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Abstract

The goal  of  this  research work is  to  design and build a hardware-based true  random

number generator and compare its different aspects and capabilities to the modern of-

shelf  cryptographically  useful  software-based  pseudorandom  number  generators.  My

theory  is  that  hardware-based  true  random  number  generators  can  be,  in  fact,  more

efficient than the fully-software pseudorandom number generators in many ways, such as

generation  speed,  trustworthiness  of the randomness,  repeat  cycle  – which,  in  theory,

would get eliminated in case of the hardware solution – and so on.

During  the  research  work,  both  theoretical  analysis  and  practical  experiment  will  be

conducted. Theoretical analysis will include the analysis of existing software decisions,

calculations of the limitations of the hardware being used, and such. Practical part will

consist of results of different tests comparing the hardware and software generators, and

an overview/analysis of them, which would form the conclusion.

The design of the generator consists of two parts: software and hardware. Software part

includes writing the firmware for the ATMega328 AVR microcontroller  for the device

side, and a Python package to interface with it for the host (personal computer) side. The

hardware part of the design falls out of the focus of the study and is mostly based on

personal  knowledge of electronics  and engineering.  The physical  device consists  of a

white noise generator based on a transistor in reverse-breakdown mode, and an amplifier

that converts it to a random binary stream.

The paper’s results are the device designs and the conclusion of it being useful at all. The

paper  also  covers  a  bit  of  history  and  an  overview  of  the  state  of  the  art  random

generation technologies.

This thesis is written in English and is 75 pages long, including 8 chapters, 22 figures and

4 tables. 
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List of abbreviations and terms

AES Advanced Encryption Standard

CBC Cipher Block Chain

DRBG Deterministic Random Bit Generator (synonymous to PRNG)

MT Mersenne Twister

PRNG Pseudo-Random Number Generator

RMSE Root Mean Square Error

RNG Random Number Generator

TRNG True Random Number Generator

UC, uC Microcontroller (µ for Micro)

XOR Exclusive OR
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1 Introduction

Random numbers play an important  role in many technical  spheres.  In computational

physics,  they  are  an  essential  part  of  Monte-Carlo  simulations  and  other  statistical

research methods  [3]. Such methods are employed by researchers in the many fields of

science and play key roles in their research. Random number generation plays a critical

role in many parts of cyber security and cryptography, too: key pair generators require

reliable  random  number  generators  for  symmetrical  and  asymmetrical  encryption

algorithms, Diffie-Hellman type algorithms. Cloud computing and cloud storage, one of

the currently most popular and prosperous areas in IT,  vastly rely on random numbers for

data and connection security. Even entertainment, like video games and digital art of all

sorts, employ random numbers in numerous creative ways [5]. Although not immediately

evident, many aspects of the modern person’s life rely on random number generation way

more than it could seem. This, of course, makes the quality of the random numbers play a

crucial role: weak data protection could lead to the leaking of people’s personal data or

the classified information of enterprises. That is why in fields where random numbers

play a key role in security algorithms, and their quality is directly related to the overall

safety of the process, it is essential to pay attention to how these numbers are generated.

Most web services and some security algorithms use pseudorandom number generators

(PRNGs)  to  generate  their  random  numbers.  This  makes  such  web  services  and

algorithms  vulnerable  to  the  many  PRNG attacks  that  are  possible.  Any  PRNG is  a

deterministic software-based algorithm, and this is what makes them so vulnerable. On

the other hand, a number of true random number generators (TRNGs) are not vulnerable

to such attacks: they are non-deterministic and usually come in the form of an external

hardware device that connects to the PC, server, or network. TRNG solutions have their

upsides and downsides against  PRNGs. The main upside being their  true randomness

property and the biggest downside their random value generation speed, which usually is

significantly lower than that of PRNGs.
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One of the most popular home computers of the 80s , the Commodore 64, had a built-in

RND command in C64 BASIC, which selected a random number from a pre-determined

sequence. Often, it resulted in patterns and predictable results from calling the function

repeatedly. This is an extremely simple PRNG (pseudorandom number generator), which,

of course, was not usable for any kind of secure or cryptological use, as for the computer

itself. For such needs, hardware-based generators were used: there were many different

approaches, such as generating the source noise out of overly amplified transistor or diode

reverse breakdown thermal noise or using phase-locked loops and logic integral circuits

to generate binary pseudorandom signals. There were not many even somewhat safe and

high-entropy PRNGs back in those days. The most famous enterprise-grade algorithm

was called RANDU [2] – it was used in economics to make predictions. Later, it has been

proven that RANDU is vastly predictable and has patterns [2], and, thus, was making

some of the predictions flawed.

Time went on, and technologies were developing further and further. The computational

power  of  machines  around  the  world  was  growing  drastically  year  after  year.  Soon,

relatively  quick  linear  feedback  shift  register  PRNG  realizations  were  possible  in

software  as  well  as  many  other  methods  of  generating  pseudorandom  numbers.

Everything  became very  complicated  rather  quickly,  and  right  now,  there  is  a  whole

plethora of PRNG software implementation of all kinds, shapes, and methods.

Most  of  these  pseudorandom  number  generators  have  a  hefty  accent  on  the

‘pseudorandom’ part,  and although they generate  numbers  quickly,  there  still  may be

patterns,  repeats,  and predictabilities  [2].  There  are,  however,  a  few PRNGs that  are

considered safe: one of them is called Mersenne Twister [6] – it (and all its variants) use a

rather complex logical setup to generate a set of random numbers, one after the other,

with a massive repetition cycle.

Another  interesting  “safe”  algorithm  common  for  most  Linux  distribution  is  called

URAND (also known as  /dev/urand,  or  urand) [4].  It  uses the so-called  “128 bits  of

entropy” as the first state of the generator: they are collected from the electrical noise of

the  processor  and are  considered  to  be  completely,  absolutely  random.  However,  the
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further generation is also relatively slow and not random at all.  So, if one knows the

generator’s current state, they may predict all the future iterations of the generator. [7]

Finally,  one  of  the  widely  approved  crypto-safe  noise  generators  uses  Advanced

Encryption Standard (AES) encryption in Cipher Block Chain (CBC) mode as a feedback

loop. It generates a reliable pseudorandom stream in a relatively short time and is used in

many  high-end  cryptological  operations  [4].  However,  similarly  to  Mersenne  Twister

(MT), the AES CBC requires initial values. But while MT requires just one seed value,

this method would require three unique sets of reliably random 128 bits.

The studies show that these three generation algorithms are supposedly the most widely

used  “default”  crypto-usable  algorithms  available  “off-shelf”.  And  what  is  especially

interesting is that they are not random and take way more processing power and computer

resources than their less sophisticated relatives. Hardware random number generation was

in use in the 1990s in the form of PCI extension cards for servers  [8]. Their  primary

purpose was to speed up the encryption and decryption of data traffic and all the tasks

alike. They were highly expensive and hence not affordable for any enthusiast,  and in

modern-day computation, they are obsolete. However, the idea of handing off most of the

generation work to analog hardware and leave only the task of “harvesting” the results for

the software made me think if this could be more efficient than the two afore-mentioned

pseudorandom generation algorithms. And in addition, the analog circuit could be tuned

to flat white noise response, making the numbers acquired from the device purely random

by default every time. This work will investigate this problem and the construction of

such  a  device  (which  would  be  a  TRNG,  or  a  true  random  number  generator)  and

compare it with the three existing off-shelf crypto-safe PRNGs – MT, URAND, and AES

CBC.
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2 Background Information

A pseudorandom number generator (PRNG), also known as a deterministic random bit

generator (DRBG), is an algorithm for generating a sequence of numbers with properties

approximate  to  the  properties  of  sequences  of  random  numbers  [4].  The  sequence

generated by the PRNG never is truly random, as an initial value, called the seed, entirely

determines  it  [7].  While  PRNGs  are  not  truly  random,  as  opposed  to  hardware  true

random number generators (TRNGs), they have a significant upside of generation speed,

as well as reproducibility, that is, in some cases, important and useful. 

PRNGs  are  essential  for  Monte  Carlo  method  simulations  (and  other  computational

physics  needs),  procedural  generation  in  computer  games  and  digital  art,  and

cryptography  [3,  5].  To be called cryptographically  safe,  PRNGs (CSPRNGs) need to

have an output unpredictable from its earlier outputs. They are also expected to have more

complicated algorithms, which do not behave linearly, and big repetition cycles. [9]

On the contrary, a TRNG is a device that generates random numbers based on a physical

process rather than utilizing a software-implemented algorithm. TRNGs are often based

on microscopic phenomena that generate low-level, statistically random “noise” signals,

such as thermal noise, the photoelectric effect, etc.  [1, 10]. More elaborate TRNGs may

use quantum effects[1] for even more unpredictable outcomes. These stochastic processes

are, in theory, completely unpredictable. The actual randomness of such processes can be

evaluated only through an experimental approach.

