad, I. (1999). Static scheduling algorithms for allocating

directed task graphs to multiprocessors. ACM Computing Surveys, 31(4),

406-471.

Lagnese, E., & Thomas, D. (1989). Architectural partitioning for system level

design. Proceedings of the 26th Conference on Design Automation, (pp.

62-67).

Laprie, J.-C. (1985). Dependable computing and fault tolerance: concepts and

terminology. Proceedings of the 15th international symposium on Fault-

Tolerant Computing, (pp. 2-11).

Ledesma, S., Avina, G., & Sanchez, R. (2008). Practical considerations for

simulated annealing implementation. In C. Tan, Simulated Annealing.

InTech.

Lehtonen, T., Liljeberg, P., & Plosila, J. (2009). Fault tolerant distributed routing

algorithms for mesh networks-on-chip. Proceedings of the international

symposium on Signals, Circuits and Systems, (pp. 1-4). Iasi, Romania.

Lei, T., & Kumar, S. (2003). A two-step genetic algorithm for mapping task

graphs to a network on chip architecture. Proceedings of the Euromicro

Symposium on Digital System Design, (pp. 180-187). Belek-Antalya,

Turkey.

Leiserson, C. E. (1985). Fat-trees: universal networks for hardware efficient

supercomputing. IEEE transactions on Computers, C-34(10), 892-901.

Liu, W., Xu, J., Wu, X., Ye, Y., Wang, X., Zhang, W., et al. (2011). A NoC

traffic suite based on real applications. Proceedings of the IEEE

Computer Society Annual Symposium on VLSI, (pp. 66-71). Chennai,

India.

150

Lu, Z. (2007). Design and analysis of on-chip communication for network-on-

chip platforms. Stockholm, Sweden: KTH, Doctoral dissertation.

Lu, Z., Xia, L., & Jantsch, A. (2008). Cluster-based simulated annealing for

mapping cores onto 2D mesh networks on chip. Proceedings of the 11th

IEEE workshop on Design and Diagnostics of Electronic Circuits and

Systems, (pp. 1-6). Bratislava, Slovakia.

Manolache, S., Eles, P., & Peng, Z. (2007). Fault-aware communication

mapping for NoCs with guaranteed latency. International Journal of

Parallel Programming, 35(2), 125-156.

Marcon, C., Kreutz, M., Susin, A., & Calazans, N. (2005). Models for embedded

application mapping onto NoCs: timing analysis. Proceedings of the

16th IEEE international workshop on Rapid System Prototyping, (pp.

17-23). Montreal, Canada.

Marculescu, R., Ogras, U., Li-Shiuan Peh Jerger, N., & Hoskote, Y. (2009).

Outstanding research problems in NoC design: system,

microarchitecture, and circuit perspectives. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 28(1), 3-21.

Metropolis, N., Rosenbluth, A., & Rosenbluth, M. (1953). Equation of state

calculations by fast computing machines. Journal of Chemical Physics,

21(6), 1087–1092.

Millberg, M., Nilsson, E., Thid, R., & Jantsch, A. (2004). Guaranteed bandwidth

using looped containers in temporally disjoint networks within the

nostrum network on chip. Proceedings of the Design, Automation and

Test in Europe Conference and Exhibition, (pp. 890-895). Paris, France.

Miremadi, G., & Torin, J. (1995). Evaluating processor- behaviour and three

error-detection mechanisms using physical fault-injection. IEEE

Transactions on Reliability, 44(3), 441-454.

Moore, G. (1975). Progress in digital integrated electronics. Proceedings of the

International Electron Devices Meeting, (pp. 11-13). Washington, D.C.,

USA.

Moraes, F., Calazans, N., Mello, A., Möller, L., & Ost, L. (2004). HERMES: an

infrastructure for low area overhead packet-switching networks on chip.

The VLSI Integration, 38(1), 69-93.

