
TALLINNA TEHNIKAÜLIKOOL
Elektrotehnika instituut

ATV70LT

Ruslan Kevorkov

RAKETI MOODULI ELEKTROONIKA
ARENDAMINE: REGISTER TRANSFER LEVEL

DISAIN JA VALIDEERIMINE

Sounding ocket experiment: Register Transfer Level design and
validation

Magistritöö

Instituudi direktor………. prof. Tõnu Lehtla

Juhendaja ………… prof. Valery Vodovozov

Lõpetaja …………….Ruslan Kevorkov

Tallinn 2014

2

3

DECLARATION

I hereby declare that this diploma thesis is entirely the result of my own work and I have

faithfully and properly cited all information sources used in the thesis.

Date Signature

…………………………… ……………………..

4

 ATV70LT

 Raketi mooduli elektroonika arendamine: RTL disain ja

valideerimine

 Ruslan Kevorkov, üliõpilaskood 111772AAAMM, september 2014. – 87 lk.

TALLINNA TEHNIKAÜLIKOOL

Energeetikateaduskond

Elektrotehnika instituut, elektriajamite ja elektrivarustuse õppetool

Töö juhendaja: professor Valery Vodovozov

Võtmesõnad: ISAAC, sounding rocket, RMU, RTL design, communication, ejection,

rocket experiment, validation

Referaat:

Infrapuna spektroskoopia atmosfääri koosseisu analüüsimiseks (ISAAC) on

eksperimentaalne moodul, mille arendamisega on tegelenud KTH (Royal Institute of

Technology, Stockholm, Rootsi) õpilased. Antud moodul koosneb raketile paigaldatava

moodulist (ingl. k. Rocket Mounted Unit, RMU) ja kahest vabalangevast katseseadmest

(Free-Falling Unit, FFU). Eksperimendi peamiseks eesmärgiks on katseliselt

demonstreerida võimet ühe FFU jälgida teist ning teostada mõõtmisi koostöös.

Käesolev magistritöö hõlmab väljaheitmise süsteemi arendamist ja elluviimist ning

reaalajas saadud andmete töötlemist ja salvestamist. Käesoleva lõputöö peaeesmärgiks on

tagada õigeaegset vabalangevate moodulite väljalaskmist ning korrektseid operaatorile

edastatud ja salvestatud andmeid lennujärgneva analüüsi jaoks. Väljaheitmise kontroll ja

side on teostatud programmeeritava ventiilmaatriksi (Field-Programmable Gate Array,

FPGA) abil, kasutades VHDL riistvara kirjelduse keelt. Hiljuti väljatöötatud riist- ja

tarkvara valideerimise ja lennuanalüüsi tulemused on ka esitatud käesolevas aruandes.

ISAAC mooduli lennutati 29. mail Esrange polügoonilt REXUS15 raketi pardal.

5

 ATV70LT

 Sounding rocket experiment electronics: RTL design and validation

 Ruslan Kevorkov, student code 111772AAAMM, September 2014. – 87 pages

TALLINN UNIVERSITY OF TECHNOLOGY Faculty of Power Engineering

Department of Electrical Engineering

Chair of Electrical Drives and Electricity Supply

Tutor of the work: professor Valery Vodovozov

Key words: ISAAC, sounding rocket, RMU, RTL design, communication, ejection, rocket

experiment, validation

Summary:

The Infrared Spectroscopy to Analyse the middle Atmosphere Composition (ISAAC) is an

experimental module designed by KTH (Kungliga Tekniska Högskolan, Stockholm, Sweden)

students. It consists of a Rocket Mounted Unit (RMU) and two Free-Falling Units (FFU) carried

inside. The main objective of the experiment is to demonstrate ability of one FFU to track the other

and to carry out measurements in cooperation.

This Master’s thesis covers the development and implementation of the ejection system as well as

data acquisition for the ISAAC experiment to have well-timed ejection of the FFUs and data for a

post-flight analysis. Ejection control and communication is implemented in a Field-Programmable

Gate Array (FPGA) using VHDL hardware description language. Newly developed firmware

verification and the post-flight analysis results are also presented in the report.

The ISAAC experiment was launched on May 29 from Esrange, Kiruna onboard the REXUS15

rocket.

6

 ATV70LT

Elektronik för raketmonterad experimentmodul: RTL konstruktion och

validering

 Ruslan Kevorkov, personnummer 111772AAAMM, September 2014. – 87 sidor.

Tallinns Tekniska Universitet Ingenjörsteknik inom kraftteknik

Avdelningen för Elektroteknisk ingenjörskonst

Ordförande inom Elektro driv och utbud.

Handledare: professor Valery Vodovozov

Nyckelord: ISAAC, sounding rocket, RMU, RTL design, communication, ejection, rocket

experiment, validation

Sammanfattning:

ISAAC (Infrared Spectroscopy to Analyse the Middle Atmosphere Composition) är en

raketmonterad experimentmodul designad av studenter på KTH. Modulen består av en

raketmonterad modul benämnd RMU (Rocket Mounted Module), i vilken två mindre fritt fallande

enheter benämnda FFU (Free Falling Units) sitter monterade. Huvudmålet med experimentet är att

demonstrera förmågan för den ena FFU:n att spåra den andra FFU:n samt förmågan att genomföra

koordinerade mätningar.

Detta examensarbete behandlar utvecklandet och implementationen av utskjutningssystemet samt

datainsamlingen för ISAAC-experimentet. Dessa delar görs för att kunna genomföra utskjutningen

vid en lämplig tidpunkt samt få data till efterbehandling. Utskjutningskontroll samt kommunikation

är implementerade i en FPGA (Field Programmable Gate Array) i det hårdvarubeskrivande språket

VHDL (VHSIC (Very High Speed Integrated Circuit) Hardware Description Language).

Verifikation av nyutvecklad inbyggd programvara samt analysresultat av data från uppskjutningen

presenteras också.

Uppskjutningen av ISAAC-experimentet skedde den 29:e maj 2014 från rymdbasen Esrange i

Kiruna ombord på raketen REXUS15.

7

Contents

TASK DEFINITION .. 13

Chapter 1 Introduction ... 15

1.1 Background ... 15

1.2 Method ... 16

1.3 Delimitation ... 17

1.4 Goal and public welfare .. 17

1.5 Outline ... 17

Chapter 2 RMU system ... 18

2.1 FPGA ... 19

2.2 Communication ... 19

2.3 Data acquisition ... 20

2.4 Camera ... 21

2.5 Ejection system .. 22

Chapter 3 RMU development .. 24

3.1 Sun sensors .. 24

3.2 Ejection algorithm ... 26

3.2.1 Data receiving processes .. 27

3.2.2 Timing .. 27

3.2.3 Sun sensors data handling process ... 28

3.2.4 Gyroscope data handling process ... 32

3.2.5 Ejection activation process ... 33

3.2.6 Ejection timeout process .. 34

3.3 Communication ... 35

8

3.3.1 RMU communication ... 36

3.3.2 General FFU communication ... 39

3.3.3 RxSU communication .. 40

3.3.4 GUI ... 40

Chapter 4 RMU verification .. 42

4.1 Communication ... 42

4.2 Camera ... 44

4.3 Ejection algorithm ... 45

4.3.1 Division .. 45

4.3.2 Angular rate sensor readings .. 46

4.3.3 Sun sensors readings .. 46

4.3.4 Sun sensors data handling .. 47

4.3.5 Arming procedure .. 48

4.3.6 Ejection timeout ... 49

4.3.7 Ejection activation process ... 50

4.4 Environmental tests ... 51

4.4.1 Vacuum test .. 51

4.4.2 Thermal test .. 53

Chapter 5 Post-flight analysis .. 56

Chapter 6 Discussion and future work ... 63

Chapter 7 Conclusion .. 65

Chapter 8 Arutlus ... 66

Chapter 9 Kokkuvõte ... 69

Bibliography ... 70

Appendixes ... 71

9

Appendix A: Ejection algorithm... 71

Appendix B: Data_sender .. 78

Appendix C: FFU Comm switches .. 83

Appendix D: RxSU Comm switch ... 85

10

LIST OF FIGURES

Figure 2-1 RMU electrical system [4, p. 67] ... 18

Figure 2-2 Downlink protocol example ... 20

Figure 2-3 Housekeeping (left) and Ejection (right) ADCs electrical schematics................... 21

Figure 2-4 Desired ejection direction [4, p.7] .. 22

Figure 2-5 Ejection system power driver ... 23

Figure 3-1 Sun sensor PCB .. 24

Figure 3-2 Electrical schematic for sun sensor PCB .. 25

Figure 3-3 Ejection algorithm block diagram .. 27

Figure 3-4 Sun sensors readings separately ... 29

Figure 3-5 Sun sensors readings .. 30

Figure 3-6 Sum of readings .. 30

Figure 3-7 Sun sensors data handling finite state machine .. 31

Figure 3-8 Gyroscope data processing finite state machine... 32

Figure 3-9 Ejection activation process finite state machine... 34

Figure 3-10 Data_sender: interaction of internal processes ... 38

Figure 3-11 Ground station GUI .. 41

Figure 4-1 Uplink and downlink test ... 43

Figure 4-2 Log file ... 43

Figure 4-3 Camera signals ... 44

Figure 4-4 Division block simulation .. 45

Figure 4-5 Gyroscope data ... 46

Figure 4-6 Sun sensor data ... 47

Figure 4-7 Maximum light intensity identification .. 48

Figure 4-8 Ejection arm signal ... 49

Figure 4-9 Timeout signal .. 50

Figure 4-10 Ejection activation algorithm ... 51

Figure 4-11 Vacuum chamber .. 52

Figure 4-12 RMU power cable for vacuum test... 52

Figure 4-13 Output voltage under vacuum condition .. 53

Figure 4-14 Heat influence on voltage ... 54

11

Figure 4-15 Cold influence on voltage... 55

Figure 5-1 Angular velocity of the rocket .. 57

Figure 5-2 Accelerometer data ... 57

Figure 5-3 Sun sensors and gyro behavior during the flight .. 58

Figure 5-4 Camera signals ... 58

Figure 5-5 Housekeeping data .. 59

Figure 5-6 Sun sensors readings during the ejection moment ... 60

Figure 5-7 Example of ejection signal ... 60

Figure 5-8 Ejection video frame 27224 ... 61

Figure 5-9 Ejection video frame 27243 ... 62

12

LIST OF TABLES

Table 2-1 Umbilical connector pinout ... 20

Table 3-1 Global time vector ... 28

Table 3-2 Division example ... 33

Table 3-3 Real-time message structure .. 36

Table 3-4 Time vector structure ... 36

Table 3-5 "Time within a second" vector .. 36

Table 3-6 Status vector structure.. 37

Table 3-7 Housekeeping data packet 1 .. 39

Table 3-8 Housekeeping data packet 2 .. 39

Table 3-9 Real-time message example .. 39

13

TALLINN UNIVERSITY OF TECHNOLOGY
Department of Electrical Engineering

 APPROVED

Prof. T. Lehtla...............................

................................ 2014

TASK DEFINITION
Ruslan Kevorkov, student code 111772AAAMM

Thesis topic: Sounding rocket experiment electronics: RTL design and validation

Task: To developed and verify electronics for the Rocket Mounted Unit including FPGA

firmware and provide a successful launch.

Prestudy:

1. Students Experiment Documentation (SED)

2. Previously conducted researches and BSc theses

Problem description:

 Solder and troubleshoot a Rocket Mounted Unit (RMU) and sun sensors

 Develop ejection algorithm

 Develop firmware for communication with a ground station operator

 Single block and complete system verification

 Ensure a successful rocket launch

 Post-flight analysis

Current thesis must be presented in English with two additional abstract chapters in Estonian

and Swedish. The report must be handed in by 01.09.2014.