Typically, a hardware PRNG measures some sort of unpredictable physical phenomenon

directly converted to an electric signal (in the case of this work – Zener breakdown shot

noise of a transistor  [11]). This unpredictable electric signal is then further amplified to

measurable  levels.  Afterwards,  it  is  converted  to  a  digital  signal  utilizing  additional

circuitry:  usually,  the  output  is  a  simple  stream  of  zeroes  and  ones.  They  are  then

repeatedly sampled, and so, N bit long random values are generated.
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3 Description of the problem and formulation of the 

assignment

This  paper focuses on the  question of  the possibility  of  a hardware-based true

random number generator being faster and more reliably random than a state-of-

the-art off-shelf software-based pseudorandom number generator.  This question,

however, unfolds into a number of different questions, such as – is there any kind

of patterns to occur in the TRNG unit built for testing? If so, are they more or less

evident than those in the case of software PRNGs? How fast will random numbers

be  generated  on  the  TRNG  box  relative  to  the  software-based  pseudorandom

number generators? Additionally, if the TRNG unit turns out to be random enough

from all sides, its feature of true randomness could be demonstrated by building

some applications that rely on it, such as a one-time-pad key generator utility. A

true one-time-pad cipher requires a purely random key in order to be unbreakable.

Therefore, a TRNG would play a key role in its successful operation.

The problem statements can be formally stated as:

• will the hardware-based TRNG have a more even dispersion or values than

the software-based PRNGs and have better quality random output?

• will the hardware-based TRNG compare in speed with the software-based

PRNGs?

• If the solution turns out to be effective, what use cases could it have?
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4 Method and tools

4.1 Overview of the method

The main part is split into three subparts:

1) Theoretical analysis

2) Practical experiment

3) Result analysis

All  parts  are  going to  compare  the  capabilities,  limitations,  and vulnerabilities  of  the

hardware-based  self-designed  TRNG,  with  those  of  the  selected  software  PRNGs.

Research on modern state-of-the-art safe and cryptologically useful PRNG solutions has

been conducted. It showed that most such built-in methods in all programming languages

are not suitable, are breakable, and very evidently pseudorandom. Three state-of-the-art

up-to-date  algorithms  that  are  considered  crypto-safe  and  readily  available  for  many

languages were selected for testing and comparison. 

The first is the URAND algorithm. It gets its initial seed from actual electric noise and

can  be  considered  safer  than  most  other  algorithms  [4].  It  is  built  into  most  Linux

distributives and other Unix-like systems. 

The  second  one  is  the  Mersenne  Twister  (MT):  it  is  one  of  the  most  complex  and

compound  PRNGs with  an  enormous  repeat  cycle,  which  is  also  considered  random

enough for cryptological usage and relatively lightweight in terms of computing time and

power consumption [6]. MT does not get its seed from truly random sources and needs a

seed input  that  can  be done either  by  human,  by preset  numbers,  via  a  true  random

number generation device, or in any other way. It uses a set of complex logic operations

to get the next values based on the previous while being generally unpredictable [6]. 

14



The third selected algorithm is AES in cipher blockchain mode. It is not available off-

shelf as a PRNG per se, however setting it up is easy with a looping algorithm. The next

block uses an exclusive or (XOR) of the plaintext and ciphertext of the previous block as

its  input  [12].  The AES pseudorandom number generation  method is  considered very

uniform, highly unpredictable, and cryptographically safe [4, 9]. These three PRNGs are

among the very few Cryptographically Safe PRNGs (CSPRNGs) available as ready to

implement solutions. All three are very complicated algorithms, as a CSPRNG has to be

as  unpredictable  and  random  as  possible.  The  additional  complexity  at  the  cost  of

marginal  randomness  is  an  overhead  compared  to  the  simplistic  methods  used  by  a

hardware  random  number  generator.  The  hardware  method  is  based  on  a  transistor

reverse-breakdown shot noise; as long as the microscopic structure of the transistor is

kept  safe and the  device  itself  is  physically  secured,  there  is  no way to  influence  or

predict the next state of it from the previous values.

In the theoretical analysis part, the vulnerabilities of PRNGS and the TRNG have been

studied and compared. It is important to see if a TRNG is possibly more vulnerable than a

PRNG  before  any  further  in-depth  studies.  The  limitations  and  capabilities  of  the

hardware are studied, and value generation speed and its limit are estimated.

There are many methods described in theory to find the true randomness of a given bit

sequence. One of the most famous ones is the Kolmogorov complexity and Kolmogorov

randomness. The longer the function in a given programming language to print the given

bit string is, the more complex (thus, more random) it is. Furthermore, the bit string is

considered random if and only if the program that can produce such string is equal or

longer than the string itself. [13]

However,  this  approach  (and  many  other  theoretical  approaches  to  the  question  of

randomness) is purely theoretical. It is not exactly clear what is considered program size

and how to compare it to the bit string size in this case. An algorithm that searches for

such a function that would print the random string generated by either  a TRNG or a

PRNG would consume immense amounts of machine time and power. Therefore,  this

study  will  leave  the  problem  of  proving  the  randomness  to  the  more  practical  yet
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mathematically backed method of statistical testing. In the next section, statistical testing

methods are described.

For the practical part of the work, each of the generators (three PRNGs and one TRNG)

will get their output sampled into text files by a proprietary program (Appendix 2). Then,

two blocks of tests are conducted on the generators and their sampled output data.

Firstly, the classic original Diehard Test Battery processed the results of random generator

sample data files (100 million sampled values written to a file). The Diehard test battery

consists of 15 tests that produce more than two hundred p-values. In general, a p-value

would represent how random the random data fed to the test is. It always lays in [0;1)

range,  0.5  meaning  the  generator  is  perfectly  random.  However,  it  is  impossible  to

conduct one single test once – the tests of the battery use different methods and often

yield completely different p values. Hence, all the p-values from the 15 tests are expected

to be uniformly distributed: an easy way to graphically check this is to sort all the values

in order and compare them to an x = y graph. Calculating the root mean square error of

the  set  and  comparing  it  to  the  other  sets  would  give  the  numerical  estimate  of  the

randomness: the random value set with a lower error value is hence generated by a “more

random” random generator. The tests themselves will be run with the original Diehard

Test Suite released by G. Marsaglia in 1995 [14] – those are DOS programs, and they run

fine on modern distributions of windows, and the definition of an unsigned 32-bit integer

(which it uses as its working unit) did not change since then. The job of processing the

test output, plotting the graphs, and calculating the root mean square error will be handled

by a python program by me (code available in Appendix 2). The Diehard test suite has 15

statistical tests, which use highly complex mathematical base that falls out of the scope of

this  thesis work. However,  the data on the nature of the tests  is available  from many

sources, and many of these tests are not Diehard battery exclusive.

Secondly, proprietary testing is conducted. Apart from Diehard tests, additional custom

tests will be run, too. They do not test the random qualities of the generator per se but

instead focus on other qualities not evaluated by the Diehard tests. The first test does not
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employ the data gathered in the previous step and focuses on generation speed. Such a

test aims to compare the TRNG device to the PRNG algorithms in terms of speed.

Test 1.1: Generate 1000 (thousand),  1000000 (million), 10000000 (ten million) random

bytes with the setup and the selected software algorithms and compare the elapsed time.

Test 1.2: Generate 1000 (thousand),  1000000 (million), 10000000 (ten million) random

unsigned 32-bit-long integers with the setup and the selected software algorithms and

compare the elapsed time.

For the second test, the goal is to visualize the RNG outputs to check them for patterns,

deviations,  and  uniformity  of  the  value  distribution.  For  this,  two  different  types  of

random value set processing and visualizing Python scripts were created.

Test  2.1:  Select  1000  (thousand),  1000000 (million),  10000000  (ten  million)  random

bytes from each file generated by the TRNG and the selected software algorithms. Then,

plot an X-Y graph of byte value (0-255) versus normalized times of the value occurring

(0.00 – 1.00, 1.00 being the most rolled value) and compare the patterns and deviations.

Test 2.2: For each RNG, make a square image based on the list of values generated by it.

Predefined picture width/height is to be the same for all four RNGs. From top right, line

by line, fill in each pixel with a greyscale color (#000000 ... #FFFFFF) linearly related to

the value from the list (0 … 255). Also, make black/white  versions of the images by

treating any value below 127 as black and other values as white. Such images will be easy

and evident proofs of the presence or absence of obvious patterning in the datasets.

From tests  1.1 and 1.2, it  is going to be easy to conclude the speed of the device in

comparison to the software solutions. It will also become evident if it is more helpful in

creating a random byte stream or for getting different types of values, such as integers,

floating-point values, etc. The third test will show if any patterns appear in either the

software solutions’ output or in the hardware test unit’s output. The output is compared, in

terms  of  deviations  and  patterns,  making  it  apparent  if  the  TRNG’s  output  value

distribution is even.
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4.2 Overview of the tools

4.2.1 Hardware

The main idea is to exploit a bipolar junction transistor in reverse breakdown mode to

generate some thermal noise as the initial  source of unpredictable voltages.  Next, this

noise is amplified with another transistor and sent to a comparator integral circuit.  Its

threshold can be finely adjusted with a trim resistor – a special device that one can turn

with a screwdriver until the device is considered calibrated. It is to be adjusted, so the

distribution of logic high and low states (“ones” and “zeroes”) is even between the two at

all times.