Murali, S., Atienza, D., Benini, L., & De Micheli, G. (2006). A multi-path

routing strategy with guaranteed in-order packet delivery and fault-

tolerance for networks on chip. Proceedings of the 43rd annual Design

Automation Conference, (pp. 845-848).

Murali, S., Seiculescu, C., Benini, L., & De Micheli, G. (2009). Synthesis of

networks on chips for 3D systems on chips. Proceedings of the 14th

Asia South Pacific Design Automation Conference, (pp. 242-247).

Yokohama, Japan.

Murali, S., Theocharides, T., Vijaykrishnan, N., Irwin, M., Benini, L., & De

Micheli, G. (2005). Analysis of error recovery schemes for networks on

chips. IEEE Design & Test of Computers, 22(5), 434 - 442.

Ni, L., & McKinley, P. (1993). A survey of wormhole routing techniques in

direct networks. IEEE Computer, 26(2), 62-76.

151

Nikolic, B., Park, J.-H., Kwak, J., & Giraud, B. (2011). Technology variability

from a design perspective. IEEE Transactions on Circuits and Systems,

58(9), 1996-2009.

Orsila, H., Salminen, E., Hannikainen, M., & Hamalainen, T. (2007). Optimal

subset mapping and convergence evaluation of mapping algorithms for

distributing task graphs on multiprocessor SoC. Proceedings of the 2007

international Symposium on System-on-Chip, (pp. 1-6). Tampere,

Finland.

Owens, J., Dally, W., Ho, R., Jayasimha, D., Keckler, S., & Peh, L.-S. (2007).

Research challenges for on-chip interconnection networks. IEEE Micro,

27(5), 96-108.

Palesi, M., Patti, D., & Fazzino, F. (2011). Noxim: the NoC simulator. Retrieved

from http://sourceforge.net/projects/noxim/

Pan, S.-J., & Cheng, K.-T. (2007). A framework for system reliability analysis

considering both system error tolerance and component test quality.

Proceedings of the Design, Automation and Test in Europe Conference

and Exhibition, (pp. 1-6). Nice, France.

Pande, P., Ganguly, A., Feero, B., Belzer, B., & Grecu, C. (2006). Design of low

power & reliable networks on chip through joint crosstalk avoidance and

forward error correction coding. Proceedings of the 21st IEEE

international symposium on Defect and Fault Tolerance in VLSI

Systems, (pp. 466-476). Arlington, Virginia, USA.

Pande, P., Grecu, C., Ivanov, A., & Saleh, R. (2003). Design of a switch for

network on chip applications. Proceedings of the international

symposium on Circuits and Systems, 5, pp. 217-220. Bangkok, Thailand.

Pavlidis, V., & Friedman, E. (2007). 3-D topologies for networks-on-chip. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 15(10),

1081-1090.

Peterson, W., & Brown, D. (1961). Cyclic codes for error detection. Proceedings

of the Institute of Radio Engineers, 49(1), 228-235.

Pirretti, M., Link, G., Brooks, R., Vijaykrishnan, N., Kandemir, M., & Irwin, M.

(2004). Fault tolerant algorithms for network-on-chip interconnect.

Proceedings of the IEEE Computer Society Annual Symposium on VLSI:

Emerging Trends in VLSI Systems Design, (pp. 46-51). Lafayette, LA,

USA.

Radulescu, A., & Goossens, K. (2002). Communication services for networks on

chip. Proceedings of the SAMOS conference, (pp. 275-299).

Raghunathan, V., Srivastava, M., & Gupta, R. (2003). A survey of techniques

for energy efficient on-chip communication. Proceedings of the 40th

Design Automation Conference, (pp. 900-905). Anaheim, CA, USA.

Rahman, M., & Chowdhury, M. (2009). Examining branch and bound strategy

on multiprocessor task scheduling. Proceedings of the international

conference on Computer and Information Technology, (pp. 162–167).

Dhaka, Bangladesh.

Rantala, P., Isoaho, J., & Tenhunen, H. (2007). Novel agent-based management

for fault-tolerance in network-on-chip. Proceedings of the 10th

152

Euromicro Conference on Digital System Design Architectures,

Methods and Tools, (pp. 551-555). Lübeck, Germany.