Supervisor: MSc thesis student:

Prof. V. Vodovozov R. Kevorkov

14

LIST OF ABBREVIATIONS

ADC Analogue-to-Digital Converter

CU Common Unit

DLR German Aerospace Center

DMM Digital MultiMeter

Esrange European Space and Sounding Rocket Range

FFU Free-Falling Unit

FPGA Field-Programmable Gate Array

GUI Graphical User Interface

IR Infrared

ISAAC Infrared Spectroscopy to Analyse the middle Atmosphere Composition

LSB Least significant bit

PCB Printed Circuit Board

REXUS Rocket Experiments for University Students

RMU Rocket Mounted Unit

RTL Register Transfer Level

RXSM REXUS Service Module

RxSU Receiver Specific Unit

SED Student Experiment Document

SNSB Swedish National Space Board

SOC System-on-Chip

SU Specific Unit

TxSU Transmitter Specific Unit

15

CHAPTER 1 INTRODUCTION

1.1 Background

Every year up to eight different teams of students from European universities get an

opportunity to take part in Rocket Experiments for University Students (REXUS) program

initiated by bilateral cooperation of Swedish National Space Board (SNSB) and German

Aerospace Center (DLR). Prospective engineers work on complex mechanical and electrical

systems in order to apply earned knowledge, gain skills and conduct successful scientific

space experiments [1].

ISAAC (Infrared Spectroscopy to Analyse the middle Atmosphere Composition) is an

experimental module designed by KTH students. The main intention for the team was to

design, construct and demonstrate a system with two autonomous Free-Falling Units (FFUs),

carried inside the Rocket Mounted Unit (RMU), where one FFU can track the other after

ejection from the sounding rocket. Each of them consists of a Common Unit (CU), which is

inherited from the MUSCAT [2] and the RAIN [3] experiments, and a Specific Unit (SU).

The concept of tracking lies in capability of Receiver Specific Unit (RxSU) to fix its position

relatively to Transmitter Specific Unit (TxSU) and keep the last within a narrow field of view.

Establishing of in a way connection between units makes it reasonable to conduct a scientific

experiment. As the secondary objective, definition of profile of carbon dioxide (CO2)

concentration in the middle atmosphere using infrared (IR) spectroscopy method is declared

[4].

The ISAAC experiment can be split into six different subsystems from the electronic point of

view. The electronics on-board the RMU powers the whole experiment as well as provides

communication with FFUs through ground station and schedules ejection. CU is responsible

for localization, landing and flight trajectory logging for further reconstruction. Smooth and

safe landing is ensured by a parachute deployment system. After the parachute deploys at the

altitude of around 6 km, localization system activates the transmission of corresponding FFU

GPS coordinates. Constant experiment positioning is essential for recovery. General purpose

16

of the TxSU is light emission for reaching both experiment goals. It has 20 high power LED

sources and eight IR lamps around the periphery. The RxSU, in turn, is divided into a power

system and two independent parts, namely the tracking system and the IR spectroscopy

system. The power system has six DC/DC converters that provide power for the whole RxSU

module. The tracking system gathers and processes data from angular rate sensor, sun sensors

and CMOS camera to command two stepper motors. The IR spectroscopy system controls

thermoelectric coolers and saves digitalized infrared sensors data to memory for post-flight

analysis [4].

The ISAAC was declared as a unique experiment with its controlled ejection and objectives

that expect a collaboration of two independent FFUs. However, due to inability to ensure safe

flight as well as full operation of the FFUs, a decision to scope down the objectives of the

experiment was made in April 2014. The ejection system test was declared as the new goal of

the experiment. The rocket was launched on May 29 from Esrange, Kiruna and all objectives

of the current thesis work were successfully reached. According to the post-flight analysis

based on real-time communication packets, the FFUs were ejected in the correct time

window.

1.2 Method

The method followed in the degree project is applied [5]. The research is based on solving

practical problems.

In order to get the whole picture of the experiment, Student Experiment Document (SED) and

previously conducted researches were studied during first two weeks. Next week after the pre-

study period were assigned for software examination and preparation for off-site testing. On

week 6 and week 11, the author was involved in bench test and payload integration test in

Germany. The last 2 weeks were reserved for the launch campaign in Esrange. All the

remaining time the author was focused on practical part and report writing.

17

1.3 Delimitation

Since there are only 20 weeks allocated for degree project, the author was focused only on the

RMU system. FFUs are not a part of discussion in this Master’s thesis.

1.4 Goal and public welfare

The goal of the degree project is to develop and verify electronics for the RMU and ensure a

successful launch campaign that implies well-timed ejection of the FFUs and data collection

for post-processing.

Other KTH teams in later projects will reuse some of the unique parts of the ISAAC

experiment or use them as starting points.

1.5 Outline

Logic structure of the report lies in consistent description of the conducted research. It starts

with broad overview of the system under research and finishes with a discussion of obtained

results and suggestions for future work.

Chapter 2 describes the RMU system and its requirements.

Chapter 3 is dedicated to development part of the RMU system.

Verification phase is described in details in Chapter 4.

Chapter 5 is devoted to post-flight analysis.

In Chapter 6, the conducted work is discussed, bringing suggestions for future work.

Chapter 7 concludes the report.

Chapter 8 and Chapter 9 are dedicated to discussion and conclusion in Estonian..

18

CHAPTER 2 RMU SYSTEM

The RMU is a mechanical module fixed on the rocket. From the electrical point of view, it is

an intermediate unit between the rocket and the FFUs, which are carried inside. The

electronics on board solves several very important tasks, namely communication, battery

charging, data acquisition and ejection’s “brain”. Although the unit is mostly inherited from

previous experiments, radical change in FFUs ejection principle appears in the ISAAC. A

block diagram of RMU electrical system is show in Figure 2-1.

Figure 2-1 RMU electrical system [4, p. 67]

The RMU electronics can be divided into 6 different blocks: data acquisition system, ejection

system, power system, camera, communication and umbilical communication. The ejection

system is responsible for cutting cables using a pyrocutter. The power for the cutter is

provided by the REXUS Service Module (RXSM). A driver and an ejection control system

ensure a possibility to control ejection time. The data acquisition system is based on a thermal

sensor, sun sensors and an angular rate sensor. Readings of these sensors are processed by the

FPGA both for housekeeping and ejection control. The umbilical communication allows to

control the FFUs while they are inside the RMU. The camera is in charge of ejection video

recording. The communication system allows to monitor and control the experiment from a

19

ground station using downlink and uplink. The power system supplies the whole RMU board

as well as charges batteries in the FFUs.

Electrical schematics and a PCB layout was developed by a team of SOC students that the

author was part of.

2.1 FPGA

The RMU contains an FPGA that allows the above-mentioned functionality to be

implemented. Actel Proasic3 A3P250 is chosen due to its low power consumption, high

performance and enough high capacity. It has 250 000 gates, and 3.3V and 1.5V as supply

voltage [6]. FPGA is programmed through integrated JTAG interface in Microsemi Libero

IDE software using VHDL hardware description language.

The RMU FPGA is in charge of data processing, camera control, ejection scheduling,

communication with the FFUs as well as communication with a ground station in real-time

mode.

2.2 Communication

Communication in the RMU allows sending commands from a ground station to the FFUs

through RXSM. All incoming and outgoing messages are processed in the FPGA and then

redirected to FFUs if it is needed.

Communication protocol used in the experiment is RS-422. While the rocket is on the ground,

RXSM provides the ground station operator with 38.4 Kbit/s both uplink and downlink,

however after liftoff only downlink is available. The example of downlink data structure is

shown in Figure 2-2, where SYNC1 and SYNC2 are synchronization bits, MSGID is a

message ID, MCNT is a current message number. CSM and CRC are checksum and cyclic

redundancy check bits, respectively.

20

Figure 2-2 Downlink protocol example

Each FFU has two independent umbilical connectors: one is for SU and the other is for CU.

The pinout of the umbilical connector is shown in Table 2-1.

Table 2-1 Umbilical connector pinout

Pin № Pin name Function

1 ROCKET_PIN FFU state control (sleep/mission mode)

2 TX Transmitting channel to RMU

3 RX Receiving channel from RMU

4 CHARGE Battery charging

5 GND Common ground

The RMU continuously provides a ground station operator with real-time data.

Communication is essential for pre-flight preparations and post-flight analysis. All flash

memories have to be erased and rewound; ejection algorithm execution starts only after

manual arming. For the post-flight analysis, communication is the only way to receive stored

data from flash memory.

2.3 Data acquisition

Data acquisition system in the ISAAC RMU consists of a temperature sensor, three sun

sensors and an angular rate sensor. The last two provide ejection algorithm implemented in

the FPGA with necessary input data.

The angular rate sensor L3G4200D is a low-power three-axis gyroscope. It is ultra-stable

device with digital output and built-in I2C/SPI communication interfaces. [7]

The sun sensors are SLSD-71N6 planar photodiodes mounted on the skin of the rocket [8].

The distance between three sensors corresponds to 30° angle.

21

Output of analogue thermal and sun sensors is digitalized with 12-bit MAX11617 analogue-

to-digital converter (ADC) with 2.048 V internal reference voltage [9]. The RMU has two

identical ADCs: housekeeping and ejection. The housekeeping one digitalizes voltage levels

and current consumed by the FFUs as well as temperature inside the RMU module. The

second ADC digitalizes outputs of sun sensors. Both ADCs are shown on Figure 2-3.

Figure 2-3 Housekeeping (left) and Ejection (right) ADCs electrical schematics

2.4 Camera

The whole flight is recorded with a HD GoPro Hero3 camera. The video will be used later in

post-processing to verify the FFUs ejection time and direction relatively to the Sun.

Recording function is manually activated by a ground station operator at time t-150s and

deactivated automatically at time t+510s, where t is the time of the rocket liftoff. The video

will be stored on 32GB microSD card. The RMU camera is mounted on the skin of the rocket

inside the module and looks out through a hole. [4]

The camera itself is inherited from the MUSCAT experiment. The battery has been removed

and electrical power is provided by the RMU. Moreover, it is fully controlled by the FPGA.

22

2.5 Ejection system

In this project, presence of voltage in power supply line for pyrocutter is not the only

necessary and sufficient condition for ejection of modules. The ejection system can be divided

into two major parts: an ejection algorithm and a power driver. The algorithm is being

constantly executed producing output after manual arming of the system. The idea of

controlled ejection lies in continuous position tracking relatively to the Sun and calculation of

a proper instant of time to eject the FFUs. In order to avoid sun influence on the FFU tracking

ability, they shall be ejected perpendicularly to the Sun position with allowable deviation of

±20°. Top and side view of the desired ejection is shown in Figure 2-4.

Figure 2-4 Desired ejection direction [4, p.7]

The ejection system is controlled by the RMU and has independent power line from the

rocket, which is activated by a flight operator at time t + 90 s, where t is the time of liftoff.

The power driver represents an electrical switch that consists of two MOSFET transistors.

Electrical schematic of the power driver is shown in Figure 2-5.

23

Figure 2-5 Ejection system power driver

Gates of N-channel SIPMOS BSP318S are connected to the FPGA output pins. The chosen

transistors provide enough current (over 1.2 A) to a pyrocutter with VGS voltage of 3V at high

temperatures [10]. The pyrocutter has 1.2 Ω resistance [11] and it is connected in series with

high power 10Ω resistor in order to limit current.

24

CHAPTER 3 RMU DEVELOPMENT

The complexity of the multitasking PCB demands different approaches. The design flow of

the electronic system on board the RMU includes both hardware and firmware development.

The RMU hardware consists of four PCBs, where three of them are located on the rocket skin

with photodiodes mounted on their surfaces. The main RMU board has 291 components,

excluding wires and connectors. Careful soldering is very important for tiny components’

operation under space conditions. All components, except angular rate sensor, were soldered

manually in KTH SPP students lab. The gyroscope package requires BGA soldering

technique and therefore it was mounted by the PCB manufacturer.

3.1 Sun sensors

In order to calculate relative position of the Sun, sun sensors are used. They provide the

FPGA with real-time illumination intensity. Figure 3-1 shows top and bottom view of a

soldered PCB.

Figure 3-1 Sun sensor PCB

Current, generated by SLSD-71N6 planar photodiode, changes its value proportionally to

light density, what in turn changes voltage drop across a resistor. Before sending analogue

voltage to ADC, it is being amplified. Figure 3-2 shows the schematic for light to voltage

conversion.

25

Figure 3-2 Electrical schematic for sun sensor PCB

For signal amplification, LM7321 dual-rail operational amplifier is used [13]. +3.3V and -

3.3V supply voltages are provided by the RMU.

Optimal gain should match sun sensor output voltage to the ADC range. The internal

reference voltage of the ADC is 2.048 V, which limits the gain. Sun sensor output voltage

higher than the ADC reference will saturate it. Applying equation (1) below [12], the optimal

gain value of 3.5 is obtained, which is further verified empirically.