The binary uncertainty is then sampled by a microcontroller, ATMega328, which is the

chip  that  is  used  in  Arduino  Nano  boards.  It  is  used  in  this  project  because  of  its

simplicity and ease of prototyping. However, in the actual product, a bare microcontroller

can be used, and the whole setup could be put on a small circuit board of the size of an

average flash memory stick from the 2010s.

Figure 1 shows the block scheme of the hardware device’s insides and its communication

with the computer:

Figure 1. Block-scheme of the TRNG workflow
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4.2.2 Firmware and Software

The  uC  (microcontroller)  runs  custom  firmware.  It  does  the  tasks  related  to

communication  with  its  host  and  samples  the  binary  stream  from  the  hardware.

Communication is carried out via serial port at 115200 Baud. The device expects a single

character to be sent over the serial port by the host to set the mode of operation, such as:

• “B”  -  get  one  byte.  The uC then  carries  out  a  single  procedure  of  getting  a

random byte and sends it back via the serial interface.

• “S”  -  stream  bytes.  This  command  puts  the  microcontroller  into  a  loop  of

endlessly generating values and sending them over the serial.

• “E” -  end streaming bytes. This command breaks the stream loop and puts the

microcontroller back into await command mode.

More  commands  may  be  available.  For  complete  firmware  C  code  reference,  see

Appendix 2.

The software part of the project is implemented in Python programming language, which

is best suitable for prototyping. For the product development, C or C++ can be used due

to their efficiency.  

Firstly,  a  Python  module  called  “trnglib”  is  developed  (Appendix  2).  This  module

depends on a python package called “pySerial” for serial communication with Arduino

[15]. “trnglib” allows the user to operate the TRNG device without needing to know the

specific  command  coding  and  other  lower-level  aspects  of  the  process.  It  provides

dedicated semantically understandable functions to connect and disconnect the device and

to acquire values in different formats. It can also enable and disable the device’s stream

mode. The only detail the user has to know to connect are the details of the USB port the

device is linked to. Many useful programs can then be implemented using trnglib as an

interface between the high-level Python programs and low-level communication with the

TRNG.

Additionally, a toolkit of proprietary utility programs for data gathering and analysis is

written.   It  includes  scripts  for  gathering  sample  data,  different  analysis  scripts,  and
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conversion scripts to interface the generated data with the Diehard testing program. All

the Python scripts, as well as any other code, can be found in Appendix 2.

20



5 Theoretical analysis

Mersenne Twister  (MT) and the Unix-common /dev/urand (URAND) are available  as

ready-made implementations in many languages, including Python.  Setting up the AES

CBC to work as a noise generator requires some proprietary coding. It is a feedback loop

which “encrypts” itself, with the XOR of the message and the encryption result of the

previous block is the plaintext for the next one, producing 128-bit noise blocks at the

output.  But  since  the  AES itself  is  also  available  as  a  ready-to-use  Python  package.

Therefore,  Python is  chosen for the implementation of all  three (MT, URAND, AES)

PRNGs and the TRNG interfacing library.

The TRNG is based on white  noise,  a non-deterministic  process,  while a PRNG is a

deterministic device. Some attacks that are possible should be considered first.

Python implementations of MT and AES CBC noise require initial values. For MT, it is a

seed (an integer  number),  and AES CBC noise requires  three distinct  sets  of 16-byte

random byte  strings  to  start  off.  This  makes  these  two generators  vulnerable  to  seed

attacks. Hijacking their seed will make the device highly predictable and, thus, insecure

[7]. Another possible variant of this attack could be to flush the source entropy out of the

system and replace it with a known seed. Although harder to execute, this sort of attack is

possible [7]. URAND is less vulnerable to seed attacks: it still requires a seed, however,

the algorithm collects  it  from the computer  processor’s  electric  noise,  a  high entropy

random bit stream source. A weak seed for MT or AES CBC noise may also increase the

vulnerability of the PRNG. A general requirement for a PRNG seed is high entropy (“very

random”), which excludes human-selected seeds, seeds generated by other PRNGs, seeds

generated based on date and time, and so on.

The  second type  of  possible  attack  is  the  PRNG attack  –  more  specifically,  a  direct

cryptanalytic  attack.  This is  an attack that aims to predict  future states of a PRNG if

enough past states of it are known [7]. For example, MT is very vulnerable to such an
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attack. By knowing just 624 of its previous states, it is possible to reverse-engineer all of

its  previous  and  future  states  at  once  [16].  Such  a  vulnerability  is  present  in  any

deterministic random byte generator (DRBG, synonymous to PRNG with an accent on

being a deterministic device). For some algorithms, it is easy to conduct such an attack,

for others it is complex. However, a deterministic device is always possible to predict

given enough data.

“Hardware-based RNGs make use of a physical process to generate randomness. Because

classical physics is deterministic, RNGs that rely on phenomena described within a purely

classical  noise  model,  such  as  thermal  noise,  can  only  be  proved  random under  the

assumption that the microscopic details of the system are in- accessible. This assumption

is usually hard to justify physically. For example, processes in resistors and Zener diodes

have  memory  effects.  Hence,  someone  who  is  able  to  gather  information  about  the

microscopic  state  of  the  device  —  or  even  influence  it  —  could  predict  its  future

behaviour.” [1]

Theoretically,  an  external  TRNG may  not  be  vulnerable  to  any  of  these  attacks.  As

mentioned previously, there are ways to influence or predict its state, given access to the

microscopic level of physical components of the randomness source – the noise generator

in this case. However, in this study, it is assumed that TRNG hardware is kept securely.

Moreover,  realistically  speaking, studying the TRNG and its  internal  components  at  a

microscopic level while the device is in operation can be impractical.

When the proper measures are applied,  the TRNG is cryptographically more safe and

trustworthy than any of the PRNGs. However, it has limitations in generation speed.

There are state-of-the-art TRNG devices in the form of e.g. flash dongles, PCIe cards,

devices with a serial connector, which all use different algorithms, connection protocols,

run at different clock speeds, etc.  [1, 10]. However, these devices or the data on them

cannot  be  obtained  due  to  budget  limitations  and  the  unavailability  of  their

documentation. Therefore, in this study, a TRNG is designed and studied in comparison

to the PRNGs in fields where they are comparable.
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The setup is based around an ATMEGA328 microcontroller as a part of an Arduino Nano

board.  It communicates with the computer via USB Serial  port.  The microcontroller’s

clock is 16 MHz. It means if the whole routine of gathering and sending one byte took

just one tick, the speed cap would be 16 million values per second – which would outrun

most PRNGs for good. However, gathering one random byte from the TRNG takes the

microcontroller several hundred instructions.

The device’s serial port transmits to and receives information from the host computer at a

115200 baud rate – which essentially means 115200 symbols per second. It suffices to say

“symbols” are equal to “bytes” in this case, because the setup only communicates one

standard char (or byte) at a time both ways. Suppose a random symbol is ready to go at

any moment of time inside the microcontroller. In that case, the nominal baud rate still

should be halved for the speed estimation, as after each data transmit (no matter how long

in bytes), the serial connection protocol sends a STOP byte. Hence, the absolute cap of

values  per  second for  the  microcontroller  would be 57600 bytes  per  second.  Even if

gathering  one  single  random  byte  took  the  microcontroller  an  entire  lot  of  250

instructions, at a 16MHz rate, it would mean 16000000/250 = 64000 random bytes per

second, which is still quite a bit more than our maximum baud rate.

Taking this as a starting point, the “best case” TRNG speed could be estimated to be up to

57600 random bytes per second. Then, generating one million values would take about

17.36 seconds, which is slow, although still tolerable for all the true randomness factors.

However, in practice, it may tend to be less efficient.

The original Diehard test battery was selected as a mean to estimate the randomness of

each  RNG.  It  contains  15  tests,  each  employing  a  different,  often  very  complicated

statistical mean to calculate one or more p-values 0. In essence, a p-value represents the

behaviour  of  an  RNG and falls  in  the  [0,1)  range.  Getting  a  p=0.5  would  mean  the

generator may be ideal. The more this value deviates from the middle, the less random the

generator appears to be. But since the tests are statistical and employ sampling of value

groups, the p values will come in great quantities and differ widely. The expectation from

an ideal RNG is a uniform distribution of p-values between 0 and 1. This implies, if all

the P values obtained were to be sorted in ascending order and plotted on an X-Y graph (x
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for  the  P-value  number  in  the  list  and  y  for  the  value  itself),  fit  to  [0,1)  by  the  X

coordinate, they would go along the x = y function in an ideal case. In practice, though,

there will be deviations. In this paper, these deviations are used to estimate the quality of

the random generation numerically. For that, the standard root mean square error (RMSE)

formula is used:

σ=√∑i=1
n

(P I⋅Oi)
2

n

Sigma (σ) is the RMSE value in this formula. P and O are calculated ideal line and actual

p-value  for  that  index.  The  result  of  this  formula  will  estimate  the  actual  device’s

deviation from the curve of an ideal case, which in its turn shows how much the RNG’s

output deviates from an ideal case. Along with this, a visual graph of p-values versus their

position  in  the  sorted  list  is  rendered  for  each  RNG  for  more  intuitive  visual

representation of the case.