Rijpkema, E., Goossens, K., & Wielage, P. (2001). A router architecture for

networks on silicon. Proceedings of the 2nd Workshop on Embedded

Systems.

Rusu, C., Grecu, C., & Anghel, L. (2008). Communication aware recovery

configurations for networks-on-chip. Proceedings of the 14th IEEE

international On-Line Testing Symposium, (pp. 201-206). Rhodes,

Greece.

Sahoo, S., Datta, M., & Kar, R. (2011). An efficient dynamic power estimation

method for on-chip VLSI interconnects. Proceedings of the 2nd

international conference on Emerging Applications of Information

Technology, (pp. 379-382). Kolkata, West Bengal, India.

Salminen, E., Kulmala, A., & Hämäläinen, T. D. (2008). Survey of network-on-

chip proposals. Retrieved from

http://www.ocpip.org/uploads/documents/OCP-

IP_Survey_of_NoC_Proposals_White_Paper_April_2008.pdf

Samman, F. A. (2010). Microarchitecture and implementation of networks-on-

chip with a flexible concept for communication media sharing.

Darmstadt, Germany: Technische Universität Darmstad, Doctoral

dissertation.

Samman, F. A., Hollstein, T., & Glesner, M. (2011). New theory for deadlock-

free multicast routing in wormhole-switched virtual-channelless

nNetworks-on-chip. IEEE Transactions on Parallel and Distributed

Systems, 22(4), 544-557.

Samman, F., Hollstein, T., & Glesner, M. (2008). Multicast parallel pipeline

router architecture for network-on-chip. Proceedings of the Design,

Automation and Test in Europe, (pp. 1396-1401). Munich, Germany.

Sgroi, M., Sheets, M., Mihal, A., Keutzer, K., Malik, S., Rabaey, J., et al.

(2001). Addressing the system-on-a-chip interconnect woes through

communication-based design. Proceedings of the 38th Design

Automation Conference, (pp. 667-672). Las Vegas, NV, USA.

Shanbhag, N., Soumyanath, K., & Martin, S. (2000). Reliable low-power design

in the presence of deep submicron noise. Proceedings of the 2000

International Symposium on Low Power Electronics and Design, (pp.

295-302). Rapallo, Italy.

Shim, Z., & Burns, A. (2008). Real-time communication analysis for on-chip

networks with wormhole switching networks-on-chip. Proceedings of

the 2nd IEEE international symposium on Networks-on-Chip, (pp. 161 -

170). Newcastle University, UK.

Shin, D., & Kim, J. (2004). Power-aware communication optimization for

networks-on-chips with voltage scalable links. Proceedings of the 2nd

IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis, (pp. 170-175). Stockholm, Sweden.

Shin, D., & Kim, J. (2008). Communication power optimization for network-on-

chip architectures. Journal of Low Power Electronics, 2(2), 165-176.

153

Shrivastav, A., Tomar, G., & Singh, A. (2011). Performance comparison of

AMBA bus-based system-on-chip communication protocol.

Proceedings of the international conference on Communication Systems

and Network Technologies, (pp. 449-454). Katra, India.

Sigüenza-Tortosa, D., & Nurmi, J. (2002). Proteo: a new approach to network-

on-chip. Proceedings of the IASTED international conference of

Communication Systems and Networks. Malaga, Spain.

Sih, G., & Lee, E. (1993). A compile-time scheduling heuristic for

interconnection-constrained heterogeneous processor architectures.

IEEE Transactions on Parallel and Distributed Systems, 4(2), 175-187.

Sinnen, O., & Sousa, L. (2005). Communication contention in task scheduling.

IEEE Transactions on Parallel and Distributed Systems, 16(6), 503-515.

Smith, D., DeLong, T., Johnson, B., & Giras, T. (2000). Determining the

expected time to unsafe failure. Proceedings of the 5th IEEE

international symposim on High Assurance Systems Engineering, (pp.