𝐴𝑉 = 1 +
𝑅𝑓

𝑅𝑔
 (1), where

Rf – feedback resistor [Ω]

Rg – gain set resistor [Ω]

Av – operational amplifier gain

Sun sensor gain testing was done in sunny and serene day within the precincts of the KTH

Campus. All three independent PCBs were powered with batteries and output voltage was

measured with digital multimeter (DMM). The maximum indication was 1.1 V, what gives us

approximately 1V safety margin.

26

3.2 Ejection algorithm

Ejection control is one of unique features of the ISAAC. Perpendicular to the Sun position

ejection requires continuous data processing in real-time mode. Several approaches of

implementation were investigated and analyzed.

Approach 1: In this method, the only source of information are sun sensors. Searching for

maximum intensity values, the Sun direction can be easily found. Moreover, observation of

more than one rotation allows to determine rotation frequency of the rocket. This method uses

fewer sources of data; however, the complexity of firmware code is higher due to necessity of

implementation of parallel division. The FPGA space is limited with 250 000 gates and this is

the reason why parallel division of two variables cannot be implemented in the RMU. Besides

that, requirements fulfilment cannot be guaranteed because only approximate values can be

found. The allowable maximum value of deviation is ±20°.

Approach 2: In this method, both light intensity and angular speed are processed from

independent sources. The implementation is much easier, occupies less than 50% of FPGA

space and results in calculations that are more precise. Division is used to process angular

velocity, which do not require high processing speed and therefore can be implemented using

sequential division. This method is chosen to be implemented in the final version of the

firmware.

The ejection algorithm consists of seven concurrent processes: sun sensors data receiving,

gyroscope data receiving, counter, ejection timeout, sun sensors data processing, gyroscope

data processing and ejection activation. The last three processes are implement as Moore

finite state machines. The code for ejection algorithm is attached to Appendix A. Further

discussion analyzes all processes independently. Figure 3-3 shows the structure of the ejection

algorithm and an interaction of internal processes.

27

Enable ejection

Gyro data
receiving

Gyro data
processing

SS data
processing

SS data
receiving

counter

Ejection
timeout

Manual activation

Eject

Arm

Figure 3-3 Ejection algorithm block diagram

3.2.1 Data receiving processes

Sun sensors data receiving and gyroscope data receiving processes have identical purposes.

Both ejection ADC and gyroscope have their own controllers that output readings bytewise.

The processes are responsible for data collection and packing into 64-bit signals for further

processing. This is done by shifting in bytes of information when new data is ready.

3.2.2 Timing

In the ejection algorithm, two different systems of time are in use simultaneously, namely

absolute and relative time. The absolute one starts counting when the FPGA is reset. It is

represented with 21 bit vector, where the least significant bit (LSB) is changed every 0.5 ms.

The other bits change their values with the frequencies shown in Table 3-1.

28

Table 3-1 Global time vector

Bit position Frequency

GLOBAL_TIME[0] 2 kHz

GLOBAL_TIME[1] 1 kHz

GLOBAL_TIME[2] 0.5 kHz

…

GLOBAL_TIME[11] 1 Hz

…

GLOBAL_TIME[20] 2 mHz

Counter is a process that determines relative time between positions with the highest light

intensity. In other words, it counts the time for one 360° rotation. It is triggered every half a

millisecond and on a special signal from sun sensors data handling process, which occurs

when a new maximum intensity is defined. After every new maximum value found the

counter is reset.

3.2.3 Sun sensors data handling process

Direction of the ejection is tightly coupled with the Sun position. Sun sensors provide the

FPGA with light intensity in real-time mode, what makes it difficult to determine a peak value

on fly. This problem can be solved with introducing a margin, after which the attitude can be

stated as a sun-directed. However, exact light intensity depends on many factors and is

unknown, what, in turn injects additional sources of errors. For that reason, the following

concept is implemented. Incoming new data is compared with a value stored in a variable,

which is initialized with zero on the FPGA reset. If the new data is smaller than the data

stored in the variable, the algorithm waits for next sun sensors data. Otherwise, the variable

value is updated with the largest one. If the value of the variable has not been updated for last

t ms, where t = T / 2 + 20 ms, then it corresponds to the maximum intensity value and in that

moment the middle sun sensor was pointing onto the Sun. Adding the values from all three

sources simplifies the implementation. In this case, a peak readout occurs when the source is

straightly opposite the middle photodiode.

29

All three sun sensors readings are shown in Figure 3-4. Figure 3-5 represents the ADC data

while the RMU was rotating on constant 3.05 Hz frequency on rotary table. The curves

overlap without any glitch in between, what allows processing only a combined value instead

of single readings. The resulting curve of the combined value is shown in Figure 3-6.

Figure 3-4 Sun sensors readings separately

4000 6000 8000 10000 12000 14000 16000
0

0.1

0.2

O
u
tp

u
t

v
o
lt
a
g
e
 [

V
]

Number of samples

4000 6000 8000 10000 12000 14000 16000
0

0.1

0.2

O
u
tp

u
t

v
o
lt
a
g
e
 [

V
]

Number of samples

4000 6000 8000 10000 12000 14000 16000
0

0.1

0.2

O
u
tp

u
t

v
o
lt
a
g
e
 [

V
]

Number of samples

Sun sensor 1

Sun sensor 2

Sun sensor 3

30

Figure 3-5 Sun sensors readings

Figure 3-6 Sum of readings

5300 5400 5500 5600 5700 5800 5900
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of samples

O
u
tp

u
t

v
o
lt
a
g
e
 [

V
]

Sun sensor 1

Sun sensor 2

Sun sensor 3

5300 5400 5500 5600 5700 5800 5900
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of samples

O
u
tp

u
t

v
o
lt
a
g
e
 [

V
]

SS sum

31

S2

S3

S0
S1

No new data

New data

arrived

Divided

4

maximums

found

Up to 3

maximums

found

S4

Figure 3-7 Sun sensors data handling finite state machine

Every rocket rotation relative time of the determined maximum intensity is stored in a 1x4

array. These values are used for mean time calculation and more accurate time of the next

peak intensity prediction.

A finite state machine for the above-discussed process, namely sun sensors data processing, is

shown in Figure 3-7 and includes the following states:

S0: The state is triggered on every rising edge of the clock signal unless new data with a valid

header is arrived. Upon arrival, all three single sun sensor readings are summed up and the

process moves to the next state.

S1: If the new data has higher value than the one stored before, maximum value and its

absolute time of occurrence is overwritten; otherwise, if no higher value has appeared during

the time needed to pass 180° plus 20 ms since last stored maximum, the relative time of its

appearance is stored in the array. The process starts from the beginning (S0) unless all four

maximum values are found. After the fourth consecutive maximum intensity is defined, the

process moves to the next state (S2).

S2: In this state first stage of mean time of 360° rotation is calculated. All four values from

the time array are summed up.

32

S3: Result from S2 is divided by four. Division is implemented using bit shifting. Two bits

are shifted to the right.

S4: The final state ensures mean time to be calculated and gives a flag to ejection activation

process.

3.2.4 Gyroscope data handling process

All three sun sensors are located on the same side of the mechanical module as the lower FFU

and according to the requirements, the FFUs shall be ejected perpendicularly to the Sun

position. In order to fulfil the condition, time of 90° rotation is calculated using angular rate

sensor readings. Figure 3-8 represents a finite state machine for gyroscope data processing.

S1S0

New data

arrived

No new input

data

Division

done

Division not

finished

Figure 3-8 Gyroscope data processing finite state machine

S0: When new valid data arrives, it is converted from two’s complement to binary,

preparations for division are done and the process goes to the next state. Otherwise, waits for

new data.

S1: Division procedure is being done in this state. It is triggered 16 times. Time needed for

90° rotation is stored in a variable. Process continues with S0.

Output of the angular rate sensor is given in degrees per second (dps). Taking into account a

sensitivity factor of 70 mdps/digit, desired value is a ratio of 1285714 and the gyroscope

actual reading.

33

Division is implemented in sequential way by using a simple comparator and takes 16 clock

cycles. The dividend is stored in a (n+k)-bit temporary buffer, where n is number of bits in a

dividend and k is number of bits in a divisor. Every clock cycle buffer[(n+k-2) : (k-1)] is

compared with the divisor. If the divisor is greater than the compared part of the buffer, the

buffer is shifted one bit to the left. Otherwise, the buffer(n+k-1) equals to ‘0’ and the

buffer[(n+k-2) : k] equals to a difference of the buffer[(n+k-3) : (k-1)] and the divisor[(k-2) :

0]; ‘1’ is shifted in to the right of the buffer[(k-1) : 0]. Current procedure is repeated k times.

At clock cycle k the solution equals to buffer[(k-1) : 0] and the remainder equals to

buffer[(n+k-2) : k].

The division example is shown in Table 3-2, where the dividend is 14 and the divisor is 5.

The part of the buffer vector that is compared with the divisor is highlighted with red color.

The divisor is a 4 bit vector in this example (k = 4), thus the whole procedure takes 4 clock

cycles. At clock cycle number 4, the first 4 bits of the buffer correspond to the solution and

the next three correspond to the remainder. The solution and the remainder for the given

example is highlighted with blue and brown colors, respectively. Cycle 0 is used for

preparation, namely shifting the dividend into the buffer vector and resetting counter.

Table 3-2 Division example

CLK

cycle Buffer Divisor

0 0000 1110 0101

1 0001 1100 0101

2 0011 1000 0101

3 0010 0001 0101

4 0100 0010 0101

3.2.5 Ejection activation process

Ejection signal activation process starts execution only when sun sensors data handling

process is in the final state (S4), which is called a flag state. After receiving a flag signal,

ejection time is calculated taking into account mean time of one 360° rotation, mechanical

and electrical delays as well as time of 90° rotation. Firing signal activates as soon as the

calculated condition is met and the signal is kept high for 12 ms. A finite state machine for the

ejection activation process is shown in Figure 3-9.

34

S3

S0 S2

Flag

received

Wait for flag t < tE

t < tD

S1

tE calculated

Figure 3-9 Ejection activation process finite state machine

The finite state machine has the following states:

S0: The entire process stores absolute time of the last maximum intensity and goes to the next

state if sun sensors data handling process is in the final state (S3).

S1: Ejection time is calculated and state is changed to S2.

S2: If the absolute time is smaller than the calculated ejection time, then the ejection signal is

low. Otherwise, it goes high, deactivation condition is calculated and state is changed to S3.

S3: The ejection signal is kept high until deactivation condition is met. When the absolute

time reaches deactivation time, the ejection signal is forced to zero and state is changed to S0.

3.2.6 Ejection timeout process

Ejection is a very critical part of the experiment and it shall happen in any case even if some

of the supporting parts as gyroscope, ADC or sun sensors malfunction. In order to ensure

ejection of the FFUs, timeout procedure is implemented in the algorithm. The timeout signal

activates every 4 s and stays high for 1 s. However, it is a backup signal and therefore, the

35

activation condition is recalculated every time when the signal from the ejection activation

process goes high, postponing timeout for another 4 s.

Undesirable ejection during testing procedures can lead to damages in the RMU module as

well as in the FFUs. To avoid any accident, manual arming of the ejection is implemented as a

safety measure. This is done by injecting an internal signal, which can be controlled only by

an operator through a communication line. The resulting output signal of the whole algorithm

is produced according to the following logic equation (2):

S = (SEJ ∨ STO ∨ SM) ∧ SARM (2), where

SEJ – signal from enable ejection process

STO – timeout ejection

SM – manual activation signal

SARM – manual arm signal

S – resulting output of the ejection block

∨ - logic OR operator

∧ - logic AND operator

The manual activation signal is implemented for early stage verification purpose and

measurement of electrical parameters of the circuit.

3.3 Communication

Some of the RMU functionalities require direct involvement of a ground station operator.

During the final countdown preparations, camera mounted on the skin of the rocket shall be

properly switched on and ejection system must be armed. Moreover, downlink provided by

the RXSM makes it possible to monitor all the important parameters of the experiment both

before and after liftoff.

The communication between ground station and the experiment is divided into two different

sections: the RMU and the FFUs communication, respectively. Independently of a type, all

messages are processed by the ISAAC RMU Controller, which is partially inherited from the

MUSCAT experiment.