The device is estimated to produce much higher quality random than the PRNGs. Hence,

its RMSE is expected to be at least one decimal order less than that of any examined

PRNG. The TRNG’s p-value graph is also expected to lay flatter towards the ideal case

reference.

24



6 Practical results

The test unit is assembled following the schematic in Appendix 3. The device requires an

external  12v power supply unit.  A Python interface package is written,  as well  as the

microcontroller firmware in C. The device is calibrated for the most even distribution of

values with a single trimmer while running a graphical software utility on the computer.

All the tests mentioned in section 4.1 are conducted, and the results presented.

6.1 Diehard Tests

100000000 (100 million) one-byte samples are gathered from the TRNG and the PRNGs

– MT, URAND and AES. The following has been done for each dataset individually: it is

converted to a file format expected by George Marsagila’s original 1995 implementation

for  DOS/Windows using  a  self-made  python script  and processed  by the  quick  (less

informative and more ‘bare p-values’) variant of the Diehard tests battery. The output text

is then re-converted by means of yet another script to a sorted list of p-values, which is

then 1) plotted on a graph next to an x = y line and 2) used along with calculated values of

x = y to calculate the RMSE by the standard formula. The table of resulting values is

provided.

A big  main  graph  with  all  four  RNGs  and  the  ideal  case  is  presented  (Figure  2).

Individual graphs for each RNG are rendered as well. The individual graphs can be found

along with other additional materials in Appendix 4.

Table 1. Diehard tests RMSE values by RNG

TRNG MT URAND AES

RMSE, 1 0.01763 0.03857 0.03210 0.04906
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Figure 2. RNG Diehard tests’ sorted p-values

6.2 Speed test

Tables 2 and 3 contain the results of speed testing the four RNGs. Times of generating

different  quantities  of  bytes  are  presented  in  Table  2,  whereas  the  results  for  32-bit

unsigned integers are presented in Table 3.

Table 2. N values VS time of byte generation.

TRNG MT URAND AES

1000 bytes 0.6821s 0.0016s 0.0019s 0.0005s

1000000 bytes 665s (11min) 1.952s 2.181s 0.474s

10000000 bytes 6648s (1.8hr) 19.439s 21.263s 4.478s

Table 3. N values VS time of unsigned 4-byte long integer.

TRNG MT URAND AES

1000 uint32s 2.6627s 0.0017s 0.0022s 0.0016s

1000000 uint32s 2661 (44min) 2.082s 2.559s 1.820s

10000000 uint32s ~7.3hr1 22.288s 25.206s 18.781s

1 This particular test case was actually not conducted – it is the 1 million result multiplied by 10. Seconds
do not matter at the scale of things this test achieved.
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6.3 Distribution uniformity test

Figures 3 to 7 are graphs of the RNGs’ value distributions for different sample counts.

Figures  5  and  7  are  zoomed-in  versions  of  figures  4  and  6,  respectively.  They  are

provided to depict the test results better.

Figure 3. Distribution, 1000 samples
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Figure 4. Distribution, 1 million samples

Figure 5. Distribution, 1 million samples, zoomed in
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Figure 6. Distribution, 10 million samples

Figure 7. Distribution, 10 million samples, zoomed in
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6.4 Visual representation

Figure 8 shows four images that are the visualisations of each of the RNGs’ datasets.

Values greater than 127 are converted to white pixels, whereas values equal to or lower

than  127  are  interpreted  as  black  pixels.  The  visualisation  program can  be  found in

Appendix 2. More pictures are available in Appendix 4.

Figure 8. Visual representation
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7 Practical result analysis

7.1 Diehard tests

The final TRNG’s RMSE value is 2.2 times smaller than the average of the PRNG’s

RMSE values. It bests URAND by 1.8 times,  MT by 2.2 times,  and URAND by 2.8

times. The graphs in Figure 2 also evidently show that although all the experimentally

obtained curves have nonlinearities and deviations relative to the ideal x = y relation, the

TRNG’s curve overall lays flatter towards it. Figure 2 graphs and the numerical RMSE

values from Table 1 show the superior quality of the true random number generator’s

output.

7.2 Speed test

Any of the PRNGs easily beat the TRNG in a speed test. The order of N of seconds it

takes a TRNG and either of the three PRNGs to generate the same number of values are

orders apart, especially for unsigned 32-bit integers: TRNG has to do four times the work

of when it generates bytes, which is evident by its times for ints being rough multiples of

its times for bytes.

To estimate the difference in numbers, consider Table 3. In it, calculations of bytes per

second for  each case,  an average  of  each method’s  speed rate,  and relations  of  each

PRNG’s speed to the TRNG’s average speed are added to Table 2.
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Table 4. Bytes per second rate comparison

TRNG MT URAND AES

N bytes Time, s Byte/s Time, s Byte/s Time, s Byte/s Time, s Byte/s

1000 0.6821 1466 0.0016s 625000 0.0019 526315 0.0005 2000000

1000000 665 1503 1.952s 512295 2.181s 458505 0.474 2109704

10000000 6648 1504 19.439 514429 21.263 470300 4.478 2233139

Avg. Byte/s 1491 550574 485040 2114281

Times faster than TRNG: 369.26 325.31 1418.03

As evident, any of the PRNGs beat the test TRNG unit by at least 300 times, and AES,

stacking whole 128 bits, or 16 bytes, of random values per its cycle, outruns both the

TRNG by more than an entire thousand times, as well as its digital relatives by more than

three times.

Such a significant difference happened because of an imperfect noise generator. Due to

budget constraints, high-frequency components for this study are not available, and so,

the noise generator’s frequency range is significantly lower than the microcontroller’s. To

compensate, 128 assembly NOPs after each read cycle are added, bringing the sampling

frequency  down  to  desired  ranges.  However,  this  workaround  wastes  16*128=2048

cycles.  Since  the  uC  runs  on  16MHz  (16000000  cycles  per  second),

(1/16000000)*2048=0.128 milliseconds of time after each read cycle are wasted, which is

a tremendous loss of time. When generating one million values, this accumulates 128

seconds of wasted time. Generating one million random bytes with the TRNG took 665

seconds in total, so (128/625)*100=20.48% of this time is wasted by NOPs.

Due  to  the  unavailable  components,  the  shift  register  has  been  implemented  in  the

microcontroller  firmware,  while  it  could  be  done  in  hardware.  Leaving  this  task  to

hardware and reading whole bytes instead of reading 0/1 one by one eight times for two

bytes and XORing them in software could speed the process up by up to 20 times.

It is also worth noting how URAND and MT have almost the same speed efficiency in

bytes and integers, while AES does not show such a quality and slows down roughly four
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times for ints,  same as the TRNG (Tables 2 and 3). This tells  about their  completely

different principles of operation.

7.3 Distribution uniformity test

The ideal RNG byte value distribution graph over an infinite amount of samples should

look like a flat line. This would mean that every value got rolled the same amount of

times, which, in its turn, would mean that this RNG is fair and evenly distributed.  The

obtained datasets are processed with a script that counts how many times each of the 256

values got rolled. Then the results are normalised to be floats between 0 to 1. Figures  3 to

7 show the percentage of the times the value got rolled. In Figure 3, nothing is evident

because the number of samples is so low (1000 samples) there simply is almost no chance

each of the 256 possible states got rolled about four times so far. As more samples are

acquired, the value distribution graphs become more like the ideal flat line. As shown in

figures  4  and 5,  with  1  million  samples,  the  distribution  is  relatively  flat  for  all  the

PRNGs and the TRNG. Every value is selected at least 90% of the time, as with other

values. When compared with PRNGs, the TRNG value distribution is flatter  over one

million or more samples.

7.4 Visual representation

This was an additional step that has been conducted to further study the characteristics of

the four randomly generated sets. It was a point of curiosity to visually represent different

noise and try searching for visual pattern. The repetition cycle of all the selected PRNGs

must be tremendous, and – it seems – no weak seeds got rolled, so the images presented

in Figure 8, and other result images, are quite uniform noise. The TRNG visual noise

profile looks no different from PRNGs in the sense of how non-patterned it is. It cannot

be  concluded  from these  images  on  which  of  the  RNGs  produce  more  patterns:  the

PRNGs’ repetition cycle lengths are immense,  and no patterns emerged to oppose the

TRNG’s patternless  results.   It  was not possible to determine which of the images in

Figure 8 is which RNG, or which one is the TRNG’s result without the name captions. In

short,  despite  not  being  truly  random,  modern  CSPRNGs  may  deliver  noise  of
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satisfactory quality. The code that converts data generated by the custom data collection

scripts into images is accessible in Appendix 2.

34



8 Summary

A true random number generator – a dedicated hardware device developed as a result of

this study – has pros and cons compared to the conventional crypto-safe pseudorandom

number generators. The quality of the random generation turns out to be higher for the

true random number generator,  as estimated by statistical  testing of a hundred million

single-byte samples.  Furthermore,  the byte  value  dispersion for  all  samples  is  visibly

flatter for the hardware generator unit than for the software algorithms, as is shown in the

figures in 6.3.