17-24).

Sosnowski, J. (1994). Transient fault tolerance in digital systems. IEEE Micro,

14(1), 24-35.

Stankovic, J., Spuri, M., Di Natale, M., & Buttazzo, G. (1995). Implications of

classical scheduling results for real-time systems. Computer, 28(6), 16-

25.

Stressing, J. (1989). System-level design tools. Computer-Aided Engineering

Journal, 44-48.

Stuijk, S., Basten, T., Geilen, M., & Ghamarian, A. (2006). Resource-efficient

routing and scheduling of time-constrained streaming communication on

networks-on-chip. Proceedings of the 9th Euromicro Conference on

Digital System Design: Architectures, Methods and Tools, (pp. 45-52).

Dubrovnik, Croatia.

Zhang, L., Han, Y., Xu, Q., Li, X. w., & Li, H. (2009). On topology

reconfiguration for defect-tolerant NoC-based homogeneous manycore

systems. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 17(9), pp. 1173-1186.

Tagel, M., Ellervee, P., & Jervan, G. (2009). Scheduling framework for real-

time dependable NoC-based systems. Proceedings of the International

Symposium on System-on-Chip, (pp. 95-99). Tampere, Finland.

Tagel, M., Ellervee, P., & Jervan, G. (2010a). Design space exploration and

optimisation for NoC-based timing sensitive systems. Proceedings of the

12th Biennial Baltic Electronic Conference, (pp. 177-180). Tallinn,

Estonia.

Tagel, M., Ellervee, P., & Jervan, G. (2010b). System-level communication

synthesis and dependability improvements for network-on-chip based

systems. Estonian Journal of Engineering, 16(1), 23-38.

Tagel, M., Ellervee, P., & Jervan, G. (2011). System-level design of NoC-based

dependable embedded systems. In R. Ubar, J. Raik, & H. T. Vierhaus,

Fault-tolerance and applications in system-on-chip design:

154

advancements and techniques (pp. 1-36). Hershey, Pennsylvania, USA:

IGI Global.

Tagel, M., Ellervee, P., Hollstein, T., & Jervan, G. (2011a). Communication

modelling and synthesis for NoC-based systems with real-time

constraints. Proceedings of the 14th IEEE Symposium on Design and

Diagnostics of Electronic Circuits and Systems, (pp. 237-242). Cottbus,

Germany.

Tagel, M., Ellervee, P., Hollstein, T., & Jervan, G. (2011b). Contention aware

scheduling for NoC-based real-time systems. Proceedings of the 29th

Norchip conference, (pp. 1-4). Lund, Sweden.

Tagel, M., Ellervee, P., Hollstein, T., & Jervan, G. (2011c). System-level

optimization of NoC-based timing sensitive systems. Estonian Journal

of Engineering, 17(2), 158-168.

Tagel, M., Ellervee, P., Hollstein, T., & Jervan, G. (2012). Contention-aware

scheduling for NoC based systems. Microprocessors and Microsystems:

Embedded Hardware Design (MICPRO), [submitted for review].

Talbi, E.-G., & Muntean, T. (1993). Hill-climbing, simulated annealing and

genetic algorithms: a comparative study and application to the mapping

problem. Proceeding of the 26th Hawaii international conference on

System Sciences, (pp. 565-573). Maui, Hawaii USA.

Valiant, L., & Brebner, G. (1981). Universal schemes for parallel

communication. Proceedings of the 13th annual ACM symposium on

Theory of Computing, (pp. 263-277). Milwaukee, Wisconsin, USA.

Valtonen, T., Nurmi, T., Isoaho, J., & Tenhunen, H. (2001). An autonomous

error-tolerant cell for scalable network-on-chip architectures.

Proceedings of the 19th IEEE NorChip Conference, (pp. 198-203).

Stockholm, Sweden.

Vangal, S., Howard, J., Ruhl, G., Dighe, S., Wilson, H., Tschanz, J., et al.