36

3.3.1 RMU communication

The RMU continuously sends housekeeping data packets to the ground station, which contain

the most important data and allow monitoring the whole experiment’s performance. Each 26

bytes real-time message has the structure shown in Table 3-3, where the HEADER is “#0”

and it represents that the message contains the RMU related data.

Table 3-3 Real-time message structure

Real-time message

HEADER TIME Binary zeroes Status HK data 1 HK data 2

16 bits 28 bits 24 bits 12 bits 64 bits 64 bits

Post-flight analysis requires careful data conversion and plotting all the readings versus time.

This becomes possible due to TIME vector contained in the real-time message. The vector

consists of three parts: 2-bit header, 18-bit vector for seconds since last FPGA reset and 8 bits

for M_TIME [25:18] time vector. Changing frequencies of the last one are shown in Table

3-5 and the structure of the TIME vector is shown in Table 3-4.

Table 3-4 Time vector structure

Time vector

Header Seconds since reset Time within seconds

2 bits 18 bits 8 bits

Table 3-5 "Time within a second" vector

Bit number Changing frequency

M_TIME [18] 128 Hz

M_TIME [19] 64 Hz

…

M_TIME [23] 4 Hz

M_TIME [25] 1 Hz

Another important part of the real-time message is a status vector, which gives an overview of

events happening in the FPGA. It consists of 12 bits, where every single bit is related to a

specific event. The list of the events with corresponding bit number is shown in Table 3-6.

37

Table 3-6 Status vector structure

Bit Event

STATUS_VECTOR[0] Rotator

STATUS_VECTOR[1] Maximum

STATUS_VECTOR[2] Fire

STATUS_VECTOR[3] Enable ejection

STATUS_VECTOR[4] Camera button 1

STATUS_VECTOR[5] Camera button 2

STATUS_VECTOR[6] Camera power ON

STATUS_VECTOR[7] Recording

STATUS_VECTOR[8] RxCU sleep

STATUS_VECTOR[9] RxSU sleep

STATUS_VECTOR[10] TxCU sleep

STATUS_VECTOR[11] TxSU sleep

The RMU sends real-time messages only in Rotator mode. The FPGA sends its data and asks

for real-time data from every FFU by turn. The experiment is in rotator mode by default,

however it can be deactivated by sending “ ‘ ” character. STATUS_VECTOR[1] changes its

state when a new maximum intensity of the light is found. According to the ejection

algorithm, it toggles in t = t½ + 20 [ms] after the maximum intensity is captured by

photodiodes, where t½ corresponds to the time needed to pass 180°. Fire event indicates the

signal driven to the ejection system’s power driver. In case of manual activation, character

“P” shall be sent to the controller. Enable ejection shows the ejection arming status. By

sending “E” character, the experiment can be armed or disarmed. Next 4 bits are related to

camera control. The camera has two buttons and they are “pressed” automatically by an

algorithm in this case. Moreover, all of these camera single events can be toggled by sending

“*”, “+”, “,” and “-”, respectively. The ability of full control is very important taking into

account that the camera is modified especially for the experiment. It has no battery and it is

impossible to press buttons on the camera itself. In case of improper shutdown, the camera

control algorithm will be terminated in a wrong state, what may lead to malfunctions. The last

four bits indicate sleep/awake statuses of the FFUs and “#”, “$”, “!” and “ “ ” are the

characters for switching state given in order as provided by the status vector.

38

The third important part of the real-time message is housekeeping data. The ground station

operator receives all crucial readings provided by the ADCs and the angular rate sensor before

and during the experiment execution in order to monitor correctness and readiness of the

system.

Housekeeping data packets consist of information from several sources, which is sampled at

different time slots. The housekeeping ADC digitalizes all FFUs’ voltages and currents, what

becomes uninteresting for the operator due to a down scope in the ISAAC experiment

objectives. In order to receive only valuable information and simplify monitoring process,

data_sender block was developed. Full VHDL code for the block is attached to Appendix B.

Output vector
generator

Gyro data
receiving

Gyro data
handling

Ejection ADC
data

handling

Ejection ADC
data

receiving

Housekeepi
ng ADC data

handling

Housekeepi
ng ADC data

receiving

Write enable

Output

WE

Figure 3-10 Data_sender: interaction of internal processes

Figure 3-10 illustrates the interaction of internal processes in the data_sender block. Full

packages coming from the ADCs and the gyroscope are processed individually and necessary

parts are stored in intermediate signals. The output vector generating process selectively

combines intermediate signals into one 48-bit signal, which is being output adding a header in

the beginning. The header for the packets has two different values: “01BE” and “02BE” for

the first and the second housekeeping data packet, respectively.

39

Housekeeping data packet 1 contains sun sensors readings and its structure is shown in Table

3-7. The structure of the housekeeping data packet 2 is shown in Table 3-8. Data provided by

both the ejection ADC and the gyroscope are combined in this packet.

Table 3-7 Housekeeping data packet 1

HK data 1

Header Binary zeroes SS1 SS2 SS3

16 bits 12 bits 12 bits 12 bits 12 bits

Table 3-8 Housekeeping data packet 2

HK data 2

Header Temperature sensor 1.5V Gyro temp Gyro Z axis

16 bits 12 bits 12 bits 8 bits 16 bits

Table 3-9 illustrates an example real-time message received from the RMU.

Table 3-9 Real-time message example

#0 400362C 000000 F43 01BE00012516014D 02BEAEABB8120001

Header Time

Status vector Housekeeping data 1 Housekeeping data 2

3.3.2 General FFU communication

The ISAAC experiment has two different-purpose FFUs with identical CUs and different

SUs. The TxSU is fully autonomous, however both CUs and the RxSU require

communication lines for various operations with memories, status monitoring and flight

preparations. FFU commands sent to the RMU are being processed by the ISAAC RMU

Controller as it was in the previous case, however switching blocks are needed to redirect

messages to the proper FFU. 3-to-1 multiplexer is implemented for a transmitting line and 1-

to-3 demultiplexer for a receiving line. Channel selection is done by sending special

characters to the controller, e.g. “1” for the TxCU, “2” for the RxCU, “3” for the RxSU and

“0” for the RMU. After choosing a proper addressee, an internal communication line is

redirected to its FPGA pins. The VHDL code for communication switches is attached to

Appendix C.

40

3.3.3 RxSU communication

Although the RxSU has a complex structure with four different FPGAs, communication with

it is done through a single line. A special switch implemented in the main FPGA, which is

responsible for the FFU sun sensors data processing, ensures accessibility of every single

FPGA. The main FPGA permanently listens to the communication line and redirects

messages if one of the following ASCII characters appear: “%” for the sun sensors FPGA,

“&” for the camera FPGA, “(” for the SmartFusion2 and “)” for the IR FPGA.

The implementation is separated into two blocks: a communication controller and a switch

itself. The code for these blocks is brought in Appendix D. The switch is made in a

multiplexer style, where the communication controller drives a selecting signal. The purpose

of the switch is to internally connect proper FPGA pins with each other and pull-up unused

ones.

3.3.4 GUI

Real-time communication with a ground station is done through serial port and it is nothing

but a stream of packets, represented in hex format. Due to difficulties in following the

readings using terminal, graphical user interface (GUI) Muscateer is used. The GUI is fully

inherited from the MUSCAT experiment with some minor changes.

41

Figure 3-11 Ground station GUI

It is written in C++ programming language and adapted to the ISAAC experiment, because of

distinctions in real-time message structure. Besides that, the ISAAC messages include some

data, which are not compatible with the type declared in the initial version of the software.

The angular rate sensor’s data are represented in two’s complement format and, thus, can

have both positive and negative values. The adapted version has buttons for pre-flight

preparations to minimize any accidental mistake occurrence, visualization for new statuses

and proper conversion for raw data.

42

CHAPTER 4 RMU VERIFICATION

Any development is always followed by a verification phase. In this section, verification

process of the RMU system is discussed. Depending on the part under test, verification is

done using different methods. Some of them require simulations, other just a communication

line or even a high definition camera.

4.1 Communication

The RMU PCB does not have any memory and this makes the communication line extremely

important for the experiment. The main source of information for post-flight analysis is the

messages received through downlink.

The verification procedure examines proper functionality of not only UART communication

blocks implemented in the FPGA, but also the ADCs, the angular rate sensor as well as the

ISAAC RMU Controller block. Only having all the above-mentioned blocks correctly

functioning, the expected and the received data can match.

In order to obtain better resolution of diagrams, communication baud rate is increased to

115.2 Kbit/s for testing purpose. The ejection arm and the eject signals are illustrated in

Figure 4-1. The diagram clearly shows proper functionality of both downlink and uplink. The

eject signal appears only when the ejection algorithm is manually activated by the operator.

The arm signal changes its value when the RMU receives “E” command from the ground

station. Horizontal axis of the graph represents time after the FPGA reset.

Example log file is shown in Figure 4-2, where each line consists of one real-time message.

43

Figure 4-1 Uplink and downlink test

Figure 4-2 Log file

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1
L
o
g
ic

 v
a
lu

e

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

L
o
g
ic

 v
a
lu

e

Time [s]

Eject signal

Arm signal

44

4.2 Camera

The GoPro Hero 3 camera is an independent device and its testing method lies in remote

activation, record starting and automatic video saving after 660 s. Although it can be fully

controlled through uplink, it is very difficult to perform remotely. In order to avoid any

unexpected behavior, the camera was tested and critical cases, which can lead to malfunction,

were discovered.

Figure 4-3 illustrates camera signals and their behavior according to the recording algorithm.

Recording process lasts exactly 660 s, starting from t = 110 s and finishing at t = 770 s.

However, the camera is not switched off, but recording is stopped, video is saved and a new

one started. At t = 860 s the camera was turned off by the operator.

Incorrect shutdown inevitably leads to malfunction next time the camera will be used. Simple

and effective remedy to have safe recording requires additional powering on the camera

before any recording process. The principle is shown on the graph. The camera is switched on

at t = 0 s and switched off at t = 80 s.

Figure 4-3 Camera signals

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

L
o
g
ic

 v
a
lu

e

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1
L
o
g
ic

 v
a
lu

e

Time [s]

Record

Camera power

45

4.3 Ejection algorithm

Complex structure of the ejection algorithm requires several different approaches to verify

completely the whole block. Verification process of all key blocks is discussed in this section.

The angular rate sensor data is processed using mathematical division, which is verified

separately.

Flight conditions for the RMU are simulated using a rotary table with adjustable rotational

speed. To communicate with the rotating PCB is difficult having cables connected to the

ground station. Solution was found in Wireless Bluetooth RF Transceiver Module serial

RS232 TTL HC-05 [14].

4.3.1 Division

The implemented division block using VHDL hardware description language was verified

using ModelSim simulation. Obtained waveforms are shown in Figure 4-4.

Figure 4-4 Division block simulation

All numbers are chosen as close as possible to the realistic ones. The dividend has the same

value as in the ejection algorithm. Although the divisor will not be constant during the flight,

the approximate rotation frequency is stated to be 3 Hz, which, in turn, is 1080 dps. Due to the

fact that all terms of division belong to integer set, the fraction is omitted, what injects an

additional error. In the examined example, the fraction value is 0.47(592), which equals to

0.514 ms or 0.56° of rotation.

46

4.3.2 Angular rate sensor readings

The gyroscope functionality is verified on the rotary table. A peculiarity of the installation is

inability of drastic acceleration. Figure 4-5 shows the angular rate sensor’s output during the

test.

Figure 4-5 Gyroscope data

The rotary table was smoothly sped up to 1300 dps for a short time and then rotation speed

was held at constant 3 Hz level for about 20 s. The output precisely follows the test bench’s

performance.

4.3.3 Sun sensors readings

The sun sensors output voltage is represented in Figure 4-6. The given graph is based on

communication data received while the RMU was rotating at constant 3 Hz frequency. All

three waveforms overlap, which allows to process a combination of them instead of single

readings, as it was mentioned before.

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

Time [s]

A
n
g
u
la

r
v
e
lo

c
it
y
 [

d
p
s
]

Angular rate sensor

47

Figure 4-6 Sun sensor data

Analyzing the graph, approximate period can be calculated.

70.1 − 69.75 = 0.35 𝑠 , where 70.1 s and 69.75 s are the time values for two consecutive

peaks of the blue waveform.

The difference is 0.35 s, which is close to 333 ms for 3 Hz frequency.