However,  this  particular  TRNG unit  and more advanced TRNGs can have a potential

drawback.  The  estimated  quality  of  the  test  unit’s  random is  about  2.2  times  better.

However, the speed of the generation is at very least about 350 times slower than that of

the software RNG implementations. This ratio could be improved with a different type of

connection and dedicated hardware that could perform the tasks currently managed by

microcontroller firmware.

As previously discussed, the software-based PRNGs have two main weaknesses due to

their deterministic nature. The hardware device which is based on a reverse-brokedown

transistor’s shot noise, makes it invulnerable to such attacks. The generator has no seed,

and  predicting  its  values  by  building  its  model  would  take  tremendous  effort  and

examination  of  the  particular  device  on  microscopic  levels.  There  are,  however,

vulnerabilities  related  to  the  hardware  nature  of  this  device:  if  the  environmental

temperature is shifted significantly, the pre-calibrated threshold level could also shift, or

the  parameters  of  the  generated  noise  could  be  changed.  The  values  would  become

biased, and the distribution would not be even anymore. However, it would require one to

have physical access to the device for such a significant change. The physical security of

facilities the TRNG is deployed at is out of the scope of this thesis work.
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To conclude the initial research questions of this study:

• will the hardware-based TRNG have a more even distribution or values than

the software-based PRNGs and have better quality random output?

Yes,  the  true  random  number  generator  has  a  notable  advantage  in  value

distribution, and shows better results under statistical testing. Combined with the

essentially  unpredictable  nature  of  shot  noise,  this  makes  this  random number

generator very secure.

• will the hardware-based TRNG compare in speed with the software-based

PRNGs?

The value generation speed of the device developed over the course of this work is

far slower than any of the pseudorandom number generators that are tested. This is

due to the hardware limitations of this particular unit: in theory, the device could

be upgraded to work at significantly faster speeds.

• If the solution turns out to be effective, what use cases would it have?

Despite being slow,  the device has many upsides – especially in terms of security

– and has the potential to be upgraded. However, the speed limit excludes the use

of this particular RNG for applications that require tremendous amounts of random

data in a limited time to be generated, such as complicated Monte Carlo method

simulations.  There  also are  PRNGs suitable for  those.  However,  such a device

could be a great security feature for companies that run web services and have to

deal with tasks such as generating tokens, keys, and keychains, and other data that

must be random, does not require vast amounts of data per second to be generated.

Each piece of data has to be completely separate and independent from each other

-  something  a  PRNG  can  never  achieve  because  of  its  deterministic  nature.

Another possible application could be tasks such as fair  random generation for

multiplayer online games.

Another  possibility  to  use  this  device  to  further  increase  the  security  of  pretty

much any system that uses PRNG is to use the TRNG to generate PRNG seeds and

reset PRNGs after a relatively short time of being created. This is a more abstract
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idea,  and  it  could  be  applied  in  many  fields  where  many  random  values  are

required in a short time, and they have to be more secure and unpredictable.
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Appendix 2 – Program code and notes

'''
TRNG PROJECT - NOISE DATA VISUALISER
usage: python3 analyse_dataToImage.py targetDataTxt.txt <values per side, int> 

<scale factor, int>
scale is optional! defaults to 1

'''

import sys
from PIL import Image

def test():
img = Image.new( 'RGB', (255,255), "black") # Create a new black image
pixels = img.load() # Create the pixel map
for i in range(img.size[0]):    # For every pixel:
    for j in range(img.size[1]):
        pixels[i,j] = (i, j, 100) # Set the colour accordingly
img.show()

def get_thresh(data, side, name, scale=1, thresh=128):
counter = 0
img = Image.new( 'RGB', (side,side), "black") # Create a new black image
pixels = img.load() # Create the pixel map
for i in range(img.size[0]):    # For every pixel:

for j in range(img.size[1]):
val = data[counter]
if (val > thresh):

val = 255
else:

val = 0
pixels[i,j] = (val,val,val) # Set the colour accordingly
counter += 1

newsize = (side*scale, side*scale)
img = img.resize(newsize, Image.NEAREST)
img.save(oname + "-threshold.png")

def get_greyscale(data, side, name, scale=1):
counter = 0
img = Image.new( 'RGB', (side,side), "black") # Create a new black image
pixels = img.load() # Create the pixel map
for i in range(img.size[0]):    # For every pixel:

for j in range(img.size[1]):
pixels[i,j] = (data[counter], data[counter], data[counter]) # Set 

the colour accordingly
counter += 1

newsize = (side*scale, side*scale)
img = img.resize(newsize, Image.NEAREST)
img.save(oname + "-greyscale.png")

if (__name__ == "__main__"):
# get args
try:

fname = sys.argv[1]
except Exception as e:

raise ValueError("please provide name of the target txt file with values as
first argument!")

try:
f = open(fname, "r")

except Exception as e:
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raise ValueError("unable to open txt file!")
try:

side = sys.argv[2]
except Exception as e:

raise ValueError("please provide picture side size as second argument!")
try:

side = int(side)
except Exception as e:

raise ValueError("picture side size should be an integer!")
try:

scale = sys.argv[3]
except Exception as e:

scale = 1
try:

scale = int(scale)
except Exception as e:

raise ValueError("scale should be an integer!")

# read data

data = []
lines_read = 0
for i in f:

data.append(int(i))
if (lines_read == side*side+1):

break
lines_read += 1

# process
oname = (fname.split("/")[-1]).split(".")[0]
get_greyscale(data, side, oname, scale)
get_thresh(data, side, oname, scale)
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'''
TRNG PROJECT - MULTIPLE FILES DHARD RESULT PLOTTER
usage: python3 analyse_dhard_plot_all.py
output: RMSE values to the console, and a graph.
essentialy it is analyse_dhard_plot.py but without options
and with hard-coded filenames.

'''

import sys
import matplotlib.pyplot as plt
from os.path import join
import convert_getDiehardPvals as diehard_conv 
import analyse_dhard_plot as plotter

if (__name__ == "__main__"):

'''
CAREFULLY CHECK THESE!!!
this script does not take any external input -
the filenames and folder with the filenames are hardcoded.

The script expects a bunch of DIEQUICK.exe results
(original Diehard tests battery, quick version)

'''

# path to the folder with quick dhard test results
folder = "../../results/diehard_analysis/"

# names of the files. these can be text files, binary files or whatever.
names = [

"URAND",
"MT",
"AES",
"TRNG"

]

'''
this is the rest of the program. should do just fine without
your interventions.

'''
fnames = []
for x in names:

fnames.append(join(folder, x))

# this is for the lines do be of different colours
colData = [1,1,0,1,0,0,1,0,0,1,0,0]
counter = 0

# parse and plot each result file
for f in fnames:

d = diehard_conv.convert(f)
if (f == fnames[0]):

plotter.plot_ideal(d[0])
print("RMSE for", names[counter],"=", d[1])
plotter.plot(d[0], f, 

col=(colData[counter],colData[counter+1],colData[counter+2]))
counter += 1

plt.legend(loc="upper left")
plt.show()
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'''
TRNG PROJECT - DIEHARD QUICK TEST RESULTS PLOTTER
usage: python3 analyse_dhard_plot.py <pathtofile>
output: RMSE value and a graph

'''

import sys
import matplotlib.pyplot as plt
from math import sqrt
import convert_getDiehardPvals as diehard_conv

'''
plots the given list of pvalues
will plot absolute garbage if given anything else
other than the diehard_conv result.

'''
def plot(pvalues, fname, col="red"):

idealvalues = []
for x in range(len(pvalues)):

idealvalues.append(round(x/len(pvalues), 4))
label = fname.split("/")[-1]
plt.plot(pvalues, color=col,label=label)

'''
plots the ideal x=y line to compare to

'''
def plot_ideal(pvalues, col="grey"):

plt.yticks([0,0.5,1])
idealvalues = []
for x in range(len(pvalues)):

idealvalues.append(round(x/len(pvalues), 4))
plt.plot(idealvalues, col,label="ideal")

if (__name__ == "__main__"):
# read args
try:

fname = sys.argv[1]
except Exception as e:

raise ValueError("please provide target DIEFAST.exe analysis textfile as 
first argument!")

# convert and plot
fname = fname.strip()
d = diehard_conv.convert(fname)
print("RMSE: ", d[1])
plot(d[0], fname)
plot_ideal(d[0])
plt.legend(loc="upper left")
plt.show() #display the graph
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'''
TRNG PROJECT - TAKE NOISE DATA FILES AND DRAW THEIR VALUE DISTRIBUTION
ON THE SAME GRAPH
usage: python3 analyse_ndDistributionPlot-ALL.py <nsamples> <ntiers>
ntiers is an int between 1 and 256 and is optional (default 256)

makes sense to set it to a multiple of 8 or 16
nsamples is the maximum numble of sample values to take into account 
is also optional (default 1000000 - one million)

essentialy it is analyse_ndDistributionPlot.py but with a nsamples arg
and with hard-coded filenames.