(2008). An 80-tile sub-100-W TeraFLOPS processor in 65-nm CMOS.

IEEE Journal of Solid-State Circuits, 43(1), 29–41.

Wattanapongsakorn, N., & Levitan, S. (2000). Integrating dependability analysis

into the real-time system design process. Proceedings of the Annual

Reliability and Maintainability Symposium, (pp. 327-334).

Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., et

al. (2008). The worst-case execution time problem — overview of

methods and survey of tools. ACM Transactions on Embedded

Computing Systems, 7(3), 36:1-36:53.

Woo, S., Ohara, M., Torrie, E., Singh, J., & Gupta, A. (1995). The SPLASH-2

programs: characterization and methodological considerations. In

Proceedings of the 22nd international symposium on Computer

Architecture, (pp. 24-36). Santa Margherita Ligure, Italy.

155

Curriculum Vitae

Personal data

 Name: Mihkel Tagel

Date and place of birth: 22.12.1981, Estonia

 Nationality: Estonian

Contact information

 Address: Raja 15, 12618 Tallinn

 Telephone: +372 620 22 51

 E-mail address: mihkel.tagel@ati.ttu.ee

Education

2006 – Ph.D. student in Department of Computer Engineering,

Tallinn University of Technology (TUT)

 2004 – 2006 M.Sc. in Computer Engineering, TUT

 2000 – 2004 Diploma in Computer Engineering, TUT

Career

2007 – Tallinn University of Technology, Department of

Computer Engineering, Researcher

2003 – TD Baltic AS, IT manager

Scientific activities

2007 – Member of IEEE Computer Society

Defended theses

Mihkel Tagel (2006). Deterministic Traffic Generator for Network-on-

Chip Simulator. Master of Science in Computer Engineering, Tallinn

University of Technology, Department of Computer Engineering.

Supervisors: Gert Jervan, Peeter Ellervee.

Main areas of scientific work/current research topics

Testability and reliability of Network-on-Chips.

156

Other research projects

Design of Reliable Embedded Systems

Hardware functional verification and debug

Awards

2009 EITF “Tiger University” scholarship for ICT PhD students

157

Elulookirjeldus

Isikuandmed

 Ees- ja perekonnanimi: Mihkel Tagel

 Sünniaeg ja -koht: 22.12.1981, Eesti

 Kodakondsus: eestlane

Kontaktandmed

 Aadress: Raja 15, 12618 Tallinn

 Telefon: +372 620 22 51

 E-posti aadress: mihkel.tagel@ati.ttu.ee

Hariduskäik

2006 – doktorant, Arvutitehnika instituut, Tallinna

Tehnikaülikool (TTÜ)

2004 – 2006 tehnikateaduste magister, arvuti- ja süsteemitehnika

eriala, TTÜ

 2000 – 2004 diplom, arvutisüsteemide eriala, TTÜ

Teenistuskäik

2007 – Tallinna Tehnikaülikool, Arvutitehnika instituut,

erakorraline teadur

2003 – TD Baltic AS, IT juht

Teadustegevus

2007 – IEEE Computer Society. Liige

Kaitstud lõputööd

Mihkel Tagel (2006). Deterministlik võrguliikluse generaator kiipvõrgu

simulaatorile. Magistrikraad. Tallinna Tehnikaülikool, Arvutitehnika

instituut. Juhendajad: Gert Jervan, Peeter Ellervee

Teadustöö põhisuunad

Kiipvõrgul põhinevate kiipsüsteemide veakindluse tõstmine,

süsteemitaseme disain.

158

Teised uurimisprojektid

Töökindlate sardsüsteemide disain

Riistvara funktsionaalne verifitseerimine ja silumine

Teaduspreemiad

2009 EITSA Tiigriülikooli stipendium IKT doktorantidele Eesti

avalik-õiguslikes ülikoolides

159

DISSERTATIONS DEFENDED AT

TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the

Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility

Impairments – Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-Business.