The results fully correspond to the expectations.

4.3.4 Sun sensors data handling

The purpose of the sun sensors data handling process is to follow the ejection ADC data and

search for maximum light intensity. The combined sun sensors readings and the maximum

signal are illustrated in Figure 4-7. Every half of a rotation period plus 20 ms the maximum

signal changes its value to the opposite. Time, when the signal is constant high or constant

low, equals to relative time of one 360° rotation.

69.5 69.6 69.7 69.8 69.9 70 70.1 70.2 70.3 70.4 70.5
0

0.05

0.1

0.15

0.2

0.25

Time [s]

O
u
tp

u
t

v
o
lt
a
g
e
 [

V
]

Sun sensor 1

Sun sensor 2

Sun sensor 3

48

Figure 4-7 Maximum light intensity identification

Analyzing the graph, it is clearly seen that the maximum signal edges are slightly to the right

from lines of symmetry between two consecutive peaks. Besides that, every peak intensity

point is properly identified by the algorithm, what makes this process fully meeting the

requirements.

4.3.5 Arming procedure

The ejection algorithm executes continuously, however the output is blocked by the arm

signal. This preventing mechanism is shown in Figure 4-8. The diagram illustrates behavior of

the output under different arm signal states. Disabling the arm signal is an important safety

measure, which allows to prevent unanticipated ejection.

330 330.5 331 331.5 332 332.5 333
0

0.1

0.2

0.3

0.4

0.5

In
te

n
s
it
y
 [

V
]

330 330.5 331 331.5 332 332.5 333
0

0.2

0.4

0.6

0.8

1

L
o
g
ic

 v
a
lu

e

Time [s]

SS sum

Maximum signal

49

Figure 4-8 Ejection arm signal

The signal is controlled by the ground station operator and it shall be activated before liftoff

due to absence of uplink during flight.

4.3.6 Ejection timeout

The timeout process is implemented as an alternate ejection method in case of malfunctions in

the gyroscope, the photodiodes or the ADC. The operation principle of the process is shown

in Figure 4-9.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

L
o
g
ic

 v
a
lu

e

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

L
o
g
ic

 v
a
lu

e

Time [s]

Eject signal

Arm signal

50

Figure 4-9 Timeout signal

The timeout process forces the output to logic 1 for 1 s. In accordance with the graph, it is

high from 15.4 s to 16.4 s and 22.5 s to 23.5 s. The activation condition is 4 s without any

activity in the output signal. Absence of the signal at t = 20.4 s proves its secondary

importance, namely, every eject signal appearance postpones the timeout condition for

another 4 s.

4.3.7 Ejection activation process

Another important part to verify is correctness of the eject signal activation time. The process

calculates the time of every fifth consecutive peak intensity appearance and ejects the FFUs,

taking into account delays. Figure 4-10 proves the before-mentioned algorithm.

At approximately t = 330.2 s the first maximum intensity in captured. The second peak

appears at t = 330.5 s. The third one is at 330.8 s and the last is at 331.2 s. After all 4 values

are found, the ejection signal goes high at 331.4 s, just before the next peak intensity because

of mechanical delay.

15 16 17 18 19 20 21 22 23 24 25
0

0.2

0.4

0.6

0.8

1

1.2

Time [s]

L
o
g
ic

 v
a
lu

e

Eject

51

Figure 4-10 Ejection activation algorithm

4.4 Environmental tests

Under conditions of absence of convectional cooling and temperature differential during

countdown, launch and flight, experiment electronics must be tested to ensure nominal

operation in all the worst cases. For that reason, vacuum and thermal test are conducted.

4.4.1 Vacuum test

Vacuum test was conducted using a special vacuum chamber provided by the university. The

range of pressure inside the chamber varies from normal room pressure in the lab down to 80

microns Hg (0,1067 mbar). The flight mode of the RMU PCB was activated during the test.

330 331 332 333 334 335 336
0

0.2

0.4

0.6

0.8

1

L
o
g
ic

 v
a
lu

e

Time [s]

Maximum signal

Eject signal

52

Figure 4-11 Vacuum chamber

In order to reach such low pressure inside the vacuum chamber and keep ability to power on

the PCB, special adapter was made. The cable, shown in Figure 4-12, has two D-SUB 15

connectors with a sealing adapter in between, which prevents airflow from outside the

chamber.

Figure 4-12 RMU power cable for vacuum test

The RMU housekeeping data was logged for 700 ms when vacuum conditions were

established. Decoded data is represented below in Figure 4-13.

The diagram illustrates stability of the RxSU and the TxSU supply voltage. Several different

circuits take part in output voltage generation. The RMU is powered with 28V, which is

53

further converted into 4.2V, 3.85V for the FFUs and 5V. The last, in turn, is converted into

3.3V for feeding digital electronics. A stable final stage ensures stability in all previous

stages. Moreover, continuity of the time axis confirms uninterrupted operation of the FPGA.

Figure 4-13 Output voltage under vacuum condition

4.4.2 Thermal test

The RMU electronics behavior under temperature variation was tested in a special thermal

chamber. The entire test was conducted in two phases: a hot test and a cold test. Peak

temperatures for these tests were +60°C and -30°C, respectively. The RMU data was being

recorded during the temperature variation process as well 15 minutes after temperature was

stabilized.

Voltage behavior across the temperature variation is nominal with maximum deviation of

1.5% and 2.3% for the hot and the cold test, respectively. The calculations are based on the

data represented in Figure 4-14 and Figure 4-15.

Heating:

3.894 − 3.836 = 0.058 𝑉

100 200 300 400 500 600 700 800 900
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Time [s]

V
o
lt
a
g
e
 [

V
]

RxSU

TxSU

54

0.058 ÷ 3.836 ∙ 100% = 1.5%

Cooling:

3.832 − 3.744 = 0.088 𝑉

0.088 ÷ 3.744 ∙ 100% = 2.3%

Both the FFU’s supply voltage and the temperature inside the chamber follow the same trend.

Maximum deviation of the voltage trace is 0.058V (Figure 4-14) under heat effect and 0.088V

(Figure 4-15) under cold effect.

Figure 4-14 Heat influence on voltage

The reason for changes in output voltage is resistance and temperature relationship, which is

described with the following equation (3):

𝑅 = 𝑅𝑟𝑒𝑓 ∙ [1 + 𝛼(𝑇 − 𝑇𝑟𝑒𝑓)] (3), where

R – Conductor resistance at temperature T,

Rref – Conductor resistance at reference temperature Tref

𝛼 – Temperature coefficient of resistance for the conductor material

0 500 1000 1500 2000 2500 3000
30

35

40

45

50

55

60

65

T
e
m

p
e
ra

tu
re

 [
C

]

0 500 1000 1500 2000 2500 3000
3.83

3.84

3.85

3.86

3.87

3.88

3.89

3.9

V
o
lt
a
g
e
 [

V
]

Time [s]

Temperature sensor

TxSU supply voltage

55

T – Conductor temperature in degrees Celsius

Tref – Reference temperature that 𝛼 is specified at for the given conductor material

The above-mentioned equation proves the behavior of the voltage traces. Any change in

temperature cause a change in aggregate resistance of the electrical circuit.

Unexpected short-time temperature fall in Figure 4-14 at time t = 1700s can be caused by

improper actions of a test operator.

The diagram related to the influence of cold clearly recognizes a problem. At temperature levels

of -18°C and -30°C, the FPGA resets. The malfunction appeared when the 18-bit time vector

value reached 1023, however this problem does not occur during the hot test. Recommended

operation conditions for ProAsic3 Family FPGAs lie between -40°C and +85°C [6] and the test

conditions are close to the boundary ones. Further investigation of this phenomenon needs to be

done.

Figure 4-15 Cold influence on voltage

0 200 400 600 800 1000 1200
-30

-20

-10

0

10

20

30

T
e
m

p
e
ra

tu
re

 [
C

]

0 200 400 600 800 1000 1200
3.74

3.76

3.78

3.8

3.82

3.84

3.86

V
o
lt
a
g
e
 [

V
]

Time [s]

Temperature sensor

TxSU supply voltage

56

CHAPTER 5 POST-FLIGHT ANALYSIS

The launch campaign was held in Esrange, Kiruna from 19th of May until 1st of June 2014 with

the launch itself on 29th of May. All real-time data before, during and after liftoff were properly

logged, what allows to analyze the RMU functionality during the flight.

The experiments on-board the rocket were activated 600 s before liftoff and switched off 600 s

later. Unfortunately, the FPGA reset at time t = 1024 s. However, all the most crucial data for the

ISAAC experiment is collected and the malfunction had no serious impact. In general, all parts

developed during the degree project time successfully accomplished the task and the further

analysis proves that.

Peak spinning rate reached during the whole flight is 1408.12 dps at time t = 621.516 s. Angular

velocity is plotted in Figure 5-1. Real-time communication packets of the ISAAC experiment do

not allow to define exact ejection moment. The problem is solved using data provided by the

FOVS experiment. Figure 5-2 illustrates accelerometer’s reading in time interval from 90 s to

100 s after liftoff. According to the diagram, the ejection of the FFUs was approximately at time t

= 691 s after the experiment activation. At the moment of ejection, rotation speed of the rocket

was 1092.4 dps, which is very close to the expected one.

Behavior of the photodiodes is shown in Figure 5-3. Analyzing the traces, the graph can be

divided into 3 stages with t1 as a starting point and t2 as a finishing point of the time interval.

t1 = 590 s, t2 = 600 s: The rocket is in stationary state on the ground and the photodiodes do not

point in the Sun direction.

t1 = 600 s, t2 = 700 s: The rocket is in flight. Active phase of the experiment.

t1 = 700 s, t2 = 800 s: Yo-yo de-spin with further stable and very slow rotation speed.

57

Figure 5-1 Angular velocity of the rocket

Figure 5-2 Accelerometer data

0 200 400 600 800 1000 1200
-400

-200

0

200

400

600

800

1000

1200

1400

1600

Time [s]

A
n
g
u
la

r
v
e
lo

c
it
y
 [

d
p
s
]

Angular rate sensor

58

Figure 5-3 Sun sensors and gyro behavior during the flight

Maximum output voltage of the sun sensors is 1.4 V which proves the correctness of the chosen

amplification gain.

Video recording related signals are shown in Figure 5-4. Due to malfunction in the FPGA and its

unexpected reset, the flight video stops just after the Yo-yo de-spin.

Figure 5-4 Camera signals

600 650 700 750 800 850
0

1

2

O
u
tp

u
t

v
o
lt
a
g
e
 [

V
]

600 650 700 750 800 850
-500

0

500

1000

1500

A
n
g
u
la

r
v
e
lo

c
it
y
 [

d
p
s
]

Time [s]

Sun sensor 1

Sun sensor 2

Sun sensor 3

Angular rate sensor

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

L
o
g
ic

 v
a
lu

e

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

L
o
g
ic

 v
a
lu

e

Time [s]

Record

Camera power

59

Some housekeeping data is illustrated in Figure 5-5. The temperature sensor is mounted on the

aluminum rocket skin, which is heating very fast due to friction. FPGA supply voltage is constant

during the whole period. Neither temperature change nor vacuum had any impact on the electrical

parameter.

Figure 5-5 Housekeeping data

Duty cycle of the eject signal is very low, because it goes high only for 12 ms. Figure 5-6

illustrates a time window of the ejection. Readings of accelerometer show that ejection was in the

interval from 690s to 692s, however, the signal is absent. The reason for that is low

communication speed and messages with high eject signal are lost. Figure 5-7 is a good evidence

for that. The diagram shows the closest eject signal triggered before. If there were no any short

ejection signal after, the timeout process would definitely force the eject signal high for 1s.