'''

import sys
import matplotlib.pyplot as plt
import numpy
from os.path import join

import analyse_ndDistributionPlot as plotter

if (__name__ == "__main__"):

# read options
try:

nsamples = sys.argv[1]
except Exception as e:

nsamples = 1000000

try:
nsamples = int(nsamples)

except Exception as e:
raise ValueError("N of samples should be an integer! you provided:", 

nsamples, type(nsamples))

try:
tiers = sys.argv[2]

except Exception as e:
tiers = 256

try:
tiers = int(tiers)

except Exception as e:
raise ValueError("N of tiers should be an integer! you provided:", tiers, 

type(tiers))

'''
CAREFULLY CHECK THESE!!!
this script does not take any external input -
the filenames and folder with the filenames are hardcoded.

The script expects results of prng_getNoiseData or trng_getNoiseData
'''
# folder with target files
folder = "../../results/noisedata/"
# filenames
names = [

"URAND.txt",
"MT.txt",
"AES.txt",
"TRNG.txt"

]
# make filenames
fnames = []
for x in names:

fnames.append(join(folder, x))

# setup the plot
colors=["lime","yellow","cyan","red"]
ticks = [0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 

255]
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plt.xticks(ticks)
plt.ylim(0, 2)
plt.ylabel('FREQUENCY')
plt.xlabel('VALUE')
# plot all noise data files' distributions
fcount = 0
for fname in fnames:

plotter.draw(fname, tiers, nsamples, colors[fcount])
fcount += 1

plt.legend(loc="upper left")
print("rendering...")
plt.show()
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'''
TRNG PROJECT - TAKE A NOISE DATA FILE AND DRAW ITS VALUE DISTRIBUTION GRAPH
usage: python3 analyse_ndDistributionPlot.py <filepath> <ntiers>
ntiers is an int between 1 and 256 and is optional (default 256)
makes sense to set it to a multiple of 8 or 16

'''

import sys
import matplotlib.pyplot as plt
import convert_noiseDataToDistribution as conv_noise

'''
function for drawing one file's contents as a value distribution graph
inputs are filename (path to the noise data file), tiers (nubmer of value
groups) and graph colour

'''
def draw(fname, tiers=256, limit=1000000, col="red"):

print("plotting by:", fname)
data = conv_noise.convert(fname, tiers, limit)
plt.plot(data, color=(col),label=(fname.split("/")[-1]).split(".")[0])

# main run
if (__name__ == "__main__"):

# read filename arg
try:

fname = sys.argv[1]
except Exception as e:

raise ValueError("please provide target data textfile as first argument!")
# read and parse value limit arg
try:

nsamples = sys.argv[2]
except Exception as e:

nsamples = 1000000
try:

nsamples = int(nsamples)
except Exception as e:

raise ValueError("N of samples should be an integer! you provided:", 
nsamples, type(nsamples))

# readn and parse tier
try:

tiers = sys.argv[3]
except Exception as e:

tiers = 256
try:

tiers = int(tiers)
except Exception as e:

raise ValueError("N of tiers should be an integer! you provided:", tiers, 
type(tiers))

# plot graph
ticks = [0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 

255]
plt.xticks(ticks) #set the tick frequency on x-axis
# set other stuff
plt.ylim(0, 2)
plt.ylabel('FREQUENCY') #set the label for y axis
plt.xlabel('VALUE') #set the label for x-axis
draw(fname, tiers, nsamples)
plt.legend(loc="upper left")
print("rendering...")
plt.show() #display the graph
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'''
TRNG PROJECT - CONVERT NOISE DATASET TO DIEHARD-READABLE FORMAT
usage: python3 convert_dataFileToDiehardASCII.py <filename>

'''
import sys

'''
main convert function
takes in filename as argument

'''
def convert(fname):

# open file
try:

f = open(fname, "r")
except Exception as e:

raise ValueError("no target file!")

# read line by line
data = []
for i in f:
  data.append(int(i))
f.close()

# convert to new file
newname = fname.split(".")[0]+"-diehard.txt"
f = open(newname, "a")
f.truncate(0)
# iterate over each 40 bytes (10 ints per line)
for x in range(0, len(data), 40):

if (x+40>len(data)):
break

for y in range(0, 40):
d = hex(data[x+y])[2:].upper()
if (len(d) == 1):

d = "0"+d
f.write(d)

f.write("\n")

if (__name__ == "__main__"):
try:

fname = sys.argv[1]
except Exception as e:

raise ValueError("please provide target data textfile as first argument!")

convert(fname)
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'''
TRNG PROJECT - QUICK DIEHARD TEXT (DIEQUICK.EXE) RESULT PARSER
this script converts the output of DIEQUICK.exe (essentialy text files)
into useful format.
Intended to be used by other scripts as a module, has no main function.

2021
'''

'''
calculates the root mean square error of a given p-values list
relatively to an x=y line.

'''
def calc_rmse(pred, act):

if not (len(pred) == len(act)):
raise ValueError("something went wrong")

error = 0
for x in range(len(pred)):

error += (pred[x]-act[x])*(pred[x]-act[x])
error /= len(pred)
error = sqrt(error)
return error

'''
converts results of DIEQUICK.exe into useful form
returns [0] the list of p-values found in the file
and [1] the root mean square error for it relatively to x=y

'''
def convert(fname):

# open file
try:

f = open(fname, "r")
except Exception as e:

raise ValueError("no target file:", fname)

# read line by line
data = ["zero"]
for i in f:

data.append(i)
f.close()

# these are hard-coded numbers of lines that contain p-values of the test
# do. not. change them. if you use the same release i did.
# might need adjustments if you use a different test suite, though!
pstrings = []
pstrings += data[2:11]+[data[17]]+[data[19]]+[data[29]]+[data[38]]
pstrings += data[40:65]+data[77:97]+data[98:180]+data[185:187]
pstrings += data[191:216]+data[220:230]+data[238:258]+data[263:283]
pstrings += data[298:299]+data[301:311]+data[327:328]

# parse p-values out of file strings
pvalues = []
for s in pstrings:

pvalues.append(float("0."+s.split(".")[-1][0:4]))
pvalues = sorted(pvalues)

# generate ideal values, 4 digits past the dot
idealvalues = []
for x in range(len(pvalues)):

idealvalues.append(round(x/len(pvalues), 4))

# return a tuple with [0] being pvalues list and [1] being the RMSE
return pvalues, calc_rmse(idealvalues, pvalues)
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'''
TRNG PROJECT - NOISE DATA TO DISTRIBUTION GRAPH CONVERTER
this is a utility file for other scripts to use and it has no main run.
it expects a .txt file with one byte value written down as a decimal number per 

line
these are generated by trng_getNoiseData and prng_getNoiseData

the "tiers" setting sets the number of groups the values will be grouped into
256 (default) tiers means one tier per value, so the graph would show
the result for every value
a setting of 16 would group values into 16 ranges of (256/16) values
(0...15, 16...31, 32...47, ... ...)
this is sometimes needed to see if the general graph direction is flat or not

'''
def convert(fname, tiers=256, limit=1000000):

# attempt to open the noise data file
try:

f = open(fname, "r")
except Exception as e:

raise ValueError("no target file!")
data_unnorm = []
data = []
# make the unnormalized output array
for x in range(tiers):

data_unnorm.append(0)
# parse the file
lines_read = 0
for i in f:

data_unnorm[int(int(i)/(256/tiers))] += 1
lines_read += 1
if (lines_read == limit):

print("hit user-set value number limit for", fname)
break

# make the normalized [0:1] range output array
for t in data_unnorm:

data.append(t/max(data_unnorm))
return data
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'''
    TRNG PROJECT - DEMO PROGRAM: RANDOM PRIME NUMBER GENERATOR
'''

import random
import math
from trnglib import trng

# checks if a number is prime
def checkPrime(n, trng, length_bytes=16, k=128):
    # detect obvious cases
    if n == 2 or n == 3:
        return True
    if n <= 1 or n % 2 == 0:
        return False
    # find r and s
    s = 0
    r = n - 1
    while r & 1 == 0:
        s += 1
        r //= 2
    # do k tests
    for _ in range(k):
        # a = randrange(2, n - 1)
        a = int.from_bytes((trng.getRandomBytesArray(length_bytes)), 'big')
        if (a > n):
            a -= n
        if (a < 2):
            a = 2
        x = pow(a, r, n)
        if x != 1 and x != n - 1:
            j = 1
            while ((j < s) and (x != n - 1)):
                x = pow(x, 2, n)
                if x == 1:
                    return False
                j += 1
            if x != n - 1:
                return False
    return True

# returns a prime number
def generatePrime(trng, length=128):
    if not (length % 8 == 0):
        raise ValueError("bad key length!")
    length_bytes = int(length/8)
    p = 4
    while not checkPrime(p, trng, length_bytes, 128):
        p = int.from_bytes((trng.getRandomBytesArray(length_bytes)), 'big')
        p |= (1 << length - 1)
        p |= 1
        print("tried for prime", p)
    print("\nfound prime:", p, "\n\n")
    return p