1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of

Cost Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by

Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods

for Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data

Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis and

Reproduction of Periodic Components of Band-Limited Discrete-Time Signals.

2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops:

Behavioral Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with

Relational Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented

Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of

Digital Systems. 2004.

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in

Maintenance-Free Batteries with Fixed Electrolyte. 2004.

160

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to

Semiconductor Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication

Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-

Aware, UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based

Complementary JBS Structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja

elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I.

2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum

Clique Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой

фазы эпитаксиальных структур арсенида галлия с высоковольтным p-n

переходом и изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech

Recognition. 2006.

32. Erki Eessaar. Relational and Object-Relational Database Management

Systems as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-

impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired

Underwater Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis

and Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of

Nonlinear Systems: ANARX Model Based Approach. 2007.

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case

Studies of Linguistic and Banking Data. 2007.

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit

State Model Checking. 2007.

161

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering: A

Unified View, Extensions and an Application to Inventory Management. 2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit

Based on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear

Information Processing Methods: Case Studies of Estonian Islands

Environments. 2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-

Level Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program

Transformations. 2008.

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model –

Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the

Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components.

2009.

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like

Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children

Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation

Methods and Design Principles. 2009.

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and

Synthesis for Nonlinear Control Systems. 2010.

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of Attack

Trees. 2010.

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User

Interfaces. 2010.

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and

Reasoning of Ad-Hoc Network Agents. 2010.

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages.

2010.

162

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability

Identification Techniques for Synchronous Sequential Circuits. 2010.

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Integrated

Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.

2011.

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-

Silicon Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile

Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance

Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber

Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models.

2011.

66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of Domains,

Requirements and Sofware. 2011.

68. Juri Gavšin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting

Algorithms Using Tree-like Structures and HFSM Models. 2012.

70. Anton Tšertov. System Modeling for Processor-Centric Test Automation.

2012.

71. Sergei Kostin. Self-Diagnosis in Digital Systems. 2012.

	Chapter 1. Introduction
	Chapter 2. Background and Related Work
	2.1. System-on-chip design challenges
	2.2. Network-on-chip as a new design paradigm
	2.3. Principles of Networks-on-Chip
	2.3.1 Topology
	2.3.2 Switching method
	2.3.3 Routing
	2.3.4 Flow control
	2.3.5 Quality of service
	2.3.6 Generic on-chip router architecture
	2.3.7 Further reading

	2.4. System-level design
	2.4.1 Traditional system-level design flow
	2.4.2 Task mapping and scheduling

	2.5. Design issues of NoC-based systems
	2.6.1 Classification of faults
	2.6.2 Fault tolerance
	2.6.3 Fault tolerance techniques

	2.7. Network-on-chip simulators
	2.7.1 Noxim
	2.7.2 NIRGAM
	2.7.3 XHiNoC
	2.7.4 ATLAS

	2.8. Summary

	Chapter 3. System-Level Design for NoC-Based Real-Time Systems
	3.1. Motivation
	3.2. System-level design flow and definitions
	3.3. Sources of network contention
	3.4. Communication synthesis
	3.5. Contention-aware scheduling
	3.6. Simulation environment
	3.7. Experimental results
	3.8. Conclusions

	Chapter 4. Extensions of the Communication Model
	4.1. Packet-based schedules
	4.1.1 Motivation
	4.1.2 Packet-based schedules
	4.1.3 Experimental results

	4.2. Support for communication interleaving
	4.2.1 Motivation
	4.2.2 Multiple flit-queues
	4.2.3 Experimental results

	4.3. Conclusions

	Chapter 5. Design Optimization Techniques
	5.1. Motivation
	5.2. Schedule optimization with branch-and-bound
	5.3.3 Task mapping optimization with simulated annealing

	5.4. Experimental results
	5.5. Conclusions

	Chapter 6. System-Level Fault Tolerance Improvements
	6.1. Motivation
	6.2. System model with dependability requirements
	6.3. Fault-tolerant application schedules
	6.4. Experimental results
	6.5. Conclusions