0 200 400 600 800 1000 1200
1

1.5

2

2.5

3

V
o
lt
a
g
e
 [

V
]

0 200 400 600 800 1000 1200
0

50

100

150

T
e
m

p
e
ra

tu
re

 [
C

]

Time [s]

1.5 V

Temperature sensor

60

Figure 5-6 Sun sensors readings during the ejection moment

Figure 5-7 Example of ejection signal

690 690.2 690.4 690.6 690.8 691 691.2 691.4 691.6 691.8 692
0

1

2

3
V

o
lt
a
g
e
 [

V
]

690 690.2 690.4 690.6 690.8 691 691.2 691.4 691.6 691.8 692
0

0.2

0.4

0.6

L
o
g
ic

 v
a
lu

e

Time [s]

SS sum

Eject signal

670 670.2 670.4 670.6 670.8 671 671.2 671.4 671.6 671.8
0

1

2

3

4

5

V
o
lt
a
g
e
 [

V
]

670 670.2 670.4 670.6 670.8 671 671.2 671.4 671.6 671.8
0

0.2

0.4

0.6

0.8

1

L
o
g
ic

 v
a
lu

e

Time [s]

SS sum

Eject signal

61

Presence of the camera allows making a video analysis of the ejection. Figure 5-8 and Figure 5-9

illustrate video frames 27224 and 27243, respectively. The camera was set to 240 frames per

second recording, what makes it possible to examine a picture every 4.17 ms. A thin black line at

the bottom right hand corner of Figure 5-8 is a hatch. It is the first appearance of any part

involved in the ejection procedure and, thus, the frame is stated as the beginning of the ejection

process. On the other hand, Figure 5-9 has the Sun in the middle and this frame shall be 90° far

away from the starting point of the ejection. Taking into account the angular rate sensor reading,

the angular velocity during the ejection was 1092.4 dps or rotational frequency was 3.034 Hz.

Having all this information the actual and the proper moment of ejection is calculated below.

1 ÷ 240 = 0.0041(6) 𝑠 ≈ 4.17 𝑚𝑠 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 2 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 𝑓𝑟𝑎𝑚𝑒𝑠

27243 − 27224 = 19 𝑓𝑟𝑎𝑚𝑒𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠

4.17 ∙ 19 = 79.23 𝑚𝑠 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑓𝑟𝑎𝑚𝑒𝑠

1092.4 ÷ 360 = 3.03(4) 𝐻𝑧 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

1 ÷ 3.03(4) ≈ 0.329 𝑠 = 329 𝑚𝑠 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑝𝑎𝑠𝑠 360°

329 ÷ 360 ∙ 90 = 82.25 𝑚𝑠 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑝𝑎𝑠𝑠 90°

Figure 5-8 Ejection video frame 27224

62

Figure 5-9 Ejection video frame 27243

In order to pass 90° with a constant speed of 1092.4 dps, 82.25 ms are needed. The time

calculated using video analysis is 79.23 ms without consideration of uncertainty, which is caused

by the minimal time unit of 4.17 ms, imprecise selection of a starting frame and angular rate

sensor’s accuracy. Possible solutions to improve ejection timing are discussed in the discussion

section.

90 − 79.23 ∙ 90 ÷ 82.25 = 3.3 ° 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒

82.25 − 79.23 = 3.02 𝑚𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

According to the calculations, the ejection took place 3.3° or 3.02*10-3 s earlier than it should

have happened. The obtained deviation is smaller than the time between two consecutive frames.

The result fully corresponds to the requirement.

63

CHAPTER 6 DISCUSSION AND FUTURE WORK

The degree project is focused on the RMU electronics development and validation, what is

clearly documented in previous chapters. The designed and implemented firmware for the RMU

FPGA resulted in successful ejection control with informative real-time communication packets

and high-definition video. Several new features for the ISAAC experiment were developed as

well as adapted and improved the inherited ones.

A foundation of the ejection algorithm is the ability of the module to correctly identify the Sun

position. Three stand-alone sun sensors were developed with the appropriate amplification gain,

which matches the output with the reference voltage of the ADC. The proper gain of 3.5 was

found empirically and the correctness is proved in the post-flight analysis.

The complex ejection algorithm was developed and implemented in VHDL hardware description

language with interaction of seven concurrent processes. The verification phase of every single

process as well as the post-flight analysis demonstrate its full compliance with the requirements.

However, there is a way to improve the accuracy of the ejection, which is left for a future work.

Mechanical delay of the FFUs ejection is found empirically during dynamic ejection tests and it

is declared as a constant variable. In order to improve ejection timing, more test should be

conducted with the FFUs of the same mass as the ones for a flight. Different delay values can be

injected into the algorithm switching a value depending on the actual angular velocity.

Another important part of the developed firmware is the communication. The implemented block

provides a ground station operator with all crucial and interesting information during flight;

however, it has a serious drawback. The communication speed of downlink is slow and a lot of

information is lost. Moreover, the block itself slows down twice a real-time message sampling

rate, because it consists of two different vectors and each of them is sampled on the rising edge of

the write enable signal. Despite an artificial decrease of the communication speed, it is fast

enough for real-time monitoring in the GUI. For future work some improving suggestions can be

given, namely to use flash memory as a storage for the real-time data and to change structure of

the output_vector process in the data_sender block. Changing value of the mixed_data signal

using a time vector as a triggering event will allow to get rid of necessity to wait until rising edge

64

of the write enable signal and therefore to increase the communication speed. Supplementing

flash memory will make a post-flight analysis independent on downlink speed.

The video recording algorithm for a GoPro Hero 3 camera was improved adding a possibility to

switch on and off the camera without recording. The present option is important to avoid

malfunctions after an improper camera shutdown.

The entire conducted work showed itself as successful and meeting all the requirements.

For future work, necessity of accelerometer and another camera should be investigated. Having

accelerometer on the PCB, the ejection moment can be analyzed more precisely. The camera in

the ISAAC experiment is mounted above the bottom FFU and starting ejection moment is clearly

identifiable. However, due to mechanical construction, the bottom FFU is ejected later than the

top one. Another camera below the top FFU will allow to make better analysis of the ejection.

Moreover, unsuitable behavior of the FPGA at time t = 1024 s needs further investigation.

65

CHAPTER 7 CONCLUSION

The RMU electronics for the ISAAC experiment was developed and implemented in this

Master’s Thesis. The RMU PCB and sun sensors PCBs were soldered, troubleshot and verified.

The FPGA firmware, which embraces newly implemented ejection algorithm, real-time

communication processing blocks and many others inherited from the previous experiments, was

implemented in VHDL hardware description language with following validation.

The ISAAC experiment was launched on-board the REXUS15 sounding rocket on May 29 from

Esrange, Kiruna. All real-time data messages were properly logged and used in the post-flight

analysis for validation of the ejection algorithm. The data received during the active phase of the

experiment is complete and reasonable. Unfortunately, a malfunction occurred in the FPGA in

1024 s after powering on the experiment. However, it affected only the video, having stopped it

after 236 s of recording.

The results obtained in the verification phase and the post-flight analysis prove a success in

reaching the objectives of this thesis work.

66

CHAPTER 8 ARUTLUS

Lõputöö on keskendutud Rocket Mounted Unit (RMU) elektroonika arendamisele ning

valideerimisele, mis on selgelt dokumenteeritud eelmistes peatükkides. Disainitud ja rakendatud

RMU programmeeritava ventiilmaatriksi (ingl.k. Field-Programmable Gate Array, FPGA)

tarkvara tulemuseks oli edukas väljaheitmise kontroll ning reaalajas saadud informatsioon vastas

püstitatud nõuetele. ISAAC eksperimendi jaoks olid väljatöötatud mõned uued ja jäetud mõned

vanad eelmistest projektidest päritud, kuid adapteeritud ja parendatud funktsioonid.

Väljaheitmise algoritmi eesmärgiks on päikese asukoha korrektne tuvastamine ehk maksimaalse

hälvega ±20º. Arendati kolm iseseisvat päikeseandurit kindla võimendusteguriga, mis ühtib

analoog-digitaalmuunduri (ADC) väljundi nominaalse pingega.

Sobiv 3.5 võimendustegur oli leitud empiiriliselt, meetodi korrektsus sai tõestatud läbiviidud

lennujärgse analüüsiga.

Väljaheitmise algoritm oli välja töötatud ning rakendatud kasutades VHDL riistvara kirjeldamise

keelt. Käesoleva algoritmi keerulisus oli tingitud sellest, et samaaegselt pidi toimima seitse

üksteisest sõltuvat protsessi. Arendatud algoritmil on järgmine põhimõte. Valguse intensiivsus ja

nurkkiirus mõõdetakse pidevalt päikeseandurite ja nurkkiiruseanduri abil. Juhul kui mõõdetud

näide on suurem kui varem salvestatud, vana muutuja väärtus ülekirjutatakse. Väiksema näide

korral lõplik olekumasin (ingl.k. finite state machine) jätkab algusest peale ehk ootab järgmist

näidet. Kui nurkkiirus on teada, teine protsess arvutab 90º pööramise aja. Kui viimase t ms

jooksul, kus t = T/2 + 20 ms, valguse intensiivsuse muutuja pole kordagi ülekirjutatud, muutuja

viimase ülekirjutamise aeg vastab asendile, millal keskmine päikeseanduri ja päike vahel on nurk

0º. Väljaheitmise täpsuse tõstmise jaoks arvutatakse matemaatilist keskmist väärtust neljast

pöördest ja prognoseeritakse järgmise maksimumi aeg. Kuna FFU moodulid peavad olema

väljalastud päike suhtes risti, prognoseeritud ajale lisatakse aeg vajalik 90º pöörlemiseks ning

lahutatakse mehhaanilisi ja elektrilisi viivitusi. Iga iseseisva protsessi kontrollimise etapp ning

läbiviidud lennujärgne analüüs demonstreerisid täielikku vastavust püstitatud nõuetele. Siiski on

olemas viis väljalaskmise täpsuse parandamiseks, millega planeeritakse jätkata tulevikus.

Vabalangeva seadme (ingl. k. Free-Falling Unit, FFU) mehhaaniline väljaheitmise hilinemine oli

67

leitud empiiriliselt dünaamilise väljaheitmise testi jooksul ning selle testi tulemus oli juurutatud

algoritmi konstantse arvuna. Väljaheitmise ajastuse parendamiseks tuleb läbi viia rohkem katseid

kasutades samasuguse massiga FFU’d nagu need, mida kasutatakse tulevasel lennul. Erinevaid

viivituse väärtusi võib juurutada algoritmi ning vahetada väärtust vastavalt tegelikule

nurkkiirusele.

Teine oluline arendatud osa selles lõputöös on kommunikatsioon operaatori ja mooduli vahel.

Käesoleva lõputöö üheks olulisemaks osaks on lennujärgne analüüs, mis nõuab erinevate

andmete kogumist. Rakendatud plokk annab maapealsele operaatorile kõige olulisemat ja

huvitavat informatsiooni reaalajas lennu ajal. Eksperimendi tipp kõrguseks oli ligikaudu 90 km.

Sellel kõrgusel puudub konvektsioon, mis omakorda võib kutsuda esile elektroonika

ülekuumenemist ja parameetrite muutumist. RMU nominaalne toitepinge on 28 V, mis edaspidi

muundatakse 5 V-ks, 4.3 V-ks, 3.3 V-ks ja 1.5 V-ks. Muundumise viimaseks astmeks on 1.5 V

FPGA toitmiseks, mis oli valitud üldise elektroonika seisu kontrolli jaoks. Kui muunduri väljund

vastab 1.5 V-le, siis võime järeldada, et RMU elektroonika on töökorras. Väljaheitmise algoritmi

analüüsimiseks saadetakse maapealsele operaatorile kõik need andmed, mis sadeti algoritmile

parameetritena välisandurite poolt ehk päikeseandurite ja nurkkiiruseanduri poolt. Samuti oli

salvestatud mooduli kere peale paigaldatud temperatuurianduri näidud.

Rakendatud kommunikatsiooni plokk võimaldas nii andmete kui ka eksperimendi käigu staatuste

kättesaamist reaalajas. Siiski leidub sel tõsine puudus. Kommunikatsiooni downlink kiirus on

madal, mille tõttu mõned informatsiooni paketid lähevad kaotsi. Lisaks sellele aeglustab plokk

ise väljundsignaali genereerimist kaks korda. Üks sõna koosneb kahest erinevast vektorist ja nad

omakorda väljastatakse write enable signaali tõusval serval. Vaatamata kunstliku side kiiruse

langusele on see piisavalt kiire, et reaalajas jälgida graafilist kasutajaliidest (ingl.k. Graphical

User Interface, GUI). Tulevikus sarnaste projektide parendamiseks oleks mõistlikum kasutada

flash mälu andmete salvestamiseks, mis kaotaks andmete üleandmise kiiruse mõju.