# main run
if (__name__ == "__main__"):

    device = trng(portname="/dev/cu.wchusbserialfd120")
    device.connect()

    primes = []
    for x in range(4):
        primes.append(generatePrime(device))

    device.disconnect()

    print("final list of primes is:\n")
    for p in primes:
        print(p)
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'''

TRNG PROJECT - DEMO PROGRAM: SIMPLE TEST
usage: python3 demo_simpletest.py

connects to the trng
gets one random byte, one random uint32 and a stream of 16 random bytes
disconnects from the trng

2021
'''
from trnglib import trng
from time import sleep

# setup and connect the TRNG
print("")
device = trng(portname='/dev/cu.wchusbserialfd120')
device.connect()
sleep(1)

# byte read
print("\ngetting a random byte from TRNG")
v = device.getRandomByte()
print("got value:", v)
sleep(1)

# int read
print("\ngetting a random 32-bit integer from the TRNG")
v = device.getRandomInt()
print("got value:", v)
sleep(1)

# print stream of bytes
print("\nsetting the device to byte stream mode and printing 16 random bytes")
device.startStream()
for x in range(16):

v = device.readStream()
print("value #", x, ":", v)

device.stopStream()
sleep(1)

# disconnect
print("")
device.disconnect()
print("")
sleep(1)
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'''
TRNG PROJECT - SOFTWARE ALGORITHM OUTPUT DATA GATHERER
gathers results of mt, urand and aes noise generators into text files
one line - one byte value

2021
'''

# imports

import serial
import time
from random import *
import os
import sys
from Crypto.Cipher import AES

# functions

def acquire_mt(n_samples = 1000):
# do plot over n samples
n_aliveMessage = n_samples / 8
out_data = []
for x in range(n_samples):

out_data.append(randint(0, 255))
if (x % n_aliveMessage == 0):

print("i'm still alive. MT samples generated:", x)

f = open("mtData.txt", "a")
f.truncate(0)
for i in out_data:

f.write(str(i) + "\n")
f.close()

def acquire_urand(n_samples = 1000):
# do plot over n samples
n_aliveMessage = n_samples / 8
out_data = []
for x in range(n_samples):

out_data.append(randint(0, 255))
if (x % n_aliveMessage == 0):

print("i'm still alive. URAND samples generated:", x)
f = open("urandData.txt", "a")
f.truncate(0)
for i in out_data:

f.write(str(i) + "\n")
f.close()

def acquire_aes(n_samples = 1000):
# do plot over n samples
# each cycle generates 16 bytes, so
n_samples_orig = n_samples
n_samples = round(n_samples / 16)+1
n_aliveMessage = round(n_samples / 8)
out_data = bytearray()
key = os.urandom(AES.block_size)
iv = os.urandom(AES.block_size)
plaintext  = os.urandom(AES.block_size)
encryptor = AES.new(key, AES.MODE_CBC, IV=iv)
for x in range(n_samples):

ciphertext = encryptor.encrypt(plaintext)
out_data += ciphertext
plaintext = bytes(a ^ b for (a, b) in zip(plaintext, ciphertext))
if (x % n_aliveMessage == 0):

print("i'm still alive. AES samples generated: ~", x*16)
out_data = out_data[:n_samples_orig]
f = open("aesData.txt", "a")
f.truncate(0)
for i in out_data:

f.write(str(i) + "\n")
f.close()
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# main run

if (__name__ == "__main__"):
try:

n_samples = sys.argv[1]
except Exception as e:

raise ValueError("please provide N of samples as first argument!")

try:
n_samples = int(n_samples)

except Exception as e:
raise ValueError("N of samples should be an integer!")

acquire_mt(n_samples)
acquire_urand(n_samples)
acquire_aes(n_samples)
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'''
TRNG PROJECT - SOFTWARE ALGORITHM WORK TIME MEASURER
gathers times of N uint32's generation for mt, urand and aes noise
prints it to the screen

2021
'''

# imports 

import sys
from random import *
import os
from Crypto.Cipher import AES
import time

# time calculators

def get_urand_time(n_samples = 1000):
start_time = time.time()
#result = os.urandom(n_samples) 
for x in range(n_samples):

temp = os.urandom(4) # 4 bytes for uint32
print("URAND: %s seconds" % (time.time() - start_time))

def get_mt_time(n_samples = 1000):

start_time = time.time()
for x in range(n_samples):

temp = randint(0, 4294967295) # uint32 range
print("MT:    %s seconds" % (time.time() - start_time))

def get_aes_time(n_samples = 1000):
# each cycle generates 16 bytes, so 4 uints per cycle
n_samples = round(n_samples / 4) + 1

#start of the random engine action
out_data = bytearray()
start_time = time.time()
key = os.urandom(AES.block_size)
iv = os.urandom(AES.block_size)
message  = os.urandom(AES.block_size)
for x in range(n_samples):

encryptor = AES.new(key, AES.MODE_CBC, IV=iv)
message = encryptor.encrypt(message)
iv, message = message, iv
out_data += message

print("AES:   %s seconds" % (time.time() - start_time))

# main

if (__name__ == "__main__"):
try:

n_samples = sys.argv[1]
except Exception as e:

raise ValueError("please provide N of samples as first argument!")

try:
n_samples = int(n_samples)

except Exception as e:
raise ValueError("N of samples should be an integer!")

get_urand_time(n_samples)
get_mt_time(n_samples)
get_aes_time(n_samples)
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'''
TRNG PROJECT - SOFTWARE ALGORITHM WORK TIME MEASURER
gathers times of N bytes generation for mt, urand and aes noise
prints it to the screen

2021
'''

# imports 

import sys
from random import *
import os
from Crypto.Cipher import AES
import time

# time calculators

def get_urand_time(n_samples = 1000):
start_time = time.time()
#result = os.urandom(n_samples) 
for x in range(n_samples):

temp = os.urandom(1)
print("URAND: %s seconds" % (time.time() - start_time))

def get_mt_time(n_samples = 1000):

start_time = time.time()
for x in range(n_samples):

temp = randint(0, 255)
print("MT:    %s seconds" % (time.time() - start_time))

def get_aes_time(n_samples = 1000):
# each cycle generates 16 bytes, so
n_samples = round(n_samples / 16)+1

#start of the random engine action
out_data = bytearray()
start_time = time.time()
key = os.urandom(AES.block_size)
iv = os.urandom(AES.block_size)
message  = os.urandom(AES.block_size)
for x in range(n_samples):

encryptor = AES.new(key, AES.MODE_CBC, IV=iv)
message = encryptor.encrypt(message)
iv, message = message, iv
out_data += message

print("AES:   %s seconds" % (time.time() - start_time))

# main

if (__name__ == "__main__"):
try:

n_samples = sys.argv[1]
except Exception as e:

raise ValueError("please provide N of samples as first argument!")

try:
n_samples = int(n_samples)

except Exception as e:
raise ValueError("N of samples should be an integer!")

get_urand_time(n_samples)
get_mt_time(n_samples)
get_aes_time(n_samples)
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'''
TRNG PROJECT - DEVICE TEST CALIBRATION UTILITY
plots the distribution of things to the console as a rough ASCII graph
used mainly for calibration and evenity testing

2021
'''

from trnglib import trng 
import time
from random import *
from trng_consolegraph import plotData

device = trng(portname='/dev/cu.wchusbserialfd120')
trng.connect()
trng.startStream()

# do plot over n samples
chunk_size = 4096*32
while True:

data = []
for x in range(chunk_size):

data.append(int.from_bytes(trng.readStream(), "big"))
plotData(data, tiers=64)

57



'''
TRNG PROJECT - FAST CONSOLE PLOT
plots the distribution of things to the console as a rough ASCII graph
used mainly for calibration and evenity testing

2021
'''

glob_block = "█"
glob_halfblock = "▒"
glob_empty = " "

from random import *
import os

def clearConsole():
    command = 'clear'
    if os.name in ('nt', 'dos'):  # If Machine is running on Windows, use cls
        command = 'cls'
    os.system(command)

def getTierData(data, values = 256, tiers = 16):
tierSize = values / tiers
tierQuantities = []
for t in range(tiers):

tierQuantities.append(0)

for d in data:
tierQuantities[int(d / tierSize)] += 1

return tierQuantities

def printPlot(tierData):
tiers = len(tierData)
maxQuantity = max(tierData)
normalizedTiers = []
for t in tierData:

normalizedTiers.append(t*10/maxQuantity)
for x in range(9, 0, -1):

str = ""
for t in range(len(normalizedTiers)):

if (normalizedTiers[t] >= x):
str += glob_block

else:
str += glob_empty

print(str)

def plotData(data, values = 256, tiers = 16):
t = getTierData(data, values, tiers)
clearConsole()
printPlot(t)

def test():
data = []
for x in range(256):

data.append(randint(0, 255))
plotData(data)

if (__name__ == "__main__"):
test()
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'''
TRNG PROJECT - DEVICE OUTPUT DATA GATHERER FOR N VALUES
gathers N samples from the TRNG and puts them into a txt file
called "deviceData.txt"
the file is wiped before writing!!!
if the program/the TRNG crash on execution, the file contents are
saved up until the moment it crashed.