Output_vector protsessi struktuuri muutmine data_sender plokis võimaldaks suurendada

üleandmise kiirust kuni kaks korda. Täiendades elektrilist skeemi flash mäluga, muutub

lennujärgne analüüs sõltumatuks downlink kiirusest.

68

Videosalvestuse algoritm GoPro Hero 3 kaamera jaoks oli parendatud lisades kaamerale

võimaluse lülitada sisse ja välja ilma videosalvestamise käivitamiseta. Käesolev võimalus on

oluline, et vältida tõrkeid pärast ebakorrektse kaamera väljalülitamist.

Kogu teostatud töö osutus edukaks ja vastab kõigile püstitatud nõuetele.

Tulevikus sarnastes projektides tuleb uurida võimalust paigaldada kiirendusmõõtur (ingl.k.

angular rate sensor) ja lisa GoPro kaamera. Väljalaskmise momendi täpsemaks tuvastamiseks on

otstarbekam lisada kiirendusmõõtur elektrilisele skeemile. ISAAC moodulis on kaamera

paigaldatud alumise FFU peal ja seetõttu väljalaskmise momenti on selgelt näha. Lisades teise

kaamera ülemise FFU alla, annab lennujärgne analüüs võimaluse määrata mehhaanilist viivitust.

Mehaanilise konstruktsiooni omapära tõttu põhja FFU väljalaskmine toimub varem kui ülemise

FFU.

Lisaks FPGA sobimatu käitumine ajahetkel t = 1024 s vajab edasist uurimist.

69

CHAPTER 9 KOKKUVÕTE

ISAAC eksperimendi RMU elektroonika oli väljatöötatud ning rakendatud käesolevas magistri

lõputöös. RMU PCB ja päikese andurite PCBs olid joodetud, seadistatud ja kontrollitud. FPGA

tarkvara, mis hõlmab hiljuti elluviidud väljaheitmise algoritmi, reaalajas kommunikatsiooni

töötlemise plokke ja palju teisi sarnastest projektidest päritud kogemusi, oli rakendatud kasutades

VHDL riistvara kirjeldamise keelt ning järgnevalt valideeritud.

ISAAC mooduli lennutati 29. mail Esrange polügoonilt REXUS15 raketi pardal.

Peatükis 5 on kirjeldatud lennujärgne analüüs koos tulemustega. Väljalaskmine pidi juhtuma

ristloodi päike suhtes maksimaalse hälvega ±20º. Algoritm tõestas oma töökindlust kuna

eksperimendi ajal väljalaskmine toimis 3.3º või 0.0032s varem.

Kõik saadud reaalajas andmed olid salvestatud ilma vigadeta ning kasutatud lennujärgnevas

analüüsis. Lennu ajal saadud informatsioon on lõplik ja korrektne. Kahjuks rike tekkis 1024 s

peale mooduli sisselülitamist, kuid see mõjutas ainult videod katkestades salvestamist.

Reaalajas saadud näidud ja lennujärgne analüüs järeldavad, et käesoleva lõputöö eesmärgid on

saavutatud.

70

BIBLIOGRAPHY

[1] REXUS/BEXUS homepage http://www.rexusbexus.net/. Last visited 24.08.2014.a.

[2] MUSCAT (RX13) SED v5.1, September 24, 2013

[3] RAIN (RX11) SED v3.0, September 7, 2011

[4] ISAAC (RX15) SED v4.2, March 17, 2014

[5] A. Håkansson, Portal of Research Methods and Methodologies for Research Projects and

Degree Projects. WORLDCOMP'13 - The 2013 World Congress in Computer Science,

Computer Engineering, and Applied Computing, 22-25 July, 2013 Las Vegas, Nevada; USA.

[6] Microsemi ProASIC3 Flash Family FPGAs datasheet.

[7] L3G4200D Gyroscope datasheet.

[8] SLSD-71N6 Solderable planar photodiode datasheet.

[9] MAX 11617 12-bit ADC datasheet.

[10] N-channel SIPMOS BSP318S datasheet.

[11] TRW Airbag Systems GmbH Cutter 77003198 Typ A datasheet

[12] B. Razavi, Design of Analog CMOS Integrated Circuits, New York: McGraw-Hill,

2001, 684 pages, ISBN-10: 0072380322.

[13] LM7321 Operational amplifier datasheet.

[14] Wireless Bluetooth RF Transceiver Module serial RS232 TTL HC-05 datasheet.

http://www.rexusbexus.net/

71

APPENDIXES

Appendix A: Ejection algorithm

-- Ejection.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use ieee.std_logic_arith.all;

entity EjectionControl is

PORT (

 CLK : in std_logic;

 RESET : in std_logic;

 Ejection_ENABLE : in std_logic;

 M_TIME_0 : in std_logic;

 M_TIME_14 : in std_logic;

 -- From Ejection ADC

 New_Sun_Data : in std_logic;

 SunSensors : in std_logic_vector(7 downto 0);

 -- From Gyro

 New_Gyro_Data : in std_logic;

 GyroData : in std_logic_vector(7 downto 0);

 -- Ejection

 manual_activation : in std_logic;

 ejection_test : out std_logic;

 ejection_1 : out std_logic

);

end EjectionControl;

ARCHITECTURE behaviour OF EjectionControl IS

signal GLOBAL_TIME : std_logic_vector (20 downto 0);

signal timeout_5s : std_logic := '0';

signal SS_packed : std_logic_vector (63 downto 0);

signal Gyro_packed : std_logic_vector (63 downto 0);

signal ss_max : std_logic_vector (12 downto 0);

signal ss_max_time : std_logic_vector (20 downto 0);

signal reset_cond : std_logic_vector (20 downto 0);

signal ss_LASTmax_time : std_logic_vector (20 downto 0);

signal SS_sum : std_logic_vector (12 downto 0);

signal time_90_deg : std_logic_vector (15 downto 0);

signal timeout_time_5 : std_logic_vector (9 downto 0);

signal pyro_activation_int : std_logic;

72

signal state : std_logic_vector (3 downto 0);

signal buffer_div : std_logic_vector(31 DOWNTO 0);

signal cnt_div : std_logic_vector(4 DOWNTO 0);

signal gy_data : std_logic_vector (15 downto 0);

signal time_array_avg : std_logic_vector (11 downto 0);

signal time_array_avg2 : std_logic_vector (9 downto 0);

signal count : integer range 0 to 3;

signal flag : std_logic;

type matrix is array (3 downto 0) of std_logic_vector (9 downto 0);

signal flag_old : std_logic;

signal time_array : matrix;

signal timeout_cond : std_logic_Vector (9 downto 0);

signal state4 : std_logic_vector (2 downto 0);

constant delay : std_logic_vector (11 downto 0) := x"120"; -- 144.125 ms {144ms FFUout

delay + 4.125ms activation delay}

constant zero_vector : std_logic_vector (23 downto 0) := (others =>'0');

constant zero_vector2 : std_logic_vector (34 downto 0) := (others =>'0');

constant deg_per_ms : std_logic_vector (23 downto 0) := x"139E52"; -- 90 * 1000 * 1000 / 70

signal condition1 : std_logic_vector (20 downto 0);

signal condition2 : std_logic_vector (20 downto 0);

signal state2 : std_logic_vector (3 downto 0);

signal counter : std_logic_vector (9 downto 0);

signal ejection_test_int : std_logic;

begin

ejection_1 <= (timeout_5s OR pyro_activation_int OR manual_activation) AND Ejection_ENABLE;

ejection_test <= ejection_test_int;

timer:process (M_TIME_14,RESET)

begin

 if RESET ='1' then

 GLOBAL_TIME <= (others => '0');

 elsif rising_edge (M_TIME_14) then

 GLOBAL_TIME <= GLOBAL_TIME + 1;

 end if;

end process;

SS_data_packer:process(M_TIME_0, RESET)

 begin

 if RESET='1' then

 SS_packed <= (others => '0');

 elsif rising_edge(M_TIME_0) AND New_Sun_Data='1' then

 if New_Sun_Data='1' then

 SS_packed <= SS_packed(55 downto 0) & SunSensors;

 end if;

 end if;

73

 end process;

SS_combine : process (RESET, CLK)

 begin

 if RESET = '1' then

 SS_sum <= (others => '0');

 ss_max_time <= (others => '0');

 ss_max <= (others => '0');

 time_array_avg <= (others => '0');

 time_array_avg2 <= (others => '0');

 time_array <= (others =>(others =>'0'));

 reset_cond <= (others => '0');

 flag <= '0';

 count <= 0;

 state2 <= x"0";

 ejection_test_int <= '0';

 elsif rising_edge (CLK) then

 case state2 is

 when x"0" =>

 if New_Sun_Data = '0' AND SS_packed (63 downto 48) = x"01AD" then

 SS_sum <= ('0' & SS_packed(11 downto 0)) + ('0' & SS_packed(23 downto 12)) + ('0' &

SS_packed(35 downto 24));

 state2 <= x"1";

 else

 state2 <= x"0";

 end if;

 when x"1" =>

 time_array(count) <= counter;

 if ss_max < SS_sum then

 ss_max <= SS_sum;

 ss_max_time <= GLOBAL_TIME;

 reset_cond <= GLOBAL_TIME + (time_90_deg & "00" + x"28");

 state2 <= x"0";

 else

 state2 <= x"0";

 if GLOBAL_TIME(20 downto 0) > reset_cond then

 flag <= not(flag);

 ejection_test_int <= not (ejection_test_int);

 ss_max <= (others => '0');

 case count is

 when 3 =>

 state2 <= x"2";

 count <= 0;

 when others => count <= count + 1; state2 <= x"0";

 end case;

 end if;

74

 end if;

 when x"2" =>

 time_array_avg <= ("00" & time_array(0)) + ("00" & time_array(1)) + ("00" & time_array(2))

+ ("00" & time_array(3));

 state2 <= x"3";

 when x"3" =>

 time_array_avg2 <= time_array_avg (11 downto 2);

 state2 <= x"4";

 when x"4" =>

 state2 <= x"0";

 when others =>

 state2 <= x"0";

 end case;

 end if;

 end process;

max_counter : process (M_TIME_14, RESET,flag)

begin

 if RESET = '1' then

 counter <= (others => '0');

 flag_old <= '0';

 elsif rising_edge (M_TIME_14) then

 if (flag_old = flag) then

 counter <= counter + 1;

 else

 counter <= (others => '0');

 end if;

 flag_old <= flag;

 end if;

end process;

enable_ejection : process (CLK,RESET)

 begin

 if RESET = '1' then

 state4 <= "000";

 pyro_activation_int <= '0';

 condition1 <= (others => '0');

 condition2 <= (others => '0');

 ss_LASTmax_time <=(others => '0');

 elsif rising_edge(CLK) then

 case state4 is

 when "000" =>

 if (state2 = x"4") then

 ss_LASTmax_time <= ss_max_time;

 state4 <= "001";

 else

 state4 <= "000";

 end if;

 when "001" =>

 state4 <= "010";

75

 condition1 <= ss_LASTmax_time + (time_array_avg2 & '0') +(time_90_deg & '0') - delay;

 when "010" =>

 if GLOBAL_TIME < condition1 then

 pyro_activation_int <= '0';

 state4<= "010";

 else

 condition2 <= condition1 + x"18"; -- +12 ms

 state4 <= "011";

 end if;

 when "011" =>

 if GLOBAL_TIME < condition2 then

 pyro_activation_int <= '1';

 state4 <= "011";

 else

 pyro_activation_int <= '0';

 state4 <= "000";

 end if;

 when others => state4 <= "000";

 end case;

 end if;

end process;

Gyro_packer:process(M_TIME_0, RESET)

 begin

 if RESET='1' then

 Gyro_packed <= (others => '0');

 elsif rising_edge(M_TIME_0) and New_Gyro_Data='1' then

 if New_Gyro_Data='1' then

 Gyro_packed <= Gyro_packed(55 downto 0) & GyroData;

 end if;

 end if;

 end process;

Gyro_data_packer:process(CLK, RESET)

 begin

 if RESET='1' then

 time_90_deg <= (others => '0');

 gy_data <= (others => '0');

 state <= x"0";

 cnt_div <= (others => '0');

 buffer_div <= (others => '0');

 elsif rising_edge(CLK) then

 case state is

 when x"0" =>

 if (New_Gyro_Data='0' AND Gyro_packed (63 downto 56) = x"0C") then

 --------- 2's complement to binary ----------

 if Gyro_packed (15) = '1' then

 gy_data <= not(Gyro_packed (15 downto 0)) + x"1";

 else

 gy_data <= Gyro_packed (15 downto 0);