2021
'''

import sys
from trnglib import trng

def getNumbers(n_samples):
if (n_samples < 10000):

n_aliveMessage = round(n_samples/100)
else:

n_aliveMessage = round(n_samples/1000)

f = open("deviceData.txt", "a")
f.truncate(0)

device = trng(portname="/dev/cu.wchusbserialfd120")
device.connect()
device.startStream()

for x in range(n_samples):
f.write(str(device.readStream()) + "\n")
if (x % n_aliveMessage == 0):

print("i'm still alive. samples acquired:", x)

device.stopStream()
f.close()

if (__name__ == "__main__"):
try:

n_samples = sys.argv[1]
except Exception as e:

raise ValueError("please provide N of samples as first argument!")

try:
n_samples = int(n_samples)

except Exception as e:
raise ValueError("N of samples should be an integer!")

getNumbers(n_samples)
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'''
TRNG PROJECT - DEVICE N BYTES GENERATION TIME MEASURE SCRIPT
usage: python3 trng_timetestBytes.py <int n samples>
2021

'''

import sys
from trnglib import trng
import time

def get_trng_time(n_samples = 1000):
device = trng(portname="/dev/cu.wchusbserialfd120")
device.connect()
start_time = time.time()
device.startStream()
for x in range(n_samples):

temp = device.readStream()
device.stopStream()
print("TRNG: %s seconds" % (time.time() - start_time))

if (__name__ == "__main__"):
try:

n_samples = sys.argv[1]
except Exception as e:

raise ValueError("please provide N of samples as first argument!")

try:
n_samples = int(n_samples)

except Exception as e:
raise ValueError("N of samples should be an integer!")

get_trng_time(n_samples)
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'''
TRNG PROJECT - DEVICE N 32BIT UNSIGNED INTS GENERATION TIME MEASURE SCRIPT
usage: python3 trng_timetestInts.py <int n samples>
2021

'''

import sys
from trnglib import trng
import time

def get_trng_time(n_samples = 1000):
device = trng(portname="/dev/cu.wchusbserialfd120")
device.connect()
start_time = time.time()
device.startStream()
for x in range(n_samples):

temp = device.readStreamInt()
device.stopStream()
print("TRNG: %s seconds" % (time.time() - start_time))

if (__name__ == "__main__"):
try:

n_samples = sys.argv[1]
except Exception as e:

raise ValueError("please provide N of samples as first argument!")

try:
n_samples = int(n_samples)

except Exception as e:
raise ValueError("N of samples should be an integer!")

get_trng_time(n_samples)
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'''
TRNG PROJECT - INTERFACE LIBRARY
a library to facilitate the connection to the arduino-based TRNG

2021
'''

# imports

import serial
from time import sleep

# internal vars

class trng:

'''
class instance initializer
'''
def __init__(self, portname, verbose=True):

self.portname = portname
self.verbose = verbose
self.connection = None

'''
tries establishing connection to the port PORTNAME
returns True on success and False (and a printed warning) on failure
'''
def connect(self):

if (self.verbose):
print("Trying to connect to the TRNG device...")

try:
self.connection = serial.Serial(

port=self.portname,
baudrate=115200,

    bytesize=serial.EIGHTBITS,
)

except Exception as e:
if (self.verbose):

print("TRNG connection failed! error:", e)
return False

sleep(2)
if not self.connection.is_open:

self.connection.open()
if (self.verbose):

print("TRNG connection successful!")
return True

'''
disconnects the device
'''
def disconnect(self):

self.sendOption(b"D")
print("Trying to disconnect to the TRNG device...")
sleep(1)
if (not self.connection == None):

self.connection.close()
if (self.verbose):

print("device disconnected successfully.")
else:

if (self.verbose):
print("device not connected!")

'''
checks if the connection is there
'''
def checkConnection(self):

if (self.connection == None):
raise ValueError("device not connected!")
return False

return True
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'''
sends one character of message to the device
message is a string, only the first letter of it matters
ignores case
'''
def sendOption(self, message):

if (self.checkConnection()):
self.connection.write(message)

else:
if (self.verbose):

print("device not connected!")

'''
sets the TRNG into S(tream) mode
'''
def startStream(self):

self.sendOption(b"S")
'''
stops the TRNG's S(tream) mode with the E(nough) command
'''
def stopStream(self):

self.sendOption(b"E")

'''
gets one single random byte from the trng
returns it as an INTEGER
'''
def getRandomByte(self):

self.sendOption(b"B")
val = self.connection.read()
return int.from_bytes(val, "big")

'''
gets N random bytes from the trng
'''
def getRandomBytesArray(self,n):

if (self.checkConnection()):
self.startStream()
bytes = bytearray()
for x in range(n):

val = self.connection.read()
bytes += val

self.stopStream()
return bytes

'''
gets a random unsigned 32bit integer
'''
def getRandomInt(self):

if (self.checkConnection()):
bytes = bytearray()
for x in range(4):

self.sendOption(b"B")
val = self.connection.read()
bytes += val

randint = int.from_bytes(bytes, "big")
return randint

'''
reads whatever is on the serial
is to be used after startStream
use stopStream after you're done with it
returns its decimal value as a python integer
'''
def readStream(self):

val = self.connection.read()
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return int.from_bytes(val, "big")

'''
same as above but as a single element python bytes array
'''
def readStreamAsBytes(self):

if (self.checkConnection()):
val = self.connection.read()
return val

'''
reads whatever is on the serial 4 times
makes a 32bit uint out of that
is to be used after startStream
use stopStream after you're done with it
'''
def readStreamInt(self):

if (self.checkConnection()):
bytes = bytearray()
for x in range(4):

val = self.connection.read()
bytes += val

randint = int.from_bytes(bytes, "big")
return randint
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/*
  TRNG PROJECT - ARDUINO SOFTWARE
  2021
*/

void setup() {
  Serial.begin(115200);
  DDRC = 0x00; // reg C all input
  DDRB = 0xFF; // reg B all output, we will only use B5
               // for some debugging via on board LED
  // show that it's alive
  blinky(3);
  delay(120);
  blinky(3);
  
}

// blinks N times. is there for debug/demo purposes
void blinky(unsigned char n)
{
  for (unsigned char t = 0; t < n; t++)
 {
   PORTB = 0xFF;
   delay(60);
   PORTB = 0x00;
   delay(60);
 } 
}

// resets the connection - this resolves the locked port bug
void softReset()
{
  blinky(1);
  delay(50);
  Serial.end();
  delay(500);
  Serial.begin(115200);
  blinky(4);
}

// function for accumulating 1 byte worth of uncertainty
char getByteData()
{
  char out = 0,
       temp = 0;    
  for (unsigned char counter = 0; counter < 8; counter++)
  {
    out = out << 1;
    temp = (PINC >> 5) & 0x01;
    out |= temp;
    
    // slow noise compensation - to be removed when the circuitry gets upgraded
    for (int a = 0; a < 128; a++)
    {
     __asm__ __volatile__ ("nop\n\t");
    }  
  }
  return out;
}

// generates a random byte by getting 2 uncertainty bytes and XORing them for
// even more advanced effect
char getRandomByte()
{
  char byte1 = getByteData();
  char byte2 = getByteData();
  char out = byte1 ^ byte2;
  return out;
}

// the 'awit for command' loop
char opt = '0';
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void loop() 
{
  // READ OPTION
  
  if (Serial.available() > 0) 
  {
    opt = Serial.read();
  }
  
  // D(isconnects) the connection
  if (opt == 'D')
  {
    softReset();
  }
  
  // send a single random B(yte)
  else if (opt == 'B')
  {
    char out = getRandomByte();
    Serial.print(out); 
  }
  
  // S(tream) UNTIL E(nough)
  else if (opt == 'S')
  {
    char temp = 0,
         byte1 = 0,
         byte2 = 0;
    
    while (true)
    {
      // E(nough) breakout sequence
      if (Serial.available() > 0) 
      {
        if (Serial.read() == 'E')
          break;
      }
      char out = getRandomByte();
      Serial.print(out);
    }
  }

  // nullify the option if it was not zero
  if (opt != '0')
    opt = '0';
}
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Appendix 3 – Hardware circuit diagram and notes

In this appendix, a circuit diagram of the device’s hardware part is presented, as well as

some photos of the build process and the final result.

Figure 9. Hardware schematic

Figure 10. Photo: prototype of the noise generator on the breadboard
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Figure 11. Photo: assembled device board being tested

Figure 12. Photo: device put into the enclosure and wired up
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Figure 13. Photo: assembled device is connected and working

Figure 14. Photo: the device and its PSU
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Appendix 4 – Data files, additional graphs

Figure 15. AES p-value distribution

Figure 16. MT p-value distribution
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Figure 17. URAND p-value distribution

Figure 18. TRNG p-value distribution
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Figure 19. AES visualisation, greyscale, 1000 values per side
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Figure 20. MT visualisation, greyscale, 1000 values per side
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Figure 21. URAND visualisation, greyscale, 1000 values per side
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Figure 22. TRNG visualisation, greyscale, 1000 values per side

If one wishes to get the test datasets obtained through testing, the software kit, or any ad-
ditional data, please, request it via nitimo@ttu.ee.
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