76

 end if;

 state <= x"1";

 cnt_div <= "00000";

 buffer_div <= x"00" & deg_per_ms;

 else

 state <= x"0";

 end if;

 when x"1" => -- division state

 if buffer_div(30 DOWNTO 15) >= gy_data then

 buffer_div(31 downto 16) <= '0' & (buffer_div(29 downto 15) - gy_data(14 downto 0));

 buffer_div(15 downto 0) <= buffer_div(14 downto 0) & '1';

 else

 buffer_div <= buffer_div((30) downto 0) & '0';

 end if;

 if cnt_div /= "10000" then -- 16 cycles

 cnt_div <= cnt_div + 1;

 state <= x"1";

 else -- Division is done

 time_90_deg <= buffer_div(15 downto 0);

 state <= x"0";

 end if;

 when others =>

 state <= x"0";

 end case;

 end if;

 end process;

timeout_ejection: process (CLK,RESET,pyro_activation_int)

begin

 if RESET = '1' then

 timeout_5s <= '0';

 timeout_time_5 <= (others => '0');

 timeout_cond <= "00" & x"04";

 elsif rising_edge (CLK) then

 timeout_time_5 <= GLOBAL_TIME(20 downto 11);

 if pyro_activation_int = '1' then

 timeout_cond <= GLOBAL_TIME(20 downto 11) + x"4";

 end if;

 if (timeout_time_5 < timeout_cond) then

 timeout_5s <= '0';

 elsif (timeout_time_5 = (timeout_cond+x"1")) then

 timeout_5s <= '0';

 timeout_cond <= GLOBAL_TIME(20 downto 11) + x"4";

 else

 timeout_5s <= '1';

 end if;

77

 end if;

end process;

end behaviour;

78

Appendix B: Data_sender

-- data_sender.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity data_sender is

PORT (

 M_TIME_0 : IN std_logic;

 M_TIME_6_0 : IN STD_LOGIC_VECTOR(6 DOWNTO 0);

 CLK : IN std_logic;

 RESET : IN std_logic;

 H_ADC_RE : IN std_logic; -- Housekeeping ADC

 H_ADC_Data : IN std_logic_vector (7 downto 0); -- Housekeeping ADC

 Gyro_RE : IN std_logic;

 Gyro_Data : IN std_logic_vector (7 downto 0);

 E_ADC_RE : IN std_logic; -- Ejection ADC

 E_ADC_Data : IN std_logic_vector (7 downto 0); -- Ejection ADC

 Exp_Data : OUT std_logic_vector (7 downto 0);

 Exp_Data_WE : OUT std_logic

);

end data_sender;

architecture behaviour of data_sender is

signal ADC_E_packed : std_logic_vector (63 downto 0);

signal ADC_H_packed : std_logic_vector (63 downto 0);

signal Gyro_packed : std_logic_vector (63 downto 0);

signal mixed_data : std_logic_vector (47 downto 0);

signal ADC_H_temp : std_logic_vector (23 downto 0);

signal Gyro_temp : std_logic_vector (23 downto 0);

signal ADC_E_temp : std_logic_vector (35 downto 0);

signal cnt : std_logic ;

signal cnt_old : std_logic;

79

signal re : std_logic;

signal Exp_Data_WE_int : std_logic;

begin

 Exp_Data_WE <= Exp_Data_WE_int;

ADC_E_Packer:process(M_TIME_0, RESET)

begin

 if RESET='1' then

 ADC_E_packed <= (others => '0');

 elsif rising_edge(M_TIME_0) AND E_ADC_RE='1' then

 if E_ADC_RE='1' then

 ADC_E_packed <= ADC_E_packed(55 downto 0) & E_ADC_Data;

 end if;

 end if;

end process;

ADC_H_Packer:process(M_TIME_0, RESET)

begin

 if RESET='1' then

 ADC_H_packed <= (others => '0');

 elsif rising_edge(M_TIME_0) AND H_ADC_RE='1' then

 if H_ADC_RE='1' then

 ADC_H_packed <= ADC_H_packed(55 downto 0) & H_ADC_Data;

 end if;

 end if;

end process;

Gyro_Packer:process(M_TIME_0, RESET)

begin

 if RESET='1' then

 Gyro_packed <= (others => '0');

 elsif rising_edge(M_TIME_0) AND Gyro_RE='1' then

 if Gyro_RE='1' then

 Gyro_packed <= Gyro_packed(55 downto 0) & Gyro_Data;

80

 end if;

 end if;

end process;

H_ADC_handling: process(M_TIME_0, RESET)

begin

 if RESET = '1' then

 ADC_H_temp <= (others => '0');

 elsif rising_edge (M_TIME_0) AND H_ADC_RE = '0' then

 if ADC_H_packed (63 downto 48) = x"01AD" then

 ADC_H_temp (23 downto 12) <= ADC_H_packed (47 downto 36);

 elsif ADC_H_packed (63 downto 48) = x"03AD" then

 ADC_H_temp (11 downto 0) <= ADC_H_packed (11 downto 0);

 end if;

 end if;

end process;

gyro_handling:process (CLK, RESET)

begin

 if RESET = '1' then

 Gyro_temp <= (others => '0');

 elsif rising_edge (CLK) AND Gyro_RE = '0' then

 if Gyro_packed(63 downto 56) = x"0C" then

 Gyro_temp(23 downto 16) <= Gyro_packed (55 downto 48);

 Gyro_temp(15 downto 0) <= Gyro_packed (15 downto 0);

 end if;

 end if;

end process;

E_ADC_handling:process (CLK, RESET)

begin

 if RESET = '1' then

 ADC_E_temp <= (others => '0');

 elsif rising_edge (CLK) AND E_ADC_RE = '0' then

 if ADC_E_packed(63 downto 48) = x"01AD" then

81

 ADC_E_temp <= ADC_E_packed (35 downto 0);

 end if;

 end if;

end process;

output_vector: process (CLK, RESET)

begin

 if RESET = '1' then

 mixed_data <= (others => '0');

 cnt <= '0';

 re <= '0';

 cnt_old <= '0';

 elsif rising_edge(CLK) then

 re <= Exp_Data_WE_int;

 if ((re = '1' and Exp_Data_WE_int = '0')) then

 if cnt = '0' then

 mixed_data <= ADC_H_temp & Gyro_temp;

 cnt <= '1';

 else

 mixed_data <= x"000" & ADC_E_temp;

 cnt <= '0';

 end if;

 end if;

 end if;

end process;

WE:process (M_TIME_6_0(4), RESET)

begin

 if RESET = '1' then

 Exp_Data_WE_int <= '0';

 elsif rising_edge(M_TIME_6_0(4)) then

 if M_TIME_6_0(6 downto 5) = "10" then

 Exp_Data_WE_int <= '1';

 else

82

 Exp_Data_WE_int <= '0';

 end if;

 end if;

end process;

Exp_Data <= x"0"&"000"& cnt when M_TIME_6_0(3 downto 1)="000" else

 x"BE" when M_TIME_6_0(3 downto 1)="001" else

 mixed_data(47 downto 40) when M_TIME_6_0(3 downto 1)="010" else

 mixed_data(39 downto 32) when M_TIME_6_0(3 downto 1)="011" else

 mixed_data(31 downto 24) when M_TIME_6_0(3 downto 1)="100" else

 mixed_data(23 downto 16) when M_TIME_6_0(3 downto 1)="101" else

 mixed_data(15 downto 8) when M_TIME_6_0(3 downto 1)="110" else

 mixed_data(7 downto 0);

end behaviour;

83

Appendix C: FFU Comm switches

-- ffu_mux_rx.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ffu_mux_rx is

PORT (

 MUX : in std_logic_vector (1 downto 0);

 serial_out : in std_logic;

 RXSU_RX : out std_logic;

 RXCU_RX : out std_logic;

 TXCU_RX : out std_logic

);

end ffu_mux_rx;

ARCHITECTURE mux OF ffu_mux_rx IS

begin

process (serial_out,MUX)

begin

case MUX is

 when "01" => TXCU_RX <= serial_out;

 when "10" => RXCU_RX <= serial_out;

 when "11" => RXSU_RX <= serial_out;

 when others => null;

end case;

end process;

end mux;

-- ffu_mux_tx.vhd

library IEEE;

84

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ffu_mux_tx is

PORT (

 MUX : in std_logic_vector (1 downto 0);

 RX_out : out std_logic;

 RXSU_RX_in : in std_logic;

 RXCU_RX_in : in std_logic;

 TXCU_RX_in : in std_logic

);

end ffu_mux_tx;

ARCHITECTURE mux OF ffu_mux_tx IS

begin

RX_out <= TXCU_RX_in when MUX = "01" else

 RXCU_RX_in when MUX = "10" else

 RXSU_RX_in when MUX = "11" else

 '1';

end mux;

85

Appendix D: RxSU Comm switch

-- switch2.vhd

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

use IEEE.numeric_std.all;

entity switch2 is

 Port(

 TX_MAIN :in std_logic;

 UART_CAM_TX :in std_logic;

 UART_SF2_TX :in std_logic;

 UART_IR_TX :in std_logic;

 UART_SENS_RX :in std_logic;

 switch :in std_logic_vector(1 downto 0);

 RX_MAIN :out std_logic;

 UART_CAM_RX :out std_logic;

 UART_SENS_TX :out std_logic;

 UART_IR_RX :out std_logic;

 UART_SF2_RX :out std_logic

);

end switch2;

architecture behavioral of switch2 is

begin

RX_MAIN <= UART_SENS_RX;

mux : process (TX_MAIN,UART_CAM_TX,UART_SF2_TX,UART_SENS_RX,switch)

begin

 case switch is

 when "00" =>

 UART_SENS_TX <= TX_MAIN;

 UART_CAM_RX <= '1';

 UART_SF2_RX <= '1';

 UART_IR_RX <= '1';

 when "01" =>

 UART_CAM_RX <= UART_SENS_RX;

 UART_SENS_TX <= UART_CAM_TX;

 UART_SF2_RX <= '1';

 UART_IR_RX <= '1';

 when "10" =>

 UART_SF2_RX <= UART_SENS_RX;

 UART_SENS_TX <= UART_SF2_TX;

 UART_CAM_RX <= '1';

 UART_IR_RX <= '1';

 when "11" =>

 UART_IR_RX <= UART_SENS_RX;

86

 UART_SENS_TX <= UART_IR_TX;

 UART_CAM_RX <= '1';

 UART_SF2_RX <= '1';

 when others => null;

 end case;

end process;

end behavioral;

87

-- CommuCon.vhd

library IEEE;

use IEEE.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use IEEE.numeric_std.all;

entity CommuCon is

port (

 CLK : in std_logic;

 RESET : in std_logic;

 RX_BYTE : in std_logic_vector(7 downto 0);

 RX_BYTE_OK : in std_logic;

 switch : out std_logic_vector (1 downto 0)

);

end CommuCon;

architecture behavioral of CommuCon is

 signal rxByte : std_logic_vector(7 downto 0);

 signal rxBit0 : std_logic;

 signal rxBit1 : std_logic;

 signal rx_state : std_logic;

 signal switch_int : std_logic_vector (1 downto 0);

begin

 switch <= switch_int;

 process (CLK, RESET)

 begin

 if RESET = '1' then

 rx_state <= '0';

 rxByte <= (others => '0');

 rxBit0 <= '0';

 rxBit1 <= '0';

 switch_int <= "10";

 elsif rising_edge(CLK) then

 rxBit0 <= RX_BYTE_OK;

 rxBit1 <= rxBit0;

 if rx_state = '0' then

 if rxBit0 = '1' and rxBit1 = '0' then

 rxByte <= RX_BYTE;

 rx_state <= '1';

 else

 rx_state <= '0';

 end if;

 else

 rx_state <= '0';

 case rxByte is

 when x"25" => switch_int <= "00"; -- % for sensor FPGA

 when x"26" => switch_int <= "01"; -- & for camera FPGA

 when x"28" => switch_int <= "10"; -- (for SmartFusion2

 when x"29" => switch_int <= "00"; --) for IR FPGA

 when others => null;

 end case;

 end if;

 end if;

end process;

end behavioral;

